WorldWideScience

Sample records for non-twisted hawt blades

  1. The Performance Test of Three Different Horizontal Axis Wind Turbine (HAWT Blade Shapes Using Experimental and Numerical Methods

    Directory of Open Access Journals (Sweden)

    Wen-Tong Chong

    2013-06-01

    Full Text Available Three different horizontal axis wind turbine (HAWT blade geometries with the same diameter of 0.72 m using the same NACA4418 airfoil profile have been investigated both experimentally and numerically. The first is an optimum (OPT blade shape, obtained using improved blade element momentum (BEM theory. A detailed description of the blade geometry is also given. The second is an untapered and optimum twist (UOT blade with the same twist distributions as the OPT blade. The third blade is untapered and untwisted (UUT. Wind tunnel experiments were used to measure the power coefficients of these blades, and the results indicate that both the OPT and UOT blades perform with the same maximum power coefficient, Cp = 0.428, but it is located at different tip speed ratio, λ = 4.92 for the OPT blade and λ = 4.32 for the UOT blade. The UUT blade has a maximum power coefficient of Cp = 0.210 at λ = 3.86. After the tests, numerical simulations were performed using a full three-dimensional computational fluid dynamics (CFD method using the k-ω SST turbulence model. It has been found that CFD predictions reproduce the most accurate model power coefficients. The good agreement between the measured and computed power coefficients of the three models strongly suggest that accurate predictions of HAWT blade performance at full-scale conditions are also possible using the CFD method.

  2. Analytical study on different blade-shape design of HAWT for wasted kinetic energy recovery system (WKERS)

    Science.gov (United States)

    Goh, J. B.; Jamaludin, Z.; Jafar, F. A.; Mat Ali, M.; Mokhtar, M. N. Ali; Tan, C. H.

    2017-06-01

    Wasted kinetic energy recovery system (WKERS) is a wind renewable gadget installed above a cooling tower outlet to harvest the discharged wind for electrical regeneration purpose. The previous WKERS is operated by a horizontal axis wind turbine (HAWT) with delta blade design but the performance is still not at the optimum level. Perhaps, a better blade-shape design should be determined to obtain the optimal performance, as it is believed that the blade-shape design plays a critical role in HAWT. Hence, to determine a better blade-shape design for a new generation of WKERS, elliptical blade, swept blade and NREL Phase IV blade are selected for this benchmarking process. NREL Phase IV blade is a modern HAWT’s blade design by National Renewable Energy Laboratory (NREL) research lab. During the process of benchmarking, Computational Fluid Dynamics (CFD) analysis was ran by using SolidWorks design software, where all the designs are simulated with linear flow simulation. The wind speed in the simulation is set at 10.0 m/s, which is compatible with the average wind speed produced by a standard size cooling tower. The result is obtained by flow trajectories of air motion, surface plot and cut plot of the applied blade-shape. Besides, the aspect ratio of each blade is calculated and included as one of the reference in the comparison. Hence, the final selection of the best blade-shape design will bring to the new generation of WKERS.

  3. A New Method for Horizontal Axis Wind Turbine (HAWT Blade Optimization

    Directory of Open Access Journals (Sweden)

    Mohammadreza Mohammadi

    2016-02-01

    Full Text Available Iran has a great potential for wind energy. This paper introduces optimization of 7 wind turbine blades for small and medium scales in a determined wind condition of Zabol site, Iran, where the average wind speed is considered 7 m /s. Considered wind turbines are 3 bladed and radius of 7 case study turbine blades are 4.5 m, 6.5 m, 8 m, 9 m, 10 m, 15.5 m and 20 m. As the first step, an initial design is performed using one airfoil (NACA 63-215 across the blade. In the next step, every blade is divided into three sections, while the 20 % of first part of the blade is considered as root, the 5% of last the part is considered as tip and the rest of the blade as mid part. Providing necessary input data, suitable airfoils for wind turbines including 43 airfoils are extracted and their experimental data are entered in optimization process. Three variables in this optimization problem would be airfoil type, attack angle and chord, where the objective function is maximum output torque. A MATLAB code was written for design and optimization of the blade, which was validated with a previous experimental work. In addition, a comparison was made to show the effect of optimization with two variables (airfoil type and attack angle versus optimization with three variables (airfoil type, attack angle and chord on output torque increase. Results of this research shows a dramatic increase in comparison to initial designed blade with one airfoil where two variable optimization causes 7.7% to 22.27 % enhancement and three variable optimization causes 17.91% up to 24.48% rise in output torque .Article History: Received Oct 15, 2015; Received in revised form January 2, 2016; Accepted January 14, 2016; Available online How to Cite This Article: Mohammadi, M., Mohammadi, A. and Farahat, S. (2016 A New Method for Horizontal Axis Wind Turbine (HAWT Blade Optimization. Int. Journal of Renewable Energy Development, 5(1,1-8. http://dx.doi.org/10.14710/ijred.5.1.1-8

  4. Prediction of H.A.W.T. blade stall and performance

    Energy Technology Data Exchange (ETDEWEB)

    Giannakidis, G.; Graham, J.M.R. [Imperial College, Dept. of Aeronautics, London (United Kingdom)

    1996-09-01

    A model is being developed for the prediction of Horizontal Axis Wind Turbine blade stall and performance coupled with a simple aeroelastic analysis model. For the aerodynamic calculation a two dimensional unsteady Navier-Stokes solver on a sectional basis on the blade is coupled with a three dimensional vortex lattice wake. Pressure coefficient distributions are calculated from the two dimensional viscous flow in each blade section. The aerodynamic computations are coupled with a vibrating beam model in order to incorporate flapwise deformations of the blade. (au) 17 refs.

  5. Numerical investigation of optimal yaw misalignment and collective pitch angle for load imbalance reduction of rigid and flexible HAWT blades under sheared inflow

    International Nuclear Information System (INIS)

    Jeong, Min-Soo; Cha, Myung-Chan; Kim, Sang-Woo; Lee, In

    2015-01-01

    Wind shear can strongly influence the cyclic loading on horizontal axis wind turbine blades. These load fluctuation causes a variation of power output and introduces fatigue load. Thus, individual pitch controllers have been developed that are focused on the load alleviations, however, comes at a price of actuator requirements for control. Moreover, these controllers are unable to apply to already existing wind turbines with active yaw and collective pitch control system. Therefore, the investigations for minimizing load imbalance through the adjustments of yaw misalignment and collective pitch angle are implemented for the rigid and flexible blades under the sheared inflow. By applying the optimization process based on a sequential quadratic programming approach, the optimal yaw and pitch angle can be estimated. Then, the numerical simulations for predicting the performance are performed. The results showed that the fluctuation range of the root flapwise bending moment for the rigid blades can be reduced by 84.5%, whereas the vibratory bending moment for the flexible blades can be reduced by up to approximately 82.4% in the best case. Therefore, the magnitudes of load imbalance can be minimized by the adjustment of the optimal yaw misalignment and collective pitch angle without any power loss. - Highlights: • We propose a novel method for the reduction of load imbalance under sheared inflow. • We estimate optimal yaw misalignment and collective pitch angle through optimization. • Numerical results of performance are predicted for rigid and flexible blades. • By applying optimal angles, load variations are reduced without any power loss

  6. Torque-Matched Aerodynamic Shape Optimization of HAWT Rotor

    International Nuclear Information System (INIS)

    Al-Abadi, Ali; Ertunç, Özgür; Beyer, Florian; Delgado, Antonio

    2014-01-01

    Schmitz and Blade Element Momentum (BEM) theories are integrated to a gradient based optimization algorithm to optimize the blade shape of a horizontal axis wind turbine (HAWT). The Schmitz theory is used to generate an initial blade design. BEM theory is used to calculate the forces, torque and power extracted by the turbine. The airfoil shape (NREL S809) is kept the same, so that the shape optimization comprises only the chord and the pitch angle distribution. The gradient based optimization of the blade shape is constrained to the torque-rotational speed characteristic of the generator, which is going to be a part of the experimental set-up used to validate the results of the optimization study. Hence, the objective of the optimization is the maximization of the turbines power coefficient C p while keeping the torque matched to that of the generator. The wind velocities and the rotational speeds are limited to those achievable in the wind tunnel and by the generator, respectively. After finding the optimum blade shape with the maximum C p within the given range of parameters, the C p of the turbine is evaluated at wind-speeds deviating from the optimum operating condition. For this purpose, a second optimization algorithm is used to find out the correct rotational speed for a given wind-speed, which is again constrained to the generator's torque rotational speed characteristic. The design and optimization procedures are later validated by high-fidelity numerical simulations. The agreement between the design and the numerical simulations is very satisfactory

  7. blades

    Directory of Open Access Journals (Sweden)

    Shashishekara S. Talya

    1999-01-01

    Full Text Available Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.

  8. Measurements of blade aerodynamics on a rotor in the field

    Energy Technology Data Exchange (ETDEWEB)

    Graham, J.M.R. [Imperical College, Dept. of Aeronautics, London (United Kingdom)

    1997-12-31

    This contribution describes the field test measurements undertaken on an instrumented rotor at the Rutherford Appleton Laboratory, Oxfordshire, UK, during the period 1994 - 97. The programme was directed at improving the prediction of the steady and unsteady rotor blade loading, particularly the loads arising from the stalling of the blade. The measured data consisted of blade surface pressure distributions sampled at 50Hz at 6 sections along the span of one blade of the 17m diameter, 3 bladed, fixed pitch, upwind H.A.W.T., together with measurements of the incident velocity. (au)

  9. Experimental study of improved HAWT performance in simulated natural wind by an active controlled multi-fan wind tunnel

    Science.gov (United States)

    Toshimitsu, Kazuhiko; Narihara, Takahiko; Kikugawa, Hironori; Akiyoshi, Arata; Kawazu, Yuuya

    2017-04-01

    The effects of turbulent intensity and vortex scale of simulated natural wind on performance of a horizontal axis wind turbine (HAWT) are mainly investigated in this paper. In particular, the unsteadiness and turbulence of wind in Japan are stronger than ones in Europe and North America in general. Hence, Japanese engineers should take account of the velocity unsteadiness of natural wind at installed open-air location to design a higher performance wind turbine. Using the originally designed five wind turbines on the basis of NACA and MEL blades, the dependencies of the wind frequency and vortex scale of the simulated natural wind are presented. As the results, the power coefficient of the newly designed MEL3-type rotor in the simulated natural wind is 130% larger than one in steady wind.

  10. Comparison between OpenFOAM CFD & BEM theory for variable speed – variable pitch HAWT

    Directory of Open Access Journals (Sweden)

    ElQatary Islam

    2014-01-01

    Full Text Available OpenFoam is used to compare computational fluid dynamics (CFD with blade element momentum theory (BEM for a variable speed - variable pitch HAWT (Horizontal Axis Wind Turbine. The wind turbine is first designed using the BEM to determine the blade chord, twist and operating conditions. The wind turbine blade has an outer diameter of 14 m, uses a NACA 63–415 profile for the entire blade and root to tip twist distribution of 15deg (Figure 3. The RPM varies from 20–75 for freestream velocities varying between 3–10.5 m/s (variable speed and a constant RPM of 78.78 for velocities ranging between 11–25 m/s (variable pitch. OpenFOAM is used to investigate the wind turbine performance at several operating points including cut-in wind speed (3 m/s, rated wind speed (10.5 m/s and in the variable pitch zone. Simulation results show that in the variable-speed operating range, both CFD and BEM compare reasonably well. This agreement can be attributed to the fact that the complex three-dimensional flow around the turbine blades can be split into two radial segments. For radii less than the mid-span, the flow is three-dimensional, whereas for radii greater than the mid-span, the flow is approximately two-dimensional. Since the majority of the power is produced from sections beyond the mid-span, the agreement between CFD and BEM is reasonable. For the variable-pitch operating range the CFD results and BEM deviate considerably. In this case the majority of the power is produced from the inner sections in which the flow is three-dimensional and can no longer be predicted by the BEM. The results show that differences in pitch angles up to 10deg can result to regulate the power for high wind speeds in the variable-pitch operation zone.

  11. Numerical study of effect of pitch angle on performance characteristics of a HAWT

    Directory of Open Access Journals (Sweden)

    Sudhamshu A.R.

    2016-03-01

    Full Text Available Wind energy is one of the clean renewable forms of energy that can handle the existing global fossil fuel crisis. Although it contributes to 2.5% of the global electricity demand, with diminishing fossil fuel sources, it is important that wind energy is harnessed to a greater extent to meet the energy crisis and problem of pollution. The present work involves study of effect of pitch angle on the performance of a horizontal axis wind turbine (HAWT, NREL Phase VI. The wind velocities considered for the study are 7, 15.1 and 25.1 m/s. The simulations are performed using a commercial CFD code Fluent. A frozen rotor model is used for simulation, wherein the governing equations are solved in the moving frame of reference rotating with the rotor speed. The SST k-ω turbulence model has been used. It is seen that the thrust increases with increase in wind velocity, and decreases with increase in pitch angle. For a given wind velocity, there is an optimum pitch angle where the power generated by the turbine is maximum. The observed effect of pitch angle on the power produced has been correlated to the stall characteristics of the airfoil blade.

  12. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Laboratory, Golden, Colorado (United States)

    1997-08-01

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. (au)

  13. Influence of pitch, twist, and taper on a blade`s performance loss due to roughness

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.L. [National Renewable Energy Lab., Golden, CO (United States)

    1996-12-31

    The purpose of this study was to determine the influence of blade geometric parameters such as pitch, twist, and taper on a blade`s sensitivity to leading edge roughness. The approach began with an evaluation of available test data of performance degradation due to roughness effects for several rotors. In addition to airfoil geometry, this evaluation suggested that a rotor`s sensitivity to roughness was also influenced by the blade geometric parameters. Parametric studies were conducted using the PROP computer code with wind-tunnel airfoil characteristics for smooth and rough surface conditions to quantify the performance loss due to roughness for tapered and twisted blades relative to a constant-chord, non-twisted blade at several blade pitch angles. The results indicate that a constant-chord, non-twisted blade pitched toward stall will have the greatest losses due to roughness. The use of twist, taper, and positive blade pitch angles all help reduce the angle-of-attack distribution along the blade for a given wind speed and the associated performance degradation due to roughness. 8 refs., 6 figs.

  14. Modelo matemático para el diseño aerodinámico de los álabes de una turbina eólica de eje horizontal (TEEH Mathematical Model for Blades Aerodynami c Design of a Horizontal Axis Wind Turbine (HAWT

    Directory of Open Access Journals (Sweden)

    Julio José–Chirinos García

    2016-02-01

    Full Text Available El objetivo de esta investigación es elaborar un modelo matemát ico para el diseño aerodinámico de las palas de una turbina eólica de eje horizontal en forma rápida y confiable qu e facilite a construcción y comportamiento bajo diferentes condiciones. Este resultado se obtuvo por el método inductivo y deductivo partiendo de las teorías aerodinámicas de Glauert y otros introduciéndole modificaciones. Igualmente el d esarrollo del modelo fue programado en una hoja de cálculo que permitió calcular el radio R del rotor, la distribu ción de la cuerda c(r y la variación del ángulo de torsión Ө(r de forma automática. El desarrollo del modelo está estructura do de acuerdo a las siguientes etapas: identificación y definición, conceptualización, formulación e implementación y finalmente la validación del modelo. La validación del modelo fue hecha comparando la geometría de la pala y la potenc ia generada por el rotor con una familia de palas de fabricantes europeos. The research purpose is elaborate a mathematical model fo r blade aerodynamic designing of horizontal axis wind turbine in fast and reliable way to facilitate the construc tion and performance evaluation under different operational conditions. To reach the theoretical and empirical approa ch it was used induction and deduction method starting from aerodynamic theories of Glauert and other researchers, in which necessary modifications were introduced. Also, the development of the model was programmed in aspreadsheet which allows to calc ula table de radio R, the distribution of chord c (r, and the variation of twist angle or pitch Ө (r in automatic way. The development of the model was structured according to the following stages: identification and definition, conceptualization, formulation andimplementation and finally the validation of the m odel. The model validation was made comparing the blade geometry and generated power by the rotor with a blade family of

  15. Modelo matemático para el diseño aerodinámico de los álabes de una turbina eólica de eje horizontal (TEEH; Mathematical Model for Blades Aerodynamic Design of a Horizontal Axis Wind Turbine (HAWT

    Directory of Open Access Journals (Sweden)

    Julio José Chirinos García

    2015-12-01

    Full Text Available El objetivo de esta investigación es elaborar un modelo matemático para el diseño aerodinámico de las palas de una turbina eólica de eje horizontal en forma rápida y confiable que facilite a construcción y comportamiento bajo diferentes condiciones. Este resultado se obtuvo por el método inductivo y deductivo partiendo de las teorías aerodinámicas de Glauert y otros introduciéndole modificaciones. Igualmente el desarrollo del modelo fue programado en una hoja de cálculo que permitió calcular el radio R del rotor, la distribución de la cuerda c(r y la variación del ángulo de torsiónӨ(r de forma automática. El desarrollo del modelo está estructurado de acuerdo a las siguientes etapas: identificación y definición, conceptualización, formulación e implementación y finalmente la validación del modelo. La validación del modelo fue hecha comparando la geometría de la pala y la potencia generada por el rotor con una familia de palas defabricantes europeos.The research purpose is elaborate a mathematical model for blade aerodynamic designing of horizontal axis wind turbine in fast and reliable way to facilitate the construction and performance evaluation under different operational conditions. To reach the theoretical and empirical approach it was used induction and deduction method starting from aerodynamic theories of Glauert and other researchers, in which necessary modifications were introduced. Also, the development of the model was programmed in aspreadsheet which allows to calcula table de radio R, the distribution of chord c (r, and the variation of twist angle or pitch Ө (r in automatic way. The development of the model was structured according to the following stages: identification and definition, conceptualization, formulationandimplementation and finally the validation of the model. The model validation was made comparing the blade geometry and generated power by the rotor with a blade family of European

  16. Aeroelastic stability and response of horizontal axis wind turbine blades

    Science.gov (United States)

    Kottapalli, S. B. R.; Friedmann, P. P.; Rosen, A.

    1979-01-01

    Coupled flap-lag-torsion equations of motion of an isolated horizontal axis wind turbine (HAWT) blade have been formulated. The analysis neglects blade-tower coupling. The final nonlinear equations have periodic coefficients. A new and convenient method of generating an appropriate time-dependent equilibrium position, required for the stability analysis, has been implemented and found to be computationally efficient. Steady-state response and stability boundaries for an existing (typical) HAWT blade are presented. Such stability boundaries have never been published in the literature. The results show that the isolated blade under study is basically stable. The tower shadow (wake) has a considerable effect on the out-of-plane response but leaves blade stability unchanged. Nonlinear terms can significantly affect linearized stability boundaries; however, they have a negligible effect on response, thus implying that a time-dependent equilibrium position (or steady-state response), based completely on the linear system, is appropriate for the type of HAWT blades under study.

  17. The root flow of horizontal axis wind turbine blades : Experimental analysis and numerical validation

    NARCIS (Netherlands)

    Akay, B.

    2016-01-01

    Despite a long research history in the field of wind turbine aerodynamics, horizontal axis wind turbine (HAWT) blade's root flow aerodynamics is among the least understood topics. In this thesis work, a detailed investigation of the root flow is performed to gain a better insight into the features

  18. Assessment of the performance of various airfoil sections on power generation from a wind turbine using the blade element momentum theory

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaomin; Agarwal, Ramesh [Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, Jolley Hall, Campus Box 1185, One Brookings Drive, St. Louis, Missouri, 63130 (United States)

    2013-07-01

    It is well established that the power generated by a Horizontal-Axis Wind Turbine (HAWT) is a function of the number of blades, the tip speed ratio (blade tip speed/wind free stream velocity) and the lift to drag ratio (CL /CD) of the airfoil sections of the blade. The airfoil sections used in HAWT are generally thick airfoils such as the S, DU, FX, Flat-back and NACA 6-series of airfoils. These airfoils vary in (CL /CD) for a given blade and ratio and therefore the power generated by HAWT for different blade airfoil sections will vary. The goal of this paper is to evaluate the effect of different airfoil sections on HAWT performance using the Blade Element Momentum (BEM) theory. In this study, we employ DU 91-W2-250, FX 66-S196-V1, NACA 64421, and Flat-back series of airfoils (FB-3500-0050, FB-3500-0875, and FB-3500-1750) and compare their performance with S809 airfoil used in NREL Phase II and III wind turbines; the lift and drag coefficient data for these airfoils sections are available. The output power of the turbine is calculated using these airfoil section blades for a given blade and ratio and is compared with the original NREL Phase II and Phase III turbines using S809 airfoil section. It is shown that by a suitable choice of airfoil section of HAWT blade, the power generated by the turbine can be significantly increased. Parametric studies are also conducted by varying the turbine diameter.

  19. Effect of control activity on blade fatigue damage rate for a small horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, A F; Freris, L L; Graham, J M.R. [Imperial College, London (United Kingdom)

    1996-09-01

    An experiment into the effect of control activity on blade fatigue damage rate for a 5 kW, two bladed, teetered HAWT has been performed. It has been shown that control activity influences the distribution of strain in the blade but that in a high rotor speed, high cycle fatigue regime this has little influence on damage rate. The experiment was conducted on a small test turbine by implementing variable speed stall, pitch and yaw control strategies and measuring blade flapwise strain response at root and midspan locations. A full description of the investigation is provided. (au)

  20. Inverse Design of Single- and Multi-Rotor Horizontal Axis Wind Turbine Blades using Computational Fluid Dynamics

    OpenAIRE

    Moghadassian, Behnam; Sharma, Anupam

    2017-01-01

    A method for inverse design of horizontal axis wind turbines (HAWTs) is presented in this paper. The direct solver for aerodynamic analysis solves the Reynolds Averaged Navier Stokes (RANS) equations, where the effect of the turbine rotor is modeled as momentum sources using the actuator disk model (ADM); this approach is referred to as RANS/ADM. The inverse problem is posed as follows: for a given selection of airfoils, the objective is to find the blade geometry (described as blade twist an...

  1. Multi-Objective Aerodynamic and Structural Optimization of Horizontal-Axis Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2017-01-01

    Full Text Available A procedure based on MATLAB combined with ANSYS is presented and utilized for the multi-objective aerodynamic and structural optimization of horizontal-axis wind turbine (HAWT blades. In order to minimize the cost of energy (COE and improve the overall performance of the blades, materials of carbon fiber reinforced plastic (CFRP combined with glass fiber reinforced plastic (GFRP are applied. The maximum annual energy production (AEP, the minimum blade mass and the minimum blade cost are taken as three objectives. Main aerodynamic and structural characteristics of the blades are employed as design variables. Various design requirements including strain, deflection, vibration and buckling limits are taken into account as constraints. To evaluate the aerodynamic performances and the structural behaviors, the blade element momentum (BEM theory and the finite element method (FEM are applied in the procedure. Moreover, the non-dominated sorting genetic algorithm (NSGA II, which constitutes the core of the procedure, is adapted for the multi-objective optimization of the blades. To prove the efficiency and reliability of the procedure, a commercial 1.5 MW HAWT blade is used as a case study, and a set of trade-off solutions is obtained. Compared with the original scheme, the optimization results show great improvements for the overall performance of the blade.

  2. Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using a Particle Swarm Optimization Algorithm and Finite Element Method

    Directory of Open Access Journals (Sweden)

    Pan Pan

    2012-11-01

    Full Text Available This paper presents an optimization method for the structural design of horizontal-axis wind turbine (HAWT blades based on the particle swarm optimization algorithm (PSO combined with the finite element method (FEM. The main goal is to create an optimization tool and to demonstrate the potential improvements that could be brought to the structural design of HAWT blades. A multi-criteria constrained optimization design model pursued with respect to minimum mass of the blade is developed. The number and the location of layers in the spar cap and the positions of the shear webs are employed as the design variables, while the strain limit, blade/tower clearance limit and vibration limit are taken into account as the constraint conditions. The optimization of the design of a commercial 1.5 MW HAWT blade is carried out by combining the above method and design model under ultimate (extreme flap-wise load conditions. The optimization results are described and compared with the original design. It shows that the method used in this study is efficient and produces improved designs.

  3. Multidisciplinary Design Optimization for Glass-Fiber Epoxy-Matrix Composite 5 MW Horizontal-Axis Wind-Turbine Blades

    Science.gov (United States)

    Grujicic, M.; Arakere, G.; Pandurangan, B.; Sellappan, V.; Vallejo, A.; Ozen, M.

    2010-11-01

    A multi-disciplinary design-optimization procedure has been introduced and used for the development of cost-effective glass-fiber reinforced epoxy-matrix composite 5 MW horizontal-axis wind-turbine (HAWT) blades. The turbine-blade cost-effectiveness has been defined using the cost of energy (CoE), i.e., a ratio of the three-blade HAWT rotor development/fabrication cost and the associated annual energy production. To assess the annual energy production as a function of the blade design and operating conditions, an aerodynamics-based computational analysis had to be employed. As far as the turbine blade cost is concerned, it is assessed for a given aerodynamic design by separately computing the blade mass and the associated blade-mass/size-dependent production cost. For each aerodynamic design analyzed, a structural finite element-based and a post-processing life-cycle assessment analyses were employed in order to determine a minimal blade mass which ensures that the functional requirements pertaining to the quasi-static strength of the blade, fatigue-controlled blade durability and blade stiffness are satisfied. To determine the turbine-blade production cost (for the currently prevailing fabrication process, the wet lay-up) available data regarding the industry manufacturing experience were combined with the attendant blade mass, surface area, and the duration of the assumed production run. The work clearly revealed the challenges associated with simultaneously satisfying the strength, durability and stiffness requirements while maintaining a high level of wind-energy capture efficiency and a lower production cost.

  4. A fully unsteady prescribed wake model for HAWT performance prediction in yawed flow

    Energy Technology Data Exchange (ETDEWEB)

    Coton, F.N.; Tongguang, Wang; Galbraith, R.A.M.; Lee, D. [Univ. of Glasgow (United Kingdom)

    1997-12-31

    This paper describes the development of a fast, accurate, aerodynamic prediction scheme for yawed flow on horizontal axis wind turbines (HAWTs). The method is a fully unsteady three-dimensional model which has been developed over several years and is still being enhanced in a number of key areas. The paper illustrates the current ability of the method by comparison with field data from the NREL combined experiment and also describes the developmental work in progress. In particular, an experimental test programme designed to yield quantitative wake convection information is summarised together with modifications to the numerical model which are necessary for meaningful comparison with the experiments. Finally, current and future work on aspects such as tower-shadow and improved unsteady aerodynamic modelling are discussed.

  5. Parametric study on off-design aerodynamic performance of a horizontal axis wind turbine blade and proposed pitch control

    International Nuclear Information System (INIS)

    Najafian Ashrafi, Z.; Ghaderi, M.; Sedaghat, A.

    2015-01-01

    Highlights: • A pitch controlled 200 kW HAWT blade is designed with BEM for off-design conditions. • Parametric study conducted on power coefficient, axial and angular induction factors. • The optimal pitch angles were determined at off-design operating conditions. - Abstract: In this paper, a 200 kW horizontal axis wind turbine (HAWT) blade is designed using an efficient iterative algorithm based on the blade element momentum theory (BEM) on aerodynamic of wind turbines. The effects of off-design variations of wind speed are investigated on the blade performance parameters according to constant rotational speed of the rotor. The performance parameters considered are power coefficient, axial and angular induction factors, lift and drag coefficients on the blade, angle of attack and angle of relative wind. At higher or lower wind speeds than the designed rated speed, the power coefficient is reduced due to considerable changes in the angle of attacks. Therefore, proper pitch control angles were calculated to extract maximum possible power at various off-design speeds. The results showed a considerable improvement in power coefficient for the pitch controlled blade as compared with the baseline design in whole operating range. The present approach can be equally employed for determining pitch angles to design pitch control system of medium and large-scale wind turbines

  6. Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine

    Science.gov (United States)

    Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi

    This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.

  7. LDV measurement of boundary layer on rotating blade surface in wind tunnel

    Science.gov (United States)

    Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Suzuki, Daiki; Kaga, Norimitsu; Kagisaki, Yosuke

    2014-12-01

    Wind turbines generate electricity due to extracting energy from the wind. The rotor aerodynamics strongly depends on the flow around blade. The surface flow on the rotating blade affects the sectional performance. The wind turbine surface flow has span-wise component due to span-wise change of airfoil section, chord length, twisted angle of blade and centrifugal force on the flow. These span-wise flow changes the boundary layer on the rotating blade and the sectional performance. Hence, the thorough understanding of blade surface flow is important to improve the rotor performance. For the purpose of clarification of the flow behaviour around the rotor blade, the velocity in the boundary layer on rotating blade surface of an experimental HAWT was measured in a wind tunnel. The velocity measurement on the blade surface was carried out by a laser Doppler velocimeter (LDV). As the results of the measurement, characteristics of surface flow are clarified. In optimum tip speed operation, the surface flow on leading edge and r/R=0.3 have large span-wise velocity which reaches 20% of sectional inflow velocity. The surface flow inboard have three dimensional flow patterns. On the other hand, the flow outboard is almost two dimensional in cross sectional plane.

  8. Innovative approach to computer-aided design of horizontal axis wind turbine blades

    Directory of Open Access Journals (Sweden)

    Seyed Farhad Hosseini

    2017-04-01

    Full Text Available The design of horizontal axis wind turbine (HAWT blades involves several geometric complexities. As a result, the modeling of these blades by commercial computer-aided design (CAD software is not easily accomplished. In the present paper, the HAWT blade is divided into structural and aerodynamic surfaces with a G1 continuity imposed on their connecting region. The widely used method of skinning is employed throughout the current work for surface approximation. In addition, to ensure the compatibility of section curves, a novel approach is developed based on the redistribution of input airfoil points. In order to evaluate deviation errors, the Hausdorff metric is used. The fairness of surfaces is quantitatively assessed using the standard strain energy method. The above-mentioned algorithms are successfully integrated into a MATLAB program so as to enhance further optimization applications. The final surfaces created by the procedure developed during the present study can be exported using the IGES standard file format and directly interpreted by commercial CAD and FE software.

  9. Characterization of blade throw from a 2.3MW horizontal axis wind turbine upon failure

    DEFF Research Database (Denmark)

    Sarlak, Hamid; Sørensen, Jens Nørkær

    2015-01-01

    The present work concerns aerodynamics of thrown objects from a 2.3 MW Horizontal Axis Wind Turbine (HAWT), as a consequence of blade failure. The governing set of ordinary differential equations for the flying objects are derived and numerically solved using a 4th order Runge-Kutta time advancing...... on their size. Thereafter, throw distance picks up exponentially with the tip speed. By comparing the throw distance calculations with and without dynamic stall model being active, it is concluded that dynamic stall does not play a major role in throw distances....

  10. An insight into the separate flow and stall delay for HAWT

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Guohua; Shen, Xin; Zhu, Xiaocheng; Du, Zhaohui [School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2011-01-15

    The flow characteristics and the stall delay phenomenon of wind turbine rotor due to blade rotation in the steady state non-yawed conditions are investigated. An incompressible Reynolds-averaged Navier-Stokes solver is applied to carry out all the cases at different wind speeds from 5 m/s to 10 m/s with an interval of 1 m/s. CFD results turn out to agree well with experimental ones at incoming wind speeds below 10 m/s, though at 10 m/s some deviations exist due to the relative large flow separation and 3D spanwise flow over the suction surface of the blade. In the meanwhile, a lifting surface code with and without Du-Selig stall delay model is used to predict the power. A MATLAB code is developed to extract aerodynamic force coefficients from 3D CFD computations which are compared with the 2D airfoil wind tunnel experiment to demonstrate the stall delay and augmented lift phenomenon particularly at inboard span locations of the blade. The computational results are compared with the corrected value by the Du-Selig model and a lifting surface method derived data based on the measurements of the Unsteady Aerodynamic Experiment at the NASA Ames wind tunnel. (author)

  11. Aeroelastic Analysis of Olsen Wings 14.3m Blade-Blatigue Project

    DEFF Research Database (Denmark)

    Galinos, Christos

    HAWC2 model description and basic analysis of a 15 m rotor radius horizontal axis wind turbine (HAWT) based on 14.3m blade from Olsen Wings and the V27 wind turbine (WT) tower and nacelle properties. The subcomponents of the aero-elastic HAWC2 model have been created in previous projects. The aim...... of this analysis is to give an overview of the whole model properties and response through simulations. The blade structural and aerodynamic properties in HAWC2 format have been provided by Frederik Zahle and the HAWC2 model of the V27 structure by Morten H. Hansen of DTU Wind Energy Department. The current...... analysis is part of the Bladigue project ( Blatigue, 2020)....

  12. Multi-Objective Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using the Non-Dominated Sorting Genetic Algorithm II and Finite Element Method

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2014-02-01

    Full Text Available A multi-objective optimization method for the structural design of horizontal-axis wind turbine (HAWT blades is presented. The main goal is to minimize the weight and cost of the blade which uses glass fiber reinforced plastic (GFRP coupled with carbon fiber reinforced plastic (CFRP materials. The number and the location of layers in the spar cap, the width of the spar cap and the position of the shear webs are employed as the design variables, while the strain limit, blade/tower clearance limit and vibration limit are taken into account as the constraint conditions. The optimization of the design of a commercial 1.5 MW HAWT blade is carried out by combining FEM analysis and a multi-objective evolutionary algorithm under ultimate (extreme flap-wise load and edge-wise load conditions. The best solutions are described and the comparison of the obtained results with the original design is performed to prove the efficiency and applicability of the method.

  13. Development of prototype micro wind energy system with adjustable blade pitch for experimentation purposes at laboratory level

    International Nuclear Information System (INIS)

    Ashraf, M.M.; Iqbal, M.

    2014-01-01

    In this paper, the design of an efficient, operational and productive model of micro wind energy system has been proposed for experimentation purposes at laboratory level. The proposed model constitutes a proficient Horizontal Axis Wind Turbine (HAWT) model with multi-stage pulley system as a gear box and adjustable blade pitch. The wind turbine is coupled to Axial Flux Permanent Magnet Generator (AFPMG). The power density parameter of fabricated AFPMG has been improved to 35.7%. A wind tunnel is placed in front of wind turbine which behaves as the operational source of wind for proposed model. Multiple case studies: demonstration of different components of wind energy system, effect of variable wind speed, effect of variable blade pitch, effect of variable electrical loading, effect of variable pulley ratio, voltage regulation of AFPMG, runaway speed test of HAWT and peripheral speed test of AFPMG are successfully performed on this model. The results obtained from experiments show that proposed model is well suited for experimentation purposes at laboratory level. (author)

  14. A Comparison of Off-Grid-Pumped Hydro Storage and Grid-Tied Options for an IRSOFC-HAWT Power Generator

    Directory of Open Access Journals (Sweden)

    Mahdi Majidniya

    2017-01-01

    Full Text Available An Internal Reforming Solid Oxide Fuel Cell (IRSOFC is modeled thermodynamically; a Horizontal Axis Wind Turbine (HAWT is designed; the combined IRSOFC-HAWT system should create a reliable source of electricity for the demand of a village located in Manjil, Iran. The output power of HAWT is unstable, but by controlling the fuel rate for the IRSOFC it is possible to have a stable power output from the combined system. When the electricity demand is over the peak or the wind speed is low/unstable/significantly high, the generated power may not be sufficient. To solve this problem, two scenarios are considered: connecting to the grid or using a Pumped Hydro Storage (PHS. For the second scenario, the extra produced electricity is saved when the production is more than demand and can be used when the extra power is needed. The economic analysis is done based on the economic conditions in Iran. The results will show a period of return about 9.5 and 13 years with the levelized cost of electricity about 0.0747 and 0.0882 $/kWh for the first and second scenarios, respectively. Furthermore, effects of some parameters such as the electricity price and the real interest rate are discussed.

  15. Turbomachine blade reinforcement

    Science.gov (United States)

    Garcia Crespo, Andres Jose

    2016-09-06

    Embodiments of the present disclosure include a system having a turbomachine blade segment including a blade and a mounting segment coupled to the blade, wherein the mounting segment has a plurality of reinforcement pins laterally extending at least partially through a neck of the mounting segment.

  16. Turbomachine blade assembly

    Science.gov (United States)

    Garcia Crespo, Andres Jose

    2016-11-01

    Embodiments of the present disclosure include a system comprising a turbomachine blade assembly having a blade portion, a shank portion, and a mounting portion, wherein the blade portion, the shank portion, and the mounting portion comprise a first plurality of plies extending from a tip of the airfoil to a base of the dovetail.

  17. Wind Turbine Blade

    DEFF Research Database (Denmark)

    2010-01-01

    The invention relates to a blade for a wind turbine, particularly to a blade that may be produced by an advanced manufacturing process for producing a blade with high quality structural components. Particularly, the structural components, which are preferably manufactured from fibre reinforced...

  18. Effect of Blade Curvature Angle of Savonius Horizontal Axis Water Turbine to the Power Generation

    Science.gov (United States)

    Apha Sanditya, Taufan; Prasetyo, Ari; Kristiawan, Budi; Hadi, Syamsul

    2018-03-01

    The water energy is one of potential alternative in creating power generation specifically for the picohydro energy. Savonius is a kind of wind turbine which now proposed to be operated utilizing the energy from low fluid flow. Researches about the utilization of Savonius turbine have been developed in the horizontal water pipelines and wave. The testing experimental on the Savonius Horizontal Axis Water Turbine (HAWT) by observing the effect of the blade curvature angle (ψ) of 110°, 120°, 130°, and 140° at the debit of 176.4 lpm, 345 lpm, 489.6 lpm, and 714 lpm in order to know the power output was already conducted. The optimal result in every debit variation was obtained in the blade curvature angle of 120°. In the maximum debit of 714 lpm with blade curvature angle of 120° the power output is 39.15 Watt with the coefficient power (Cp) of 0.23 and tip speed ratio (TSR) of 1.075.

  19. BOUNDARY LAYER AND AMPLIFIED GRID EFFECTS ON AERODYNAMIC PERFORMANCES OF S809 AIRFOIL FOR HORIZONTAL AXIS WIND TURBINE (HAWT

    Directory of Open Access Journals (Sweden)

    YOUNES EL KHCHINE

    2017-11-01

    Full Text Available The design of rotor blades has a great effect on the aerodynamics performances of horizontal axis wind turbine and its efficiency. This work presents the effects of mesh refinement and boundary layer on aerodynamic performances of wind turbine S809 rotor. Furthermore, the simulation of fluid flow is taken for S809 airfoil wind turbine blade using ANSYS/FLUENT software. The problem is solved by the conservation of mass and momentum equations for unsteady and incompressible flow using advanced SST k-ω turbulence model, in order to predict the effects of mesh refinement and boundary layer on aerodynamics performances. Lift and drag coefficients are the most important parameters in studying the wind turbine performance, these coefficients are calculated for four meshes refinement and different angles of attacks with Reynolds number is 106. The study is applied to S809 airfoil which has 21% thickness, specially designed by NREL for horizontal axis wind turbines.

  20. Blade attachment assembly

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell; Miller, Diane Patricia

    2016-05-03

    An assembly and method for affixing a turbomachine rotor blade to a rotor wheel are disclosed. In an embodiment, an adaptor member is provided disposed between the blade and the rotor wheel, the adaptor member including an adaptor attachment slot that is complementary to the blade attachment member, and an adaptor attachment member that is complementary to the rotor wheel attachment slot. A coverplate is provided, having a coverplate attachment member that is complementary to the rotor wheel attachment slot, and a hook for engaging the adaptor member. When assembled, the coverplate member matingly engages with the adaptor member, and retains the blade in the adaptor member, and the assembly in the rotor wheel.

  1. On the ideal and real energy conversion in a straight bladed vertical axis wind turbine. The actuator cylinder flow model compared with experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aaagard Madsen, H.

    1983-01-01

    The ideal and the real energy conversion in a straight bladed vertical axis wind turbine (VAWT) with variable pitch has been studied on basis of the actuator cylinder flow model and experimental data from free wind tests on a 9 m/sup 2/ turbine. Particularly, the theoretical upper power limit of VAWT's has been focused upon in the light of the already existing theories for horizontal axis wind turbines (HAWT's). A remarkable result, differing from prior theories, has turned out through the computations with the actuator cylinder flow model and that is: The maximum ideal power coefficient for VAWT's seams neither to be bounded by the Lanchester-Betz power coefficient limit of 16/27 (actuator disc concept), nor by Glauert's ideal power coefficient curve (taking into account the tip speed ratio), both limits derived with particular reference to HAWT's. Concerning the agreement between analysis and the measurements of the power coefficient, the rotor drag coefficient and the flow velocity vector adjacent to the swept area, it was in general found to be good. However, there seems still to be need for future research on the influence of turbulence in the free wind and dynamic stall on the real energy conversion in VAWT's.

  2. Scope of wind energy in Bangladesh and simulation analysis of three different horizontal axis wind turbine blade shapes

    Science.gov (United States)

    Khan, Md. Arif-Ul Islam; Das, Swapnil; Dey, Saikat

    2017-12-01

    : Economic growth and energy demand are intertwined. Therefore, one of the most important concerns of the government and in the world is the need for energy security. Currently, the world relies on coal, crude oil and natural gas for energy generati on. However, the energy crisis together with climate change and depletion of oil have become major concerns to all countries. Therefore, alternative energy resources such as wind energy attracted interest from both public and private sectors to invest in energy generation from this source extensively. Both Vertical and Horizontal axis wind turbine can be used for this purpose. But, Horizontal axis is the most promising between them due to its efficiency and low expense. Bangladesh being a tropical country does have a lot of wind flow at different seasons of the year. However, there are some windy locations in which wind energy projects could be feasible. In this project a detailed review of the current st ate-of-art for wind turbine blade design is presented including theoretical maximum efficiency, Horizontal Axis Wind Turbine (HAWT) blade design, simulation power and COP values for different blade material. By studying previously collected data on the wind resources available in B angladesh at present and by analyzing this data, this paper will discuss the scope of wind energy in Bangladesh.

  3. Ceramic blade attachment system

    Science.gov (United States)

    Frey, G.A.; Jimenez, O.D.

    1996-12-03

    A turbine blade having a preestablished rate of thermal expansion is attached to a turbine flange having a preestablished rate of thermal expansion being greater than the preestablished rate of thermal expansion of the turbine blade. The turbine flange includes a first upstanding flange and a second upstanding flange having a groove formed between them. The turbine flange further includes a recess. Each of the first and second upstanding flanges have a plurality of bores therein. A turbine blade has a first member and a second member positioned in one of the groove and the recess. Each of the first member and the second member have a plurality of bores therein. A pin is positioned in respective ones of the plurality of bores in the first and second upstanding members and the first and second members and attach the blade to the turbine flange. The pin has a preestablished rate of thermal expansion being substantially equal to the rate of thermal expansion of the blade. 4 figs.

  4. Blade dynamic stress analysis of rotating bladed disks

    Directory of Open Access Journals (Sweden)

    Kellner J.

    2007-10-01

    Full Text Available The paper deals with mathematical modelling of steady forced bladed disk vibrations and with dynamic stress calculation of the blades. The blades are considered as 1D kontinuum elastic coupled with three-dimensional elastic disk centrally clamped into rotor rotating with constant angular speed. The steady forced vibrations are generated by the aerodynamic forces acting along the blade length. By using modal synthesis method the mathematical model of the rotating bladed disk is condensed to calculate steady vibrations. Dynamic stress analysis of the blades is based on calculation of the time dependent reduced stress in blade cross-sections by using Hubert-Misses-Hencky stress hypothesis. The presented method is applied to real turbomachinery rotor with blades connected on the top with shroud.

  5. A blade deflection monitoring system

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  6. Database about blade faults

    DEFF Research Database (Denmark)

    Branner, Kim; Ghadirian, Amin

    This report deals with the importance of measuring the reliability of the rotor blades and describing how they can fail. The Challenge is that very little non-confidential data is available and that the quality and detail in the data is limited....

  7. BWR control blade replacement strategies

    Energy Technology Data Exchange (ETDEWEB)

    Kennard, M W [Stoller Nuclear Fuel, NAC International, Pleasantville, NY (United States); Harbottle, J E [Stoller Nuclear Fuel, NAC International, Thornbury, Bristol (United Kingdom)

    2000-02-01

    The reactivity control elements in a BWR, the control blades, perform three significant functions: provide shutdown margin during normal and accident operating conditions; provide overall core reactivity control; and provide axial power shaping control. As such, the blades are exposed to the core's neutron flux, resulting in irradiation of blade structural and absorber materials. Since the absorber depletes with time (if B{sub 4}C is used, it also swells) and the structural components undergo various degradation mechanisms (e.g., embrittlement, corrosion), the blades have limits on their operational lifetimes. Consequently, BWR utilities have implemented strategies that aim to maximize blade lifetimes while balancing operational costs, such as extending a refuelling outage to shuffle high exposure blades. This paper examines the blade replacement strategies used by BWR utilities operating in US, Europe and Asia by assembling information related to: the utility's specific blade replacement strategy; the impact the newer blade designs and changes in core operating mode were having on those strategies; the mechanical and nuclear limits that determined those strategies; the methods employed to ensure that lifetime limits were not exceeded during operation; and blade designs used (current and replacement blades). (author)

  8. BWR control blade replacement strategies

    International Nuclear Information System (INIS)

    Kennard, M.W.; Harbottle, J.E.

    2000-01-01

    The reactivity control elements in a BWR, the control blades, perform three significant functions: provide shutdown margin during normal and accident operating conditions; provide overall core reactivity control; and provide axial power shaping control. As such, the blades are exposed to the core's neutron flux, resulting in irradiation of blade structural and absorber materials. Since the absorber depletes with time (if B 4 C is used, it also swells) and the structural components undergo various degradation mechanisms (e.g., embrittlement, corrosion), the blades have limits on their operational lifetimes. Consequently, BWR utilities have implemented strategies that aim to maximize blade lifetimes while balancing operational costs, such as extending a refuelling outage to shuffle high exposure blades. This paper examines the blade replacement strategies used by BWR utilities operating in US, Europe and Asia by assembling information related to: the utility's specific blade replacement strategy; the impact the newer blade designs and changes in core operating mode were having on those strategies; the mechanical and nuclear limits that determined those strategies; the methods employed to ensure that lifetime limits were not exceeded during operation; and blade designs used (current and replacement blades). (author)

  9. RANS study of unsteady flow around a profile blade : application to stall of horizontal axis wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Belkheir, N. [Khemis Miliana Univ., Ain Defla (Algeria); Dizene, R. [Univ. des Sciences et de la Technologie Houari Boumediene, Algiers (Algeria). Laboratoire de Mecanique Avancee; Khelladi, S.; Massouh, F.; Dobrev, I. [Arts et Metiers Paris Tech., Paris (France)

    2010-07-01

    The shape of an airfoil is designed to achieve the best aerodynamic performance. An aerofoil section undergoes dynamic stall when subjected to any form of unsteady angle of pitch. The study of a horizontal-axis wind turbine (HAWT) under wind operating conditions is complex because it is subject to instantaneous speed and wind direction variation. When turbine blades are driven into a dynamic stall, the lift coefficient drops suddenly resulting in a degradation in aerodynamic performance. This study presented steady and unsteady wind load predictions over an oscillating S809 airfoil tested in a subsonic wind tunnel. A model of sinusoidal pitch oscillations was used. The values for the angles of attack in steady state ranged from -20 to +40 degrees. The model considered 3 frequencies and 2 amplitudes. The two-dimensional numerical model simulated the instantaneous change of wind direction with respect to the turbine blade. Results were compared with data measurements of S809 aerofoil. Reasonable deviations were obtained between the predicted and experimental results for pitch oscillations. The URANS approach was used to predict the stall while the software FLUENT was used for the numerical solution. It was concluded that the behaviour of the unsteady flow in the wind farm must be considered in order to obtain an accurate estimate of the wind turbine aerodynamic load. 12 refs., 5 figs.

  10. Graphene in turbine blades

    Science.gov (United States)

    Das, D. K.; Swain, P. K.; Sahoo, S.

    2016-07-01

    Graphene, the two-dimensional (2D) nanomaterial, draws interest of several researchers due to its many superior properties. It has extensive applications in numerous fields. A turbine is a hydraulic machine which extracts energy from a fluid and converts it into useful work. Recently, Gudukeya and Madanhire have tried to increase the efficiency of Pelton turbine. Beucher et al. have also tried the same by reducing friction between fluid and turbine blades. In this paper, we study the advantages of using graphene as a coating on Pelton turbine blades. It is found that the efficiency of turbines increases, running and maintenance cost is reduced with more power output. By the application of graphene in pipes, cavitation will be reduced, durability of pipes will increase, operation and maintenance cost of water power plants will be less.

  11. Subsonic Swept Fan Blade

    Science.gov (United States)

    Gallagher, Edward J. (Inventor); Rogers, Thomas H. (Inventor)

    2017-01-01

    A gas turbine engine includes a spool, a turbine coupled to drive the spool, a propulsor coupled to be driven at a at a design speed by the turbine through the spool, and a gear assembly coupled between the propulsor and the spool. Rotation of the turbine drives the propulsor at a different speed than the spool. The propulsor includes a hub and a row of propulsor blades that extend from the hub. Each of the propulsor blades includes an airfoil body. The leading edge of the airfoil body has a swept profile such that, at the design speed, a component of a relative velocity vector of a working gas that is normal to the leading edge is subsonic along the entire radial span.

  12. Performance of Savonius Blade Waterwheel with Variation of Blade Number

    Science.gov (United States)

    Sule, L.; Rompas, P. T. D.

    2018-02-01

    The utilization of water energy source is mainly used as a provider of electrical energy through hydroelectric power. The potential utilization of water flow energy is relatively small. The objective of this study is to know the best blade of Savonius waterwheel with various variables such as water discharge, blade number, and loading. The data used the efficiency of waterwheel, variation of blade number, variable water discharge, and loading in the shaft. The test results have shown that the performances of a top-water mill with the semicircular curve where the variation in the number of blades are 4, 6, and 8 at discharge and loading of 0.01587 m3/s and 1000 grams respectively were 9.945%, 13.929%, and 17.056% respectively. The blades number of 8 obtained the greatest performance. The more number of blades the greater the efficiency of the waterwheel Savonius.

  13. Ceramic blade with tip seal

    Science.gov (United States)

    Glezer, B.; Bhardwaj, N.K.; Jones, R.B.

    1997-08-05

    The present gas turbine engine includes a disc assembly defining a disc having a plurality of blades attached thereto. The disc has a preestablished rate of thermal expansion and the plurality of blades have a preestablished rate of thermal expansion being less than the preestablished rate of thermal expansion of the disc. A shroud assembly is attached to the gas turbine engine and is spaced from the plurality of blades a preestablished distance forming an interface there between. Positioned in the interface is a seal having a preestablished rate of thermal expansion being generally equal to the rate of thermal expansion of the plurality of blades. 4 figs.

  14. Integrated circuit cooled turbine blade

    Science.gov (United States)

    Lee, Ching-Pang; Jiang, Nan; Um, Jae Y.; Holloman, Harry; Koester, Steven

    2017-08-29

    A turbine rotor blade includes at least two integrated cooling circuits that are formed within the blade that include a leading edge circuit having a first cavity and a second cavity and a trailing edge circuit that includes at least a third cavity located aft of the second cavity. The trailing edge circuit flows aft with at least two substantially 180-degree turns at the tip end and the root end of the blade providing at least a penultimate cavity and a last cavity. The last cavity is located along a trailing edge of the blade. A tip axial cooling channel connects to the first cavity of the leading edge circuit and the penultimate cavity of the trailing edge circuit. At least one crossover hole connects the penultimate cavity to the last cavity substantially near the tip end of the blade.

  15. Failure analysis of turbine blades

    International Nuclear Information System (INIS)

    Iorio, A.F.; Crespi, J.C.

    1989-01-01

    Two 20 MW gas turbines suffered damage in blades belonging to the 2nd. stage of the turbine after 24,000 hours of duty. From research it arises that the fuel used is not quite adequate to guarantee the blade's operating life due to the excess of SO 3 , C and Na existing in combustion gases which cause pitting to the former. Later, the corrosion phenomenon is presented under tension produced by working stress enhanced by pitting where Pb is its main agent. A change of fuel is recommended thus considering the blades will reach the operational life they were designed for. (Author) [es

  16. Design Procedure of 4-Bladed Propeller

    African Journals Online (AJOL)

    PROF. O. E. OSUAGWU

    2013-09-01

    Sep 1, 2013 ... West African Journal of Industrial and Academic Research Vol.8 No.1 September 2013 ..... Number of blades. 5. Taylor's wake friction (w). The speed of ship (Vs), the number of propeller revolution (n), the blade number (Z) and the blade area ratio.... .... moment of inertia of a blade, the approximate.

  17. Regular non-twisting S-branes

    International Nuclear Information System (INIS)

    Obregon, Octavio; Quevedo, Hernando; Ryan, Michael P.

    2004-01-01

    We construct a family of time and angular dependent, regular S-brane solutions which corresponds to a simple analytical continuation of the Zipoy-Voorhees 4-dimensional vacuum spacetime. The solutions are asymptotically flat and turn out to be free of singularities without requiring a twist in space. They can be considered as the simplest non-singular generalization of the singular S0-brane solution. We analyze the properties of a representative of this family of solutions and show that it resembles to some extent the asymptotic properties of the regular Kerr S-brane. The R-symmetry corresponds, however, to the general lorentzian symmetry. Several generalizations of this regular solution are derived which include a charged S-brane and an additional dilatonic field. (author)

  18. Bladed disc crack diagnostics using blade passage signals

    Science.gov (United States)

    Hanachi, Houman; Liu, Jie; Banerjee, Avisekh; Koul, Ashok; Liang, Ming; Alavi, Elham

    2012-12-01

    One of the major potential faults in a turbo fan engine is the crack initiation and propagation in bladed discs under cyclic loads that could result in the breakdown of the engines if not detected at an early stage. Reliable fault detection techniques are therefore in demand to reduce maintenance cost and prevent catastrophic failures. Although a number of approaches have been reported in the literature, it remains very challenging to develop a reliable technique to accurately estimate the health condition of a rotating bladed disc. Correspondingly, this paper presents a novel technique for bladed disc crack detection through two sequential signal processing stages: (1) signal preprocessing that aims to eliminate the noises in the blade passage signals; (2) signal postprocessing that intends to identify the crack location. In the first stage, physics-based modeling and interpretation are established to help characterize the noises. The crack initiation can be determined based on the calculated health monitoring index derived from the sinusoidal effects. In the second stage, the crack is located through advanced detrended fluctuation analysis of the preprocessed data. The proposed technique is validated using a set of spin rig test data (i.e. tip clearance and time of arrival) that was acquired during a test conducted on a bladed military engine fan disc. The test results have demonstrated that the developed technique is an effective approach for identifying and locating the incipient crack that occurs at the root of a bladed disc.

  19. New blades shape up for dozers

    Energy Technology Data Exchange (ETDEWEB)

    Chironis, N.P.

    1985-05-01

    This article discusses the design of blades used on dozers for the reclamation work following surface mining. Two blades are described which have led to a 50% reduction in reclamation costs and a 20% reduction in fuel requirements over conventional equipment. These results are from work carried out at the Kayenta mine in Arizona, USA. Design considerations in the development of the blades are described. Descriptions of both the centre flow blades and the universal blades are given.

  20. Aerodynamic Analysis of Morphing Blades

    Science.gov (United States)

    Harris, Caleb; Macphee, David; Carlisle, Madeline

    2016-11-01

    Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  1. Noise aspects at aerodynamic blade optimisation projects

    International Nuclear Information System (INIS)

    Schepers, J.G.

    1997-06-01

    The Netherlands Energy Research Foundation (ECN) has often been involved in industrial projects, in which blade geometries are created automatic by means of numerical optimisation. Usually, these projects aim at the determination of the aerodynamic optimal wind turbine blade, i.e. the goal is to design a blade which is optimal with regard to energy yield. In other cases, blades have been designed which are optimal with regard to cost of generated energy. However, it is obvious that the wind turbine blade designs which result from these optimisations, are not necessarily optimal with regard to noise emission. In this paper an example is shown of an aerodynamic blade optimisation, using the ECN-program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. 11 figs., 8 refs

  2. Active Blade Pitch Control for Straight Bladed Darrieus Vertical Axis Wind Turbine of New Design

    DEFF Research Database (Denmark)

    Chougule, Prasad; Nielsen, Søren R.K.; Basu, Biswajit

    2013-01-01

    in a previous publication. Further, it is well know that the variation of the blade pitch angle during the rotation improves the power efficiency. A blade pitch variation is implemented by active blade pitch control, which operates as per wind speed and position of the blade with respect to the rotor. A double...

  3. Wind Turbine Blade with Angled Girders

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to a reinforced blade for a wind turbine, particularly to a blade having a new arrangement of two or more girders in the blade, wherein each of the girders is connected to the upper part and the lower part of the shell and forms an angle with another girder thereby...

  4. Composite blade damaging under impact

    NARCIS (Netherlands)

    Menouillard, T.; Réthoré, J.; Bung, H.; Suffis, A.

    2006-01-01

    Composites materials are now being used in primary aircraft structures, and other domains because of numerous advantages. A part of a continuous in-flight operating costs, gas turbine engine manufacturers are always looking for ways to decrease engine weight. This is the case of compressor blades

  5. Advanced LP turbine blade design

    International Nuclear Information System (INIS)

    Jansen, M.; Pfeiffer, R.; Termuehlen, H.

    1990-01-01

    In the 1960's and early 1970's, the development of steam turbines for the utility industry was mainly influenced by the demand for increasing unit sizes. Nuclear plants in particular, required the design of LP turbines with large annulus areas for substantial mass and volumetric steam flows. Since then the development of more efficient LP turbines became an ongoing challenge. Extensive R and D work was performed in order to build efficient and reliable LP turbines often exposed to severe corrosion, erosion and dynamic excitation conditions. This task led to the introduction of an advanced disk-type rotor design for 1800 rpm LP turbines and the application of a more efficient, reaction-type blading for all steam turbine sections including the first stages of LP turbines. The most recent developments have resulted in an advanced design of large LP turbine blading, typically used in the last three stages of each LP turbine flow section. Development of such blading required detailed knowledge of the three dimensional, largely transonic, flow conditions of saturated steam. Also the precise assessment of blade stressing from dynamic conditions, such as speed and torsional resonance, as well as stochastic and aerodynamic excitation is of extreme importance

  6. Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm

    2016-01-01

    In this section the research program framework for European PhD network MARE-WINT is presented, particularly the technology development work focussing on reliability/maintenance and the models describing multi-body fluid structure interaction for the Rotor Blade structure. In order to give...

  7. Composite ceramic blade for a gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Rossmann, A; Hoffmueller, W; Krueger, W

    1980-06-26

    The gas turbine blade consists of a supporting metal core which has at its lower end a modelled root and a profile blade made of ceramics enclosing it at some distance. The invention deals with a reliable connection between these two parts of the rotor blade: from the top end of the blade core a head protrudes supporting the thin-walled profile blade from below with a projection each pointing into the interior. The design of the projections and supporting surfaces is described and illustrated by drawings.

  8. Intubation of prehospital patients with curved laryngoscope blade is more successful than with straight blade.

    Science.gov (United States)

    Alter, Scott M; Haim, Eithan D; Sullivan, Alex H; Clayton, Lisa M

    2018-02-17

    Direct laryngoscopy can be performed using curved or straight blades, and providers usually choose the blade they are most comfortable with. However, curved blades are anecdotally thought of as easier to use than straight blades. We seek to compare intubation success rates of paramedics using curved versus straight blades. Design: retrospective chart review. hospital-based suburban ALS service with 20,000 annual calls. prehospital patients with any direct laryngoscopy intubation attempt over almost 9years. First attempt and overall success rates were calculated for attempts with curved and straight blades. Differences between the groups were calculated. 2299 patients were intubated by direct laryngoscopy. 1865 had attempts with a curved blade, 367 had attempts with a straight blade, and 67 had attempts with both. Baseline characteristics were similar between groups. First attempt success was 86% with a curved blade and 73% with a straight blade: a difference of 13% (95% CI: 9-17). Overall success was 96% with a curved blade and 81% with a straight blade: a difference of 15% (95% CI: 12-18). There was an average of 1.11 intubation attempts per patient with a curved blade and 1.13 attempts per patient with a straight blade (2% difference, 95% CI: -3-7). Our study found a significant difference in intubation success rates between laryngoscope blade types. Curved blades had higher first attempt and overall success rates when compared to straight blades. Paramedics should consider selecting a curved blade as their tool of choice to potentially improve intubation success. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Aerodynamical calculation of turbomachinery bladings

    International Nuclear Information System (INIS)

    Fruehauf, H.H.

    1978-01-01

    Various flow models are presented in comparison to one another, these flow models being obtained from the basic equations of turbomachinery aerodynamics by means of a series of simplifying assumptions on the spatial distribution of the flow quantities. The simplifying assumptions are analysed precisely. With their knowledge it is possible to construct more accurate simplified flow models, which are necessary for the efficient aerodynamical development of highperformance turbomachinery bladings by means of numerical methods. (orig.) 891 HP [de

  10. Blade-element/momentum theory

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2016-01-01

    Although there exists a large variety of methods for predicting performance and loadings of wind turbines, the only approach used today by wind turbine manufacturers is based on the blade-element/momentum (BEM) theory by Glauert (Aerodynamic theory. Springer, Berlin, pp. 169-360, 1935). A basic...... assumption in the BEM theory is that the flow takes place in independent stream tubes and that the loading is determined from two-dimensional sectional airfoil characteristics....

  11. Korean experience with steam turbine blade inspection

    International Nuclear Information System (INIS)

    Jung, Hyun Kyu; Park, D.Y.; Park, Hyung Jin; Chung, Min Hwa

    1990-01-01

    Several turbine blade accidents in Korea have emphasized the importance of their adequate periodic inspection. As a typical example, a broken blade was found in the Low Pressure (LP) turbine at the 950 MWe KORI unit 3 during the 1986 overhaul after one year commercial operation. Since then the Manufacturer and the Utility company (KEPCO) have been concerned about the need of blade root inspection. The ultrasonic testing was applied to detect cracks in the blade roots without removing the blades from rotor. Due to the complex geometry of the roots, the test results could not be evaluated easily. We feel that the currently applied UT technique seems to be less reliable and more effective method of inspection must be developed in the near future. This paper describes the following items: The causes and analysis of blade damage The inspection techniques and results The remedial action to be taken (Repair and Replacement) The future plan

  12. Damped gyroscopic effects and axial-flexural-torsional coupling using spinning finite elements for wind-turbine blades characterization

    Science.gov (United States)

    Velazquez, Antonio; Swartz, R. Andrew

    2013-04-01

    Renewable energy sources like wind are important technologies, useful to alleviate for the current fossil-fuel crisis. Capturing wind energy in a more efficient way has resulted in the emergence of more sophisticated designs of wind turbines, particularly Horizontal-Axis Wind Turbines (HAWTs). To promote efficiency, traditional finite element methods have been widely used to characterize the aerodynamics of these types of multi-body systems and improve their design. Given their aeroelastic behavior, tapered-swept blades offer the potential to optimize energy capture and decrease fatigue loads. Nevertheless, modeling special complex geometries requires huge computational efforts necessitating tradeoffs between faster computation times at lower cost, and reliability and numerical accuracy. Indeed, the computational cost and the numerical effort invested, using traditional FE methods, to reproduce dependable aerodynamics of these complex-shape beams are sometimes prohibitive. A condensed Spinning Finite Element (SFE) method scheme is presented in this study aimed to alleviate this issue by means of modeling wind-turbine rotor blades properly with tapered-swept cross-section variations of arbitrary order via Lagrangian equations. Axial-flexural-torsional coupling is carried out on axial deformation, torsion, in-plane bending and out-of-plane bending using super-convergent elements. In this study, special attention is paid for the case of damped yaw effects, expressed within the described skew-symmetric damped gyroscopic matrix. Dynamics of the model are analyzed by achieving modal analysis with complex-number eigen-frequencies. By means of mass, damped gyroscopic, and stiffness (axial-flexural-torsional coupling) matrix condensation (order reduction), numerical analysis is carried out for several prototypes with different tapered, swept, and curved variation intensities, and for a practical range of spinning velocities at different rotation angles. A convergence study

  13. Flapping inertia for selected rotor blades

    Science.gov (United States)

    Berry, John D.; May, Matthew J.

    1991-01-01

    Aerodynamics of helicopter rotor systems cannot be investigated without consideration for the dynamics of the rotor. One of the principal properties of the rotor which affects the rotor dynamics is the inertia of the rotor blade about its root attachment. Previous aerodynamic investigation have been performed on rotor blades with a variety of planforms to determine the performance differences due to blade planform. The blades tested for this investigation have been tested on the U.S. Army 2 meter rotor test system (2MRTS) in the NASA Langley 14 by 22 foot subsonic tunnel for hover performance. This investigation was intended to provide fundamental information on the flapping inertia of five rotor blades with differing planforms. The inertia of the bare cuff and the cuff with a blade extension were also measured for comparison with the inertia of the blades. Inertia was determined using a swing testing technique, using the period of oscillation to determine the effective flapping inertia. The effect of damping in the swing test was measured and described. A comparison of the flapping inertials for rectangular and tapered planform blades of approximately the same mass showed the tapered blades to have a lower inertia, as expected.

  14. Structural Testing of the Blade Reliability Collaborative Effect of Defect Wind Turbine Blades

    Energy Technology Data Exchange (ETDEWEB)

    Desmond, M. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hughes, S. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Paquette, J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-06-08

    Two 8.3-meter (m) wind turbine blades intentionally constructed with manufacturing flaws were tested to failure at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) south of Boulder, Colorado. Two blades were tested; one blade was manufactured with a fiberglass spar cap and the second blade was manufactured with a carbon fiber spar cap. Test loading primarily consisted of flap fatigue loading of the blades, with one quasi-static ultimate load case applied to the carbon fiber spar cap blade. Results of the test program were intended to provide the full-scale test data needed for validation of model and coupon test results of the effect of defects in wind turbine blade composite materials. Testing was part of the Blade Reliability Collaborative (BRC) led by Sandia National Laboratories (SNL). The BRC seeks to develop a deeper understanding of the causes of unexpected blade failures (Paquette 2012), and to develop methods to enable blades to survive to their expected operational lifetime. Recent work in the BRC includes examining and characterizing flaws and defects known to exist in wind turbine blades from manufacturing processes (Riddle et al. 2011). Recent results from reliability databases show that wind turbine rotor blades continue to be a leading contributor to turbine downtime (Paquette 2012).

  15. Adaptor assembly for coupling turbine blades to rotor disks

    Science.gov (United States)

    Garcia-Crespo, Andres Jose; Delvaux, John McConnell

    2014-09-23

    An adaptor assembly for coupling a blade root of a turbine blade to a root slot of a rotor disk is described. The adaptor assembly includes a turbine blade having a blade root and an adaptor body having an adaptor root. The adaptor body defines a slot having an open end configured to receive the blade root of the turbine blade such that the adaptor root of the adaptor body and the blade root of the turbine blade are adjacent to one another when the blade root of the turbine blade is positioned within the slot. Both the adaptor root of the adaptor body and the blade root of the turbine blade are configured to be received within the root slot of the rotor disk.

  16. Multiple piece turbine rotor blade

    Science.gov (United States)

    Jones, Russell B; Fedock, John A

    2013-05-21

    A multiple piece turbine rotor blade with a shell having an airfoil shape and secured between a spar and a platform with the spar including a tip end piece. a snap ring fits around the spar and abuts against the spar tip end piece on a top side and abuts against a shell on the bottom side so that the centrifugal loads from the shell is passed through the snap ring and into the spar and not through a tip cap dovetail slot and projection structure.

  17. Flutter of Darrieus wind turbine blades

    Science.gov (United States)

    Ham, N. D.

    1978-01-01

    The testing of Darrieus wind turbines has indicated that under certain conditions, serious vibrations of the blades can occur, involving flatwise bending, torsion, and chordwise bending. A theoretical method of predicting the aeroelastic stability of the coupled bending and torsional motion of such blades with a view to determining the cause of these vibrations, and a means of suppressing them was developed.

  18. Estimation of gas turbine blades cooling efficiency

    NARCIS (Netherlands)

    Moskalenko, A.B.; Kozhevnikov, A.

    2016-01-01

    This paper outlines the results of the evaluation of the most thermally stressed gas turbine elements, first stage power turbine blades, cooling efficiency. The calculations were implemented using a numerical simulation based on the Finite Element Method. The volume average temperature of the blade

  19. Numerical analysis of turbine blade tip treatments

    Science.gov (United States)

    Gopalaswamy, Nath S.; Whitaker, Kevin W.

    1992-01-01

    Three-dimensional solutions of the Navier-Stokes equations for a turbine blade with a turning angle of 180 degrees have been computed, including blade tip treatments involving cavities. The geometry approximates a preliminary design for the GGOT (Generic Gas Oxidizer Turbine). The data presented here will be compared with experimental data to be obtained from a linear cascade using original GGOT blades. Results have been computed for a blade with 1 percent clearance, based on chord, and three different cavity sizes. All tests were conducted at a Reynolds number of 4 x 10 exp 7. The grid contains 39,440 points with 10 spanwise planes in the tip clearance region of 5.008E-04 m. Streamline plots and velocity vectors together with velocity divergence plots reveal the general flow behavior in the clearance region. Blade tip temperature calculations suggest placement of a cavity close to the upstream side of the blade tip for reduction of overall blade tip temperature. The solutions do not account for the relative motion between the endwall and the turbine blade. The solutions obtained are generally consistent with previous work done in this area,

  20. 49 CFR 236.707 - Blade, semaphore.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Blade, semaphore. 236.707 Section 236.707 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Blade, semaphore. The extended part of a semaphore arm which shows the position of the arm. ...

  1. Massachusetts Large Blade Test Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  2. Composite hub/metal blade compressor rotor

    Science.gov (United States)

    Yao, S.

    1978-01-01

    A low cost compressor rotor was designed and fabricated for a small jet engine. The rotor hub and blade keepers were compression molded with graphite epoxy. Each pair of metallic blades was held in the hub by a keeper. All keepers were locked in the hub with circumferential windings. Feasibility of fabrication was demonstrated in this program.

  3. Metallurgy of gas turbine blades with integral shroud and its influence on blades performance

    International Nuclear Information System (INIS)

    Mazur, Z.; Marino, C.; Kubiak, J.

    1999-01-01

    The influence of the microstructure of the gas turbine blades with integral shroud on the blades performance is presented. The analysis of the solidification process of the gas turbine blades during conventionally casting process (equiaxed grains) with all elements which has influence on the mode of its solidification and variation of the microstructure is carried out. Also, the evaluation of the failure of the gas turbine blade is present. A detailed analysis of the blade tip shroud microstructure (presence of the equiaxed and columnar grains) and its influence on the failure initiation and propagation is carried out. Finally, conclusions and some necessary improvements of the blades casting process to prevent blades failures are presented. (Author) 2 refs

  4. Design optimization for active twist rotor blades

    Science.gov (United States)

    Mok, Ji Won

    This dissertation introduces the process of optimizing active twist rotor blades in the presence of embedded anisotropic piezo-composite actuators. Optimum design of active twist blades is a complex task, since it involves a rich design space with tightly coupled design variables. The study presents the development of an optimization framework for active helicopter rotor blade cross-sectional design. This optimization framework allows for exploring a rich and highly nonlinear design space in order to optimize the active twist rotor blades. Different analytical components are combined in the framework: cross-sectional analysis (UM/VABS), an automated mesh generator, a beam solver (DYMORE), a three-dimensional local strain recovery module, and a gradient based optimizer within MATLAB. Through the mathematical optimization problem, the static twist actuation performance of a blade is maximized while satisfying a series of blade constraints. These constraints are associated with locations of the center of gravity and elastic axis, blade mass per unit span, fundamental rotating blade frequencies, and the blade strength based on local three-dimensional strain fields under worst loading conditions. Through pre-processing, limitations of the proposed process have been studied. When limitations were detected, resolution strategies were proposed. These include mesh overlapping, element distortion, trailing edge tab modeling, electrode modeling and foam implementation of the mesh generator, and the initial point sensibility of the current optimization scheme. Examples demonstrate the effectiveness of this process. Optimization studies were performed on the NASA/Army/MIT ATR blade case. Even though that design was built and shown significant impact in vibration reduction, the proposed optimization process showed that the design could be improved significantly. The second example, based on a model scale of the AH-64D Apache blade, emphasized the capability of this framework to

  5. Lightning transient analysis in wind turbine blades

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find

    2013-01-01

    The transient behavior of lightning surges in the lightning protection system of wind turbine blades has been investigated in this paper. The study is based on PSCAD models consisting of electric equivalent circuits with lumped and distributed parameters involving different lightning current...... waveforms. The aim of the PSCAD simulations is to study the voltages induced by the lightning current in the blade that may cause internal arcing. With this purpose, the phenomenon of current reflections in the lightning down conductor of the blade and the electromagnetic coupling between the down conductor...... and other internal conductive elements of the blade is studied. Finally, several methods to prevent internal arcing are discussed in order to improve the lightning protection of the blade....

  6. The SNL100-01 blade :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel

    2013-02-01

    A series of design studies to investigate the effect of carbon on blade weight and performance for large blades was performed using the Sandia 100-meter All-glass Baseline Blade design as a starting point. This document provides a description of the final carbon blade design, which is termed as SNL100-01. This report includes a summary of the design modifications applied to the baseline all-glass 100-meter design and a description of the NuMAD model files that are made publicly available. This document is intended primarily to be a companion document to the distribution of the NuMAD blade model files for SNL100-01.

  7. Advanced Blade Manufacturing Project - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    POORE, ROBERT Z.

    1999-08-01

    The original scope of the project was to research improvements to the processes and materials used in the manufacture of wood-epoxy blades, conduct tests to qualify any new material or processes for use in blade design and subsequently build and test six blades using the improved processes and materials. In particular, ABM was interested in reducing blade cost and improving quality. In addition, ABM needed to find a replacement material for the mature Douglas fir used in the manufacturing process. The use of mature Douglas fir is commercially unacceptable because of its limited supply and environmental concerns associated with the use of mature timber. Unfortunately, the bankruptcy of FloWind in June 1997 and a dramatic reduction in AWT sales made it impossible for ABM to complete the full scope of work. However, sufficient research and testing were completed to identify several promising changes in the blade manufacturing process and develop a preliminary design incorporating these changes.

  8. Applied modal analysis of wind turbine blades

    DEFF Research Database (Denmark)

    Pedersen, H.B.; Kristensen, O.J.D.

    2003-01-01

    In this project modal analysis has been used to determine the natural frequencies, damping and the mode shapes for wind turbine blades. Different methods to measure the position and adjust the direction of the measuring points are discussed. Differentequipment for mounting the accelerometers...... is investigated by repeated measurement on the same wind turbine blade. Furthermore the flexibility of the test set-up is investigated, by use ofaccelerometers mounted on the flexible adapter plate during the measurement campaign. One experimental campaign investigated the results obtained from a loaded...... and unloaded wind turbine blade. During this campaign the modal analysis are performed on ablade mounted in a horizontal and a vertical position respectively. Finally the results obtained from modal analysis carried out on a wind turbine blade are compared with results obtained from the Stig Øyes blade_EV1...

  9. Crack of a first stage blade in a steam turbine

    Directory of Open Access Journals (Sweden)

    M. Nurbanasari

    2014-10-01

    Full Text Available The failure of the first stage blade in a steam turbine of 55 MW was investigated. The blade was made of 17-4 PH stainless steel and has been used for 12 years before failure. The current work aims to find out the main cause of the first stage blade failure. The methods for investigation were metallurgical analysis, chemical composition test, and hardness measurement. The result showed that there was no evidence the blade failure was due to material. The damage found on the blade namely crack on the blade root. Two locations of the crack observed at the blade root, which was at the tang and the fillet, with different failure modes. In general, the damage of the blade was started by the corrosion occurred on the blade root. The crack at the blade root tang was due to corrosion fatigue and the crack occurred at the blade root fillet owing to stress corrosion cracking.

  10. Laser cladding of turbine blades

    International Nuclear Information System (INIS)

    Shepeleva, L.; Medres, B.; Kaplan, W.D.; Bamberger, M.

    2000-01-01

    A comparative study of two different techniques for the application of wear-resistant coatings for contact surfaces of shroud shelves of gas turbine engine blades (GTE) has been conducted. Wear-resistant coatings were applied on In713 by laser cladding with direct injection of the cladding powder into the melt pool. Laser cladding was conducted with a TRUMPF-2500, CW-CO 2 laser. The laser cladding was compared with commercially available plasma cladding with wire. Both plasma and laser cladded zones were characterized by optical and scanning electron microscopy. It was found that the laser cladded zone has a higher microhardness value (650-820 HV) compared with that of the plasma treated material (420-440 HV). This is a result of the significant reduction in grain size in the case of laser cladding. Unlike the plasma cladded zones, the laser treated material is free of micropores and microcracks. (orig.)

  11. The SNL100-02 blade :

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel

    2013-11-01

    A series of design studies are performed to investigate the effects of advanced core materials and a new core material strategy on blade weight and performance for large blades using the Sandia 100-meter blade designs as a starting point. The initial core material design studies were based on the SNL100-01 100- meter carbon spar design. Advanced core material with improved performance to weight was investigated with the goal to reduce core material content in the design and reduce blade weight. A secondary element of the core study was to evaluate the suitability of core materials from natural, regrowable sources such as balsa and recyclable foam materials. The new core strategy for the SNL100-02 design resulted in a design mass of 59 tons, which is a 20% reduction from the most recent SNL100-01 carbon spar design and over 48% reduction from the initial SNL100-00 all-glass baseline blade. This document provides a description of the final SNL100-02 design, includes a description of the major design modifications, and summarizes the pertinent blade design information. This document is also intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-02 that are made publicly available.

  12. Methodology for wind turbine blade geometry optimization

    Energy Technology Data Exchange (ETDEWEB)

    Perfiliev, D.

    2013-11-01

    Nowadays, the upwind three bladed horizontal axis wind turbine is the leading player on the market. It has been found to be the best industrial compromise in the range of different turbine constructions. The current wind industry innovation is conducted in the development of individual turbine components. The blade constitutes 20-25% of the overall turbine budget. Its optimal operation in particular local economic and wind conditions is worth investigating. The blade geometry, namely the chord, twist and airfoil type distributions along the span, responds to the output measures of the blade performance. Therefore, the optimal wind blade geometry can improve the overall turbine performance. The objectives of the dissertation are focused on the development of a methodology and specific tool for the investigation of possible existing wind blade geometry adjustments. The novelty of the methodology presented in the thesis is the multiobjective perspective on wind blade geometry optimization, particularly taking simultaneously into account the local wind conditions and the issue of aerodynamic noise emissions. The presented optimization objective approach has not been investigated previously for the implementation in wind blade design. The possibilities to use different theories for the analysis and search procedures are investigated and sufficient arguments derived for the usage of proposed theories. The tool is used for the test optimization of a particular wind turbine blade. The sensitivity analysis shows the dependence of the outputs on the provided inputs, as well as its relative and absolute divergences and instabilities. The pros and cons of the proposed technique are seen from the practical implementation, which is documented in the results, analysis and conclusion sections. (orig.)

  13. Wind turbine blade waste in 2050.

    Science.gov (United States)

    Liu, Pu; Barlow, Claire Y

    2017-04-01

    Wind energy has developed rapidly over the last two decades to become one of the most promising and economically viable sources of renewable energy. Although wind energy is claimed to provide clean renewable energy without any emissions during operation, but it is only one side of the coin. The blades, one of the most important components in the wind turbines, made with composite, are currently regarded as unrecyclable. With the first wave of early commercial wind turbine installations now approaching their end of life, the problem of blade disposal is just beginning to emerge as a significant factor for the future. This paper is aimed at discovering the magnitude of the wind turbine blade waste problem, looking not only at disposal but at all stages of a blade's lifecycle. The first stage of the research, the subject of this paper, is to accurately estimate present and future wind turbine blade waste inventory using the most recent and most accurate data available. The result will provide a solid reference point to help the industry and policy makers to understand the size of potential environmental problem and to help to manage it better. This study starts by estimating the annual blade material usage with wind energy installed capacity and average blade weight. The effect of other waste contributing factors in the full lifecycle of wind turbine blades is then included, using industrial data from the manufacturing, testing and in-service stages. The research indicates that there will be 43 million tonnes of blade waste worldwide by 2050 with China possessing 40% of the waste, Europe 25%, the United States 16% and the rest of the world 19%. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  14. Structural Analysis of Basalt Fiber Reinforced Plastic Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Mengal Ali Nawaz

    2014-07-01

    Full Text Available In this study, Basalt fiber reinforced plastic (BFRP wind turbine blade was analyzed and compared with Glass fiber reinforced plastic blade (GFRP. Finite element analysis (FEA of blade was carried out using ANSYS. Data for FEA was obtained by using rule of mixture. The shell element in ANSYS was used to simulate the wind turbine blade and to conduct its strength analysis. The structural analysis and comparison of blade deformations proved that BFRP wind turbine blade has better strength compared to GFRP wind turbine blade.

  15. Pin and roller attachment system for ceramic blades

    Science.gov (United States)

    Shaffer, J.E.

    1995-07-25

    In a turbine, a plurality of blades are attached to a turbine wheel by way of a plurality of joints which form a rolling contact between the blades and the turbine wheel. Each joint includes a pin and a pair of rollers to provide rolling contact between the pin and an adjacent pair of blades. Because of this rolling contact, high stress scuffing between the blades and the turbine wheel reduced, thereby inhibiting catastrophic failure of the blade joints. 3 figs.

  16. Multidisciplinary design optimization of film-cooled gas turbine blades

    OpenAIRE

    Shashishekara S. Talya; J. N. Rajadas; A. Chattopadhyay

    1999-01-01

    Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with ...

  17. Development of Standard Approach for Sickle Blade Manufacturing

    OpenAIRE

    Noordin, M. N. A; Hudzari, R. M; Azuan, H. N; Zainon, M. S; Mohamed, S. B; Wafi, S. A

    2016-01-01

    The sickle blade used in the motorised palm cutter known as “CANTAS” provides fast, easy and safe pruning and harvesting for those hard to reach applications. Jariz Technologies Company is experiencing problem in the consistency of sickle blade which was supplied by various blade manufacturers. Identifying the proper blade material with a certain hardness value would produce a consistent as well as long lasting sickle blade. A Standard Operating Procedure (SOP) in the manufacturing of the sic...

  18. Fatigue strength ofcomposite wind turbine blade structures

    DEFF Research Database (Denmark)

    Ardila, Oscar Gerardo Castro

    Wind turbines are normally designed to withstand 20-30 years of life. During this period, the blades, which are the main rotating structures of a wind turbine, are subjected to high fluctuating load conditions as a result of a combination of gravity, inertia, and aeroelastic forces. For this reason......, fatigue is one of the foremost concerns during the design of these structures. However, current standard fatigue methods used for designing wind turbine blades seem not to be completely appropriate for these structures because they are still based on methods developed for metals and not for composite...... materials from which the blades are made. In this sense, the aim of this work is to develop more accurate and reliable fatigue-life prediction models for composite wind turbine blades. In this project, two types of fatigue models are implemented: fatigue-life models and damage mechanics models. In the first...

  19. Aircraft rotor blade with passive tuned tab

    Science.gov (United States)

    Campbell, T. G. (Inventor)

    1985-01-01

    A structure for reducing vibratory airloading in a rotor blade with a leading edge and a trailing edge includes a cut out portion at the trailing edge. A substantially wedge shaped cross section, inertially deflectable tab, also with a leading edge and a trailing edge is pivotally mounted in the cut out portion. The trailing edge of the tab may move above and below the rotor blade. A torsion strap applies force against the tab when the trailing edge of the tab is above and below the rotor blade. A restraining member is slidably movable along the torsion strap to vary torsional biasing force supplied by the torsion bar to the tab. A plurality of movable weights positioned between plates vary a center of gravity of the tab. Skin of the tab is formed from unidirectional graphite and fiberglass layers. Sliders coupled with a pinned degree of freedom at rod eliminate bending of tab under edgewise blade deflection.

  20. Blade Vibration Measurement System for Unducted Fans

    Science.gov (United States)

    Marscher, William

    2014-01-01

    With propulsion research programs focused on new levels of efficiency and noise reduction, two avenues for advanced gas turbine technology are emerging: the geared turbofan and ultrahigh bypass ratio fan engines. Both of these candidates are being pursued as collaborative research projects between NASA and the engine manufacturers. The high bypass concept from GE Aviation is an unducted fan that features a bypass ratio of over 30 along with the accompanying benefits in fuel efficiency. This project improved the test and measurement capabilities of the unducted fan blade dynamic response. In the course of this project, Mechanical Solutions, Inc. (MSI) collaborated with GE Aviation to (1) define the requirements for fan blade measurements; (2) leverage MSI's radar-based system for compressor and turbine blade monitoring; and (3) develop, validate, and deliver a noncontacting blade vibration measurement system for unducted fans.

  1. Wireless Inductive Power Device Suppresses Blade Vibrations

    Science.gov (United States)

    Morrison, Carlos R.; Provenza, Andrew J.; Choi, Benjamin B.; Bakhle, Milind A.; Min, James B.; Stefko, George L.; Duffy, Kirsten P.; Fougers, Alan J.

    2011-01-01

    Vibration in turbomachinery can cause blade failures and leads to the use of heavier, thicker blades that result in lower aerodynamic efficiency and increased noise. Metal and/or composite fatigue in the blades of jet engines has resulted in blade destruction and loss of lives. Techniques for suppressing low-frequency blade vibration, such as gtuned circuit resistive dissipation of vibratory energy, h or simply "passive damping," can require electronics incorporating coils of unwieldy dimensions and adding unwanted weight to the rotor. Other approaches, using vibration-dampening devices or damping material, could add undesirable weight to the blades or hub, making them less efficient. A wireless inductive power device (WIPD) was designed, fabricated, and developed for use in the NASA Glenn's "Dynamic Spin Rig" (DSR) facility. The DSR is used to simulate the functionality of turbomachinery. The relatively small and lightweight device [10 lb (approx.=4.5 kg)] replaces the existing venerable and bulky slip-ring. The goal is the eventual integration of this technology into actual turbomachinery such as jet engines or electric power generators, wherein the device will facilitate the suppression of potentially destructive vibrations in fan blades. This technology obviates slip rings, which require cooling and can prove unreliable or be problematic over time. The WIPD consists of two parts: a remote element, which is positioned on the rotor and provides up to 100 W of electrical power to thin, lightweight piezoelectric patches strategically placed on/in fan blades; and a stationary base unit that wirelessly communicates with the remote unit. The base unit supplies inductive power, and also acts as an input and output corridor for wireless measurement, and active control command to the remote unit. Efficient engine operation necessitates minimal disturbance to the gas flow across the turbine blades in any effort to moderate blade vibration. This innovation makes it

  2. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul

    2016-10-25

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure) with improved reproducibility was obtained from blade-coated P3HT:PC71BM solar cells, compared to spin-coated ones. Furthermore, by demonstrating 3.10% efficiency flexible solar cells using blade-coated PBDTTT-EFT:PC71BM films on the plastic substrates, we suggest the potential applicability of blade coating technique to the high throughput roll-to-roll fabrication systems.

  3. High efficiency turbine blade coatings

    Energy Technology Data Exchange (ETDEWEB)

    Youchison, Dennis L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gallis, Michail A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-06-01

    The development of advanced thermal barrier coatings (TBCs) of yttria stabilized zirconia (YSZ) that exhibit lower thermal conductivity through better control of electron beam - physical vapor deposition (EB-PVD) processing is of prime interest to both the aerospace and power industries. This report summarizes the work performed under a two-year Lab-Directed Research and Development (LDRD) project (38664) to produce lower thermal conductivity, graded-layer thermal barrier coatings for turbine blades in an effort to increase the efficiency of high temperature gas turbines. This project was sponsored by the Nuclear Fuel Cycle Investment Area. Therefore, particular importance was given to the processing of the large blades required for industrial gas turbines proposed for use in the Brayton cycle of nuclear plants powered by high temperature gas-cooled reactors (HTGRs). During this modest (~1 full-time equivalent (FTE)) project, the processing technology was developed to create graded TBCs by coupling ion beam-assisted deposition (IBAD) with substrate pivoting in the alumina-YSZ system. The Electron Beam - 1200 kW (EB-1200) PVD system was used to deposit a variety of TBC coatings with micron layered microstructures and reduced thermal conductivity below 1.5 W/m.K. The use of IBAD produced fully stoichiometric coatings at a reduced substrate temperature of 600°C and a reduced oxygen background pressure of 0.1 Pa. IBAD was also used to successfully demonstrate the transitioning of amorphous PVD-deposited alumina to the -phase alumina required as an oxygen diffusion barrier and for good adhesion to the substrate Ni2Al3 bondcoat. This process replaces the time consuming thermally grown oxide formation required before the YSZ deposition. In addition to the process technology, Direct Simulation Monte Carlo plume modeling and spectroscopic characterization of the PVD plumes were performed. The project consisted of five tasks. These included the

  4. Eddy current inspection of stationary blade rings

    International Nuclear Information System (INIS)

    Krzywosz, K.J.; Hastings, S.N.

    1994-01-01

    Stationary turbine blade rings in a US power plant have experienced chloride-induced cracking. Failure analysis determined two types of cracking mechanisms: corrosion fatigue cracking confined to the leading edge of the outer shroud; and stress corrosion cracking present all over the blade surface. Fluorescent dye penetrant is typically used to detect and size cracks. However, it requires cleaning the blade rings by sandblasting to obtain reliable inspection results. Sand blasting in turn requires sealing the lower half of the turbine housing to prevent sand from contaminating the rest of the power plant components. Furthermore, both the penetrant examination and the removal of the sand are time consuming and costly. An alternative NDE technique is desirable which requires no pre-cleaning of the blade and a quick go/no-go inspection with the capability of estimating the crack length. This paper presents an innovative eddy current technique which meets the desired objectives by incorporating the use of specially designed contoured scanners equipped with an array of pancake coils. A set of eddy current pancake coils housed in three different scanners is used to manually scan and inspect the convex side of the stationary blade rings. The pancake coils are operated in a transmit/receive mode using two separate eddy current instruments. This paper presents the inspection concept, including scanner and probe designs, and test results from the various stages of multiple blade rings

  5. Applied modal analysis of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Broen Pedersen, H.; Dahl Kristensen, O.J.

    2003-02-01

    In this project modal analysis has been used to determine the natural frequencies, damping and the mode shapes for wind turbine blades. Different methods to measure the position and adjust the direction of the measuring points are discussed. Different equipment for mounting the accelerometers are investigated and the most suitable are chosen. Different excitation techniques are tried during experimental campaigns. After a discussion the pendulum hammer were chosen, and a new improved hammer was manufactured. Some measurement errors are investigated. The ability to repeat the measured results is investigated by repeated measurement on the same wind turbine blade. Furthermore the flexibility of the test set-up is investigated, by use of accelerometers mounted on the flexible adapter plate during the measurement campaign. One experimental campaign investigated the results obtained from a loaded and unloaded wind turbine blade. During this campaign the modal analysis are performed on a blade mounted in a horizontal and a vertical position respectively. Finally the results obtained from modal analysis carried out on a wind turbine blade are compared with results obtained from the Stig Oeyes blade{sub E}V1 program. (au)

  6. Super titanium blades for advanced steam turbines

    International Nuclear Information System (INIS)

    Coulon, P.A.

    1990-01-01

    In 1986, the Alsthom Steam Turbines Department launched the manufacture of large titanium alloy blades: airfoil length of 1360 mm and overall length of 1520 mm. These blades are designed for the last-stage low pressure blading of advanced steam turbines operating at full speed (3000 rpm) and rating between 300 and 800 MW. Using titanium alloys for steam turbine exhaust stages as substitutes for chrome steels, due to their high strength/density ratio and their almost complete resistance to corrosion, makes it possible to increase the length of blades significantly and correspondingly that steam passage section (by up to 50%) with a still conservative stresses level in the rotor. Alsthom relies on 8 years of experience in the field of titanium, since as early as 1979 large titanium blades (airfoil length of 1240 mm, overall length of 1430 mm) were erected for experimental purposes on the last stage of a 900 MW unit of the Dampierre-sur-Loire power plant and now totals 45,000 operating hours without problems. The paper summarizes the main properties (chemical, mechanical and structural) recorded on very large blades and is based in particular on numerous fatigue corrosion test results to justify the use of the Ti 6 Al 4 V alloy in a specific context of micrographic structure

  7. Integrity assessment of stationary blade ring for nuclear power plant

    International Nuclear Information System (INIS)

    Park, Jung Yong; Chung, Yong Keun; Park, Jong Jin; Kang, Yong Ho

    2004-01-01

    The inner side between HP stationary blades in no.1 turbine of nuclear power plant A is damaged by the FAC(Flow Assisted Corrosion) which is exposed to moisture. For many years the inner side is repaired by welding the damaged part, however, the FAC continues to deteriorate the original material of the welded blade ring. In this study, we have two stages to verify the integrity of stationary blade ring in nuclear power plant A. In the stage I, replication of blade ring is performed to survey the microstructure of blade ring. In the stage II, the stress analysis of blade ring is performed to verify the structural safety of blade ring. Throughout the two stages analysis of blade ring, the stationary blade ring had remained undamaged

  8. Distribution of defects in wind turbine blades and reliability assessment of blades containing defects

    DEFF Research Database (Denmark)

    Stensgaard Toft, Henrik; Branner, Kim; Berring, Peter

    2009-01-01

    on the assumption that one error in the production process tends to trigger several defects. For both models additional information about number, type and size of the defects is included as stochastic variables. The probability of failure for a wind turbine blade will not only depend on variations in the material......In the present paper two stochastic models for the distribution of defects in wind turbine blades are proposed. The first model assumes that the individual defects are completely randomly distributed in the blade. The second model assumes that the defects occur in clusters of different size based...... properties and the load but also on potential defects in the blades. As a numerical example the probability of failure is calculated for the main spar both with and without defects in terms of delaminations. The delaminations increase the probability of failure compared to a perfect blade, but by applying...

  9. Spacer grid with mixing blades for nuclear fuel assembly

    International Nuclear Information System (INIS)

    Noailly, J.

    1986-01-01

    The spacer grid for nuclear fuel assembly has two sets of intersecting metal plates provided with blades and defining cells. The plates are fitted only with half-blades associated with a single grid opening. The half-blades of adjacent cells are arranged at 90deg C to each other and each plate has at most one half-blade at each corner of a cell. The invention concerns fuel assemblies of pressurized water reactors. The blades arranged on a single side of the plate provide a good hydraulic uniformity. The invention provides a uniform distribution of blades (and thus of absorbing material in each hydraulic cell) [fr

  10. Structural health monitoring of wind turbine blades

    Science.gov (United States)

    Rumsey, Mark A.; Paquette, Joshua A.

    2008-03-01

    As electric utility wind turbines increase in size, and correspondingly, increase in initial capital investment cost, there is an increasing need to monitor the health of the structure. Acquiring an early indication of structural or mechanical problems allows operators to better plan for maintenance, possibly operate the machine in a de-rated condition rather than taking the unit off-line, or in the case of an emergency, shut the machine down to avoid further damage. This paper describes several promising structural health monitoring (SHM) techniques that were recently exercised during a fatigue test of a 9 meter glass-epoxy and carbon-epoxy wind turbine blade. The SHM systems were implemented by teams from NASA Kennedy Space Center, Purdue University and Virginia Tech. A commercial off-the-shelf acoustic emission (AE) NDT system gathered blade AE data throughout the test. At a fatigue load cycle rate around 1.2 Hertz, and after more than 4,000,000 fatigue cycles, the blade was diagnostically and visibly failing at the out-board blade spar-cap termination point at 4.5 meters. For safety reasons, the test was stopped just before the blade completely failed. This paper provides an overview of the SHM and NDT system setups and some current test results.

  11. Modal analysis of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.C.; Hansen, M.H.; Baumgart, A.; Carlen, I.

    2002-02-01

    The modal analysis technique has been used to identify essential dynamic properties of wind turbine blades like natural frequencies, damping characteristics and mode shapes. Different experimental procedures have been considered, and the most appropriate of these has been selected. Although the comparison is based on measurements on a LM 19 m blade, the recommendations given are believed to be valid for other wind turbine blades as well. The reliability of the selected experimental analysis has been quantified by estimating the unsystematic variations in the experimental findings. Satisfactory results have been obtained for natural frequencies, damping characteristics and for the dominating deflection direction of the investigated mode shapes. For the secondary deflection directions, the observed experimental uncertainty may be considerable - especially for the torsional deflection. The experimental analysis of the LM 19 m blade has been compared with results from a state-of-the-art FE-modeling of the same blade. For some of the higher modes substantial discrepancies between the natural frequencies originating from the FE-modeling and the modal analysis, respectively, are observed. In general the qualitative features of measured and computed modes shapes are in good agreement. However, for the secondary deflection directions, substantial deviations in the absolute values may occur (when normalizing with respect to the primary deflection direction). Finally, suggestions of potential future improvements of the experimental procedure are discussed. (au)

  12. 3X-100 blade field test.

    Energy Technology Data Exchange (ETDEWEB)

    Zayas, Jose R.; Johnson, Wesley D.

    2008-03-01

    In support of a Work-For-Other (WFO) agreement between the Wind Energy Technology Department at Sandia National Laboratories and 3TEX, one of the three Micon 65/13M wind turbines at the USDA Agriculture Research Service (ARS) center in Bushland, Texas, has been used to test a set of 9 meter wind turbine blades, manufactured by TPI composites using the 3TEX carbon material for the spar cap. Data collected from the test has been analyzed to evaluate both the aerodynamic performance and the structural response from the blades. The blades aerodynamic and structural performance, the meteorological inflow and the wind turbine structural response has been monitored with an array of 57 instruments: 15 to characterize the blades, 13 to characterize inflow, and 15 to characterize the time-varying state of the turbine. For the test, data was sampled at a rate of 40 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow, as well as both modeling and field testing results.

  13. Piezoelectric actuation of helicopter rotor blades

    Science.gov (United States)

    Lieven, Nicholas A. J.

    2001-07-01

    The work presented in this paper is concerned with the application of embedded piezo-electric actuators in model helicopter rotor blades. The paper outlines techniques to define the optimal location of actuators to excite particular modes of vibration whilst the blade is rotating. Using composite blades the distribution of strain energy is defined using a Finite Element model with imposed rotor-dynamic and aerodynamics loads. The loads are specified through strip theory to determine the position of maximum bending moment and thus the optimal location of the embedded actuators. The effectiveness of the technique is demonstrated on a 1/4 scale fixed cyclic pitch rotor head. Measurement of the blade displacement is achieved by using strain gauges. In addition a redundant piezo-electric actuator is used to measure the blades' response characteristics. The addition of piezo-electric devices in this application has been shown to exhibit adverse aeroelastic effects, such as counter mass balancing and increased drag. Methods to minimise these effects are suggested. The outcome of the paper is a method for defining the location and orientation of piezo-electric devices in rotor-dynamic applications.

  14. Individual blade pitch for yaw control

    International Nuclear Information System (INIS)

    Navalkar, S T; Van Wingerden, J W; Van Kuik, G A M

    2014-01-01

    Individual pitch control (IPC) for reducing blade loads has been investigated and proven successful in recent literature. For IPC, the multi-blade co-ordinate (MBC) transformation is used to process the blade load signals from the rotating to a stationary frame of reference. In the stationary frame of reference, the yaw error of a turbine can be appended to generate IPC actions that are able to achieve turbine yaw control for a turbine in free yaw. In this paper, IPC for yaw control is tested on a high-fidelity numerical model of a commercially produced wind turbine in free yaw. The tests show that yaw control using IPC has the distinct advantage that the yaw system loads and support structure loading are substantially reduced. However, IPC for yaw control also shows a reduction in IPC blade load reduction potential and causes a slight increase in pitch activity. Thus, the key contribution of this paper is the concept demonstration of IPC for yaw control. Further, using IPC for yaw as a tuning parameter, it is shown how the best trade-off between blade loading, pitch activity and support structure loading can be achieved for wind turbine design

  15. Piezoelectric Vibration Damping Study for Rotating Composite Fan Blades

    Science.gov (United States)

    Min, James B.; Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Kray, Nicholas

    2012-01-01

    Resonant vibrations of aircraft engine blades cause blade fatigue problems in engines, which can lead to thicker and aerodynamically lower performing blade designs, increasing engine weight, fuel burn, and maintenance costs. In order to mitigate undesirable blade vibration levels, active piezoelectric vibration control has been investigated, potentially enabling thinner blade designs for higher performing blades and minimizing blade fatigue problems. While the piezoelectric damping idea has been investigated by other researchers over the years, very little study has been done including rotational effects. The present study attempts to fill this void. The particular objectives of this study were: (a) to develop and analyze a multiphysics piezoelectric finite element composite blade model for harmonic forced vibration response analysis coupled with a tuned RLC circuit for rotating engine blade conditions, (b) to validate a numerical model with experimental test data, and (c) to achieve a cost-effective numerical modeling capability which enables simulation of rotating blades within the NASA Glenn Research Center (GRC) Dynamic Spin Rig Facility. A numerical and experimental study for rotating piezoelectric composite subscale fan blades was performed. It was also proved that the proposed numerical method is feasible and effective when applied to the rotating blade base excitation model. The experimental test and multiphysics finite element modeling technique described in this paper show that piezoelectric vibration damping can significantly reduce vibrations of aircraft engine composite fan blades.

  16. Discussion paper on managing composite blade waste

    DEFF Research Database (Denmark)

    Skelton, Kristen

    A sustainable process for dealing with wind turbines at the end of their service life is needed in order to maximize the environmental benefits of wind power from a life cycle approach. Most components of a wind turbine such as foundation, tower, components of the gear box and generator are alrea...... as practical examples and experiences from research and industry projects. Important sources have been obtained from researchers, the original equipment manufacturers (OEMs), operators and maintainers (O&Ms), waste handlers and those that use the recyclates from blade waste....... recyclable and treated accordingly. Nevertheless, wind turbine blades represent a challenge due to the materials used and their complex composition. The objective of this research note is to provide an overview of the different methods used for sectioning and recycling wind turbine blades as well...

  17. Resonant vibration control of wind turbine blades

    DEFF Research Database (Denmark)

    Svendsen, Martin Nymann; Krenk, Steen; Høgsberg, Jan Becker

    2010-01-01

    . The efficiency of the resonant controller is demonstrated for a representative turbine blade exposed to turbulent wind loading. It is found that the present explicit tuning procedure yields close to optimal tuning, with very limited modal spill-over and effective reduction of the vibration amplitudes.......The paper deals with introduction of damping to specific vibration modes of wind turbine blades, using a resonant controller with acceleration feedback. The wind turbine blade is represented by three-dimensional, two-node finite elements in a local, rotating frame of reference. The element...... formulation accounts for arbitrary mass density distributions, general elastic crosssection properties and geometric stiffness effects due to internal stresses. A compact, linear formulation for aerodynamic forces with associated stiffness and damping terms is established and added to the structural model...

  18. Research overview on vibration damping of mistuned bladed disk assemblies

    Directory of Open Access Journals (Sweden)

    Liang ZHANG

    2016-04-01

    Full Text Available Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home and abroad, the mistuning vibration mechanism of the bladed disk assemblies is introduced, and the main technical methods of the vibration damping of bladed disk assemblies are reviewed, such as artificially active mistuning, collision damping, friction damping and optimization of the blade position. Some future research directions are presented.

  19. Advances in wind turbine blade design and materials

    DEFF Research Database (Denmark)

    Wind energy is gaining critical ground in the area of renewable energy, with wind energy being predicted to provide up to 8% of the world’s consumption of electricity by 2021. Advances in wind turbine blade design and materials reviews the design and functionality of wind turbine rotor blades...... as well as the requirements and challenges for composite materials used in both current and future designs of wind turbine blades. Part one outlines the challenges and developments in wind turbine blade design, including aerodynamic and aeroelastic design features, fatigue loads on wind turbine blades......, and characteristics of wind turbine blade airfoils. Part two discusses the fatigue behavior of composite wind turbine blades, including the micromechanical modelling and fatigue life prediction of wind turbine blade composite materials, and the effects of resin and reinforcement variations on the fatigue resistance...

  20. Magnus wind turbines as an alternative to the blade ones

    International Nuclear Information System (INIS)

    Bychkov, N M; Dovgal, A V; Kozlov, V V

    2007-01-01

    Experimental and calculated data on a wind turbine equipped with rotating cylinders instead of traditional blades are reported. Optimal parameters and the corresponding operational characteristics of the windwheel are given in comparison with those of the blade wind turbines

  1. Computational method for the design of wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Vitale, A.J. [Instituto Argentino de Oceanografia, Camino La Carrindanga Km. 7.5, CC 804, B8000FWB Bahia Blanca (Argentina); Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina); Rossi, A.P. [Universidad Tecnologica Nacional Facultad Regional Bahia Blanca, GESE, 11 de Abril 461, B8000LMI Bahia Blanca (Argentina); Universidad Nacional del Sur, Dpto. de Ing. Electrica y de Computadoras, Av. Alem 1253, 8000 Bahia Blanca (Argentina)

    2008-07-15

    Zeus Disenador was developed to design low-power, horizontal-axis wind turbine blades, by means of an iterative algorithm. With this software, it is possible to obtain the optimum blade shape for a wind turbine to satisfy energy requirements of an electric system with optimum rotor efficiency. The number of blades, the airfoil curves and the average wind velocity can be specified by the user. The user can also request particular edge conditions for the width of the blades and for the pitch angle. Results are provided in different windows. Two- and three-dimensional graphics show the aspect of the resultant blade. Numerical results are displayed for blade length, blade surface, pitch angle variation along the blade span, rotor angular speed, rotor efficiency and rotor output power. Software verifications were made by comparing rotor power and rotor efficiency for different designs. Results were similar to those provided by commercial wind generator manufacturers. (author)

  2. Wind blade spar cap and method of making

    Science.gov (United States)

    Mohamed, Mansour H [Raleigh, NC

    2008-05-27

    A wind blade spar cap for strengthening a wind blade including an integral, unitary three-dimensional woven material having a first end and a second end, corresponding to a root end of the blade and a tip end of the blade, wherein the material tapers in width from the first to the second end while maintaining a constant thickness and decreasing weight therebetween, the cap being capable of being affixed to the blade for providing increased strength with controlled variation in weight from the root end to the tip end based upon the tapered width of the material thereof. The present inventions also include the method of making the wind blade spar cap and a wind blade including the wind blade spar cap.

  3. Repairing methods of steam turbine blades using welding procedures

    International Nuclear Information System (INIS)

    Mazur, Z.; Cristalinas, V.; Kubiak, J.

    1995-01-01

    The steam turbine blades are subjected to the natural permanent wear or damage, which may be of mechanical or metallurgical origin. The typical damage occurring during the lifetime of turbine blading may be erosion, corrosion, foreign objects damage, rubbing and cracking caused by high cycle fatigue and creep crack growth. The nozzle and diaphragm vanes (stationary blades) of the steam turbine are elements whose damage is commonly occurring and they require special repair processes. The damage of the blade trailing edge of nozzle and diaphragm vanes, due to the former causes, may be refurbished by welding deposits or stainless steel inserts welded to the blades. Both repair methods of the stationary steam turbine blades are presented. The results of the blades refurbishment are an increase of the turbine availability, reliability and efficiency, and a decrease of the risk that failure will occur. Also, the repair cost versus the spare blades cost represent significant reduction of expenditure. 7 refs

  4. New airfoil sections for straight bladed turbine

    Science.gov (United States)

    Boumaza, B.

    1987-07-01

    A theoretical investigation of aerodynamic performance for vertical axis Darrieus wind turbine with new airfoils sections is carried out. The blade section aerodynamics characteristics are determined from turbomachines cascade model. The model is also adapted to the vertical Darrieus turbine for the performance prediction of the machine. In order to choose appropriate value of zero-lift-drag coefficient in calculation, an analytical expression is introduced as function of chord-radius ratio and Reynolds numbers. New airfoils sections are proposed and analyzed for straight-bladed turbine.

  5. New airfoil sections for straight bladed turbine

    International Nuclear Information System (INIS)

    Boumaza, B.

    1987-07-01

    A theoretical investigation of aerodynamic performance for vertical axis Darrieus wind turbine with new airfoils sections is carried out. The blade section aerodynamics characteristics are determined from turbomachines cascade model. The model is also adapted to the vertical Darrieus turbine for the performance prediction of the machine. In order to choose appropriate value of zero-lift-drag coefficient in calculation, an analytical expression is introduced as function of chord-radius ratio and Reynolds numbers. New airfoils sections are proposed and analyzed for straight-bladed turbine

  6. Simple theoretical models for composite rotor blades

    Science.gov (United States)

    Valisetty, R. R.; Rehfield, L. W.

    1984-01-01

    The development of theoretical rotor blade structural models for designs based upon composite construction is discussed. Care was exercised to include a member of nonclassical effects that previous experience indicated would be potentially important to account for. A model, representative of the size of a main rotor blade, is analyzed in order to assess the importance of various influences. The findings of this model study suggest that for the slenderness and closed cell construction considered, the refinements are of little importance and a classical type theory is adequate. The potential of elastic tailoring is dramatically demonstrated, so the generality of arbitrary ply layup in the cell wall is needed to exploit this opportunity.

  7. Designing for hot-blade cutting

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Clausen, Kenn

    2016-01-01

    In this paper we present a novel method for the generation of doubly-curved, architectural design surfaces using swept Euler elastica and cubic splines. The method enables a direct design to production workflow with robotic hot-blade cutting, a novel robotic fabrication method under development......-trivial constraints of blade-cutting in a bottom-up fashion, enabling an exploration of the unique architectural potential of this fabrication approach. The method is implemented as prototype design tools in MatLAB, C++, GhPython, and Python and demonstrated through cutting of expanded polystyrene foam design...

  8. Aerodynamics and Optimal Design of Biplane Wind Turbine Blades

    Science.gov (United States)

    Chiu, Phillip

    In order to improve energy capture and reduce the cost of wind energy, in the past few decades wind turbines have grown significantly larger. As their blades get longer, the design of the inboard region (near the blade root) becomes a trade-off between competing structural and aerodynamic requirements. State-of-the-art blades require thick airfoils near the root to efficiently support large loads inboard, but those thick airfoils have inherently poor aerodynamic performance. New designs are required to circumvent this design compromise. One such design is the "biplane blade", in which the thick airfoils in the inboard region are replaced with thinner airfoils in a biplane configuration. This design was shown previously to have significantly increased structural performance over conventional blades. In addition, the biplane airfoils can provide increased lift and aerodynamic efficiency compared to thick monoplane inboard airfoils, indicating a potential for increased power extraction. This work investigates the fundamental aerodynamic aspects, aerodynamic design and performance, and optimal structural design of the biplane blade. First, the two-dimensional aerodynamics of biplanes with relatively thick airfoils are investigated, showing unique phenomena which arise as a result of airfoil thickness. Next, the aerodynamic design of the full biplane blade is considered. Two biplane blades are designed for optimal aerodynamic loading, and their aerodynamic performance quantified. Considering blades with practical chord distributions and including the drag of the mid-blade joint, it is shown that biplane blades have comparable power output to conventional monoplane designs. The results of this analysis also show that the biplane blades can be designed with significantly less chord than conventional designs, a characteristic which enables larger blade designs. The aerodynamic loads on the biplane blades are shown to be increased in gust conditions and decreased under

  9. Vibration analysis of gas turbine blade using FEM

    International Nuclear Information System (INIS)

    Iqbal, M.J.; Chohan, G.Y.; Khusnood, S.; Khan, M.A.

    2003-01-01

    In a typical turbo-machine, there is a stator row of blades, which guide the gases onto a rotor row of blades, to extract the mechanical power from the machine. A typical rotor blade was sees upstream disturbance from the stator row and as it rotates, receive a corresponding number of increasing and decreasing lift and moment forces alternating periodically, depending on the number of stator blades/nozzles/guide vanes. Thus all the blades in a turbo-machine receiver their major periodic excitation at a frequency equal to nozzle passing frequency. Since these forces are periodic, one has to consider several number of these harmonics in determining whether resonance takes place, when one of these harmonics coincides with any of the natural frequencies of the blades. Turbine blades have a variety of natural modes of vibration, predominantly as blade alone but also in combination with flexing of the disc rim. These mode occur at characteristic frequencies, which are determined by the distribution of mass and stiffness (in bending or torsion), resulting from the variable thickness over the blade area. Since the advent of steam turbines and their application in various sectors of industry, it is a common experience that a blade failure is a major cause of breakdown in these machines. Blade failures due to fatigue are predominantly vibration related. The dynamic loads on the blading can arise from many sources, the predominant being the source of the operation principles on which the machine is designed. This work deals with vibration analysis of a gas turbine blade using a finite element package ANSYS. Determined the natural frequencies and mode shapes for a turbine blade and a rectangular blade. Results have been validated experimentally using a rectangular blade. ANSYS results have also been compared against published results. (author)

  10. Rotor blade online monitoring and fault diagnosis technology research

    DEFF Research Database (Denmark)

    Tesauro, Angelo; Pavese, Christian; Branner, Kim

    Rotor blade online monitoring and fault diagnosis technology is an important way to find blade failure mechanisms and thereby improve the blade design. Condition monitoring of rotor blades is necessary in order to ensure the safe operation of the wind turbine, make the maintenance more economical...... of the rotor, icing and lightning. Research is done throughout the world in order to develop and improve such measurement systems. Commercial hardware and software available for the described purpose is presented in the report....

  11. Digital radiographic technology; non-destructive testing of tubine blades

    NARCIS (Netherlands)

    Penumadu, P.S.

    2014-01-01

    Inspection of turbine blades has always been a big challenge. Any irregularities in the blade have a huge impact on the gas turbine, so these blades have to be manufactured and inspected in the most sophisticated way possible. The evolution of digital radiographic technology took a leap forward to

  12. Antenna Gain Impact on UWB Wind Turbine Blade Deflection Sensing

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Byskov, Claus

    2018-01-01

    Antenna gain impact on UWB wind turbine blade deflection sensing is studied in this paper. Simulations are applied with a 4.5-meter blade tip. The antennas with high gain (HG) and low gain (LG) in free space are simulated inside a blade. It is interesting to find that tip antennas with HG and LG...

  13. Modeling of uncertainties for wind turbine blade design

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Toft, Henrik Stensgaard

    2014-01-01

    Wind turbine blades are designed by a combination of tests and numerical calculations using finite element models of the blade. The blades are typically composite structures with laminates of glass-fiber and/or carbon-fibers glued together by a matrix material. This paper presents a framework...

  14. Gas turbine engine turbine blade damaging estimate in maintenance

    Directory of Open Access Journals (Sweden)

    Ель-Хожайрі Хусейн

    2004-01-01

    Full Text Available  The factors determining character and intensity of corrosive damages of gas turbine blades are analyzed in the article. The classification of detrimental impurities polluting gas turbine airflow duct and injuring blade erosion damages are given. Common features of the method of turbine blade corrosive damage estimation are shown in the article.

  15. Multidisciplinary design optimization of film-cooled gas turbine blades

    Directory of Open Access Journals (Sweden)

    Talya Shashishekara S.

    1999-01-01

    Full Text Available Design optimization of a gas turbine blade geometry for effective film cooling toreduce the blade temperature has been done using a multiobjective optimization formulation. Three optimization formulations have been used. In the first, the average blade temperature is chosen as the objective function to be minimized. An upper bound constraint has been imposed on the maximum blade temperature. In the second, the maximum blade temperature is chosen as the objective function to be minimized with an upper bound constraint on the average blade temperature. In the third formulation, the blade average and maximum temperatures are chosen as objective functions. Shape optimization is performed using geometric parameters associated with film cooling and blade external shape. A quasi-three-dimensional Navier–Stokes solver for turbomachinery flows is used to solve for the flow field external to the blade with appropriate modifications to incorporate the effect of film cooling. The heat transfer analysis for temperature distribution within the blade is performed by solving the heat diffusion equation using the finite element method. The multiobjective Kreisselmeier–Steinhauser function approach has been used in conjunction with an approximate analysis technique for optimization. The results obtained using both formulations are compared with reference geometry. All three formulations yield significant reductions in blade temperature with the multiobjective formulation yielding largest reduction in blade temperature.

  16. Channel flow analysis. [velocity distribution throughout blade flow field

    Science.gov (United States)

    Katsanis, T.

    1973-01-01

    The design of a proper blade profile requires calculation of the blade row flow field in order to determine the velocities on the blade surfaces. An analysis theory is presented for several methods used for this calculation and associated computer programs that were developed are discussed.

  17. A deflection monitoring system for a wind turbine blade

    DEFF Research Database (Denmark)

    2017-01-01

    A wind turbine blade comprising a system for monitoring the deflection of a wind turbine blade is described. The system comprises a wireless range-measurement system, having at least one wireless communication device located towards the root end of the blade and at least one wireless communication...

  18. Design and fabrication of a wind turbine blade | Laryea | Ghana ...

    African Journals Online (AJOL)

    Dimensions and weights were measured to determine the possibilities of its performance. Factors that affect the spinning of the blade include the weight, blade count and its aerodynamic features. The new blades are assumed to be more reliable and efficient than wholly wood design. The calculated wind speed and power ...

  19. Effect of linear and non-linear blade modelling techniques on simulated fatigue and extreme loads using Bladed

    Science.gov (United States)

    Beardsell, Alec; Collier, William; Han, Tao

    2016-09-01

    There is a trend in the wind industry towards ever larger and more flexible turbine blades. Blade tip deflections in modern blades now commonly exceed 10% of blade length. Historically, the dynamic response of wind turbine blades has been analysed using linear models of blade deflection which include the assumption of small deflections. For modern flexible blades, this assumption is becoming less valid. In order to continue to simulate dynamic turbine performance accurately, routine use of non-linear models of blade deflection may be required. This can be achieved by representing the blade as a connected series of individual flexible linear bodies - referred to in this paper as the multi-part approach. In this paper, Bladed is used to compare load predictions using single-part and multi-part blade models for several turbines. The study examines the impact on fatigue and extreme loads and blade deflection through reduced sets of load calculations based on IEC 61400-1 ed. 3. Damage equivalent load changes of up to 16% and extreme load changes of up to 29% are observed at some turbine load locations. It is found that there is no general pattern in the loading differences observed between single-part and multi-part blade models. Rather, changes in fatigue and extreme loads with a multi-part blade model depend on the characteristics of the individual turbine and blade. Key underlying causes of damage equivalent load change are identified as differences in edgewise- torsional coupling between the multi-part and single-part models, and increased edgewise rotor mode damping in the multi-part model. Similarly, a causal link is identified between torsional blade dynamics and changes in ultimate load results.

  20. Structural experiment of wind turbine blades; Fushayo blade no zairyo rikigakuteki jikken kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Seki, K; Shimizu, Y; Kuroyanagi, H [Tokai University, Tokyo (Japan)

    1997-11-25

    Aluminum, GFRP and composite of aluminum coated with carbon as structural materials for wind turbine blades were bending-tested, to improve blade bending stiffness, understand stress conditions at each position, and clarify structural dynamic strength by the bending-failure test. It is possible to estimate stress conditions at each position from the test results of displacement and strain at each load. The test results with GFRP are well explained qualitatively by the boundary theory, known as a theory for composite materials. The test gives reasonable material strength data, useful for designing wind turbines of high functions and safety. The results of the blade bending-failure test are in good agreement with the calculated structural blade strength. It is also found that GFRP is a good material of high structural strength for wind turbines. 8 refs., 6 tabs.

  1. New morphing blade section designs and structural solutions for smart blades

    DEFF Research Database (Denmark)

    Karakalas, Anargyros A.; Machairas, Theodore; Solomou, Alexandros

    2015-01-01

    Within INNWIND.EU new concepts are investigated having the ultimate goal to reduce the cost per kilowatt-hour of the produced energy. With increasing size of wind turbines, new approaches to load control are required to reduce the stresses in blades. Experimental and numerical studies in the fields...... of helicopter and wind turbine blade research have shown the potential of shape morphing in reducing blade loads. Morphing technologies, along with other control concepts, are investigated under Task 2.3 of WP “Lightweight Rotor”, against aerodynamic compliance and requirements of the complete wind turbine...... the efforts performed within Task 2.2 “Lightweight structural design” of INNWIND.Eu work-package WP2 “Lightweight Rotor” regarding the structural solutions necessary to accommodate the requirements of smart blades developed within work-package WP2 Task 2.3 “Active and passive loads control and alleviation...

  2. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul; Kim, Jong H.

    2016-01-01

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure

  3. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...

  4. Fatigue Life of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2010-01-01

    The present paper analyses the possibility of reducing the expected damage accumulation during tower passage by modifying the wind turbine tower design from a traditional mono-tower to a tripod. Due to a narrow stagnation zone the stress reversals and hence the damage accumulation in the blades...

  5. Gas Turbine Blade Damper Optimization Methodology

    Directory of Open Access Journals (Sweden)

    R. K. Giridhar

    2012-01-01

    Full Text Available The friction damping concept is widely used to reduce resonance stresses in gas turbines. A friction damper has been designed for high pressure turbine stage of a turbojet engine. The objective of this work is to find out effectiveness of the damper while minimizing resonant stresses for sixth and ninth engine order excitation of first flexure mode. This paper presents a methodology that combines three essential phases of friction damping optimization in turbo-machinery. The first phase is to develop an analytical model of blade damper system. The second phase is experimentation and model tuning necessary for response studies while the third phase is evaluating damper performance. The reduced model of blade is developed corresponding to the mode under investigation incorporating the friction damper then the simulations were carried out to arrive at an optimum design point of the damper. Bench tests were carried out in two phases. Phase-1 deals with characterization of the blade dynamically and the phase-2 deals with finding optimal normal load at which the blade resonating response is minimal for a given excitation. The test results are discussed, and are corroborated with simulated results, are in good agreement.

  6. Hot Blade Cuttings for the Building Industries

    DEFF Research Database (Denmark)

    Brander, David; Bærentzen, Jakob Andreas; Evgrafov, Anton

    2016-01-01

    . The project aims to reduce the amount of manual labour as well as production time by applying robots to cut expanded polystyrene (EPS) moulds for the concrete to form doubly curved surfaces. The scheme is based upon the so-called Hot Wire or Hot Blade technology where the surfaces are essentially swept out...

  7. Remote inspection of steam turbine blades

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    During the past five years Reinhart and Associates, Inc. has been involved in remote examination of L-0 and L-1 steam turbine blade rows of in-place LP turbines using visual and eddy current techniques. These tests have concentrated on the trailing edge and blade-to-rotor attachment (Christmas tree) areas. These remote nondestructive examinations were performed through hand access ports of the inner shell. Since the remote scanning system was in a prototype configuration, the inspection was highly operator-dependent. Refinement of the scanning equipment would considerably improve the efficiency of the test; however, the feasibility of remote in-place inspection of turbine blades was established. To further improve this technology, and to provide for remote inspection of other areas of the blade and additional turbine designs, EPRI is funding a one-year project with Reinhart and Associates, Inc. This project will develop a new system that employs state-of-the-art multifrequency eddy current techniques, a miniature charged coupled device (CCD) television camera, and remote positioning equipment. Project results from the first six months are presented

  8. Fluidic load control for wind turbines blades

    NARCIS (Netherlands)

    Boeije, C.S.; Vries, de H.; Cleine, I.; Emden, van E.; Zwart, G.G.M.; Stobbe, H.; Hirschberg, A.; Hoeijmakers, H.W.M.; Maureen Hand, xx

    2009-01-01

    This paper describes the initial steps into the investigation of the possibility of reducing fatigue loads on wind turbine blades by the application of fluidic jets. This investigation involves static pressure measurements as well as numerical simulations for a non-rotating NACA-0018 airfoil. The

  9. Structural dynamic analysis of turbine blade

    Science.gov (United States)

    Antony, A. Daniel; Gopalsamy, M.; Viswanadh, Chaparala B. V.; Krishnaraj, R.

    2017-10-01

    In any gas turbine design cycle, blade design is a crucial element which needs maximum attention to meet the aerodynamic performance, structural safety margins, manufacturing feasibility, material availability etc. In present day gas turbine engines, most of the failures occur during engine development test and in-service, in rotor and stator blades due to fatigue and resonance failures. To address this issue, an extensive structural dynamic analysis is carried out to predict the natural frequencies and mode shapes using FE methods. Using the dynamics characteristics, the Campbell diagram is constructed to study the possibility of resonance at various operating speeds. In this work, the feasibility of using composite material in place of titanium alloy from the structural dynamics point of view. This is being attempted in a Low-pressure compressor where the temperatures are relatively low and fixed with the casings. The analysis will be carried out using FE method for different composite material with different lamina orientations chosen through the survey. This study will focus on the sensitivity of blade mode shapes to different laminae orientations, which will be used to alter the natural frequency and tailor the mode shapes. Campbell diagrams of existing titanium alloy are compared with the composite materials with different laminae at all critical operating conditions. The existing manufacturing methods and the proven techniques for blade profiles will also be discussed in this report.

  10. Torsional Performance of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter; Berggreen, Christian

    2007-01-01

    The present work investigates how well different finite element modeling techniques can predict bending and torsion behavior of a wind turbine blade. Two shell models are investigated. One model has element offsets and the other has the elements at the mid-thickness surfaces of the model. The las...

  11. The Evolution of Rotor and Blade Design

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.

    2000-08-01

    The objective of this paper is to provide a historical perspective of the evolution of rotor and blade design during the last 20 years. This evolution is a balanced integration of economic, aerodynamic, structural dynamic, noise, and aesthetic considerations, which are known to be machine type and size dependent.

  12. Mathematical Model of Two Blades System

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    2014-01-01

    Roč. 2, č. 4 (2014), s. 361-369 ISSN 2321-3558 R&D Projects: GA ČR GA101/09/1166 Institutional support: RVO:61388998 Keywords : turbine blades * dry friction * vibration damping * torsion Subject RIV: BI - Acoustics

  13. Family of airfoil shapes for rotating blades. [for increased power efficiency and blade stability

    Science.gov (United States)

    Noonan, K. W. (Inventor)

    1983-01-01

    An airfoil which has particular application to the blade or blades of rotor aircraft such as helicopters and aircraft propellers is described. The airfoil thickness distribution and camber are shaped to maintain a near zero pitching moment coefficient over a wide range of lift coefficients and provide a zero pitching moment coefficient at section Mach numbers near 0.80 and to increase the drag divergence Mach number resulting in superior aircraft performance.

  14. Repair welding of cracked steam turbine blades

    International Nuclear Information System (INIS)

    Bhaduri, A.K.; Gill, T.P.S.; Albert, S.K.; Shanmugam, K.; Iyer, D.R.

    1999-01-01

    The procedure for repair welding of cracked steam turbine blades made of martensitic stainless steels has been developed using the gas tungsten arc welding process. Weld repair procedures were developed using both ER316L austenitic stainless steel filler wire and ER410 martensitic stainless steel filler wire. The repair welding procedure with austenitic filler wire was developed to avoid preheating of the blade as also hydrogen induced cold cracking, and involved evaluation of three different austenitic filler wires, viz. ER309L, ER316L and ERNiCr-3. The overall development of the repair welding procedure included selection of welding consumables (for austenitic filler metal), optimisation of post weld heat treatment parameters, selection of suitable method for local pre-heating and post-weld heat treatment (PWHT) of the blades, determination of mechanical properties of weldments in as-welded and PWHT conditions, and microstructural examination. After various trials using different procedures, the procedure of local PWHT using electrical resistance heating on the top surface of the weldment and monitoring the temperature by placing a thermocouple at the bottom of the weld, was found to give the most satisfactory results. A similar procedure was used for preheating while using ER410 filler metal. Mechanical testing of weldments before and after PWHT involved tensile tests at room temperature, face and root bend tests, and microhardness measurements across the fusion line and heat affected zone. During procedure qualification, mock-ups and actual repair welding, dye penetrant testing was used at different stages and where ever possible radiography was carried out. These procedures were developed for repair welding of cracked blades in the low-pressure (LP) steam turbines of Indian nuclear power plants. The procedure with ER316 L filler wire has so far been applied for repair welding of 2 cracked blades (made of AISI 410 SS) of LP steam turbines, while the procedure

  15. Analysis of impact resistance of composite fan blade. Fukugozai fan blade no taishogekisei no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Miyachi, T; Okumura, H; Otake, K; Sofue, Y [Japan Society for Aeronautical and Space Sciences, Tokyo (Japan)

    1992-01-05

    Numerical analysis of impact response was carried out when a bird strike was simulated to study the applicability of fiber reinforced composite material to fan blades for turbo-fan engines. The validity of the numerical analysis was verified by comparing the analyzed results with impact tested results of a fan-blade model of Ti-alloy. The impact resistance was studied by applying this method to fan blades of composite materials such as carbon fiber, epoxy resin and carbon-silicate fiber reinforced Ti-alloy. The finite element method was used for the analysis by dividing the model into triangular flat elements. The relation between the impact load, the deformation of blade and the strain, the natural frequency characteristics, the elastic modulus and hetrogeneity of blade were considered to analyze the impact response. The impact load by the strike of 1.5 lbs bird is very severe to the fan blades for turbo-fan engines having the thrust of 5 ton class. 23 refs., 23 figs., 3 tabs.

  16. Analysis and improvement of gas turbine blade temperature measurement error

    International Nuclear Information System (INIS)

    Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui

    2015-01-01

    Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed. (paper)

  17. Analysis and improvement of gas turbine blade temperature measurement error

    Science.gov (United States)

    Gao, Shan; Wang, Lixin; Feng, Chi; Daniel, Ketui

    2015-10-01

    Gas turbine blade components are easily damaged; they also operate in harsh high-temperature, high-pressure environments over extended durations. Therefore, ensuring that the blade temperature remains within the design limits is very important. In this study, measurement errors in turbine blade temperatures were analyzed, taking into account detector lens contamination, the reflection of environmental energy from the target surface, the effects of the combustion gas, and the emissivity of the blade surface. In this paper, each of the above sources of measurement error is discussed, and an iterative computing method for calculating blade temperature is proposed.

  18. Noise from Propellers with Symmetrical Sections at Zero Blade Angle

    Science.gov (United States)

    Deming, A F

    1937-01-01

    A theory has been deduced for the "rotation noise" from a propeller with blades of symmetrical section about the chord line and set at zero blade angle. Owing to the limitation of the theory, the equations give without appreciable error only the sound pressure for cases where the wave lengths are large compared with the blade lengths. With the aid of experimental data obtained from a two-blade arrangement, an empirical relation was introduced that permitted calculation of higher harmonics. The generality of the final relation given is indicated by the fundamental and second harmonic of a four-blade arrangement.

  19. New Design of Blade Untwisting Device of Cyclone Unit

    Directory of Open Access Journals (Sweden)

    D. I. Misiulia

    2010-01-01

    Full Text Available The paper presents a new design of a blade untwisting device where blades are considered as a main element of the device. A profile of the blades corresponds to a circular arch. An inlet angle of  the blades is determined by stream aerodynamics in an exhaust pipe, and an exit angle is determined by rectilinear gas motion. Optimum geometrical parameters of the untwisting device have been determined and its application allows to reduce a pressure drop in the ЦН-15 cyclones by 28–30 % while screw-blade untwisting device recovers only 19–20 % of energy.

  20. Determination of Turbine Blade Life from Engine Field Data

    Science.gov (United States)

    Zaretsky, Erwin V.; Litt, Jonathan S.; Hendricks, Robert C.; Soditus, Sherry M.

    2013-01-01

    It is probable that no two engine companies determine the life of their engines or their components in the same way or apply the same experience and safety factors to their designs. Knowing the failure mode that is most likely to occur minimizes the amount of uncertainty and simplifies failure and life analysis. Available data regarding failure mode for aircraft engine blades, while favoring low-cycle, thermal-mechanical fatigue (TMF) as the controlling mode of failure, are not definitive. Sixteen high-pressure turbine (HPT) T-1 blade sets were removed from commercial aircraft engines that had been commercially flown by a single airline and inspected for damage. Each set contained 82 blades. The damage was cataloged into three categories related to their mode of failure: (1) TMF, (2) Oxidation/erosion (O/E), and (3) Other. From these field data, the turbine blade life was determined as well as the lives related to individual blade failure modes using Johnson-Weibull analysis. A simplified formula for calculating turbine blade life and reliability was formulated. The L10 blade life was calculated to be 2427 cycles (11 077 hr). The resulting blade life attributed to O/E equaled that attributed to TMF. The category that contributed most to blade failure was Other. If there were no blade failures attributed to O/E and TMF, the overall blade L(sub 10) life would increase approximately 11 to 17 percent.

  1. Development of 52 inches last stage blade for steam turbines

    International Nuclear Information System (INIS)

    Suzuki, Atsuhide; Hisa, Shoichi; Nagao, Shinichiro; Ogata, Hisao

    1986-01-01

    The last stage blades of steam turbines are the important component controlling the power output and performance of plants. In order to realize a unit of large capacity and high efficiency, the proper exhaust area and the last stage blades having good performance are indispensable. Toshiba Corp. has completed the development of the 52 inch last stage blades for 1500 and 1800 rpm steam turbines. The 52 inch last stage blades are the longest in the world, which have the annular exhaust area nearly 1.5 times as much as that of 41 inch blades used for 1100 MW, 1500 rpm turbines in nuclear power stations. By adopting these 52 inch blades, the large capacity nuclear power plants up to 1800 MW can be economically constructed, the rate of heat consumption of 1350 MW plants is improved by 3 ∼ 4 % as compared with 41 inch blades, and in the plants up to 1100 MW, LP turbines can be reduced from three sets to two. The features of 52 inch blades, the flow pattern and blade form design, the structural strength analysis and the erosion withstanding property, and the verification by the rotation test of the actual blades, the performance test using a test turbine, the vibration analysis of the actually loaded blades and the analysis of wet steam behavior are reported. (Kako, I.)

  2. Development of 52 inch last stage blade for steam turbine

    International Nuclear Information System (INIS)

    Kadoya, Yoshiki; Harada, Masakatsu; Watanabe, Eiichiro

    1985-01-01

    Mitsubishi Heavy Industries, Ltd. has developed the last stage blades with 1320 mm length for a 1800 rpm LP turbine, and the verification by rotating vibration test using actual blades was finished, thus the blades were completed. In a nuclear power plant with an A-PWR of 3800 MW thermal output, the 1350 MW steam turbine has one HP turbine and three LP turbines coupled in tandem, and the optimum last stage blades for the LP turbines became the 1320 mm blades. The completion of these blades largely contributes to the improvement of thermal efficiency and the increase of generator output in large nuclear power plants, and has the possibility to decrease three LP turbines to two in 900 MW plants, which reduces the construction cost. The velocity energy of steam coming out of last stage blades is abandoned as exhaust loss in a condenser, which is the largest loss in a turbine. The increase of exhaust area using long blades reduces this loss. The economy of the 1320 mm blades, the features of the 1320 mm blades, the aerodynamic design and its verification, the prevention of the erosion of the 1320 mm blades due to wet steam, the strength design, the anti-vibration design and its verification, and the CAD/CAM system are reported. (Kako, I.)

  3. Vibration and flutter of mistuned bladed-disk assemblies

    Science.gov (United States)

    Kaza, K. R. V.; Kielb, R. E.

    1984-01-01

    An analytical model for investigating vibration and flutter of mistuned bladed disk assemblies is presented. This model accounts for elastic, inertial and aerodynamic coupling between bending and torsional motions of each individual blade, elastic and inertial couplings between the blades and the disk, and aerodynamic coupling among the blades. The disk was modeled as a circular plate with constant thickness and each blade was represented by a twisted, slender, straight, nonuniform, elastic beam with a symmetric cross section. The elastic axis, inertia axis, and the tension axis were taken to be noncoincident and the structural warping of the section was explicitly considered. The blade aerodynamic loading in the subsonic and supersonic flow regimes was obtained from two-dimensional unsteady, cascade theories. All the possible standing wave modes of the disk and traveling wave modes of the blades were included. The equations of motion were derived by using the energy method in conjunction with the assumed mode shapes for the disk and the blades. Continuities of displacement and slope at the blade-disk junction were maintained. The equations were solved to investigate the effects of blade-disk coupling and blade frequency mistuning on vibration and flutter. Results showed that the flexibility of practical disks such as those used for current generation turbofans did not have a significant influence on either the tuned or mistuned flutter characteristics. However, the disk flexibility may have a strong influence on some of the system frequencies and on forced response.

  4. Fundamental investigation on the impact strength of hollow fan blades

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, T; Miyachi, T; Sofue, Y

    1985-01-01

    Models of hollow fan blades were made and tested to prove that their strength is sufficient for use in real engines. The hollow blades were fabricated by diffusion bonding of two titanium alloy (6Al-4V-Ti) plates, one of which had three spanwise stiffners and the other being flat plate. The model as a nontwisted tapered blade. Impact tests were carried out on the hollow fan blade models in which the ingestion of a 1.5 pounds bird was simulated. Solid blades with the same external form were also tested by similar methods for comparison. The results of these tests show that properly designed hollow blades have sufficient stiffness and strength for use as fan blades in the turbo-fan engine.

  5. Antenna Gain Impact on UWB Wind Turbine Blade Deflection Sensing

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Byskov, Claus

    2018-01-01

    effective (or equivalent) isotropic radiated power (EIRP), an HG tip antenna inside a blade gives stronger direct pulse amplitudes and better pulse waveforms for accurate and reliable distance estimations than the LG. Moreover, the direct pulse with the HG antenna is also closer to the blade surface, which...... in free space have similar realized gain when allocated inside blades, so that the emission power for the HG and LG antennas in blades can be the same. The antenna gain impacts on time-domain pulse waveforms and power distributions around a blade are carefully investigated (with the tip antenna inside...... a blade). Higher antenna gain enlarges both direct pulse and multipath but in different levels. To verify the simulations, time-domain measurements are performed with a full 37-meter blade. Pulse waveforms and power delay profiles are measured. From all the studies, it follows that: with the similar...

  6. Innovative Design of a Darrieus Straight Bladed Vertical Axis Wind Turbine by using Multi Element Airfoil

    DEFF Research Database (Denmark)

    Chougle, Prasad Devendra

    . Mainly, there is the horizontal axis wind turbine (HAWT) and vertical axis wind turbine (VAWT). HAWTs are more popular than VAWTs due to failure of VAWT commercialization during the late of 1980s on a large scale. However, in recent research work it has been documented that VAWTs are more economical......, and the wind tunnel testing of double-element airfoil is performed. It is found that the aerodynamic characteristics of the airfoil increased considerably by delaying the angle of stall. These two facts are very suitable for vertical axis wind turbine since they operate in a larger range of angle of attack......, ±40_, compared to the horizontal axis wind turbines which operate in the range of attack, ±15_. A new design of vertical axis wind turbine is then proposed, and aerodynamic performance is evaluated based on double multiple stream tube methods. The performance parameters are almost doubled compared...

  7. Deflection estimation of a wind turbine blade using FBG sensors embedded in the blade bonding line

    International Nuclear Information System (INIS)

    Kim, Sang-Woo; Kang, Woo-Ram; Jeong, Min-Soo; Lee, In; Kwon, Il-Bum

    2013-01-01

    Estimating the deflection of flexible composite wind turbine blades is very important to prevent the blades from hitting the tower. Several researchers have used fiber Bragg grating (FBG) sensors—a type of optical fiber sensor (OFS)—to monitor the structural behavior of the blades. They can be installed on the surface and/or embedded in the interior of composites. However, the typical installation positions of OFSs present several problems, including delamination of sensing probes and a higher risk of fiber breakage during installation. In this study, we proposed using the bonding line between the shear web and spar cap as a new installation position of embedded OFSs for estimating the deflection of the blades. Laboratory coupon tests were undertaken preliminarily to confirm the strain measuring capability of embedded FBG sensors in adhesive layers, and the obtained values were verified by comparison with results obtained by electrical strain gauges and finite element analysis. We performed static loading tests on a 100 kW composite wind turbine blade to evaluate its deflections using embedded FBG sensors positioned in the bonding line. The deflections were estimated by classical beam theory considering a rigid body rotation near the tip of the blade. The evaluated tip deflections closely matched those measured by a linear variable differential transformer. Therefore, we verified the capability of embedded FBG sensors for evaluating the deflections of wind turbine blades. In addition, we confirmed that the bonding line between the shear web and spar cap is a practical location to embed the FBG sensors. (paper)

  8. Adhesive Joints in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Jørgensen, Jeppe Bjørn

    to be determined in several different ways. The accuracy of different ways of measuring residual stresses in the adhesive was tested by applying five different methods on a single sandwich test specimen (laminate/adhesive/laminate) that was instrumented with strain gauges and fiber Bragg gratings. Quasi...... of the project is to develop new- and to improve the existing design rules for adhesive joints in wind turbine blades. The first scientific studies of adhesive joints were based on stress analysis, which requires that the bond-line is free of defects, but this is rarely the case for a wind turbine blade. Instead...... curing and test temperatures) on the formation of transverse cracks in the adhesive were tested experimentally. It was assumed that the transverse cracks evolved due to a combination of mechanical- and residual stresses in the adhesive. A new approach was developed that allows the residual stress...

  9. Souvenir knife: a retained transcranial knife blade.

    Science.gov (United States)

    Davis, Neil L; Kahana, Tzipi; Hiss, Jehuda

    2004-09-01

    Upon necroscopic examination of a homeless male found comatose in the street and pronounced dead at a medical center 12 hours later, a sharp tip of a knife lodged in the right parietal region of his skull was incidentally discovered. The blade transected the diploe and penetrated the cerebral cortex. Subsequent police investigation revealed that this was the remnant of a stabbing attempt on his life several months prior to his death. The cause of death was determined to be unrelated to the metallic blade fragment, thus making it a truly incidental and rare finding of a "souvenir knife." Nevertheless, since the injury sustained in the stabbing was potentially life threatening, the investigation into that assault was reopened.A case report is presented, along with a brief review of the literature on "souvenir objects."

  10. Structural Reliability of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Dimitrov, Nikolay Krasimirov

    turbine blades. The main purpose is to draw a clear picture of how reliability-based design of wind turbines can be done in practice. The objectives of the thesis are to create methodologies for efficient reliability assessment of composite materials and composite wind turbine blades, and to map...... the uncertainties in the processes, materials and external conditions that have an effect on the health of a composite structure. The study considers all stages in a reliability analysis, from defining models of structural components to obtaining the reliability index and calibration of partial safety factors...... by developing new models and standards or carrying out tests The following aspects are covered in detail: ⋅ The probabilistic aspects of ultimate strength of composite laminates are addressed. Laminated plates are considered as a general structural reliability system where each layer in a laminate is a separate...

  11. Research on the nonintrusive measurement of the turbine blade vibration

    Science.gov (United States)

    Zhang, Shi hai; Li, Lu-ping; Rao, Hong-de

    2008-11-01

    It's one of the important ways to monitor the change of dynamic characteristic of turbine blades for ensuring safety operation of turbine unit. Traditional measurement systems for monitoring blade vibration generally use strain gauges attached to the surface of turbine blades, each strain gauge gives out an analogue signal related to blade deformation, it's maximal defect is only a few blades could be monitored which are attached by strain gauge. But the noncontact vibration measurement will be discussed would solve this problem. This paper deals with noncontact vibration measurement on the rotor blades of turbine through experiments. In this paper, the noncontact vibration measurement - Tip Timing Measurement will be presented, and will be improved. The statistics and DFT will be used in the improved measurement. The main advantage of the improved measurement is that only two sensors over the top of blades and one synchronous sensor of the rotor are used to get the exact vibration characteristics of the each blade in a row. In our experiment, we adopt NI Company's DAQ equipment: SCXI1001 and PCI 6221, three optical sensors, base on the graphics program soft LabVIEW to develop the turbine blade monitor system. At the different rotational speed of the rotor (1000r/m and 1200r/m) we do several experiments on the bench of the Turbine characteristic. Its results indicated that the vibration of turbine blade could be real-time monitored and accurately measured by the improved Tip Timing Measurement.

  12. An aerodynamic study on flexed blades for VAWT applications

    Science.gov (United States)

    Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi

    2014-12-01

    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small.

  13. Influence of delayed excitation on vibrations of turbine blades couple

    Directory of Open Access Journals (Sweden)

    Půst L.

    2013-06-01

    Full Text Available In the presented paper, the computational model of the turbine blade couple is investigated with the main attention to the influence two harmonic excitation forces, having the same frequency and amplitude but with moderate delay in time. Time delay between the exciting harmonic forces depends on the revolutions of bladed disk, on the number of blades on a rotating disk and on the number of stator blades. The reduction of resonance vibrations realized by means of dry friction between the shroud blade-heads increases roughly proportional to the difference of stator and rotor blade-numbers and also to the magnitude of dry friction force. From the analysis of blade couple with direct contact it was proved that the increase of friction forces causes decrease of resonance peaks, but the influence of elastic micro-deformations in the contact surfaces (modeled e.g. by the modified Coulomb dry friction law is rather small. Analysis of a blade couple with a friction element shows that the lower number of stator blades has negligible influence on the amplitudes of both blades, but decreases amplitudes of the friction element oscillations. Similarly the increase of friction forces causes a decrease of resonance peaks, but an increase of friction element amplitudes.

  14. A Take Stock of Turbine Blades Failure Phenomenon

    Science.gov (United States)

    Roy, Abhijit

    2018-02-01

    Turbine Blade design and engineering is one of the most complicated and important aspects of turbine technology. Experiments with blades can be simple or very complicated, depending upon parameters of analysis. Turbine blades are subjected to vigorous environments, such as high temperatures, high stresses, and a potentially high vibration environment. All these factors can lead to blade failures, which can destroy the turbine, and engine, so careful design is the prime consideration to resist those conditions. A high cycle of fatigue of compressor and turbine blades due to high dynamic stress caused by blade vibration and resonance within the operating range of machinery is common failure mode for turbine machine. Continuous study and investigation on failure of turbine blades are going on since last five decades. Some review papers published during these days aiming to present a review on recent studies and investigations done on failures of turbine blades. All the detailed literature related with the turbine blades has not been described but emphasized to provide all the methodologies of failures adopted by various researches to investigate turbine blade. This paper illustrate on various factors of failure.

  15. Wind turbine blade shear web disbond detection using rotor blade operational sensing and data analysis.

    Science.gov (United States)

    Myrent, Noah; Adams, Douglas E; Griffith, D Todd

    2015-02-28

    A wind turbine blade's structural dynamic response is simulated and analysed with the goal of characterizing the presence and severity of a shear web disbond. Computer models of a 5 MW offshore utility-scale wind turbine were created to develop effective algorithms for detecting such damage. Through data analysis and with the use of blade measurements, a shear web disbond was quantified according to its length. An aerodynamic sensitivity study was conducted to ensure robustness of the detection algorithms. In all analyses, the blade's flap-wise acceleration and root-pitching moment were the clearest indicators of the presence and severity of a shear web disbond. A combination of blade and non-blade measurements was formulated into a final algorithm for the detection and quantification of the disbond. The probability of detection was 100% for the optimized wind speed ranges in laminar, 30% horizontal shear and 60% horizontal shear conditions. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  16. Vibration of circular bladed disk with imperfections

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    2011-01-01

    Roč. 21, č. 10 (2011), s. 2893-2904 ISSN 0218-1274 R&D Projects: GA ČR GA101/09/1166 Institutional research plan: CEZ:AV0Z20760514 Keywords : circular bladed disk * vibration * imperfection * nonlinear damping Subject RIV: BI - Acoustics Impact factor: 0.755, year: 2011 http://www.worldscinet.com/ijbc/21/2110/S0218127411030210.html

  17. Materials for Wind Turbine Blades: An Overview

    DEFF Research Database (Denmark)

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard

    2017-01-01

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural...... composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed....

  18. Materials for Wind Turbine Blades: An Overview.

    Science.gov (United States)

    Mishnaevsky, Leon; Branner, Kim; Petersen, Helga Nørgaard; Beauson, Justine; McGugan, Malcolm; Sørensen, Bent F

    2017-11-09

    A short overview of composite materials for wind turbine applications is presented here. Requirements toward the wind turbine materials, loads, as well as available materials are reviewed. Apart from the traditional composites for wind turbine blades (glass fibers/epoxy matrix composites), natural composites, hybrid and nanoengineered composites are discussed. Manufacturing technologies for wind turbine composites, as well their testing and modelling approaches are reviewed.

  19. Pitched Blade Turbine Efficiency at Particle Suspension

    Directory of Open Access Journals (Sweden)

    D. Ceres

    2010-01-01

    Full Text Available Mixing suspensions is a very important hydraulic operation. The pitched six-blade turbine is a widely-used axial-flow impeller. This paper deals with effect relative impeller size and particle content on theefficiency of a pitched six-blade turbine at particle suspension. Two pitched six-blade turbines were used in model measurements of just suspension impeller speed. The ratios of the vessel to agitator diameter D/d were 3 and 4.5. The measurements were carried out in a dish-bottomed vessel 300 mm in diameter. The just suspension impeller speeds were measured using an electrochemical method, and were checked visually. A 2.5 % NaCl water solution was used as the liquid phase, and glass particles with four equivalent diameters between 0.18 and 0.89 mmand volumetric concentration from 2.5 % to 40% were usedasthesolid phase. The criterion values πs=Po√Fr'3(d/D7 were calculated from the particle suspension and power consumption measurements. The dependencies of πs on particle content cv show that larger agitators are more efficient for higher particle content.

  20. Noise aspects at aerodynamic blade optimisation projects

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G. [Netherlands Energy Research Foundation, Petten (Netherlands)

    1997-12-31

    This paper shows an example of an aerodynamic blade optimisation, using the program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. The aerodynamic optimised geometry from PVOPT is the `real` optimum (up to the latest decimal). The most important conclusion from this study is, that it is worthwhile to investigate the behaviour of the objective function (in the present case the energy yield) around the optimum: If the optimum is flat, there is a possibility to apply modifications to the optimum configuration with only a limited loss in energy yield. It is obvious that the modified configurations emits a different (and possibly lower) noise level. In the BLADOPT program (the successor of PVOPT) it will be possible to quantify the noise level and hence to assess the reduced noise emission more thoroughly. At present the most promising approaches for noise reduction are believed to be a reduction of the rotor speed (if at all possible), and a reduction of the tip angle by means of low lift profiles, or decreased twist at the outboard stations. These modifications were possible without a significant loss in energy yield. (LN)

  1. Multi-spectral temperature measurement method for gas turbine blade

    Science.gov (United States)

    Gao, Shan; Feng, Chi; Wang, Lixin; Li, Dong

    2016-02-01

    One of the basic methods to improve both the thermal efficiency and power output of a gas turbine is to increase the firing temperature. However, gas turbine blades are easily damaged in harsh high-temperature and high-pressure environments. Therefore, ensuring that the blade temperature remains within the design limits is very important. There are unsolved problems in blade temperature measurement, relating to the emissivity of the blade surface, influences of the combustion gases, and reflections of radiant energy from the surroundings. In this study, the emissivity of blade surfaces has been measured, with errors reduced by a fitting method, influences of the combustion gases have been calculated for different operational conditions, and a reflection model has been built. An iterative computing method is proposed for calculating blade temperatures, and the experimental results show that this method has high precision.

  2. Structural fatigue test results for large wind turbine blade sections

    Science.gov (United States)

    Faddoul, J. R.; Sullivan, T. L.

    1982-01-01

    In order to provide quantitative information on the operating life capabilities of wind turbine rotor blade concepts for root-end load transfer, a series of cantilever beam fatigue tests was conducted. Fatigue tests were conducted on a laminated wood blade with bonded steel studs, a low cost steel spar (utility pole) with a welded flange, a utility pole with additional root-end thickness provided by a swaged collar, fiberglass spars with both bonded and nonbonded fittings, and, finally, an aluminum blade with a bolted steel fitting (Lockheed Mod-0 blade). Photographs, data, and conclusions for each of these tests are presented. In addition, the aluminum blade test results are compared to field failure information; these results provide evidence that the cantilever beam type of fatigue test is a satisfactory method for obtaining qualitative data on blade life expectancy and for identifying structurally underdesigned areas (hot spots).

  3. Sweep-twist adaptive rotor blade : final project report.

    Energy Technology Data Exchange (ETDEWEB)

    Ashwill, Thomas D.

    2010-02-01

    Knight & Carver was contracted by Sandia National Laboratories to develop a Sweep Twist Adaptive Rotor (STAR) blade that reduced operating loads, thereby allowing a larger, more productive rotor. The blade design used outer blade sweep to create twist coupling without angled fiber. Knight & Carver successfully designed, fabricated, tested and evaluated STAR prototype blades. Through laboratory and field tests, Knight & Carver showed the STAR blade met the engineering design criteria and economic goals for the program. A STAR prototype was successfully tested in Tehachapi during 2008 and a large data set was collected to support engineering and commercial development of the technology. This report documents the methodology used to develop the STAR blade design and reviews the approach used for laboratory and field testing. The effort demonstrated that STAR technology can provide significantly greater energy capture without higher operating loads on the turbine.

  4. Flow characteristics in nuclear steam turbine blade passage

    International Nuclear Information System (INIS)

    Ahn, H.J.; Yoon, W.H.; Kwon, S.B.

    1995-01-01

    The rapid expansion of condensable gas such as moist air or steam gives rise to nonequilibrium condensation. As a result of irreversibility of condensation process in the nuclear steam turbine blade passage, the entropy of the flow increases, and the efficiency of the turbine decreases. In the present study, in order to investigate the flow characteristics of moist air in two-dimensional turbine blade passage which is made from the configuration of the last stage tip section of the actual nuclear steam turbine moving blade, the static pressures along both pressure and suction sides of blade are measured by static pressure taps and the distribution of Mach number on both sides of the blade are obtained by using the measured static pressure. Also, the flow field is visualized by a Schlieren system. From the experimental results, the effects of the stagnation temperature and specific humidity on the flow properties in the two dimensional steam turbine blade passage are clearly identified

  5. Resonant vibration control of three-bladed wind turbine rotors

    DEFF Research Database (Denmark)

    Krenk, Steen; Svendsen, Martin Nymann; Høgsberg, Jan Becker

    2012-01-01

    Rotors with blades, as in wind turbines, are prone to vibrations due to the flexibility of the blades and the support. In the present paper a theory is developed for active control of a combined set of vibration modes in three-bladed rotors. The control system consists of identical collocated...... to influence of other nonresonant modes. The efficiency of the method isdemonstrated byapplication to a rotor with 42 m blades, where the sensor/actuator system is implemented in the form of an axial extensible strut near the root of each blade. The load is provided by a simple but fully threedimensional...... correlated wind velocity field. It is shown by numerical simulations that the active damping system can provide a significant reduction in the response amplitude of the targeted modes, while applying control moments to the blades that are about 1 order of magnitude smaller than the moments from the external...

  6. On the performance analysis of Savonius rotor with twisted blades

    Energy Technology Data Exchange (ETDEWEB)

    Saha, U.K.; Rajkumar, M. Jaya [Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati-781 039 (India)

    2006-09-15

    The present investigation is aimed at exploring the feasibility of twisted bladed Savonius rotor for power generation. The twisted blade in a three-bladed rotor system has been tested in a low speed wind tunnel, and its performance has been compared with conventional semicircular blades (with twist angle of 0{sup o}). Performance analysis has been made on the basis of starting characteristics, static torque and rotational speed. Experimental evidence shows the potential of the twisted bladed rotor in terms of smooth running, higher efficiency and self-starting capability as compared to that of the conventional bladed rotor. Further experiments have been conducted in the same setup to optimize the twist angle. (author)

  7. Influence of Thermal Effects During Blade-Casing Contact Experiments

    OpenAIRE

    Millecamps , Antoine; Brunel , Jean-François; Dufrenoy , Philippe; Garcin , François; Nucci , Marco

    2009-01-01

    International audience; In rotating machinery, notably in modern high efficiency compressors, a critical requirement for optimal performance consists in minimizing radial clearances between the rotating bladed disk and the casing. This solution significantly increases the risks of contact between rotating bladed disk and casing and may lead in specific conditions to catastrophic behavior (component failure, etc.). The physical phenomena and mechanisms involved in blade-casing contact interact...

  8. Aerodynamic investigation of winglets on wind turbine blades using CFD

    OpenAIRE

    Johansen, Jeppe; Sørensen, Niels N.

    2006-01-01

    The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of themwere pointing towards the pressure side (upstream) and one was pointing towards the suction side (downstream). Additionally, a rectangular modification of the original blade tip was designed with the same planform area as the blades with winglets...

  9. Investigating for failure of central ventilation fan blade

    International Nuclear Information System (INIS)

    Koo, Jae Raeyang; Ko Woo Sig; Kim, Yeon Hwan; Park, Kwang Ha

    2002-01-01

    During the operation, central ventilation fan stopped when switch 'on' condition. When central ventilation fan disassemble, ten blades of fan fractured. We have searched cause of failure. We had modeling one of the fan blades and analysis with computer programs. Thus we have find that fracture of central ventilation fan blades is alternative stress and vibration at hub. In this paper, we have described cause of failure

  10. Moving blade for steam turbines with axial flow

    International Nuclear Information System (INIS)

    Raschke, K.; Wehle, G.

    1976-01-01

    The invention concerns the improvement of the production of moving blades for steam turbines with axial flow, especially of multi-blades produced by welding of the top plates. It is proposed to weld the top plates before the moving blades are fitted into the rotor. Welding is this made much easier and can be carried out under protective gas and with better results. (UWI) [de

  11. Active Piezoelectric Vibration Control of Subscale Composite Fan Blades

    Science.gov (United States)

    Duffy, Kirsten P.; Choi, Benjamin B.; Provenza, Andrew J.; Min, James B.; Kray, Nicholas

    2012-01-01

    As part of the Fundamental Aeronautics program, researchers at NASA Glenn Research Center (GRC) are investigating new technologies supporting the development of lighter, quieter, and more efficient fans for turbomachinery applications. High performance fan blades designed to achieve such goals will be subjected to higher levels of aerodynamic excitations which could lead to more serious and complex vibration problems. Piezoelectric materials have been proposed as a means of decreasing engine blade vibration either through a passive damping scheme, or as part of an active vibration control system. For polymer matrix fiber composite blades, the piezoelectric elements could be embedded within the blade material, protecting the brittle piezoceramic material from the airflow and from debris. To investigate this idea, spin testing was performed on two General Electric Aviation (GE) subscale composite fan blades in the NASA GRC Dynamic Spin Rig Facility. The first bending mode (1B) was targeted for vibration control. Because these subscale blades are very thin, the piezoelectric material was surface-mounted on the blades. Three thin piezoelectric patches were applied to each blade two actuator patches and one small sensor patch. These flexible macro-fiber-composite patches were placed in a location of high resonant strain for the 1B mode. The blades were tested up to 5000 rpm, with patches used as sensors, as excitation for the blade, and as part of open- and closed-loop vibration control. Results show that with a single actuator patch, active vibration control causes the damping ratio to increase from a baseline of 0.3% critical damping to about 1.0% damping at 0 RPM. As the rotor speed approaches 5000 RPM, the actively controlled blade damping ratio decreases to about 0.5% damping. This occurs primarily because of centrifugal blade stiffening, and can be observed by the decrease in the generalized electromechanical coupling with rotor speed.

  12. Turbine blade having a constant thickness airfoil skin

    Science.gov (United States)

    Marra, John J

    2012-10-23

    A turbine blade is provided for a gas turbine comprising: a support structure comprising a base defining a root of the blade and a framework extending radially outwardly from the base, and an outer skin coupled to the support structure framework. The skin has a generally constant thickness along substantially the entire radial extent thereof. The framework and the skin define an airfoil of the blade.

  13. Stress analysis and life prediction of gas turbine blade

    Science.gov (United States)

    Hsiung, H. C.; Dunn, A. J.; Woodling, D. R.; Loh, D. L.

    1988-01-01

    A stress analysis procedure is presented for a redesign of the Space Shuttle Main Engine high pressure fuel turbopump turbine blades. The analysis consists of the one-dimensional scoping analysis to support the design layout and the follow-on three-dimensional finite element analysis to confirm the blade design at operating loading conditions. Blade life is evaluated based on high-cycle fatigue and low-cycle fatigue.

  14. A comparison of extreme structural responses and fatigue damage of semi-submersible type floating horizontal and vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Chai, Wei

    2017-01-01

    •A comprehensive comparison of floating HAWTs and VAWTs with different blade number.•Extreme structural responses and fatigue damage are studied.•Both operational and parked conditions are considered.•The merits and disadvantages of floating HAWTs and VAWTs are revealed and highlighted.......•A comprehensive comparison of floating HAWTs and VAWTs with different blade number.•Extreme structural responses and fatigue damage are studied.•Both operational and parked conditions are considered.•The merits and disadvantages of floating HAWTs and VAWTs are revealed and highlighted....

  15. A New Hoe Blade for Inter-Row Weeding

    DEFF Research Database (Denmark)

    Green, O.; Znova, L.; Melander, Bo

    2016-01-01

    and weeds are relatively small. The term ‘Ducksfoot’ covers a range of hoe blade configurations where all have some resemblance with the shape of a ducks foot. However, the ‘Ducksfoot’ blade is not an optimal solution for weed control in narrow inter-row spaces. Several disadvantages have been encountered...... and the draft forces needed to pull it were approx. half those measured for a ‘Ducksfoot’ blade. The weeding features of the new L-blade will be further studied under field conditions....

  16. Static Structural and Modal Analysis of Gas Turbine Blade

    Science.gov (United States)

    Ranjan Kumar, Ravi; Pandey, K. M., Prof.

    2017-08-01

    Gas turbine is one of the most versatile items of turbo machinery nowadays. It is used in different modes such as power generation, oil and gas, process plants, aviation, domestic and related small industries. This paper is based on the problems concerning blade profile selection, material selection and turbine rotor blade vibration that seriously impact the induced stress-deformation and structural functioning of developmental gas turbine engine. In this paper for generating specific power by rotating blade at specific RPM, blade profile and material has been decided by static structural analysis. Gas turbine rotating blade RPM is decided by Modal Analysis so that the natural frequency of blade should not match with the excitation frequency. For the above blade profile has been modeled in SOLIDWORKS and analysis has been done in ANSYS WORKBENCH 14. Existing NACA6409 profile has been selected as base model and then it is modified by bending it through 72.5° and 145°. Hence these three different blade profiles have been analyzed for three different materials viz. Super Alloy X, Nimonic 80A and Inconel 625 at three different speed viz. 20000, 40000 and 60000RPM. It is found that NACA6409 with 72.5° bent gives best result for all material at all speed. Among all the material Inconel 625 gives best result. Hence Blade of Inconel 625 having 72.5° bent profile is the best combination for all RPM.

  17. Modal characteristics and fatigue strength of compressor blades

    International Nuclear Information System (INIS)

    Kim, Kyung Kook; Lee, Young Shin

    2014-01-01

    High-cycle fatigue (HCF) has been identified as one of the primary causes of gas turbine engine failure. The modal characteristics and endurance strength of a 5 MW gas turbine engine blade developed by Doosan Heavy Industries and Construction Co., Ltd. in HCF fracture were verified through analysis and tests to determine the reliability of the compressor blade. A compressor blade design procedure that considers HCF life was performed in the following order: airfoil and blade profile design, modal analysis, stress distribution test, stress endurance limit test, and fatigue life verification. This study analyzed the Campbell diagram and estimated resonance risk on the basis of the natural frequency analysis and modal test of the compressor blade to guarantee safe and operational reliability. In addition, the maximum stress point of the compressor blade was determined through stress distribution analysis and test. The bonding point of the strain gage was determined by using fatigue test. Stress endurance limit test was performed based on the results of these tests. This research compared and verified the modal characteristics and endurance strengths of the compressor blades to prevent HCF fracture, which is among the major causes of gas turbine engine damage. A fatigue life design procedure of compressor blades was established. The 5 MW class gas turbine compressor blade is well designed in terms of resonance stability and fatigue endurance limit.

  18. Modal characteristics and fatigue strength of compressor blades

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kyung Kook [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of); Lee, Young Shin [Chungnam National University, Daejeon (Korea, Republic of)

    2014-04-15

    High-cycle fatigue (HCF) has been identified as one of the primary causes of gas turbine engine failure. The modal characteristics and endurance strength of a 5 MW gas turbine engine blade developed by Doosan Heavy Industries and Construction Co., Ltd. in HCF fracture were verified through analysis and tests to determine the reliability of the compressor blade. A compressor blade design procedure that considers HCF life was performed in the following order: airfoil and blade profile design, modal analysis, stress distribution test, stress endurance limit test, and fatigue life verification. This study analyzed the Campbell diagram and estimated resonance risk on the basis of the natural frequency analysis and modal test of the compressor blade to guarantee safe and operational reliability. In addition, the maximum stress point of the compressor blade was determined through stress distribution analysis and test. The bonding point of the strain gage was determined by using fatigue test. Stress endurance limit test was performed based on the results of these tests. This research compared and verified the modal characteristics and endurance strengths of the compressor blades to prevent HCF fracture, which is among the major causes of gas turbine engine damage. A fatigue life design procedure of compressor blades was established. The 5 MW class gas turbine compressor blade is well designed in terms of resonance stability and fatigue endurance limit.

  19. Accelerated rain erosion of wind turbine blade coatings

    DEFF Research Database (Denmark)

    Zhang, Shizhong

    . There are four chapters in the thesis. In chapter 1, a literature survey provides background information to the field. Topics discussed are the global wind energy development, possible wind turbine constructions, blade structures and materials, blade coatings, and liquid erosion mechanisms. In chapter 2......During operation, the fast-moving blades of wind turbines are exposed to continuous impacts with rain droplets, hail, insects, or solid particles. This can lead to erosion of the blades, whereby the electrical efficiency is compromised and expensive repairs may be required. One possible solution...

  20. Fracture analysis of adhesive joints in wind turbine blades

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Bitsche, Robert

    2015-01-01

    Modern wind turbine rotor blades are usually made from fibre-reinforced composite subcomponents. In the final assembly stage, these subcomponents are bonded together by several adhesive joints. One important adhesive joint is situated at the trailing edge, which refers to the downstream edge where...... the air-flow rejoins and leaves the blade. Maintenance inspections of wind turbine rotor blades show that among other forms of damage, local debonding of the shells along the trailing edge is a frequent failure type. The cause of trailing edge failure in wind turbine blades is complex, and detailed...

  1. Contactless Diagnostics of Turbine Blade Vibration and Damage

    International Nuclear Information System (INIS)

    Prochazka, Pavel; Vanek, Frantisek

    2011-01-01

    The study deals with the contactless diagnostic method used for the identification of steam turbine blade strain, vibration and damage. The tip-timing method based on the evaluation of time differences of blade passages in different rotor revolutions has been modified and improved to provide more precise and reliable results. A new approach to the analysis of the amplitude and time differences of impulse signals generated by a blade passage has been applied. Amplitudes and frequencies of vibrations and static position of blades ascertained by the diagnostic process are used to establish the state of blade damage. A contactless diagnostic system VDS-UT based on magneto-resistive sensors was developed in the Institute of Thermomechanics Academy of Sciences of the Czech Republic. The system provides on-line monitoring of vibration amplitudes and frequencies of all blades and notification of possible blade damage. Evaluation of the axial and circumferential components of the deflections by measuring the amplitude of blade impulse signals results in an overall improvement of the method. Using magneto-resistive sensors, blade elongation and untwisting can be determined as well.

  2. Methodology for Structural Integrity Analysis of Gas Turbine Blades

    Directory of Open Access Journals (Sweden)

    Tiago de Oliveira Vale

    2012-03-01

    Full Text Available One of the major sources of stress arising in turbomachinery blades are the centrifugal loads acting at any section of the airfoil. Accounting for this phenomenon stress evaluation of the blade attachment region in the disc has to be performed in order to avoid blade failure. Turbomachinery blades are generally twisted, and the cross section area varies from the root of the blade to the tip. The blade root shape at the attachment region is of great concern. Stress concentrations are predictable at this contact region. In this paper, a finite element model has been created for the purpose of assessing stress at the joint region connecting the blade to the disc slot. Particular attention was paid to the geometric modeling of the "fir-tree" fixing, which is now used in the majority of gas turbine engines. This study has been performed using the commercial software ANSYS 13.0. The disc and blade assembly are forced to move with a certain rotational velocity. Contact connections are predicted on the common faces of the blade and on the disc at the root. Solutions can be obtained to allow the evaluation of stresses. Results can be compared with the mechanical properties of the adopted material.

  3. Blade runner. Blade server and virtualization technology can help hospitals save money--but they are far from silver bullets.

    Science.gov (United States)

    Lawrence, Daphne

    2009-03-01

    Blade servers and virtualization can reduce infrastructure, maintenance, heating, electric, cooling and equipment costs. Blade server technology is evolving and some elements may become obsolete. There is very little interoperability between blades. Hospitals can virtualize 40 to 60 percent of their servers, and old servers can be reused for testing. Not all applications lend themselves to virtualization--especially those with high memory requirements. CIOs should engage their vendors in virtualization discussions.

  4. The SNL100-03 Blade: Design Studies with Flatback Airfoils for the Sandia 100-meter Blade.

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Daniel; Richards, Phillip William

    2014-09-01

    A series of design studies were performed to inv estigate the effects of flatback airfoils on blade performance and weight for large blades using the Sandi a 100-meter blade designs as a starting point. As part of the study, the effects of varying the blade slenderness on blade structural performance was investigated. The advantages and disadvantages of blad e slenderness with respect to tip deflection, flap- wise & edge-wise fatigue resistance, panel buckling capacity, flutter speed, manufacturing labor content, blade total weight, and aerodynamic design load magn itude are quantified. Following these design studies, a final blade design (SNL100-03) was prod uced, which was based on a highly slender design using flatback airfoils. The SNL100-03 design with flatback airfoils has weight of 49 tons, which is about 16% decrease from its SNL100-02 predecessor that used conventional sharp trailing edge airfoils. Although not systematically optimized, the SNL100 -03 design study provides an assessment of and insight into the benefits of flatback airfoils for la rge blades as well as insights into the limits or negative consequences of high blade slenderness resulting from a highly slender SNL100-03 planform as was chosen in the final design definition. This docum ent also provides a description of the final SNL100-03 design definition and is intended to be a companion document to the distribution of the NuMAD blade model files for SNL100-03, which are made publicly available. A summary of the major findings of the Sandia 100-meter blade development program, from the initial SNL100-00 baseline blade through the fourth SNL100-03 blade study, is provided. This summary includes the major findings and outcomes of blade d esign studies, pathways to mitigate the identified large blade design drivers, and tool development that were produced over the course of this five-year research program. A summary of large blade tec hnology needs and research opportunities is also presented.

  5. Numerical simulation on a straight-bladed vertical axis wind turbine with auxiliary blade

    Science.gov (United States)

    Li, Y.; Zheng, Y. F.; Feng, F.; He, Q. B.; Wang, N. X.

    2016-08-01

    To improve the starting performance of the straight-bladed vertical axis wind turbine (SB-VAWT) at low wind speed, and the output characteristics at high wind speed, a flexible, scalable auxiliary vane mechanism was designed and installed into the rotor of SB-VAWT in this study. This new vertical axis wind turbine is a kind of lift-to-drag combination wind turbine. The flexible blade expanded, and the driving force of the wind turbines comes mainly from drag at low rotational speed. On the other hand, the flexible blade is retracted at higher speed, and the driving force is primarily from a lift. To research the effects of the flexible, scalable auxiliary module on the performance of SB-VAWT and to find its best parameters, the computational fluid dynamics (CFD) numerical calculation was carried out. The calculation result shows that the flexible, scalable blades can automatic expand and retract with the rotational speed. The moment coefficient at low tip speed ratio increased substantially. Meanwhile, the moment coefficient has also been improved at high tip speed ratios in certain ranges.

  6. KNOW-BLADE task-3.3 report: Rotor blade computations with 3D vortex generators

    DEFF Research Database (Denmark)

    Johansen, J.; Sørensen, Niels N.; Reck, M.

    2005-01-01

    The present report describes the work done in work package WP3.3: Aerodynamic Accessories in 3D in the EC project KNOW-BLADE. Vortex generators (VGs) are modelled in 3D Navier-Stokes solvers and applied on the flow around an airfoil and a wind turbineblade. Three test cases have been investigated...

  7. Smart actuation mechanisms for helicopter blades: design case for a mach-scaled model blade

    NARCIS (Netherlands)

    Paternoster, Alexandre

    2013-01-01

    This work is part of the European project “Clean Sky”, which aims at improving the efficiency and the global transport quality of aircraft. The research, in this project, is currently focussing on active flap systems for helicopters to adapt the blade aerodynamic properties to local aerodynamic

  8. Blade Vibration Measurement System for Characterization of Closely Spaced Modes and Mistuning, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There are several ongoing challenges in non-contacting blade vibration and stress measurement systems that can address closely spaced modes and blade-to-blade...

  9. Noise from Two-Blade Propellers

    Science.gov (United States)

    Stowell, E Z; Deming, A F

    1936-01-01

    The two-blade propeller, one of the most powerful sources of sound known, has been studied with the view of obtaining fundamental information concerning the noise emission. In order to eliminate engine noise, the propeller was mounted on an electric motor. A microphone was used to pick up the sound whose characteristics were studied electrically. The distribution of noise throughout the frequency range, as well as the spatial distribution about the propeller, was studied. The results are given in the form of polar diagrams. An appendix of common acoustical terms is included.

  10. Shape Optimization of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Wang, Xudong; Shen, Wen Zhong; Zhu, Wei Jun

    2009-01-01

    of the rotor. The design variables used in the current study are the blade shape parameters, including chord, twist and relative thickness. To validate the implementation of the aerodynamic/aero-elastic model, the computed aerodynamic results are compared to experimental data for the experimental rotor used...... in the European Commision-sponsored project Model Experiments in Controlled Conditions, (MEXICO) and the computed aero-elastic results are examined against the FLEX code for flow post the Tjereborg 2 MW rotor. To illustrate the optimization technique, three wind turbine rotors of different sizes (the MEXICO 25 k...

  11. The blade element momentum (BEM) method

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    2017-01-01

    The current chapter presents the blade element momentum (BEM) method. The BEM method for a steady uniform inflow is presented in a first section. Some of the ad-hoc corrections that are usually added to the algorithm are discussed in a second section. An exception is made to the tip-loss correction...... which is introduced early in the algorithm formulation for practical reasons. The ad-hoc corrections presented are: the tip-loss correction, the high-thrust correction (momentum breakdown) and the correction for wake rotation. The formulation of an unsteady BEM code is given in a third section...

  12. Atmospheric Plasma Blade for Surgical Purposes

    Science.gov (United States)

    Oksuz, Lutfi; Yurdabak Karaca, Gozde; Özkaptan, Emir; Uygun, Emre; Uygun Oksuz, Aysegul

    2017-10-01

    Atmospheric plasma cut is a process at the minimum level due to the ions, radicals and free electrons generated by the active electrode and target tissue. Atmospheric plasma cutting devices provide significant advantages as a non-contact electrocautery system that can operate in isotonic environment. During operations where plasma cutting is applied, bleeding is controlled and the side effects that would create the isotonic environment are eliminated. In this study in vivo and in vitro studies will be carried out by producing and optimizing the atmospheric plasma blade. Once the optimum parameters of the instrument are determined, in vivo studies will be performed and the pathology results will be evaluated.

  13. Blade Profile Optimization of Kaplan Turbine Using CFD Analysis

    Directory of Open Access Journals (Sweden)

    Aijaz Bashir Janjua

    2013-10-01

    Full Text Available Utilization of hydro-power as renewable energy source is of prime importance in the world now. Hydropower energy is available in abundant in form of falls, canals rivers, dams etc. It means, there are various types of sites with different parameters like flow rate, heads, etc. Depending upon the sites, water turbines are designed and manufactured to avail hydro-power energy. Low head turbines on runof-river are widely used for the purpose. Low head turbines are classified as reaction turbines. For runof river, depending upon the variety of site data, low head Kaplan turbines are selected, designed and manufactured. For any given site requirement, it becomes very essential to design the turbine runner blades through optimization of the CAD model of blades profile. This paper presents the optimization technique carried out on a complex geometry of blade profile through static and dynamic computational analysis. It is used through change of the blade profile geometry at five different angles in the 3D (Three Dimensional CAD model. Blade complex geometry and design have been developed by using the coordinates point system on the blade in PRO-E /CREO software. Five different blade models are developed for analysis purpose. Based on the flow rate and heads, blade profiles are analyzed using ANSYS software to check and compare the output results for optimization of the blades for improved results which show that by changing blade profile angle and its geometry, different blade sizes and geometry can be optimized using the computational techniques with changes in CAD models.

  14. Blade profile optimization of kaplan turbine using cfd analysis

    International Nuclear Information System (INIS)

    Janjua, A.B.; Khalil, M.S.

    2013-01-01

    Utilization of hydro-power as renewable energy source is of prime importance in the world now. Hydropower energy is available in abundant in form of falls, canals rivers, dams etc. It means, there are various types of sites with different parameters like flow rate, heads, etc. Depending upon the sites, water turbines are designed and manufactured to avail hydro-power energy. Low head turbines on runof-river are widely used for the purpose. Low head turbines are classified as reaction turbines. For runof-river, depending upon the variety of site data, low head Kaplan turbines are selected, designed and manufactured. For any given site requirement, it becomes very essential to design the turbine runner blades through optimization of the CAD model of blades profile. This paper presents the optimization technique carried out on a complex geometry of blade profile through static and dynamic computational analysis. It is used through change of the blade profile geometry at five different angles in the 3D (Three Dimensional) CAD model. Blade complex geometry and design have been developed by using the coordinates point system on the blade in PRO-E /CREO software. Five different blade models are developed for analysis purpose. Based on the flow rate and heads, blade profiles are analyzed using ANSYS software to check and compare the output results for optimization of the blades for improved results which show that by changing blade profile angle and its geometry, different blade sizes and geometry can be optimized using the computational techniques with changes in CAD models. (author)

  15. Active Blade Vibration Control Being Developed and Tested

    Science.gov (United States)

    Johnson, Dexter

    2003-01-01

    Gas turbine engines are currently being designed to have increased performance, lower weight and manufacturing costs, and higher reliability. Consequently, turbomachinery components, such as turbine and compressor blades, have designs that are susceptible to new vibration problems and eventual in-service failure due to high-cycle fatigue. To address this problem, researchers at the NASA Glenn Research Center are developing and testing innovative active blade vibration control concepts. Preliminary results of using an active blade vibration control system, involving a rotor supported by an active magnetic bearing in Glenn's Dynamic Spin Rig, indicate promising results (see the photograph). Active blade vibration control was achieved using feedback of blade strain gauge signals within the magnetic bearing control loop. The vibration amplitude was reduced substantially (see the graphs). Also, vibration amplitude amplification was demonstrated; this could be used to enhance structural mode identification, if desired. These results were for a nonrotating two-bladed disk. Tests for rotating blades are planned. Current and future active blade vibration control research is planned to use a fully magnetically suspended rotor and smart materials. For the fully magnetically suspended rotor work, three magnetic bearings (two radial and one axial) will be used as actuators instead of one magnetic bearing. This will allow additional degrees of freedom to be used for control. For the smart materials work, control effectors located on and off the blade will be considered. Piezoelectric materials will be considered for on-the-blade actuation, and actuator placement on a stator vane, or other nearby structure, will be investigated for off-the-blade actuation. Initial work will focus on determining the feasibility of these methods by performing basic analysis and simple experiments involving feedback control.

  16. Bimetallic Blisks with Shrouded Turbine Blades for Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    L. A. Magerramova

    2015-01-01

    Full Text Available The paper discusses prospects of using blisks with shrouded blades. Increasing an engine life and efficiency as well as mass reduction can also be achieved by increasing blade numbers and decreasing disk diameter. But design engineers are faced with the problem of blade placement because of the disk size and root dimensions.The problem of increasing life and cyclic durability, vibration strength, and lightweight design of the turbine gas turbine wheels, can be solved by an elimination of blade - disk locks.The technology of manufacturing one-piece blisks by connecting the blades with the disc part using hot isostatic pressing was developed. This technology allows us to use blades with shrouds. It is necessary to increase efficiency and to improve high cycle fatigue performance of rotor blades.One of the pressing problems is to ensure the necessary position of shrouds in relation to each other in the manufacturing process as well as in the service. Numerical studies of the influence of the shroud mounting position on blade strength during operation allowed us to develop a methodology of choosing a shroud mounting position.Based on the two turbine wheels (LPT and HPT calculations advantages of blisk design with respect to the lock-based design were shown. Application of bimetallic blisks with shrouded blades resulted in a lifespan increase and weight reduction.In addition, other advantages of blisk design are as follows: possible reduction in the number of parts, elimination of leaks and fretting that take place in the blade - disk locks, exception of expensive broaching operations and disk alloy saving. The shortcoming is elimination of damping in root connection. In addition, there are no widely used repair methods.Despite these disadvantages the usage of bimetallic turbine blisks with shrouded blades is very promising.

  17. Plans for Testing the NREL Unsteady Aerodynamics Experiment 10m Diameter HAWT in the NASA Ames Wind Tunnel: Minutes, Conclusions, and Revised Text Matrix from the 1st Science Panel Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Simms, D.; Schreck, S.; Hand, M.; Fingersh, L.; Cotrell, J.; Pierce, K.; Robinson, M.

    2000-08-28

    Currently, the NREL Unsteady Aerodynamics Experiment (UAE) research turbine is scheduled to enter the NASA Ames 80-ft x 120-ft wind tunnel in early 2000. To prepare for this 3-week test, a Science Panel meeting was convened at the National Wind Technology Center (NWTC) in October 1998. During this meeting, the Science Panel and representatives from the wind energy community provided numerous detailed recommendations regarding test activities and priorities. The Unsteady Aerodynamics team of the NWTC condensed this guidance and drafted a detailed test plan. This test plan represents an attempt to balance diverse recommendations received from the Science Panel meeting, while taking into account multiple constraints imposed by the UAE research turbine, the NASA Ames 80-ft x 120-ft wind tunnel, and other sources. The NREL-NASA Ames wind tunnel tests will primarily be focused on obtaining rotating blade pressure data. NREL has been making these types of measurements since 1987 and has considerable experience in doing so. The purpose of this wind tunnel test is to acquire accurate quantitative aerodynamic and structural measurements, on a wind turbine that is geometrically and dynamically representative of full-scale machines, in an environment free from pronounced inflow anomalies. These data will be exploited to develop and validate enhanced engineering models for designing and analyzing advanced wind energy machines.

  18. Nonlinear aeroelastic modelling for wind turbine blades based on blade element momentum theory and geometrically exact beam theory

    International Nuclear Information System (INIS)

    Wang, Lin; Liu, Xiongwei; Renevier, Nathalie; Stables, Matthew; Hall, George M.

    2014-01-01

    Due to the increasing size and flexibility of large wind turbine blades, accurate and reliable aeroelastic modelling is playing an important role for the design of large wind turbines. Most existing aeroelastic models are linear models based on assumption of small blade deflections. This assumption is not valid anymore for very flexible blade design because such blades often experience large deflections. In this paper, a novel nonlinear aeroelastic model for large wind turbine blades has been developed by combining BEM (blade element momentum) theory and mixed-form formulation of GEBT (geometrically exact beam theory). The nonlinear aeroelastic model takes account of large blade deflections and thus greatly improves the accuracy of aeroelastic analysis of wind turbine blades. The nonlinear aeroelastic model is implemented in COMSOL Multiphysics and validated with a series of benchmark calculation tests. The results show that good agreement is achieved when compared with experimental data, and its capability of handling large deflections is demonstrated. Finally the nonlinear aeroelastic model is applied to aeroelastic modelling of the parked WindPACT 1.5 MW baseline wind turbine, and reduced flapwise deflection from the nonlinear aeroelastic model is observed compared to the linear aeroelastic code FAST (Fatigue, Aerodynamics, Structures, and Turbulence). - Highlights: • A novel nonlinear aeroelastic model for wind turbine blades is developed. • The model takes account of large blade deflections and geometric nonlinearities. • The model is reliable and efficient for aeroelastic modelling of wind turbine blades. • The accuracy of the model is verified by a series of benchmark calculation tests. • The model provides more realistic aeroelastic modelling than FAST (Fatigue, Aerodynamics, Structures, and Turbulence)

  19. Bacterial contamination of re-usable laryngoscope blades during the ...

    African Journals Online (AJOL)

    We aimed to assess the level of microbial contamination of re-usable laryngoscope blades at a public hospital in South Africa. Setting. The theatre complex of a secondary-level public hospital in Johannesburg. Methods. Blades from two different theatres were sampled twice daily, using a standardised technique, over a ...

  20. Force Measurements on a VAWT Blade in Parked Conditions

    Directory of Open Access Journals (Sweden)

    Anders Goude

    2017-11-01

    Full Text Available The forces on a turbine at extreme wind conditions when the turbine is parked is one of the most important design cases for the survivability of a turbine. In this work, the forces on a blade and its support arms have been measured on a 12 kW straight-bladed vertical axis wind turbine at an open site. Two cases are tested: one during electrical braking of the turbine, which allows it to rotate slowly, and one with the turbine mechanically fixed with the leading edge of the blade facing the main wind direction. The force variations with respect to wind direction are investigated, and it is seen that significant variations in forces depend on the wind direction. The measurements show that for the fixed case, when subjected to the same wind speed, the forces are lower when the blade faces the wind direction. The results also show that due to the lower forces at this particular wind direction, the average forces for the fixed blade are notably lower. Hence, it is possible to reduce the forces on a turbine blade, simply by taking the dominating wind direction into account when the turbine is parked. The measurements also show that a positive torque is generated from the blade for most wind directions, which causes the turbine to rotate in the electrically-braked case. These rotations will cause increased fatigue loads on the turbine blade.

  1. Aeroelastic multidisciplinary design optimization of a swept wind turbine blade

    DEFF Research Database (Denmark)

    Pavese, Christian; Tibaldi, Carlo; Zahle, Frederik

    2017-01-01

    Mitigating loads on a wind turbine rotor can reduce the cost of energy. Sweeping blades produces a structural coupling between flapwise bending and torsion, which can be used for load alleviation purposes. A multidisciplinary design optimization (MDO) problem is formulated including the blade sweep...

  2. Damage detection in wind turbine blades using acoustic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Juengert, A., E-mail: anne.juengert@mpa.uni-stuttgart.de [Univ. of Stuttgart, Materialpruefungsanstalt Stuttgart, Stuttgart (Germany)

    2013-05-15

    Facing climate change, the use of renewable energy gains importance. The wind energy sector grows very fast. Bigger and more powerful wind turbines will be built in the coming decades and the safety and reliability of the turbines will become more important. Wind turbine blades have to be inspected at regular intervals, because they are highly stressed during operation and a blade breakdown can cause big economic damages. The turbine blades consist of fiber reinforced plastics (GFRP/CFRP) and sandwich areas containing wood or plastic foam. The blades are manufactured as two halves and glued together afterwards. Typical damages are delaminations within the GFRP or the sandwich and missing adhesive or deficient bond at the bonding surfaces. The regular inspections of wind turbine blades are performed manually by experts and are limited to visual appraisals and simple tapping tests. To improve the inspections of wind turbine blades non-destructive testing techniques using acoustic waves are being developed. To detect delaminations within the laminates of the turbine blade, a local resonance spectroscopy was used. To detect missing bond areas from the outside of the blade the impulse-echo-technique was applied. This paper is an updated reprint of an article published on ndt.net in 2008. (author)

  3. A Critical Review of Future Materials for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran

    2014-01-01

    Wind turbine industry is continuously evaluating materials systems to replace the current thermoset composite technologies. Since turbine blades are the key component in the wind turbines and the size of the blade is increasing in todays wind design, the materials selection has become crucial...

  4. Future Materials for Wind Turbine Blades - A Critical Review

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran

    2012-01-01

    Wind turbine industry is continuously evaluating material systems to replace the current thermoset composite technologies. Since turbine blades are the key component in the wind turbines and the size of the blade is increasing in today’s wind design, the material selection has become crucial...

  5. Numerical study of Wavy Blade Section for Wind Turbines

    DEFF Research Database (Denmark)

    Kobæk, C. M.; Hansen, Martin Otto Laver

    2016-01-01

    than a flipper having a smooth trailing edge and thus could be potentially beneficial when catching food. A thorough literature study of the Wavy Blade concept is made and followed by CFD computations of two wavy blade geometries and a comparison with their baseline S809 airfoil at conditions more...

  6. Implicit geometric representations for optimal design of gas turbine blades

    International Nuclear Information System (INIS)

    Mansour, T.; Ghaly, W.

    2004-01-01

    Shape optimization requires a proper geometric representation of the blade profile; the parameters of such a representation are usually taken as design variables in the optimization process. This implies that the model must possess three specific features: flexibility, efficiency, and accuracy. For the specific task of aerodynamic optimization for turbine blades, it is critical to have flexibility in both the global and local design spaces in order to obtain a successful optimization. This work is concerned with the development of two geometric representations of turbine blade profiles that are appropriate for aerodynamic optimization: the Modified Rapid Axial Turbine Design (MRATD) model where the blade is represented by five low-order curves that satisfy eleven designer parameters; this model is suitable for a global search of the design space. The second model is NURBS parameterization of the blade profile that can be used for a local refinement. The two models are presented and are assessed for flexibility and accuracy when representing several typical turbine blade profiles. The models will be further discussed in terms of curve smoothness and blade shape representation with a multi-NURBS curve versus one curve and its effect on the flow field, in particular the pressure distribution along the blade surfaces, will be elaborated. (author)

  7. Vibration-based SHM System: Application to Wind Turbine Blades

    DEFF Research Database (Denmark)

    Tcherniak, D.; Mølgaard, Lasse Lohilahti

    2015-01-01

    propagate along the blade and are measured by an array of accelerometers. Unsupervised learning is applied to the data: the vibration patterns corresponding to the undamaged blade are used to create a statistical model of the reference state. During the detection stage, the current vibration pattern...

  8. Computational Fluid Dynamic Analysis of a Vibrating Turbine Blade

    Directory of Open Access Journals (Sweden)

    Osama N. Alshroof

    2012-01-01

    Full Text Available This study presents the numerical fluid-structure interaction (FSI modelling of a vibrating turbine blade using the commercial software ANSYS-12.1. The study has two major aims: (i discussion of the current state of the art of modelling FSI in gas turbine engines and (ii development of a “tuned” one-way FSI model of a vibrating turbine blade to investigate the correlation between the pressure at the turbine casing surface and the vibrating blade motion. Firstly, the feasibility of the complete FSI coupled two-way, three-dimensional modelling of a turbine blade undergoing vibration using current commercial software is discussed. Various modelling simplifications, which reduce the full coupling between the fluid and structural domains, are then presented. The one-way FSI model of the vibrating turbine blade is introduced, which has the computational efficiency of a moving boundary CFD model. This one-way FSI model includes the corrected motion of the vibrating turbine blade under given engine flow conditions. This one-way FSI model is used to interrogate the pressure around a vibrating gas turbine blade. The results obtained show that the pressure distribution at the casing surface does not differ significantly, in its general form, from the pressure at the vibrating rotor blade tip.

  9. Composite rotor blades for large wind energy installations

    Science.gov (United States)

    Kussmann, A.; Molly, J.; Muser, D.

    1980-01-01

    The design of large wind power systems in Germany is reviewed with attention given to elaboration of the total wind energy system, aerodynamic design of the rotor blade, and wind loading effects. Particular consideration is given to the development of composite glass fiber/plastic or carbon fiber/plastic rotor blades for such installations.

  10. Efficient Beam-Type Structural Modeling of Rotor Blades

    DEFF Research Database (Denmark)

    Couturier, Philippe; Krenk, Steen

    2015-01-01

    The present paper presents two recently developed numerical formulations which enable accurate representation of the static and dynamic behaviour of wind turbine rotor blades using little modeling and computational effort. The first development consists of an intuitive method to extract fully...... by application to a composite section with bend-twist coupling and a real wind turbine blade....

  11. Composite rotor blades for large wind energy installations

    Energy Technology Data Exchange (ETDEWEB)

    Kussmann, A; Molly, J P; Muser, D

    1979-06-01

    The design of large wind power systems in Germany is reviewed with attention given to elaboration of the total wind energy system, aerodynamic design of the rotor blade, and wind loading effects. Particular consideration is given to the development of composite glass fiber/plastic or carbon fiber/plastic rotor blades for such installations.

  12. Damage detection in wind turbine blades using acoustic techniques

    International Nuclear Information System (INIS)

    Juengert, A.

    2013-01-01

    Facing climate change, the use of renewable energy gains importance. The wind energy sector grows very fast. Bigger and more powerful wind turbines will be built in the coming decades and the safety and reliability of the turbines will become more important. Wind turbine blades have to be inspected at regular intervals, because they are highly stressed during operation and a blade breakdown can cause big economic damages. The turbine blades consist of fiber reinforced plastics (GFRP/CFRP) and sandwich areas containing wood or plastic foam. The blades are manufactured as two halves and glued together afterwards. Typical damages are delaminations within the GFRP or the sandwich and missing adhesive or deficient bond at the bonding surfaces. The regular inspections of wind turbine blades are performed manually by experts and are limited to visual appraisals and simple tapping tests. To improve the inspections of wind turbine blades non-destructive testing techniques using acoustic waves are being developed. To detect delaminations within the laminates of the turbine blade, a local resonance spectroscopy was used. To detect missing bond areas from the outside of the blade the impulse-echo-technique was applied. This paper is an updated reprint of an article published on ndt.net in 2008. (author)

  13. IEC-TC88WG8 testing of rotor blades

    Energy Technology Data Exchange (ETDEWEB)

    Delft, D R.V. van [Delft Univ. of Technology, STEVIN Lab., Delft (Netherlands)

    1996-09-01

    In 1994 the TC88 of IEC installed a working group (WG8) to draft a guideline on blade testing. This paper gives a description of the task of the working group. Furthermore it gives a report of the progress of the work and summarizes the possible contents of the working group document on blade testing. (au)

  14. Vortex dynamics during blade-vortex interactions

    Science.gov (United States)

    Peng, Di; Gregory, James W.

    2015-05-01

    Vortex dynamics during parallel blade-vortex interactions (BVIs) were investigated in a subsonic wind tunnel using particle image velocimetry (PIV). Vortices were generated by applying a rapid pitch-up motion to an airfoil through a pneumatic system, and the subsequent interactions with a downstream, unloaded target airfoil were studied. The blade-vortex interactions may be classified into three categories in terms of vortex behavior: close interaction, very close interaction, and collision. For each type of interaction, the vortex trajectory and strength variation were obtained from phase-averaged PIV data. The PIV results revealed the mechanisms of vortex decay and the effects of several key parameters on vortex dynamics, including separation distance (h/c), Reynolds number, and vortex sense. Generally, BVI has two main stages: interaction between vortex and leading edge (vortex-LE interaction) and interaction between vortex and boundary layer (vortex-BL interaction). Vortex-LE interaction, with its small separation distance, is dominated by inviscid decay of vortex strength due to pressure gradients near the leading edge. Therefore, the decay rate is determined by separation distance and vortex strength, but it is relatively insensitive to Reynolds number. Vortex-LE interaction will become a viscous-type interaction if there is enough separation distance. Vortex-BL interaction is inherently dominated by viscous effects, so the decay rate is dependent on Reynolds number. Vortex sense also has great impact on vortex-BL interaction because it changes the velocity field and shear stress near the surface.

  15. Condensation phenomena in a turbine blade passage

    International Nuclear Information System (INIS)

    Skillings, S.A.

    1989-02-01

    The mechanisms associated with the formation and growth of water droplets in the large low-pressure (LP) turbines used for electrical power generation are poorly understood and recent measurements have indicated that an unusually high loss is associated with the initial nucleation of these droplets. In order to gain an insight into the phenomena which arise in the turbine situation, some experiments were performed to investigate the behaviour of condensing steam flows in a blade passage. This study has revealed the fundamental significance of droplet nucleation in modifying the single-phase flow structure and results are presented which show the change in shock wave pattern when inlet superheat and outlet Mach number are varied. The trailing-edge shock wave structure appears considerably more robust towards variation of inlet superheat than purely one-dimensional considerations may suggest and the inadequacies of adopting a one-dimensional theory to analyse multi-dimensional condensing flows are demonstrated. Over a certain range of outlet Mach numbers an oscillating shock wave will establish in the throat region of the blade passage and this has been shown to interact strongly with droplet nucleation, resulting in a considerably increased mean droplet size. The possible implications of these results for turbine performance are also discussed. (author)

  16. Preliminary Aerodynamic Investigation of Fan Rotor Blade Morphing

    Science.gov (United States)

    Tweedt, Daniel L.

    2012-01-01

    Various new technologies currently under development may enable controlled blade shape variability, or so-called blade morphing, to be practically employed in aircraft engine fans and compressors in the foreseeable future. The current study is a relatively brief, preliminary computational fluid dynamics investigation aimed at partially demonstrating and quantifying the aerodynamic potential of fan rotor blade morphing. The investigation is intended to provide information useful for near-term planning, as well as aerodynamic solution data sets that can be subsequently analyzed using advanced acoustic diagnostic tools, for the purpose of making fan noise comparisons. Two existing fan system models serve as baselines for the investigation: the Advanced Ducted Propulsor fan with a design tip speed of 806 ft/sec and a pressure ratio of 1.294, and the Source Diagnostic Test fan with a design tip speed of 1215 ft/sec and a pressure ratio of 1.470. Both are 22-in. sub-scale, low-noise research fan/nacelle models that have undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. The study, restricted to fan rotor blade morphing only, involves a fairly simple blade morphing technique. Specifically, spanwise-linear variations in rotor blade-section setting angle are applied to alter the blade shape; that is, the blade is linearly retwisted from hub to tip. Aerodynamic performance comparisons are made between morphed-blade and corresponding baseline configurations on the basis of equal fan system thrust, where rotor rotational speed for the morphed-blade fan is varied to change the thrust level for that configuration. The results of the investigation confirm that rotor blade morphing could be a useful technology, with the potential to enable significant improvements in fan aerodynamic performance. Even though the study is very limited in scope and confined to simple geometric perturbations of two existing fan

  17. Vortex-induced vibrations on a modern wind turbine blade

    DEFF Research Database (Denmark)

    Heinz, Joachim Christian; Sørensen, Niels N.; Zahle, Frederik

    2016-01-01

    This article investigates the aero-elastic response of the DTU 10-MW RWT blade in deep stall conditions with angles of attack in the vicinity of 90 degrees. The simulations were conducted with the high-fidelity fluid–structure interaction simulation tool HAWC2CFD employing the multi......-body-based structural model of HAWC2 and the incompressible computational fluid dynamics solver EllipSys3D. The study utilizes detached eddy simulation computations and considers the three-dimensional blade geometry including blade twist and taper. A preliminary frequency analysis of the load variations on a stiff....... Aero-elastic computations of the elastic blade confirmed the findings of the frequency analysis. Inflow conditions with inclination angles between Ψ = 20° and Ψ = 55° and relatively low to moderate wind speeds between V = 16 and V = 26 m s-1 were sufficient to trigger severe edgewise blade vibrations...

  18. Analysis of Different Blade Architectures on small VAWT Performance

    Science.gov (United States)

    Battisti, L.; Brighenti, A.; Benini, E.; Raciti Castelli, M.

    2016-09-01

    The present paper aims at describing and comparing different small Vertical Axis Wind Turbine (VAWT) architectures, in terms of performance and loads. These characteristics can be highlighted by resorting to the Blade Element-Momentum (BE-M) model, commonly adopted for rotor pre-design and controller assessment. After validating the model with experimental data, the paper focuses on the analysis of VAWT loads depending on some relevant rotor features: blade number (2 and 3), airfoil camber line (comparing symmetrical and asymmetrical profiles) and blade inclination (straight versus helical blade). The effect of such characteristics on both power and thrusts (in the streamwise direction and in the crosswise one) as a function of both the blades azimuthal position and their Tip Speed Ratio (TSR) are presented and widely discussed.

  19. Compressor blade setting angle accuracy study, volume 1

    Science.gov (United States)

    Holman, F. F.; Kidwell, J. R.

    1976-01-01

    The aerodynamic test of a small, single stage, highly loaded, axial flow transonic compressor is covered. The stage was modified by fabricating a 24 blade rotor with mis-set blades in a repeating pattern - two degrees closed from nominal, two degrees open from nominal and nominal. The unit was instrumented to determine overall performance and average blade element data. High-response, dynamic pressure probes were installed to record pressure patterns at selected points in the flowpath. Testing was conducted at speeds from 70 to 94% of design equivalent speed with a conventional casing and also with circumferential grooves over the rotor tip. Testing indicated severe performance penalties were incurred as a result of the mis-set blading. Lower flow, pressure ratio, and efficiency were observed for the stage with or without casing treatment. Periodic pressure variations were detected at every location where high response pressure sensors were located and were directly related to blading geometry.

  20. Wind turbine blade testing system using base excitation

    Science.gov (United States)

    Cotrell, Jason; Thresher, Robert; Lambert, Scott; Hughes, Scott; Johnson, Jay

    2014-03-25

    An apparatus (500) for fatigue testing elongate test articles (404) including wind turbine blades through forced or resonant excitation of the base (406) of the test articles (404). The apparatus (500) includes a testing platform or foundation (402). A blade support (410) is provided for retaining or supporting a base (406) of an elongate test article (404), and the blade support (410) is pivotally mounted on the testing platform (402) with at least two degrees of freedom of motion relative to the testing platform (402). An excitation input assembly (540) is interconnected with the blade support (410) and includes first and second actuators (444, 446, 541) that act to concurrently apply forces or loads to the blade support (410). The actuator forces are cyclically applied in first and second transverse directions. The test article (404) responds to shaking of its base (406) by oscillating in two, transverse directions (505, 507).

  1. A Long-Period Grating Sensor for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Glavind, Lars

    This PhD project concerns the applied research for providing a novel sensor for measurements on wind turbine blades, based on Long-Period Gratings. The idea is based on the utilization of a special asymmetrical optical fibre with Long-Period Gratings for directional sensitive bend sensing...... blade material, where a suitable process and recoating material were investigated. The sensor was implemented and tested on a full scale wind turbine blade placed on a test rig. This first prototype has demonstrated the capability of the sensor for wind turbine blade monitoring, particular...... the possibility to distinguish between the flap- and edge-wise bend directions on the wind turbine blade, providing a selective sensor. The sensor has proven to be very robust and suitable for this application....

  2. Blade Bearing Friction Estimation of Operating Wind Turbines

    DEFF Research Database (Denmark)

    Perisic, Nevena; Pedersen, Bo Juul; Kirkegaard, Poul Henning

    2012-01-01

    Blade root bearing on a wind turbine (WTG) enables pitching of blades for power control and rotor braking and is a WTG critical component. As the size of modern WTGs is constantly increasing, this leads to relatively less rigid bearings, more sensitive to deformations, thus WTG operational...... reliability can be increased by continuous monitoring of blade bearing. High blade bearing friction is undesirable, as it may be associated with excessive heating of the surfaces, damage and/or inefficient operation. Thus, continuous observation of bearing friction level is crucial for blade bearing health...... monitoring systems. A novel algorithm for online monitoring of bearing friction level is developed combining physical knowledge about pitch system dynamics with state estimator, i.e. observer theory and signal processing assuming realistic sensor availability. Results show estimation of bearing friction...

  3. Development of tooling suitable for stall regulated blades

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, M.

    2001-07-01

    The objectives of the project were to make significant improvements in the production of stall regulated blades in the areas of (a) the tip box, its housing, its mechanism and small GRP parts; (b) mould technology; (c) resins and glues and (d) root tooling. Although wood composite had been identified as a competitive technology for blades, compared with GRP blades, production volumes had been lower; reasons are given. The way in which the four areas identified for investigation were tackled are discussed. The study showed that the mould cycle time can be reduced to two days for a stall regulated blade and the blade quality can be improved by using the composite tip box and new resins. The time required for replication of moulds can be reduced by 40%.

  4. Accelerated fatigue testing of LM 19.1 blades

    DEFF Research Database (Denmark)

    Kristensen, Ole Jesper Dahl; Jørgensen, E.

    2003-01-01

    A series of 19.1 metre wind turbine blades manufactured by LM Glasfiber A/S of Lunderskov, Denmark were subjected to a series of flapwise fatigue tests. The object of these fatigue tests is to evaluate the impact of an increased load on the blade in afatigue test and to give information...... if it is possible to increase the load in fatigue test to shorten test time. The tests were carried out as a part of a project financed by the Danish Energy Agency. During the fatigue tests the blades have beensurveyed with thermal imaging equipment to determine how an increase in fatigue load affects the blade...... material. In addition to the thermal imaging surveillance the blades were instrumented with strain gauges. This report presents the temperature duringtest, calibration test results, moment range measurements, strain statistics, thermal imaging registrations and a determination of the size and cause...

  5. Blade vortex interaction noise reduction techniques for a rotorcraft

    Science.gov (United States)

    Charles, Bruce D. (Inventor); Hassan, Ahmed A. (Inventor); Tadghighi, Hormoz (Inventor); JanakiRam, Ram D. (Inventor); Sankar, Lakshmi N. (Inventor)

    1996-01-01

    An active control device for reducing blade-vortex interactions (BVI) noise generated by a rotorcraft, such as a helicopter, comprises a trailing edge flap located near the tip of each of the rotorcraft's rotor blades. The flap may be actuated in any conventional way, and is scheduled to be actuated to a deflected position during rotation of the rotor blade through predetermined regions of the rotor azimuth, and is further scheduled to be actuated to a retracted position through the remaining regions of the rotor azimuth. Through the careful azimuth-dependent deployment and retraction of the flap over the rotor disk, blade tip vortices which are the primary source for BVI noise are (a) made weaker and (b) pushed farther away from the rotor disk (that is, larger blade-vortex separation distances are achieved).

  6. Stiffness Characteristics of Composite Rotor Blades With Elastic Couplings

    Science.gov (United States)

    Piatak, David J.; Nixon, Mark W.; Kosmatka, John B.

    1997-01-01

    Recent studies on rotor aeroelastic response and stability have shown the beneficial effects of incorporating elastic couplings in composite rotor blades. However, none of these studies have clearly identified elastic coupling limits and the effects of elastic couplings on classical beam stiffnesses of representative rotor blades. Knowledge of these limits and effects would greatly enhance future aeroelastic studies involving composite rotor blades. The present study addresses these voids and provides a preliminary design database for investigators who may wish to study the effects of elastic couplings on representative blade designs. The results of the present study should provide a basis for estimating the potential benefits associated with incorporating elastic couplings without the need for first designing a blade cross section and then performing a cross-section analysis to obtain the required beam section properties as is customary in the usual one-dimensional beam-type approach.

  7. Aeroelastic behavior of composite rotor blades with swept tips

    Science.gov (United States)

    Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur

    1992-01-01

    This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction.

  8. An aerodynamic study on flexed blades for VAWT applications

    International Nuclear Information System (INIS)

    Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi

    2014-01-01

    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small

  9. Manufacturing a 9-Meter Thermoplastic Composite Wind Turbine Blade: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Murray, Robynne [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Snowberg, David R [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Berry, Derek S [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Beach, Ryan [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Rooney, Samantha A [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Swan, Dana [Arkema Inc.

    2017-12-06

    Currently, wind turbine blades are manufactured from a combination of glass and/or carbon fiber composite materials with a thermoset resin such as epoxy, which requires energy-intensive and expensive heating processes to cure. Newly developed in-situ polymerizing thermoplastic resin systems for composite wind turbine blades polymerize at room temperature, eliminating the heating process and significantly reducing the blade manufacturing cycle time and embodied energy, which in turn reduces costs. Thermoplastic materials can also be thermally welded, eliminating the need for adhesive bonds between blade components and increasing the overall strength and reliability of the blades. As well, thermoplastic materials enable end-of-life blade recycling by reheating and decomposing the materials, which is a limitation of existing blade technology. This paper presents a manufacturing demonstration for a 9-m-long thermoplastic composite wind turbine blade. This blade was constructed in the Composites Manufacturing Education and Technology facility at the National Wind Technology Center at the National Renewable Energy Laboratory (NREL) using a vacuum-assisted resin transfer molding process. Johns Manville fiberglass and an Arkema thermoplastic resin called Elium were used. Additional materials included Armacell-recycled polyethylene terephthalate foam from Creative Foam and low-cost carbon- fiber pultruded spar caps (manufactured in collaboration with NREL, Oak Ridge National Laboratory, Huntsman, Strongwell, and Chomarat). This paper highlights the development of the thermoplastic resin formulations, including an additive designed to control the peak exothermic temperatures. Infusion and cure times of less than 3 hours are also demonstrated, highlighting the efficiency and energy savings associated with manufacturing thermoplastic composite blades.

  10. Definition of a 5MW/61.5m wind turbine blade reference model.

    Energy Technology Data Exchange (ETDEWEB)

    Resor, Brian Ray

    2013-04-01

    A basic structural concept of the blade design that is associated with the frequently utilized %E2%80%9CNREL offshore 5-MW baseline wind turbine%E2%80%9D is needed for studies involving blade structural design and blade structural design tools. The blade structural design documented in this report represents a concept that meets basic design criteria set forth by IEC standards for the onshore turbine. The design documented in this report is not a fully vetted blade design which is ready for manufacture. The intent of the structural concept described by this report is to provide a good starting point for more detailed and targeted investigations such as blade design optimization, blade design tool verification, blade materials and structures investigations, and blade design standards evaluation. This report documents the information used to create the current model as well as the analyses used to verify that the blade structural performance meets reasonable blade design criteria.

  11. Mechanisms and actuators for rotorcraft blade morphing

    Science.gov (United States)

    Vocke, Robert D., III

    The idea of improved fight performance through changes in the control surfaces dates back to the advent of aviation with the Wright brothers' pioneering work on "wing warping," but it was not until the recent progress in material and actuator development that such control surfaces seemed practical for modern aircraft. This has opened the door to a new class of aircraft that have the ability to change shape or morph, which are being investigated due to the potential to have a single platform serve multiple mission objectives, as well as improve performance characteristics. While the majority of existing research for morphing aircraft has focused on fixedwing aircraft, rotary-wing aircraft have begun to receive more attention. The purpose of this body of work is to investigate the current state of morphing actuation technology for rotorcraft and improve upon it. Specifically, this work looks at two types of morphing: Pneumatic Artificial Muscle (PAM) actuated trailing edge flaps and conformal variable diameter morphing. First, active camber changes through the use of PAM powered trailing edge flaps were investigated due to the potential for reductions in power requirements and vibration/noise levels. A PAM based antagonistic actuation system was developed utilizing a novel combination of mechanism geometry and PAM bias contraction optimization to overcome the natural extension stiffening characteristics of PAMs. In open-loop bench-top testing against a "worst-case" constant torsional loading, the system demonstrated actuation authority suitable for both primary control and vibration/noise reduction. Additionally, closed-loop test data indicated that the system was capable of tracking complex waveforms consistent with those needed for rotorcraft control. This system demonstrated performance on-par with the state of the art pneumatic trailing edge flap actuators, yet with a much smaller footprint and impact on the rotor-blade. The second morphing system developed in

  12. Impact force identification for composite helicopter blades using minimal sensing

    Science.gov (United States)

    Budde, Carson N.

    In this research a method for online impact identification using minimal sensors is developed for rotor hubs with composite blades. Modal impact data and the corresponding responses are recorded at several locations to develop a frequency response function model for each composite blade on the rotor hub. The frequency response model for each blade is used to develop an impact identification algorithm which can be used to identify the location and magnitude of impacts. Impacts are applied in two experimental setups, including a four-blade spin test rig and a cantilevered full-sized composite blade. The impacts are estimated to have been applied at the correct location 92.3% of the time for static fiberglass blades, 97.4% of the time for static carbon fiber blades and 99.2% of the time for a full sized-static blade. The estimated location is assessed further and determined to have been estimated in the correct chord position 96.1% of the time for static fiberglass, 100% of the time for carbon fiber blades and 99.2% of the time for the full-sized blades. Projectile impacts are also applied statically and during rotation to the carbon fiber blades on the spin test rig at 57 and 83 RPM. The applied impacts can be located to the correct position 63.9%, 41.7% and 33.3% for the 0, 57 and 83 RPM speeds, respectively, while the correct chord location is estimated 100% of the time. The impact identification algorithm also estimates the force of an impact with an average percent difference of 4.64, 2.61 and 1.00 for static fiberglass, full sized, and carbon fiber blades, respectively. Using a load cell and work equations, the force of impact for a projectile fired from a dynamic firing setup is estimated at about 400 N. The average force measured for applied projectile impacts to the carbon fiber blades, rotating at 0, 57 and 83 RPM, is 368.8, 373.7 and 432.4 N, respectively.

  13. Flow separation on wind turbines blades

    Science.gov (United States)

    Corten, G. P.

    2001-01-01

    In the year 2000, 15GW of wind power was installed throughout the world, producing 100PJ of energy annually. This contributes to the total electricity demand by only 0.2%. Both the installed power and the generated energy are increasing by 30% per year world-wide. If the airflow over wind turbine blades could be controlled fully, the generation efficiency and thus the energy production would increase by 9%. Power Control To avoid damage to wind turbines, they are cut out above 10 Beaufort (25 m/s) on the wind speed scale. A turbine could be designed in such a way that it converts as much power as possible in all wind speeds, but then it would have to be to heavy. The high costs of such a design would not be compensated by the extra production in high winds, since such winds are rare. Therefore turbines usually reach maximum power at a much lower wind speed: the rated wind speed, which occurs at about 6 Beaufort (12.5 m/s). Above this rated speed, the power intake is kept constant by a control mechanism. Two different mechanisms are commonly used. Active pitch control, where the blades pitch to vane if the turbine maximum is exceeded or, passive stall control, where the power control is an implicit property of the rotor. Stall Control The flow over airfoils is called "attached" when it flows over the surface from the leading edge to the trailing edge. However, when the angle of attack of the flow exceeds a certain critical angle, the flow does not reach the trailing edge, but leaves the surface at the separation line. Beyond this line the flow direction is reversed, i.e. it flows from the trailing edge backward to the separation line. A blade section extracts much less energy from the flow when it separates. This property is used for stall control. Stall controlled rotors always operate at a constant rotation speed. The angle of attack of the flow incident to the blades is determined by the blade speed and the wind speed. Since the latter is variable, it determines

  14. Effect of number of blades on aerodynamic forces on a straight-bladed Vertical Axis Wind Turbine

    International Nuclear Information System (INIS)

    Li, Qing'an; Maeda, Takao; Kamada, Yasunari; Murata, Junsuke; Furukawa, Kazuma; Yamamoto, Masayuki

    2015-01-01

    Small wind turbine performance and safety standard for straight-bladed Vertical Axis Wind Turbine (VAWT) have not been developed in the world because of the lack of fundament experimental data. This paper focuses on the evaluation of aerodynamic forces depending on several numbers of blades in wind tunnel experiment. In the present study, the test airfoil of blade is symmetry airfoil of NACA 0021 and the number of blades is from two to five. Pressure acting on the surface of rotor blade is measured during rotation by multiport pressure devices and transmitted to a stationary system through wireless LAN. And then, the aerodynamic forces (tangential force, normal force et al.) are discussed as a function of azimuth angle, achieving a quantitative analysis of the effect of numbers of blades. Finally, the loads are compared with the experimental data of six-component balance. As a result, it is clarified that the power coefficient decreases with the increase of numbers of blades. Furthermore, the power which is absorbed from wind by wind turbine mainly depends on upstream region of azimuth angle of θ = 0°∼180°. In this way, these results are very important for developing the simple design equations and applications for straight-bladed VAWT. - Highlights: • Aerodynamic forces are measured by not only torque meter but also six-component balance. • The pressure distribution on the surface of rotor blade is directly measured by multiport pressure devices. • The power coefficient decreases with the increase of numbers of blades. • The fluctuation amplitudes from six-component balance show larger value than the results of pressure distribution.

  15. Structural modeling for multicell composite rotor blades

    Science.gov (United States)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    Composite material systems are currently good candidates for aerospace structures, primarily for the design flexibility they offer, i.e., it is possible to tailor the material and manufacturing approach to the application. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics, and which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to present a new multicell beam model for composite rotor blades and to validate predictions based on the new model by comparison with a finite element simulation in three benchmark static load cases.

  16. Rotational effects on turbine blade cooling

    Energy Technology Data Exchange (ETDEWEB)

    Govatzidakis, G.J.; Guenette, G.R.; Kerrebrock, J.L. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-10-01

    An experimental investigation of the influence of rotation on the heat transfer in a smooth, rectangular passage rotating in the orthogonal mode is presented. The passage simulates one of the cooling channels found in gas turbine blades. A constant heat flux is imposed on the model with either inward or outward flow. The effects of rotation and buoyancy on the Nusselt number were quantified by systematically varying the Rotation number, Density Ratio, Reynolds number, and Buoyancy parameter. The experiment utilizes a high resolution infrared temperature measurement technique in order to measure the wall temperature distribution. The experimental results show that the rotational effects on the Nusselt number are significant and proper turbine blade design must take into account the effects of rotation, buoyancy, and flow direction. The behavior of the Nusselt number distribution depends strongly on the particular side, axial position, flow direction, and the specific range of the scaling parameters. The results show a strong coupling between buoyancy and Corollas effects throughout the passage. For outward flow, the trailing side Nusselt numbers increase with Rotation number relative to stationary values. On the leading side, the Nusselt numbers tended to decrease with rotation near the inlet and subsequently increased farther downstream in the passage. The Nusselt numbers on the side walls generally increased with rotation. For inward flow, the Nusselt numbers generally improved relative to stationary results, but increases in the Nusselt number were relatively smaller than in the case of outward flow. For outward and inward flows, increasing the density ratio generally tended to decrease Nusselt numbers on the leading and trailing sides, but the exact behavior and magnitude depended on the local axial position and specific range of Buoyancy parameters.

  17. Characterization of a Viking Blade Fabricated by Traditional Forging Techniques

    Science.gov (United States)

    Vo, H.; Frazer, D.; Bailey, N.; Traylor, R.; Austin, J.; Pringle, J.; Bickel, J.; Connick, R.; Connick, W.; Hosemann, P.

    2016-12-01

    A team of students from the University of California, Berkeley, participated in a blade-smithing competition hosted by the Minerals, Metals, and Materials Society at the TMS 2015 144th annual meeting and exhibition. Motivated by ancient forging methods, the UC Berkeley team chose to fabricate our blade from historical smithing techniques utilizing naturally-occurring deposits of iron ore. This approach resulted in receiving the "Best Example of a Traditional Blade Process/Ore Smelting Technique" award for our blade named "Berkelium." First, iron-enriched sand was collected from local beaches. Magnetite (Fe3O4) was then extracted from the sand and smelted into individual high- and low-carbon steel ingots. Layers of high- and low-carbon steels were forge-welded together, predominantly by hand, to form a composite material. Optical microscopy, energy dispersive spectroscopy, and Vickers hardness mechanical testing were conducted at different stages throughout the blade-making process to evaluate the microstructure and hardness evolution during formation. It was found that the pre-heat-treated blade microstructure was composed of ferrite and pearlite, and contained many nonmetallic inclusions. A final heat treatment was performed, which caused the average hardness of the blade edge to increase by more than a factor of two, indicating a martensitic transformation.

  18. Verification of Thermal Models of Internally Cooled Gas Turbine Blades

    Directory of Open Access Journals (Sweden)

    Igor Shevchenko

    2018-01-01

    Full Text Available Numerical simulation of temperature field of cooled turbine blades is a required element of gas turbine engine design process. The verification is usually performed on the basis of results of test of full-size blade prototype on a gas-dynamic test bench. A method of calorimetric measurement in a molten metal thermostat for verification of a thermal model of cooled blade is proposed in this paper. The method allows obtaining local values of heat flux in each point of blade surface within a single experiment. The error of determination of local heat transfer coefficients using this method does not exceed 8% for blades with radial channels. An important feature of the method is that the heat load remains unchanged during the experiment and the blade outer surface temperature equals zinc melting point. The verification of thermal-hydraulic model of high-pressure turbine blade with cooling allowing asymmetrical heat removal from pressure and suction sides was carried out using the developed method. An analysis of heat transfer coefficients confirmed the high level of heat transfer in the leading edge, whose value is comparable with jet impingement heat transfer. The maximum of the heat transfer coefficients is shifted from the critical point of the leading edge to the pressure side.

  19. Enhancing wind turbines efficiency with passive reconfiguration of flexible blades

    Science.gov (United States)

    Cognet, Vincent P. A.; Thiria, Benjamin; Courrech Du Pont, Sylvain; MSC Team; PMMH Team

    2015-11-01

    Nature provides excellent examples where flexible materials are advantageous in a fluid stream. By folding, leaves decrease the drag caused by air stream; and birds' flapping is much more efficient with flexible wings. Motivated by this, we investigate the effect of flexible blades on the performance of a wind turbine. The effect of chordwise flexible blades is studied both experimentally and theoretically on a small wind turbine in steady state. Four parameters are varied: the wind velocity, the resisting torque, the pitch angle, and the blade's bending modulus. We find an optimum efficiency with respect to the bending modulus. By tuning our four parameters, the wind turbine with flexible blades has a high-efficiency range significantly larger than rigid blades', and, furthermore enhances the operating range. These results are all the more important as one of the current issues concerning wind turbines is the enlargement of their operating range. To explain these results, we propose a simple two-dimensional model by discretising the blade along the radius. We take into account the variation of drag and lift coefficients with the bending ability. This model matches experimental observations and demonstrates the contribution of the reconfiguration of the blade. Matiere et Systemes Complexes.

  20. Life assessment of gas turbine blades after long term service

    Energy Technology Data Exchange (ETDEWEB)

    Auerkari, Pertti; Salonen, Jorma [VTT, Espoo (Finland); Maekinen, Sari [Helsingin Energia, Helsinki (Finland); Karvonen, Ikka; Tanttari, Heikki [Lappeenrannan Laempoevoima, Lappeenranta (Finland); Kangas, Pekka [Neste Oil, Kilpilahti (Finland); Scholz, Alfred [Technische Univ. Darmstadt (Germany); Vacchieri, Erica [Ansaldo Richerche, Genoa (Italy)

    2010-07-01

    Turbine blade samples from three land based gas turbines have been subjected to systematic condition and life assessment after long term service (88000 - 109000 equivalent operating hours, eoh), when approaching the nominal or suggested life limits. The blades represent different machine types, materials and design generations, and uncooled blading outside the hottest front end of the turbine, i.e. blades with relatively large size and considerable expected life. For a reasonable assessment, a range of damage mechanisms need to be addressed and evaluated for the impact in the residual life. The results suggested significant additional safe life for all three blade sets. In some cases this could warrant yet another life cycle comparable to that of new blades, even after approaching the nominal end of life in terms of recommended equivalent operating hours. This is thought to be partly because of base load combined cycle operation and natural gas fuel, or modest operational loading if the design also accounted for more intensive cycling operation and more corrosive oil firing. In any case, long term life extension is only appropriate if not intervened by events of overloading, overheating or other sudden events such as foreign object damage (FOD), and if supported by the regular inspection and maintenance program to control in-service damage. Condition based assessment therefore remains an important part of the blade life management after the decision of accepted life extension. (orig.)

  1. Shikarpur lithic assemblage: New questions regarding Rohri chert blade production

    Directory of Open Access Journals (Sweden)

    Charusmita Gadekar

    2014-03-01

    Full Text Available Recent excavations at Shikarpur, a fortified Harappan site situated near the Gulf of Kuchchh in Gujarat, Western India, brought to light a large collection of Rohri chert blades.  Chert found in the Rohri hill near Sukkur in Sindh, central Pakistan is distinctive and easily identifiable. The wide distribution of standardized Rohri chert blades is often regarded as a testimony to the Harappan efficiency in long distance trade and craft production.  The possibility of localized production of Rohri chert blades in Gujarat is often negated due to the constraints of raw-material availability.  The absence of Rohri chert working debitage from most of the sites in Gujarat, has lent support to this position. The Shikarpur Rohri blade assemblage however incorporates more than 650 blades, a large fluted blade-core and a few Rohri chert debitage.  These have led the excavators to suggest that some of the blades found at Shikarpur were locally produced from raw materials brought to the site from the Rohri hills.  Typo-technological features of the Rohri chert assemblage from Shikarpur have been analysed in this background. These along with metrical features of the assemblage are compared with Rohri chert assemblages from other major Harappan sites in the region to check the validity of the proposed ‘limited local production’.

  2. Study of Pumping Capacity of Pitched Blade Impellers

    Directory of Open Access Journals (Sweden)

    I. Fořt

    2002-01-01

    Full Text Available A study was made of the pumping capacity of pitched blade impellers in a cylindrical pilot plant vessel with four standard radial baffles at the wall under a turbulent regime of flow. The pumping capacity was calculated from the radial profile of the axial flow, under the assumption of axial symmetry of the discharge flow. The mean velocity was measured using laser Doppler anemometry in a transparent vessel of diameter T = 400 mm, provided with a standard dished bottom. Three and six blade pitched blade impellers (the pitch angle varied within the interval a Îá24°; 45°ń of impeller/vessel diameter ratio D/T = 0.36, as well as a three blade pitched blade impeller with folded blades of the same diameter, were tested. The calculated results were compared with the results of experiments mentioned in the literature, above all in cylindrical vessels with a flat bottom. Both arrangements of the agitated system were described by the impeller energetic efficiency, i.e, a criterion including in dimensionless form both the impeller energy consumption (impeller power input and the impeller pumping effect (impeller pumping capacity. It follows from the results obtained with various geometrical configurations that the energetic efficiency of pitched blade impellers is significantly lower for configurations suitable for mixing solid-liquid suspensions (low impeller off bottom clearances than for blending miscible liquids in mixing (higher impeller off bottom clearances.

  3. Optimization design of spar cap layup for wind turbine blade

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Based on the aerodynamic shape and structural form of the blade are fixed,a mathematical model of optimization design for wind turbine blade is established.The model is pursued with respect to minimum the blade mass to reduce the cost of wind turbine production.The material layup numbers of the spar cap are chosen as the design variables;while the demands of strength,stiffness and stability of the blade are employed as the constraint conditions.The optimization design for a 1.5 MW wind turbine blade is carried out by combing above objective and constraint conditions at the action of ultimate flapwise loads with the finite element software ANSYS.Compared with the original design,the optimization design result achieves a reduction of 7.2% of the blade mass,the stress and strain distribution of the blade is more reasonable,and there is no occurrence of resonance,therefore its effectiveness is verified.

  4. Helicopter blades running elevation measurement using omnidirectional vision

    Directory of Open Access Journals (Sweden)

    Chengtao CAI

    2017-12-01

    Full Text Available Omnidirectional dynamic space parameters of high-speed rotating helicopter blades are precise 3D vector description of the blades. In particular, the elevation difference is directly related to the aerodynamic performance and maneuverability of the helicopter. The state of the art detection techniques based on optics and common vision have several drawbacks, such as high demands on devices but poor extensibility, limited measurement range and fixed measurement position. In this paper, a novel approach of helicopter blades running elevation measurement is proposed based on omnidirectional vision. With the advantages of panoramic visual imaging integration, 360° field of view and rotation in-variance, high-resolution images of all rotating blades positions are obtained at one time. By studying the non-linear calibration and calculation model of omnidirectional vision system, aiming at solving the problem of inaccurate visual space mapping model, the omnidirectional and full-scale measurement of the elevation difference are finalized. Experiments are carried out on our multifunctional simulation blades test system and the practical blades test tower, respectively. The experimental results demonstrate the effectiveness of the proposed method and show that the proposed method can considerably reduce the complexity of measurement. Keywords: Full-scale measurement, Helicopter blades elevation, Non-linear calibration, Omnidirectional vision, Unified sphere model

  5. AERFORCE: Subroutine package for unsteady blade-element/momentum calculations

    Energy Technology Data Exchange (ETDEWEB)

    Bjoerck, Anders

    2000-05-01

    A subroutine package, called AERFORCE, for the calculation of aerodynamic forces of wind turbine rotors has been written. The subroutines are written in FORTRAN. AERFORCE requires the input of airfoil aerodynamic data via tables as function of angle of attack, the turbine blade and rotor geometry and wind and blade velocities as input. The method is intended for use in an aeroelastic code. Wind and blade velocities are given at a sequence of time steps and blade forces are returned. The aerodynamic method is basically a Blade-Element/Momentum method. The method is fast and coded to be used in time simulations. In order to obtain a steady state solution a time simulation to steady state conditions has to be carried out. The BEM-method in AERFORCE includes extensions for: Dynamic inflow: Unsteady modeling of the inflow for cases with unsteady blade loading or unsteady wind. Extensions to BEM-theory for inclined flow to the rotor disc (yaw model). Unsteady blade aerodynamics: The inclusion of 2D attached flow unsteady aerodynamics and a semi-empirical model for 2D dynamic stall.

  6. Effects of large bending deflections on blade flutter limits

    Energy Technology Data Exchange (ETDEWEB)

    Kallesoee, Bjarne Skovmose; Hartvig Hansen, Morten

    2008-04-15

    The coupling of bending and torsion due to large blade bending are assumed to have some effects of the flutter limits of wind turbines. In the present report, the aeroelastic blade model suggested by Kallesoee, which is similar to a second order model, is used to investigate the aeroelastic stability limits of the RWT blade with and without the effects of the large blade deflection. The investigation shows no significant change of the flutter limit on the rotor speed due to the blade deflection,whereas the first edgewise bending mode becomes negatively damped due to the coupling with blade torsion which causes a change of the effective direction of blade vibration. These observations are confirmed by nonlinear aeroelastic simulations using HAWC2. This work is part of the UpWind project funded by the European Commission under the contract number SES6-CT-2005-019945 which is gratefully acknowledged. This report is the deliverable D2.3 of the UpWind project. (au)

  7. Laser-based gluing of diamond-tipped saw blades

    Science.gov (United States)

    Hennigs, Christian; Lahdo, Rabi; Springer, André; Kaierle, Stefan; Hustedt, Michael; Brand, Helmut; Wloka, Richard; Zobel, Frank; Dültgen, Peter

    2016-03-01

    To process natural stone such as marble or granite, saw blades equipped with wear-resistant diamond grinding segments are used, typically joined to the blade by brazing. In case of damage or wear, they must be exchanged. Due to the large energy input during thermal loosening and subsequent brazing, the repair causes extended heat-affected zones with serious microstructure changes, resulting in shape distortions and disadvantageous stress distributions. Consequently, axial run-out deviations and cutting losses increase. In this work, a new near-infrared laser-based process chain is presented to overcome the deficits of conventional brazing-based repair of diamond-tipped steel saw blades. Thus, additional tensioning and straightening steps can be avoided. The process chain starts with thermal debonding of the worn grinding segments, using a continuous-wave laser to heat the segments gently and to exceed the adhesive's decomposition temperature. Afterwards, short-pulsed laser radiation removes remaining adhesive from the blade in order to achieve clean joining surfaces. The third step is roughening and activation of the joining surfaces, again using short-pulsed laser radiation. Finally, the grinding segments are glued onto the blade with a defined adhesive layer, using continuous-wave laser radiation. Here, the adhesive is heated to its curing temperature by irradiating the respective grinding segment, ensuring minimal thermal influence on the blade. For demonstration, a prototype unit was constructed to perform the different steps of the process chain on-site at the saw-blade user's facilities. This unit was used to re-equip a saw blade with a complete set of grinding segments. This saw blade was used successfully to cut different materials, amongst others granite.

  8. Structural damage and chemical contaminants on reprocessed arthroscopic shaver blades.

    Science.gov (United States)

    Kobayashi, Masahiko; Nakagawa, Yasuaki; Okamoto, Yukihiro; Nakamura, Shinichiro; Nakamura, Takashi

    2009-02-01

    In response to socioeconomic pressure to cut budgets in medicine, single-use surgical instruments are often reprocessed despite potential biological hazard. To evaluate the quality and contaminants of reprocessed shaver blades. Reprocessed shaver blades have mechanical damage and chemical contamination. Controlled laboratory study. Seven blades and 3 abraders were reprocessed 1 time or 3 times and then were assessed. In the first part of the study, structural damage on the blades after 3 reprocessings was compared to that after 1 reprocessing using optical microscopy. In the second part, surface damage was observed using optical microscopy and scanning electron microscopy; elemental and chemical analyses of contaminants found by the microscopy were performed using scanning electron microscopy/energy dispersive x-ray spectroscopy, scanning Auger microscopy, and Fourier transform infrared spectroscopy. Optical microscopic examination revealed abrasion on the surface of the inner blade and cracks on the inner tube after 1 reprocessing. These changes were more evident after 3 reprocessings. Scanning electron microscopy/energy dispersive x-ray spectroscopy of the inner cutter of the blade reprocessed once showed contaminants containing calcium, carbon, oxygen, and silicon, and Fourier transform infrared spectroscopy demonstrated biological protein consisting mainly of collagen, some type of salts, and polycarbonate used in plastic molding. Scanning electron microscopy/energy dispersive x-ray spectroscopy of the inner cutter of the reprocessed abrader revealed contaminants containing carbon, calcium, phosphorous, and oxygen, and Fourier transform infrared spectroscopy showed H2O, hydroxyapatite, and hydroxyl proteins. Scanning Auger microscopy showed that the tin-nickel plating on the moving blade and abrader was missing in some locations. This is the first study to evaluate both mechanical damage and chemical contaminants containing collagen, hydroxyapatite, and salts

  9. Results of the benchmark for blade structural models, part A

    DEFF Research Database (Denmark)

    Lekou, D.J.; Chortis, D.; Belen Fariñas, A.

    2013-01-01

    A benchmark on structural design methods for blades was performed within the InnWind.Eu project under WP2 “Lightweight Rotor” Task 2.2 “Lightweight structural design”. The present document is describes the results of the comparison simulation runs that were performed by the partners involved within...... Task 2.2 of the InnWind.Eu project. The benchmark is based on the reference wind turbine and the reference blade provided by DTU [1]. "Structural Concept developers/modelers" of WP2 were provided with the necessary input for a comparison numerical simulation run, upon definition of the reference blade...

  10. Quantifying uncertainties in the structural response of SSME blades

    Science.gov (United States)

    Nagpal, Vinod K.

    1987-01-01

    To quantify the uncertainties associated with the geometry and material properties of a Space Shuttle Main Engine (SSME) turbopump blade, a computer code known as STAEBL was used. A finite element model of the blade used 80 triangular shell elements with 55 nodes and five degrees of freedom per node. The whole study was simulated on the computer and no real experiments were conducted. The structural response has been evaluated in terms of three variables which are natural frequencies, root (maximum) stress, and blade tip displacements. The results of the study indicate that only the geometric uncertainties have significant effects on the response. Uncertainties in material properties have insignificant effects.

  11. Tracked Robot with Blade Arms to Enhance Crawling Capability

    OpenAIRE

    Jhu-Wei Ji; Fa-Shian Chang; Lih-Tyng Hwang; Chih-Feng Liu; Jeng-Nan Lee; Shun-Min Wang; Kai-Yi Cho

    2016-01-01

    This paper presents a tracked robot with blade arms powered to assist movement in difficult environments. As a result, the tracked robot is able to pass a ramp or climb stairs. The main feature is a pair of blade arms on both sides of the vehicle body working in collaboration with previously validated transformable track system. When the robot encounters an obstacle in a terrain, it enlists the blade arms with power to overcome the obstacle. In disaster areas, there usually will be terrains t...

  12. Coupling analysis of wind turbine blades based on aeroelastics and aerodynsmics

    DEFF Research Database (Denmark)

    Wang, Xudong; Chen, Jin; Zhang, Shigiang

    2010-01-01

    The structural dynamic equations of blades were constructed for blades of wind turbines. The vibration velocity of blades and the relative flow velocity were calculated using the structural dynamics model. Based on the BEM (Blade Element Momentum) theory and traditional areodynamics, the coupling...

  13. Effect of steady deflections on the aeroelastic stability of a turbine blade

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2011-01-01

    This paper deals with effects of geometric non-linearities on the aeroelastic stability of a steady-state defl ected blade. Today, wind turbine blades are long and slender structures that can have a considerable steady-state defl ection which affects the dynamic behaviour of the blade. The fl...... apwise blade defl ection causes the edgewise blade motion to couple to torsional blade motion and thereby to the aerodynamics through the angle of attack. The analysis shows that in the worst case for this particular blade, the edgewise damping can be decreased by half. Copyright © 2010 John Wiley & Sons......, Ltd....

  14. Study on Determination Method of Fatigue Testing Load for Wind Turbine Blade

    Science.gov (United States)

    Liao, Gaohua; Wu, Jianzhong

    2017-07-01

    In this paper, the load calculation method of the fatigue test was studied for the wind turbine blade under uniaxial loading. The characteristics of wind load and blade equivalent load were analyzed. The fatigue property and damage theory of blade material were studied. The fatigue load for 2MW blade was calculated by Bladed, and the stress calculated by ANSYS. Goodman modified exponential function S-N curve and linear cumulative damage rule were used to calculate the fatigue load of wind turbine blades. It lays the foundation for the design and experiment of wind turbine blade fatigue loading system.

  15. Aeroelastic Optimization of a 10 MW Wind Turbine Blade with Active Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Tibaldi, Carlo; Zahle, Frederik

    2016-01-01

    This article presents the aeroelastic optimization of a 10MW wind turbine ‘smart blade’ equipped with active trailing edge flaps. The multi-disciplinary wind turbine analysis and optimization tool HawtOpt2 is utilized, which is based on the open-source framework Open-MDAO. The tool interfaces...... to several state-of-the art simulation codes, allowing for a wide variety of problem formulations and combinations of models. A simultaneous aerodynamic and structural optimization of a 10 MW wind turbine rotor is carried out with respect to material layups and outer shape. Active trailing edge flaps...

  16. Steady State Structural Analysis of High Pressure Gas Turbine Blade using Finite Element Analysis

    Science.gov (United States)

    Mazarbhuiya, Hussain Mahamed Sahed Mostafa; Murari Pandey, Krishna

    2017-08-01

    In gas turbines the major portion of performance dependency lies upon turbine blade design. Turbine blades experience very high centrifugal, axial and tangential force during power generation. While withstanding these forces blades undergo elongation. Different methods have proposed for better enhancement of the mechanical properties of blade to withstand in extreme condition. Present paper describes the stress and elongation for blades having properties of different materials. Steady state structural analysis have performed in the present work for different materials (In 625, In 718, In 738, In 738 LC, MAR M246, Ni-Cr, Ti-alloy, Ti-Al, Ti-T6, U500). Remarkable finding is that the root of the blade is subjected to maximum stress for all blade materials and the blade made of MAR M246 has less stress and deformation among all other blade materials which can be selected as a suitable material for gas turbine blade.

  17. Mach number scaling of helicopter rotor blade/vortex interaction noise

    Science.gov (United States)

    Leighton, Kenneth P.; Harris, Wesley L.

    1985-01-01

    A parametric study of model helicopter rotor blade slap due to blade vortex interaction (BVI) was conducted in a 5 by 7.5-foot anechoic wind tunnel using model helicopter rotors with two, three, and four blades. The results were compared with a previously developed Mach number scaling theory. Three- and four-bladed rotor configurations were found to show very good agreement with the Mach number to the sixth power law for all conditions tested. A reduction of conditions for which BVI blade slap is detected was observed for three-bladed rotors when compared to the two-bladed baseline. The advance ratio boundaries of the four-bladed rotor exhibited an angular dependence not present for the two-bladed configuration. The upper limits for the advance ratio boundaries of the four-bladed rotors increased with increasing rotational speed.

  18. Performance improvement of small-scale rotors by passive blade twist control

    OpenAIRE

    Lv, Peng; Prothin, Sebastien; Mohd Zawawi, Fazila; Bénard, Emmanuel; Morlier, Joseph; Moschetta, Jean-Marc

    2015-01-01

    A passive twist control is proposed as an adaptive way to maximize the overall efficiency of the small-scale rotor blade for multifunctional aircrafts. Incorporated into a database of airfoil characteristics, Blade Element Momentum Theory is implemented to obtain the blade optimum twist rates for hover and forward flight. In order to realize the required torsion of blade between hover and forward flight, glass/epoxy laminate blade is proposed based on Centrifugal Force Induced Twist concept. ...

  19. Development of Glassy Carbon Blade for LHC Fast Vacuum Valve

    CERN Document Server

    Coly, P

    2012-01-01

    An unexpected gas inrush in a vacuum chamber leads to the development of a fast pressure wave. It carries small particles that can compromise functionality of sensitive machine systems such as the RF cavities or kickers. In the LHC machine, it has been proposed to protect this sensitive equipment by the installation of fast vacuum valves. The main requirements for the fast valves and in particular for the blade are: fast closure in the 20 ms range, high transparency and melting temperature in case of closure with beam in, dust free material to not contaminate sensitive adjacent elements, and last but not least vacuum compatibility and adequate leak tightness across the blade. In this paper, different designs based on a vitreous carbon blade are presented and a solution is proposed. The main reasons for this material choice are given. The mechanical study of the blade behaviour under dynamic forces is shown.

  20. Observations of dynamic stall on Darrieus wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Fujisawa, N.; Shibuya, S. [Department of Mechanical and Production Engineering, Niigata University, 8050 Ikarashi 2, 950-2181 Niigata (Japan)

    2001-02-01

    Flow field around a Darrieus wind turbine blade in dynamic stall is studied by flow visualization and particle image velocimetry (PIV) measurement in stationary and rotating frames of reference. The experiment is carried out using the small-scale Darrieus wind turbine in a water tunnel. The unsteady nature of the dynamic stall observed by the flow visualization is quantitatively reproduced in the instantaneous velocity distributions by PIV measurement, which describes the successive shedding of two pairs of stall vortices from the blade moving upstream. The mechanism of dynamic stall is due to the successive generation of separation on the inner surface of the blade followed by the formation of roll-up vortices from the outer surface. Although the qualitative nature of the dynamic stall is independent of the tip-speed ratios, the blade angle for stall appearance and the growth rate of the stall vortices are influenced by the change in tip-speed ratios.

  1. Non-invasive dynamic measurement of helicopter blades

    Science.gov (United States)

    Serafini, J.; Bernardini, G.; Mattioni, L.; Vezzari, V.; Ficuciello, C.

    2017-08-01

    This paper presents the development and the application on helicopter blades of a measurement system based on FBG strain gauges. Here, the main goal is the structural characterization of the main rotor blades, with the aim of showing the potentialities of such a system in blades quality check applications, as well as in the development of structural health monitoring and rotor state feedback devices. The device has been used in both non-rotating and rotating tests, and does not require the presence of slip rings or optical joint since it is completely allocated in the rotating system. It has been successfully applied to characterize the frequency response of blades lead-lag, flap and torsion deformations, up to 250 Hz.

  2. Determination of the angle of attack on rotor blades

    DEFF Research Database (Denmark)

    Shen, Wen Zhong; Hansen, Martin Otto Laver; Sørensen, Jens Nørkær

    2009-01-01

    Two simple methods for determining the angle of attack (AOA) on a section of a rotor blade are proposed. Both techniques consist of employing the Biot-Savart integral to determine the influence of the bound vorticity on the velocity field. In the first technique, the force distribution along...... the blade and the velocity at a monitor point in the vicinity of the blade are assumed to be known from experiments or CFD computations. The AOA is determined by subtracting the velocity induced by the bound circulation, determined from the loading, from the velocity at the monitor point. In the second...... to be located closer to the blade, and thus to determine the AOA with higher accuracy. Data from CFD computations for flows past the Tellus 95 kW wind turbine at different wind speeds are used to test both techniques. Comparisons show that the proposed methods are in good agreement with existing techniques...

  3. CMC blade with pressurized internal cavity for erosion control

    Science.gov (United States)

    Garcia-Crespo, Andres; Goike, Jerome Walter

    2016-02-02

    A ceramic matrix composite blade for use in a gas turbine engine having an airfoil with leading and trailing edges and pressure and suction side surfaces, a blade shank secured to the lower end of each airfoil, one or more interior fluid cavities within the airfoil having inlet flow passages at the lower end which are in fluid communication with the blade shank, one or more passageways in the blade shank corresponding to each one of the interior fluid cavities and a fluid pump (or compressor) that provides pressurized fluid (nominally cool, dry air) to each one of the interior fluid cavities in each airfoil. The fluid (e.g., air) is sufficient in pressure and volume to maintain a minimum fluid flow to each of the interior fluid cavities in the event of a breach due to foreign object damage.

  4. Helicopter Rotor Blade Monitoring using Autonomous Wireless Sensor Network

    NARCIS (Netherlands)

    Sanchez Ramirez, Andrea; Loendersloot, Richard; Tinga, Tiedo; Basu, B.

    2013-01-01

    The advancement on Wireless Sensor Networks for vibration monitoring presents important possibilities for helicopter rotor health and usage monitoring. While main rotor blades account for the main source of lift for helicopters, rotor induced vibration establishes an important source for

  5. Pressure coefficient evolutions on the blades of a Savonius rotor

    Energy Technology Data Exchange (ETDEWEB)

    Chauvin, A.; Guignard, S. [UMRR 7343, Marseilles (France). Lab. IUSTI; Kamoun, B. [Faculte des Sciences de Sfax (Tunisia). Lab. de Physique

    2012-07-01

    Measurements of the pressure field distribution on the blades of a vertical axis Savonius wind machine are presented. The rotor used in the wind tunnel is a two blades cylindrical shape with a central gap. Pressure gauges are placed on each side of a blade, so the pressure jumps between intrados and extrados of a blade during a whole rotation are drawn. In the static configuration, the machine is disposed at various incidences. The determination of pressure jumps allows to calculate the static torque of the machine versus the incidence angle. In the dynamic situation the machine is rotating at various frequencies and gauges signals are varying dynamically of course with the incidence. The dynamic torque coefficient is calculated. Evolutions of the starting torque and starting conditions are then described and dynamic effects on torque evolution are presented. (orig.)

  6. H-Darrieus Wind Turbine with Blade Pitch Control

    Directory of Open Access Journals (Sweden)

    I. Paraschivoiu

    2009-01-01

    Full Text Available A procedure for computing the optimal variation of the blades' pitch angle of an H-Darrieus wind turbine that maximizes its torque at given operational conditions is proposed and presented along with the results obtained on a 7 kW prototype. The CARDAAV code, based on the “Double-Multiple Streamtube” model developed by the first author, is used to determine the performances of the straight-bladed vertical axis wind turbine. This was coupled with a genetic algorithm optimizer. The azimuthal variation of the blades' pitch angle is modeled with an analytical function whose coefficients are used as variables in the optimization process. Two types of variations were considered for the pitch angle: a simple sinusoidal one and one which is more general, relating closely the blades' pitch to the local flow conditions along their circular path. A gain of almost 30% in the annual energy production was obtained with the polynomial optimal pitch control.

  7. Genetic control of leaf-blade morphogenesis by the INSECATUS ...

    Indian Academy of Sciences (India)

    2010-08-03

    Aug 3, 2010 ... demonstrated that the leaflet shape is dependent on the venation pattern. [Kumar S. ..... The spectrum of regulatory events is exemplified with respect to first .... exclusive as well as additive roles, in both leaf-blade rachis.

  8. CX-100 and TX-100 blade field tests.

    Energy Technology Data Exchange (ETDEWEB)

    Holman, Adam (USDA-Agriculture Research Service, Bushland, TX); Jones, Perry L.; Zayas, Jose R.

    2005-12-01

    In support of the DOE Low Wind Speed Turbine (LWST) program two of the three Micon 65/13M wind turbines at the USDA Agricultural Research Service (ARS) center in Bushland, Texas will be used to test two sets of experimental blades, the CX-100 and TX-100. The blade aerodynamic and structural characterization, meteorological inflow and wind turbine structural response will be monitored with an array of 75 instruments: 33 to characterize the blades, 15 to characterize the inflow, and 27 to characterize the time-varying state of the turbine. For both tests, data will be sampled at a rate of 30 Hz using the ATLAS II (Accurate GPS Time-Linked Data Acquisition System) data acquisition system. The system features a time-synchronized continuous data stream and telemetered data from the turbine rotor. This paper documents the instruments and infrastructure that have been developed to monitor these blades, turbines and inflow.

  9. Probabilistic Structural Analysis of SSME Turbopump Blades: Probabilistic Geometry Effects

    Science.gov (United States)

    Nagpal, V. K.

    1985-01-01

    A probabilistic study was initiated to evaluate the precisions of the geometric and material properties tolerances on the structural response of turbopump blades. To complete this study, a number of important probabilistic variables were identified which are conceived to affect the structural response of the blade. In addition, a methodology was developed to statistically quantify the influence of these probabilistic variables in an optimized way. The identified variables include random geometric and material properties perturbations, different loadings and a probabilistic combination of these loadings. Influences of these probabilistic variables are planned to be quantified by evaluating the blade structural response. Studies of the geometric perturbations were conducted for a flat plate geometry as well as for a space shuttle main engine blade geometry using a special purpose code which uses the finite element approach. Analyses indicate that the variances of the perturbations about given mean values have significant influence on the response.

  10. Optimization design of blade shapes for wind turbines

    DEFF Research Database (Denmark)

    Chen, Jin; Wang, Xudong; Shen, Wen Zhong

    2010-01-01

    For the optimization design of wind turbines, the new normal and tangential induced factors of wind turbines are given considering the tip loss of the normal and tangential forces based on the blade element momentum theory and traditional aerodynamic model. The cost model of the wind turbines...... and the optimization design model are developed. In the optimization model, the objective is the minimum cost of energy and the design variables are the chord length, twist angle and the relative thickness. Finally, the optimization is carried out for a 2 MW blade by using this optimization design model....... The performance of blades is validated through the comparison and analysis of the results. The reduced cost shows that the optimization model is good enough for the design of wind turbines. The results give a proof for the design and research on the blades of large scale wind turbines and also establish...

  11. A numerical analysis of the British Experimental Rotor Program blade

    Science.gov (United States)

    Duque, Earl P. N.

    1989-01-01

    Two Computational Fluid Dynamic codes which solve the compressible full-potential and the Reynolds-Averaged Thin-Layer Navier-Stokes equations were used to analyze the nonrotating aerodynamic characteristics of the British Experimental Rotor Program (BERP) helicopter blade at three flow regimes: low angle of attack, high angle of attack and transonic. Excellent agreement was found between the numerical results and experiment. In the low angle of attack regime, the BERP had less induced drag than a comparable aspect ratio rectangular planform wing. At high angle of attack, the blade attained high-lift by maintaining attached flow at the outermost spanwise locations. In the transonic regime, the BERP design reduces the shock strength at the outer spanwise locations which affects wave drag and shock-induced separation. Overall, the BERP blade exhibited many favorable aerodynamic characteristics in comparison to conventional helicopter rotor blades.

  12. Optimization model for rotor blades of horizontal axis wind turbines

    Institute of Scientific and Technical Information of China (English)

    LIU Xiong; CHEN Yan; YE Zhiquan

    2007-01-01

    This paper presents an optimization model for rotor blades of horizontal axis wind turbines. The model refers to the wind speed distribution function on the specific wind site, with an objective to satisfy the maximum annual energy output. To speed up the search process and guarantee a global optimal result, the extended compact genetic algorithm (ECGA) is used to carry out the search process.Compared with the simple genetic algorithm, ECGA runs much faster and can get more accurate results with a much smaller population size and fewer function evaluations. Using the developed optimization program, blades of a 1.3 MW stall-regulated wind turbine are designed. Compared with the existing blades, the designed blades have obviously better aerodynamic performance.

  13. Multi-dimensional optimization of small wind turbine blades

    DEFF Research Database (Denmark)

    Sessarego, Matias; Wood, David

    2015-01-01

    used to reduce the rotor inertia to help minimize starting time. Two airfoils are considered: the 10% thick SG6043 which has excellent lift:drag performance at low Reynolds number and the SD7062 whose extra thickness (14%) has some structural advantages, particularly for the weaker material (c). All......This paper describes a computer method to allow the design of small wind turbine blades for the multiple objectives of rapid starting, efficient power extraction, low noise, and minimal mass. For the sake of brevity, only the first two and the last objectives are considered in this paper....... The optimization aimed to study a range of blade materials, from traditional fibreglass through sustainable alternatives to rapid prototyping plastic. Because starting performance depends on blade inertia, there is a complex interaction between the material properties and the aerodynamics. Example blades of 1.1 m...

  14. Efficient algorithms for factorization and join of blades

    NARCIS (Netherlands)

    Fontijne, D.; Dorst, L.; Bayro-Corrochano, E.; Scheuermann, G.

    2010-01-01

    Subspaces are powerful tools for modeling geometry. In geometric algebra, they are represented using blades and constructed using the outer product. Producing the actual geometrical intersection (meet) and union (join) of subspaces, rather than the simplified linearizations often used in

  15. Effect of Number of Blades on Performance of Ceiling Fans

    Directory of Open Access Journals (Sweden)

    Adeeb Ehsan

    2015-01-01

    Full Text Available In this paper, the effect of number of blades on ceiling fan performance is discussed. This approach helps to satisfy tradeoff between high air flow (performance and power consumption (energy efficiency. Specifically, variation from two to six blades is considered with nonlinear forward sweep profile. Reynolds Averaged Navier-Stokes (RANS technique is used to model the flow field induced by the ceiling fan inside a generic room. The performance is gauged through response parameters namely volumetric flow rate, mass flow rate, torque and energy efficiency. The results indicate that mass and volumetric flow rates are maximized for six blade configuration and energy efficiency is maximized for two blade configuration. The study indicates the importance of tradeoff between high air flow through ceiling fan and associated energy efficiency.

  16. Guidelines to Interpret Results of Mechanical Blade Test

    International Nuclear Information System (INIS)

    Arias Vega, F.; Sanz Martin, J. C.

    1999-01-01

    This report shows the interpretation of full scale rotor blade test results and describes the engineering testing models and coefficients for any feasible rotor blade design, in order to accept and to certify any final manufactured blade as an allowable product, fit for use and working with a completely security during all the wind turbines lifetime. This work was carried out at the Wind Energy Division of the CIEMAT.DER and it is based on the authors technical experience in this field, after many years working on testing blades. Also, this paper contains results of the European wind turbine Standards II relevant to the European Project: JOULE III R.D. where the Wind Energy Division took part as participant too. (Author)

  17. Guidelines to Interpret Results of Mechanical Blade Test

    Energy Technology Data Exchange (ETDEWEB)

    Arias Vega, F.; Sanz Martin, J. C. [Ciemat, Madrid (Spain)

    2000-07-01

    This report shows the interpretation of full scale rotor blade test results and describes the engineering testing models and coefficients for any feasible rotor blade design, in order to accept and to certify any final manufactured blades as an allowable product, fit for use and working with a completely security during all the windturbine's lifetime. This work was carried out at the Wind Energy Division of the CIEMAT.DER and it is based on the author's technical experience in this field, after many years working on testing blades. Also, this paper contains results of the European wind turbine Standards II relevant to the European Project: JOULE III R.D. where the Wind Energy Division took part as participant too. (Author)

  18. A new gaseous detector for tracking: The blade chamber

    International Nuclear Information System (INIS)

    Ambrosi, G.; Battiston, R.; Levi, G.; Barillari, T.; Susinno, G.; Bergsma, F.; Contin, A.; Labbe, J.C.; Laurenti, G.; Mattern, D.; Simonet, G.; Williams, M.C.S.; Zichichi, A.; Boscherini, D.; Bruni, G.; De Pasquale, S.; Giusti, P.; Maccarrone, G.; Nania, R.; O'Shea, V.; Castro, H.; Galvez, J.; Rivera, F.; Schioppa, M.; Sharma, A.

    1990-01-01

    As part of the LAA project at CERN a prototype of a streamer-chamber in which a blade, instead of a wire, is used as the amplification electrode has been built. A big advantage is that the blade can be bent to follow a curve so that a chamber can be built with cells ideally matched to the geometry of the experiment. Moreover, a blade is very rugged, it can withstand severe mechanical shocks and it is also resistant to damage by sparks. The drift time has been measured and a spatial resolution of 250μm has been achieved. Left-right ambiguity can be solved by measuring the charge asymmetry on the walls. The coordinate along the blade is read by external pickup strips. (orig.)

  19. Ion beam analysis of gas turbine blades: evaluation of refurbishment ...

    Indian Academy of Sciences (India)

    Scanning proton microscopy was employed to evaluate the quality of refurbishment process of gas turbine ... environment of hot combustion gases occur due to various processes, such as .... performance of refurbished blades.7. Due to the ...

  20. Active Robust Control of Elastic Blade Element Containing Magnetorheological Fluid

    Science.gov (United States)

    Sivrioglu, Selim; Cakmak Bolat, Fevzi

    2018-03-01

    This research study proposes a new active control structure to suppress vibrations of a small-scale wind turbine blade filled with magnetorheological (MR) fluid and actuated by an electromagnet. The aluminum blade structure is manufactured using the airfoil with SH3055 code number which is designed for use on small wind turbines. An interaction model between MR fluid and the electromagnetic actuator is derived. A norm based multi-objective H2/H∞ controller is designed using the model of the elastic blade element. The H2/H∞ controller is experimentally realized under the impact and steady state aerodynamic load conditions. The results of experiments show that the MR fluid is effective for suppressing vibrations of the blade structure.

  1. Study on visual detection method for wind turbine blade failure

    Science.gov (United States)

    Chen, Jianping; Shen, Zhenteng

    2018-02-01

    Start your abstract here…At present, the non-destructive testing methods of the wind turbine blades has fiber bragg grating, sound emission and vibration detection, but there are all kinds of defects, and the engineering application is difficult. In this regard, three-point slope deviation method, which is a kind of visual inspection method, is proposed for monitoring the running status of wind turbine blade based on the image processing technology. A better blade image can be got through calibration, image splicing, pretreatment and threshold segmentation algorithm. Design of the early warning system to monitor wind turbine blade running condition, recognition rate, stability and impact factors of the method were statistically analysed. The experimental results shown showed that it has highly accurate and good monitoring effect.

  2. Wind Turbine Blade Design System - Aerodynamic and Structural Analysis

    Science.gov (United States)

    Dey, Soumitr

    2011-12-01

    The ever increasing need for energy and the depletion of non-renewable energy resources has led to more advancement in the "Green Energy" field, including wind energy. An improvement in performance of a Wind Turbine will enhance its economic viability, which can be achieved by better aerodynamic designs. In the present study, a design system that has been under development for gas turbine turbomachinery has been modified for designing wind turbine blades. This is a very different approach for wind turbine blade design, but will allow it to benefit from the features inherent in the geometry flexibility and broad design space of the presented system. It starts with key overall design parameters and a low-fidelity model that is used to create the initial geometry parameters. The low-fidelity system includes the axisymmetric solver with loss models, T-Axi (Turbomachinery-AXIsymmetric), MISES blade-to-blade solver and 2D wing analysis code XFLR5. The geometry parameters are used to define sections along the span of the blade and connected to the CAD model of the wind turbine blade through CAPRI (Computational Analysis PRogramming Interface), a CAD neutral API that facilitates the use of parametric geometry definition with CAD. Either the sections or the CAD geometry is then available for CFD and Finite Element Analysis. The GE 1.5sle MW wind turbine and NERL NASA Phase VI wind turbine have been used as test cases. Details of the design system application are described, and the resulting wind turbine geometry and conditions are compared to the published results of the GE and NREL wind turbines. A 2D wing analysis code XFLR5, is used for to compare results from 2D analysis to blade-to-blade analysis and the 3D CFD analysis. This kind of comparison concludes that, from hub to 25% of the span blade to blade effects or the cascade effect has to be considered, from 25% to 75%, the blade acts as a 2d wing and from 75% to the tip 3D and tip effects have to be taken into account

  3. Damage and Performance Assessment of Protective Coatings on Turbine Blades

    OpenAIRE

    Pokluda, Jaroslav; Kianicová, Marta

    2010-01-01

    Protective coatings on blades serve as physical barriers between the underlying substrate and the outer environment. This article presents an overview of damage mechanisms leading to failure of all basic types of coatings (diffusion, overlay and thermal barrier) on turbine blades of aircraft engines during service. Although a special emphasize is devoted to destructive effects of thermo-mechanical fatigue and overheating, the severe effects of hot corrosion, oxidation and erosion effects are ...

  4. Aerodynamic calculational methods for curved-blade Darrieus VAWT WECS

    Science.gov (United States)

    Templin, R. J.

    1985-03-01

    Calculation of aerodynamic performance and load distributions for curved-blade wind turbines is discussed. Double multiple stream tube theory, and the uncertainties that remain in further developing adequate methods are considered. The lack of relevant airfoil data at high Reynolds numbers and high angles of attack, and doubts concerning the accuracy of models of dynamic stall are underlined. Wind tunnel tests of blade airbrake configurations are summarized.

  5. About the problems and perspectives of making precision compressor blades

    Directory of Open Access Journals (Sweden)

    V. E. Galiev

    2014-01-01

    Full Text Available The problems of manufacturing blades with high precision profile geometry are considered in the article. The variant of the technology under development rules out the use of mechanical processing methods for blades airfoil. The article consists of an introduction and six small sections.The introduction sets out the requirements for modern aircraft engines, makes a list of problems arisen in the process of their manufacturing, and marks the relevance of the work.The first section analyzes the existing technology of precision blades. There is an illustration reflecting the stages of the process. Their advantages and disadvantages are marked.The second section provides an illustration, which shows the system-based blades used in the manufacturing process and a model of the work piece using the technology being developed. An analysis of each basing scheme is presented.In the third section we list the existing control methods of geometrical parameters of blades airfoil and present the measurement error data of devices. The special attention is paid to the impossibility to control the accuracy of geometrical parameters of precision blades.The fourth section presents the advantages of the electrochemical machining method with a consistent vibration of tool-electrode and with feeding the pulses of technology current over the traditional method. The article presents data accuracy and surface roughness of the blades airfoil reached owing to precision electrochemical machining. It illustrates machines that implement the given method of processing and components manufactured on them.The fifth section describes the steps of the developed process with justification for the use of the proposed operations.Based on the analysis, the author argues that the application of the proposed process to manufacture the precision compressor blades ensures producing the items that meet the requirements of the drawing.

  6. Wind Turbine Blades: An End of Life Perspective

    DEFF Research Database (Denmark)

    Beauson, Justine; Brøndsted, Povl

    2016-01-01

    In 2016, the first offshore windfarm constructed in the world—located in Denmark, near Ravnsborg—is turning 25 years old, and will soon be decommissioned. After decommissioning, most of the material of the turbine can be recycled; only the composite materials found in the blades represent...... a challenge. This part looks at end of life solutions for this material. Wind turbine blade structure and material are described. The ends of life solutions existing and under development are detailed....

  7. STATISTICAL ANALYSIS OF DAMAGEABILITY OF THE BYPASS ENGINES COMPRESSOR BLADES

    Directory of Open Access Journals (Sweden)

    Boris A. Chichkov

    2018-01-01

    Full Text Available Aircraft gas turbine engines during the operation are exposed to damage of flowing parts. The elements of the engine design, appreciably determining operational characteristics are rotor blades. Character of typical damages for various types of engines depends on appointment and a geographical place of the aircraft operation on which one or another engine is installed. For example, the greatest problem for turboshaft engines operated in the dusty air conditions is erosive wear of a rotor blade airfoil. Among principal causes of flowing parts damages of bypass engine compressors are foreign object damages. Independently there are the damages caused by fatigue of a rotor blade material at dangerous blade mode. Pieces of the ice formed in the input unit, birds and the like can also be a source of danger. The foreign objects getting into the engine from runway are nuts, bolts, pieces of tire protectors, lock-wire, elements from earlier flying off aircraft, etc. The entry of foreign objects into the engine depends on both an operation mode (during the operation on the ground, on takeoff, on landing roll using the reverse and so on, and the aircraft engine position.Thus the foreign objects entered into the flowing path of bypass engine damage blade cascade of low and high pressure. Foreign objects entered into the flowing part of the engine with rotor blades result in dents on edges and blade shroud, deformations of edges, breakage, camber of peripheral parts and are distributed "nonlinear" on path length (steps. The article presents the results of the statistical analysis of three types engine compressors damageability over the period of more than three years. Damages are divided according to types of engines in whole and to their separate steps, depths and lengths, blades damage location. The results of the analysis make it possible to develop recommendations to carry out the optical-visual control procedures.

  8. Hydrodynamics automatic optimization of runner blades for reaction hydraulic turbines

    Science.gov (United States)

    Balint, D.; Câmpian, V.; Nedelcu, D.; Megheles, O.

    2012-11-01

    The aim of this paper is to optimize the hydrodynamics of the runner blades of hydraulic turbines. The runner presented is an axial Kaplan one, but the methodology is common also to Francis runners. The whole methodology is implemented in the in-house software QTurbo3D. The effect of the runner blades geometry modification upon its hydrodynamics is shown both from energetic and cavitation points of view.

  9. Hydrodynamics automatic optimization of runner blades for reaction hydraulic turbines

    International Nuclear Information System (INIS)

    Balint, D; Câmpian, V; Nedelcu, D; Megheles, O

    2012-01-01

    The aim of this paper is to optimize the hydrodynamics of the runner blades of hydraulic turbines. The runner presented is an axial Kaplan one, but the methodology is common also to Francis runners. The whole methodology is implemented in the in-house software QTurbo3D. The effect of the runner blades geometry modification upon its hydrodynamics is shown both from energetic and cavitation points of view.

  10. Hybrid anisotropic materials for wind power turbine blades

    CERN Document Server

    Golfman, Yosif

    2012-01-01

    Based on rapid technological developments in wind power, governments and energy corporations are aggressively investing in this natural resource. Illustrating some of the crucial new breakthroughs in structural design and application of wind energy generation machinery, Hybrid Anisotropic Materials for Wind Power Turbine Blades explores new automated, repeatable production techniques that expand the use of robotics and process controls. These practices are intended to ensure cheaper fabrication of less-defective anisotropic material composites used to manufacture power turbine blades. This boo

  11. Reduction of Environmental Impact Effect of Disposing Wind Turbine Blades

    OpenAIRE

    Rahnama, Behzad

    2011-01-01

    Wind power industry is expected to be one of the fastest growing renewable energy sources inthe world. The growth specially focuses on growing industries and markets, because ofeconomical condition for wind power development besides political decisions.According to growth of wind turbine industries, wind turbine blades are growing fast in both sizeand number. The problem that now arises is how to deal with the blades at the end of their lifecycle. This Master Thesis describes existing methods...

  12. Flowfield Analysis of Savonius-type Wind Turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Tae Hyun; Chang, Se Myong [Kunsan National Univ., Kunsan (Korea, Republic of); Seo, Hyun Soo [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2007-07-01

    In this paper, we researched flow of 8000 {approx} 24000 Reynolds number around a blade model of Savonius-type wind turbine with experimental and numerical method. For the blade shape of arc, we analyzed flowfield with streak-image flow visualization, measured wake, computed drag coefficients, and compared them for given angle of attacks. The result of research can be used to design aerodynamic performance of Savonius-type turbine rotor directly.

  13. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    Energy Technology Data Exchange (ETDEWEB)

    Vijayakumar, Ganesh [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pennsylvania State Univ., University Park, PA (United States); Brasseur, James [Pennsylvania State Univ., University Park, PA (United States); Univ. of Colorado, Boulder, CO (United States); Lavely, Adam; Jayaraman, Balaji; Craven, Brent

    2016-01-04

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  14. Optimized chord and twist angle distributions of wind turbine blade considering Reynolds number effects

    Energy Technology Data Exchange (ETDEWEB)

    Wang, L.; Tang, X. [Univ. of Central Lancashire. Engineering and Physical Sciences, Preston (United Kingdom); Liu, X. [Univ. of Cumbria. Sustainable Engineering, Workington (United Kingdom)

    2012-07-01

    The aerodynamic performance of a wind turbine depends very much on its blade geometric design, typically based on the blade element momentum (BEM) theory, which divides the blade into several blade elements. In current blade design practices based on Schmitz rotor design theory, the blade geometric parameters including chord and twist angle distributions are determined based on airfoil aerodynamic data at a specific Reynolds number. However, rotating wind turbine blade elements operate at different Reynolds numbers due to variable wind speed and different blade span locations. Therefore, the blade design through Schmitz rotor theory at a specific Reynolds number does not necessarily provide the best power performance under operational conditions. This paper aims to provide an optimal blade design strategy for horizontal-axis wind turbines operating at different Reynolds numbers. A fixed-pitch variable-speed (FPVS) wind turbine with S809 airfoil is chosen as a case study and a Matlab program which considers Reynolds number effects is developed to determine the optimized chord and twist angle distributions of the blade. The performance of the optimized blade is compared with that of the preliminary blade which is designed based on Schmitz rotor design theory at a specific Reynolds number. The results demonstrate that the proposed blade design optimization strategy can improve the power performance of the wind turbine. This approach can be further developed for any practice of horizontal axis wind turbine blade design. (Author)

  15. Estimation of the energy loss at the blades in rowing: common assumptions revisited.

    Science.gov (United States)

    Hofmijster, Mathijs; De Koning, Jos; Van Soest, A J

    2010-08-01

    In rowing, power is inevitably lost as kinetic energy is imparted to the water during push-off with the blades. Power loss is estimated from reconstructed blade kinetics and kinematics. Traditionally, it is assumed that the oar is completely rigid and that force acts strictly perpendicular to the blade. The aim of the present study was to evaluate how reconstructed blade kinematics, kinetics, and average power loss are affected by these assumptions. A calibration experiment with instrumented oars and oarlocks was performed to establish relations between measured signals and oar deformation and blade force. Next, an on-water experiment was performed with a single female world-class rower rowing at constant racing pace in an instrumented scull. Blade kinematics, kinetics, and power loss under different assumptions (rigid versus deformable oars; absence or presence of a blade force component parallel to the oar) were reconstructed. Estimated power losses at the blades are 18% higher when parallel blade force is incorporated. Incorporating oar deformation affects reconstructed blade kinematics and instantaneous power loss, but has no effect on estimation of power losses at the blades. Assumptions on oar deformation and blade force direction have implications for the reconstructed blade kinetics and kinematics. Neglecting parallel blade forces leads to a substantial underestimation of power losses at the blades.

  16. Further dual purpose evolutionary optimization of small wind turbine blades

    International Nuclear Information System (INIS)

    Clifton-Smith, M J; Wood, D H

    2007-01-01

    Much work has been done to maximise the power extraction of wind turbine blades. However, small wind turbines are also required to be self starting and whilst blades designed for maximum power extraction can be optimised analytically, these blades often have poor starting performance. The numeric method of Differential Evolution is used here to maximise for both power and starting performance. Standard blade element theory is used to calculate the power coefficient, and a modified blade element method for starting time. The chord and twist of each blade element make up the genes for evolution. Starting times can be improved by a factor of 20 with only a small reduction in power coefficient. With the introduction of the tip speed ratio as an additional gene, up to 10% improvement in power coefficient was achieved. A second study was done in another case where analytical optimisation is not possible; the inclusion of tip losses. The inclusion resulted in only a small increase in the optimum chord in the tip region which becomes less noticeable at lower tip speed ratios

  17. Vibrational analysis of vertical axis wind turbine blades

    Science.gov (United States)

    Kapucu, Onur

    The goal of this research is to derive a vibration model for a vertical axis wind turbine blade. This model accommodates the affects of varying relative flow angle caused by rotating the blade in the flow field, uses a simple aerodynamic model that assumes constant wind speed and constant rotation rate, and neglects the disturbance of wind due to upstream blade or post. The blade is modeled as elastic Euler-Bernoulli beam under transverse bending and twist deflections. Kinetic and potential energy equations for a rotating blade under deflections are obtained, expressed in terms of assumed modal coordinates and then plugged into Lagrangian equations where the non-conservative forces are the lift and drag forces and moments. An aeroelastic model for lift and drag forces, approximated with third degree polynomials, on the blade are obtained assuming an airfoil under variable angle of attack and airflow magnitudes. A simplified quasi-static airfoil theory is used, in which the lift and drag coefficients are not dependent on the history of the changing angle of attack. Linear terms on the resulting equations of motion will be used to conduct a numerical analysis and simulation, where numeric specifications are modified from the Sandia-17m Darrieus wind turbine by Sandia Laboratories.

  18. Near net shape forging of titanium alloy turbine blade

    International Nuclear Information System (INIS)

    Morita, Akiyasu; Hattori, Shigeo; Tani, Kazuhito; Takemura, Atsushi; Ashida, Yoshio

    1991-01-01

    The isothermal forging process has been developed to produce turbine blades made of near β Ti-alloy Ti-10V-2Fe-3Al. It is important to set the preform at the optimum position of the die in order to get a high precision product. The deformation analysis by using FEM is effective to determine the optimum position. And also it is necessary to avoid buckling induced by the restriction of axial elongation of the material. As a result, Ti-10V-2Fe-3Al blades could be formed precisely by using only one stage of forging, and machining was needed only at the root. The thickness of the oxide layer induced on the surface of the forged blade was only 70μm. The mechanical properties of Ti-10V-2Fe-3Al blades after forging and annealing were superior to those of Ti-6Al-4V blades and were nearly uniform across the length of the blades. (author)

  19. Unsteady potential flow past a propeller blade section

    Science.gov (United States)

    Takallu, M. A.

    1990-01-01

    An analytical study was conducted to predict the effect of an oscillating stream on the time dependent sectional pressure and lift coefficients of a model propeller blade. The assumption is that as the blade sections encounter a wake, the actual angles of attack vary in a sinusoidal manner through the wake, thus each blade is exposed to an unsteady stream oscillating about a mean value at a certain reduced frequency. On the other hand, an isolated propeller at some angle of attack can experience periodic changes in the value of the flow angle causing unsteady loads on the blades. Such a flow condition requires the inclusion of new expressions in the formulation of the unsteady potential flow around the blade sections. These expressions account for time variation of angle of attack and total shed vortices in the wake of each airfoil section. It was found that the final expressions for the unsteady pressure distribution on each blade section are periodic and that the unsteady circulation and lift coefficients exhibit a hysteresis loop.

  20. Laparoscopic pyloromyotomy: comparing the arthrotomy knife to the Bovie blade.

    Science.gov (United States)

    Thomas, Priscilla G; Sharp, Nicole E; St Peter, Shawn D

    2014-07-01

    Laparoscopic pyloromyotomy was performed at our institution using an arthrotomy knife until it became unavailable in 2010. Thus, we adapted the use of the blunt Bovie tip, which can be used with or without electrocautery to perform the myotomy. This study compared the outcomes between using the arthrotomy knife versus the Bovie blade in laparoscopic pyloromyotomies. Retrospective review was performed on all laparoscopic pyloromyotomy patients from October 2007 to September 2012. Arthrotomy knife pyloromyotomy patients were compared with those performed with the Bovie blade. Patient demographics, diagnostic measurements, electrolyte levels, length of stay, operative time, and complications were compared. A total of 381 patients were included, with 191 in the arthrotomy group and 190 in the Bovie blade group. No significant differences existed between groups in age, weight, gender, pyloric dimensions, electrolyte levels, or length of stay. Mean operative times were 15.8±5.6 min with knife and 16.4±5.3 min for Bovie blade (P=0.24). In the arthrotomy knife group, there was one incomplete pyloromyotomy and one omental herniation. There was one wound infection in each group. Readmission rate was greater in the arthrotomy knife group (5.7%) versus the Bovie blade group (3.1%). The Bovie blade appears to offer no objective disadvantages compared with the arthrotomy knife when performing laparoscopic pyloromyotomy. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Structure of three Zlatoust bulats (Damascus-steel blades)

    Science.gov (United States)

    Schastlivtsev, V. M.; Gerasimov, V. Yu.; Rodionov, D. P.

    2008-08-01

    Chemical composition, structure, and hardness of samples of three Zlatoust bulats (Damascus steels), namely, an Anosov bulat blade (1841), Obukhov bulat blade (1859), and a Shvetsov forged bulat-steel blank (crucible steel) have been investigated. The Anosov bulat possesses all signs of the classical Damascus steel; this is a hypereutectoid carbon steel with a structure formed from chains of carbides against the background of fine pearlite (troostite). A banded pattern is revealed on the surface of the blade. The Obukhov blade cannot be referred to classical Damascus steel. The pattern on the surface of the blade is absent, despite the fact that the initial steel is hypereutectoid. The structure of the blade does not correspond to the structure of classical Damascus steel; this is bainite with numerous cementite particles. The Shvetsov sample cannot be regarded as Damascus steel since it is made from a hypereutectoid steel alloyed by managanese and tungsten. The pattern on the surface of the metal is a consequence of the dendritic structure of the ingot which is developed during forging. The structure of this pattern differs from classical damascene pattern, since the latter is formed due to a specific arrangement of a variety of carbide particles against the pearlitic or some other background obtained during heat treatment.

  2. Blade size and weight effects in shovel design.

    Science.gov (United States)

    Freivalds, A; Kim, Y J

    1990-03-01

    The shovel is a basic tool that has undergone only nominal systematic design changes. Although previous studies found shovel-weight and blade-size effects of shovelling, the exact trade-off between the two has not been quantified. Energy expenditure, heart rate, ratings of perceived exertion and shovelling performance were measured on five subjects using five shovels with varying blade sizes and weights to move sand. Energy expenditure, normalised to subject weight and load handled, varied quadratically with the blade-size/shovel-weight (B/W) ratio. Minimum energy cost was at B/W = 0.0676 m2/kg, which for an average subject and average load would require an acceptable 5.16 kcal/min of energy expenditure. Subjects, through the ratings of perceived exertion, also strongly preferred the lighter shovels without regard to blade size. Too large a blade or too heavy a shovel increased energy expenditure beyond acceptable levels, while too small a blade reduced efficiency of the shovelling.

  3. WhalePower tubercle blade power performance test report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-15

    Toronto-based WhalePower Corporation has developed turbine blades that are modeled after humpback whale flippers. The blades, which incorporate tubercles along the leading edge of the blade, have been fitted to a Wenvor 25 kW turbine installed in North Cape, Prince Edward Island at a test site for the Wind Energy Institute of Canada (WEICan). A test was conducted to characterize the power performance of the prototype wind turbine. This report described the wind turbine configuration with particular reference to turbine information, power rating, blade information, tower information, control systems and grid connections. The test site was also described along with test equipment and measurement procedures. Information regarding power output as a function of wind speed was included along with power curves, power coefficient and annual energy production. The results for the power curve and annual energy production contain a level of uncertainty. While measurements for this test were collected and analyzed in accordance with International Electrotechnical Commission (IEC) standards for performance measurements of electricity producing wind turbines (IEC 61400-12-1), the comparative performance data between the prototype WhalePower wind turbine blade and the Wenvor standard blade was not gathered to IEC data standards. Deviations from IEC-61400-12-1 procedures were listed. 6 tabs., 16 figs., 3 appendices.

  4. A shape adaptive airfoil for a wind turbine blade

    Science.gov (United States)

    Daynes, Stephen; Weaver, Paul M.

    2011-04-01

    The loads on wind turbine components are primarily from the blades. It is important to control these blade loads in order to avoid damaging the wind turbine. Rotor control technology is currently limited to controlling the rotor speed and the pitch of the blades. As blades increase in length it becomes less desirable to pitch the entire blade as a single rigid body, but instead there is a requirement to control loads more precisely along the length of the blade. This can be achieved with aerodynamic control devices such as flaps. Morphing technologies are good candidates for wind turbine flaps because they have the potential to create structures that have the conflicting abilities of being load carrying, light-weight and shape adaptive. A morphing flap design with a highly anisotropic cellular structure is presented which is able to undergo large deflections and high strains without a large actuation penalty. An aeroelastic analysis couples the work done by aerodynamic loads on the flap, the flap strain energy and the required actuation work to change shape. The morphing flap is experimentally validated with a manufactured demonstrator and shown to have reduced actuation requirements compared to a conventional hinged flap.

  5. Fluctuations of angle of attack and lift coefficient and the resultant fatigue loads for a large horizontal axis wind turbine

    NARCIS (Netherlands)

    Rezaeiha, A.; Pereira, R.; Kotsonis, M.

    2017-01-01

    Unsteady loads are a major limiting factor for further upscaling of HAWTs considering the high costs associated to strict structural requirements. Alleviation of these unsteady loads on HAWT blades, e.g. using active flow control (AFC), is of high importance. In order to devise effective AFC

  6. Structural optimization procedure of a composite wind turbine blade for reducing both material cost and blade weight

    Science.gov (United States)

    Hu, Weifei; Park, Dohyun; Choi, DongHoon

    2013-12-01

    A composite blade structure for a 2 MW horizontal axis wind turbine is optimally designed. Design requirements are simultaneously minimizing material cost and blade weight while satisfying the constraints on stress ratio, tip deflection, fatigue life and laminate layup requirements. The stress ratio and tip deflection under extreme gust loads and the fatigue life under a stochastic normal wind load are evaluated. A blade element wind load model is proposed to explain the wind pressure difference due to blade height change during rotor rotation. For fatigue life evaluation, the stress result of an implicit nonlinear dynamic analysis under a time-varying fluctuating wind is converted to the histograms of mean and amplitude of maximum stress ratio using the rainflow counting algorithm Miner's rule is employed to predict the fatigue life. After integrating and automating the whole analysis procedure an evolutionary algorithm is used to solve the discrete optimization problem.

  7. Laser profiling of 3D microturbine blades

    Science.gov (United States)

    Holmes, Andrew S.; Heaton, Mark E.; Hong, Guodong; Pullen, Keith R.; Rumsby, Phil T.

    2003-11-01

    We have used KrF excimer laser ablation in the fabrication of a novel MEMS power conversion device based on an axial-flow turbine with an integral axial-flux electromagnetic generator. The device has a sandwich structure, comprising a pair of silicon stators either side of an SU8 polymer rotor. The curved turbine rotor blades were fabricated by projection ablation of SU8 parts performed by conventional UV lithography. A variable aperture mask, implemented by stepping a moving aperture in front of a fixed one, was used to achieve the desired spatial variation in the ablated depth. An automatic process was set up on a commercial laser workstation, with the laser firing and mask motion being controlled by computer. High quality SU8 rotor parts with diameters of 13 mm and depths of 1 mm were produced at a fluence of 0.7 J/cm2, corresponding to a material removal rate of approximately 0.3 μm per pulse. A similar approach was used to form SU8 guide vane inserts for the stators.

  8. A novel folding blade of wind turbine rotor for effective power control

    International Nuclear Information System (INIS)

    Xie, Wei; Zeng, Pan; Lei, Liping

    2015-01-01

    Highlights: • A novel folding blade for wind turbine power control is proposed. • Wind tunnel experiments were conducted to analyze folding blade validity. • Folding blade is valid to control wind turbine power output. • Compared to pitch control, thrust was reduced by fold control in power regulation. • Optimum fold angles were found for wind turbine start up and aerodynamic brake. - Abstract: A concept of novel folding blade of horizontal axis wind turbine is proposed in current study. The folding blade comprises a stall regulated root blade section and a folding tip blade section with the fold axis inclined relative to blade span. By folding blade, lift force generated on the tip blade section changes and the moment arm also shortens, which leads to variations of power output. The blade folding actuation mechanism with servo motor and worm-gear reducer was designed. Wind turbine rotor control scheme and servo system with double feedback loops for blade fold angle control were proposed. In this study, a small folding blade model was tested in a wind tunnel to analyze its performance. The blade model performance was estimated in terms of rotation torque coefficient and thrust coefficient. Wind tunnel experiments were also conducted for pitch control using the same blade model in order to make a direct comparison. The power control, start up and aerodynamic brake performance of the folding blade were analyzed. According to the wind tunnel experiment results, fold angle magnitude significantly affected blade aerodynamic performance and the thrust characteristic together with the rotation torque characteristic of folding blade were revealed. The experiment results demonstrated that the folding blade was valid to control power output and had advantages in reducing thrust with maximum reduction of 51.1% compared to pitch control. Optimum fold angles of 55° and 90° were also found for start up and aerodynamic brake, respectively

  9. A Non-Uniformly Under-Sampled Blade Tip-Timing Signal Reconstruction Method for Blade Vibration Monitoring

    Directory of Open Access Journals (Sweden)

    Zheng Hu

    2015-01-01

    Full Text Available High-speed blades are often prone to fatigue due to severe blade vibrations. In particular, synchronous vibrations can cause irreversible damages to the blade. Blade tip-timing methods (BTT have become a promising way to monitor blade vibrations. However, synchronous vibrations are unsuitably monitored by uniform BTT sampling. Therefore, non-equally mounted probes have been used, which will result in the non-uniformity of the sampling signal. Since under-sampling is an intrinsic drawback of BTT methods, how to analyze non-uniformly under-sampled BTT signals is a big challenge. In this paper, a novel reconstruction method for non-uniformly under-sampled BTT data is presented. The method is based on the periodically non-uniform sampling theorem. Firstly, a mathematical model of a non-uniform BTT sampling process is built. It can be treated as the sum of certain uniform sample streams. For each stream, an interpolating function is required to prevent aliasing in the reconstructed signal. Secondly, simultaneous equations of all interpolating functions in each sub-band are built and corresponding solutions are ultimately derived to remove unwanted replicas of the original signal caused by the sampling, which may overlay the original signal. In the end, numerical simulations and experiments are carried out to validate the feasibility of the proposed method. The results demonstrate the accuracy of the reconstructed signal depends on the sampling frequency, the blade vibration frequency, the blade vibration bandwidth, the probe static offset and the number of samples. In practice, both types of blade vibration signals can be particularly reconstructed by non-uniform BTT data acquired from only two probes.

  10. Independent Blade Pitch Controller Design for a Three-Bladed Turbine Using Disturbance Accommodating Control

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Wright, Alan D.; Johnson, Kathryn E.

    2016-08-01

    Two independent pitch controllers (IPCs) based on the disturbance accommodating control (DAC) algorithm are designed for the three-bladed Controls Advanced Research Turbine to regulate rotor speed and to mitigate blade root flapwise bending loads in above-rated wind speed. One of the DAC-based IPCs is designed based on a transformed symmetrical-asymmetrical (TSA) turbine model, with wind disturbances being modeled as a collective horizontal component and an asymmetrical linear shear component. Another DAC-based IPC is designed based on a multiblade coordinate (MBC) transformed turbine model, with a horizontal component and a vertical shear component being modeled as step waveform disturbance. Both of the DAC-based IPCs are found via a regulation equation solved by Kronecker product. Actuator dynamics are considered in the design processes to compensate for actuator phase delay. The simulation study shows the effectiveness of the proposed DAC-based IPCs compared to a proportional-integral (PI) collective pitch controller (CPC). Improvement on rotor speed regulation and once-per-revolution and twice-per-revolution load reductions has been observed in the proposed IPC designs.

  11. Independent Blade Pitch Controller Design for a Three-Bladed Turbine Using Disturbance Accommodating Control: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Na; Wright, Alan D.; Johnson, Kathryn E.

    2016-07-29

    Two independent pitch controllers (IPCs) based on the disturbance accommodating control (DAC) algorithm are designed for the three-bladed Controls Advanced Research Turbine to regulate rotor speed and to mitigate blade root flapwise bending loads in above-rated wind speed. One of the DAC-based IPCs is designed based on a transformed symmetrical-asymmetrical (TSA) turbine model, with wind disturbances being modeled as a collective horizontal component and an asymmetrical linear shear component. Another DAC-based IPC is designed based on a multiblade coordinate (MBC) transformed turbine model, with a horizontal component and a vertical shear component being modeled as step waveform disturbance. Both of the DAC-based IPCs are found via a regulation equation solved by Kronecker product. Actuator dynamics are considered in the design processes to compensate for actuator phase delay. The simulation study shows the effectiveness of the proposed DAC-based IPCs compared to a proportional-integral (PI) collective pitch controller (CPC). Improvement on rotor speed regulation and once-per-revolution and twice-per-revolution load reductions has been observed in the proposed IPC designs.

  12. Tiltrotor research aircraft composite blade repairs: Lessons learned

    Science.gov (United States)

    Espinosa, Paul S.; Groepler, David R.

    1991-01-01

    The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.

  13. Tiltrotor Research Aircraft composite blade repairs - Lessons learned

    Science.gov (United States)

    Espinosa, Paul S.; Groepler, David R.

    1992-01-01

    The XV-15, N703NA Tiltrotor Research Aircraft located at the NASA Ames Research Center, Moffett Field, California, currently uses a set of composite rotor blades of complex shape known as the advanced technology blades (ATBs). The main structural element of the blades is a D-spar constructed of unidirectional, angled fiberglass/graphite, with the aft fairing portion of the blades constructed of a fiberglass cross-ply skin bonded to a Nomex honeycomb core. The blade tip is a removable laminate shell that fits over the outboard section of the spar structure, which contains a cavity to retain balance weights. Two types of tip shells are used for research. One is highly twisted (more than a conventional helicopter blade) and has a hollow core constructed of a thin Nomex-honeycomb-and-fiberglass-skin sandwich; the other is untwisted with a solid Nomex honeycomb core and a fiberglass cross-ply skin. During initial flight testing of the blades, a number of problems in the composite structure were encountered. These problems included debonding between the fiberglass skin and the honeycomb core, failure of the honeycomb core, failures in fiberglass splices, cracks in fiberglass blocks, misalignment of mated composite parts, and failures of retention of metal fasteners. Substantial time was spent in identifying and repairing these problems. Discussed here are the types of problems encountered, the inspection procedures used to identify each problem, the repairs performed on the damaged or flawed areas, the level of criticality of the problems, and the monitoring of repaired areas. It is hoped that this discussion will help designers, analysts, and experimenters in the future as the use of composites becomes more prevalent.

  14. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    DEFF Research Database (Denmark)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists...... is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics...

  15. Multipath Suppression with an Absorber for UWB Wind Turbine Blade Deflection Sensing Systems

    DEFF Research Database (Denmark)

    Zhang, Shuai; Franek, Ondrej; Eggers, Patrick Claus F.

    2017-01-01

    The deflection of a wind turbine blade can be monitored with an ultra-wideband (UWB) deflection sensing system which consists of one transmitting antenna at the blade tip and two receiving antennas at the blade root. The blade deflection is calculated by two estimated tip-root antenna distances...... verifications of the proposed method are carried out with different full-blade measurements. From all the results, it is found that the proposed technique can efficiently suppress multipath for the in-blade tip antenna, and improve the pulse wave front fidelity, so that the UWB sensing system can also...

  16. Large-area photogrammetry based testing of wind turbine blades

    Science.gov (United States)

    Poozesh, Peyman; Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter; Harvey, Eric; Yarala, Rahul

    2017-03-01

    An optically based sensing system that can measure the displacement and strain over essentially the entire area of a utility-scale blade leads to a measurement system that can significantly reduce the time and cost associated with traditional instrumentation. This paper evaluates the performance of conventional three dimensional digital image correlation (3D DIC) and three dimensional point tracking (3DPT) approaches over the surface of wind turbine blades and proposes a multi-camera measurement system using dynamic spatial data stitching. The potential advantages for the proposed approach include: (1) full-field measurement distributed over a very large area, (2) the elimination of time-consuming wiring and expensive sensors, and (3) the need for large-channel data acquisition systems. There are several challenges associated with extending the capability of a standard 3D DIC system to measure entire surface of utility scale blades to extract distributed strain, deflection, and modal parameters. This paper only tries to address some of the difficulties including: (1) assessing the accuracy of the 3D DIC system to measure full-field distributed strain and displacement over the large area, (2) understanding the geometrical constraints associated with a wind turbine testing facility (e.g. lighting, working distance, and speckle pattern size), (3) evaluating the performance of the dynamic stitching method to combine two different fields of view by extracting modal parameters from aligned point clouds, and (4) determining the feasibility of employing an output-only system identification to estimate modal parameters of a utility scale wind turbine blade from optically measured data. Within the current work, the results of an optical measurement (one stereo-vision system) performed on a large area over a 50-m utility-scale blade subjected to quasi-static and cyclic loading are presented. The blade certification and testing is typically performed using International

  17. Determination of Remaining Useful Life of Gas Turbine Blade

    Directory of Open Access Journals (Sweden)

    Meor Said Mior Azman

    2016-01-01

    Full Text Available The aim of this research is to determine the remaining useful life of gas turbine blade, using service-exposed turbine blades. This task is performed using Stress Rupture Test (SRT under accelerated test conditions where the applied stresses to the specimen is between 400 MPa to 600 MPa and the test temperature is 850°C. The study will focus on the creep behaviour of the 52000 hours service-exposed blades, complemented with creep-rupture modelling using JMatPro software and microstructure examination using optical microscope. The test specimens, made up of Ni-based superalloy of the first stage turbine blades, are machined based on International Standard (ISO 24. The results from the SRT will be analyzed using these two main equations – Larson-Miller Parameter and Life Fraction Rule. Based on the results of the remaining useful life analysis, the 52000h service-exposed blade has the condition to operate in the range of another 4751 hr to 18362 hr. The microstructure examinations shows traces of carbide precipitation that deteriorate the grain boundaries that occurs during creep process. Creep-rupture life modelling using JMatPro software has shown good agreement with the accelerated creep rupture test with minimal error.

  18. Application of Circulation Controlled Blades for Vertical Axis Wind Turbines

    Directory of Open Access Journals (Sweden)

    Velissarios Kourkoulis

    2013-07-01

    Full Text Available The blades of a vertical axis wind turbine (VAWT rotor see an inconsistent angle of attack through its rotation. Consequently, VAWT blades generally use symmetrical aerofoils with a lower lift-to-drag ratio than cambered aerofoils tailored to maximise horizontal axis wind turbine rotor performance. This paper considers the feasibility of circulation controlled (CC VAWT blades, using a tangential air jet to provide lift and therefore power augmentation. However CC blade sections require a higher trailing-edge thickness than conventional sections giving rise to additional base drag. The choice of design parameters is a compromise between lift augmentation, additional base drag as well as the power required to pump the air jet. Although CC technology has been investigated for many years, particularly for aerospace applications, few researchers have considered VAWT applications. This paper considers the feasibility of the technology, using Computational Fluid Dynamics to evaluate a baseline CC aerofoil with different trailing-edge ellipse shapes. Lift and drag increments due to CC are considered within a momentum based turbine model to determine net power production. The study found that for modest momentum coefficients significant net power augmentation can be achieved with a relatively simple aerofoil geometry if blowing is controlled through the blades rotation.

  19. The heat transfer analysis of the first stage blade

    International Nuclear Information System (INIS)

    Hong, Yong Ju; Choi, Bum Seog; Park, Byung Gyu; Yoon, Eui Soo

    2001-01-01

    To get higher efficiency of gas turbine, the designer should have more higher Turbine Inlet Temperature(TIT). Today, modern gas turbine having sophisticated cooling scheme has TIT above 1,700 .deg. C. In the Korea, many gas turbine having TIT above 1,300 .deg. C was imported and being operated, but the gas with high TIT above 1,300 .deg. C in the turbine will give damage to liner of combustor, and blade of turbine and etc. So frequently maintenance for parts enduring high temperature was performed. In this study, the heat transfer analysis of cooling air in the internal cooling channel (network analysis) and temperature analysis of the blade (Finite Element Analysis) in the first stage rotor was conducted for development of the optimal cooling passage design procedure. The results of network analysis and FEM analysis of blade show that the high temperature spot are occurred at the leading edge, trailing edge near tip, and platform. So to get more reliable performance of gas turbine, the more efficient cooling method should be applied at the leading edge and tip section and the thermal barrier coating on the blade surface has important role in cooling blade

  20. Bladed Terrain on Pluto: Possible origins and evolution

    Science.gov (United States)

    Moore, Jeffrey M.; Howard, Alan D.; Umurhan, Orkan M.; White, Oliver L.; Schenk, Paul M.; Beyer, Ross A.; McKinnon, William B.; Spencer, John R.; Singer, Kelsi N.; Grundy, William M.; Earle, Alissa M.; Schmitt, Bernard; Protopapa, Silvia; Nimmo, Francis; Cruikshank, Dale P.; Hinson, David P.; Young, Leslie A.; Stern, S. Alan; Weaver, Harold A.; Olkin, Cathy B.; Ennico, Kimberly; Collins, Geoffrey; Bertrand, Tanguy; Forget, François; Scipioni, Francesca; New Horizons Science Team

    2018-01-01

    Bladed Terrain on Pluto consists of deposits of massive CH4, which are observed to occur within latitudes 30° of the equator and are found almost exclusively at the highest elevations (> 2 km above the mean radius). Our analysis indicates that these deposits of CH4 preferentially precipitate at low latitudes where net annual solar energy input is lowest. CH4 and N2 will both precipitate at low elevations. However, since there is much more N2 in the atmosphere than CH4, the N2 ice will dominate at these low elevations. At high elevations the atmosphere is too warm for N2 to precipitate so only CH4 can do so. We conclude that following the time of massive CH4 emplacement; there have been sufficient excursions in Pluto's climate to partially erode these deposits via sublimation into the blades we see today. Blades composed of massive CH4 ice implies that the mechanical behavior of CH4 can support at least several hundred meters of relief at Pluto surface conditions. Bladed Terrain deposits may be widespread in the low latitudes of the poorly seen sub-Charon hemisphere, based on spectral observations. If these locations are indeed Bladed Terrain deposits, they may mark heretofore unrecognized regions of high elevation.

  1. A review of damage detection methods for wind turbine blades

    International Nuclear Information System (INIS)

    Li, Dongsheng; Song, Gangbing; Ren, Liang; Li, Hongnan; Ho, Siu-Chun M

    2015-01-01

    Wind energy is one of the most important renewable energy sources and many countries are predicted to increase wind energy portion of their whole national energy supply to about twenty percent in the next decade. One potential obstacle in the use of wind turbines to harvest wind energy is the maintenance of the wind turbine blades. The blades are a crucial and costly part of a wind turbine and over their service life can suffer from factors such as material degradation and fatigue, which can limit their effectiveness and safety. Thus, the ability to detect damage in wind turbine blades is of great significance for planning maintenance and continued operation of the wind turbine. This paper presents a review of recent research and development in the field of damage detection for wind turbine blades. Specifically, this paper reviews frequently employed sensors including fiber optic and piezoelectric sensors, and four promising damage detection methods, namely, transmittance function, wave propagation, impedance and vibration based methods. As a note towards the future development trend for wind turbine sensing systems, the necessity for wireless sensing and energy harvesting is briefly presented. Finally, existing problems and promising research efforts for online damage detection of turbine blades are discussed. (topical review)

  2. Aerodynamic investigation of winglets on wind turbine blades using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Jeppe; Soerensen, Niels N.

    2006-02-15

    The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of them were pointing towards the pressure side (upstream) and one was pointing towards the suction side (downstream). Additionally, a rectangular modification of the original blade tip was designed with the same planform area as the blades with winglets. Results show that adding a winglet to the existing blade increase the force distribution on the outer approx 14 % of the blade leading to increased produced power of around 0.6% to 1.4% for wind speeds larger than 6 m/s. This has to be compared to the increase in thrust of around 1.0% to 1.6%. Pointing the winglet downstream increases the power production even further. The effect of sweep and cant angles is not accounted for in the present investigation and could improve the winglets even more. (au)

  3. Integration of Airfoil Design during the design of new blades

    Energy Technology Data Exchange (ETDEWEB)

    Sartori, L.; Bottasso, L.; Croce, A. [Politecnico di Milano, Milan (Italy); Grasso, F. [ECN Wind Power, Petten (Netherlands)

    2013-09-15

    Despite the fact that the design of a new blade is a multidisciplinary task, often the different disciplines are combined together at later stage. Looking at the aerodynamic design, it is common practice design/select the airfoils first and then design the blade in terms of chord and twist based on the initial selection of the airfoils. Although this approach is quite diffused, it limits the potentialities of obtaining optimal performance. The present work is focused on investigating the benefits of designing the external shape of the blade including the airfoil shapes together with chord and twist. To accomplish this, a design approach has been developed, where an advanced gradient based optimization algorithm is able to control the shape of the blade. The airfoils described in the work are the NACA 4 digits, while the chord distribution and the twist distribution are described through Bezier curves. In this way, the complexity of the problem is limited while a versatile geometrical description is kept. After the details of the optimization scheme are illustrated, several numerical examples are shown, demonstrating the advantages in terms of performance and development time of integrating the design of the airfoils during the optimization of the blade.

  4. Development of advanced blade pitching kinematics for cycloturbines and cyclorotors

    Science.gov (United States)

    Adams, Zachary Howard

    Cycloturbines and cyclorotors are established concepts for extracting freesteam fluid energy and producing thrust which promise to exceed the performance of traditional horizontal axis turbines and rotors while maintaining unique operational advantages. However, their potential is not yet realized in widespread applications. A central barrier to their proliferation is the lack of fundamental understanding of the aerodynamic interaction between the turbine and the freestream flow. In particular, blade pitch must be precisely actuated throughout the revolution to achieve the proper blade angle of attack and maximize performance. So far, there is no adequate method for determining or implementing the optimal blade pitching kinematics for cyclorotors or cycloturbines. This dissertation bridges the pitching deficiency by introducing a novel low order model to predict improved pitch kinematics, experimentally demonstrating improved performance, and evaluating flow physics with a high order Navier-Stokes computational code. The foundation for developing advanced blade pitch motions is a low order model named Fluxline Theory. Fluid calculations are performed in a coordinate system fixed to streamlines whose spatial locations are not pre-described in order to capture the flow expansion/contraction and bending through the turbine. A transformation then determines the spatial location of streamlines through the rotor disk and finally blade element method integrations determine the power and forces produced. Validation against three sets of extant cycloturbine experimental data demonstrates improvement over other existing streamtube models. Fluxline Theory was extended by removing dependence on a blade element model to better understand how turbine-fluid interaction impacts thrust and power production. This pure momentum variation establishes a cycloturbine performance limit similar to the Betz Limit for horizontal axis wind turbines, as well as the fluid deceleration required

  5. The effect of forward skewed rotor blades on aerodynamic and aeroacoustic performance of axial-flow fan

    Science.gov (United States)

    Wei, Jun; Zhong, Fangyuan

    Based on comparative experiment, this paper deals with using tangentially skewed rotor blades in axial-flow fan. It is seen from the comparison of the overall performance of the fan with skewed bladed rotor and radial bladed rotor that the skewed blades operate more efficiently than the radial blades, especially at low volume flows. Meanwhile, decrease in pressure rise and flow rate of axial-flow fan with skewed rotor blades is found. The rotor-stator interaction noise and broadband noise of axial-flow fan are reduced with skewed rotor blades. Forward skewed blades tend to reduce the accumulation of the blade boundary layer in the tip region resulting from the effect of centrifugal forces. The turning of streamlines from the outer radius region into inner radius region in blade passages due to the radial component of blade forces of skewed blades is the main reason for the decrease in pressure rise and flow rate.

  6. Experimental Investigation of Inter-Blade Vortices in a Model Francis Turbine

    Science.gov (United States)

    LIU, Demin; LIU, Xiaobing; ZHAO, Yongzhi

    2017-07-01

    The inter-blade vortex in a Francis turbine becomes one of the main hydraulic factors that are likely to cause blade erosion at deep part load operating conditions. However, the causes and the mechanism of inter-blade vortex are still under investigation according to present researches. Thus the causes of inter-blade vortex and the effect of different hydraulic parameters on the inter-blade vortex are investigated experimentally. The whole life cycle of the inter-blade vortex is observed by a high speed camera. The test results illustrate the whole life cycle of the inter-blade vortex from generation to separation and even to fading. It is observed that the inter-blade vortex becomes stronger with the decreasing of flow and head, which leads to pressure fluctuation. Meanwhile, the pressure fluctuations in the vane-less area and the draft tube section become stronger when inter-blade vortices exist in the blade channel. The turbine will be damaged if operating in the inter-blade vortex zone, so its operating range must be far away from that zone. This paper reveals the main cause of the inter-blade vortex which is the larger incidence angle between the inflow angle and the blade angle on the leading edge of the runner at deep part load operating conditions.

  7. Analysis of improved and original designs of a 16 inch long penultimate stage turbine blade

    International Nuclear Information System (INIS)

    Carnero, A.; Kubiak, J.A.; Mendez, R.

    1994-01-01

    A finite element analysis of 16 inch long penultimate stage (L-1) blade was carried out to evaluate the improved and the original designs. The original design of the blade involved the ''blade-tenon-shroud'' system to make blade groups (6 blades per group). The improved design applied the concept of Integral Shroud Blade (ISB). Thus all the blades made a 360 degree group. The paper presents an application of the finite element analysis method to compute the natural frequencies, steady-state and alternating stresses, deformation due to forces acting on the blades and modal shapes of the blade group. In the case of the improved design it was also necessary to carry out computation of the dynamic response of a 360 degree blade-disk arc. This was to include the effect of the flexible disk fastening where blade and disk interaction were important to identify certain resonant conditions. It was concluded from the finite element results, that the steady-state stresses in the improved blade were lower, and the tangential mode shapes were eliminated. This was a great advantage since in the original design the first tangential mode shape and the higher steady-state stresses in the tenon contributed to the frequent failure of the ''blade-tenon-shroud'' system

  8. Numerical Investigation of the Tip Vortex of a Straight-Bladed Vertical Axis Wind Turbine with Double-Blades

    Directory of Open Access Journals (Sweden)

    Yanzhao Yang

    2017-10-01

    Full Text Available Wind velocity distribution and the vortex around the wind turbine present a significant challenge in the development of straight-bladed vertical axis wind turbines (VAWTs. This paper is intended to investigate influence of tip vortex on wind turbine wake by Computational Fluid Dynamics (CFD simulations. In this study, the number of blades is two and the airfoil is a NACA0021 with chord length of c = 0.265 m. To capture the tip vortex characteristics, the velocity fields are investigated by the Q-criterion iso-surface (Q = 100 with shear-stress transport (SST k-ω turbulence model at different tip speed ratios (TSRs. Then, mean velocity, velocity deficit and torque coefficient acting on the blade in the different spanwise positions are compared. The wind velocities obtained by CFD simulations are also compared with the experimental data from wind tunnel experiments. As a result, we can state that the wind velocity curves calculated by CFD simulations are consistent with Laser Doppler Velocity (LDV measurements. The distribution of the vortex structure along the spanwise direction is more complex at a lower TSR and the tip vortex has a longer dissipation distance at a high TSR. In addition, the mean wind velocity shows a large value near the blade tip and a small value near the blade due to the vortex effect.

  9. Straight-bladed Darrieus wind turbines - A protagonist's view

    Science.gov (United States)

    Migliore, P. G.

    The technology development and market penetration of Darrieus and propeller-type wind turbines is addressed. Important characteristics of competing configurations are compared, and it is claimed that aerodynamic efficiency is not a distinguishing feature. Advantages of the Darrieus machine include omni-directionality and self-limitation, but propeller types require less rotor length per unit swept area. It is argued that the straight-bladed Darrieus is much simpler than the curved-bladed and should be capable of comparable aerodynamic efficiency. Some of the problems of structural design, as well as blade induced drag losses and support-arm counter torque, diminish rapidly as machine size is increased. Taper ratio has similar beneficial effects.

  10. Techniques for blade tip clearance measurements with capacitive probes

    Science.gov (United States)

    Steiner, Alexander

    2000-07-01

    This article presents a proven but advantageous concept for blade tip clearance evaluation in turbomachinery. The system is based on heavy duty probes and a high frequency (HF) and amplifying electronic unit followed by a signal processing unit. Measurements are taken under high temperature and other severe conditions such as ionization. Every single blade can be observed. The signals are digitally filtered and linearized in real time. The electronic set-up is highly integrated. Miniaturized versions of the electronic units exist. The small and robust units can be used in turbo engines in flight. With several probes at different angles in one radial plane further information is available. Shaft eccentricity or blade oscillations can be calculated.

  11. Reliability of wind turbine blades: An overview of materials testing

    DEFF Research Database (Denmark)

    Holmes, John W.; Sørensen, Bent F.; Brøndsted, Povl

    2007-01-01

    an understanding of how damage develops in composite structures, composite materials and adhesives. Designing reliable wind turbine blades also requires the further development of laboratory scale and full scale test methods to evaluate the structural response and durability of new materials under various loading......The structural reliability of wind turbine components can have a profound impact on both the profitability and reputation of a wind turbine manufacturer or supplier of wind turbine components. The issue of reliability is of critical concern when large wind farm co-operatives are considered......, and when wind turbines are located in remote regions where the cost of inspections and repairs can be very high. From a structural viewpoint, wind turbine blades are subjected to very complex loading histories with coupled deformation modes. The long-term reliability of wind turbine blades requires...

  12. Thermal stresses investigation of a gas turbine blade

    Science.gov (United States)

    Gowreesh, S.; Pravin, V. K.; Rajagopal, K.; Veena, P. H.

    2012-06-01

    The analysis of structural and thermal stress values that are produced while the turbine is operating are the key factors of study while designing the next generation gas turbines. The present study examines structural, thermal, modal analysis of the first stage rotor blade of a two stage gas turbine. The design features of the turbine segment of the gas turbine have been taken from the preliminary design of a power turbine for maximization of an existing turbojet engine with optimized dump gap of the combustion chamber, since the allowable temperature on the turbine blade dependents on the hot gas temperatures from the combustion chamber. In the present paper simplified 3-D Finite Element models are developed with governing boundary conditions and solved using the commercial FEA software ANSYS. As the temperature has a significant effect on the overall stress on the rotor blades, a detail study on mechanical and thermal stresses are estimated and evaluated with the experimental values.

  13. Multi-spectral pyrometer for gas turbine blade temperature measurement

    Science.gov (United States)

    Gao, Shan; Wang, Lixin; Feng, Chi

    2014-09-01

    To achieve the highest possible turbine inlet temperature requires to accurately measuring the turbine blade temperature. If the temperature of blade frequent beyond the design limits, it will seriously reduce the service life. The problem for the accuracy of the temperature measurement includes the value of the target surface emissivity is unknown and the emissivity model is variability and the thermal radiation of the high temperature environment. In this paper, the multi-spectral pyrometer is designed provided mainly for range 500-1000°, and present a model corrected in terms of the error due to the reflected radiation only base on the turbine geometry and the physical properties of the material. Under different working conditions, the method can reduce the measurement error from the reflect radiation of vanes, make measurement closer to the actual temperature of the blade and calculating the corresponding model through genetic algorithm. The experiment shows that this method has higher accuracy measurements.

  14. Enhanced efficiency steam turbine blading - for cleaner coal plant

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, A.; Bell, D.; Cao, C.; Fowler, R.; Oliver, P.; Greenough, C.; Timmis, P. [ALSTOM Power, Rugby (United Kingdom)

    2005-03-01

    The aim of this project was to increase the efficiency of the short height stages typically found in high pressure steam turbine cylinders. For coal fired power plant, this will directly lead to a reduction in the amount of fuel required to produce electrical power, resulting in lower power station emissions. The continual drive towards higher cycle efficiencies demands increased inlet steam temperatures and pressures, which necessarily leads to shorter blade heights. Further advances in blading for short height stages are required in order to maximise the benefit. To achieve this, an optimisation of existing 3 dimensional designs was carried out and a new 3 dimensional fixed blade for use in the early stages of the high pressure turbine was developed. 28 figs., 5 tabs.

  15. Pose estimation for mobile robots working on turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Ma, X.D.; Chen, Q.; Liu, J.J.; Sun, Z.G.; Zhang, W.Z. [Tsinghua Univ., Beijing (China). Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Dept. of Mechanical Engineering

    2009-03-11

    This paper discussed a features point detection and matching task technique for mobile robots used in wind turbine blade applications. The vision-based scheme used visual information from the robot's surrounding environment to match successive image frames. An improved pose estimation algorithm based on a scale invariant feature transform (SIFT) was developed to consider the characteristics of local images of turbine blades, pose estimation problems, and conditions. The method included a pre-subsampling technique for reducing computation and bidirectional matching for improving precision. A random sample consensus (RANSAC) method was used to estimate the robot's pose. Pose estimation conditions included a wide pose range; the distance between neighbouring blades; and mechanical, electromagnetic, and optical disturbances. An experimental platform was used to demonstrate the validity of the proposed algorithm. 20 refs., 6 figs.

  16. Ultimate strength of a large wind turbine blade

    DEFF Research Database (Denmark)

    Jensen, Find Mølholt

    2009-01-01

    reinforcements helping to prevent undesired structural elastic mechanisms are presented. The functionality of two of the suggested structural reinforcements was demonstrated in full-scale tests and the rest trough FE-studies. The blade design under investigation consisted of an aerodynamic airfoil and a load...... carrying box girder. In total, five full-scale tests have been performed involving one complete blade and two shortened box girders. The second box girder was submitted to three independent tests covering different structural reinforcement alternatives. The advantages and disadvantages of testing......The present PhD project contains a study of the structural static strength of wind turbine blades loaded in flap-wise direction. A combination of experimental and numerical work has been used to address the most critical failure mechanisms and to get an understanding of the complex structural...

  17. Rotor blade boundary layer measurement hardware feasibility demonstration

    Science.gov (United States)

    Clark, D. R.; Lawton, T. D.

    1972-01-01

    A traverse mechanism which allows the measurement of the three dimensional boundary layers on a helicopter rotor blade has been built and tested on a full scale rotor to full scale conditions producing centrifugal accelerations in excess of 400 g and Mach numbers of 0.6 and above. Boundary layer velocity profiles have been measured over a range of rotor speeds and blade collective pitch angles. A pressure scanning switch and transducer were also tested on the full scale rotor and found to be insensitive to centrifugal effects within the normal main rotor operating range. The demonstration of the capability to measure boundary layer behavior on helicopter rotor blades represents the first step toward obtaining, in the rotating system, data of a quality comparable to that already existing for flows in the fixed system.

  18. Dual-axis resonance testing of wind turbine blades

    Science.gov (United States)

    Hughes, Scott; Musial, Walter; White, Darris

    2014-01-07

    An apparatus (100) for fatigue testing test articles (104) including wind turbine blades. The apparatus (100) includes a test stand (110) that rigidly supports an end (106) of the test article (104). An actuator assembly (120) is attached to the test article (104) and is adapted for substantially concurrently imparting first and second forcing functions in first and second directions on the test article (104), with the first and second directions being perpendicular to a longitudinal axis. A controller (130) transmits first and second sets of displacement signals (160, 164) to the actuator assembly (120) at two resonant frequencies of the test system (104). The displacement signals (160, 164) initiate the actuator assembly (120) to impart the forcing loads to concurrently oscillate the test article (104) in the first and second directions. With turbine blades, the blades (104) are resonant tested concurrently for fatigue in the flapwise and edgewise directions.

  19. Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, M.H.; Janiga, G.; Pap, E.; Thevenin, D. [Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg ' ' Otto von Guericke' ' (Germany)

    2011-01-15

    Due to the worldwide energy crisis, research and development activities in the field of renewable energy have been considerably increased in many countries. Wind energy is becoming particularly important. Although considerable progress have already been achieved, the available technical design is not yet adequate to develop reliable wind energy converters for conditions corresponding to low wind speeds and urban areas. The Savonius turbine appears to be particularly promising for such conditions, but suffers from a poor efficiency. The present study considers a considerably improved design in order to increase the output power of a classical Savonius turbine. In previous works, the efficiency of the classical Savonius turbine has been increased by placing in an optimal manner an obstacle plate shielding the returning blade. The present study now aims at improving further the output power of the Savonius turbine as well as the static torque, which measures the self-starting capability of the turbine. In order to achieve both objectives, the geometry of the blade shape (skeleton line) is now optimized in presence of the obstacle plate. Six free parameters are considered in this optimization process, realized by coupling an in-house optimization library (OPAL, relying in the present case on Evolutionary Algorithms) with an industrial flow simulation code (ANSYS-Fluent). The target function is the output power coefficient. Compared to a standard Savonius turbine, a relative increase of the power output coefficient by almost 40% is finally obtained at {lambda} = 0.7. The performance increase exceeds 30% throughout the useful operating range. Finally, the static torque is investigated and found to be positive at any angle, high enough to obtain self-starting conditions. (author)

  20. Grading technologies for the manufacture of innovative cutting blades

    Science.gov (United States)

    Rostek, Tim; Homberg, Werner

    2018-05-01

    Cutting blades for harvesting applications are used in a variety of agricultural machines. These parts are in contact with highly abrasive lawn clippings and often wear out within hours which results in high expensive re-sharpening maintenance. This paper relates to manufacturing techniques enhancing the durability of cutting blades based on a structural analysis of the prevailing wear mechanisms containing chipping and abrasive wear. Each mechanism results in specific demands on the cutting edge's mechanical characteristics. The design of evaluation methods respectively is one issue of the paper. This is basis for approaches to improve the cutting edge performance on purpose. On option to improve abrasive wear resistance and, thus, service life is the application of locally graded steel materials as semi-finished products for self-sharpening cutting blades. These materials comprise a layered structure consisting of a hard, wear resistant layer and a relatively softer layer which is lesser wear resistant. As the cutting blade is subjected to wear conditions, the less wear resistant layer wears faster than the relatively more wear resistant harder layer revealing a durable cross section of the cutting edge and, thus, cutting performance. Anyways, chipping is another key issue on the cutting edge's lifetime. Here, the cutting edges cross section by means of geometry and grind respectively as well as its mechanical properties matter. FEM analysis reveal innovative options to optimize the cross section of the blade as well as thermomechanical strengthening add further strength to reduce chipping. This paper contains a comprehensive strategy to improve cutting blades with use of innovative manufacturing technologies which apply application-specific graded mechanical characteristics and, thus, significantly improved performance characteristics.

  1. Vibration reduction methods and techniques for rotorcraft utilizing on-blade active control, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Rotor blades adapted for vibration control have the added benefit of extended blade and rotor life, as well as improved passenger comfort. Approaches that have been...

  2. Retention system and method for the blades of a rotary machine

    Science.gov (United States)

    Pedersen, Poul D.; Glynn, Christopher C.; Walker, Roger C.

    2002-01-01

    A retention system and method for the blades of a rotary machine for preventing forward or aft axial movement of the rotor blades includes a circumferential hub slot formed about a circumference of the machine hub. The rotor blades have machined therein a blade retention slot which is aligned with the circumferential hub slot when the blades are received in correspondingly shaped openings in the hub. At least one ring segment is secured in the blade retention slots and the circumferential hub slot to retain the blades from axial movement. A key assembly is used to secure the ring segments in the aligned slots via a hook portion receiving the ring segments and a threaded portion that is driven radially outwardly by a nut. A cap may be provided to provide a redundant back-up load path for the centrifugal loads on the key. Alternatively, the key assembly may be formed in the blade dovetail.

  3. Control of Flow Separation on a Turbine Blade by Utilizing Tail Extensions

    National Research Council Canada - National Science Library

    Murawski, C

    1999-01-01

    .... The axial chord of the blades was varied using tail extenders from 0% to 15% beyond design. The effects of Reynolds number on a low pressure turbine cascade blade with tail extensions was investigated...

  4. Design characteristics of Curved Blade Aerator w.r.t. aeration ...

    African Journals Online (AJOL)

    user

    To provide the required amount of oxygen, an aeration system is always ... and number of blades, depth of flow etc and physicochemical properties of the liquid. .... amounts to 29 cm with 12 blades (fiber strips) mounted on each aerator rotor.

  5. Band Saw Blade Crack before and after Comparison and Analysis of Experiments (2

    Directory of Open Access Journals (Sweden)

    Gao Jin-gui

    2016-01-01

    Full Text Available Based on MJ3310 woodworking band saw machine as the research object, under the no-load and load of Vib system vibration signal acquisition, processing and analysis software of band saw blade transverse vibration test and the signal acquisition and analysis of the collected signals obtained: to determine the transverse vibration displacement 5.66μm ~ 7.86μm and the main vibration frequency between 624 Hz ~ 792 Hz, then saw blade crack at least 3 mm, need timely saw blade, cutting high hardness of wood band saw blade transverse vibration displacement and frequency will increase sharply. Can be generated according to the band saw blade crack before and after the changing rule of the horizontal vibration displacement and frequency of transverse vibration and scope, judgment and replacement time of saw blade saw blade defect types, which can fully rational utilization of saw blade work effectively.

  6. Construction of low-cost, Mod-OA wood composite wind turbine blades

    Science.gov (United States)

    Lark, R. F.

    1983-01-01

    Two sixty-foot, low-cost, wood composite blades for service on 200 kW Mod-OA wind turbines were constructed. The blades were constructed of epoxy resin-bonded Douglas fir veneers for the leading edge sections, and paper honeycombcored, birch plywood faced panels for the afterbody sections. The blades were joined to the wind turbine hub by epoxy resin-bonded steel load take-off studs embedded into the root end of the blades. The blades were installed on the 200 kW Mod-OA wind turbine facility at Kahuku, Hawaii, The blades completed nearly 8,000 hours of operation over an 18 month period at an average power of 150 kW prior to replacement with another set of wood composite blades. The blades were replaced because of a corrosion failure of the steel shank on one stud. Inspections showed that the wood composite structure remained in excellent condition.

  7. Stochastic models for strength of wind turbine blades using tests

    DEFF Research Database (Denmark)

    Toft, H.S.; Sørensen, John Dalsgaard

    2008-01-01

    The structural cost of wind turbine blades is dependent on the values of the partial safety factors which reflect the uncertainties in the design values, including statistical uncertainty from a limited number of tests. This paper presents a probabilistic model for ultimate and fatigue strength...... of wind turbine blades especially considering the influence of prior knowledge and test results and how partial safety factors can be updated when additional full-scale tests are performed. This updating is performed by adopting a probabilistic design basis based on Bayesian statistical methods....

  8. Parametric Blade Study Test Report Rotor Configuration. Number 4

    Science.gov (United States)

    1988-11-01

    Figure 2. The rotor shaft is mounted on an oil-damped roller bearing at the forward location and a ball bearing at the aft location; radial runout does...thermodynamic properties. 22 d. Corrections were made to measured compressor temperatures and pressures, facility flowrate, and rotor wheel speed to...1152 .Z660 .1024 STRM- BLADE BLADE WHEEL LINE SECT. LEAN SPEED NUMBER ANGLE ANGLE 1 -55.15 7.32 1497.9 2 -53.85 8.09 1434.7 3 -52.96 7.11 1372.1 4

  9. Parametric Blade Study Test Report Rotor Configuration. Number 1

    Science.gov (United States)

    1988-11-01

    location and a ball bearing at the aft location; radial runout does not exceed 0.001 inch. Forward and aft buffer controlled gap carbon seals were used...made to measured compressor temperatures and pressures, facility flowrate, and rotor wheel speed to correspond to standard inlet conditions of...0662 .1034 STRM- BLADE BLADE WHEEL LINE SECT. LEAN SPEED NUMBER ANGLE ANGLE I -53.96 7.35 1497.5 2 -52.68 8.11 1434.6 3 -51.88 7.15 1372.5 4 -50.49

  10. Niobium-Matrix-Composite High-Temperature Turbine Blades

    Science.gov (United States)

    Kaplan, Richard B.; Tuffias, Robert H.; La Ferla, Raffaele; Heng, Sangvavann; Harding, John T.

    1995-01-01

    High-temperture composite-material turbine blades comprising mainly niobium matrices reinforced with refractory-material fibers being developed. Of refractory fibrous materials investigated, FP-AL(2)0(3), tungsten, and polymer-based SiC fibers most promising. Blade of this type hollow and formed in nearly net shape by wrapping mesh of reinforcing refractory fibers around molybdenum mandrel, then using thermal-gradient chemical-vapor infiltration (CVI) to fill interstices with niobium. CVI process controllable and repeatable, and kinetics of both deposition and infiltration well understood.

  11. Achieving better cooling of turbine blades using numerical simulation methods

    Science.gov (United States)

    Inozemtsev, A. A.; Tikhonov, A. S.; Sendyurev, C. I.; Samokhvalov, N. Yu.

    2013-02-01

    A new design of the first-stage nozzle vane for the turbine of a prospective gas-turbine engine is considered. The blade's thermal state is numerically simulated in conjugate statement using the ANSYS CFX 13.0 software package. Critical locations in the blade design are determined from the distribution of heat fluxes, and measures aimed at achieving more efficient cooling are analyzed. Essentially lower (by 50-100°C) maximal temperature of metal has been achieved owing to the results of the performed work.

  12. Wavelet Transformation for Damage Identication in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Skov, Jonas falk; Kirkegaard, Poul Henning

    2014-01-01

    The present paper documents a proposed modal and wavelet analysis-based structural health monitoring (SHM) method for damage identification in wind turbine blades. A finite element (FE) model of a full-scale wind turbine blade is developed and introduced to a transverse surface crack. Hereby, post......-damage mode shapes are derived through modal analysis and subsequently analyzed with continuous two-dimensional wavelet transformation for damage identification, namely detection, localization and assessment. It is found that valid damage identification is obtained even when utilizing the mode shape...

  13. Probabilistic structural analysis to quantify uncertainties associated with turbopump blades

    Science.gov (United States)

    Nagpal, Vinod K.; Rubinstein, Robert; Chamis, Christos C.

    1987-01-01

    A probabilistic study of turbopump blades has been in progress at NASA Lewis Research Center for over the last two years. The objectives of this study are to evaluate the effects of uncertainties in geometry and material properties on the structural response of the turbopump blades to evaluate the tolerance limits on the design. A methodology based on probabilistic approach has been developed to quantify the effects of the random uncertainties. The results of this study indicate that only the variations in geometry have significant effects.

  14. Vibration-Based Damage Identification in Wind Turbine Blades

    DEFF Research Database (Denmark)

    Ulriksen, Martin Dalgaard; Tcherniak, Dmitri; Damkilde, Lars

    Due to the existing trend of placing wind turbines in impassable terrain, for example, offshore, these structures constitute prime candidates for being subjected to structural health monitoring (SHM). The wind turbine blades have in particular been paid research attention [1] as these compose one...... of the most common and critical components to fail in the turbines [2]. The standard structural integrity assessment of blades is based on visual inspection, which requires the turbine in question to be stopped while inspections are conducted. This procedure is extremely costly and tedious, hence emphasizing...

  15. Integral Twist Actuation of Helicopter Rotor Blades for Vibration Reduction

    Science.gov (United States)

    Shin, SangJoon; Cesnik, Carlos E. S.

    2001-01-01

    Active integral twist control for vibration reduction of helicopter rotors during forward flight is investigated. The twist deformation is obtained using embedded anisotropic piezocomposite actuators. An analytical framework is developed to examine integrally-twisted blades and their aeroelastic response during different flight conditions: frequency domain analysis for hover, and time domain analysis for forward flight. Both stem from the same three-dimensional electroelastic beam formulation with geometrical-exactness, and axe coupled with a finite-state dynamic inflow aerodynamics model. A prototype Active Twist Rotor blade was designed with this framework using Active Fiber Composites as the actuator. The ATR prototype blade was successfully tested under non-rotating conditions. Hover testing was conducted to evaluate structural integrity and dynamic response. In both conditions, a very good correlation was obtained against the analysis. Finally, a four-bladed ATR system is built and tested to demonstrate its concept in forward flight. This experiment was conducted at NASA Langley Tansonic Dynamics Tunnel and represents the first-of-a-kind Mach-scaled fully-active-twist rotor system to undergo forward flight test. In parallel, the impact upon the fixed- and rotating-system loads is estimated by the analysis. While discrepancies are found in the amplitude of the loads under actuation, the predicted trend of load variation with respect to its control phase correlates well. It was also shown, both experimentally and numerically, that the ATR blade design has the potential for hub vibratory load reduction of up to 90% using individual blade control actuation. Using the numerical framework, system identification is performed to estimate the harmonic transfer functions. The linear time-periodic system can be represented by a linear time-invariant system under the three modes of blade actuation: collective, longitudinal cyclic, and lateral cyclic. A vibration

  16. Damage tolerance and structural monitoring for wind turbine blades

    DEFF Research Database (Denmark)

    McGugan, Malcolm; Pereira, Gilmar Ferreira; Sørensen, Bent F.

    2015-01-01

    The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will b......The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation...

  17. Potential Coir Fibre Composite for Small Wind Turbine Blade Application

    Directory of Open Access Journals (Sweden)

    Bakri Bakri

    2017-03-01

    Full Text Available Natural fibers have been developed as reinforcement of composite to shift synthetic fibers. One of potential natural fibers developed is coir fiber. This paper aims to describe potential coir fiber as reinforcement of composite for small wind turbine blade application. The research shows that mechanical properties ( tensile, impact, shear, flexural and compression strengths of coir fiber composite have really similar to wood properties for small wind turbine blade material, but inferior to glass fiber composite properties. The effect of weathering was also evaluated to coir fiber composite in this paper.

  18. Improved blade element momentum theory for wind turbine aerodynamic computations

    DEFF Research Database (Denmark)

    Sun, Zhenye; Chen, Jin; Shen, Wen Zhong

    2016-01-01

    Blade element momentum (BEM) theory is widely used in aerodynamic performance predictions and design applications for wind turbines. However, the classic BEM method is not quite accurate which often tends to under-predict the aerodynamic forces near root and over-predict its performance near tip....... for the MEXICO rotor. Results show that the improved BEM theory gives a better prediction than the classic BEM method, especially in the blade tip region, when comparing to the MEXICO measurements. (C) 2016 Elsevier Ltd. All rights reserved....

  19. Blade root design a state of the art survey

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, O

    1988-06-01

    This report was conceived in the wake of recent blade root failures in several horizontal axis turbines. Ten blade root designs are presented. They are considered to represent the state of the art. The information was obtained partly from literature partly from a few important projects with little or no documentation. Suggestions are made how to proceed in the development of the bonded bolt type of root retention. Presently the conclusion is that this type of arrangement seems the most promising. Developments in this field should be closely monitored, however. For this type of very high cycle fatigue designs there is a need for two redundant design principles. (author).

  20. CFD computations of wind turbine blade loads during standstill operation KNOW-BLADE, Task 3.1 report

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Johansen, Jeppe; Conway, S.

    2004-01-01

    Two rotors blades are computed during standstill conditions, using two different Navier-Stokes solvers EDGE and EllipSys3D. Both steady and transient linear k-? RANS turbulence models are applied, along with steady non-linear RANS and transient DESsimulations. The STORK 5.0 WPX blade is computed...... be explained by the difference in the applied turbulence models and the fact that the results from one of the solvers are presented as instantaneous valuesinstead of averaged values. The comparison of steady and transient RANS results show that the gain of using time true computations are very limited...... a three different tip pitch angles, 0, 26 and 50 degrees tip pitch angle, while the NREL Phase-VI blade is computed at 90 degrees tip pitch angle. Generally the CFD codes reproduce the measured trends quitewell and the two involved CFD codes give very similar results. The discrepancies observed can...

  1. Study on the replacement of last moving blade at lower pressure turbine

    International Nuclear Information System (INIS)

    Koo, Jae Raeyang; Lee, Woo Kwang; Koo, Woo Sik; Kim, Yeon Hwan

    2003-01-01

    Vibration of turbine is concerned with array of last moving blade at lower pressure turbine. When last moving blade at lower pressure turbine was replaced, we must consider mass unbalance problems of blades. If mass unbalance happened at rotor, it is impossible to operate turbine. In this paper, we have how to minimize the mass unbalance problems of last moving blade at lower pressure turbine

  2. Evaluation of feasibility of prestressed concrete for use in wind turbine blades

    Science.gov (United States)

    Leiblein, S.; Londahl, D. S.; Furlong, D. B.; Dreier, M. E.

    1979-01-01

    A preliminary evaluation of the feasibility of the use of prestressed concrete as a material for low cost blades for wind turbines was conducted. A baseline blade design was achieved for an experimental wind turbine that met aerodynamic and structural requirements. Significant cost reductions were indicated for volume production. Casting of a model blade section showed no fabrication problems. Coupled dynamic analysis revealed that adverse rotor tower interactions can be significant with heavy rotor blades.

  3. Design and fabrication of composite blades for the Mod-1 wind turbine generator

    Science.gov (United States)

    Batesole, W. R.; Gunsallus, C. T.

    1981-01-01

    The design, tooling, fabrication, quality control, and testing phases carried out to date, as well as testing still planned are described. Differences from the 150 foot blade which were introduced for cost and manufacturing improvement purposes are discussed as well as the lightning protection system installed in the blades. Actual costs and manhours expended for Blade No. 2 are provided as a base, along with a projection of costs for the blade in production.

  4. Design, fabrication, test, and evaluation of a prototype 150-foot long composite wind turbine blade

    Science.gov (United States)

    Gewehr, H. W.

    1979-01-01

    The design, fabrication, testing, and evaluation of a prototype 150 foot long composite wind turbine blade is described. The design approach and material selection, compatible with low cost fabrication methods and objectives, are highlighted. The operating characteristics of the blade during rotating and nonrotating conditions are presented. The tensile, compression, and shear properties of the blade are reported. The blade fabrication, tooling, and quality assurance are discussed.

  5. Design, fabrication, and test of a steel spar wind turbine blade

    Science.gov (United States)

    Sullivan, T. L.; Sirocky, P. J., Jr.; Viterna, L. A.

    1979-01-01

    The design and fabrication of wind turbine blades based on 60 foot steel spars are discussed. Performance and blade load information is given and compared to analytical prediction. In addition, performance is compared to that of the original MOD-O aluminum blades. Costs for building the two blades are given, and a projection is made for the cost in mass production. Design improvements to reduce weight and improve fatigue life are suggested.

  6. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance

    Directory of Open Access Journals (Sweden)

    Othman Al-Khudairi

    2017-10-01

    Full Text Available In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i as received blade (ii when a crack of 200 mm was introduced between the web and the spar cap and (iii when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure.

  7. Full-Scale Fatigue Testing of a Wind Turbine Blade in Flapwise Direction and Examining the Effect of Crack Propagation on the Blade Performance.

    Science.gov (United States)

    Al-Khudairi, Othman; Hadavinia, Homayoun; Little, Christian; Gillmore, Gavin; Greaves, Peter; Dyer, Kirsten

    2017-10-03

    In this paper, the sensitivity of the structural integrity of wind turbine blades to debonding of the shear web from the spar cap was investigated. In this regard, modal analysis, static and fatigue testing were performed on a 45.7 m blade for three states of the blade: (i) as received blade (ii) when a crack of 200 mm was introduced between the web and the spar cap and (iii) when the crack was extended to 1000 mm. Calibration pull-tests for all three states of the blade were performed to obtain the strain-bending moment relationship of the blade according to the estimated target bending moment (BM) which the blade is expected to experience in its service life. The resultant data was used to apply appropriate load in the fatigue tests. The blade natural frequencies in flapwise and edgewise directions over a range of frequency domain were found by modal testing for all three states of the blade. The blade first natural frequency for each state was used for the flapwise fatigue tests. These were performed in accordance with technical specification IEC TS 61400-23. The fatigue results showed that, for a 200 mm crack between the web and spar cap at 9 m from the blade root, the crack did not propagate at 50% of the target BM up to 62,110 cycles. However, when the load was increased to 70% of target BM, some damages were detected on the pressure side of the blade. When the 200 mm crack was extended to 1000 mm, the crack began to propagate when the applied load exceeded 100% of target BM and the blade experienced delaminations, adhesive joint failure, compression failure and sandwich core failure.

  8. A randomized controlled study to evaluate and compare Truview blade with Macintosh blade for laryngoscopy and intubation under general anesthesia.

    Science.gov (United States)

    Timanaykar, Ramesh T; Anand, Lakesh K; Palta, Sanjeev

    2011-04-01

    The Truview EVO2™ laryngoscope is a recently introduced device with a unique blade that provides a magnified laryngeal view at 42° anterior reflected view. It facilitates visualization of the glottis without alignment of oral, pharyngeal, and tracheal axes. We compared the view obtained at laryngoscopy, intubating conditions and hemodynamic parameters of Truview with Macintosh blade. In prospective, randomized and controlled manner, 200 patients of ASA I and II of either sex (20-50 years), presenting for surgery requiring tracheal intubation, were assigned to undergo intubation using a Truview or Macintosh laryngoscope. Visualization of the vocal cord, ease of intubation, time taken for intubation, number of attempts, and hemodynamic parameters were evaluated. Truview provided better results for the laryngeal view using Cormack and Lehane grading, particularly in patients with higher airway Mallampati grading (P < 0.05). The time taken for intubation (33.06±5.6 vs. 23.11±57 seconds) was more with Truview than with Macintosh blade (P < 0.01). The Percentage of Glottic Opening (POGO) score was significantly higher (97.26±8) in Truview as that observed with Macintosh blade (83.70±21.5). Hemodynamic parameters increased after tracheal intubation from pre-intubation value (P < 0.05) in both the groups, but they were comparable amongst the groups. No postoperative adverse events were noted. Tracheal intubation using Truview blade provided consistently improved laryngeal view as compared to Macintosh blade without the need to align the oral, pharyngeal and tracheal axes, with equal attempts for successful intubation and similar changes in hemodynamics. However, the time taken for intubation was more with Truview.

  9. A randomized controlled study to evaluate and compare Truview blade with Macintosh blade for laryngoscopy and intubation under general anesthesia

    Directory of Open Access Journals (Sweden)

    Ramesh T Timanaykar

    2011-01-01

    Full Text Available Background: The Truview EVO2 TM laryngoscope is a recently introduced device with a unique blade that provides a magnified laryngeal view at 42° anterior reflected view. It facilitates visualization of the glottis without alignment of oral, pharyngeal, and tracheal axes. We compared the view obtained at laryngoscopy, intubating conditions and hemodynamic parameters of Truview with Macintosh blade. Materials and Methods: In prospective, randomized and controlled manner, 200 patients of ASA I and II of either sex (20-50 years, presenting for surgery requiring tracheal intubation, were assigned to undergo intubation using a Truview or Macintosh laryngoscope. Visualization of the vocal cord, ease of intubation, time taken for intubation, number of attempts, and hemodynamic parameters were evaluated. Results: Truview provided better results for the laryngeal view using Cormack and Lehane grading, particularly in patients with higher airway Mallampati grading (P < 0.05. The time taken for intubation (33.06±5.6 vs. 23.11±57 seconds was more with Truview than with Macintosh blade (P < 0.01. The Percentage of Glottic Opening (POGO score was significantly higher (97.26±8 in Truview as that observed with Macintosh blade (83.70±21.5. Hemodynamic parameters increased after tracheal intubation from pre-intubation value (P < 0.05 in both the groups, but they were comparable amongst the groups. No postoperative adverse events were noted. Conclusion: Tracheal intubation using Truview blade provided consistently improved laryngeal view as compared to Macintosh blade without the need to align the oral, pharyngeal and tracheal axes, with equal attempts for successful intubation and similar changes in hemodynamics. However, the time taken for intubation was more with Truview.

  10. Developments in blade shape design for a Darrieus vertical axis wind turbine

    Science.gov (United States)

    Ashwill, T. D.; Leonard, T. M.

    1986-09-01

    A new computer program package has been developed that determines the troposkein shape for a Darrieus Vertical Axis Wind Turbine Blade with any geometrical configuration or rotation rate. This package allows users to interact and develop a buildable blade whose shape closely approximates the troposkein. Use of this package can significantly reduce flatwise mean bending stresses in the blade and increase fatigue life.

  11. First-order aerodynamic and aeroelastic behavior of a single-blade installation setup

    DEFF Research Database (Denmark)

    Gaunaa, Mac; Bergami, Leonardo; Guntur, Srinivas

    2014-01-01

    the first-order aerodynamic and aeroelastic behavior of a single blade installation system, where the blade is grabbed by a yoke, which is lifted by the crane and stabilized by two taglines. A simple engineering model is formulated to describe the aerodynamic forcing on the blade subject to turbulent wind...

  12. ANALYSIS OF MODERN TURBINE ENGINES WORKING SURFACE LAYERS BLADES WORK CONDITIONS

    Directory of Open Access Journals (Sweden)

    М. A. Petrova

    2015-01-01

    Full Text Available In the article the analysis of engine turbine blades performance operation conditions influence is presented. As a result the factors, resulting in poor durability of the blades in operation, the characteristic defects of the turbine blades are determined and the conclusion on the necessity of applying a protective coating on them is made.

  13. Numerical study of aero-excitation of steam-turbine rotor blade self-oscillations

    Science.gov (United States)

    Galaev, S. A.; Makhnov, V. Yu.; Ris, V. V.; Smirnov, E. M.

    2018-05-01

    Blade aero-excitation increment is evaluated by numerical solution of the full 3D unsteady Reynolds-averaged Navier-Stokes equations governing wet steam flow in a powerful steam-turbine last stage. The equilibrium wet steam model was adopted. Blade surfaces oscillations are defined by eigen-modes of a row of blades bounded by a shroud. Grid dependency study was performed with a reduced model being a set of blades multiple an eigen-mode nodal diameter. All other computations were carried out for the entire blade row. Two cases are considered, with an original-blade row and with a row of modified (reinforced) blades. Influence of eigen-mode nodal diameter and blade reinforcing on aero-excitation increment is analyzed. It has been established, in particular, that maximum value of the aero-excitation increment for the reinforced-blade row is two times less as compared with the original-blade row. Generally, results of the study point definitely to less probability of occurrence of blade self-oscillations in case of the reinforced blade-row.

  14. 78 FR 2647 - Dental Devices; Reclassification of Blade-Form Endosseous Dental Implant

    Science.gov (United States)

    2013-01-14

    .... FDA-2012-N-0677] Dental Devices; Reclassification of Blade-Form Endosseous Dental Implant AGENCY: Food...) is proposing to reclassify the blade- form endosseous dental implant, a preamendments class III... proposing to revise the classification of blade-form endosseous dental implants. DATES: Submit either...

  15. Numerical investigations on axial and radial blade rubs in turbo-machinery

    Science.gov (United States)

    Abdelrhman, Ahmed M.; Tang, Eric Sang Sung; Salman Leong, M.; Al-Qrimli, Haidar F.; Rajamohan, G.

    2017-07-01

    In the recent years, the clearance between the rotor blades and stator/casing had been getting smaller and smaller prior improving the aerodynamic efficiency of the turbomachines as demand in the engineering field. Due to the clearance reduction between the blade tip and the rotor casing and between rotor blades and stator blades, axial and radial blade rubbing could be occurred, especially at high speed resulting into complex nonlinear vibrations. The primary aim of this study is to address the blade axial rubbing phenomenon using numerical analysis of rotor system. A comparison between rubbing caused impacts of axial and radial blade rubbing and rubbing forces are also aims of this study. Tow rotor models (rotor-stator and rotor casing models) has been designed and sketched using SOILDSWORKS software. ANSYS software has been used for the simulation and the numerical analysis. The rubbing conditions were simulated at speed range of 1000rpm, 1500rpm and 2000rpm. Analysis results for axial blade rubbing showed the appearance of blade passing frequency and its multiple frequencies (lx, 2x 3x etc.) and these frequencies will more excited with increasing the rotational speed. Also, it has been observed that when the rotating speed increased, the rubbing force and the harmonics frequencies in x, y and z-direction become higher and severe. The comparison study showed that axial blade rub is more dangerous and would generate a higher vibration impacts and higher blade rubbing force than radial blade rub.

  16. Leading edge erosion of coated wind turbine blades: Review of coating life models

    NARCIS (Netherlands)

    Slot, H.M.; Gelinck, E.R.M.; Rentrop, A.; van der Heide, Emile

    2015-01-01

    Erosion of the leading edge of wind turbine blades by droplet impingement wear, reduces blade aerodynamic efficiency and power output. Eventually, it compromises the integrity of blade surfaces. Elastomeric coatings are currently used for erosion resistance, yet the life of such coatings cannot be

  17. A practical approach to fracture analysis at the trailing edge of wind turbine rotor blades

    DEFF Research Database (Denmark)

    Eder, Martin Alexander; Bitsche, Robert; Nielsen, Magda

    2014-01-01

    Wind turbine rotor blades are commonly manufactured from composite materials by a moulding process. Typically, the wind turbine blade is produced in two halves, which are eventually adhesively joined along their edges. Investigations of operating wind turbine blades show that debonding...

  18. System Identification of Mistuned Bladed Disks from Traveling Wave Response Measurements

    Science.gov (United States)

    Feiner, D. M.; Griffin, J. H.; Jones, K. W.; Kenyon, J. A.; Mehmed, O.; Kurkov, A. P.

    2003-01-01

    A new approach to modal analysis is presented. By applying this technique to bladed disk system identification methods, one can determine the mistuning in a rotor based on its response to a traveling wave excitation. This allows system identification to be performed under rotating conditions, and thus expands the applicability of existing mistuning identification techniques from integrally bladed rotors to conventional bladed disks.

  19. A CLINICAL ASSESSMENT OF MACINTOSH BLADE, MILLER BLADE AND KING VISIONTM VIDEOLARYNGOSCOPE FOR LARYNGEAL EXPOSURE AND DIFFICULTY IN ENDOTRACHEAL INTUBATION

    Directory of Open Access Journals (Sweden)

    Apoorva Mahendera

    2016-03-01

    Full Text Available CONTEXT Previous studies suggest glottic view is better achieved with straight blades while tracheal intubation is easier with curved blades and videolaryngoscope is better than conventional laryngoscope. AIMS Comparison of conventional laryngoscope (Macintosh blade and Miller blade with channelled videolaryngoscope (King Vision TM with respect to laryngeal visualisation and difficulty in endotracheal intubation. SETTINGS AND DESIGN This prospective randomised comparative study was conducted at a tertiary care hospital (in ASA I and ASA II patients after approval from the Institutional Ethics Committee. METHODS We compared Macintosh, Miller, and the King VisionTM videolaryngoscope for glottic visualisation and ease of tracheal intubation. Patients undergoing elective surgeries under general anaesthesia requiring endotracheal intubation were randomly divided into three groups (N=180. After induction of anaesthesia, laryngoscopy was performed and trachea intubated. We recorded visualisation of glottis (Cormack-Lehane grade-CL, ease of intubation, number of attempts, need to change blade, and need for external laryngeal manipulation. STATISTICAL ANALYSIS Demographic data, Mandibular length, Mallampati classification were compared using ANOVA, Chi-square test, Kruskal-Wallis Test, where P value <0.005 is statically significant. RESULTS CL grade 1 was most often observed in King Vision -TM VL group (90% which is followed by Miller (28.33%, and Macintosh group (15%. We found intubation was to be easier (grade 1 with King Vision -TM VL group (73.33%, followed by Macintosh (38.33%, and Miller group (1.67%. External manipulation (BURP was needed more frequently in patients in Miller group (71.67%, followed by Macintosh (28.33% and in King Vision -TM VL group (6.67%. All (100% patients were intubated in the 1 st attempt with King Vision -TM VL group, followed by Macintosh group (90% and Miller group (58.33%. CONCLUSIONS In patients with normal airway

  20. Three-dimensional blade coating of complex fluid

    Science.gov (United States)

    Singh, Vachitar; Grimaldi, Emma; Sauret, Alban; Dressaire, Emilie

    2015-11-01

    The application of a layer of non-newtonian fluid on a solid substrate is an important industrial problem involved in polymer or paint coatings, and an everyday life challenge when it comes to spreading peanut butter on a toast. Most experimental and theoretical work has focused on the two-dimensional situation, i.e. the scraping of a fixed blade on a moving substrate to turn a thick layer of liquid into a thin coat. However the spreading of a finite volume of non-newtonian fluid using a blade has received less attention, despite significant practical and fundamental implications. In this study, we investigate experimentally the spreading of a finite volume of a model non-newtonian fluid, carbopol, initially deposited against the fixed blade. As the substrate is translated at constant speed, we characterize the dynamics of spreading and the final shape of the coated layer. We measure and rationalize the influence of the liquid volume, the height and orientation of the blade, and the speed of the substrate on the spreading.

  1. Vibrations of turbine blades bundles model with rubber damping elements

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    2014-01-01

    Roč. 21, č. 1 (2014), s. 45-52 ISSN 1802-1484 R&D Projects: GA ČR GA101/09/1166 Institutional support: RVO:61388998 Keywords : mathematical model * bundle of five blades * rubber damping elements * eigenmodes Subject RIV: BI - Acoustics http://www.engineeringmechanics.cz/obsahy.html?R=21&C=1

  2. Demonstration of partial pitch 2-bladed wind turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong; Zahle, Frederik; Troldborg, Niels

    -sections on the blade as well as fully resolved rotor simulations, and finally simulations coupling HAWC2 with EllipSys3D, investigating the behaviors of the rotor at standstill, has been performed. For the WP3, the state-of-the art aeroelastic analysis tool, HAWC2, has been updated in order to consider the partial......This is the final report for the EUDP project performed from January 2012 to December 2015. The main objective for the project was to demonstrate the potential of the partial pitch two-bladed (PP-2B) technology. DTU Wind Energy took a responsibility for three workpackages (WPs) among 6 WPs which...... were aerodynamic evaluation of partial pitch technology (WP2), aeroelastic analysis of two-bladed turbine (WP3) and On-site testing (WP4). For the WP2, a comprehensive set of 3D CFD simulations including the gap between inner and outer part of the blade and vortex generators (VGs) of both cross...

  3. Thermoplastic Composite Wind Turbine Blades : An Integrated Design Approach

    NARCIS (Netherlands)

    Joncas, S.

    2010-01-01

    This thesis proposes a new structural design concept for future large wind turbine blades based on fully recyclable thermoplastic composites (TPC). With respect to material properties, cost and processing, reactively processed anionic polyamide-6 (APA-6) has been identified as the most promising

  4. Bend-twist coupling potential of wind turbine blades

    DEFF Research Database (Denmark)

    Fedorov, Vladimir; Berggreen, Christian

    2014-01-01

    -twist coupling magnitude of up to 0.2 is feasible to achieve in the baseline blade structure made of glass-fiber reinforced plastics. Further, by substituting the glass-fibers with carbon-fibers the coupling effect can be increased to 0.4. Additionally, the effect of introduction of bend-twist coupling...

  5. Multilayer polymer light-emitting diodes by blade coating method

    Science.gov (United States)

    Tseng, Shin-Rong; Meng, Hsin-Fei; Lee, Kuan-Chen; Horng, Sheng-Fu

    2008-10-01

    Multilayer polymer light-emitting diodes fabricated by blade coating are presented. Multilayer of polymers can be easily deposited by blade coating on a hot plate. The multilayer structure is confirmed by the total thickness and the cross section view in the scanning electron microscope. The film thickness variation is only 3.3% in 10cm scale and the film roughness is about 0.3nm in the micron scale. The efficiency of single layer poly(para-phenylene vinylene) copolymer Super Yellow and poly(9,9-dioctylfluorene) (PFO, deep blue) devices are 9 and 1.7cd/A, respectively, by blade coating. The efficiency of the PFO device is raised to 2.9cd/A with a 2-(4-tert-butylphenyl)-5-(4-biphenylyl)-1,3,4-oxadiazole (PBD) hole-blocking layer and to 2.3cd/A with a poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4'-(N-(4-sec-butylphenyl))diphenylamine)] elec-tron-blocking layer added by blade coating.

  6. Prepreg and infusion processes for modern wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Shennan, C. [Hexcel, Cambridge (United Kingdom)

    2013-09-01

    The different elements of wind turbine blades have been analyzed for their main function, performance requirements and drivers. Key drivers can be simplified to either performance or cost. The use of prepreg and infusion to make these blade elements has then been compared and shows, from a comparison of test laminates, that prepreg typically delivers higher mechanical performance on both glass and carbon. One of the main process differences, cure temperature, has been overcome with the introduction of M79 which cures at 70 deg. - 80 deg. C. M79 combines this low cure temperature with a much lower reaction enthalpy allowing shorter cure cycles. This means that prepregs can now be cured in the same molds, at the same temperatures and with the same foam as used in a conventional infusion process. Although prepreg and infusion are usually used separately for making blade elements, they may also be used in combination: co-infused and co-cured using prepregs for the hard to infuse unidirectional load-carrying elements and infusion for the other elements. This can thus simplify the production process. The conclusion is that unidirectional prepregs are ideally suited for the performance driven parts of the blade such as in load carrying elements. (Author)

  7. Damage Identification of Wind Turbine Blades Using Piezoelectric Transducers

    Directory of Open Access Journals (Sweden)

    Seong-Won Choi

    2014-01-01

    Full Text Available This paper presents the experimental results of active-sensing structural health monitoring (SHM techniques, which utilize piezoelectric transducers as sensors and actuators, for determining the structural integrity of wind turbine blades. Specifically, Lamb wave propagations and frequency response functions at high frequency ranges are used to estimate the condition of wind turbine blades. For experiments, a 1 m section of a CX-100 blade is used. The goal of this study is to assess and compare the performance of each method in identifying incipient damage with a consideration given to field deployability. Overall, these methods yielded a sufficient damage detection capability to warrant further investigation. This paper also summarizes the SHM results of a full-scale fatigue test of a 9 m CX-100 blade using piezoelectric active sensors. This paper outlines considerations needed to design such SHM systems, experimental procedures and results, and additional issues that can be used as guidelines for future investigations.

  8. Non-Harmonic Fourier Analysis for bladed wheels damage detection

    Science.gov (United States)

    Neri, P.; Peeters, B.

    2015-11-01

    The interaction between bladed wheels and the fluid distributed by the stator vanes results in cyclic loading of the rotating components. Compressors and turbines wheels are subject to vibration and fatigue issues, especially when resonance conditions are excited. Even if resonance conditions can be often predicted and avoided, high cycle fatigue failures can occur, causing safety issues and economic loss. Rigorous maintenance programs are then needed, forcing the system to expensive shut-down. Blade crack detection methods are beneficial for condition-based maintenance. While contact measurement systems are not always usable in exercise conditions (e.g. high temperature), non-contact methods can be more suitable. One (or more) stator-fixed sensor can measure all the blades as they pass by, in order to detect the damaged ones. The main drawback in this situation is the short acquisition time available for each blade, which is shortened by the high rotational speed of the components. A traditional Discrete Fourier Transform (DFT) analysis would result in a poor frequency resolution. A Non-Harmonic Fourier Analysis (NHFA) can be executed with an arbitrary frequency resolution instead, allowing to obtain frequency information even with short-time data samples. This paper shows an analytical investigation of the NHFA method. A data processing algorithm is then proposed to obtain frequency shift information from short time samples. The performances of this algorithm are then studied by experimental and numerical tests.

  9. Effect of position of blades in the treatment of IMRT

    International Nuclear Information System (INIS)

    Perez Azorin, J. F.; Ramos Garcia, L. I.; Ortiz de Zarate Vivanco, R.; Trueba Garayo, I.; Cacicedo, J.; Hoyo, O. del

    2013-01-01

    This paper presents a method of calculation of the positions of each blade measures during treatment for all segments and the subsequent reconstruction of these positions in the planning system on the patient's physical and anatomical data. (Author)

  10. Tunneling cracks in full scale wind turbine blade joints

    DEFF Research Database (Denmark)

    Jørgensen, Jeppe Bjørn; Sørensen, Bent F.; Kildegaard, C.

    2017-01-01

    A novel approach is presented and used in a generic tunneling crack tool for the prediction of crack growth rates for tunneling cracks propagating across a bond-line in a wind turbine blade under high cyclic loadings. In order to test and demonstrate the applicability of the tool, model predictions...

  11. Blade pitch optimization methods for vertical-axis wind turbines

    Science.gov (United States)

    Kozak, Peter

    Vertical-axis wind turbines (VAWTs) offer an inherently simpler design than horizontal-axis machines, while their lower blade speed mitigates safety and noise concerns, potentially allowing for installation closer to populated and ecologically sensitive areas. While VAWTs do offer significant operational advantages, development has been hampered by the difficulty of modeling the aerodynamics involved, further complicated by their rotating geometry. This thesis presents results from a simulation of a baseline VAWT computed using Star-CCM+, a commercial finite-volume (FVM) code. VAWT aerodynamics are shown to be dominated at low tip-speed ratios by dynamic stall phenomena and at high tip-speed ratios by wake-blade interactions. Several optimization techniques have been developed for the adjustment of blade pitch based on finite-volume simulations and streamtube models. The effectiveness of the optimization procedure is evaluated and the basic architecture for a feedback control system is proposed. Implementation of variable blade pitch is shown to increase a baseline turbine's power output between 40%-100%, depending on the optimization technique, improving the turbine's competitiveness when compared with a commercially-available horizontal-axis turbine.

  12. Photosynthate partitioning in basal zones of tall fescue leaf blades

    International Nuclear Information System (INIS)

    Allard, G.; Nelson, C.J.

    1991-01-01

    Elongating grass leaves have successive zones of cell division, cell elongation, and cell maturation in the basal portion of the blade and are a strong sink for photosynthate. Our objective was to determine dry matter (DM) deposition and partitioning in basal zones of elongating tall fescue (Festuca arundinacea Schreb.) leaf blades. Vegetative tall fescue plants were grown in continuous light (350 micromoles per square meter per second photosynthetic photon flux density) to obtain a constant spatial distribution of elongation growth with time. Content and net deposition rates of water-soluble carbohydrates (WSC) and DM along elongating leaf blades were determined. These data were compared with accumulation of 14 C in the basal zones following leaf-labeling with 14 CO 2 . Net deposition of DM was highest in the active cell elongation zone, due mainly to deposition of WSC. The maturation zone, just distal to the elongation zone, accounted for 22% of total net deposition of DM in elongating leaves. However, the spatial profile of 14 C accumulation suggested that the elongation zone and the maturation zone were sinks of equal strength. WSC-free DM accounted for 55% of the total net DM deposition in elongating leaf blades, but only 10% of incoming 14 C-photosynthate accumulated in the water-insoluble fraction (WIF ∼ WSC-free DM) after 2 hours. In the maturation zone, more WSC was used for synthesis of WSC-free DM than was imported as recent photosynthate

  13. Liquid metal liner implosion systems with blade lattice for fusion

    International Nuclear Information System (INIS)

    Itoh, Yasuyuki; Fujiie, Yoichi

    1980-01-01

    In this paper, the liquid liner implosion systems with the blade lattice is proposed for the rotational stabilization of the liner inner surface which is facing a plasma in a fusion reactor. The blades are electrically conducting and inclined to the radial direction. Its major function is either acceleration or deceleration of the liner in the azimuthal direction. This system enables us to exclude the rotary mechanism for the liner rotation. In this system, the liner is formed as an annular flow of a liquid metal (the waterfall concept). Results show that there is no significant difference of the energy cost for the stabilization compared with the earlier proposed system where a liner is rotated rigidly before implosion. Furthermore, the application of the rotating blade lattice makes it possible to reduce the rotational kinetic energy required for the stabilization at turnaround, where the lattice acts as an impeller in the initial liner rotation. There is an optimum blade angle to maximize the compressed magnetic field energy inside the liner for a given driving energy. (author)

  14. Numerical Simulation of Wind Turbine Blade-Tower Interaction

    Institute of Scientific and Technical Information of China (English)

    Qiang Wang; Hu Zhou; Decheng Wan

    2012-01-01

    Numerical simulations of wind turbine blade-tower interaction by using the open source OpenFOAM tools coupled with arbitrary mesh interface (AMI) method were presented.The governing equations were the unsteady Reynolds-averaged Navier-Stokes (PANS) which were solved by the pimpleDyMFoam solver,and the AMI method was employed to handle mesh movements.The National Renewable Energy Laboratory (NREL) phase Ⅵ wind turbine in upwind configuration was selected for numerical tests with different incoming wind speeds (5,10,15,and 25 m/s) at a fixed blade pitch and constant rotational speed.Detailed numerical results of vortex structure,time histories of thrust,and pressure distribution on the blade and tower were presented.The findings show that the wind turbine tower has little effect on the whole aerodynamic performance of an upwind wind turbine,while the rotating rotor will induce an obvious cyclic drop in the front pressure of the tower.Also,strong interaction of blade tip vortices with separation from the tower was observed.

  15. Probabilistic Fatigue Design of Composite Material for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2011-01-01

    In the present paper a probabilistic design approach to fatigue design of wind turbine blades is presented. The physical uncertainty on the fatigue strength for composite material is estimated using public available fatigue tests. Further, the model uncertainty on Miner rule for damage accumulation...

  16. Nondestructive evaluation of turbine blades vibrating in resonant modes

    Science.gov (United States)

    Sciammarella, Cesar A.; Ahmadshahi, Mansour A.

    1991-12-01

    The paper presents the analysis of the strain distribution of turbine blades. The holographic moire technique is used in conjunction with computer analysis of the fringes. The application of computer fringe analysis technique reduces the number of holograms to be recorded to two. Stroboscopic illumination is used to record the patterns. Strains and stresses are computed.

  17. Reliability-based design of wind turbine blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2011-01-01

    Reliability-based design of wind turbine blades requires identification of the important failure modes/limit states along with stochastic models for the uncertainties and methods for estimating the reliability. In the present paper it is described how reliability-based design can be applied to wi...

  18. Rocket Engine Turbine Blade Surface Pressure Distributions Experiment and Computations

    Science.gov (United States)

    Hudson, Susan T.; Zoladz, Thomas F.; Dorney, Daniel J.; Turner, James (Technical Monitor)

    2002-01-01

    Understanding the unsteady aspects of turbine rotor flow fields is critical to successful future turbine designs. A technology program was conducted at NASA's Marshall Space Flight Center to increase the understanding of unsteady environments for rocket engine turbines. The experimental program involved instrumenting turbine rotor blades with miniature surface mounted high frequency response pressure transducers. The turbine model was then tested to measure the unsteady pressures on the rotor blades. The data obtained from the experimental program is unique in two respects. First, much more unsteady data was obtained (several minutes per set point) than has been possible in the past. Also, an extensive steady performance database existed for the turbine model. This allowed an evaluation of the effect of the on-blade instrumentation on the turbine's performance. A three-dimensional unsteady Navier-Stokes analysis was also used to blindly predict the unsteady flow field in the turbine at the design operating conditions and at +15 degrees relative incidence to the first-stage rotor. The predicted time-averaged and unsteady pressure distributions show good agreement with the experimental data. This unique data set, the lessons learned for acquiring this type of data, and the improvements made to the data analysis and prediction tools are contributing significantly to current Space Launch Initiative turbine airflow test and blade surface pressure prediction efforts.

  19. Aerodynamic investigation of winglets on wind turbine blades using CFD

    DEFF Research Database (Denmark)

    Johansen, Jeppe; Sørensen, Niels N.

    2006-01-01

    The present report describes the numerical investigation of the aerodynamics around a wind turbine blade with a winglet using Computational Fluid Dynamics, CFD. Five winglets were investigated with different twist distribution and camber. Four of them were pointing towards the pressure side...

  20. Efficient algorithms for factorization and join of blades

    NARCIS (Netherlands)

    Fontijne, D.

    2008-01-01

    Subspaces are powerful tools for modeling geometry. In geometric algebra, they are represented using blades and constructed using the outer product. To produce the actual geometrical intersection (Meet) and union (Join) of subspaces, rather than the simplified linearizations often used in

  1. Analysis, design and elastic tailoring of composite rotor blades

    Science.gov (United States)

    Rehfield, Lawrence W.; Atilgan, Ali R.

    1987-01-01

    The development of structural models for composite rotor blades is summarized. The models are intended for use in design analysis for the purpose of exploring the potential of elastic tailoring. The research was performed at the Center for Rotary Wing Aircraft Technology.

  2. Rotor blade full-scale fatigue testing technology and research

    DEFF Research Database (Denmark)

    Nielsen, Per Hørlyk; Berring, Peter; Pavese, Christian

    was started in the beginning of the 1980´s and has been further developed since then. Structures in composite materials are generally difficult and time consuming to test for fatigue resistance. Therefore, several methods for testing of blades have been developed and exist today. These methods...

  3. Multiscale modelling of single crystal superalloys for gas turbine blades

    NARCIS (Netherlands)

    Tinga, T.

    2009-01-01

    Gas turbines are extensively used for power generation and for the propulsion of aircraft and vessels. Their most severely loaded parts, the turbine rotor blades, are manufactured from single crystal nickel-base superalloys. The superior high temperature behaviour of these materials is attributed to

  4. Methods for testing of geometrical down-scaled rotor blades

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter

    further developed since then. Structures in composite materials are generally difficult and time consuming to test for fatigue resistance. Therefore, several methods for testing of blades have been developed and exist today. Those methods are presented in [1]. Current experimental test performed on full...

  5. A morphing trailing edge flap system for wind turbine blades

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Barlas, Athanasios; Løgstrup Andersen, Tom

    2015-01-01

    system has been further developed in corporation with the industrial partners Hydratech Industries (DK) and Rehau (DE). A new trailing edge flap design with spanwise voids (channels) and with a chord of 15cm suitable for a 1m chord blade section was developed. It was then manufactured by extrusion...

  6. Calculation of incompressible fluid flow through cambered blades

    Science.gov (United States)

    Hsu, C. C.

    1970-01-01

    Conformal mapping technique yields linear, approximate solutions for calculating flow of an incompressible fluid through staggered array of cambered blades for the cases of flow with partial cavitation and supercavitation. Lift and drag coefficients, cavitation number, cavity shape, and exit flow conditions can be determined.

  7. Influence of delayed excitation on vibrations of turbine blades couple

    Czech Academy of Sciences Publication Activity Database

    Půst, Ladislav; Pešek, Luděk

    2013-01-01

    Roč. 7, č. 1 (2013), s. 39-52 ISSN 1802-680X R&D Projects: GA ČR GA101/09/1166 Institutional support: RVO:61388998 Keywords : time delay * phase delay * blades couple * amplitude reduction * dry friction Subject RIV: BI - Acoustics

  8. Excitation of blade vibration under rotation by synchronous electromagnet

    Czech Academy of Sciences Publication Activity Database

    Pešek, Luděk; Vaněk, František; Bula, Vítězslav; Cibulka, Jan

    2011-01-01

    Roč. 18, 3/4 (2011), s. 1-9 ISSN 1802-1484 R&D Projects: GA ČR GA101/09/1166 Institutional research plan: CEZ:AV0Z20760514 Keywords : blade * vibration * excitation * electromagnet Subject RIV: BI - Acoustics

  9. A Blade Tip Timing Method Based on a Microwave Sensor

    Directory of Open Access Journals (Sweden)

    Jilong Zhang

    2017-05-01

    Full Text Available Blade tip timing is an effective method for blade vibration measurements in turbomachinery. This method is increasing in popularity because it is non-intrusive and has several advantages over the conventional strain gauge method. Different kinds of sensors have been developed for blade tip timing, including optical, eddy current and capacitance sensors. However, these sensors are unsuitable in environments with contaminants or high temperatures. Microwave sensors offer a promising potential solution to overcome these limitations. In this article, a microwave sensor-based blade tip timing measurement system is proposed. A patch antenna probe is used to transmit and receive the microwave signals. The signal model and process method is analyzed. Zero intermediate frequency structure is employed to maintain timing accuracy and dynamic performance, and the received signal can also be used to measure tip clearance. The timing method uses the rising and falling edges of the signal and an auto-gain control circuit to reduce the effect of tip clearance change. To validate the accuracy of the system, it is compared experimentally with a fiber optic tip timing system. The results show that the microwave tip timing system achieves good accuracy.

  10. Modelling the pultrusion process of off shore wind turbine blades

    NARCIS (Netherlands)

    Baran, Ismet

    This thesis is devoted to the numerical modelling of the pultrusion process for industrial products such as wind turbine blades and structural profiles. The main focus is on the thermo-chemical and mechanical analyses of the process in which the process induced tresses and shape distortions together

  11. Ingested razor blades within the appendix: A rare case report

    Directory of Open Access Journals (Sweden)

    Jason Cui

    Full Text Available Introduction: Foreign body ingestion is a common clinical presentation with less than 1% of the cases requiring surgical intervention. In this report, we present a rare case of razor blades lodged in the appendix as a result of intentional ingestion. Presentation of case: A 25 year old male prisoner presented to our hospital with persistent right iliac fossa pain after razor blade ingestion. After 5 days of conservative management, there was no sign of transition on serial X-Rays. Laparoscopy with intraoperative image intensification confirmed the presence of the razor blades in the appendix and appendicectomy was subsequently performed without complications. Discussion: Most ingested objected with diameter less than 2.5 cm and length less than 6 cm can pass through the gastrointestinal tract spontaneously in less than one week. The entry of foreign objects into the appendix is thought to be due to relative low motility of the caecum, the dependent position of the appendix and the size of the appendiceal orifice. Radiographic localisation to the appendiceal lumen was complicated by metallic artefact, but was consistent with failure to transit. Appendicectomy was felt to be the safest mode of retrieval. Conclusion: Ingested foreign body lodged in the appendix is a rare event. Once the exact location is confirmed, a simple laparoscopic appendicectomy can be performed to facilitate the removal. Keywords: Appendicitis, Laparoscopy, Appendicectomy, Foreign body ingestion, Razor blades, Case report

  12. Design and evaluation of low-cost laminated wood composite blades for intermediate size wind turbines: Blade design, fabrication concept, and cost analysis

    Science.gov (United States)

    Lieblein, S.; Gaugeon, M.; Thomas, G.; Zueck, M.

    1982-01-01

    As part of a program to reduce wind turbine costs, an evaluation was conducted of a laminated wood composite blade for the Mod-OA 200 kW wind turbine. The effort included the design and fabrication concept for the blade, together with cost and load analyses. The blade structure is composed of laminated Douglas fir veneers for the primary spar and nose sections, and honeycomb cored plywood panels for the trailing edges sections. The attachment of the wood blade to the rotor hub was through load takeoff studs bonded into the blade root. Tests were conducted on specimens of the key structural components to verify the feasibility of the concept. It is concluded that the proposed wood composite blade design and fabrication concept is suitable for Mod-OA size turbines (125-ft diameter rotor) at a cost that is very competitive with other methods of manufacture.

  13. Real-time estimation of helicopter rotor blade kinematics through measurement of rotation induced acceleration

    Science.gov (United States)

    Allred, C. Jeff; Churchill, David; Buckner, Gregory D.

    2017-07-01

    This paper presents a novel approach to monitoring rotor blade flap, lead-lag and pitch using an embedded gyroscope and symmetrically mounted MEMS accelerometers. The central hypothesis is that differential accelerometer measurements are proportional only to blade motion; fuselage acceleration and blade bending are inherently compensated for. The inverse kinematic relationships (from blade position to acceleration and angular rate) are derived and simulated to validate this hypothesis. An algorithm to solve the forward kinematic relationships (from sensor measurement to blade position) is developed using these simulation results. This algorithm is experimentally validated using a prototype device. The experimental results justify continued development of this kinematic estimation approach.

  14. KNOW-BLADE task-3.2 report: Tip shape study

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Johansen, Jeppe; Conway, S.

    2005-01-01

    For modern rotor blades with their very large aspect ratio, the blade tip is a very limited part of the overall rotor, and as such of limited importance for the overall aerodynamics of the rotor. Even though they may not be very important for the overallpower production, the tip noise can be very...... important for the acoustics of the rotor [15], and the blade tips can as well be important for the aerodynamic damping properties of the rotor blades [13]. Unfortunately, not many options exists for predictingthe aerodynamic behavior of blade tips using computational methods. Experimentally it is di...

  15. On the design and structural analysis of jet engine fan blade structures

    Science.gov (United States)

    Amoo, Leye M.

    2013-07-01

    Progress in the design and structural analysis of commercial jet engine fan blades is reviewed and presented. This article is motivated by the key role fan blades play in the performance of advanced gas turbine jet engines. The fundamentals of the associated physics are emphasized. Recent developments and advancements have led to an increase and improvement in fan blade structural durability, stability and reliability. This article is intended as a high level review of the fan blade environment and current state of structural design to aid further research in developing new and innovative fan blade technologies.

  16. Lightning Damage to Wind Turbine Blades From Wind Farms in the U.S

    DEFF Research Database (Denmark)

    Candela Garolera, Anna; Madsen, Søren Find; Nissim, Maya

    2016-01-01

    , laminate structure, and lightning protection systems. The statistics consist of the distribution of lightning damage along the blade and classify the damage by severity. In addition, the frequency of lightning damage to more than one blade of a wind turbine after a thunderstorm is assessed. The results......This paper presents statistical data about lightning damage on wind turbine blades reported at different wind farms in the U.S. The analysis is based on 304 cases of damage due to direct lightning attachment on the blade surface. This study includes a large variety of blades with different lengths...

  17. Effect of the number of blades on the dynamics of floating straight-bladed vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen

    2017-01-01

    Floating vertical axis wind turbines (VAWTs) are promising solutions for exploiting the wind energy resource in deep waters due to their potential cost-of-energy reduction. The number of blades is one of the main concerns when designing a VAWT for offshore application. In this paper, the effect...

  18. CFD computations of wind turbine blade loads during standstill operation KNOW-BLADE, Task 3.1 report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N.N.; Johansen, J.; Conway, S.

    2004-06-01

    Two rotors blades are computed during standstill conditions, using two different Navier-Stokes solvers EDGE and EllipSys3D. Both steady and transient linear {kappa} - {omega} RANS turbulence models are applied, along with steady non-linear RANS and transient DES simulations. The STORK 5.0 WPX blade is computed a three different tip pitch angles, 0, 26 and 50 degrees tip pitch angle, while the NREL Phase-VI blade is computed at 90 degrees tip pitch angle. Generally the CFD codes reproduce the measured trends quite well and the two involved CFD codes give very similar results. The discrepancies observed can be explained by the difference in the applied turbulence models and the fact that the results from one of the solvers are presented as instantaneous values instead of averaged values. The comparison of steady and transient RANS results show that the gain of using time true computations are very limited for this case, with respect to mean quantities. The same can be said for the RANS/DES comparison performed for the NREL rotor, even though the DES computation shows improved agreement at the tip and root sections. Finally, it is shown that the DES methodology provides a much more physical representation of the heavily stalled part of the flow over blades at high angles of attack. (au)

  19. On the development of a magnetoresistive sensor for blade tip timing and blade tip clearance measurement systems

    Science.gov (United States)

    Tomassini, R.; Rossi, G.; Brouckaert, J.-F.

    2016-10-01

    A simultaneous blade tip timing (BTT) and blade tip clearance (BTC) measurement system enables the determination of turbomachinery blade vibrations and ensures the monitoring of the existing running gaps between the blade tip and the casing. This contactless instrumentation presents several advantages compared to the well-known telemetry system with strain gauges, at the cost of a more complex data processing procedure. The probes used can be optical, capacitive, eddy current as well as microwaves, everyone with its dedicated electronics and many existing different signal processing algorithms. Every company working in this field has developed its own processing method and sensor technology. Hence, repeating the same test with different instrumentations, the answer is often different. Moreover, rarely it is possible to achieve reliability for in-service measurements. Developments are focused on innovative instrumentations and a common standard. This paper focuses on the results achieved using a novel magnetoresistive sensor for simultaneous tip timing and tip clearance measurements. The sensor measurement principle is described. The sensitivity to gap variation is investigated. In terms of measurement of vibrations, experimental investigations were performed at the Air Force Institute of Technology (ITWL, Warsaw, Poland) in a real aeroengine and in the von Karman Institute (VKI) R2 compressor rig. The advantages and limitations of the magnetoresistive probe for turbomachinery testing are highlighted.

  20. Effect of the flow characteristics and inter blade channel shape on the losses in peripheral sections of gas turbine blades

    International Nuclear Information System (INIS)

    Granovskij, A.V.; Kostezh, M.K.

    1999-01-01

    The results of calculational study , based on the solution of the Navier-Stokes equations, on the floe structure and the level of profile losses in the peripheral cross sections of turbine blades by the Re = 2.0 x 10 5 - 1.2 x 10 6 numbers and the turbulence inlet intensity 0.02 - 0.12 are presented

  1. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    Science.gov (United States)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-08-12

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally.

  2. Design, evaluation, and fabrication of low-cost composite blades for intermediate-size wind turbines

    Science.gov (United States)

    Weingart, O.

    1981-01-01

    Low cost approaches for production of 60 ft long glass fiber/resin composite rotor blades for the MOD-OA wind turbine were identified and evaluated. The most cost-effective configuration was selected for detailed design. Subelement and subscale specimens were fabricated for testing to confirm physical and mechanical properties of the composite blade materials, to develop and evaluate blade fabrication techniques and processes, and to confirm the structural adequacy of the root end joint. Full-scale blade tooling was constructed and a partial blade for tool and process tryout was built. Then two full scale blades were fabricated and delivered to NASA-LeRC for installation on a MOD-OA wind turbine at Clayton, New Mexico for operational testing. Each blade was 60 ft. long with 4.5 ft. chord at root end and 2575 lbs weight including metal hub adapter. The selected blade configuration was a three cell design constructed using a resin impregnated glass fiber tape winding process that allows rapid wrapping of primarily axially oriented fibers onto a tapered mandrel, with tapered wall thickness. The ring winder/transverse filament tape process combination was used for the first time on this program to produce entire rotor blade structures. This approach permitted the complete blade to be wound on stationary mandrels, an improvement which alleviated some of the tooling and process problems encountered on previous composite blade programs.

  3. Improvement of centrifugal pump performance through addition of splitter blades on impeller pump

    Science.gov (United States)

    Kurniawan, Krisna Eka; Santoso, Budi; Tjahjana, Dominicus Danardono Dwi Prija

    2018-02-01

    The workable way to improve pump performance is to redesign or modify the impellers of centrifugal pump. The purpose of impeller pump modification is to improve pump efficiency, reduce cross flow, reduce secondary incidence flows, and decrease backflow areas at impeller outlets. Number blades and splitter blades in the impeller are three. The outlet blade angle is 20°, and the rotating speed of impeller is 2400 rpm. The added splitter blades variations are 0.25, 0.375, and 0.5 of the original blade length. The splitter blade placements are on the outer side of the impeller. The addition of splitter blades on the outer side of the impeller with 0.5L increases the pump head until 22% and the pump has 38.66% hydraulic efficiency. The best efficiency point of water flow rate pump (Qbep) was 3.02 × 10-3 m3/s.

  4. Investigation of a Cermet Gas-turbine-blade Material of Titanium Carbide Infiltrated with Hastalloy C

    Science.gov (United States)

    Hoffman, Charles A

    1955-01-01

    A cermet composition was investigated as a potential material for gas-turbine blades. Blades of HS-21 alloy were also operated in the engine simultaneously to provide a basis of comparison. The cermet blades survived as long as approximately 312-1/2 hours at about 1500 degrees F with an average midspan centrifugal stress of approximately 11,500 psi. The alloy blade midspan stress was about 15,300 psi. Because of extensive damage to both types of blade due to external causes, a reliable comparison of operating lives could not be made. The cermet blades tended to fail in the airfoil rather than in the base, although the base was the usual location of failure in a prior study of cold-pressed and sintered cermets of other compositions with the same blade shape.

  5. Reduction of wind powered generator cost by use of a one bladed rotor

    Energy Technology Data Exchange (ETDEWEB)

    Pruyn, R R; Wiesner, W; Ljungstroem, O [ed.

    1976-01-01

    Cost analysis supported by preliminary design studies of one and two bladed wind powered generator units shows that a 30% reduction in acquisition cost can be achieved with a one bladed design. Designs studied were sized for an output power of 1000 kilowatts. The one bladed design has the potential for reducing acquisition cost to $680 per available kilowatt if the unit is located in a region with mean surface winds of 15 mph. Vibratory loads of the one bladed design are significant and will require considerable design attention. The one per rev Coriolis torque caused by blade flapping is the most significant problem. The major source of blade flapping will be the velocity gradient of the ground boundary layer. A torsional vibration isolating coupling may be required in the generator drive to reduce the loads due to this vibratory torque. An inclined flapping hinge also is desirable to cause pitch-flap coupling that will suppress blade flap motions.

  6. Numerical results in a vertical wind axis turbine with relative rotating blades

    Energy Technology Data Exchange (ETDEWEB)

    Bayeul-Laine, Annie-Claude; Dockter, Aurore; Simonet, Sophie; Bois, Gerard [Arts et Metiers PARISTECH (France)

    2011-07-01

    The use of wind energy to produce electricity through wind turbines has spread world-wide. The quantity of electricity produced is affected by numerous factors such as wind speed and direction and turbine design; the aim of this paper is to assess the influence of different blades on the performance of a turbine. This study was performed on a turbine in which the blades have a rotating movement, each around its own axis and around the turbine's axis. Unsteady simulations were carried out with several blade stagger angles and one wind speed and 2 different blade geometries were used for 4 rotational speeds. Results showed that the studied turbine gave better performance than vertical axis wind turbines and that blade sketch, blade speed ratios, and blade stagger angle were important influences on the performance. This study showed that this kind of turbine has the potential to achieve good performance but that further work needs to be done.

  7. A simplified model predicting the weight of the load carrying beam in a wind turbine blade

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    2016-01-01

    from 20 to 90 m. In addition, it can be seen that for a blade using glass fibre reinforced polymers, the design is controlled by the deflection and thereby the material stiffness in order to avoid the blade to hit the tower. On the other hand if using aluminium, the design will be controlled...... to predict the weight of the load carrying beam when using glassfibre reinforced polymers, carbon fibre reinforced polymers or an aluminium alloy as the construction material. Thereby, it is found that the weight of a glass fibre wind turbine blade is increased from 0.5 to 33 tons when the blade length grows...... by the fatigue resistance in orderto making the material survive the 100 to 500 million load cycles experience of the windturbine blade throughout the lifetime. The aluminium blade is also found to be considerably heavier compared with the composite blades....

  8. Demonstration of an elastically coupled twist control concept for tilt rotor blade application

    Science.gov (United States)

    Lake, R. C.; Nixon, M. W.; Wilbur, M. L.; Singleton, J. D.; Mirick, P. H.

    1994-01-01

    The purpose of this Note is to present results from an analytic/experimental study that investigated the potential for passively changing blade twist through the use of extension-twist coupling. A set of composite model rotor blades was manufactured from existing blade molds for a low-twist metal helicopter rotor blade, with a view toward establishing a preliminary proof concept for extension-twist-coupled rotor blades. Data were obtained in hover for both a ballasted and unballasted blade configuration in sea-level atmospheric conditions. Test data were compared with results obtained from a geometrically nonlinear analysis of a detailed finite element model of the rotor blade developed in MSC/NASTRAN.

  9. Experimental investigation on centrifugal compressor blade crack classification using the squared envelope spectrum.

    Science.gov (United States)

    Li, Hongkun; Zhang, Xuefeng; Xu, Fujian

    2013-09-18

    Centrifugal compressors are a key piece of equipment for modern production. Among the components of the centrifugal compressor, the impeller is a pivotal part as it is used to transform kinetic energy into pressure energy. Blade crack condition monitoring and classification has been broadly investigated in the industrial and academic area. In this research, a pressure pulsation (PP) sensor arranged in close vicinity to the crack area and the corresponding casing vibration signals are used to monitor blade crack information. As these signals cannot directly demonstrate the blade crack, the method employed in this research is based on the extraction of weak signal characteristics that are induced by blade cracking. A method for blade crack classification based on the signals monitored by using a squared envelope spectrum (SES) is presented. Experimental investigations on blade crack classification are carried out to verify the effectiveness of this method. The results show that it is an effective tool for blade crack classification in centrifugal compressors.

  10. Bionic Design of Wind Turbine Blade Based on Long-Eared Owl’s Airfoil

    Directory of Open Access Journals (Sweden)

    Weijun Tian

    2017-01-01

    Full Text Available The main purpose of this paper is to demonstrate a bionic design for the airfoil of wind turbines inspired by the morphology of Long-eared Owl’s wings. Glauert Model was adopted to design the standard blade and the bionic blade, respectively. Numerical analysis method was utilized to study the aerodynamic characteristics of the airfoils as well as the blades. Results show that the bionic airfoil inspired by the airfoil at the 50% aspect ratio of the Long-eared Owl’s wing gives rise to a superior lift coefficient and stalling performance and thus can be beneficial to improving the performance of the wind turbine blade. Also, the efficiency of the bionic blade in wind turbine blades tests increases by 12% or above (up to 44% compared to that of the standard blade. The reason lies in the bigger pressure difference between the upper and lower surface which can provide stronger lift.

  11. Bionic Design of Wind Turbine Blade Based on Long-Eared Owl's Airfoil.

    Science.gov (United States)

    Tian, Weijun; Yang, Zhen; Zhang, Qi; Wang, Jiyue; Li, Ming; Ma, Yi; Cong, Qian

    2017-01-01

    The main purpose of this paper is to demonstrate a bionic design for the airfoil of wind turbines inspired by the morphology of Long-eared Owl's wings. Glauert Model was adopted to design the standard blade and the bionic blade, respectively. Numerical analysis method was utilized to study the aerodynamic characteristics of the airfoils as well as the blades. Results show that the bionic airfoil inspired by the airfoil at the 50% aspect ratio of the Long-eared Owl's wing gives rise to a superior lift coefficient and stalling performance and thus can be beneficial to improving the performance of the wind turbine blade. Also, the efficiency of the bionic blade in wind turbine blades tests increases by 12% or above (up to 44%) compared to that of the standard blade. The reason lies in the bigger pressure difference between the upper and lower surface which can provide stronger lift.

  12. Testing and evaluation of a rototiller with new ridged blades

    Directory of Open Access Journals (Sweden)

    H Gholami

    2017-05-01

    Full Text Available Introduction Recently, employment of rotary tillers has been expanded in gardens and small farms, especially in the northern of Iran. However using the L-shaped blades in the conventional rotary tillers have some problems such as severe vibration problems, weeds stucking around the blades, forming the plow pan and lower performance due to the less powers of such small rototillers. Therefore in order to overcome the above mentioned problems, a rototiller with new ridged blades was designed, fabricated and tested in this research. Materials and Methods Experiments were carried out in one of the citrus orchards in Mazandaran, Sari. The experimental design was split plots based on randomized complete block design with three replications. The soil moisture as main plot varied in two levels of 13.5-21.9 and 21.9-30.3 percent based on dry weight and the rotational speed of blades as subplots varied in three levels of 140-170, 170-200 and 200-230 rpm. The measured parameters consist of soil particle mean weight diameter, soil bulk density, soil crumbling percentage, specific fuel consumption and machine efficiency. The diameter of soil particles was measured using a set of standard sieves with diameter ranging from 0.5 to 8 mm. Then a laboratory shaker was used to sift the samples. Each sample was shaken in 30 sec. The fuel consumption during the experiments was determined by the filled fuel tank method. Analysis of variance (ANOVA and mean comparisons and interaction between the parameters were performed using the SPSS 16 software. Results and Discussion The results indicated that the soil particle mean weight diameter reduced by increasing blades rotational speed in both examined soil moisture contents. Results indicated that the soil crumbling percent increases with increasing the rotational speed. The main reason for this effect could be due to the more energy transferring to the soil at higher rotational speeds, which result in further crumbling of

  13. Mechanical characterization of composite repairs for fiberglass wind turbine blades

    Science.gov (United States)

    Chawla, Tanveer Singh

    While in service, wind turbine blades experience various modes of loading. An example is impact loading in the form of hail or bird strikes, which might lead to localized damage or formation of cracks a few plies deep on the blade surface. One of the methods to conduct repairs on wind turbine blades that are damaged while in service is hand lay-up of the repair part after grinding out the damaged portion and some of its surrounding area. The resin used for such repairs usually differs from the parent plate resin in composition and properties such as gel time, viscosity, etc. As a result the properties of the repaired parts are not the same as that of the undamaged blades. Subsequent repetitive loading can be detrimental to weak repairs to such an extent so as to cause delamination at the parent-repair bondline causing the repairs to eventually fall off the blade. Thus the strength and toughness of the repair are of critical importance. Initial part of this work consists of an effort to increase repair strength by identifying an optimum hand layup repair resin for fiberglass wind turbine blades currently being manufactured by a global company. As delamination of the repair from the parent blade is a major concern and unidirectional glass fibers along with a polymer resin are used to manufacture blades under consideration, testing method detailed in ASTM D 5528 (Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites) was followed to determine propagation fracture toughness values of the prospective vinyl ester repair resin candidates. These values were compared to those for a base polyester repair resin used by the company. Experimental procedure and results obtained from the above mentioned testing using double cantilever beam (DCB) specimens are detailed. Three new repair resins were shortlisted through mode I testing. It was also found that variation in the depth of the ground top ply of the parent part

  14. Numerical investigation on aerodynamic performance of a novel vertical axis wind turbine with adaptive blades

    International Nuclear Information System (INIS)

    Wang, Ying; Sun, Xiaojing; Dong, Xiaohua; Zhu, Bing; Huang, Diangui; Zheng, Zhongquan

    2016-01-01

    Highlights: • A novel vertical axis wind turbine with deformed blades is designed. • The universal tendency of power characteristics for simulated turbine is found. • The whole flow field of different turbines from the aspect of vortex is analyzed. • The tracking analysis of vortex at different positions for a blade is conducted. • The aerodynamic performance of turbine with three deformed blades is analyzed. - Abstract: In this paper, a novel Darrieus vertical axis wind turbine was designed whose blade can be deformed automatically into a desired geometry and thus achieve a better aerodynamic performance. A series of numerical simulations were conducted by utilizing the United Computational Fluid Dynamics code. Firstly, analysis and comparison of the performance of undeformed and deformed blades for the rotors having different blades were conducted. Then, the power characteristics of each simulated turbine were summarized and a universal tendency was found. Secondly, investigation on the effect of blade number and solidity on the power performance of Darrieus vertical axis wind turbine with deformable and undeformable blades was carried out. The results indicated that compared to conventional turbines with same solidity, the maximum percentage increase in power coefficient that the low solidity turbine with three deformable blades can achieve is about 14.56%. When solidity is high and also turbine operates at low tip speed ratio of less than the optimum value, the maximum power coefficient increase for the turbines with two and four deformable blades are 7.51% and 8.07%, respectively. However, beyond the optimal tip speed ratio, the power improvement of the turbine using the deformable blades seems not significant and even slightly worse than the conventional turbines. The last section studied the transient behavior of vortex and turbulent flow structures around the deformable rotor blade to explore the physical mechanism of improving aerodynamic

  15. On the inverse problem of blade design for centrifugal pumps and fans

    Science.gov (United States)

    Kruyt, N. P.; Westra, R. W.

    2014-06-01

    The inverse problem of blade design for centrifugal pumps and fans has been studied. The solution to this problem provides the geometry of rotor blades that realize specified performance characteristics, together with the corresponding flow field. Here a three-dimensional solution method is described in which the so-called meridional geometry is fixed and the distribution of the azimuthal angle at the three-dimensional blade surface is determined for blades of infinitesimal thickness. The developed formulation is based on potential-flow theory. Besides the blade impermeability condition at the pressure and suction side of the blades, an additional boundary condition at the blade surface is required in order to fix the unknown blade geometry. For this purpose the mean-swirl distribution is employed. The iterative numerical method is based on a three-dimensional finite element method approach in which the flow equations are solved on the domain determined by the latest estimate of the blade geometry, with the mean-swirl distribution boundary condition at the blade surface being enforced. The blade impermeability boundary condition is then used to find an improved estimate of the blade geometry. The robustness of the method is increased by specific techniques, such as spanwise-coupled solution of the discretized impermeability condition and the use of under-relaxation in adjusting the estimates of the blade geometry. Various examples are shown that demonstrate the effectiveness and robustness of the method in finding a solution for the blade geometry of different types of centrifugal pumps and fans. The influence of the employed mean-swirl distribution on the performance characteristics is also investigated.

  16. On the inverse problem of blade design for centrifugal pumps and fans

    International Nuclear Information System (INIS)

    Kruyt, N P; Westra, R W

    2014-01-01

    The inverse problem of blade design for centrifugal pumps and fans has been studied. The solution to this problem provides the geometry of rotor blades that realize specified performance characteristics, together with the corresponding flow field. Here a three-dimensional solution method is described in which the so-called meridional geometry is fixed and the distribution of the azimuthal angle at the three-dimensional blade surface is determined for blades of infinitesimal thickness. The developed formulation is based on potential-flow theory. Besides the blade impermeability condition at the pressure and suction side of the blades, an additional boundary condition at the blade surface is required in order to fix the unknown blade geometry. For this purpose the mean-swirl distribution is employed. The iterative numerical method is based on a three-dimensional finite element method approach in which the flow equations are solved on the domain determined by the latest estimate of the blade geometry, with the mean-swirl distribution boundary condition at the blade surface being enforced. The blade impermeability boundary condition is then used to find an improved estimate of the blade geometry. The robustness of the method is increased by specific techniques, such as spanwise-coupled solution of the discretized impermeability condition and the use of under-relaxation in adjusting the estimates of the blade geometry. Various examples are shown that demonstrate the effectiveness and robustness of the method in finding a solution for the blade geometry of different types of centrifugal pumps and fans. The influence of the employed mean-swirl distribution on the performance characteristics is also investigated. (paper)

  17. Design of a 21 m blade with Risø-A1 airfoils for active stall controlled wind turbines

    DEFF Research Database (Denmark)

    Fuglsang, Peter; Sangill, O.; Hansen, P.

    2002-01-01

    This is the final report, from the project, "Design of a Rotor/Airfoil Family for Active Stall-regulated Wind Turbines by Use of Multi-point Optimization". It describes the full scale testing of a 21 m wind turbine blade specially designed for active stallregulation. Design objectives were...... increased ratio of produced energy to turbine loads and more stable power control characteristics. Both were taken directly into account during the design of the blade using numerical optimization. The blade used theRisø-A1 airfoil family, which was specially designed for operation on wind turbine blades....... The new blade was designed to replace the LM 21.0P blade. A measurement campaign was carried out simultaneously on two identical adjacent wind turbines where onehad the new blades and the other had LM 21.0P blades. Power and loads including blade section moments for the new blades were measured to assess...

  18. Ultimate strength of a large wind turbine blade

    Energy Technology Data Exchange (ETDEWEB)

    Moelholt Jensen, Find

    2008-05-15

    The present PhD project contains a study of the structural static strength of wind turbine blades loaded in flap-wise direction. A combination of experimental and numerical work has been used to address the most critical failure mechanisms and to get an understanding of the complex structural behaviour of wind turbine blades. Four failure mechanisms observed during the fullscale tests and the corresponding FE-analysis are presented. Elastic mechanisms associated with failure, such as buckling, localized bending and the Brazier effect, are studied. Six different types of structural reinforcements helping to prevent undesired structural elastic mechanisms are presented. The functionality of two of the suggested structural reinforcements was demonstrated in full-scale tests and the rest trough FE-studies. The blade design under investigation consisted of an aerodynamic airfoil and a load carrying box girder. In total, five full-scale tests have been performed involving one complete blade and two shortened box girders. The second box girder was submitted to three independent tests covering different structural reinforcement alternatives. The advantages and disadvantages of testing a shortened load carrying box girder vs. an entire blade are discussed. Changes in the boundary conditions, loads and additional reinforcements, which were introduced in the box girder tests in order to avoid undesired structural elastic mechanisms, are presented. New and advanced measuring equipment was used in the fullscale tests to detect the critical failure mechanisms and to get an understanding of the complex structural behaviour. Traditionally, displacement sensors and strain gauges in blade tests are arranged based on an assumption of a Bernoulli-Euler beam structural response. In the present study it is shown that when following this procedure important information about distortions of the cross sections is lost. In the tests presented here, one of the aims was to measure distortion

  19. SOIL ALGAE OF BLADE OF COIL IN DONETSK REGION

    Directory of Open Access Journals (Sweden)

    Maltseva I.A.

    2011-12-01

    Full Text Available On territory of Donbass for more than 200 years the underground coal mining has produced, accompanied by the formation of the mine dumps. Finding ways to reduce their negative impact on the environment should be based on their comprehensive study. The soil algae are active participants in the syngenetic processes in industrial dumps of different origin. The purpose of this paper is to identify the species composition and dominant algae groups in dump mine SH/U5 “Western” in the western part of Donetsk.The test blade is covered with vegetation to the middle from all sides, and on the north side of 20-25 m to the top. The vegetation cover of the lower and middle tiers of all the exposures range in 70-80%. Projective vegetation cover of upper tiers of the northern, north-eastern and north-western exposures are in the range of 20-40%, other – 5-10%. We revealed some 38 algae species as a result of our research in southern, northern, western, and eastern slopes of the blade “Western”. The highest species diversity has Chlorophyta - 14 species (36.8% of the total number of species, then Cyanophyta - 9 (23,7%, Bacillariophyta - 7 (18,4%, Xantophyta - 5 (13.2%, and Eustigmatophyta - 3 (7.9%. The dominants are represented by Hantzschia amphyoxys (Ehrenberg Grunow in Cleve et Grunow, Bracteacoccus aerius, Klebsormidium flaccidum (Kützing Silva et al., Phormidium autumnale, Pinnularia borealis Ehrenberg, Planothidium lanceolatum (Brebisson in Kützing Bukhtiyarova, Xanthonema exile (Klebs Silva.It should be noted that the species composition of algae groups in different slopes of the blade was significantly different. Jacquard coefficient was calculated for algae communities varied in the range of 15,4-39,1%. The smallest number of algae species was observed on the southern slope of the blade (14 species, maximum was registered in the areas of north and west slopes. Differences in the species composition of algae were also observed in three

  20. Performance and wake predictions of HAWTs in wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Leclerc, C.; Masson, C.; Paraschivoiu, I. [Ecole Polytechnique, Montreal (Canada)

    1997-12-31

    The present contribution proposes and describes a promising way towards performance prediction of an arbitrary array of turbines. It is based on the solution of the time-averaged, steady-state, incompressible Navier-Stokes equations with an appropriate turbulence closure model. The turbines are represented by distributions of momentum sources in the Navier-Stokes equations. In this paper, the applicability and viability of the proposed methodology is demonstrated using an axisymmetric implementation. The k-{epsilon} model has been chosen for the closure of the time-averaged, turbulent flow equations and the properties of the incident flow correspond to those of a neutral atmospheric boundary layer. The proposed mathematical model is solved using a Control-Volume Finite Element Method (CVFEM). Detailed results have been obtained using the proposed method for an isolated wind turbine and for two turbines one behind another. In the case of an isolated turbine, accurate wake velocity deficit predictions are obtained and an increase in power due to atmospheric turbulence is found in agreement with measurements. In the case of two turbines, the proposed methodology provides an appropriate modelling of the wind-turbine wake and a realistic prediction of the performance degradation of the downstream turbine.

  1. Effect of Blade Pitch Angle on the Aerodynamic Characteristics of a Straight-bladed Vertical Axis Wind Turbine Based on Experiments and Simulations

    Directory of Open Access Journals (Sweden)

    Yanzhao Yang

    2018-06-01

    Full Text Available The blade pitch angle has a significant influence on the aerodynamic characteristics of horizontal axis wind turbines. However, few research results have revealed its impact on the straight-bladed vertical axis wind turbine (Sb-VAWT. In this paper, wind tunnel experiments and CFD simulations were performed at the Sb-VAWT to investigate the effect of different blade pitch angles on the pressure distribution on the blade surface, the torque coefficient, and the power coefficient. In this study, the airfoil type was NACA0021 with two blades. The Sb-VAWT had a rotor radius of 1.0 m with a spanwise length of 1.2 m. The simulations were based on the k-ω Shear Stress Transport (SST turbulence model and the wind tunnel experiments were carried out using a high-speed multiport pressure device. As a result, it was found that the maximum pressure difference on the blade surface was obtained at the blade pitch angle of β = 6° in the upstream region. However, the maximum pressure coefficient was shown at the blade pitch angle of β = 8° in the downstream region. The torque coefficient acting on a single blade reached its maximum value at the blade pitch angle of β = 6°. As the tip speed ratio increased, the power coefficient became higher and reached the optimum level. Subsequently, further increase of the tip speed ratio only led to a quick reversion of the power coefficient. In addition, the results from CFD simulations had also a good agreement with the results from the wind tunnel experiments. As a result, the blade pitch angle did not have a significant influence on the aerodynamic characteristics of the Sb-VAWT.

  2. Design optimization and analysis of vertical axis wind turbine blade

    International Nuclear Information System (INIS)

    Jarral, A.; Ali, M.; Sahir, M.H.

    2013-01-01

    Wind energy is clean and renwable source of energy and is also the world's fastest growing energy resource. Keeping in view power shortages and growing cost of energy, the low cost wind energy has become a primary solution. It is imperative that economies and individuals begin to conserve energy and focus on the production of energy from renewable sources. Present study describes a wind turbine blade designed with enhanced aerodynamic properties. Vertical axis turbine is chosen because of its easy installment, less noisy and having environmental friendly characteristics. Vertical axis wind turbines are thought to be ideal for installations where wind conditions are not consistent. The presented turbine blade is best suitable for roadsides where the rated speed due to vehicles is most /sup -1/ often 8 ms .To get an optimal shape design symmetrical profile NACA0025 has been considered which is then analyzed for stability and aerodynamic characteristics at optimal conditions using analysis tools ANSYS and CFD tools. (author)

  3. Aeroelastically coupled blades for vertical axis wind turbines

    Science.gov (United States)

    Paquette, Joshua; Barone, Matthew F.

    2016-02-23

    Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.

  4. Modeling of Unsteady Sheet Cavitation on Marine Propeller Blades

    Directory of Open Access Journals (Sweden)

    Spyros A. Kinnas

    2003-01-01

    Full Text Available Unsteady sheet cavitation is very common on marine propulsor blades. The authors summarize a lifting-surface and a surface-panel model to solve for the unsteady cavitating flow around a propeller that is subject to nonaxisymmetric inflow. The time-dependent extent and thickness of the cavity were determined by using an iterative method. The cavity detachment was determined by applying the smooth detachment criterion in an iterative manner. A nonzeroradius developed vortex cavity model was utilized at the tip of the blade, and the trailing wake geometry was determined using a fully unsteady wake-alignment process. Comparisons of predictions by the two models and measurements from several experiments are given.

  5. Microstructural Features in Corroded Celtic Iron Age Sword Blades

    Science.gov (United States)

    Ghiara, G.; Piccardo, P.; Campodonico, S.; Carnasciali, M. M.

    2014-05-01

    Archaeological artefacts made from iron and steel are often of critical importance for archaeometallurgical studies, which aim to understand the process of manufacturing, as the nearly complete alloy mineralization does not allow for any type of metallographic interpretation. In this study, three Iron Age sword blades dated from the second century BC (LaTène B2/D1) found in the archaeological site of Tintignac (Commune de Naves, Corrèze, France), were investigated. A multianalytical approach was employed to acquire a complete range of data from the partially or totally corroded objects. Analyses were carried out with the use of light optical microscopy, micro Raman spectroscopy, and scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy (EDXS). Remnants of metallographic features—ghost microstructure—in the corrosion layers of the blades were observed, allowing for a partial reconstruction of the manufacturing process.

  6. Partial Safety Factors for Fatigue Design of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Toft, Henrik Stensgaard; Sørensen, John Dalsgaard

    2010-01-01

    In the present paper calibration of partial safety factors for fatigue design of wind turbine blades is considered. The stochastic models for the physical uncertainties on the material properties are based on constant amplitude fatigue tests and the uncertainty on Miners rule for linear damage...... accumulation is determined from variable amplitude fatigue tests with the Wisper and Wisperx spectra. The statistical uncertainty for the assessment of the fatigue loads is also investigated. The partial safety factors are calibrated for design load case 1.2 in IEC 61400-1. The fatigue loads are determined...... from rainflow-counting of simulated time series for a 5MW reference wind turbine [1]. A possible influence of a complex stress state in the blade is not taken into account and only longitudinal stresses are considered....

  7. Sources of fatigue damage to passive yaw wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Laino, D.J. [Univ. of Utah, Salt Lake City, UT (United States)

    1997-12-31

    Using an integrated computer analysis approach developed at the University of Utah, fatigue damage sources to passive yaw wind turbine blades have been investigated. Models of a rigid hub and teetering hub machine reveal the parameters important to the fatigue design of each type. The teetering hub proved much less susceptible to fatigue damage from normal operation loads. As a result, extreme events were critical to the teetering hub fatigue life. The rigid hub blades experienced extremely large gyroscopic load cycles induced by rapid yaw rates during normal operation. These yaw rates stem from turbulence activity which is shown to be dependent upon atmospheric stability. Investigation revealed that increasing yaw damping is an effective way of significantly reducing these gyroscopic fatigue loads.

  8. System for manufacturing wooden rotor blades for small wind mills

    Energy Technology Data Exchange (ETDEWEB)

    Moeller, B

    1991-05-01

    Acknowledging the need (also in developing countries) for small windmill wings with various patterns and aerodynamic characteristics a simple, low-cost hand-controlled copying milling machine was built (with standard parts) to reduce production time for one wing to 1-2 hours. A sensor-roll transfers the airfoil pattern to a set of two saw blades, driven by an electric motor, which carves the airfoil out of a wooden beam. It is thus possible to cut out each cross section of the wing and manufacture a constantly reproducible rotor blade. The hard-foam airfoil models - their shapes, material and production, the laminated beam - the preparation of the wood and the lamination, and the copying milling machine itself - its design and how to build, operate and maintain it, are described in detail. (AB)

  9. Diagnostics of erosive phenomena in the blades of a turbine

    International Nuclear Information System (INIS)

    De Massimi, A.; Imperiali, F.

    1986-01-01

    The factors examined are those considered to be of interest with regard to the possibility applying the technique of thin layer activation for the survey and on-line monitoring of erosive phenomena in the blades of a power turbine. The technique is described with its characteristics, the typical fields in which it is used and its developments; in particular, the main parameters that characterize it and the connections that exist between these and the kind of applications to be carried out are shown. The general characteristics of the turbine are presented; the study is aimed mainly at gathering the special data necessary to apply the technique. In particular, to verify the applicability of the method of analysis in turbines, the following objectives are considered: 1) Identification of suitable radioisotopes and of their level of activity; 2) Dimensioning of the area to activate and its location on the blades; 3) Necessary instrumentation; 4) Protectionist problems

  10. Study of the CMS Phase 1 Pixel Pilot Blade Reconstruction

    CERN Document Server

    CMS Collaboration

    2017-01-01

    The silicon pixel detector is the innermost component of the CMS tracking system. It was replaced in March 2017 with an upgraded one, called the Phase 1 upgrade detector. During Long Shutdown 1, a third disk was inserted into the present forward pixel detector with eight prototype blades constructed using a new digital read-out chip architecture and a prototype readout chain. Testing the performance of these pilot modules enabled us to gain experience with the Phase 1 upgrade modules. In this document, the data reconstruction with the pilot system is presented. The hit finding efficiency and residual of these new modules is also shown, and how these observables were used to adjust the timing of the pilot blades.

  11. Two LQRI based Blade Pitch Controls for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Yoonsu Nam

    2012-06-01

    Full Text Available As the wind turbine size has been increasing and their mechanical components are built lighter, the reduction of the structural loads becomes a very important task of wind turbine control in addition to maximum wind power capture. In this paper, we present a separate set of collective and individual pitch control algorithms. Both pitch control algorithms use the LQR control technique with integral action (LQRI, and utilize Kalman filters to estimate system states and wind speed. Compared to previous works in this area, our pitch control algorithms can control rotor speed and blade bending moments at the same time to improve the trade-off between rotor speed regulation and load reduction, while both collective and individual pitch controls can be designed separately. Simulation results show that the proposed collective and individual pitch controllers achieve very good rotor speed regulation and significant reduction of blade bending moments.

  12. Microscale Fracture of Composite Materials for Wind Turbine Blades

    DEFF Research Database (Denmark)

    Martyniuk, Karolina

    which are the most extensively used in the rotor blades, has been shown to play an important role on the overall response of the material. The properties of a fibre/matrix interface have been found to have a significant influence on the macroscopic behavior of composites. Therefore, the characterization......Due to the increase in wind turbines size it is essential that weight savings due to design changes do not compromise the reliability of the rotor blades. The reliability can be increased by improving design rules and the material models that describe the materials properties. More reliable...... materials models can be developed if the understanding of the microscale damage- the first stage of material failure- is increased. Therefore it is important to characterize materials’ microstructures and micro-cracks initiation and propagation.The microstructure of fibre reinforced composite materials...

  13. The use of platform dampers to reduce turbine blade vibrations

    Energy Technology Data Exchange (ETDEWEB)

    Jareland, Martin H.

    2001-07-01

    Friction damping is commonly used in jet engines to reduce the vibration level of the blades and thereby increase the reliability of the engine. This thesis deals with a specific type of friction damper denoted platform damper, which is frequently used in turbine stages. A platform damper is a piece of metal located in a cavity underneath two adjacent blade platforms. It is pressed against the platforms by centrifugal force and friction forces arise in the contacts when a relative motion between the platforms occurs. In this thesis, a number of phenomena regarding platform dampers are investigated and discussed. This is performed both experimentally and theoretically. In the simulations, friction interface models valid for both macroslip and microslip are used. Macroslip means that slipping occurs in the whole contact interface and microslip means that slipping occurs in only part of the interface. The latter is most likely in the contacts between the platform damper and the blade platforms due to the high normal force and the small motions. The first paper deals with mistuning of bladed disks due to variations in the properties of the platform dampers and the closely related topic wear of the dampers. This study indicates that damper mistuning can greatly affect the blade vibrations and that damper and blade mistuning constitutes a more severe case than blade mistuning alone. It is also found that wear of the contact areas can lead either to an increase or decrease in the resonance amplitude of the blades in the studied configuration. In the second paper, so-called cottage-roof dampers are studied. Cottage-roof dampers are a type of platform damper with inclined contact surfaces. The inclination leads to a varying normal load, which complicates the analysis. A model including this effect is presented and simulations are performed both in the time and frequency domain. A parametric study is performed with the aim of finding the optimal damper design with respect to

  14. The use of wood for wind turbine blade construction

    Science.gov (United States)

    Gougeon, M.; Zuteck, M.

    1979-01-01

    The interrelationships between moisture and wood, conditions for dry rot spore activity, the protection of wood fibers from moisture, wood resin composites, wood laminating, quality control, and the mechanical properties of wood are discussed. The laminated veneer and the bonded sawn stock fabrication techniques, used in the construction of a turbine blade with a monocoque 'D' section forming the leading edge and a built up trailing edge section, are described. A 20 foot root end sample complete with 24 bonded-in studs was successfully subjected to large onetime loads in both the flatwise and edgewise directions, and to fatigue tests. Results indicate that wood is both a viable and advantageous material for use in wind turbine blades. The basic material is reasonably priced, domestically available, ecologically sound, and easily fabricated with low energy consumption.

  15. Subjective assessment of simulated helicopter blade-slap noise

    Science.gov (United States)

    Lawton, B. W.

    1976-01-01

    The effects of several characteristics of helicopter blade slap upon human annoyance are examined. Blade slap noise was simulated by using continuous and impulsive noises characterized by five parameters: The number of sine waves in a single impulse; the frequency of the sine waves; the impulse repetition frequency; the sound pressure level (SPL) of the continuous noise; and the idealized crest factor of the impulses. Ten second samples of noise were synthesized with each of the five parameters at representative levels. The annoyance of each noise was judged by 40 human subjects. Analysis of the subjective data indicated that each of the five parameters had a statistically significant effect upon the annoyance judgments. The impulse crest factor and SPL of the continuous noise had very strong positive relationships with annoyance. The other parameters had smaller, but still significant, effects upon the annoyance judgments.

  16. Slotted Blades Savonius Wind Turbine Analysis by CFD

    Directory of Open Access Journals (Sweden)

    Andrea Alaimo

    2013-12-01

    Full Text Available In this paper a new bucket configuration for a Savonius wind generator is proposed. Numerical analyses are performed to estimate the performances of the proposed configuration by means of the commercial code COMSOL Multiphysics® with respect to Savonius wind turbine with overlap only. Parametric analyses are performed, for a fixed overlap ratio, by varying the slot position; the results show that for slot positioned near the blade root, the Savonius rotor improves performances at low tip speed ratio, evidencing a better starting torque. This circumstance is confirmed by static analyses performed on the slotted blades in order to investigate the starting characteristic of the proposed Savonius wind generator configuration.

  17. Design Optimization of a Centrifugal Fan with Splitter Blades

    Science.gov (United States)

    Heo, Man-Woong; Kim, Jin-Hyuk; Kim, Kwang-Yong

    2015-05-01

    Multi-objective optimization of a centrifugal fan with additionally installed splitter blades was performed to simultaneously maximize the efficiency and pressure rise using three-dimensional Reynolds-averaged Navier-Stokes equations and hybrid multi-objective evolutionary algorithm. Two design variables defining the location of splitter, and the height ratio between inlet and outlet of impeller were selected for the optimization. In addition, the aerodynamic characteristics of the centrifugal fan were investigated with the variation of design variables in the design space. Latin hypercube sampling was used to select the training points, and response surface approximation models were constructed as surrogate models of the objective functions. With the optimization, both the efficiency and pressure rise of the centrifugal fan with splitter blades were improved considerably compared to the reference model.

  18. KNOW-BLADE task-4 report: Navier-Stokes aeroelasticity

    DEFF Research Database (Denmark)

    Politis, E.S.; Nikolaou, I.G.; Chaviaropoulos, P.K.

    2004-01-01

    wind turbine blade have been combined with 2D and 3D unsteady Navier-Stokes solvers. The relative disadvantage of the quasi-3D approach (where the elastic solver is coupled with a 2D Navier-Stokes solver) isits inability to model induced flow. The lack of a validation test case did not allow...... the computations for the full blade, 2D computations for the so-called “typical section” have been carried out. The 2D aeroelastic tools resulted in similar aerodynamic damping values. Qualitative agreement was better for the lead-lagmode. The presence of roughness tapes has a small, rather negligible impact...... on aeroelastic stability as depicted by the results of both aeroelastic tools. On the other hand, in conformity to the inability of the adopted computational model to successfullypredict the corresponding test cases under work package 2 of the project, the aeroelastic tools are not capable to predict the correct...

  19. Deterministic blade row interactions in a centrifugal compressor stage

    Science.gov (United States)

    Kirtley, K. R.; Beach, T. A.

    1991-01-01

    The three-dimensional viscous flow in a low speed centrifugal compressor stage is simulated using an average passage Navier-Stokes analysis. The impeller discharge flow is of the jet/wake type with low momentum fluid in the shroud-pressure side corner coincident with the tip leakage vortex. This nonuniformity introduces periodic unsteadiness in the vane frame of reference. The effect of such deterministic unsteadiness on the time-mean is included in the analysis through the average passage stress, which allows the analysis of blade row interactions. The magnitude of the divergence of the deterministic unsteady stress is of the order of the divergence of the Reynolds stress over most of the span, from the impeller trailing edge to the vane throat. Although the potential effects on the blade trailing edge from the diffuser vane are small, strong secondary flows generated by the impeller degrade the performance of the diffuser vanes.

  20. Integrated airfoil and blade design method for large wind turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong

    2013-01-01

    This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and tip speed ratio, the optimal airfoils are designed based on the local speed ratios. To achieve high power performance at low cost, the airfoils are designed...... with an objective of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on the previous in-house airfoil family which were optimized at a Reynolds number of 3...... million. A novel shape perturbation function is introduced to optimize the geometry on the existing airfoils and thus simplify the design procedure. The viscos/inviscid code Xfoil is used as the aerodynamic tool for airfoil optimization where the Reynolds number is set at 16 million with a free...

  1. Integrated airfoil and blade design method for large wind turbines

    DEFF Research Database (Denmark)

    Zhu, Wei Jun; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2014-01-01

    This paper presents an integrated method for designing airfoil families of large wind turbine blades. For a given rotor diameter and a tip speed ratio, optimal airfoils are designed based on the local speed ratios. To achieve a high power performance at low cost, the airfoils are designed...... with the objectives of high Cp and small chord length. When the airfoils are obtained, the optimum flow angle and rotor solidity are calculated which forms the basic input to the blade design. The new airfoils are designed based on a previous in-house designed airfoil family which was optimized at a Reynolds number...... of 3 million. A novel shape perturbation function is introduced to optimize the geometry based on the existing airfoils which simplifies the design procedure. The viscous/inviscid interactive code XFOIL is used as the aerodynamic tool for airfoil optimization at a Reynolds number of 16 million...

  2. Design and fabrication of a composite wind turbine blade

    Science.gov (United States)

    Brown, R. A.; Haley, R. G.

    1980-01-01

    The design considerations are described which led to the combination of materials used for the MOD-I wind turbine generator rotor and to the fabrication processes which were required to accomplish it. It is noted that the design problem was to create a rotor for a 2500 kW wind turbine generator. The rotor was to consist of two blades, each with a length of 97.5 feet and a weight of less than 21,000 pounds. The spanwise frequency is 1.17-1.45 Hz, and the chordwise frequency 2.80-2.98 Hz. The design life of the blade is 30 years, or 4.35 x 10 to the 8th cycles. The structures of the spars and trailing edges are described, and the adhesive bonding system is discussed.

  3. Simple method for thick blade calculation. Part 2. Application to a thin blade; Kanbenna ichiatsuyoku keisanho (zokuho). Usui tsubasa eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Maita, S; Ando, J; Nakatake, K [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-04-10

    A source and QCM (SQCM) method has been developed, by which the blade performance can be calculated in a short time with satisfying the Kutta`s condition without repeating calculations even for the three-dimensional blade. Performances were calculated for the two-dimensional and three-dimensional blades. The SQCM has provided appropriate results. However, it was found that there are some problems for thin blades. In this study, the SQCM has been applied to a thin blade. The conventional eddy model equation of SQCM is not a continuous distribution in the strict sense. In this study, this problem has been modified. When point eddies with constant strength are in line continuously within the interval, the induced velocity at an arbitrary position can be expressed by the integral equation using a position of marginal point of the interval. This equation can be analyzed by the integral of influence coefficient. The position of marginal point of the interval is a position of control point determined by the QCM theory. As a result of the modification, it was found that the SQCM in response to a thin blade has provided precise calculation results stably even for an ultra thin blade with the blade thickness ratio of 0.001. 1 ref., 8 figs.

  4. Performance and internal flow condition of mini centrifugal pump with splitter blades

    International Nuclear Information System (INIS)

    Shigemitsu, T; Fukutomi, J; Kaji, K; Wada, T

    2012-01-01

    Mini centrifugal pumps having a diameter smaller than 100mm are employed in many fields. But the design method for the mini centrifugal pump is not established because the internal flow condition for these small-sized fluid machines is not clarified and conventional theory is not suitable for small-sized pumps. Therefore, mini centrifugal pumps with simple structure were investigated by this research. Splitter blades were adopted in this research to improve the performance and the internal flow condition of mini centrifugal pump which had large blade outlet angle. The original impeller without the splitter blades and the impeller with the splitter blades were prepared for an experiment. The performance tests are conducted with these rotors in order to investigate the effect of the splitter blades on performance and internal flow condition of mini centrifugal pump. On the other hand, a three dimensional steady numerical flow analysis is conducted with the commercial code (ANSYS-CFX) to investigate the internal flow condition in detail. It is clarified from the experimental results that the performance of the mini centrifugal pump is improved by the effect of the splitter blades. The blade-to-blade low velocity regions are suppressed in the case with the splitter blades and the total pressure loss regions are decreased. The effects of the splitter blades on the performance and the internal flow condition are discussed in this paper.

  5. Dynamic response characteristics of dual flow-path integrally bladed rotors

    Science.gov (United States)

    Beck, Joseph A.; Brown, Jeffrey M.; Scott-Emuakpor, Onome E.; Cross, Charles J.; Slater, Joseph C.

    2015-02-01

    New turbine engine designs requiring secondary flow compression often look to dual flow-path integrally bladed rotors (DFIBRs) since these stages have the ability to perform work on the secondary, or bypassed, flow-field. While analogous to traditional integrally bladed rotor stages, DFIBR designs have many differences that result in unique dynamic response characteristics that must be understood to avoid fatigue. This work investigates these characteristics using reduced-order models (ROMs) that incorporate mistuning through perturbations to blade frequencies. This work provides an alternative to computationally intensive geometric-mistuning approaches for DFIBRs by utilizing tuned blade mode reductions and substructure coupling in cyclic coordinates. Free and forced response results are compared to full finite element model (FEM) solutions to determine if any errors are related to the reduced-order model formulation reduction methods. It is shown that DFIBRs have many more frequency veering regions than their single flow-path integrally blade rotor (IBR) counterparts. Modal families are shown to transition between system, inner-blade, and outer-blade motion. Furthermore, findings illustrate that while mode localization of traditional IBRs is limited to a single or small subset of blades, DFIBRs can have modal energy localized to either an inner- or outer-blade set resulting in many blades responding above tuned levels. Lastly, ROM forced response predictions compare well to full FEM predictions for the two test cases shown.

  6. The Influence of Eroded Blades on Wind Turbine Performance Using Numerical Simulations

    Directory of Open Access Journals (Sweden)

    Matthias Schramm

    2017-09-01

    Full Text Available During their operation, wind turbine blades are eroded due to rain and hail, or they are contaminated with insects. Since the relative inflow velocity is higher at the outer than at the inner part of the blades, erosion occurs mostly at the outer blade region. In order to prevent strong erosion, it is possible to install a leading edge protection, which can be applied to the blades after the initial installation, but changes the shape of the initial airfoil sections. It is unclear how this modification influences the aerodynamic performance of the turbine. Hence, it is investigated in this work. The NREL 5 MW turbine is simulated with clean and eroded blades, which are compared to coated blades equipped with leading edge protection. Aerodynamic polars are generated by means of Computational Fluid Dynamics, and load calculations are conducted using the blade element momentum theory. The analysis in this work shows that, compared to clean rotor blades, the worse aerodynamic behaviour of strongly eroded blades can lead to power losses of 9 % . In contrast, coated blades only have a small impact on the turbine power of less than 1 % .

  7. Direct Numerical Simulations of a Full Stationary Wind-Turbine Blade

    Science.gov (United States)

    Qamar, Adnan; Zhang, Wei; Gao, Wei; Samtaney, Ravi

    2014-11-01

    Direct numerical simulation of flow past a full stationary wind-turbine blade is carried out at Reynolds number, Re = 10,000 placed at 0 and 5 (degree) angle of attack. The study is targeted to create a DNS database for verification of solvers and turbulent models that are utilized in wind-turbine modeling applications. The full blade comprises of a circular cylinder base that is attached to a spanwise varying airfoil cross-section profile (without twist). An overlapping composite grid technique is utilized to perform these DNS computations, which permits block structure in the mapped computational space. Different flow shedding regimes are observed along the blade length. Von-Karman shedding is observed in the cylinder shaft region of the turbine blade. Along the airfoil cross-section of the blade, near body shear layer breakdown is observed. A long tip vortex originates from the blade tip region, which exits the computational plane without being perturbed. Laminar to turbulent flow transition is observed along the blade length. The turbulent fluctuations amplitude decreases along the blade length and the flow remains laminar regime in the vicinity of the blade tip. The Strouhal number is found to decrease monotonously along the blade length. Average lift and drag coefficients are also reported for the cases investigated. Supported by funding under a KAUST OCRF-CRG grant.

  8. Experimental calibration of the mathematical model of Air Torque Position dampers with non-cascading blades

    Directory of Open Access Journals (Sweden)

    Bikić Siniša M.

    2016-01-01

    Full Text Available This paper is focused on the mathematical model of the Air Torque Position dampers. The mathematical model establishes a link between the velocity of air in front of the damper, position of the damper blade and the moment acting on the blade caused by the air flow. This research aims to experimentally verify the mathematical model for the damper type with non-cascading blades. Four different types of dampers with non-cascading blades were considered: single blade dampers, dampers with two cross-blades, dampers with two parallel blades and dampers with two blades of which one is a fixed blade in the horizontal position. The case of a damper with a straight pipeline positioned in front of and behind the damper was taken in consideration. Calibration and verification of the mathematical model was conducted experimentally. The experiment was conducted on the laboratory facility for testing dampers used for regulation of the air flow rate in heating, ventilation and air conditioning systems. The design and setup of the laboratory facility, as well as construction, adjustment and calibration of the laboratory damper are presented in this paper. The mathematical model was calibrated by using one set of data, while the verification of the mathematical model was conducted by using the second set of data. The mathematical model was successfully validated and it can be used for accurate measurement of the air velocity on dampers with non-cascading blades under different operating conditions. [Projekat Ministarstva nauke Republike Srbije, br. TR31058

  9. Study on the Pressure Pulsation inside Runner with Splitter Blades in Ultra-High Head Turbine

    International Nuclear Information System (INIS)

    Meng, L; Zhang, S P; Zhou, L J; Wang, Z W

    2014-01-01

    Runners with splitter blades were used widely for the high efficiency and stability. In this paper, the unsteady simulation of an ultra-high head turbine at the best efficiency point, 50% and 75% discharge points were established, to analyze the pressure pulsation in the vaneless space, rotating domain and the draft tube. First of all, runners with different length splitter blades and without splitter blades were compared to learn the efficiency and the pressure distribution on the blade surface. And then the amplitude of the pressure pulsation was analysed. The peak efficiency of the runner with splitter blades is remarkably higher than that of the corresponding impeller without splitter blades. And the efficiency of the turbine is the highest when the length ratio of the splitter blades is 0.75 times the main blades. The pressure pulsation characteristics were also influenced, because the amplitudes of the pulsation induced by the RSI phenomenon were changed as a result of more blades. At last, the best design plan of the length of the splitter blades (length ratio=0.825) was obtained, which improved the pressure pulsation characteristics without significant prejudice to the efficiency

  10. On the Cutting Performance of Segmented Diamond Blades when Dry-Cutting Concrete.

    Science.gov (United States)

    Sánchez Egea, A J; Martynenko, V; Martínez Krahmer, D; López de Lacalle, L N; Benítez, A; Genovese, G

    2018-02-09

    The objective of the present study is to analyze and compare the cutting performance of segmented diamond blades when dry-cutting concrete. A cutting criteria is proposed to characterize the wear of the blades by measuring the variation of the external diameter and the weight loss of the blade. The results exhibit the cutting blade SB-A, which has twice the density of diamonds and large contact area, exhibits less wear even though the material removal rate is higher compared with the other two cutting blades. Additionally, the surface topography of the different blades is evaluated to examine the impact of wear depending on the surface profile and the distribution of the diamonds in the blade's matrix. Large number of diamonds pull-out are found in blades type SB-C, which additionally shows the worst wear resistant capability. As a conclusion, the cutting efficiency of the blade is found to be related to the density of embedded diamonds and the type of the surface profile of the cutting blade after reaching the stop criteria.

  11. Simulation analysis of turbine blade in 3D printing aquarium

    Directory of Open Access Journals (Sweden)

    Chen Dyi-Cheng

    2017-01-01

    Full Text Available 3D printing of the flexibility is the most admirable place, no matter when or where, as long as the machine can make the abstract design of finished products or difficult to process the finished product printed out as a sample. And in the product design, through the 3D print out the entity, to more specific observation of the advantages and disadvantages of finished products, which shorten the time of many creative research and development, but also relatively reduce the defective factors. As in recent years, 3D printing technology is progressing, material adhesion, precision and parts of the degree of cooperation has increased, coupled with many parts taking into account the cost, production and other issues, and then let a lot of light load small parts or special parts choose to use 3D to print the finished product to replace. This study focuses on the plastic turbine blades that drive water in the aquarium, but the 3D printing is done by stacking. However, the general stress analysis software can set the material to analyze the deformation results of the force, nor the 3D to analyze the software. Therefore, this study first analyzes the deformation of turbine blade by software, and then verifies the situation of 3D printing turbine blade, and then compares the actual results of software analysis and 3D printing. The results can provide the future of 3D product consider the strength factor. The study found that the spiral blade design allows the force points to be dispersed to avoid hard focus.

  12. Radial Flow Effects On A Retreating Rotor Blade

    Science.gov (United States)

    2014-05-01

    birds , marine life and even insect wings. In some cases such as helicopters, wind turbines and compres- sors, dynamic stall becomes the primary...on dynamic stall and reverse flow as applied to a helicopter rotor in forward flight and a wind turbine operating at a yaw angle. While great...occurring on a retreating blade with a focus on dynamic stall and reverse flow as applied to a helicopter rotor in forward flight and a wind turbine

  13. Aerodynamic Research on the Midsection of a Long Turbine Blade

    Czech Academy of Sciences Publication Activity Database

    Šimurda, David; Luxa, Martin; Šafařík, Pavel; Synáč, J.

    2008-01-01

    Roč. 12, 3-4 (2008), s. 135-145 ISSN 1428-6394. [Polish National Conference of Fluid Mechanics /18./. Jastrzebia Góra, 21.09.2008-25.09.2008] R&D Projects: GA ČR GA101/07/1508 Institutional research plan: CEZ:AV0Z20760514 Keywords : high speed aerodynamics * blade cascade * experiment Subject RIV: BK - Fluid Dynamics

  14. Swept blade influence on aerodynamic performance of steam ...

    Indian Academy of Sciences (India)

    ZI-MING FENG

    2018-04-12

    Apr 12, 2018 ... iments with air and water for fundamental turbulent shear flows, including homogeneous shear ... wide range of wall-bounded and free shear flows. 2.3 Geometric model 3 of blade .... Computation grid: (a) grid of leading edge part; (b) grid of trailing edge part; (c) 3D grids. SЕdhanЕ (2018) 43:56. Page 3 of ...

  15. Modifikasi Blade Pencampur Pada Alat Pencampur Bahan Secara Mekanis

    OpenAIRE

    Nasution, Budiman Syahputra

    2011-01-01

    The agriculture equipment and machine has been operated since long time ago and their development were keep in touch with the development of human culture. Mixing is the distribution of one component to another. The mechanical mixing equipment has been designed to help the proses of mixing . The blade modification increase the capacity of mixing equipment and make the flow of material easier. The capacity of the equipment was 31,6 kg/hour, the percentage of imperfect mixing material was ...

  16. Preform spar cap for a wind turbine rotor blade

    Science.gov (United States)

    Livingston, Jamie T [Simpsonville, SC; Driver, Howard D [Greer, SC; van Breugel, Sjef [Enschede, NL; Jenkins, Thomas B [Cantonment, FL; Bakhuis, Jan Willem [Nijverdal, NL; Billen, Andrew J [Daarlerveen, NL; Riahi, Amir [Pensacola, FL

    2011-07-12

    A spar cap for a wind turbine rotor blade. The spar cap may include multiple preform components. The multiple preform components may be planar sheets having a swept shape with a first end and a second end. The multiple preform components may be joined by mating the first end of a first preform component to the second end of a next preform component, forming the spar cap.

  17. Contactless Diagnostics of Turbine Blade Vibration and Damage

    Czech Academy of Sciences Publication Activity Database

    Procházka, Pavel; Vaněk, František

    2011-01-01

    Roč. 305, č. 1 (2011), s. 1-11 E-ISSN 1742-6596. [International Conference on Damage Assessment of Structures (DAMAS 2011) /9./. Oxford, 11.07.2011-13.07.2011] Institutional research plan: CEZ:AV0Z20760514 Keywords : steam turbine * blade damage assessment * tip-timing method Subject RIV: JL - Materials Fatigue, Friction Mechanics http://iopscience.iop.org/1742-6596/305/1/012116

  18. Analysis of alternative technologies stamping compressor blades of marine engines

    Directory of Open Access Journals (Sweden)

    Олександр Сергійович Аніщенко

    2015-10-01

    Full Text Available The author has made an analysis of several technologies stamping forgings compressor blades from titanium alloy ВT3-1. These technologies use different types of forming equipment: crank hot press, high-speed hammers, screw presses with hydraulic drive (SPHD, as well as isothermal forging hydraulic press. He pointed out the main advantages and disadvantages of the technology, noting that high-speed punching in the shipbuilding industry of Ukraine is not used for the manufacture of forgings blades. The article contains an economic analysis of the cost of forgings blades, which are made on four technologies: punching and calibration to crank hot press, stamping and calibration to press for isothermal forging, stamping and calibration on SPHD-press, stamping on SPHD-press and calibration to press for isothermal forging. The author has identified the effective use of these technologies. He showed that the use of SPHD-presses and hydraulic presses for isothermal forging reduces the cost of forging on the average 12% in comparison with the technology at the crank hot stamping press, increases the utilization of metal 1,3-1,5 times more, reduces power consumption 1,05-3,0 times less and complexity of manufacturing 1,8-4,2 times. However SPHD-press increases capital investment in the organization of stamping technology 2,6-5,3 times more and depreciation 2-4 times. Isothermal forging technology requires the cost of the stamps in 1,4-2,0 times higher than stamps for crank presses. The author argues that stamping forging blades technology improvement should be implemented saving basic materials first of all. Efficiency of isothermal stamping and calibration will be the higher, the more geometric dimensions of stamped forgings are

  19. Studi Eksperimental Perancangan Turbin Air Terapung Tipe Helical Blade

    OpenAIRE

    Muhammad, Andi Haris; Had, Abdul Latief; Terti, Wayan

    2016-01-01

    This research describes the design of floating helical water turbine for electric power generation in free flow and low head water operation. The design involves the use of strips attached to the blades of turbine. The efficiency of turbine (??) investigation was carried out using empirical formulas. The rotation of turbine (n) of the calculation with variation strips angles (450, 900, and 1350) were obtained through captive model tests carried out in towing tank. The result indicated the eff...

  20. Hybrid fiber and nanopowder reinforced composites for wind turbine blades

    Directory of Open Access Journals (Sweden)

    Nikoloz M. Chikhradze

    2015-01-01

    Full Text Available The results of an investigation into the production of wind turbine blades manufactured using polymer composites reinforced by hybrid (carbon, basalt, glass fibers and strengthened by various nanopowders (oxides, carbides, borides are presented. The hybrid fiber-reinforced composites (HFRC were manufactured with prepreg technology by molding pre-saturated epoxy-strengthened matrix-reinforced fabric. Performance of the manufactured composites was estimated with values of the coefficient of operating condition (COC at a moderate and elevated temperature.