WorldWideScience

Sample records for non-toxic insulin-releasing peptide

  1. Exaggerated release and preserved insulinotropic action of glucagon-like peptide-1 underlie insulin hypersecretion in glucose-tolerant individuals after Roux-en-Y gastric bypass

    DEFF Research Database (Denmark)

    Dirksen, Carsten; Bojsen-Møller, Kirstine N; Jørgensen, Nils Bruun

    2013-01-01

    Roux-en-Y gastric bypass (RYGB) improves glycaemic control in part by increasing postprandial insulin secretion through exaggerated glucagon-like peptide (GLP)-1 release. However, it is unknown whether islet cell responsiveness to i.v. glucose, non-glucose (arginine) and incretin hormones...

  2. Insulin release by glucagon and secretin

    DEFF Research Database (Denmark)

    Kofod, Hans; Andreu, D; Thams, P

    1988-01-01

    Secretin and glucagon potentiate glucose-induced insulin release. We have compared the effects of secretin and glucagon with that of four hybrid molecules of the two hormones on insulin release and formation of cyclic AMP (cAMP) in isolated mouse pancreatic islets. All six peptides potentiated...... the release of insulin at 10 mM D-glucose, and their effects were indistinguishable with respect to the dynamics of release, dose-response relationship, and glucose dependency. However, measurements of cAMP accumulation in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (10(-4) M...... potentiating effects of secretin and glucagon on glucose-induced insulin release, their modes of action may be different....

  3. Glucagon and insulin response to meals in non-obese and obese Dutch women

    NARCIS (Netherlands)

    Hill, P.; Garbaczewski, L.; Koppeschaar, H.; Thijssen, J.H.H.; Waard, F. de

    1987-01-01

    Many digestive complaints are associated with abnormalities in gastrointestinal peptide hormone function. To investigate the effect of obesity on the release of pancreatic peptide hormones, we have compared the release of insulin and glucagon in non-obese-obese Dutch women in response to isocaloric

  4. C peptide and insulin releasing RIA test for the investigation of β cell function in diabetic patients

    International Nuclear Information System (INIS)

    Shi Ailan; Zhu Chengmo; Wang Qiyu; Wang Ping

    1993-01-01

    Results of C-peptide releasing RIA test in 15 normals, and 100 diabetes were summarized and compared with glucose tolerance test and serum insulin for investigating the characteristics in different types of diabetes and evaluating the functional state of islet β cell. In 36 cases of IDDM the fasting blood sugar was significantly increased, and further elevated after eating of bread, but its peak time delay in 2 hours (normalin 1 hour). The level of basal C-peptide is very low, but shows slightly weak on no response after bread stimulating test, all of this denotes that β cell function of islets severely injured. The increasing of fasting blood sugar in 64 cases of NIDDM was lower than those of IDDM. Fasting C-peptide and insulin was normal or increased, their peak value increased after bread stimulation with peak time delayed also at 2 hours. Above results demonstrated that the function of islets B cell decreased but not fully deprived. It is concluded that C-peptide and insulin stimulating test, together with OGTT can accurately assess the islets β cell function, and also have important significance in the pathogenesis, classification and staging, prognostic evaluation and monitoring of therapeutic effects in diabetes

  5. Insulin C-peptide test

    Science.gov (United States)

    C-peptide ... the test depends on the reason for the C-peptide measurement. Ask your health care provider if ... C-peptide is measured to tell the difference between insulin the body produces and insulin someone injects ...

  6. Destabilization of Human Insulin Fibrils by Peptides of Fruit Bromelain Derived From Ananas comosus (Pineapple).

    Science.gov (United States)

    Das, Sromona; Bhattacharyya, Debasish

    2017-12-01

    Deposition of insulin aggregates in human body leads to dysfunctioning of several organs. Effectiveness of fruit bromelain from pineapple in prevention of insulin aggregate was investigated. Proteolyses of bromelain was done as par human digestive system and the pool of small peptides was separated from larger peptides and proteins. Under conditions of growth of insulin aggregates from its monomers, this pool of peptides restricted the reaction upto formation of oligomers of limited size. These peptides also destabilized preformed insulin aggregates to oligomers. These processes were followed fluorimetrically using Thioflavin T and 1-ANS, size-exclusion HPLC, dynamic light scattering, atomic force microscopy, and transmission electron microscopy. Sequences of insulin (A and B chains) and bromelain were aligned using Clustal W software to predict most probable sites of interactions. Synthetic tripeptides corresponding to the hydrophobic interactive sites of bromelain showed disaggregation of insulin suggesting specificity of interactions. The peptides GG and AAA serving as negative controls showed no potency in destabilization of aggregates. Disaggregation potency of the peptides was also observed when insulin was deposited on HepG2 liver cells where no formation of toxic oligomers occurred. Amyloidogenic des-octapeptide (B23-B30 of insulin) incapable of cell signaling showed cytotoxicity similar to insulin. This toxicity could be neutralized by bromelain derived peptides. FT-IR and far-UV circular dichroism analysis indicated that disaggregated insulin had structure distinctly different from that of its hexameric (native) or monomeric states. Based on the stoichiometry of interaction and irreversibility of disaggregation, the mechanism/s of the peptides and insulin interactions has been proposed. J. Cell. Biochem. 118: 4881-4896, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Insulin and C-peptide in human brain neurons (insulin/C-peptide/brain peptides/immunohistochemistry/radioimmunoassay)

    International Nuclear Information System (INIS)

    Dorn, A.; Bernstein, H.G.; Rinne, A.; Hahn, H.J.; Ziegler, M.

    1983-01-01

    The regional distribution and cellular localization of insulin and C-peptide immunoreactivities were studied in human cadaver brains using the indirect immunofluorescence method, the peroxidase-antiperoxidase technique, and radioimmunoassay. Products of the immune reactions to both polypeptides were observed in most nerve cells in all areas of the brain examined. Immunostaining was mainly restricted to the cell soma and proximal dendrites. Radioimmunoassay revealed that human brain contains insulin and C-peptide in concentrations much higher than the blood, the highest being in the hypothalamus. These findings support the hypothesis that the 'brain insulin' is - at least in part - produced in the CNS. (author)

  8. Proinsulin C-peptide interferes with insulin fibril formation

    International Nuclear Information System (INIS)

    Landreh, Michael; Stukenborg, Jan-Bernd; Willander, Hanna; Söder, Olle; Johansson, Jan; Jörnvall, Hans

    2012-01-01

    Highlights: ► Insulin and C-peptide can interact under insulin fibril forming conditions. ► C-peptide is incorporated into insulin aggregates and alters aggregation lag time. ► C-peptide changes insulin fibril morphology and affects backbone accessibility. ► C-peptide may be a regulator of fibril formation by β-cell granule proteins. -- Abstract: Insulin aggregation can prevent rapid insulin uptake and cause localized amyloidosis in the treatment of type-1 diabetes. In this study, we investigated the effect of C-peptide, the 31-residue peptide cleaved from proinsulin, on insulin fibrillation at optimal conditions for fibrillation. This is at low pH and high concentration, when the fibrils formed are regular and extended. We report that C-peptide then modulates the insulin aggregation lag time and profoundly changes the fibril appearance, to rounded clumps of short fibrils, which, however, still are Thioflavine T-positive. Electrospray ionization mass spectrometry also indicates that C-peptide interacts with aggregating insulin and is incorporated into the aggregates. Hydrogen/deuterium exchange mass spectrometry further reveals reduced backbone accessibility in insulin aggregates formed in the presence of C-peptide. Combined, these effects are similar to those of C-peptide on islet amyloid polypeptide fibrillation and suggest that C-peptide has a general ability to interact with amyloidogenic proteins from pancreatic β-cell granules. Considering the concentrations, these peptide interactions should be relevant also during physiological secretion, and even so at special sites post-secretory or under insulin treatment conditions in vivo.

  9. Proinsulin C-peptide interferes with insulin fibril formation

    Energy Technology Data Exchange (ETDEWEB)

    Landreh, Michael [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm (Sweden); Stukenborg, Jan-Bernd [Department of Women' s and Children' s Health, Astrid Lindgren Children' s Hospital, Pediatric Endocrinology Unit, Karolinska Institutet and University Hospital, S-17176 Stockholm (Sweden); Willander, Hanna [KI-Alzheimer' s Disease Research Center, NVS Department, Karolinska Institutet, S-141 86 Stockholm (Sweden); Soeder, Olle [Department of Women' s and Children' s Health, Astrid Lindgren Children' s Hospital, Pediatric Endocrinology Unit, Karolinska Institutet and University Hospital, S-17176 Stockholm (Sweden); Johansson, Jan [KI-Alzheimer' s Disease Research Center, NVS Department, Karolinska Institutet, S-141 86 Stockholm (Sweden); Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, S-751 23 Uppsala (Sweden); Joernvall, Hans, E-mail: Hans.Jornvall@ki.se [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 77 Stockholm (Sweden)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer Insulin and C-peptide can interact under insulin fibril forming conditions. Black-Right-Pointing-Pointer C-peptide is incorporated into insulin aggregates and alters aggregation lag time. Black-Right-Pointing-Pointer C-peptide changes insulin fibril morphology and affects backbone accessibility. Black-Right-Pointing-Pointer C-peptide may be a regulator of fibril formation by {beta}-cell granule proteins. -- Abstract: Insulin aggregation can prevent rapid insulin uptake and cause localized amyloidosis in the treatment of type-1 diabetes. In this study, we investigated the effect of C-peptide, the 31-residue peptide cleaved from proinsulin, on insulin fibrillation at optimal conditions for fibrillation. This is at low pH and high concentration, when the fibrils formed are regular and extended. We report that C-peptide then modulates the insulin aggregation lag time and profoundly changes the fibril appearance, to rounded clumps of short fibrils, which, however, still are Thioflavine T-positive. Electrospray ionization mass spectrometry also indicates that C-peptide interacts with aggregating insulin and is incorporated into the aggregates. Hydrogen/deuterium exchange mass spectrometry further reveals reduced backbone accessibility in insulin aggregates formed in the presence of C-peptide. Combined, these effects are similar to those of C-peptide on islet amyloid polypeptide fibrillation and suggest that C-peptide has a general ability to interact with amyloidogenic proteins from pancreatic {beta}-cell granules. Considering the concentrations, these peptide interactions should be relevant also during physiological secretion, and even so at special sites post-secretory or under insulin treatment conditions in vivo.

  10. Reversal of obesity and insulin resistance by a non-peptidic glucagon-like peptide-1 receptor agonist in diet-induced obese mice.

    Directory of Open Access Journals (Sweden)

    Min He

    Full Text Available BACKGROUND: Glucagon-like peptide-1 (GLP-1 is recognized as an important regulator of glucose homeostasis. Efforts to utilize GLP-1 mimetics in the treatment of diabetes have yielded clinical benefits. A major hurdle for an effective oral therapy has been the difficulty of finding a non-peptidic GLP-1 receptor (GLP-1R agonist. While its oral bioavailability still poses significant challenges, Boc5, one of the first such compounds, has demonstrated the attainment of GLP-1R agonism in diabetic mice. The present work was to investigate whether subchronic Boc5 treatment can restore glycemic control and induce sustainable weight loss in diet-induced obese (DIO mice, an animal model of human obesity and insulin resistance. METHODOLOGY/PRINCIPAL FINDINGS: DIO mice were treated three times a week with Boc5 (0.3, 1 and 3 mg for 12 weeks. Body weight, body mass index (BMI, food intake, fasting glucose, intraperitoneal glucose tolerance and insulin induced glucose clearance were monitored regularly throughout the treatment. Glucose-stimulated insulin secretion, β-cell mass, islet size, body composition, serum metabolic profiles, lipogenesis, lipolysis, adipose hypertrophy and lipid deposition in the liver and muscle were also measured after 12 weeks of dosing. Boc5 dose-dependently reduced body weight, BMI and food intake in DIO mice. These changes were associated with significant decreases in fat mass, adipocyte hypertrophy and peripheral tissue lipid accumulation. Boc5 treatment also restored glycemic control through marked improvement of insulin sensitivity and normalization of β-cell mass. Administration of Boc5 (3 mg reduced basal but enhanced insulin-mediated glucose incorporation and noradrenaline-stimulated lipolysis in isolated adipocytes from obese mice. Furthermore, circulating leptin, adiponectin, triglyceride, total cholesterol, nonesterified fatty acid and high-density lipoprotein/low-density lipoprotein ratio were normalized to various

  11. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    International Nuclear Information System (INIS)

    Naidoo, C.

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, 125 I-insulin binding to the solubilized erythrocyte membrane receptor and 125 I-insulin binding to fibroblasts in culture

  12. Studies on insulin secretion and insulin resistance in non-insulin-dependent diabetes in young Indians

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, C

    1986-01-01

    Patients with Non-insulin-dependent diabetes mellitus (NIDDM) have defects in insulin secretion and insulin action. In the discrete genetic syndrome of NIDDY (non-insulin-dependent diabetes in the young), the situation is less clear and these aspects is the subject of this thesis. This study included Indian pasients with three generation transmission of NIDDM via one parent. The insulin and C-peptide responses to oral and intravenous glucose in patients with NIDDY were studied. The insulin and glucose responses to non-glucose secretogogues glucagon, tolbutamide and arginine, in NIDDY were also investigated. The following aspects with regard to insulin resistance in NIDDY were examined: glucose and free fatty acid response to intravenous insulin administration, insulin binding to circulating erythrocytes and monocytes, /sup 125/I-insulin binding to the solubilized erythrocyte membrane receptor and /sup 125/I-insulin binding to fibroblasts in culture.

  13. Insulin and C-peptide secretion in non-obese patients with polycystic ovarian disease.

    Science.gov (United States)

    Mahabeer, S; Jialal, I; Norman, R J; Naidoo, C; Reddi, K; Joubert, S M

    1989-09-01

    Plasma glucose, immunoreactive insulin (IRI) and C-peptide responses during an oral glucose tolerance test (oGTT) were assessed in 11 non-obese patients with polycystic ovarian disease (PCOD) and 11 reference subjects matched for age, height and weight. Also, 6 patients with PCOD and 6 normal women were subjected to intravenous glucose tolerance testing (ivGTT) On oGTT, all subjects exhibited normal glucose tolerance; however, PCOD patients had significantly higher mean plasma glucose levels at 30, 60, 90 and 120 min and higher mean incremental glucose areas. In addition the patients with polycystic ovaries showed higher mean basal IRI and C-peptide levels, higher mean glucose stimulated IRI and C-peptide levels and higher mean incremental IRI and C-peptide values. The molar ratios of C-peptide/IRI were significantly lower in the PCOD group at all time intervals after glucose stimulation when compared to the normal women. During ivGTT, there were significantly higher mean glucose levels at 5, 40, 50 and 60 min in the PCOD group when compared to the reference group. The IRI response to intravenous glucose in the PCOD women was similar to the reference group. The findings on oGTT suggest that non-obese patients with PCOD have increased pancreatic IRI secretion as well as impaired hepatic extraction of the hormone.

  14. Insulin sensitivity, insulin release and glucagon-like peptide-1 levels in persons with impaired fasting glucose and/or impaired glucose tolerance in the EUGENE2 study

    DEFF Research Database (Denmark)

    Laakso, M; Zilinskaite, J; Hansen, T

    2008-01-01

    AIMS/HYPOTHESIS: We examined the phenotype of individuals with impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT) with regard to insulin release and insulin resistance. METHODS: Non-diabetic offspring (n=874; mean age 40+/-10.4 years; BMI 26.6+/-4.9 kg/m(2)) of type 2 diabetic...

  15. Drosophila insulin release is triggered by adipose Stunted ligand to brain Methuselah receptor.

    Science.gov (United States)

    Delanoue, Renald; Meschi, Eleonora; Agrawal, Neha; Mauri, Alessandra; Tsatskis, Yonit; McNeill, Helen; Léopold, Pierre

    2016-09-30

    Animals adapt their growth rate and body size to available nutrients by a general modulation of insulin-insulin-like growth factor signaling. In Drosophila, dietary amino acids promote the release in the hemolymph of brain insulin-like peptides (Dilps), which in turn activate systemic organ growth. Dilp secretion by insulin-producing cells involves a relay through unknown cytokines produced by fat cells. Here, we identify Methuselah (Mth) as a secretin-incretin receptor subfamily member required in the insulin-producing cells for proper nutrient coupling. We further show, using genetic and ex vivo organ culture experiments, that the Mth ligand Stunted (Sun) is a circulating insulinotropic peptide produced by fat cells. Therefore, Sun and Mth define a new cross-organ circuitry that modulates physiological insulin levels in response to nutrients. Copyright © 2016, American Association for the Advancement of Science.

  16. Nanoencapsulation of Insulin into Zirconium Phosphate for Oral Delivery Applications

    Science.gov (United States)

    Díaz, Agustín; David, Amanda; Pérez, Riviam; González, Millie L.; Báez, Adriana; Wark, Stacey E.; Zhang, Paul; Clearfield, Abraham; Colón, Jorge L.

    2010-01-01

    The encapsulation of insulin into different kinds of materials for non-invasive delivery is an important field of study because of the many drawbacks of painful needle and syringe delivery such as physiological stress, infection, and local hypertrophy, among others.1 A stable, robust, non-toxic, and viable non-invasive carrier for insulin delivery is needed. We present a new approach for protein nanoencapsulation using layered zirconium phosphate (ZrP) nanoparticles produced without any preintercalator present. The use of ZrP without preintercalators produces a highly pure material, without any kinds of contaminants, such as the preintercalator, which can be noxious. Cytotoxicity cell viability in vitro experiments for the ZrP nanoparticles show that ZrP is not toxic, or harmful, in a biological environment, as previously reported for rats.2 Contrary to previous preintercalator-based methods, we show that insulin can be nanoencapsulated in ZrP if a highly hydrate phase of ZrP with an interlayer distance of 10.3 Å (10.3 Å-ZrP or θ-ZrP) is used as precursor. The intercalation of insulin into ZrP produced a new insulin-intercalated ZrP phase with a ca. 27 Å interlayer distance, as determined by X-ray powder diffraction, demonstrating a successful nanoencapsulation of the hormone. The in vitro release profile of the hormone after the intercalation was determined and circular dichroism was used to study the hormone stability upon intercalation and release. The insulin remains stable in the layered material, at room temperature, for a considerable amount of time, improving the shell life of the peptidic hormone. This type of materials represents a strong candidate to develop a non-invasive insulin carrier for the treatment of diabetes mellitus. PMID:20707305

  17. A Novel Delivery System for the Controlled Release of Antimicrobial Peptides: Citropin 1.1 and Temporin A

    Directory of Open Access Journals (Sweden)

    Urszula Piotrowska

    2018-05-01

    Full Text Available Antimicrobial peptides (AMPs are prospective therapeutic options for treating multiple-strain infections. However, clinical and commercial development of AMPs has some limitations due to their limited stability, low bioavailability, and potential hemotoxicity. The purpose of this study was to develop new polymeric carriers as highly controlled release devices for amphibian peptides citropin 1.1 (CIT and temporin A (TEMP. The release rate of the active pharmaceutical ingredients (APIs was strongly dependent on the API characteristics and the matrix microstructure. In the current work, we investigated the effect of the polymer microstructure on in vitro release kinetics of AMPs. Non-contact laser profilometry, scanning electron microscopy (SEM, and differential scanning calorimetry (DSC were used to determine the structural changes during matrix degradation. Moreover, geno- and cytotoxicity of the synthesized new carriers were evaluated. The in vitro release study of AMPs from the obtained non-toxic matrices shows that peptides were released with near-zero-order kinetics. The peptide “burst release” effect was not observed. New devices have reached the therapeutic concentration of AMPs within 24 h and maintained it for 28 days. Hence, our results suggest that these polymeric devices could be potentially used as therapeutic options for the treatment of local infections.

  18. Toxicity of Biologically Active Peptides and Future Safety Aspects: An Update.

    Science.gov (United States)

    Khan, Fazlullah; Niaz, Kamal; Abdollahi, Mohammad

    2018-02-18

    Peptides are fragments of proteins with significant biological activities. These peptides are encoded in the protein sequence. Initially, such peptides are inactive in their parental form, unless proteolytic enzymes are released. These peptides then exhibit various functions and play a therapeutic role in the body. Besides the therapeutic and physiological activities of peptides, the main purpose of this study was to highlight the safety aspects of peptides. We performed an organized search of available literature using PubMed, Google Scholar, Medline, EMBASE, Reaxys and Scopus databases. All the relevant citations including research and review articles about the toxicity of biologically active peptides were evaluated and gathered in this study. Biological peptides are widely used in the daily routine ranging from food production to the cosmetics industry and also they have a beneficial role in the treatment and prevention of different diseases. These peptides are manufactured by both chemical and biotechnological techniques, which show negligible toxicity, however, some naturally occurring peptides and enzymes may induce high toxicity. Depending upon the demand and expected use in the food or pharmaceutical industry, we need different approaches to acertain the safety of these peptides preferentially through in silico methods. Intestinal wall disruption, erythrocytes and lymphocytes toxicity, free radical production, enzymopathic and immunopathic tissue damage and cytotoxicity due to the consumption of peptides are the main problems in the biological system that lead to various complicated disorders. Therefore, before considering biologically active peptides for food production and for therapeutic purpose, it is first necessary to evaluate the immunogenicity and toxicities of peptides. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Thiomers: potential excipients for non-invasive peptide delivery systems.

    Science.gov (United States)

    Bernkop-Schnürch, Andreas; Krauland, Alexander H; Leitner, Verena M; Palmberger, Thomas

    2004-09-01

    In recent years thiolated polymers or so-called thiomers have appeared as a promising alternative in the arena of non-invasive peptide delivery. Thiomers are generated by the immobilisation of thiol-bearing ligands to mucoadhesive polymeric excipients. By formation of disulfide bonds with mucus glycoproteins, the mucoadhesive properties of these polymers are improved up to 130-fold. Due to formation of inter- and intramolecular disulfide bonds within the thiomer itself, dosage forms such as tablets or microparticles display strong cohesive properties resulting in comparatively higher stability, prolonged disintegration times and a more controlled release of the embedded peptide drug. The permeation of peptide drugs through mucosa can be improved by the use of thiolated polymers. Additionally some thiomers exhibit improved inhibitory properties towards peptidases. The efficacy of thiomers in non-invasive peptide delivery could be demonstrated by various in vivo studies. Tablets comprising a thiomer and pegylated insulin, for instance, resulted in a pharmacological efficacy of 7% after oral application to diabetic mice. Furthermore, a pharmacological efficacy of 1.3% was achieved in rats by oral administration of calcitonin tablets comprising a thiomer. Human growth hormone in a thiomer-gel was applied nasally to rats and led to a bioavailability of 2.75%. In all these studies, formulations comprising the corresponding unmodified polymer had only a marginal or no effect. According to these results drug carrier systems based on thiomers seem to be a promising tool for non-invasive peptide drug delivery.

  20. Insulin secretion and glucose uptake by isolated islets of the hamster. Effect of insulin, proinsulin and C-peptide

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, J C; McLaughlin, W J; Walsh, M F.J.; Foa, P P [Sinai Hospital of Detroit, Mich. (USA). Dept. of Research

    1976-01-01

    Isolated pancreatic islets of normal hamsters were perfused either in a closed or in a open system. When the buffer was recirculated and the endogenous insulin was allowed to accumulate, the islets secreted significantly less insulin than when the system was open and the endogenous insulin was washed away. The addition of monocomponent insulin or of proinsulin to the perfusion buffer significantly decreased insulin secretion. The inhibitory action of proinsulin was significantly greater than that of monocomponent insulin. C peptide had no effect. When pancreatic islets were incubated in a fixed volume of stationary buffer containing unlabeled glucose (1.0 mg or 3.0 mg/ml) and glucose-U-/sup 14/C (1.0 ..mu..C/ml), the amount of insulin secreted and the /sup 14/CO/sub 2/ produced by each islet decreased progressively as the number of islets in the sample increased. Under these conditions, the concentration of insulin required to inhibit insulin secretion increased with the concentration of glucose in the medium. Proinsulin did not alter the incorporation of leucine-4.5-/sup 3/H into total extractable insulin (insulin + proinsulin). Thus, insulin and proinsulin appear to inhibit insulin release, but not insulin synthesis.

  1. Design of non-aggregating variants of Aβ peptide

    Energy Technology Data Exchange (ETDEWEB)

    Caine, Joanne M., E-mail: jo.caine@csiro.au [CSIRO Materials Science and Engineering, 343 Royal Parade, Parkville, Victoria 3052 (Australia); Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052 (Australia); CRC for Mental Health, Level 2, 161 Barry Street, Carlton South, Victoria 3053 (Australia); Churches, Quentin; Waddington, Lynne [CSIRO Materials Science and Engineering, 343 Royal Parade, Parkville, Victoria 3052 (Australia); Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052 (Australia); Nigro, Julie; Breheney, Kerry [CSIRO Materials Science and Engineering, 343 Royal Parade, Parkville, Victoria 3052 (Australia); Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052 (Australia); CRC for Mental Health, Level 2, 161 Barry Street, Carlton South, Victoria 3053 (Australia); Masters, Colin L. [CRC for Mental Health, Level 2, 161 Barry Street, Carlton South, Victoria 3053 (Australia); Florey Institute for Neuroscience and Mental Health, 30 Royal Parade, Parkville, Victoria 3052 (Australia); Nuttall, Stewart D. [CSIRO Materials Science and Engineering, 343 Royal Parade, Parkville, Victoria 3052 (Australia); Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052 (Australia); CRC for Mental Health, Level 2, 161 Barry Street, Carlton South, Victoria 3053 (Australia); Streltsov, Victor A., E-mail: victor.streltsov@csiro.au [CSIRO Materials Science and Engineering, 343 Royal Parade, Parkville, Victoria 3052 (Australia); Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052 (Australia); CRC for Mental Health, Level 2, 161 Barry Street, Carlton South, Victoria 3053 (Australia)

    2014-10-24

    Highlights: • Non-aggregating, non-toxic variants of Aβ peptide were designed using Aβ structure. • Mutations reduce aggregation by stabilising Aβ into small non-toxic oligomers. • Identification of these residues will assist the design of future therapeutic peptides. - Abstract: Self association of the amyloid-β (Aβ{sub 42}) peptide into oligomers, high molecular weight forms, fibrils and ultimately neuritic plaques, has been correlated with progressive cognitive decline in Alzheimer’s disease. Thus, insights into the drivers of the aggregation pathway have the capacity to significantly contribute to our understanding of disease mechanism. Functional assays and a three-dimensional crystal structure of the P3 amyloidogenic region 18–41 of Aβ were used to identify residues important in self-association and to design novel non-aggregating variants of the peptide. Biophysical studies (gel filtration, SDS–PAGE, dynamic light scattering, thioflavin T assay, and electron microscopy) demonstrate that in contrast to wild type Aβ these targeted mutations lose the ability to self-associate. Loss of aggregation also correlates with reduced neuronal toxicity. Our results highlight residues and regions of the Aβ peptide important for future targeting agents aimed at the amelioration of Alzheimer’s disease.

  2. Automatic computation of radioimmunoassay data. Insulin and C-peptide

    Energy Technology Data Exchange (ETDEWEB)

    Toyota, T; Kudo, M; Abe, K [Hirosaki Univ., Aomori (Japan). School of Medicine; Kawamata, F; Uehata, S

    1975-09-01

    Radioimmunoassay provided dose response curves which showed linearity by the use of logistic transformation (Rodbard). This transformation which was applicable to radioimmunoassay should be useful for the computer processing of insulin and C-peptide assay. In the present studies, standard curves were analysed by testing the fit of analytic functions to radioimmunoassay of insulin and C-peptides. A program for use in combination with the double antibody technique was made by Dr. Kawamata. This approach was evidenced to be useful in order to allow automatic computation of data derived from the double antibody assays of insulin and C-peptides. Automatic corrected calculations of radioimmunoassay data of insulin was found to be satisfactory.

  3. Evaluation of fasting state-/oral glucose tolerance test-derived measures of insulin release for the detection of genetically impaired β-cell function.

    Directory of Open Access Journals (Sweden)

    Silke A Herzberg-Schäfer

    Full Text Available BACKGROUND: To date, fasting state- and different oral glucose tolerance test (OGTT-derived measures are used to estimate insulin release with reasonable effort in large human cohorts required, e.g., for genetic studies. Here, we evaluated twelve common (or recently introduced fasting state-/OGTT-derived indices for their suitability to detect genetically determined β-cell dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: A cohort of 1364 White European individuals at increased risk for type 2 diabetes was characterized by OGTT with glucose, insulin, and C-peptide measurements and genotyped for single nucleotide polymorphisms (SNPs known to affect glucose- and incretin-stimulated insulin secretion. One fasting state- and eleven OGTT-derived indices were calculated and statistically evaluated. After adjustment for confounding variables, all tested SNPs were significantly associated with at least two insulin secretion measures (p≤0.05. The indices were ranked according to their associations' statistical power, and the ranks an index obtained for its associations with all the tested SNPs (or a subset were summed up resulting in a final ranking. This approach revealed area under the curve (AUC(Insulin(0-30/AUC(Glucose(0-30 as the best-ranked index to detect SNP-dependent differences in insulin release. Moreover, AUC(Insulin(0-30/AUC(Glucose(0-30, corrected insulin response (CIR, AUC(C-Peptide(0-30/AUC(Glucose(0-30, AUC(C-Peptide(0-120/AUC(Glucose(0-120, two different formulas for the incremental insulin response from 0-30 min, i.e., the insulinogenic indices (IGI(2 and IGI(1, and insulin 30 min were significantly higher-ranked than homeostasis model assessment of β-cell function (HOMA-B; p<0.05. AUC(C-Peptide(0-120/AUC(Glucose(0-120 was best-ranked for the detection of SNPs involved in incretin-stimulated insulin secretion. In all analyses, HOMA-β displayed the highest rank sums and, thus, scored last. CONCLUSIONS/SIGNIFICANCE: With AUC(Insulin(0

  4. The beta-cell response to glucagon and mixed meal stimulation in non-insulin dependent diabetes

    DEFF Research Database (Denmark)

    Gjessing, H J; Damsgaard, E M; Matzen, L E

    1988-01-01

    The aim of this study was to evaluate the correlations of the C-peptide and insulin responses after stimulation with glucagon intravenously as well as the 24-h urinary excretion of C-peptide to the C-peptide response to a standard mixed meal in 30 patients with non-insulin dependent diabetes...... plasma C-peptide (r = 0.55, p less than 0.01). The C-peptide and insulin responses after meal stimulation correlated modestly inversely with HbA1. In conclusion, measurement of C-peptide in fasting state, as well as measurements of C-peptide and insulin after glucagon stimulation, only modestly predict...... the C-peptide response to physiologic stimulation in NIDDM. Twenty-four-hour urinary C-peptide excretion does not predict this response. Patients with NIDDM seem to show a better metabolic control if they have a more pronounced beta-cell response to physiologic stimulation....

  5. A high-throughput mass spectrometry assay to simultaneously measure intact insulin and C-peptide.

    Science.gov (United States)

    Taylor, Steven W; Clarke, Nigel J; Chen, Zhaohui; McPhaul, Michael J

    2016-04-01

    Measurements of fasting levels of insulin and C-peptide are useful in documenting insulin resistance and may help predict development of diabetes mellitus. However, the specific insulin and C-peptide levels associated with specific degrees of insulin resistance have not been defined, owing to marked variability among immunoassays and lack of standardization. Herein, we describe a multiplexed liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay for intact insulin and C-peptide. Insulin and C-peptide were enriched from patient sera using monoclonal antibodies immobilized on magnetic beads and processed on a robotic liquid handler. Eluted peptides were analyzed by LC-MS/MS. Bovine insulin and a stable isotopically-labeled (13C/15N) C-peptide were utilized as internal standards. The assay had an analytical measurement range of 3 to 320 μIU/ml (18 to 1920 pmol/l) for insulin and 0.11 to 27.2 ng/ml (36 to 9006 pmol/l) for C-peptide. Intra- and inter-day assay variation was less than 11% for both peptides. Of the 5 insulin analogs commonly prescribed to treat diabetes, only the recombinant drug insulin lispro caused significant interference for the determination of endogenous insulin. There were no observed interferences for C-peptide. We developed and validated a high-throughput, quantitative, multiplexed LC-MS/MS assay for intact insulin and C-peptide. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Combined contributions of over-secreted glucagon-like peptide 1 and suppressed insulin secretion to hyperglycemia induced by gatifloxacin in rats

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yunli, E-mail: chrisyu1255@yahoo.com.cn [Department of Pharmaceutics, The Second Affiliated Hospital of Soochow University, Suzhou 215004 (China); Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Wang, Xinting, E-mail: wxinting1986@yahoo.com.cn [Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Liu, Can, E-mail: ltsan@163.com [Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Yao, Dan, E-mail: erinyao@126.com [Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Shanghai Institute of Materia Medica, Shanghai 201203 (China); Hu, Mengyue, E-mail: juliahmy@126.com [Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Li, Jia, E-mail: ljbzd@163.com [Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Hu, Nan, E-mail: hn_324@163.com [Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Liu, Li, E-mail: liulee@cpu.edu.cn [Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China); Liu, Xiaodong, E-mail: xdliu@cpu.edu.cn [Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009 (China)

    2013-02-01

    Accumulating evidences have showed that gatifloxacin causes dysglycemia in both diabetic and non-diabetic patients. Our preliminary study demonstrated that gatifloxacin stimulated glucagon-like peptide 1 (GLP-1) secretion from intestinal cells. The aim of the study was to investigate the association between gatifloxacin-stimulated GLP-1 release and dysglycemia in both normal and streptozotocin-induced diabetic rats and explore the possible mechanisms. Oral administration of gatifloxacin (100 mg/kg/day and 200 mg/kg/day) for 3 and 12 days led to marked elevation of GLP-1 levels, accompanied by significant decrease in insulin levels and increase in plasma glucose. Similar results were found in normal rats treated with 3-day gatifloxacin. Gatifloxacin-stimulated GLP-1 release was further confirmed in NCI-H716 cells, which was abolished by diazoxide, a K{sub ATP} channel opener. QT-PCR analysis showed that gatifloxacin also upregulated expression of proglucagon and prohormone convertase 3 mRNA. To clarify the contradiction on elevated GLP-1 without insulinotropic effect, effects of GLP-1 and gatifloxacin on insulin release were investigated using INS-1 cells. We found that short exposure (2 h) to GLP-1 stimulated insulin secretion and biosynthesis, whereas long exposure (24 h and 48 h) to high level of GLP-1 inhibited insulin secretion and biosynthesis. Moreover, we also confirmed gatifloxacin acutely stimulated insulin secretion while chronically inhibited insulin biosynthesis. All the results gave an inference that gatifloxacin stimulated over-secretion of GLP-1, in turn, high levels of GLP-1 and gatifloxacin synergistically impaired insulin release, worsening hyperglycemia. -- Highlights: ► Gatifloxacin induced hyperglycemia both in diabetic rats and normal rats. ► Gatifloxacin enhanced GLP-1 secretion but inhibited insulin secretion in rats. ► Long-term exposure to high GLP-1 inhibited insulin secretion and biosynthesis. ► GLP-1 over-secretion may be

  7. Combined contributions of over-secreted glucagon-like peptide 1 and suppressed insulin secretion to hyperglycemia induced by gatifloxacin in rats

    International Nuclear Information System (INIS)

    Yu, Yunli; Wang, Xinting; Liu, Can; Yao, Dan; Hu, Mengyue; Li, Jia; Hu, Nan; Liu, Li; Liu, Xiaodong

    2013-01-01

    Accumulating evidences have showed that gatifloxacin causes dysglycemia in both diabetic and non-diabetic patients. Our preliminary study demonstrated that gatifloxacin stimulated glucagon-like peptide 1 (GLP-1) secretion from intestinal cells. The aim of the study was to investigate the association between gatifloxacin-stimulated GLP-1 release and dysglycemia in both normal and streptozotocin-induced diabetic rats and explore the possible mechanisms. Oral administration of gatifloxacin (100 mg/kg/day and 200 mg/kg/day) for 3 and 12 days led to marked elevation of GLP-1 levels, accompanied by significant decrease in insulin levels and increase in plasma glucose. Similar results were found in normal rats treated with 3-day gatifloxacin. Gatifloxacin-stimulated GLP-1 release was further confirmed in NCI-H716 cells, which was abolished by diazoxide, a K ATP channel opener. QT-PCR analysis showed that gatifloxacin also upregulated expression of proglucagon and prohormone convertase 3 mRNA. To clarify the contradiction on elevated GLP-1 without insulinotropic effect, effects of GLP-1 and gatifloxacin on insulin release were investigated using INS-1 cells. We found that short exposure (2 h) to GLP-1 stimulated insulin secretion and biosynthesis, whereas long exposure (24 h and 48 h) to high level of GLP-1 inhibited insulin secretion and biosynthesis. Moreover, we also confirmed gatifloxacin acutely stimulated insulin secretion while chronically inhibited insulin biosynthesis. All the results gave an inference that gatifloxacin stimulated over-secretion of GLP-1, in turn, high levels of GLP-1 and gatifloxacin synergistically impaired insulin release, worsening hyperglycemia. -- Highlights: ► Gatifloxacin induced hyperglycemia both in diabetic rats and normal rats. ► Gatifloxacin enhanced GLP-1 secretion but inhibited insulin secretion in rats. ► Long-term exposure to high GLP-1 inhibited insulin secretion and biosynthesis. ► GLP-1 over-secretion may be involved in

  8. Effect of chloroquine on insulin and glucose homoeostasis in normal subjects and patients with non-insulin-dependent diabetes mellitus.

    OpenAIRE

    Smith, G D; Amos, T A; Mahler, R; Peters, T J

    1987-01-01

    Plasma glucose, insulin, and C peptide concentrations were determined after an oral glucose load in normal subjects and in a group of patients with non-insulin-dependent diabetes mellitus before and during a short course of treatment with chloroquine. In the control group there was a small but significant reduction in fasting blood glucose concentration but overall glucose tolerance and hormone concentrations were unaffected. In contrast, the patients with non-insulin-dependent diabetes melli...

  9. Insulin-releasing action of the novel antidiabetic agent BTS 67 582.

    Science.gov (United States)

    McClenaghan, N H; Flatt, P R; Bailey, C J

    1998-02-01

    1. BTS 67582 (1,1-dimethyl-2-(2-morpholinophenyl)guanidine fumarate) is a novel antidiabetic agent with a short-acting insulin-releasing effect. This study examined its mode of action in the clonal B-cell line BRIN-BD11. 2. BTS 67582 increased insulin release from BRIN-BD11 cells in a concentration-dependent manner (10[-8] to 10[-4] M) at both non-stimulating (1.1 mM) and stimulating (16.7 mM) concentrations of glucose. 3. BTS 67582 (10[-4] M) potentiated the insulin-releasing effect of a depolarizing concentration of K+ (30 mM), whereas the K+ channel openers pinacidil (400 microM) and diazoxide (300 microM) inhibited BTS 67582-induced release. 4. Suppression of Ca+ channel activity with verapamil (20 microM) reduced the insulin-releasing effect of BTS 67582 (10[-4] M). 5. BTS 67582 (10[-4] M) potentiated insulin release induced by amino acids (10 mM), and enhanced the combined stimulant effects of glucose plus either the fatty acid palmitate (10 mM), or agents which raise intracellular cyclic AMP concentrations (25 microM forskolin and 1 mM isobutylmethylxanthine), or the cholinoceptor agonist carbachol (100 microM). 6. Inhibition of glucose-stimulated insulin release by adrenaline or noradrenaline (10 microM) was partially reversed by BTS 67582 (10[-4] M). 7. These data suggest that the insulin-releasing effect of BTS 67582 involves regulation of ATP-sensitive K+ channel activity and Ca2+ influx, and that the drug augments the stimulant effects of nutrient insulin secretagogues and agents which enhance adenylate cyclase and phospholipase C. BTS 67582 may also exert insulin-releasing effects independently of ATP-sensitive K+ channel activity.

  10. Solid lipid nanoparticles as insulin inhalation carriers for enhanced pulmonary delivery.

    Science.gov (United States)

    Bi, Ru; Shao, Wei; Wang, Qun; Zhang, Na

    2009-02-01

    Growing attentions have been paid to the pulmonary route for systemic delivery of peptide and protein drugs, such as insulin. Advantages of this non-injective route include rapid drug deposition in the target organ, fewer systemic side effects and avoiding first pass metabolism. However, sustained release formulations for pulmonary delivery have not been fully exploited till now. In our study, a novel dry powder inhalation (DPI) system of insulin loaded solid lipid nanoparticles (Ins-SLNs) was investigated for prolonged drug release, improved stability and effective inhalation. Firstly, the drug was incorporated into the lipid carriers for a maximum entrapment efficiency as high as 69.47 +/- 3.27% (n = 3). Secondly, DPI formulation was prepared by spray freeze drying of Ins-SLNs suspension, with optimized lyoprotectant and technique parameters in this procedure. The properties of DPI particles were characterized for their pulmonary delivery potency. Thirdly, the in vivo study of intratracheal instillation of Ins-SLNs to diabetic rats showed prolonged hypoglycemic effect and a relative pharmacological bioavailability of 44.40% could be achieved in the group of 8 IU/kg dosage. These results indicated that SLNs have shown increasing potential as an efficient and non-toxic lipophilic colloidal drug carrier for enhanced pulmonary delivery of insulin.

  11. Correlation of the secretion of insulin and C-peptide in cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Modnikov, O P; Lomtev, N G [Kirgizskij Nauchno-Issledovatel' skij Inst. Onkologii i Radiologii, Frunze (USSR)

    1983-08-01

    Insulin and C-peptide levels were studied with a radioimmunoassay in the peripheral blood serum of 44 patients with gastric and cervical cancer and 22 healthy persons. Hyperfunction of the pancreatic insular apparatus was shown in cancer patients which was expressed in a statistically significant increase in the C-peptide level. In gastric cancer patients hyperfunction of the insular apparatus was accompanied by hypoinsulinemia, and in cervical cancer patients by hormoinsulinemia. An analysis has shown that the ratio insulin/C-peptide in gastric and cervical cancer patients was about the same and significantly lower than the control. A conclusion has been made that in spite of difference in the initial insulin concentration, the same phenomenon - acceleration of the metabolic clearance of insulin - occurs in patients with cancer of the above sites. The C-peptide level decreased, the ratio insulin/C-peptide increased, i.e. hyperfunction of the insular apparatus disappeared and the metabolic clearance of insulin slowed down.

  12. Correlation of the sectetion of insulin and C-peptide in cancer patients

    International Nuclear Information System (INIS)

    Modnikov, O.P.; Lomtev, N.G.

    1983-01-01

    Insulin and C-peptide levels were studied with a radioimmunoassay in the peripheral blood serum of 44 patients with gastric and cervical cancer and 22 healthy persons. Hyperfunction of the pancreatic insular apparatus was shown in cancer patients which was expressed in a statistically significant increase in the C-peptide level. In gastric cancer patients hyperfunction of the insular apparatus was accompanied by hypoinsulinemia, and in cervical cancer patients by hormoinsulinemia. An analysis has shown that the ratio insulin/C-peptide in gastric and cervical cancer patients was about the same and significantly lower than the control. A conclusion has been made that in spite of difference in the initial insulin concentration, the same phenomenon - acceleration of the metabolic clearance of insulin - occurs in patients with cancer of the above sites. The C-peptide level decreased, the ratio insulin/C-peptide increased, i.e. hyperfunction of the insular apparatus disappeared and the metabolic clearance of insulin slowed down

  13. The role of insulin C-peptide in the coevolution analyses of the insulin signaling pathway: a hint for its functions.

    Directory of Open Access Journals (Sweden)

    Shuai Wang

    Full Text Available As the linker between the A chain and B chain of proinsulin, C-peptide displays high variability in length and amino acid composition, and has been considered as an inert byproduct of insulin synthesis and processing for many years. Recent studies have suggested that C-peptide can act as a bioactive hormone, exerting various biological effects on the pathophysiology and treatment of diabetes. In this study, we analyzed the coevolution of insulin molecules among vertebrates, aiming at exploring the evolutionary characteristics of insulin molecule, especially the C-peptide. We also calculated the correlations of evolutionary rates between the insulin and the insulin receptor (IR sequences as well as the domain-domain pairs of the ligand and receptor by the mirrortree method. The results revealed distinctive features of C-peptide in insulin intramolecular coevolution and correlated residue substitutions, which partly supported the idea that C-peptide can act as a bioactive hormone, with significant sequence features, as well as a linker assisting the formation of mature insulin during synthesis. Interestingly, the evolution of C-peptide exerted the highest correlation with that of the insulin receptor and its ligand binding domain (LBD, implying a potential relationship with the insulin signaling pathway.

  14. Unprecedented high insulin secretion in a healthy human subject after intravenous glucagon-like peptide-1

    DEFF Research Database (Denmark)

    Knop, Filip K; Lund, Asger; Madsbad, Sten

    2014-01-01

    BACKGROUND: The gut-derived incretin hormones, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1, are released in response to ingestion of nutrients. Both hormones are highly insulinotropic in strictly glucose-dependent fashions and glucagon-like peptide-1 is often referred...... to as one of the most insulinotropic substances known. CASE PRESENTATION: Plasma insulin and C-peptide concentrations were measured in a healthy Caucasian male (age: 53 years; body mass index: 28.6 kg/m2; fasting plasma glucose: 5.7 mM; 2 h plasma glucose value following 75 g-oral glucose tolerance test: 3...

  15. Co-occurrence of non-toxic (cyanopeptolin) and toxic (microcystin) peptides in a bloom of Microcystis sp. from a Chilean lake.

    Science.gov (United States)

    Neumann, U; Campos, V; Cantarero, S; Urrutia, H; Heinze, R; Weckesser, J; Erhard, M

    2000-06-01

    A cyanobacterial bloom occurring in 1998 in lake Tres Pascualas (Concepción/Chile) was found to be dominated by Microcystis sp. The bloom contained both non-toxic (cyanopeptolin-type) and hepatotoxic (microcystin-type) peptides. Cyanopeptolin structure of the non-toxic peptides (called cyanopeptolin VW-1 and VW-2, respectively) was revealed by matrix assisted laser desorption ionization mass spectrometry (MALDI-TOF-MS) of whole cells, showing dominant molecular ions at m/z = 975 and m/z 995, respectively. On post source decay (PSD), both cyanopeptolins showed fragments deriving from Ahp-Phe-MTyr (3-amino-6-hydroxy-2-piperidone), the characteristic partial structure of cyanopeptolins. The amounts of each of the two cyanopeptolins could only roughly be estimated to be >0.1% of bloom material dry weight. In addition the blooms contained microcystins (20 microg/g bloom dry weight as determined by RP-HPLC, 13 microg/g according to ELISA determination). MALDI-TOF-MS revealed several structural variants of microcystin: MCYST-RR (microcystin with Arg and Arg, indicated by m/z 1,038 and confirmed by PSD revealing a m/z = 135 fragment deriving from the Adda side chain, MCYST-FR (microcystin with Phe and Arg, indicated by m/z = 1,015). The presence of [Asp(3)]-MCYST-LR (microcystin with Leu and Arg, Asp non-methylated, indicated by m/z 981), and [Asp(3)]-MCYST-YR (microcystin with Tyr and Arg, Asp non-methylated, indicated by m/z 1,031) were likely. The relative amounts of the peptides varied between February, April, and May. Whole cell extracts from the bloom material revealed specific enzyme inhibitory activities. The serin-proteases trypsin, plasmin, elastase were inhibited, assumable due to the cyanopeptolins found. Elastase and the cysteine-protease papain were not inhibited, inhibitions of protein kinase and glutathione S-transferase (GST) were low. Strong inhibition was observed with protein-phosphatase-1, likely due to the microcystins present in the samples.

  16. Binding Mode of Insulin Receptor and Agonist Peptide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Insulin is a protein hormone secreted by pancreatic β cells. One of its main functions is to keep the balance of glucose inside the body by regulating the absorption and metabolism of glucose in the periphery tissue, as well as the production and storage of hepatic glycogen. The insulin receptor is a transmembrane glycoprotein in which two α subunits with a molecular weight of 135 kD and twoβ subunits with a molecular weight of 95 kD are joined by a disulfide bond to form a β-α-α-β structure. The extracellular α subunit, especially, its three domains near the N-terminal are partially responsible for signal transduction or ligand-binding, as indicated by the experiments. The extracellular α subunits are involved in binding the ligands. The experimental results indicate that the three domains of the N-terminal of the α subunits are the main determinative parts of the insulin receptor to bind the insulin or mimetic peptide.We employed the extracellular domain (PDBID: 1IGR) of the insulin-like growth factor-1 receptor (IGF-1 R ) as the template to simulate and optimize the spatial structures of the three domains in the extracellular domain of the insulin receptor, which includes 468 residues. The work was accomplished by making use of the homology program in the Insight Ⅱ package on an Origin3800 server. The docking calculations of the insulin receptor obtained by homology with hexapeptides were carried out by means of the program Affinity. The analysis indicated that there were hydrogen bonding, and electrostatic and hydrophobic effects in the docking complex of the insulin receptor with hexapeptides.Moreover, we described the spatial orientation of a mimetic peptide with agonist activity in the docking complex. We obtained a rough model of binding of DLAPSQ or STIVYS with the insulin receptor, which provides the powerful theoretical support for designing the minimal insulin mimetic peptide with agonist activity, making it possible to develop oral small

  17. Genetic and phenotypic correlations between surrogate measures of insulin release obtained from OGTT data

    DEFF Research Database (Denmark)

    Gjesing, Anette Marianne Prior; Ribel-Madsen, Rasmus; Harder, Marie Neergaard

    2015-01-01

    closely related to fasting insulin with a genetic correlation of 0.85. The effects of 82 selected susceptibility single nucleotide polymorphisms on these insulin secretion indices supported our interpretation of the data and added insight into the biological differences between the examined traits......AIMS/HYPOTHESIS: We examined the extent to which surrogate measures of insulin release have shared genetic causes. METHODS: Genetic and phenotypic correlations were calculated in a family cohort (n = 315) in which beta cell indices were estimated based on fasting and oral glucose-stimulated plasma...... glucose, serum C-peptide and serum insulin levels. Furthermore, we genotyped a large population-based cohort (n = 6,269) for common genetic variants known to associate with type 2 diabetes, fasting plasma glucose levels or fasting serum insulin levels to examine their association with various indices...

  18. Glucose-induced glucagon-like Peptide 1 secretion is deficient in patients with non-alcoholic fatty liver disease.

    Directory of Open Access Journals (Sweden)

    Christine Bernsmeier

    Full Text Available The incretins glucagon-like peptide-1 (GLP-1 and glucose-dependent insulinotropic polypeptide (GIP are gastrointestinal peptide hormones regulating postprandial insulin release from pancreatic β-cells. GLP-1 agonism is a treatment strategy in Type 2 diabetes and is evaluated in Non-alcoholic fatty liver disease (NAFLD. However, the role of incretins in its pathophysiology is insufficiently understood. Studies in mice suggest improvement of hepatic steatosis by GLP-1 agonism. We determined the secretion of incretins after oral glucose administration in non-diabetic NAFLD patients.N=52 patients (n=16 NAFLD and n=36 Non-alcoholic steatohepatitis (NASH patients and n=50 matched healthy controls were included. Standardized oral glucose tolerance test was performed. Glucose, insulin, glucagon, GLP-1 and GIP plasma levels were measured sequentially for 120 minutes after glucose administration.Glucose induced GLP-1 secretion was significantly decreased in patients compared to controls (p<0.001. In contrast, GIP secretion was unchanged. There was no difference in GLP-1 and GIP secretion between NAFLD and NASH subgroups. All patients were insulin resistant, however HOMA2-IR was highest in the NASH subgroup. Fasting and glucose-induced insulin secretion was higher in NAFLD and NASH compared to controls, while the glucose lowering effect was diminished. Concomitantly, fasting glucagon secretion was significantly elevated in NAFLD and NASH.Glucose-induced GLP-1 secretion is deficient in patients with NAFLD and NASH. GIP secretion is contrarily preserved. Insulin resistance, with hyperinsulinemia and hyperglucagonemia, is present in all patients, and is more severe in NASH compared to NAFLD. These pathophysiologic findings endorse the current evaluation of GLP-1 agonism for the treatment of NAFLD.

  19. Insulin secretion and incretin hormones after oral glucose in non-obese subjects with impaired glucose tolerance

    DEFF Research Database (Denmark)

    Rask, E; Olsson, T; Söderberg, S

    2004-01-01

    of glucose, insulin, C-peptide, GLP-1, and GIP. Insulin secretion (TIS) and insulin sensitivity (OGIS) were assessed using models describing the relationship between glucose, insulin and C-peptide data. These models allowed estimation also of the hepatic extraction of insulin. The age (54.2 +/- 9.7 [mean......Subjects with impaired glucose tolerance (IGT) are usually overweight and exhibit insulin resistance with a defective compensation of insulin secretion. In this study, we sought to establish the interrelation between insulin secretion and insulin sensitivity after oral glucose in non-obese subjects...... over the whole 180-minute period was higher in IGT (26.2 +/- 2.4 v 20.0 +/- 2.0 nmol/L; P =.035). Hepatic insulin extraction correlated linearly with OGIS (r = 0.71; P

  20. Glucose tolerance, insulin sensitivity and insulin release in European non-diabetic carriers of a polymorphism upstream of CDKN2A and CDKN2B

    DEFF Research Database (Denmark)

    Hribal, M L; Presta, I; Procopio, T

    2011-01-01

    The aim of this study was to investigate the association of the rs10811661 polymorphism near the CDKN2B/CDKN2A genes with glucose tolerance, insulin sensitivity and insulin release in three samples of white people with European ancestry.......The aim of this study was to investigate the association of the rs10811661 polymorphism near the CDKN2B/CDKN2A genes with glucose tolerance, insulin sensitivity and insulin release in three samples of white people with European ancestry....

  1. Glucagon-like peptide-2, but not glucose-dependent insulinotropic polypeptide, stimulates glucagon release in patients with type 1 diabetes

    DEFF Research Database (Denmark)

    Christensen, Mikkel; Knop, Filip K; Vilsbøll, Tina

    2010-01-01

    This study investigated the glucagon-releasing properties of the hormones glucagon-like peptide-2 (GLP-2) and glucose-dependent insulinotropic polypeptide (GIP) in 8 patients with type 1 diabetes mellitus (T1DM) without paracrine intraislet influence of insulin (C-peptide negative following a 5 g...... intravenous arginine stimulation; on study days only treated with basal insulin substitution). On 3 study days, 180-minute two-step glucose clamps were performed. Plasma glucose (PG) was clamped at fasting values, with a mean of 7.4+/-0.5 mM in the first 90 min (period 1) and raised 1.5 times the fasting...

  2. Glucose tolerance, insulin release, and insulin binding to monocytes in kidney transplant recipients

    International Nuclear Information System (INIS)

    Briggs, W.A.; Wielechowski, K.S.; Mahajan, S.K.; Migdal, S.D.; McDonald, F.D.

    1982-01-01

    In order to evaluate glucose tolerance following renal transplantation, intravenous glucose tolerance tests (IVGTT), with evaluation of hormonal responses to the intravenous glucose load and percent specific 125 I-insulin binding to peripheral blood monocytes, were studied in eight clinically stable kidney transplant recipients. For comparison purposes, identical studies were done in eight control subjects and seven clinically stable hemodialysis patients. One transplant recipient was glucose intolerant, with fasting hyperglycemia, elevated HbA1C, and abnormal glucose decay constant. Impaired pancreatic insulin release appeared to be the major factor accounting for his glucose intolerance. The seven glucose-tolerant transplant recipients had significantly increased insulin release during IVGTT compared to control subjects, and significant correlations were found among insulin release, glucose decay constant, and fasting blood sugar in those patients. Insulin binding to monocytes was significantly greater in transplant recipients than control subjects due to an increase in insulin binding capacity per cell. A significant correlation was found between percent specific 125 I-insulin binding and steroid dose, expressed as mg/kg body weight/day, in those patients. Thus, chronic steroid administration does not cause glucose intolerance in transplant recipients who manifest steroid-associated increases in pancreatic insulin release and cellular insulin binding capacity

  3. Assembly of high-affinity insulin receptor agonists and antagonists from peptide building blocks

    Science.gov (United States)

    Schäffer, Lauge; Brissette, Renee E.; Spetzler, Jane C.; Pillutla, Renuka C.; Østergaard, Søren; Lennick, Michael; Brandt, Jakob; Fletcher, Paul W.; Danielsen, Gillian M.; Hsiao, Ku-Chuan; Andersen, Asser S.; Dedova, Olga; Ribel, Ulla; Hoeg-Jensen, Thomas; Hansen, Per Hertz; Blume, Arthur J.; Markussen, Jan; Goldstein, Neil I.

    2003-01-01

    Insulin is thought to elicit its effects by crosslinking the two extracellular α-subunits of its receptor, thereby inducing a conformational change in the receptor, which activates the intracellular tyrosine kinase signaling cascade. Previously we identified a series of peptides binding to two discrete hotspots on the insulin receptor. Here we show that covalent linkage of such peptides into homodimers or heterodimers results in insulin agonists or antagonists, depending on how the peptides are linked. An optimized agonist has been shown, both in vitro and in vivo, to have a potency close to that of insulin itself. The ability to construct such peptide derivatives may offer a path for developing agonists or antagonists for treatment of a wide variety of diseases. PMID:12684539

  4. Designing peptide inhibitor of insulin receptor to induce diabetes mellitus type 2 in animal model Mus musculus.

    Science.gov (United States)

    Permatasari, Galuh W; Utomo, Didik H; Widodo

    2016-10-01

    A designing peptide as agent for inducing diabetes mellitus type 2 (T2DM) in an animal model is challenging. The computational approach provides a sophisticated tool to design a functional peptide that may block the insulin receptor activity. The peptide that able to inhibit the binding between insulin and insulin receptor is a warrant for inducing T2DM. Therefore, we designed a potential peptide inhibitor of insulin receptor as an agent to generate T2DM animal model by bioinformatics approach. The peptide has been developed based on the structure of insulin receptor binding site of insulin and then modified it to obtain the best properties of half life, hydrophobicity, antigenicity, and stability binding into insulin receptor. The results showed that the modified peptide has characteristics 100h half-life, high-affinity -95.1±20, and high stability 28.17 in complex with the insulin receptor. Moreover, the modified peptide has molecular weight 4420.8g/Mol and has no antigenic regions. Based on the molecular dynamic simulation, the complex of modified peptide-insulin receptor is more stable than the commercial insulin receptor blocker. This study suggested that the modified peptide has the promising performance to block the insulin receptor activity that potentially induce diabetes mellitus type 2 in mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Glucose, insulin and C-peptide secretion in obese and non obese women with polycystic ovarian disease.

    Science.gov (United States)

    Mahabeer, S; Naidoo, C; Joubert, S M

    1990-06-01

    Plasma glucose, immunoreactive insulin (IRI) and C-peptide responses during oral glucose tolerance testing (OGTT) were evaluated in 10 non obese women with polycystic ovarian disease (NOB-PCOD) and 10 obese women with polycystic ovarian disease (OB-PCOD). Mean plasma glucose response at 120 minutes in OB-PCOD showed impaired glucose tolerance. Also in this group, 1 patient had frank diabetes mellitus, whilst 3 other patients had impaired glucose tolerance 1 NOB-PCOD patient had impaired glucose tolerance. Mean plasma glucose levels and mean incremental glucose areas were higher in the OB-PCOD at all time intervals and reached statistical significance at 60 and 90 minutes. Mean plasma IRI levels were also higher in OB-PCOD at all time intervals, and reached statistically significant higher levels at 0, 60 and 90 minutes. Mean serum C-peptide valves were also higher at all time intervals in OB-PCOD. The relationship between acanthosis nigricans, obesity and PCOD was also analysed. It is evident from this study that obesity has a significant negative impact on the overall carbohydrate status in women with PCOD.

  6. Involvement of insulin-degrading enzyme in insulin- and atrial natriuretic peptide-sensitive internalization of amyloid-β peptide in mouse brain capillary endothelial cells.

    Science.gov (United States)

    Ito, Shingo; Ohtsuki, Sumio; Murata, Sho; Katsukura, Yuki; Suzuki, Hiroya; Funaki, Miho; Tachikawa, Masanori; Terasaki, Tetsuya

    2014-01-01

    Cerebral clearance of amyloid-β peptide (Aβ), which is implicated in Alzheimer's disease, involves elimination across the blood-brain barrier (BBB), and we previously showed that an insulin-sensitive process is involved in the case of Aβ1-40. The purpose of this study was to clarify the molecular mechanism of the insulin-sensitive Aβ1-40 elimination across mouse BBB. An in vivo cerebral microinjection study demonstrated that [125I]hAβ1-40 elimination from mouse brain was inhibited by human natriuretic peptide (hANP), and [125I]hANP elimination was inhibited by hAβ1-40, suggesting that hAβ1-40 and hANP share a common elimination process. Internalization of [125I]hAβ1-40 into cultured mouse brain capillary endothelial cells (TM-BBB4) was significantly inhibited by either insulin, hANP, other natriuretic peptides or insulin-degrading enzyme (IDE) inhibitors, but was not inhibited by phosphoramidon or thiorphan. Although we have reported the involvement of natriuretic peptide receptor C (Npr-C) in hANP internalization, cells stably expressing Npr-C internalized [125I]hANP but not [125I]hAβ1-40, suggesting that there is no direct interaction between Npr-C and hAβ1-40. IDE was detected in plasma membrane of TM-BBB4 cells, and internalization of [125I]hAβ1-40 by TM-BBB4 cells was reduced by IDE-targeted siRNAs. We conclude that elimination of hAβ1-40 from mouse brain across the BBB involves an insulin- and ANP-sensitive process, mediated by IDE expressed in brain capillary endothelial cells.

  7. Growth hormone-releasing peptide-biotin conjugate stimulates myocytes differentiation through insulin-like growth factor-1 and collagen type I.

    Science.gov (United States)

    Lim, Chae Jin; Jeon, Jung Eun; Jeong, Se Kyoo; Yoon, Seok Jeong; Kwon, Seon Deok; Lim, Jina; Park, Keedon; Kim, Dae Yong; Ahn, Jeong Keun; Kim, Bong-Woo

    2015-09-01

    Based on the potential beneficial effects of growth hormone releasing peptide (GHRP)-6 on muscle functions, a newly synthesized GHRP-6-biotin conjugate was tested on cultured myoblast cells. Increased expression of myogenic marker proteins was observed in GHRP-6-biotin conjugate-treated cells. Additionally, increased expression levels of insulin-like growth factor-1 and collagen type I were observed. Furthermore, GHRP-6-biotin conjugate-treated cells showed increased metabolic activity, as indicated by increased concentrations of energy metabolites, such as ATP and lactate, and increased enzymatic activity of lactate dehydrogenase and creatine kinase. Finally, binding protein analysis suggested few candidate proteins, including desmin, actin, and zinc finger protein 691 as potential targets for GHRP6-biotin conjugate action. These results suggest that the newly synthesized GHRP-6-biotin conjugate has myogenic stimulating activity through, at least in part, by stimulating collagen type I synthesis and several key proteins. Practical applications of the GHRP-6-biotin conjugate could include improving muscle condition.

  8. Non-insulin drugs to treat hyperglycaemia in type 1 diabetes mellitus

    DEFF Research Database (Denmark)

    Frandsen, Christian Seerup; Dejgaard, Thomas Fremming; Madsbad, Sten

    2016-01-01

    Insulin treatment of individuals with type 1 diabetes has shortcomings and many patients do not achieve glycaemic and metabolic targets. Consequently, the focus is on novel non-insulin therapeutic approaches that reduce hyperglycaemia and improve metabolic variables without increasing the risk...... with few participants; evidence for the efficacy of concomitant treatments is scarce and largely clinically insignificant. A subgroup of patients with type 1 diabetes for whom non-insulin antidiabetic drugs could significantly benefit glycaemic control cannot yet be defined, but we suggest that obese...... of hypoglycaemia or other adverse events. Several therapies given in conjunction with insulin have been investigated in clinical trials, including pramlintide, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, sodium-glucose co-transporter inhibitors, metformin, sulfonylureas...

  9. Effect of chloroquine on insulin and glucose homoeostasis in normal subjects and patients with non-insulin-dependent diabetes mellitus.

    Science.gov (United States)

    Smith, G D; Amos, T A; Mahler, R; Peters, T J

    1987-01-01

    Plasma glucose, insulin, and C peptide concentrations were determined after an oral glucose load in normal subjects and in a group of patients with non-insulin-dependent diabetes mellitus before and during a short course of treatment with chloroquine. In the control group there was a small but significant reduction in fasting blood glucose concentration but overall glucose tolerance and hormone concentrations were unaffected. In contrast, the patients with non-insulin-dependent diabetes mellitus showed a significant improvement in their glucose tolerance, which paralleled the severity of their diabetes. This response seems to reflect decreased degradation of insulin rather than increased pancreatic output. These observations suggest that treatment with chloroquine or suitable analogues may be a new approach to the management of diabetes. PMID:3103729

  10. Brain natriuretic peptide and insulin resistance in older adults.

    Science.gov (United States)

    Kim, F; Biggs, M L; Kizer, J R; Brutsaert, E F; de Filippi, C; Newman, A B; Kronmal, R A; Tracy, R P; Gottdiener, J S; Djoussé, L; de Boer, I H; Psaty, B M; Siscovick, D S; Mukamal, K J

    2017-02-01

    Higher levels of brain natriuretic peptide (BNP) have been associated with a decreased risk of diabetes in adults, but whether BNP is related to insulin resistance in older adults has not been established. N-terminal of the pro hormone brain natriuretic peptide (NT-pro BNP) was measured among Cardiovascular Health Study participants at the 1989-1990, 1992-1993 and 1996-1997 examinations. We calculated measures of insulin resistance [homeostatic model assessment of insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI), Gutt index, Matsuda index] from fasting and 2-h concentrations of glucose and insulin among 3318 individuals with at least one measure of NT-proBNP and free of heart failure, coronary heart disease and chronic kidney disease, and not taking diabetes medication. We used generalized estimating equations to assess the cross-sectional association of NT-proBNP with measures of insulin resistance. Instrumental variable analysis with an allele score derived from nine genetic variants (single nucleotide polymorphisms) within or near the NPPA and NPPB loci was used to estimate an un-confounded association of NT-proBNP levels on insulin resistance. Lower NT-proBNP levels were associated with higher insulin resistance even after adjustment for BMI, waist circumference and other risk factors (P insulin resistance (P = 0.38; P = 0.01 for comparison with the association of measured levels of NT-proBNP). In older adults, lower NT-proBNP is associated with higher insulin resistance, even after adjustment for traditional risk factors. Because related genetic variants were not associated with insulin resistance, the causal nature of this association will require future study. © 2016 Diabetes UK.

  11. Toxic releases from power plants

    International Nuclear Information System (INIS)

    Rubin, E.S.

    1999-01-01

    Beginning in 1998, electric power plants burning coal or oil must estimate and report their annual releases of toxic chemicals listed in the Toxics Release Inventory (TRI) published by the US Environmental Protection Agency (EPA). This paper identifies the toxic chemicals of greatest significance for the electric utility sector and develops quantitative estimates of the toxic releases reportable to the TRI for a representative coal-fired power plant. Key factors affecting the magnitude and types of toxic releases for individual power plants also are discussed. A national projection suggests that the magnitude of electric utility industry releases will surpass those of the manufacturing industries which current report to the TRI. Risk communication activities at the community level will be essential to interpret and provide context for the new TRI results

  12. Urinary C-peptide: a useful tool for evaluating the endogenous insulin reserve in cohort and longitudinal studies of diabetes in childhood.

    Science.gov (United States)

    de Beaufort, C E; den Boer, N C; Bruining, G J; Eilers, G A; van Strik, R; Weterings, T

    1988-09-01

    Increasing research into the remission phase of type I diabetes mellitus stresses the importance of a non-traumatic and reliable method for the evaluation of endogenous insulin production. We compared 24-h urinary C-peptide excretion (UCE) with plasma C-peptide values before and after stimulation with 1 mg glucagon in 24 type I diabetic children. Fasting plasma C-peptide values and stimulated plasma C-peptide values showed a linear correlation with 24 h UCE. Mean plasma C-peptide levels correlated inversely with the exogenous insulin dose. A slightly better correlation was found between the exogenous insulin dose and 24 h UCE. Control data of 24 h UCE were obtained from healthy siblings. A linear correlation with age was found up to 10 years of age above which UCE values seem to reach a plateau. This effect of age, as well as the frequency of sampling was taken into account in the derivation of 95% reference intervals for UCE. The measurement of 24 h UCE appears to be a useful parameter to assess endogenous insulin production in diabetic children, provided that age is taken into account.

  13. Biphasic insulin-releasing effect of BTS 67 582 in rats.

    Science.gov (United States)

    Storey, D A; Bailey, C J

    1998-12-01

    BTS 67 582 (1,1-dimethyl-2(2-morpholinophenyl)guanidine fumarate) is being developed as a short-acting anti-diabetic insulin secretagogue. The effect of BTS 67 582 on the phasic pattern of insulin release was assessed in anaesthetized normal rats by measuring arterial plasma insulin concentrations while arterial glucose concentrations were fixed at 6, 8.5 and 12.5 mM. Intravenous BTS 67 582 (10 mg kg(-1)) induced an immediate but transient increase in insulin concentrations which declined by 10 min (first phase). This was followed by a smaller but sustained increase in insulin concentrations (second phase). The increment from basal to peak insulin release (0-2 min) was independent of glucose, but the first phase was maintained for longer and the second phase was greater at the highest concentration of glucose (12.5 mM). BTS 67 582 also extended the first-phase insulin response to a standard intravenous glucose challenge and enhanced the rate of glucose disappearance by approximately 12%. Thus BTS 67 582 causes biphasic stimulation of insulin release and augments the insulin-releasing effect of glucose.

  14. Peptide release, side-chain deprotection, work-up, and isolation

    DEFF Research Database (Denmark)

    Pedersen, Søren Ljungberg; Jensen, Knud Jørgen

    2013-01-01

    After having successfully synthesized a peptide, it has to be released from the solid support, unless it is being used for on-resin display. The linker and, in some cases, the cleavage mixture determine the C-terminal functionality of the released peptide. In most cases, the peptide is released w...

  15. Growth hormone-releasing peptides.

    Science.gov (United States)

    Ghigo, E; Arvat, E; Muccioli, G; Camanni, F

    1997-05-01

    Growth hormone-releasing peptides (GHRPs) are synthetic, non-natural peptides endowed with potent stimulatory effects on somatotrope secretion in animals and humans. They have no structural homology with GHRH and act via specific receptors present either at the pituitary or the hypothalamic level both in animals and in humans. The GHRP receptor has recently been cloned and, interestingly, it does not show sequence homology with other G-protein-coupled receptors known so far. This evidence strongly suggests the existence of a natural GHRP-like ligand which, however, has not yet been found. The mechanisms underlying the GHRP effect are still unclear. At present, several data favor the hypothesis that GHRPs could act by counteracting somatostatinergic activity both at the pituitary and the hypothalamic level and/or, at least partially, via a GHRH-mediated mechanism. However, the possibility that GHRPs act via an unknown hypothalamic factor (U factor) is still open. GHRP-6 was the first hexapeptide to be extensively studied in humans. More recently, a heptapeptide, GHRP-1, and two other hexapeptides, GHRP-2 and Hexarelin, have been synthesized and are now available for human studies. Moreover, non-peptidyl GHRP mimetics have been developed which act via GHRP receptors and their effects have been clearly demonstrated in animals and in humans in vivo. Among non-peptidyl GHRPs, MK-0677 seems the most interesting molecule. The GH-releasing activity of GHRPs is marked and dose-related after intravenous, subcutaneous, intranasal and even oral administration. The effect of GHRPs is reproducible and undergoes partial desensitization, more during continuous infusion, less during intermittent administration: in fact, prolonged administration of GHRPs increases IGF-1 levels both in animals and in humans. The GH-releasing effect of GHRPs does not depend on sex but undergoes age-related variations. It increases from birth to puberty, persists at a similar level in adulthood and

  16. Diagnostic value of C-peptide determination

    International Nuclear Information System (INIS)

    Kober, G.; Rainer, O.H.

    1983-01-01

    C-peptide and insulin serum determinations were performed in 94 glucagon-stimulated diabetics and in 15 healthy persons. A minimal increase of 1.5 ng C-peptide/ml serum after glucagon injection (1 mg i.v.) was found to be a useful parameter for the differentiation of insulin dependent and non-insulin dependent diabetics. The maximal response to glucagon occurred during the first 10-minutes after the injection (blood was drawn at 2-minutes intervals). Serum insulin levels and basal C-peptide concentrations were of no value in predicting insulin-dependency. Basal C-peptide levels were significantly different from control in juvenile insulin dependent diabetics (decrease) only. (Author)

  17. Insulin and C peptide response, and antibody levels in hepatitis C related chronic liver disease

    International Nuclear Information System (INIS)

    Abbas, Z.; Tariq, N.; Iqbal, M.; Shah, M.A.

    2002-01-01

    higher insulin levels. They have blunt insulin and c-peptide responses with marked 2 h PG hyperglycemia which indicates subnormal secretion of insulin and pancreatic islets dysfunction. This response in very similar to usual non-insulin dependent diabetes mellitus. (author)

  18. Allegheny County Toxics Release Inventory

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Toxics Release Inventory (TRI) data provides information about toxic substances released into the environment or managed through recycling, energy recovery, and...

  19. The effect of endogenously released glucose, insulin, glucagon-like peptide 1, ghrelin on cardiac output, heart rate, stroke volume, and blood pressure.

    Science.gov (United States)

    Hlebowicz, Joanna; Lindstedt, Sandra; Björgell, Ola; Dencker, Magnus

    2011-12-29

    Ingestion of a meal increases the blood flow to the gastrointestinal organs and affects the heart rate (HR), blood pressure and cardiac output (CO), although the mechanisms are not known. The aim of this study was to evaluate the effect of endogenously released glucose, insulin, glucagon-like peptide 1 (GLP-1), ghrelin on CO, HR, stroke volume (SV), and blood pressure. Eleven healthy men and twelve healthy women ((mean ± SEM) aged: 26 ± 0.2 y; body mass index: 21.8 ± 0.1 kg/m(2))) were included in this study. The CO, HR, SV, systolic and diastolic blood pressure, antral area, gastric emptying rate, and glucose, insulin, GLP-1 and ghrelin levels were measured. The CO and SV at 30 min were significantly higher, and the diastolic blood pressure was significantly lower, than the fasting in both men and women (P blood pressure (P = 0.021, r = -0.681), and the change in SV (P = 0.008, r = -0.748) relative to the fasting in men. The insulin 0-30 min AUC was significantly correlated to the CO 0-30 min AUC (P = 0.002, r = 0.814) in men. Significant correlations were also found between the 0-120 min ghrelin and HR AUCs (P = 0.007, r = 0.966) in men. No statistically significant correlations were seen in women. Physiological changes in the levels of glucose, insulin, GLP-1 and ghrelin may influence the activity of the heart and the blood pressure. There may also be gender-related differences in the haemodynamic responses to postprandial changes in hormone levels. The results of this study show that subjects should not eat immediately prior to, or during, the evaluation of cardiovascular interventions as postprandial affects may affect the results, leading to erroneous interpretation of the cardiovascular effects of the primary intervention. NCT01027507.

  20. Diagnostic value of C-peptide determination. [Radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Kober, G; Rainer, O H [Landeskrankenhaus Klagenfurt (Austria). Nuklearmedizinische Abt.

    1983-01-01

    C-peptide and insulin serum determinations were performed in 94 glucagon-stimulated diabetics and in 15 healthy persons. A minimal increase of 1.5 ng C-peptide/ml serum after glucagon injection (1 mg i.v.) was found to be a useful parameter for the differentiation of insulin dependent and non-insulin dependent diabetics. The maximal response to glucagon occurred during the first 10-minutes after the injection (blood was drawn at 2-minutes intervals). Serum insulin levels and basal C-peptide concentrations were of no value in predicting insulin-dependency. Basal C-peptide levels were significantly different from control in juvenile insulin dependent diabetics (decrease) only.

  1. Mycobacteria attenuate nociceptive responses by formyl peptide receptor triggered opioid peptide release from neutrophils.

    Directory of Open Access Journals (Sweden)

    Heike L Rittner

    2009-04-01

    Full Text Available In inflammation, pain is regulated by a balance of pro- and analgesic mediators. Analgesic mediators include opioid peptides which are secreted by neutrophils at the site of inflammation, leading to activation of opioid receptors on peripheral sensory neurons. In humans, local opioids and opioid peptides significantly downregulate postoperative as well as arthritic pain. In rats, inflammatory pain is induced by intraplantar injection of heat inactivated Mycobacterium butyricum, a component of complete Freund's adjuvant. We hypothesized that mycobacterially derived formyl peptide receptor (FPR and/or toll like receptor (TLR agonists could activate neutrophils, leading to opioid peptide release and inhibition of inflammatory pain. In complete Freund's adjuvant-induced inflammation, thermal and mechanical nociceptive thresholds of the paw were quantified (Hargreaves and Randall-Selitto methods, respectively. Withdrawal time to heat was decreased following systemic neutrophil depletion as well as local injection of opioid receptor antagonists or anti-opioid peptide (i.e. Met-enkephalin, beta-endorphin antibodies indicating an increase in pain. In vitro, opioid peptide release from human and rat neutrophils was measured by radioimmunoassay. Met-enkephalin release was triggered by Mycobacterium butyricum and formyl peptides but not by TLR-2 or TLR-4 agonists. Mycobacterium butyricum induced a rise in intracellular calcium as determined by FURA loading and calcium imaging. Opioid peptide release was blocked by intracellular calcium chelation as well as phosphoinositol-3-kinase inhibition. The FPR antagonists Boc-FLFLF and cyclosporine H reduced opioid peptide release in vitro and increased inflammatory pain in vivo while TLR 2/4 did not appear to be involved. In summary, mycobacteria activate FPR on neutrophils, resulting in tonic secretion of opioid peptides from neutrophils and in a decrease in inflammatory pain. Future therapeutic strategies may aim

  2. Quantification of beta-cell function during IVGTT in Type II and non-diabetic subjects: assessment of insulin secretion by mathematical methods

    DEFF Research Database (Denmark)

    Kjems, L L; Vølund, A; Madsbad, Sten

    2001-01-01

    AIMS/HYPOTHESIS: We compared four methods to assess their accuracy in measuring insulin secretion during an intravenous glucose tolerance test in patients with Type II (non-insulin-dependent) diabetes mellitus and with varying beta-cell function and matched control subjects. METHODS: Eight control...... subjects and eight Type II diabetic patients underwent an intravenous glucose tolerance test with tolbutamide and an intravenous bolus injection of C-peptide to assess C-peptide kinetics. Insulin secretion rates were determined by the Eaton deconvolution (reference method), the Insulin SECretion method...... (ISEC) based on population kinetic parameters as well as one-compartment and two-compartment versions of the combined model of insulin and C-peptide kinetics. To allow a comparison of the accuracy of the four methods, fasting rates and amounts of insulin secreted during the first phase (0-10 min...

  3. Study on the C-peptide radioimmunoassay with synthetized connecting peptide

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, S; Sasaki, T; Nakayama, H; Watanabe, T; Aoki, S [Hokkaido Univ., Sapporo (Japan). School of Medicine

    1976-01-01

    A method of C-peptide radioimmunoassay with the synthetized connecting peptide by Yanaihara was tested for the determination of serum C-peptide immunoreactivity (CPR) in normal people and in diabetics with or without insulin treatment. The CPR value obtained by this method was not interfered with by the presence of serum proteins or by the insulin of people with or without insulin treatment judged by the dilution test and the recovery test. The normal fasting CPR was 2.80 +- 0.78 ng/ml with the synthetized C-peptide as a standard. The CPR value increased and reached a maximum 90 minutes after the ingestion of 50 g of glucose. The increase after the glucose loading reduced corresponding to the severity of diabetes, and some juvenile-onset diabetes showed no response. Adult-type diabetics under insulin treatment, however, showed weak but significant CPR response. The increment of CPR and immunoreactive insulin after glucose loading in normal people and non-treated diabetics was well correlated (..gamma..=0.8262). Judged from the above mentioned results, CPR determination in insulin-treated diabetics was thought to be a useful method for the assessment of the insulin-secreting ability of beta-cells of the pancreas.

  4. Gastrin-Releasing Peptide and Glucose Metabolism Following Pancreatitis.

    Science.gov (United States)

    Pendharkar, Sayali A; Drury, Marie; Walia, Monika; Korc, Murray; Petrov, Maxim S

    2017-08-01

    Gastrin-releasing peptide (GRP) is a pluripotent peptide that has been implicated in both gastrointestinal inflammatory states and classical chronic metabolic diseases such as diabetes. Abnormal glucose metabolism (AGM) after pancreatitis, an exemplar inflammatory disease involving the gastrointestinal tract, is associated with persistent low-grade inflammation and altered secretion of pancreatic and gut hormones as well as cytokines. While GRP is involved in secretion of many of them, it is not known whether GRP has a role in AGM. Therefore, we aimed to investigate the association between GRP and AGM following pancreatitis. Fasting blood samples were collected to measure GRP, blood glucose, insulin, amylin, glucagon, pancreatic polypeptide (PP), somatostatin, cholecystokinin, gastric-inhibitory peptide (GIP), gastrin, ghrelin, glicentin, glucagon-like peptide-1 and 2, oxyntomodulin, peptide YY (PYY), secretin, vasoactive intestinal peptide, tumor necrosis factor-α (TNF-α), monocyte chemoattractant protein (MCP)-1, and interleukin-6. Modified Poisson regression analysis and linear regression analyses were conducted. Four statistical models were used to adjust for demographic, metabolic, and pancreatitis-related risk factors. A total of 83 individuals after an episode of pancreatitis were recruited. GRP was significantly associated with AGM, consistently in all four models (P -trend < 0.05), and fasting blood glucose contributed 17% to the variance of GRP. Further, GRP was significantly associated with glucagon (P < 0.003), MCP-1 (P < 0.025), and TNF-α (P < 0.025) - consistently in all four models. GRP was also significantly associated with PP and PYY in three models (P < 0.030 for both), and with GIP and glicentin in one model (P = 0.001 and 0.024, respectively). Associations between GRP and other pancreatic and gut hormones were not significant. GRP is significantly increased in patients with AGM after pancreatitis and is associated with increased levels of pro

  5. Radioimmunoassay of seric C-peptide. Practical value in the study of insulin secretion. Results of 140 stimulation tests

    International Nuclear Information System (INIS)

    Wafflart, Jean.

    1977-10-01

    C-peptide, which appears as a by-product of insulin synthesis, is secreted with this latter in equimolar quantities but is not degraded in the liver. It thus reflects indirectly the insulin secreted. After the structure of C-peptide was determined in 1971 by OYER it was synthesized by YANAIHARA and a radioimmunoassay was developed by KANEKO in 1974. This work was made possible by the recent commercialisation of a Japanese analysis kit, the 'DAIICHI' kit, and its availability through GUERBET TESTS. Part one describes the structural, physiological and immuno properties of C-peptide and its method of determination. Part two is devoted to a review of foreign publications on the practical interest of the C-peptide measurement. Part three gives the results of 140 oral or venous stimulation tests where blood sugar, blood insulin and C-peptide are measured in parallel. The different diabetic pathologies are explored and compared against normal subjects. The purpose of this work is to establish the value of C-peptide as a reflection of insulin secretion on the one hand, and that of a parallel insulin and C-peptide determination on the other [fr

  6. Expression and Purification of C-Peptide Containing Insulin Using Pichia pastoris Expression System

    Directory of Open Access Journals (Sweden)

    Mohammed N. Baeshen

    2016-01-01

    Full Text Available Increase in the incidence of Insulin Dependent Diabetes Mellitus (IDDM among people from developed and developing countries has created a large global market for insulin. Moreover, exploration of new methods for insulin delivery including oral or inhalation route which require very high doses would further increase the demand of cost-effective recombinant insulin. Various bacterial and yeast strains have been optimized to overproduce important biopharmaceuticals. One of the approaches we have taken is the production of recombinant human insulin along with C-peptide in yeast Pichia pastoris. We procured a cDNA clone of insulin from Origene Inc., USA. Insulin cDNA was PCR amplified and cloned into yeast vector pPICZ-α. Cloned insulin cDNA was confirmed by restriction analysis and DNA sequencing. pPICZ-α-insulin clone was transformed into Pichia pastoris SuperMan5 strain. Several Zeocin resistant clones were obtained and integration of insulin cDNA in Pichia genome was confirmed by PCR using insulin specific primers. Expression of insulin in Pichia clones was confirmed by ELISA, SDS-PAGE, and Western blot analysis. In vivo efficacy studies in streptozotocin induced diabetic mice confirmed the activity of recombinant insulin. In conclusion, a biologically active human proinsulin along with C-peptide was expressed at high level using Pichia pastoris expression system.

  7. Toxics Release Inventory (TRI)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Toxics Release Inventory (TRI) is a dataset compiled by the U.S. Environmental Protection Agency (EPA). It contains information on the release and waste...

  8. Toxic Release Inventory Chemicals by Groupings

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Toxics Release Inventory (TRI) makes available information for more than 600 toxic chemicals that are being used, manufactured, treated, transported, or released...

  9. Sensitivity and reproducibility of urinary C-peptide as estimate of islet B-cell function in insulin-treated diabetes

    DEFF Research Database (Denmark)

    Gjessing, H J; Matzen, L E; Faber, O K

    1989-01-01

    The aims of the present study were to evaluate the ability of urinary C-peptide determination to demonstrate presence of residual insulin secretion, and to evaluate the reproducibility of urinary C-peptide excretion in 125 insulin-treated diabetic patients. C-peptide was determined in two...

  10. Effects of immediate-release niacin and dietary fatty acids on acute insulin and lipid status in individuals with metabolic syndrome.

    Science.gov (United States)

    Montserrat-de la Paz, Sergio; Lopez, Sergio; Bermudez, Beatriz; Guerrero, Juan M; Abia, Rocio; Muriana, Francisco Jg

    2018-04-01

    The nature of dietary fats profoundly affects postprandial hypertriglyceridemia and glucose homeostasis. Niacin is a potent lipid-lowering agent. However, limited data exist on postprandial triglycerides and glycemic control following co-administration of high-fat meals with a single dose of niacin in subjects with metabolic syndrome (MetS). The aim of the study was to explore whether a fat challenge containing predominantly saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) or MUFAs plus omega-3 long-chain polyunsaturated (LCPUFAs) fatty acids together with a single dose of immediate-release niacin have a relevant role in postprandial insulin and lipid status in subjects with MetS. In a randomized crossover within-subject design, 16 men with MetS were given a single dose of immediate-release niacin (2 g) and ∼15 cal kg -1 body weight meals containing either SFAs, MUFAs, MUFAs plus omega-3 LCPUFAs or no fat. At baseline and hourly over 6 h, plasma glucose, insulin, C-peptide, triglycerides, free fatty acids (FFAs), total cholesterol, and both high- and low-density lipoprotein cholesterol were assessed. Co-administered with niacin, high-fat meals significantly increased the postprandial concentrations of glucose, insulin, C-peptide, triglycerides, FFAs and postprandial indices of β-cell function. However, postprandial indices of insulin sensitivity were significantly decreased. These effects were significantly attenuated with MUFAs or MUFAs plus omega-3 LCPUFAs when compared with SFAs. In the setting of niacin co-administration and compared to dietary SFAs, MUFAs limit the postprandial insulin, triglyceride and FFA excursions, and improve postprandial glucose homeostasis in MetS. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  11. De novo design and engineering of non-ribosomal peptide synthetases

    Science.gov (United States)

    Bozhüyük, Kenan A. J.; Fleischhacker, Florian; Linck, Annabell; Wesche, Frank; Tietze, Andreas; Niesert, Claus-Peter; Bode, Helge B.

    2018-03-01

    Peptides derived from non-ribosomal peptide synthetases (NRPSs) represent an important class of pharmaceutically relevant drugs. Methods to generate novel non-ribosomal peptides or to modify peptide natural products in an easy and predictable way are therefore of great interest. However, although the overall modular structure of NRPSs suggests the possibility of adjusting domain specificity and selectivity, only a few examples have been reported and these usually show a severe drop in production titre. Here we report a new strategy for the modification of NRPSs that uses defined exchange units (XUs) and not modules as functional units. XUs are fused at specific positions that connect the condensation and adenylation domains and respect the original specificity of the downstream module to enable the production of the desired peptides. We also present the use of internal condensation domains as an alternative to other peptide-chain-releasing domains for the production of cyclic peptides.

  12. Brain delivery of insulin boosted by intranasal coadministration with cell-penetrating peptides.

    Science.gov (United States)

    Kamei, Noriyasu; Takeda-Morishita, Mariko

    2015-01-10

    Intranasal administration is considered as an alternative route to enable effective drug delivery to the central nervous system (CNS) by bypassing the blood-brain barrier. Several reports have proved that macromolecules can be transferred directly from the nasal cavity to the brain. However, strategies to enhance the delivery of macromolecules from the nasal cavity to CNS are needed because of their low delivery efficiencies via this route in general. We hypothesized that the delivery of biopharmaceuticals to the brain parenchyma can be facilitated by increasing the uptake of drugs by the nasal epithelium including supporting and neuronal cells to maximize the potentiality of the intranasal pathway. To test this hypothesis, the CNS-related model peptide insulin was intranasally coadministered with the cell-penetrating peptide (CPP) penetratin to mice. As a result, insulin coadministered with l- or d-penetratin reached the distal regions of the brain from the nasal cavity, including the cerebral cortex, cerebellum, and brain stem. In particular, d-penetratin could intranasally deliver insulin to the brain with a reduced risk of systemic insulin exposure. Thus, the results obtained in this study suggested that CPPs are potential tools for the brain delivery of peptide- and protein-based pharmaceuticals via intranasal administration. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Amyloid β42 peptide is toxic to non-neural cells in Drosophila yielding a characteristic metabolite profile and the effect can be suppressed by PI3K

    Directory of Open Access Journals (Sweden)

    Mercedes Arnés

    2017-11-01

    Full Text Available The human Aβ42 peptide is associated with Alzheimer's disease through its deleterious effects in neurons. Expressing the human peptide in adult Drosophila in a tissue- and time-controlled manner, we show that Aβ42 is also toxic in non-neural cells, neurosecretory and epithelial cell types in particular. This form of toxicity includes the aberrant signaling by Wingless morphogen leading to the eventual activation of Caspase 3. Preventing Caspase 3 activation by means of p53 keeps epithelial cells from elimination but maintains the Aβ42 toxicity yielding more severe deleterious effects to the organism. Metabolic profiling by nuclear magnetic resonance (NMR of adult flies at selected ages post Aβ42 expression onset reveals characteristic changes in metabolites as early markers of the pathological process. All morphological and most metabolic features of Aβ42 toxicity can be suppressed by the joint overexpression of PI3K.

  14. Peptides having reduced toxicity that stimulate cholesterol efflux

    Energy Technology Data Exchange (ETDEWEB)

    Bielicki, John K.; Johansson, Jan; Danho, Waleed

    2016-08-16

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABCA1 that parallels that of full-length apolipoproteins. Further, the peptides of the invention have little or no toxicity when administered at therapeutic and higher doses. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  15. Application of reaction type of C-peptide release test in diabetes mellitus

    International Nuclear Information System (INIS)

    Chen Dong; Duan Wenruo; He Juan; Lu Zhenfang

    2001-01-01

    The author is to confirm the effect of C-peptide release test and types of release reaction in appraisal of pancreas function of β-cell and selection of treatment for diabetes mellitus (DM) patients. The serum C-peptide release test of 67 normal controls and 217 DM patients were determined by RIA, and the results were analyzed and compared. C-peptide release test can reflect the pancreas function of β-cell better, the peak of C-peptide ≥ 0.6 nmol/L after lunch can be the limit of whether to reduce the level of blood glucose only by oral drug. The authors should adjust the treatment through analyzing the type of C-peptide release reaction. C-peptide release test is very important in evaluating the pancreas function of β-cell, classifying the type of DM and selecting the treatment

  16. The Association of Fasting Glucose, Insulin, and C-Peptide, with 19-Year Incidence of Coronary Heart Disease in Older Japanese-American Men; the Honolulu Heart Program

    Directory of Open Access Journals (Sweden)

    Nazneem Wahab

    2018-04-01

    Full Text Available The role of fasting glucose, insulin levels, and C-peptide in coronary heart disease (CHD in non-diabetic individuals remains uncertain. We examined the association between fasting glucose, insulin and C-peptide with the long-term incidence of CHD in Japanese-American men. In 1980–1982, from a random sample of the Honolulu Heart Program men (n = 1378, aged 61–81 years, data on several CHD and metabolic risk factors were obtained to examine the relation of fasting glucose, insulin and C-peptide to 19-year CHD incidence. Age-adjusted incidence of CHD increased with increasing quintiles of glucose, insulin and C-peptide. Age-adjusted CHD rates in the glucose quintiles were 11.9, 11.6, 14.4, 18.1 and 24.1 per 1000 person-years (trend p < 0.001. In individual Cox models (lowest quintiles of glucose, insulin and C-peptide as reference the relative risks (95% confidence interval of CHD incidence for the glucose quintiles adjusting for age, smoking, hypertension, cholesterol, physical activity, and body mass index, were 0.9 (0.6–1.4, 1.2 (0.8–1.8, 1.4 (0.9–2.2, and 1.7 (1.1–2.6, respectively (trend p = 0.004. Insulin and C-peptide were not significantly associated with CHD on multivariate analysis. Fasting glucose remained the only significant predictor of increased CHD risk (p = 0.003 in a model combining all 3 metabolic variables. In this cohort, only fasting glucose independently predicts long-term incidence of CHD. Age-adjusted insulin and C-peptide levels were associated with CHD incidence, but after adjustment for other risk factors, do not independently predict CHD.

  17. A study on the C-peptide radioimmunoassay with synthetized connecting peptide

    International Nuclear Information System (INIS)

    Nakagawa, Shoichi; Sasaki, Takashi; Nakayama, Hidetaka; Watanabe, Takuji; Aoki, Shin

    1976-01-01

    A method of C-peptide radioimmunoassay with the synthetized connecting peptide by Yanaihara was tested for the determination of serum C-peptide immunoreactivity (CPR) in normal people and in diabetics with or without insulin treatment. The CPR value obtained by this method was not interfered with by the presence of serum proteins or by the insulin of people with or without insulin treatment judged by the dilution test and the recovery test. The normal fasting CPR was 2.80 +- 0.78 ng/ml with the synthetized C-peptide as a standard. The CPR value increased and reached a maximum 90 minutes after the ingestion of 50 g of glucose. The increase after the glucose loading reduced corresponding to the severity of diabetes, and some juvenile-onset diabetes showed no response. Adult-type diabetics under insulin treatment, however, showed weak but significant CPR response. The increment of CPR and immunoreactive insulin after glucose loading in normal people and non-treated diabetics was well correlated (γ=0.8262). Judged from the above mentioned results, CPR determination in insulin-treated diabetics was thought to be a useful method for the assessment of the insulin-secreting ability of beta-cells of the pancreas. (J.P.N.)

  18. Insulin Biosynthetic Interaction Network Component, TMEM24, Facilitates Insulin Reserve Pool Release

    Directory of Open Access Journals (Sweden)

    Anita Pottekat

    2013-09-01

    Full Text Available Insulin homeostasis in pancreatic β cells is now recognized as a critical element in the progression of obesity and type II diabetes (T2D. Proteins that interact with insulin to direct its sequential synthesis, folding, trafficking, and packaging into reserve granules in order to manage release in response to elevated glucose remain largely unknown. Using a conformation-based approach combined with mass spectrometry, we have generated the insulin biosynthetic interaction network (insulin BIN, a proteomic roadmap in the β cell that describes the sequential interacting partners of insulin along the secretory axis. The insulin BIN revealed an abundant C2 domain-containing transmembrane protein 24 (TMEM24 that manages glucose-stimulated insulin secretion from a reserve pool of granules, a critical event impaired in patients with T2D. The identification of TMEM24 in the context of a comprehensive set of sequential insulin-binding partners provides a molecular description of the insulin secretory pathway in β cells.

  19. Diurnal Variations in Serum Glucose, Insulin and C-Peptide of Normal Korean Adults

    International Nuclear Information System (INIS)

    Choi, Du Hyok; Chung, June Key; Lee, Hong Kyu; Koh, Chang Soon; Hong, Kee Suk

    1983-01-01

    It is already well known that many factors are involved in maintaining normal blood glucose level. The amount and components of meal are also thought to be some of the factors which affect the blood glucose and insulin levels. It is reported that as for Koreans sugar takes up over 75% out of 2,098 kcal, the average daily calorie intake per adult. It implies that Koreans take a high-sugar diet compared with Westerners who take 40-50% of sugar out of their total average daily calorie. For the purpose of studying diurnal variations in serum glucose, insulin and C-peptide of normal Koreans adults based on ordinary Korean diet, we selected 13 normal Korean male adults and divided them into two groups, Group I (7 persons) and Group II (6 persons). We put Group I on 3,100 kcal and 75% sugar diet, and Group II on 2,100 kcal and 69% sugar diet per day for over 4 days. Serum glucose, insulin and C-peptide were checked every 30 minutes or every hour throughout 2 hour. Results are as follows: 1. As for serum glucose level, in the preprandial fasting state in the morning, mean±S.D. of Group I was 91.1±3.2 mg%, while that of Group II is 82.5±4.4 mg%. Both groups showed peaks of increased glucose level t postprandial 1 hour after each meal. The peak returned to the level shown during the fasting state at postprandial 1 hour after breakfast while the relatively high glucose levels were maintained respectively even for 2 or 3 hours after lunch and dinner. 2. As for serum insults level, Group I showed mean±S.D. of 14.7±3.0 μU/ml while Group II shows that of 7.0±2.6 μU/ml in the fasting state. Group I particularly showed the largest peak from preprandial a half or one and half an hour to postprandial one hour of lunch, and made relatively small peaks (47.7±10.8 μU/ml) at postprandial 1 hour after breakfast and dinner. No such large peak was marked in Group II, though it showed relatively similar patterns of peak after each meal. 3. As for C-peptide, in the fasting state

  20. Diurnal Variations in Serum Glucose, Insulin and C-Peptide of Normal Korean Adults

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Du Hyok; Chung, June Key; Lee, Hong Kyu; Koh, Chang Soon [Seoul National University College of Medicine, Seoul (Korea, Republic of); Hong, Kee Suk [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1983-03-15

    It is already well known that many factors are involved in maintaining normal blood glucose level. The amount and components of meal are also thought to be some of the factors which affect the blood glucose and insulin levels. It is reported that as for Koreans sugar takes up over 75% out of 2,098 kcal, the average daily calorie intake per adult. It implies that Koreans take a high-sugar diet compared with Westerners who take 40-50% of sugar out of their total average daily calorie. For the purpose of studying diurnal variations in serum glucose, insulin and C-peptide of normal Koreans adults based on ordinary Korean diet, we selected 13 normal Korean male adults and divided them into two groups, Group I (7 persons) and Group II (6 persons). We put Group I on 3,100 kcal and 75% sugar diet, and Group II on 2,100 kcal and 69% sugar diet per day for over 4 days. Serum glucose, insulin and C-peptide were checked every 30 minutes or every hour throughout 2 hour. Results are as follows: 1. As for serum glucose level, in the preprandial fasting state in the morning, mean+-S.D. of Group I was 91.1+-3.2 mg%, while that of Group II is 82.5+-4.4 mg%. Both groups showed peaks of increased glucose level t postprandial 1 hour after each meal. The peak returned to the level shown during the fasting state at postprandial 1 hour after breakfast while the relatively high glucose levels were maintained respectively even for 2 or 3 hours after lunch and dinner. 2. As for serum insults level, Group I showed mean+-S.D. of 14.7+-3.0 muU/ml while Group II shows that of 7.0+-2.6 muU/ml in the fasting state. Group I particularly showed the largest peak from preprandial a half or one and half an hour to postprandial one hour of lunch, and made relatively small peaks (47.7+-10.8 muU/ml) at postprandial 1 hour after breakfast and dinner. No such large peak was marked in Group II, though it showed relatively similar patterns of peak after each meal. 3. As for C-peptide, in the fasting state

  1. Controlling insulin release from reverse hexagonal (HII) liquid crystalline mesophase by enzymatic lipolysis.

    Science.gov (United States)

    Mishraki-Berkowitz, Tehila; Cohen, Guy; Aserin, Abraham; Garti, Nissim

    2018-01-01

    In the present study we aimed to control insulin release from the reverse hexagonal (H II ) mesophase using Thermomyces lanuginosa lipase (TLL) in the environment (outer TLL) or within the H II cylinders (inner TLL). Two insulin-loaded systems differing by the presence (or absence) of phosphatidylcholine (PC) were examined. In general, incorporation of PC into the H II interface (without TLL) increased insulin release, as a more cooperative system was formed. Addition of TLL to the systems' environments resulted in lipolysis of the H II structure. In the absence of PC, the lipolysis was more dominant and led to a significant increase in insulin release (50% after 8h). However, the presence of PC stabilized the interface, hindering the lipolysis, and therefore no impact on the release profile was detected during the first 8h. Entrapment of TLL within the H II cylinders (with and without PC) drastically increased insulin release in both systems up to 100%. In the presence of PC insulin released faster and the structure was more stable. Consequently, the presence of lipases (inner or outer) both enhanced the destruction of the carrier, and provided sustained release of the entrapped insulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Kinetics of circulating endogenous insulin, C-peptide, and proinsulin in fasting nondiabetic man

    DEFF Research Database (Denmark)

    Henriksen, Jens Henrik Sahl; Tronier, B; Bülow, J B

    1987-01-01

    Plasma concentrations of insulin, C-peptide, and proinsulin were measured in different vascular beds in order to determine renal, hepatic, and systemic kinetics of the endogenous peptides in the fasting condition. Nineteen nondiabetic subjects were studied, two were normal, nine had minor vascular...

  3. Structural properties and release of insulin-loaded reverse hexagonal (HII) liquid crystalline mesophase.

    Science.gov (United States)

    Mishraki-Berkowitz, Tehila; Aserin, Abraham; Garti, Nissim

    2017-01-15

    Insulin loading into the H II mesophases was examined as a function of its concentration, with addition of glycerol as a cosolvent and with addition of phosphatidylcholine (PC) as a structural stabilizer. The structural properties, the molecular interactions, the viscoelastic properties, and the dynamic behavior were investigated by SAXS, ATR-FTIR, and rheological measurements. Insulin release was then monitored and analyzed. Insulin incorporation into the H II systems shrank the cylinders as it competed with the lipids in water-bonding. Insulin interrupted the interface while increasing τ max and creating a more solid-like response. Upon addition of PC, cooperative flow behavior was detected, which is probably the reason for increase in insulin cumulative release from 28% to 52% after 300 min. In the presence of glycerol, the system was less cooperative but insulin was more compactly folded, resulting in a slight improvement in insulin release (up to 6%). Addition of both PC and glycerol caused the maximum release (55%). The addition of additives into the H II system demonstrates how structural modifications can improve insulin release, and influence future design of encapsulated drug delivery systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Peptide secreted by human alveolar macrophages releases neutrophil granule contents

    International Nuclear Information System (INIS)

    MacArthur, C.K.; Miller, E.J.; Cohen, A.B.

    1987-01-01

    A monoclonal antibody was developed against an 8000-kDa enzyme-releasing peptide (ERP) released from human alveolar macrophages. ERP was isolated on an immunoaffinity column containing the antibody bound to staphylococcal protein A-Sepharose, and by autoradiography. Release of ERP from the macrophages is not changed by plastic adherence, phagocytosis, calcium ionophore, or phorbol esters. The peptide was not antigenically similar to interferon-γ, tumor necrosis factor, or interleukin lα or 1β. The release of constituents from azurophilic and specific granules was the main identified biologic function of ERP. ERP was a more effective secretagogue in the untreated neutrophils and f-met-leu-phe was more effective in the cytochalasin B-treated neutrophils. Absorption of ERP from macrophage-conditioned medium removed a small amount of the chemotactic activity; however, the immunopurified peptide was not chemotactic or chemokinetic for neutrophils, and at high concentrations, it suppressed base line chemokinesis. Treatment of washed macrophages with trypsin released active ERP of approximately the same m.w. of spontaneously secreted ERP. These studies showed that human alveolar macrophages release a peptide which is a secretagogue for human neutrophils under conditions which may be encountered in the lungs during certain disease states. Proteolytic enzymes which are free in the lungs may release the peptide and lead to the secretion of neutrophil enzymes

  5. Measurement of insulin and C-peptide excitatory test levels in gestational diabetes mellitus

    International Nuclear Information System (INIS)

    Du Tongxin; Wang Zizheng

    2001-01-01

    To investigate the function of islet β cells in patients with gestational diabetes mellitus (GDM), serum insulin and C-peptide (C-P) excitatory test levels were measured dynamically by radioimmunoassay in 41 patients with GDM and 30 normal pregnant controls. The results showed that there were significant difference in insulin and C-peptide excitatory test levels between normal pregnancy for 32-40 weeks and patients with GDM (P < 0.001). The secretory peak of insulin occurred at 60 min in normal pregnancy, while at 120 min in patients with GDM, and the recovery postponed in patients with GDM. The peak time for C-P was just as same as that of insulin, but the peak error for C-P between normal pregnant controls and patients with GDM was more larger than that for insulin and it recovered more slowly. It suggested that majority of islet β cells in patients with GDM were good enough for response to islet resistance factors and big stress from pregnancy, and also suggested a relation between pregnancy and islet β cells function

  6. Older Subjects with β-cell Dysfunction have an Accentuated Incretin Release.

    Science.gov (United States)

    Garduno-Garcia, José de Jesús; Gastaldelli, Amalia; DeFronzo, Ralph A; Lertwattanarak, Raweewan; Holst, Jens J; Musi, Nicolas

    2018-04-16

    Insulin secretion declines with age and this contributes to the increased risk of developing impaired glucose tolerance (IGT) and type 2 diabetes mellitus (T2DM) in older subjects. Insulin secretion is regulated by the incretin hormones glucagon-like peptide (GLP) 1 and glucose-dependent insulinotropic peptide (GIP). Here we tested the hypotheses that incretin release is reduced in older subjects, and that this decline is associated with β-cell dysfunction. 40 young (25±3 y) and 53 older (74±7 y) lean non-diabetic subjects underwent a 2 h oral glucose tolerance test (OGTT). Based on the OGTT, subjects were divided in 3 groups: young normal glucose tolerant (Y-NGT, n=40), older with NGT (O-NGT, n=32), and older with IGT (O-IGT, n=21). Plasma insulin, C-peptide, GLP-1, and GIP concentrations were measured every 15-30 min. We quantitated insulin sensitivity (Matsuda index) and insulin secretory rate (ISR) by deconvolution of C-peptide with the calculation of β-cell glucose sensitivity. Matsuda index, early phase ISR (0-30min) and parameters of β-cell function were reduced in O-IGT vs. Y-NGT, but not in O-NGT. GLP-1 concentrations were elevated in both older groups [GLP-1_AUC0-120 was 2.8±0.1 in Y-NGT, 3.8±0.5 in O-NGT, and 3.7±0.4 nmol/l∙120 min in O-IGT (P<0.05)] while GIP secretion was elevated in O-NGT vs. Y-NGT [GIP_AUC0-120 was 4.7±0.3 in Y-NGT, 6.0±0.4 in O-NGT, and 4.8±0.3 nmol/l∙120 min in O-IGT (P<0.05)]. Aging is associated with an exaggerated GLP-1 secretory response. However, this was not sufficient to increase insulin first phase release in O-IGT and overcome insulin resistance.

  7. Studies on radioimmunoassay of peptide hormone using polyethyleneglycol. I. Insulin

    Energy Technology Data Exchange (ETDEWEB)

    Kihara, A; Kikuchi, A; Yaegashi, T; Ohhara, H [Sapporo Medical Coll. (Japan)

    1975-06-01

    Radioimmunoassay (RIA) of insulin using polyethyleneglycol (PEG) was examined for measurement conditions such as the concentration, reaction time, temperature, and amount of serum to be added in order to allow uniform separations of free insulin and bound insulin. The standard curve of the present method was in good agreement with that of the two antibody method, and the two methods showed a highly significant correlation (r=0.98, p<0.001). The reproducibility showed only the fluctuations ranging from 0.9 to 4.9%, and the recovery rate was between 70 and 100%. Since the insulin RIA by PEG is convenient and economical and yields more stable results than those obtained by the two antibody method, it is possible to use it for RIA of other peptide hormones such as glucagon.

  8. Effects of tetracaine on insulin release and calcium handling by rat pancreatic islets

    International Nuclear Information System (INIS)

    Abdel El Motal, S.M.A.; Pian-Smith, M.C.M.; Sharp, G.W.G.

    1987-01-01

    The effects of tetracaine on insulin release and 45 Ca 2+ handling by rat pancreatic islets have been studied under basal, glucose-stimulated, and 3-isobutyl-1-methylxanthine (IBMX)-stimulated conditions. Islets were isolated by the use of collagenase and used either directly (freshly isolated islets) or after a period under tissue culture conditions. Tetracaine was found to stimulate insulin release under basal conditions, to inhibit glucose-stimulated insulin release, and to potentiate insulin release stimulated by IBMX. In studies on the mechanisms underlying these effects, tetracaine was found to decrease glucose-stimulated net retention of 45 Ca 2+ (by an action to block the voltage-dependent Ca channels) and to mobilize Ca 2+ from intracellular stores. These two actions form the basis for the inhibition of glucose-stimulated insulin release, which depends heavily on Ca 2+ entry via the voltage-dependent channels and the synergism with IBMX to potentiate release. No inhibition of IBMX-stimulated release occurs because IBMX does not use the voltage-dependent channels to raise intracellular Ca 2+

  9. A Study of the Insulin and the C-Peptide Responses to Oral Glucose Load in Nondiabetic and Diabetic Subjects

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myung Chul; Choi, Sung Jae; Kim, Eung Jin; Koh, Chang Soon; Min, Hun Ki [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    1977-03-15

    The present study was undertaken to evaluate the significance of the insulin and the C-peptide response to oral glucose loads in normal and diabetic subjects and to establish the effects of the obesity. In this study, the authors have measured plasma insulin and C-peptide by means of radioimmunoassay in 10 nonobese normal, 5 obese normal, 13 nonobese moderate diabetic patients, 9 obese moderate diabetic patients and 9 severe diabetic patients. The results obtained were as follows; 1) In 10 nonobese normal subjects, the plasma insulin level at fasting state and at 30, 60, 90, and 120 min after oral glucose loads were 15.7+-3.4, 48.3+-9.8, 40.4+-6.7, 37.4+-6.5 and 26.0+-4.2 uU/ml (Mean+-S.E.) and C-peptide were 1.9+-0.3, 3.9+-0.6, 6.3+-0.6, 5.7+-0.5 and 4.0+-0.5 ng/ml. The change of C-peptide was found to go almost parallel with that of insulin and the insulin value reaches to the highest level at 30 min whereas C-peptide reaches to its peak at 60 min.. 2) The plasma insulin level in 5 obese normal subjects were 38.9+-12.3, 59.5+-12.3, 59.2+-17.1, 56.1+-20.0 and 48.4+-17.2 uU/ml and the C-peptide were 5.5+-0.4, 6.8+-0.5, 7.9+-0.8, 7.9+-0.8 and 7.8+-2.0 ng/ml. The insulin response appeared to be greater than nonobese normal subjects. 3) In 13 nonobese moderate diabetic patients, the plasma insulin levels were 27.1+-4.9, 44.1+-6.0, 37.3+-6.6, 35.5+-8.1 and 34.7+-10.7 uU/ml and the C-peptide levels were 2.7+-0.4, 4.9+-0.7, 6.5+-0.5, 7.0+-0.3 and 6.7+-1.0 ng/ml. There was little significance compared to nonobese normal groups but delayed pattern is noted. 4) In 9 obese moderated diabetic patients, the plasma insulin levels were 22.1+-7.9, 80.0+-19.3, 108.0+-27.0, 62.0+-17.6 and 55.5+-10.l uU/ml and the C-peptide levels were 5.2+-0.4, 8.0+-1.0, 10.4+-1.6, 10.4+-1.7 and 10.1+-1.0 ng/ml and its response was also greater than that of nonobese moderate diabetic patients. 5) The plasma insulin concentrations in 9 severe diabetic subjects were 8.0+-3.8, 12.1+-3.5, 16.8+-4.6, 19

  10. Gastrin-releasing peptide in the porcine pancreas

    DEFF Research Database (Denmark)

    Holst, J J; Poulsen, Steen Seier

    1987-01-01

    to consist of one main form, namely the 27-amino acid peptide originally extracted from porcine stomach, and small amounts of a C-terminal fragment identical with the C-terminal 10-amino acid peptide. Gastrin-releasing peptide-like immunoreactivity released from the isolated perfused porcine pancreas during...... electrical vagal stimulation was shown by gel filtration to consist of the same two forms. By use of immunocytochemical techniques employing an antiserum directed against its N terminus, GRP was localized to varicose nerve fibers in close association with the exocrine tissue of the porcine pancreas...... in particular. Some fibers were found penetrating into pancreatic islets also. Immunoreactive nerve cell bodies as well as fibers were found within intrapancreatic ganglia. The potency of GRP in stimulating exocrine as well as endocrine secretion from the porcine pancreas, its presence in close contact...

  11. Release of immunoreactive and radioactively prelabelled endogenous (pro-)insulin from isolated islets of rat pancreas in the presence of exogenous insulin

    Energy Technology Data Exchange (ETDEWEB)

    Schatz, H [Giessen Univ. (Germany, F.R.). Zentrum fuer Innere Medizin; Pfeiffer, E F

    1977-01-01

    To study the influence of insulin on its secretion, collagenase-isolated islets of rat pancreas were prelabelled with (/sup 3/H)leucine for 2 h. After washing the islets, (pro-)insulin release was stimulated by glucose in the presence or absence of exogenous insulin (up to 2.5 mu./ml. Hormone release was unchanged by the presence of exogenous insulin as judged by determination of both immunoreactive insulin and radioactivity incorporated into the proinsulin and insulin fractions of the medium. No direct feedback mechanism for insulin secretion was apparent from this study.

  12. Hyperinsulinemia is associated with increased soluble insulin receptors release from hepatocytes

    Directory of Open Access Journals (Sweden)

    Marcia eHiriart

    2014-06-01

    Full Text Available It has been generally assumed that insulin circulates freely in blood. However it can also interact with plasma proteins. Insulin receptors are located in the membrane of target cells and consist of an alpha and beta subunits with a tyrosine kinase cytoplasmic domain. The ectodomain, called soluble insulin receptor (SIR has been found elevated in patients with diabetes mellitus. We explored if insulin binds to SIRs in circulation under physiological conditions and hypothesize that this SIR may be released by hepatocytes in response to high insulin concentrations. The presence of SIR in rat and human plasmas and the culture medium of hepatocytes was explored using Western blot analysis. A purification protocol was performed to isolated SIR using affinity, gel filtration and ion exchange chromatographies. A modified reverse hemolytic plaque assay was used to measure SIR release from cultured hepatocytes. Incubation with 1 nmol l-1 insulin induces the release of the insulin receptor ectodomains from normal rat hepatocytes. This effect can be partially prevented by blocking protease activity. Furthermore, plasma levels of SIR were higher in a model of metabolic syndrome, where rats are hyperinsulinemic. We also found increased SIR levels in hyperinsulinemic humans. SIR may be an important regulator of the amount of free insulin in circulation. In hyperinsulinemia the amount of this soluble receptor increases, this could lead to higher amounts of insulin bound to this receptor, rather than free insulin, which is the biologically active form of the hormone. This observation could enlighten the mechanisms of insulin resistance.

  13. Light Control of Insulin Release and Blood Glucose Using an Injectable Photoactivated Depot.

    Science.gov (United States)

    Sarode, Bhagyesh R; Kover, Karen; Tong, Pei Y; Zhang, Chaoying; Friedman, Simon H

    2016-11-07

    In this work we demonstrate that blood glucose can be controlled remotely through light stimulated release of insulin from an injected cutaneous depot. Human insulin was tethered to an insoluble but injectable polymer via a linker, which was based on the light cleavable di-methoxy nitrophenyl ethyl (DMNPE) group. This material was injected into the skin of streptozotocin-treated diabetic rats. We observed insulin being released into the bloodstream after a 2 min trans-cutaneous irradiation of this site by a compact LED light source. Control animals treated with the same material, but in which light was blocked from the site, showed no release of insulin into the bloodstream. We also demonstrate that additional pulses of light from the light source result in additional pulses of insulin being absorbed into circulation. A significant reduction in blood glucose was then observed. Together, these results demonstrate the feasibility of using light to allow for the continuously variable control of insulin release. This in turn has the potential to allow for the tight control of blood glucose without the invasiveness of insulin pumps and cannulas.

  14. The application and evaluation of insulin release test and quantitative parameter in diabetic type II

    International Nuclear Information System (INIS)

    Huang Chenggang; Chen Xiaoyan; Guan Xiaofeng

    2002-01-01

    Objective: To analyse the curve of Insulin Release Test (IRT) about the patients whit type II diabetes, to evaluate β-cell function and the sensitivity of body to Insulin using Insulin Release Index (IRI) and Insulin Sensitivity Index (ISI), and to probe the value for clinical therapy. Methods: 1) Have a IRT of 396 cases with type II diabetes and 17 normal bodies and acquire the IRT curve, 2) Design the count methods about IRI and ISI, IRI = Ins max/Ins FBI x Δ Ins max/T max (minute), ISI=(Ins max-Ins FBI)/(Ins 180'-Ins FBI), 3) Compare IRI Changes of before and after treatment for 12 cases with no insulin release and 9 cases with less insulin release. Results: IRT curve type (No release type 21.0%, less release type 33.3%, peak delay type 36.9%, high insulin type 6.0%, release delay type 2.8%); respective IRI, ISI compared to normal, P<0.01; IRI of before and after treatment with insulin P<0.01. Conclusions: IRT Curve combining IRI and ISI can reflect accurately β-cell function with type II diabetes and the sensitivity of body to insulin, Also it has some reference value for clinical therapy

  15. The effect of endogenously released glucose, insulin, glucagon-like peptide 1, ghrelin on cardiac output, heart rate, stroke volume, and blood pressure

    Directory of Open Access Journals (Sweden)

    Hlebowicz Joanna

    2011-12-01

    Full Text Available Abstract Background Ingestion of a meal increases the blood flow to the gastrointestinal organs and affects the heart rate (HR, blood pressure and cardiac output (CO, although the mechanisms are not known. The aim of this study was to evaluate the effect of endogenously released glucose, insulin, glucagon-like peptide 1 (GLP-1, ghrelin on CO, HR, stroke volume (SV, and blood pressure. Methods Eleven healthy men and twelve healthy women ((mean ± SEM aged: 26 ± 0.2 y; body mass index: 21.8 ± 0.1 kg/m2 were included in this study. The CO, HR, SV, systolic and diastolic blood pressure, antral area, gastric emptying rate, and glucose, insulin, GLP-1 and ghrelin levels were measured. Results The CO and SV at 30 min were significantly higher, and the diastolic blood pressure was significantly lower, than the fasting in both men and women (P P = 0.015, r = 0.946, and between ghrelin levels and HR (P = 0.013, r = 0.951 at 110 min. Significant correlations were also found between the change in glucose level at 30 min and the change in systolic blood pressure (P = 0.021, r = -0.681, and the change in SV (P = 0.008, r = -0.748 relative to the fasting in men. The insulin 0-30 min AUC was significantly correlated to the CO 0-30 min AUC (P = 0.002, r = 0.814 in men. Significant correlations were also found between the 0-120 min ghrelin and HR AUCs (P = 0.007, r = 0.966 in men. No statistically significant correlations were seen in women. Conclusions Physiological changes in the levels of glucose, insulin, GLP-1 and ghrelin may influence the activity of the heart and the blood pressure. There may also be gender-related differences in the haemodynamic responses to postprandial changes in hormone levels. The results of this study show that subjects should not eat immediately prior to, or during, the evaluation of cardiovascular interventions as postprandial affects may affect the results, leading to erroneous interpretation of the cardiovascular effects of the

  16. A Study of the Insulin and the C-Peptide Responses to Oral Glucose Load in Nondiabetic and Diabetic Subjects

    International Nuclear Information System (INIS)

    Lee, Myung Chul; Choi, Sung Jae; Kim, Eung Jin; Koh, Chang Soon; Min, Hun Ki

    1977-01-01

    The present study was undertaken to evaluate the significance of the insulin and the C-peptide response to oral glucose loads in normal and diabetic subjects and to establish the effects of the obesity. In this study, the authors have measured plasma insulin and C-peptide by means of radioimmunoassay in 10 nonobese normal, 5 obese normal, 13 nonobese moderate diabetic patients, 9 obese moderate diabetic patients and 9 severe diabetic patients. The results obtained were as follows; 1) In 10 nonobese normal subjects, the plasma insulin level at fasting state and at 30, 60, 90, and 120 min after oral glucose loads were 15.7±3.4, 48.3±9.8, 40.4±6.7, 37.4±6.5 and 26.0±4.2 uU/ml (Mean±S.E.) and C-peptide were 1.9±0.3, 3.9±0.6, 6.3±0.6, 5.7±0.5 and 4.0±0.5 ng/ml. The change of C-peptide was found to go almost parallel with that of insulin and the insulin value reaches to the highest level at 30 min whereas C-peptide reaches to its peak at 60 min.. 2) The plasma insulin level in 5 obese normal subjects were 38.9±12.3, 59.5±12.3, 59.2±17.1, 56.1±20.0 and 48.4±17.2 uU/ml and the C-peptide were 5.5±0.4, 6.8±0.5, 7.9±0.8, 7.9±0.8 and 7.8±2.0 ng/ml. The insulin response appeared to be greater than nonobese normal subjects. 3) In 13 nonobese moderate diabetic patients, the plasma insulin levels were 27.1±4.9, 44.1±6.0, 37.3±6.6, 35.5±8.1 and 34.7±10.7 uU/ml and the C-peptide levels were 2.7±0.4, 4.9±0.7, 6.5±0.5, 7.0±0.3 and 6.7±1.0 ng/ml. There was little significance compared to nonobese normal groups but delayed pattern is noted. 4) In 9 obese moderated diabetic patients, the plasma insulin levels were 22.1±7.9, 80.0±19.3, 108.0±27.0, 62.0±17.6 and 55.5±10.l uU/ml and the C-peptide levels were 5.2±0.4, 8.0±1.0, 10.4±1.6, 10.4±1.7 and 10.1±1.0 ng/ml and its response was also greater than that of nonobese moderate diabetic patients. 5) The plasma insulin concentrations in 9 severe diabetic subjects were 8.0±3.8, 12.1±3.5, 16.8±4.6, 19

  17. Nicotinamide induces differentiation of embryonic stem cells into insulin-secreting cells

    International Nuclear Information System (INIS)

    Vaca, Pilar; Berna, Genoveva; Araujo, Raquel; Carneiro, Everardo M.; Bedoya, Francisco J.; Soria, Bernat; Martin, Franz

    2008-01-01

    The poly(ADP-ribose) polymerase (PARP) inhibitor, nicotinamide, induces differentiation and maturation of fetal pancreatic cells. In addition, we have previously reported evidence that nicotinamide increases the insulin content of cells differentiated from embryonic stem (ES) cells, but the possibility of nicotinamide acting as a differentiating agent on its own has never been completely explored. Islet cell differentiation was studied by: (i) X-gal staining after neomycin selection; (ii) BrdU studies; (iii) single and double immunohistochemistry for insulin, C-peptide and Glut-2; (iv) insulin and C-peptide content and secretion assays; and (v) transplantation of differentiated cells, under the kidney capsule, into streptozotocin (STZ)-diabetic mice. Here we show that undifferentiated mouse ES cells treated with nicotinamide: (i) showed an 80% decrease in cell proliferation; (ii) co-expressed insulin, C-peptide and Glut-2; (iii) had values of insulin and C-peptide corresponding to 10% of normal mouse islets; (iv) released insulin and C-peptide in response to stimulatory glucose concentrations; and (v) after transplantation into diabetic mice, normalized blood glucose levels over 7 weeks. Our data indicate that nicotinamide decreases ES cell proliferation and induces differentiation into insulin-secreting cells. Both aspects are very important when thinking about cell therapy for the treatment of diabetes based on ES cells

  18. Keampferol-3-O-rhamnoside abrogates amyloid beta toxicity by modulating monomers and remodeling oligomers and fibrils to non-toxic aggregates

    Directory of Open Access Journals (Sweden)

    Sharoar Md

    2012-12-01

    Full Text Available Abstract Background Aggregation of soluble, monomeric β- amyloid (Aβ to oligomeric and then insoluble fibrillar Aβ is a key pathogenic feature in development of Alzheimer’s disease (AD. Increasing evidence suggests that toxicity is linked to diffusible Aβ oligomers, rather than to insoluble fibrils. The use of naturally occurring small molecules for inhibition of Aβ aggregation has recently attracted significant interest for development of effective therapeutic strategies against the disease. A natural polyphenolic flavone, Kaempferol-3-O-rhamnoside (K-3-rh, was utilized to investigate its effects on aggregation and cytotoxic effects of Aβ42 peptide. Several biochemical techniques were used to determine the conformational changes and cytotoxic effect of the peptide in the presence and absence of K-3-rh. Results K-3-rh showed a dose-dependent effect against Aβ42 mediated cytotoxicity. Anti-amyloidogenic properties of K-3-rh were found to be efficient in inhibiting fibrilogenesis and secondary structural transformation of the peptide. The consequence of these inhibitions was the accumulation of oligomeric structural species. The accumulated aggregates were smaller, soluble, non-β-sheet and non-toxic aggregates, compared to preformed toxic Aβ oligomers. K-3-rh was also found to have the remodeling properties of preformed soluble oligomers and fibrils. Both of these conformers were found to remodel into non-toxic aggregates. The results showed that K-3-rh interacts with different Aβ conformers, which affects fibril formation, oligomeric maturation and fibrillar stabilization. Conclusion K-3-rh is an efficient molecule to hinder the self assembly and to abrogate the cytotoxic effects of Aβ42 peptide. Hence, K-3-rh and small molecules with similar structure might be considered for therapeutic development against AD.

  19. Incretin physiology beyond glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide: cholecystokinin and gastrin peptides

    DEFF Research Database (Denmark)

    Rehfeld, J F

    2011-01-01

    and neonatal islets express significant amounts of gastrin, and human as well as porcine islet cells express the gastrin/CCK-B receptor abundantly. Therefore, exogenous gastrin and CCK peptides stimulate insulin and glucagon secretion in man. Accordingly, endogenous hypergastrinaemia is accompanied by islet...... cell hyperplasia and increased insulin secretion. Conventionally, the effect of gastrointestinal hormones on insulin secretion (the incretin effect) has been defined and quantified in relation to oral versus intravenous glucose loadings. Under these unphysiological conditions, the release of gastrin...

  20. Dessert formulation using sucralose and dextrin affects favorably postprandial response to glucose, insulin, and C-peptide in type 2 diabetic patients.

    Science.gov (United States)

    Argyri, Konstantina; Sotiropoulos, Alexios; Psarou, Eirini; Papazafiropoulou, Athanasia; Zampelas, Antonios; Kapsokefalou, Maria

    2013-01-01

    Dessert compositions may conform to diabetic diet when it contains low sugar or artificial sweetener to replace sugar. However, it is still questionable whether glycemic control in type 2 diabetes patients is improved by the use of diet-conforming dessert compositions. To compare, in type 2 diabetes patients, the glycemic, insulin, and C-peptide responses to seven modified dessert compositions for diabetics (D-dessert) with the response to seven similar desserts of non-modified composition, used as control desserts (C-dessert). Seventy type 2 diabetes patients were allocated to seven groups of ten. On three occasions, each patient received either the meal which consisted of bread and cheese, or the meal and D-dessert, or the meal and the respective C-dessert. Differences in postprandial glucose, insulin, and C-peptide were evaluated using analysis of repeated measures at 0, 30, 60, 90, and 120 min after consumption. D-cake and D-pastry cream resulted in lower glucose levels (8.81 ± 0.32 mmol/l and 8.67 ± 0.36 mmol/l, respectively) and D-strawberry jelly in lower insulin levels (16.46 ± 2.66 μU/ml) than the respective C-desserts (9.99 ± 0.32 mmol/l for C-cake, 9.28 ± 0.36 mmol/l for C-pastry cream, and 27.42 ± 2.66 μU/ml for C-strawberry jelly) (p pastry cream increased glucose to a lesser extent than C-pastry cream (p < 0.05). Similar effects were reported for D-milk dessert, D-millefeuille, and D-chocolate on glucose, insulin, and C-peptide at specific timepoints. D-crème caramel showed no effect. Some desserts formulated with sugar substitutes and soluble fiber may have a favorable effect on postprandial levels of glucose, insulin, and C-peptide in type 2 diabetic patients.

  1. Minimizing employee exposure to toxic chemical releases

    International Nuclear Information System (INIS)

    Plummer, R.W.; Stobbe, T.J.; Mogensen, J.E.; Jeram, L.K.

    1987-01-01

    This book describes procedures for minimizing employee exposure to toxic chemical releases and suggested personal protective equipment (PPE) to be used in the event of such chemical release. How individuals, employees, supervisors, or companies perceive the risks of chemical exposure (risk meaning both probability of exposure and effect of exposure) determines to a great extent what precautions are taken to avoid risk. In Part I, the authors develop and approach which divides the project into three phases: kinds of procedures currently being used; the types of toxic chemical release accidents and injuries that occur; and, finally, integration of this information into a set of recommended procedures which should decrease the likelihood of a toxic chemical release and, if one does occur, will minimize the exposure and its severity to employees. Part II covers the use of personal protective equipment. It addresses the questions: what personal protective equipment ensembles are used in industry in situations where the release of a toxic or dangerous chemical may occur or has occurred; and what personal protective equipment ensembles should be used in these situations

  2. Plant proteases for bioactive peptides release: A review.

    Science.gov (United States)

    Mazorra-Manzano, M A; Ramírez-Suarez, J C; Yada, R Y

    2017-04-10

    Proteins are a potential source of health-promoting biomolecules with medical, nutraceutical, and food applications. Nowadays, bioactive peptides production, its isolation, characterization, and strategies for its delivery to target sites are a matter of intensive research. In vitro and in vivo studies regarding the bioactivity of peptides has generated strong evidence of their health benefits. Dairy proteins are considered the richest source of bioactive peptides, however proteins from animal and vegetable origin also have been shown to be important sources. Enzymatic hydrolysis has been the process most commonly used for bioactive peptide production. Most commercial enzymatic preparations frequently used are from animal (e.g., trypsin and pepsin) and microbial (e.g., Alcalase® and Neutrase®) sources. Although the use of plant proteases is still relatively limited to papain and bromelain from papaya and pineapple, respectively, the application of new plant proteases is increasing. This review presents the latest knowledge in the use and diversity of plant proteases for bioactive peptides release from food proteins including both available commercial plant proteases as well as new potential plant sources. Furthermore, the properties of peptides released by plant proteases and health benefits associated in the control of disorders such as hypertension, diabetes, obesity, and cancer are reviewed.

  3. An integrated buccal delivery system combining chitosan films impregnated with peptide loaded PEG-b-PLA nanoparticles.

    Science.gov (United States)

    Giovino, Concetta; Ayensu, Isaac; Tetteh, John; Boateng, Joshua S

    2013-12-01

    Peptide (insulin) loaded nanoparticles (NPs) have been embedded into buccal chitosan films (Ch-films-NPs). These films were produced by solvent casting and involved incorporating in chitosan gel (1.25% w/v), NPs-Insulin suspensions at three different concentrations (1, 3, and 5mg of NPs per film) using glycerol as plasticiser. Film swelling and mucoadhesion were investigated using 0.01M PBS at 37°C and texture analyzer, respectively. Formulations containing 3mg of NPs per film produced optimised films with excellent mucoadhesion and swelling properties. Dynamic laser scattering measurements showed that the erosion of the chitosan backbone controlled the release of NPs from the films, preceding in vitro drug (insulin) release from Ch-films-NPs after 6h. Modulated release was observed with 70% of encapsulated insulin released after 360h. The use of chitosan films yielded a 1.8-fold enhancement of ex vivo insulin permeation via EpiOral™ buccal tissue construct relative to the pure drug. Flux and apparent permeation coefficient of 0.1μg/cm(2)/h and 4×10(-2)cm(2)/h were respectively obtained for insulin released from Ch-films-NPs-3. Circular dichroism and FTIR spectroscopy demonstrated that the conformational structure of the model peptide drug (insulin) released from Ch-films-NPs was preserved during the formulation process. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Phosphatidylcholine biosynthesis and insulin release in rat islets of Langerhans

    International Nuclear Information System (INIS)

    Hoffman, J.M.

    1988-01-01

    Turnover of phosphatidylcholine (PC) has been demonstrated to play a role in glucose stimulation of insulin release by pancreatic islets of Langerhans. The activity of the islet CDP-choline pathway of PC synthesis was determined by measuring the incorporation of radiolabeled choline or 32 PO 4 into PC, phosphorylcholine and CDP-choline. Concurrently, insulin release was measured by radioimmunoassay to correlate insulin release and PC synthesis. Glucose concentrations greater than 8.5 mM stimulated CDP-choline pathway activity. However, measurement of PC lipid phosphorus tended to decrease, suggesting that stimulation of the CDP-choline pathway was a means of replenishing PC pools diminished by hydrolysis of PC. Inhibition of glucose oxidation by mannoheptulose or incubations under hypoxic conditions prevented stimulation of the CDP-choline pathway, while inhibition of phospholipase A 2 (PLA 2 ) and secretion by the removal of extracellular Ca 2+ potentiated the stimulation seen with glucose

  5. Relationship between insulin release and 65zinc efflux from rat pancreatic islets maintained in tissue culture

    International Nuclear Information System (INIS)

    Formby, B.; Schmid-Formby, F.; Grodsky, G.M.

    1984-01-01

    In short-term batch-incubation or perfusion experiments, we studied insulin release and associated 65 Zn efflux from rat pancreatic islets loaded with 65 Zn by 24-h tissue culture in low-glucose medium. The fractional basal insulin release and 65 Zn efflux were 0.4% and 3% of total content/h/islet, respectively. Thus, basal 65 Zn efflux was much greater than that to be accounted for if zinc was released proportionally with insulin release only; extragranular zinc flux was suggested. Two millimolar glucose, with or without 1 mM 3-isobutyl-1-methylxanthine (IBMX), affected neither insulin release nor associated 65 Zn efflux. Twenty-five millimolar glucose produced a significant threefold increase in insulin release above baseline, but somewhat decreased 65 Zn efflux at marginal significance. Glucose (25 mM) plus 1 mM IBMX provoked a high increase in insulin release and an associated 30% increase in fractional 65 Zn efflux over basal. Calculations based on previous estimations of 65 Zn distribution and equilibrium with islet zinc indicated that molar zinc efflux was more than sufficient to account for a 2-zinc-insulin hexamer. L-Leucine (2 or 20 mM) plus 1 mM IBMX caused far greater 65 Zn efflux for the amount of insulin released, indicating additional 65 Zn mobilization not directly related to insulin secretion. To evaluate 65 Zn efflux during inhibited insulin secretion, batch incubations were performed in 100% D 2 O or at 27 degrees C, conditions that inhibited insulin release stimulated by high glucose plus IBMX. These agents decreased the 65 Zn efflux far below the basal value (35% and 50%, respectively) and greater than could be accounted for by the attendent inhibition of insulin secretion.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Exploring Environmental Inequity in South Korea: An Analysis of the Distribution of Toxic Release Inventory (TRI Facilities and Toxic Releases

    Directory of Open Access Journals (Sweden)

    D. K. Yoon

    2017-10-01

    Full Text Available Recently, location data regarding the Toxic Release Inventory (TRI in South Korea was released to the public. This study investigated the spatial patterns of TRIs and releases of toxic substances in all 230 local governments in South Korea to determine whether spatial clusters relevant to the siting of noxious facilities occur. In addition, we employed spatial regression modeling to determine whether the number of TRI facilities and the volume of toxic releases in a given community were correlated with the community’s socioeconomic, racial, political, and land use characteristics. We found that the TRI facilities and their toxic releases were disproportionately distributed with clustered spatial patterning. Spatial regression modeling indicated that jurisdictions with smaller percentages of minorities, stronger political activity, less industrial land use, and more commercial land use had smaller numbers of toxic releases, as well as smaller numbers of TRI facilities. However, the economic status of the community did not affect the siting of hazardous facilities. These results indicate that the siting of TRI facilities in Korea is more affected by sociopolitical factors than by economic status. Racial issues are thus crucial for consideration in environmental justice as the population of Korea becomes more racially and ethnically diverse.

  7. Theoretical and Computational Studies of Peptides and Receptors of the Insulin Family

    Directory of Open Access Journals (Sweden)

    Harish Vashisth

    2015-02-01

    Full Text Available Synergistic interactions among peptides and receptors of the insulin family are required for glucose homeostasis, normal cellular growth and development, proliferation, differentiation and other metabolic processes. The peptides of the insulin family are disulfide-linked single or dual-chain proteins, while receptors are ligand-activated transmembrane glycoproteins of the receptor tyrosine kinase (RTK superfamily. Binding of ligands to the extracellular domains of receptors is known to initiate signaling via activation of intracellular kinase domains. While the structure of insulin has been known since 1969, recent decades have seen remarkable progress on the structural biology of apo and liganded receptor fragments. Here, we review how this useful structural information (on ligands and receptors has enabled large-scale atomically-resolved simulations to elucidate the conformational dynamics of these biomolecules. Particularly, applications of molecular dynamics (MD and Monte Carlo (MC simulation methods are discussed in various contexts, including studies of isolated ligands, apo-receptors, ligand/receptor complexes and intracellular kinase domains. The review concludes with a brief overview and future outlook for modeling and computational studies in this family of proteins.

  8. Purification and characterization of insulin and the C-peptide of proinsulin from Przewalski's horse, zebra, rhino, and tapir (Perissodactyla).

    Science.gov (United States)

    Henry, J S; Lance, V A; Conlon, J M

    1993-02-01

    Within the order Perissodactyla, the primary structure of insulin has been strongly conserved. Insulin from Przewalski's horse and the mountain zebra (suborder Hippomorpha) is the same as that from the domestic horse and differs from insulin from the white rhinoceros and mountain tapir (suborder Ceratomorpha) by a single substitution (Gly-->Ser) at position 9 in the A-chain. A second molecular form of Przewalski's horse insulin isolated in this study was shown to represent the gamma-ethyl ester of the Glu17 residue of the A-chain. This component was probably formed during the extraction of the pancreas with acidified ethanol. The amino acid sequence of the C-peptide of proinsulin has been less well conserved. Zebra C-peptide comprises 31 amino acid residues and differs from Przewalski's horse and domestic horse C-peptide by one substitution (Gln30-->Pro). Rhino C-peptide was isolated only in a truncated form corresponding to residues (1-23) of intact C-peptide. Its amino acid sequence contains three substitutions compared with the corresponding region of horse C-peptide. It is postulated that the substitution (Pro23-->Thr) renders rhino C-peptide more liable to proteolytic cleavage by a chymotrypsin-like enzyme than horse C-peptide. C-peptide could not be identified in the extract of tapir pancreas, suggesting that proteolytic degradation may have been more extensive than in the rhino. In contrast to the ox and pig (order Artiodactyla), there was no evidence for the expression of more than one proinsulin gene in the species of Perissodactyla examined.

  9. Effect of non-surgical periodontal therapy on insulin resistance in patients with type II diabetes mellitus and chronic periodontitis, as assessed by C-peptide and the Homeostasis Assessment Index.

    Science.gov (United States)

    Mammen, Jerry; Vadakkekuttical, Rosamma Joseph; George, Joseraj Manaloor; Kaziyarakath, Jaishid Ahadal; Radhakrishnan, Chandni

    2017-08-01

    A bidirectional relationship exists between diabetes and periodontitis. In the present clinical trial, we evaluated the effects of non-surgical periodontal therapy (NSPT) on insulin resistance in patients with type II diabetes mellitus (DM) and chronic periodontitis. Forty chronic periodontitis patients with type II DM were selected and equally allocated to case and control groups. All patients were assessed for periodontal parameters and systemic parameters. The case group received NSPT, and both groups were re-evaluated after 3 months. All periodontal parameters were found to be significantly improved in the case group compared to the control group 3 months after NSPT. The mean differences in systemic parameters, such as fasting serum C-peptide, Homeostasis Assessment (HOMA) Index-insulin resistance, and HOMA-insulin sensitivity, from baseline to 3 months for the case group were 0.544 ± 0.73, 0.54 ± 0.63, and -25.44 ± 36.81, respectively; for the control group, they were significant at -1.66 ± 1.89, -1.48 ± 1.86, and 31.42 ± 38.82 respectively (P periodontal inflammation could affect glycemic control and insulin resistance. Effective periodontal therapy reduced insulin resistance and improved periodontal health status and insulin sensitivity in patients with type II DM and chronic periodontitis. © 2016 John Wiley & Sons Australia, Ltd.

  10. Insulin-loaded poly(epsilon-caprolactone) nanoparticles: efficient, sustained and safe insulin delivery system.

    Science.gov (United States)

    de Araújo, Thiago M; Teixeira, Zaine; Barbosa-Sampaio, Helena C; Rezende, Luiz F; Boschero, Antonio C; Durán, Nelson; Höehr, Nelci F

    2013-06-01

    The aim of this work was to develop an efficient, biodegradable, biocompatible and safe controlled release system using insulin-loaded poly(epsilon-caprolactone) (PCL) nanoparticles. The insulin-loaded PCL nanoparticles were prepared by double emulsion method (water-in-oil-in-water) using Pluronic F68 as emulsifier. Using the double emulsion method a high insulin encapsulation efficiency (90.6 +/-1.6%) with a zeta potential of -29 +/-2.7 mV and average particle size of 796 +/-10.5 nm was obtained. Insulin-loaded PCL nanoparticles showed no toxicity to MIN6 cells. Insulin nanoparticles administered subcutaneously and intraperitoneally in rats reduced glycaemia of basal levels after 15 minutes, and presented a sustainable hypoglycemic effect on insulin-dependent type 1 diabetic rats, showing to be more efficient than unencapsulated insulin. Furthermore, these nanoparticles were not hepatotoxic, as evaluated by the effect over liver cell-death and oxidative stress scavenger system in rats. These results suggest that insulin-loaded PCL nanoparticles prepared by water-in-oil-in-water emulsion method are biocompatible, efficient and safe insulin-delivering system with controlled insulin release, which indicates that it may be a powerful tool for insulin-dependent patients care.

  11. Evaluation of peptides release using a natural rubber latex biomembrane as a carrier.

    Science.gov (United States)

    Miranda, M C R; Borges, F A; Barros, N R; Santos Filho, N A; Mendonça, R J; Herculano, R D; Cilli, E M

    2018-05-01

    The biomembrane natural (NRL-Natural Rubber Latex), manipulated from the latex obtained from the rubber tree Hevea brasiliensis, has shown great potential for application in biomedicine and biomaterials. Reflecting the biocompatibility and low bounce rate of this material, NRL has been used as a physical barrier to infectious agents and for the controlled release of drugs and extracts. The aim of the present study was to evaluate the incorporation and release of peptides using a latex biomembrane carrier. After incorporation, the release of material from the membrane was observed using spectrophotometry. Analyses using HPLC and mass spectroscopy did not confirm the release of the antimicrobial peptide [W 6 ]Hylin a1 after 24 h. In addition, analysis of the release solution showed new compounds, indicating the degradation of the peptide by enzymes contained in the latex. Additionally, the release of a peptide with a shorter sequence (Ac-WAAAA) was evaluated, and degradation was not observed. These results showed that the use of NRL as solid matrices as delivery systems of peptide are sequence dependent and could to be evaluated for each sequence.

  12. Functions of two distinct prolactin-releasing peptides evolved from a common ancestral gene

    Directory of Open Access Journals (Sweden)

    Tetsuya eTachibana

    2014-11-01

    Full Text Available Prolactin-releasing peptide (PrRP is one of the RF-amide peptides and was originally identified in the bovine hypothalamus as a stimulator of prolactin (PRL release. Independently, another RF-amide peptide was found in Japanese crucian carp and named Carassius RFa (C-RFa, which shows high homology to PrRP and stimulates PRL secretion in teleost fish. Therefore, C-RFa has been recognized as fish PrRP. However, recent work has revealed that PrRP and C-RFa in non-mammalian vertebrates are encoded by separate genes originated through duplication of an ancestral gene. Indeed, both PrRP and C-RFa are suggested to exist in teleost, amphibian, reptile, and avian species. Therefore, we propose that non-mammalian PrRP (C-RFa be renamed PrRP2. Despite a common evolutionary origin, PrRP2 appears to be a physiological regulator of PRL, whereas this is not a consistent role for PrRP itself. Further work revealed that the biological functions of PrRP and PrRP2 are not limited solely to PRL release, because they are also neuromodulators of several hypothalamus-pituitary axes and are involved in some brain circuits related to the regulation of food intake, stress, and cardiovascular functions. However, these actions appear to be different among vertebrates. For example, central injection of PrRP inhibits feeding behavior in rodents and teleosts while it stimulates it in chicks. Therefore, both PrRP and PrRP2 have acquired diverse actions through evolution. In this review, we integrate the burgeoning information of structures, expression profiles, and multiple biological actions of PrRP in higher vertebrates, as well as those of PrRP2 in non-mammals.

  13. Role of transglutaminase in insulin release. Study with glycine and sarcosine methylesters

    International Nuclear Information System (INIS)

    Sener, A.; Dunlop, M.E.; Gomis, R.; Mathias, P.C.; Malaisse-Lagae, F.; Malaisse, W.J.

    1985-01-01

    The Ca2+-responsive enzyme transglutaminase, which catalyzes the cross-bridging of proteins, is present in pancreatic islet cells, but its participation in the process of insulin release remains to be documented. Glycine methylester (1.0-10.0 mM) inhibited, in a dose-related manner, transglutaminase activity in rat pancreatic islet homogenates, decreased [ 14 C]methylamine incorporation into endogenous proteins of intact islets, and caused a rapid and reversible inhibition of insulin release evoked by D-glucose, while failing to affect D-[U- 14 C]glucose oxidation. Glycine methylester also inhibited insulin release induced by other nutrient or nonnutrient secretagogues. Sarcosine methylester failed to affect transglutaminase activity, [ 14 C]methylamine incorporation, and insulin release. Both methylesters mobilized 45 Ca from prelabeled intact islets, from membranes of islet cells, liver or brain, and from artificial lipid multilayers, this Ca mobilization being apparently unrelated to changes in transglutaminase activity. It is proposed that, in the pancreatic B cell, transglutaminase participates in the machinery controlling the access of secretory granules to the exocytotic sites

  14. Comparison of the therapeutic effect between sodium bicarbonate and insulin on acute propafenone toxicity.

    Science.gov (United States)

    Yi, Hwa Yeon; Lee, Jang Young; Lee, Won Suk; Sung, Won Young; Seo, Sang Won

    2014-10-01

    Unlike other sodium-channel-blocking antiarrhythmic agents, propafenone has β-blocking effects and calcium-channel-blocking effects. Yi et al recently studied insulin's treatment effect on acute propafenone toxicity in rats. However, because the degree of effectiveness of insulin compared to the previously known antidote sodium bicarbonate (NaHCO3) was not studied, the 2 treatment methods were compared for propafenone intoxication in rats. Rats received intravenous propafenone (36 mg/[kg h]) for 12 minutes. After the induction of toxicity, rats (n = 10 per group) received normal saline solution (NSS), NaHCO3, or insulin with glucose as treatment. Animals in the NSS, NaHCO3, and Insulin groups received an intravenous infusion of 36 mg/(kg h) propafenone until death occurred. For each animal, the mean arterial pressure (MAP, heart rate, PR interval, QRS duration, total hemoglobin, sodium, potassium, potential of hydrogen, bicarbonate, glucose, lactate, and central venous oxygen saturation (Scvo2) were measured and compared among the groups. Survival of the Insulin group was greater than that of the NSS group by log-rank test (P = .021). Sodium bicarbonate prevented the decline of MAP for 55 minutes. In comparison, insulin prevented the decline of MAP and heart rate, and the elongation of the PR interval and QRS duration for 55 minutes (P < .05). Propafenone toxicity led to decreased Ca(2+), potential of hydrogen, and Scvo2 and increased lactate levels. Insulin prevented the decrease of Ca(2+) and Scvo2, whereas NaHCO3 prevented the increase in lactate. Insulin treatment was more effective than NaHCO3 on acute propafenone toxicity in rat. Therefore, when propafenone-induced cardiotoxicity occurs, which is unresponsive to current treatment methods, glucose-insulin infusion may be considered. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Elevated C-peptide and insulin predict increased risk of colorectal adenomas in normal mucosa

    International Nuclear Information System (INIS)

    Vidal, Adriana C; Keku, Temitope O; Lund, Pauline Kay; Hoyo, Cathrine; Galanko, Joseph; Burcal, Lauren; Holston, Rachel; Massa, Berri; Omofoye, Oluwaseun; Sandler, Robert S

    2012-01-01

    Lower concentrations of the insulin–like growth factor binding protein-1 (IGFBP-1) and elevated concentrations of insulin or C-peptide have been associated with an increase in colorectal cancer risk (CRC). However few studies have evaluated IGFBP-1 and C-peptide in relation to adenomatous polyps, the only known precursor for CRC. Between November 2001 and December 2002, we examined associations between circulating concentrations of insulin, C-peptide, IGFBP-1 and apoptosis among 190 individuals with one or more adenomatous polyps and 488 with no adenomatous polyps using logistic regression models. Individuals with the highest concentrations of C-peptide were more likely to have adenomas (OR = 2.2, 95% CI 1.4-4.0) than those with the lowest concentrations; associations that appeared to be stronger in men (OR = 4.4, 95% CI 1.7-10.9) than women. Individuals with high insulin concentrations also had a higher risk of adenomas (OR = 3.5, 95% CI 1.7-7.4), whereas higher levels of IGFBP-1 were associated with a reduced risk of adenomas in men only (OR = 0.3, 95% CI 0.1-0.7). Overweight and obese individuals with higher C-peptide levels (>1 st Q) were at increased risk for lower apoptosis index (OR = 2.5, 95% CI 0.9-7.1), an association that remained strong in overweight and obese men (OR = 6.3, 95% CI 1.0-36.7). Higher levels of IGFBP-1 in overweight and obese individuals were associated with a reduced risk of low apoptosis (OR = 0.3, 95% CI 0.1-1.0). Associations between these peptides and the apoptosis index in overweight and obese individuals, suggest that the mechanism by which C-peptide could induce adenomas may include its anti-apoptotic properties. This study suggests that hyperinsulinemia and IGF hormones predict adenoma risk, and that outcomes associated with colorectal carcinogenesis maybe modified by gender

  16. Bioactive peptides released during of digestion of processed milk

    Science.gov (United States)

    Most of the proteins contained in milk consist of alpha-s1-, alpha-s2-, beta- and kappa-casein, and some of the peptides contained in these caseins may impart health benefits. To determine if processing affected release of peptides, samples of raw (R), homogenized (H), homogenized and pasteurized (...

  17.  Pleiotropic action of proinsulin C-peptid

    Directory of Open Access Journals (Sweden)

    Michał Usarek

    2012-03-01

    Full Text Available  Proinsulin C-peptide, released in equimolar amounts with insulin by pancreatic β cells, since its discovery in 1967 has been thought to be devoid of biological functions apart from correct insulin processing and formation of disulfide bonds between A and B chains. However, in the last two decades research has brought a substantial amount of data indicating a crucial role of C-peptide in regulating various processes in different types of cells and organs. C-peptide acts presumably via either G-protein-coupled receptor or directly inside the cell, after being internalized. However, a receptor binding this peptide has not been identified yet. This peptide ameliorates pathological changes induced by type 1 diabetes mellitus, including glomerular hyperfiltration, vessel endothelium inflammation and neuron demyelinization. In diabetic patients and diabetic animal models, C-peptide substitution in physiological doses improves the functional and structural properties of peripheral neurons and protects against hyperglycemia-induced apoptosis, promoting neuronal development, regeneration and cell survival. Moreover, it affects glycogen synthesis in skeletal muscles. In vitro C-peptide promotes disaggregation of insulin oligomers, thus enhancing its bioavailability and effects on metabolism. There are controversies concerning the biological action of C-peptide, particularly with respect to its effect on Na /K -ATPase activity. Surprisingly, the excess of circulating peptide associated with diabetes type 2 contributes to atherosclerosis development. In view of these observations, long-term, large-scale clinical investigations using C-peptide physiological doses need to be conducted in order to determine safety and health outcomes of long-term administration of C-peptide to diabetic patients.

  18. Atrial natriuretic peptide stimulates salt secretion by shark rectal gland by releasing VIP

    Energy Technology Data Exchange (ETDEWEB)

    Silva, P.; Stoff, J.S.; Solomon, R.J.; Lear, S.; Kniaz, D.; Greger, R.; Epstein, F.H.

    1987-01-01

    Salt secretion by the isolated perfused rectal gland of the spiny dogfish shark, Squalus acanthias, is stimulated by synthetic rat atrial natriuretic peptide (ANP II) as well as extracts of shark heart, but not by 8-bromo-cyclic guanosine 5'-monophosphate. Cardiac peptides have no effect on isolated rectal gland cells or perfused tubules, suggesting that stimulation requires an intact gland. The stimulation of secretion by ANP II is eliminated by maneuvers that block neurotransmitter release. Cardiac peptides stimulate the release of vasoactive intestinal peptide (VIP), known to be present in rectal glands nerves, into the venous effluent of perfused glands in parallel with their stimulation of salt secretion, but the release of VIP induced by ANP II is prevented by perfusion with procaine. VIP was measured by radioimmunoassay. Cardiac peptides thus appear to regulate rectal gland secretion by releasing VIP from neural stores within the gland. It is possible that other physiological effects of these hormones might be explained by an action to enhanced local release of neurotransmitters.

  19. Atrial natriuretic peptide stimulates salt secretion by shark rectal gland by releasing VIP

    International Nuclear Information System (INIS)

    Silva, P.; Stoff, J.S.; Solomon, R.J.; Lear, S.; Kniaz, D.; Greger, R.; Epstein, F.H.

    1987-01-01

    Salt secretion by the isolated perfused rectal gland of the spiny dogfish shark, Squalus acanthias, is stimulated by synthetic rat atrial natriuretic peptide (ANP II) as well as extracts of shark heart, but not by 8-bromo-cyclic guanosine 5'-monophosphate. Cardiac peptides have no effect on isolated rectal gland cells or perfused tubules, suggesting that stimulation requires an intact gland. The stimulation of secretion by ANP II is eliminated by maneuvers that block neurotransmitter release. Cardiac peptides stimulate the release of vasoactive intestinal peptide (VIP), known to be present in rectal glands nerves, into the venous effluent of perfused glands in parallel with their stimulation of salt secretion, but the release of VIP induced by ANP II is prevented by perfusion with procaine. VIP was measured by radioimmunoassay. Cardiac peptides thus appear to regulate rectal gland secretion by releasing VIP from neural stores within the gland. It is possible that other physiological effects of these hormones might be explained by an action to enhanced local release of neurotransmitters

  20. [Primary study on characteristics of insulin secretion rate, metabolic clearance rate and sensitivity in non-insulin-dependent diabetic subjects from multiplex diabetic pedigrees].

    Science.gov (United States)

    Ran, J; Cheng, H; Li, F

    2000-01-01

    To investigate the characteristics of insulin secretion rate (ISR), metabolic clearance rate (MCR-I) and sensitivity and to explore their relationship with obesity in non-insulin-dependent diabetic subjects from multiplex diabetic pedigrees (MDP). Fifteen subjects with normal glucose tolerance and 11 non-insulin-dependent diabetic patients from MDP were included in the study. Frequently sampled intravenous glucose tolerance test (FSIVGTT) was performed. Glucose, insulin (INS) and connecting-peptide (C-P) concentrations were measured. A computer procedure devised by our laboratory was used to calculate the value of ISR at each time point, then MCR-I was acquired. Insulin sensitivity index (SI) was calculated according to minimal model technique about glucose in FSIVGTT. The ISR curve in control group was biphasic, while in non-insulin. In non-insulin-dependent diabetic group, areas under the curves of C-P (AUCC) and ISR level (AUCS) measured during 0 approximately 16 min were 7.9 nmol.min(-1).L(-1) +/- 2.8 nmol.min(-1).L(-1), and 6.1 nmol +/- 2.2 nmol, respectively, which were significantly lower than those in control group 17.7 nmol.min(-1).L(-1) +/- 4.92 nmol.min(-1).L(-1) and 12.3 nmol +/- 3.9 nmol (P < 0.01). The two parameters were slightly higher than those in control group 155 nmol.min(-1).L(-1) +/- 44 nmol.min(-1).L(-1) vs 101 nmol.min(-1).L(-1) +/- 30 nmol.min(-1).L(-1) and 76 nmol +/- 26 nmol vs 54 nmol +/- 20.0 nmol (P < 0.05)measured during 16 approximately 180 min. There was no significant difference, between the two groups about the amount of insulin secretion during 3 hours (82 nmol +/- 28nmol vs 68 nmol +/- 21 nmol, P = 0.2). In control group, there were significant positive correlation, between AUCS, waist-hip ratio (WHR), and body surface area, (BSA) and significant negative correlation between MCR-I, SI and WHR, BSA (P < 0.01), and also between MCR-I and SI. In non-insulin-dependent diabetic group, AUCS were significantly correlated with body mass

  1. Connecting peptide (c-peptide) and the duration of diabetes mellitus ...

    African Journals Online (AJOL)

    Objective: C-peptide is derived from proinsulin and it is secreted in equimolar concentration with insulin. Plasma C-peptide is more stable than insulin and it provides an indirect measure of insulin secretory reserve and beta cell function. To determine relationship between C-peptide and duration of diabetes mellitus, age, ...

  2. Fabrication of Glucose-Sensitive Layer-by-Layer Films for Potential Controlled Insulin Release Applications

    Directory of Open Access Journals (Sweden)

    Talusan Timothy Jemuel E.

    2015-01-01

    Full Text Available Self-regulated drug delivery systems (DDS are potential alternative to the conventional method of introducing insulin to the body due to their controlled drug release mechanism. In this study, Layer-by-Layer technique was utlized to manufacture drug loaded, pH responsive thin films. Insulin was alternated with pH-sensitive, [2-(dimethyl amino ethyl aminoacrylate] (PDMAEMA and topped of with polymer/glucose oxidase (GOD layers. Similarly, films using a different polymer, namely Poly(Acrylic Acid (PAA were also fabricated. Exposure of the films to glucose solutions resulted to the production of gluconic acid causing a polymer conformation change due to protonation, thus releasing the embedded insulin. The insulin release was monitored by subjecting the dipping glucose solutions to Bradford Assay. Films exhibited a reversal in drug release profile in the presence of glucose as compared to without glucose. PAA films were also found out to release more insulin compared to that of the PDMAEMA films.The difference in the profile of the two films were due to different polymer-GOD interactions, since both films exhibited almost identical profiles when embedded with Poly(sodium 4-styrenesulfonate (PSS instead of GOD.

  3. Peptide-Loaded Solid Lipid Nanoparticles Prepared through Coacervation Technique

    Directory of Open Access Journals (Sweden)

    Marina Gallarate

    2011-01-01

    Full Text Available Stearic acid solid lipid nanoparticles were prepared according to a new technique, called coacervation. The main goal of this experimental work was the entrapment of peptide drugs into SLN, which is a difficult task, since their chemical characteristics (molecular weight, hydrophilicity, and stability hamper peptide-containing formulations. Insulin and leuprolide, chosen as model peptide drugs, were encapsulated within nanoparticles after hydrophobic ion pairing with anionic surfactants. Peptide integrity was maintained after encapsulation, and nanoparticles can act in vitro as a sustained release system for peptide.

  4. Effects of prepartum fat supplementation on plasma concentrations of glucagon-like peptide-1, peptide YY, adropin, insulin, and leptin in periparturient dairy cows.

    Science.gov (United States)

    Zapata, Rizaldy C; Salehi, Reza; Ambrose, Divakar J; Chelikani, Prasanth K

    2015-10-01

    Dietary fat supplementation during the periparturient period is one strategy to increase energy intake and attenuate the degree of negative energy balance during early lactation; however, little is known of the underlying hormonal and metabolic adaptations. We evaluated the effects of prepartum fat supplementation on energy-balance parameters and plasma concentrations of glucagon-like peptide-1, peptide tyrosine-tyrosine (PYY), adropin, insulin, leptin, glucose, nonesterified fatty acid, and β-hydroxybutyric acid in dairy cows. Twenty-four pregnant dairy cows were randomized to diets containing either rolled canola or sunflower seed at 8% of dry matter, or no oilseed supplementation, during the last 5 wk of gestation and then assigned to a common lactation diet postpartum. Blood samples were collected at -2, +2, and +14 h relative to feeding, at 2 wk after the initiation of the diets, and at 2 wk postpartum. Dietary canola and sunflower supplementation alone did not affect energy balance, body weight, and plasma concentrations of glucagon-like peptide-1, PYY, adropin, insulin, leptin, nonesterified fatty acid, and β-hydroxybutyric acid; however, canola decreased and sunflower tended to decrease dry matter intake. We also observed that the physiological stage had a significant, but divergent, effect on circulating hormones and metabolite concentrations. Plasma glucagon-like peptide-1, PYY, adropin, nonesterified fatty acid, and β-hydroxybutyric acid concentrations were greater postpartum than prepartum, whereas glucose, insulin, leptin, body weight, and energy balance were greater prepartum than postpartum. Furthermore, the interaction of treatment and stage was significant for leptin and adropin, and tended toward significance for PYY and insulin; only insulin exhibited an apparent postprandial increase. Postpartum PYY concentrations exhibited a strong negative correlation with body weight, suggesting that PYY may be associated with body weight regulation during

  5. Effect of glibenclamide on insulin release at moderate and high blood glucose levels in normal man

    NARCIS (Netherlands)

    Ligtenberg, JJM; Venker, CE; Sluiter, WJ; VanHaeften, TW

    Insulin release occurs in two phases; sulphonylurea derivatives may have different potencies in stimulating first-and second-phase insulin release. We studied the effect of glibenclamide on insulin secretion at submaximally and maximally stimulating blood glucose levels with a primed hyperglycaemic

  6. Changes in Gastrointestinal Hormone Responses, Insulin Sensitivity, and Beta-Cell Function Within 2 Weeks After Gastric Bypass in Non-diabetic Subjects

    DEFF Research Database (Denmark)

    Jacobsen, Siv Hesse; Olesen, S C; Dirksen, C

    2012-01-01

    measured fasting and postprandial glucose, insulin, C-peptide, glucagon, total and intact glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-2 (GLP-2), peptide YY(3-36) (PYY), cholecystokinin (CCK), total and active ghrelin, gastrin, somatostatin......, pancreatic polypeptide (PP), amylin, leptin, free fatty acids (FFA), and registered postprandial dumping. Insulin sensitivity was measured by homeostasis model assessment of insulin resistance. RESULTS: Fasting glucose, insulin, ghrelin, and PYY were significantly decreased and FFA was elevated...... postoperatively. Insulin sensitivity increased after surgery. The postprandial response increased for C-peptide, GLP-1, GLP-2, PYY, CCK, and glucagon (in response to the mixed meal) and decreased for total and active ghrelin, leptin, and gastrin, but were unchanged for GIP, amylin, PP, and somatostatin after...

  7. pH-Dependent Release of Insulin from Layer-by-Layer-Deposited Polyelectrolyte Microcapsules

    Directory of Open Access Journals (Sweden)

    Kentaro Yoshida

    2015-07-01

    Full Text Available Insulin-containing microcapsules were prepared by a layer-by-layer (LbL deposition of poly(allylamine hydrochloride (PAH and polyanions, such as poly(styrenesulfonate (PSS, poly(vinyl sulfate (PVS, and dextran sulfate (DS on insulin-containing calcium carbonate (CaCO3 microparticles. The CaCO3 core was dissolved in diluted HCl solution to obtain insulin-containing hollow microcapsules. The microcapsules were characterized by scanning electron microscope (SEM and atomic force microscope (AFM images and ζ-potential. The release of insulin from the microcapsules was faster at pH 9.0 and 7.4 than in acidic solutions due to the different charge density of PAH. In addition, insulin release was suppressed when the microcapsules were constructed using PAH with a lower molecular weight, probably owing to a thicker shell of the microcapsules. The results suggested a potential use of the insulin-containing microcapsules for developing insulin delivery systems.

  8. Peptide imprinted receptors for the determination of the small cell lung cancer associated biomarker progastrin releasing peptide

    DEFF Research Database (Denmark)

    Qader, A. A.; Urraca, J.; Torsetnes, S. B.

    2014-01-01

    Peptide imprinted polymers were developed for detection of progastrin releasing peptide (ProGRP); a low abundant blood based biomarker for small cell lung cancer. The polymers targeted the proteotypic nona-peptide sequence NLLGLIEAK and were used for selective enrichment of the proteotypic peptide...... prior to LCMS based quantification. Peptide imprinted polymers with the best affinity characteristics were first identified from a 96-polymer combinatorial library. The effects of functional monomers, crosslinker, porogen, and template on adsorption capacity and selectivity for NLLGLIEAK were...

  9. The Nutrient-Responsive Hormone CCHamide-2 Controls Growth by Regulating Insulin-like Peptides in the Brain of Drosophila melanogaster.

    Science.gov (United States)

    Sano, Hiroko; Nakamura, Akira; Texada, Michael J; Truman, James W; Ishimoto, Hiroshi; Kamikouchi, Azusa; Nibu, Yutaka; Kume, Kazuhiko; Ida, Takanori; Kojima, Masayasu

    2015-05-01

    The coordination of growth with nutritional status is essential for proper development and physiology. Nutritional information is mostly perceived by peripheral organs before being relayed to the brain, which modulates physiological responses. Hormonal signaling ensures this organ-to-organ communication, and the failure of endocrine regulation in humans can cause diseases including obesity and diabetes. In Drosophila melanogaster, the fat body (adipose tissue) has been suggested to play an important role in coupling growth with nutritional status. Here, we show that the peripheral tissue-derived peptide hormone CCHamide-2 (CCHa2) acts as a nutrient-dependent regulator of Drosophila insulin-like peptides (Dilps). A BAC-based transgenic reporter revealed strong expression of CCHa2 receptor (CCHa2-R) in insulin-producing cells (IPCs) in the brain. Calcium imaging of brain explants and IPC-specific CCHa2-R knockdown demonstrated that peripheral-tissue derived CCHa2 directly activates IPCs. Interestingly, genetic disruption of either CCHa2 or CCHa2-R caused almost identical defects in larval growth and developmental timing. Consistent with these phenotypes, the expression of dilp5, and the release of both Dilp2 and Dilp5, were severely reduced. Furthermore, transcription of CCHa2 is altered in response to nutritional levels, particularly of glucose. These findings demonstrate that CCHa2 and CCHa2-R form a direct link between peripheral tissues and the brain, and that this pathway is essential for the coordination of systemic growth with nutritional availability. A mammalian homologue of CCHa2-R, Bombesin receptor subtype-3 (Brs3), is an orphan receptor that is expressed in the islet β-cells; however, the role of Brs3 in insulin regulation remains elusive. Our genetic approach in Drosophila melanogaster provides the first evidence, to our knowledge, that bombesin receptor signaling with its endogenous ligand promotes insulin production.

  10. Evaluation in zebrafish model of the toxicity of rhodamine B-conjugated crotamine, a peptide potentially useful for diagnostics and therapeutics.

    Science.gov (United States)

    Chan, Judy Yuet-Wa; Zhou, Hefeng; Kwan, Yiu Wa; Chan, Shun Wan; Radis-Baptista, Gandhi; Lee, Simon Ming-Yuen

    2017-11-01

    Crotamine is defensin-like cationic peptide from rattlesnake venom that possesses anticancer, antimicrobial, and antifungal properties. Despite these promising biological activities, toxicity is a major concern associated with the development of venom-derived peptides as therapeutic agents. In the present study, we used zebrafish as a system model to evaluate the toxicity of rhodamine B-conjugated (RhoB) crotamine derivative. The lethal toxic concentration of RhoB-crotamine was as low as 4 μM, which effectively kill zebrafish larvae in less than 10 min. With non-lethal concentrations (<1 μM), crotamine caused malformation in zebrafish embryos, delayed or completely halted hatching, adversely affected embryonic developmental programming, decreased the cardiac functions, and attenuated the swimming distance of zebrafish. The RhoB-crotamine translocated across vitelline membrane and accumulated in zebrafish yolk sac. These results demonstrate the sensitive responsivity of zebrafish to trial crotamine analogues for the development of novel therapeutic peptides with improved safety, bioavailability, and efficacy profiles. © 2017 Wiley Periodicals, Inc.

  11. Insulin nanocomplexes formed by self-assembly from amine-modified poly(vinyl alcohol)-graft-poly(L-Lactide) for non-invasive mucosal delivery: Preparation, characterization and in vivo investigations

    OpenAIRE

    Simon, Michael

    2006-01-01

    In this work biodegradable DEAPA-PVAL-g-PLLA nanocomplexes were investigated as a colloidal peptide carrier system for non-invasive transmucosal insulin delivery. Chapter 1 describes the basic fundamentals of insulin therapy, current status, problems and future trends. The pathogenesis of diabetes mellitus and the different treatment options are discussed to give an understanding of the necessity for alternative non-invasive ...

  12. C-Peptide, Baseline and Postprandial Insulin Resistance after a Carbohydrate-Rich Test Meal - Evidence for an Increased Insulin Clearance in PCOS Patients?

    Science.gov (United States)

    Stassek, J; Erdmann, J; Ohnolz, F; Berg, F D; Kiechle, M; Seifert-Klauss, V

    2017-01-01

    Introduction Known characteristics of patients with PCOS include infertility, menstrual disorders, hirsutism and also often insulin resistance. These symptoms increase with increasing body weight. In the LIPCOS study ( L ifestyle I ntervention for Patients with Polycystic Ovary Syndrome [ PCOS ]) long-term changes of the PCOS in dependence on pregnancy and parenthood were systematically assessed. In the framework of the LIPCOS study, PCOS patients were given a standardised carbohydrate-rich test meal in order to examine glucose homeostasis and insulin secretion. The results were compared with those of a eumenorrhoeic control group who all had corresponding BMI values and corresponding ages. Methods and Patients 41 PCOS patients (without diabetes) and 68 controls received a standardised carbohydrate-rich test meal (260 kcal, 62 % carbohydrates, 32 % fat, 6 % proteins) in order to generate a submaximal insulin and glucose stimulation. The values were determined at baseline and postprandial after 60, 120 and 180 minutes. In addition, the corresponding C-peptide levels were recorded. Results In the PCOS patients (n = 41), the insulin secretion test after a standardised test meal showed almost identical baseline and postprandial insulin levels when compared with those of the age- and BMI-matched eumenorrhoeic controls (n = 68). In the PCOS patients, the baseline and postprandial glucose levels were significantly elevated (92.88 ± 10.28 [PCOS] vs. 85.07 ± 9.42 mg/dL [controls]; p PCOS patients formally exhibit a higher fasting insulin resistance than controls. In spite of the higher stimulated C-peptide levels, the insulin levels did not increase more strongly with increasing glucose levels than in controls which may be indicative of a higher insulin clearance in PCOS patients.

  13. Numerical Modelling of Insulin and Amyloglucosidase Release from Swelling Ca-Alginate Beads

    DEFF Research Database (Denmark)

    Rasmussen, Michael R.; Snabe, T.; Pedersen, Lars Haastrup

    2003-01-01

    The release of insulin hexamer (39 kD) and amyloglucosidase (AMG, 97 kD), entrapped in spherical Ca–alginate beads, was investigated. While the release of insulin could be described solely by diffusion this was not the case for the 1.6 (r m /r m) larger AMG protein, where rm is the Stokes....... Although it should be expected that the effective diffusion coefficient of AMG is only slightly lower than that of insulin, the results show that the effective diffusions coefficient of AMG was found to be much smaller. In the case of AMG, it was shown that including bead size changes and the resulting...

  14. Digestion proteomics: tracking lactoferrin truncation and peptide release during simulated gastric digestion.

    Science.gov (United States)

    Grosvenor, Anita J; Haigh, Brendan J; Dyer, Jolon M

    2014-11-01

    The extent to which nutritional and functional benefit is derived from proteins in food is related to its breakdown and digestion in the body after consumption. Further, detailed information about food protein truncation during digestion is critical to understanding and optimising the availability of bioactives, in controlling and limiting allergen release, and in minimising or monitoring the effects of processing and food preparation. However, tracking the complex array of products formed during the digestion of proteins is not easily accomplished using classical proteomics. We here present and develop a novel proteomic approach using isobaric labelling to mapping and tracking protein truncation and peptide release during simulated gastric digestion, using bovine lactoferrin as a model food protein. The relative abundance of related peptides was tracked throughout a digestion time course, and the effect of pasteurisation on peptide release assessed. The new approach to food digestion proteomics developed here therefore appears to be highly suitable not only for tracking the truncation and relative abundance of released peptides during gastric digestion, but also for determining the effects of protein modification on digestibility and potential bioavailability.

  15. Application of insulin-like growth factor-I and insulin release test in diabetes mellitus

    International Nuclear Information System (INIS)

    Chen Dong; Ma Yongxiu; Duan Wenruo

    2003-01-01

    The purpose of this study was to determine the role of insulin-like growth factor-I (IGF-I) and insulin release test (IRT) in understanding the extent of damage to ability of reducing blood sugar in different types of diabetes mellitus (DM) and in selection of treatment plan and adjustment of using drugs. OGTT, IRT and determination of IGF-I level of 67 normal subjects and 217 DM patients were performed. The result was analyzed comparatively. The level of IGF-I was negatively correlated with the level of fasting blood sugar, and positively correlated with the level of fasting insulin. Our conclusions are: There are two ways of reducing blood sugar: one is by insulin, and the other is by IGF-I. IRT can reflect the former better, and IGF-I the latter. The combination of these two is of significant value in diagnosis and treatment of DM

  16. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin.

    Science.gov (United States)

    Ripken, Dina; van der Wielen, Nikkie; Wortelboer, Heleen M; Meijerink, Jocelijn; Witkamp, Renger F; Hendriks, Henk F J

    2016-06-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis for the current study was that nutrient-induced GLP-1 release from EECs is modulated by serotonin through a process involving serotonin receptor interaction. This was studied by assessing the effects of serotonin reuptake inhibition by fluoxetine on nutrient-induced GLP-1, PYY and CCK release from isolated pig intestinal segments. Next, serotonin-induced GLP-1 release was studied in enteroendocrine STC-1 cells, where effects of serotonin receptor inhibition were studied using specific and non-specific antagonists. Casein (1% w/v), safflower oil (3.35% w/v), sucrose (50mM) and rebaudioside A (12.5mM) stimulated GLP-1 release from intestinal segments, whereas casein only stimulated PYY and CCK release. Combining nutrients with fluoxetine further increased nutrient-induced GLP-1, PYY and CCK release. Serotonin release from intestinal tissue segments was stimulated by casein and safflower oil while sucrose and rebaudioside A had no effect. The combination with fluoxetine (0.155μM) further enhanced casein and safflower oil induced-serotonin release. Exposure of ileal tissue segments to serotonin (30μM) stimulated GLP-1 release whereas it did not induce PYY and CCK release. Serotonin (30 and 100μM) also stimulated GLP-1 release from STC-1 cells, which was inhibited by the non-specific 5HT receptor antagonist asenapine (1 and 10μM). These data suggest that nutrient-induced GLP-1 release is modulated by serotonin through a receptor mediated process. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Cathepsin B-sensitive polymers for compartment-specific degradation and nucleic acid release.

    Science.gov (United States)

    Chu, David S H; Johnson, Russell N; Pun, Suzie H

    2012-02-10

    Degradable cationic polymers are desirable for in vivo nucleic acid delivery because they offer significantly decreased toxicity over non-degradable counterparts. Peptide linkers provide chemical stability and high specificity for particular endopeptidases but have not been extensively studied for nucleic acid delivery applications. In this work, enzymatically degradable peptide-HPMA copolymers were synthesized by RAFT polymerization of HPMA with methacrylamido-terminated peptide macromonomers, resulting in polymers with low polydispersity and near quantitative incorporation of peptides. Three peptide-HPMA copolymers were evaluated: (i) pHCathK(10), containing peptides composed of the linker phe-lys-phe-leu (FKFL), a substrate of the endosomal/lysosomal endopeptidase cathepsin B, connected to oligo-(L)-lysine for nucleic acid binding, (ii) pHCath(D)K(10), containing the FKFL linker with oligo-(D)-lysine, and (iii) pH(D)Cath(D)K(10), containing all (D) amino acids. Cathepsin B degraded copolymers pHCathK(10) and pHCath(D)K(10) within 1 h while no degradation of pH(D)Cath(D)K(10) was observed. Polyplexes formed with pHCathK(10) copolymers show DNA release by 4 h of treatment with cathepsin B; comparatively, polyplexes formed with pHCath(D)K(10) and pH(D)Cath(D)K(10) show no DNA release within 8 h. Transfection efficiency in HeLa and NIH/3T3 cells were comparable between the copolymers but pHCathK(10) was less toxic. This work demonstrates the successful application of peptide linkers for degradable cationic polymers and DNA release. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Plasma HDL-cholesterol and triglycerides, but not LDL-cholesterol, are associated with insulin secretion in non-diabetic subjects.

    Science.gov (United States)

    Natali, Andrea; Baldi, Simona; Bonnet, Fabrice; Petrie, John; Trifirò, Silvia; Tricò, Domenico; Mari, Andrea

    2017-04-01

    Experimental data support the notion that lipoproteins might directly affect beta cell function, however clinical data are sparse and inconsistent. We aimed at verifying whether, independently of major confounders, serum lipids are associated with alterations in insulin secretion or clearance non-diabetic subjects. Cross sectional and observational prospective (3.5yrs), multicentre study in which 1016 non-diabetic volunteers aged 30-60yrs. and with a wide range of BMI (20.0-39.9kg/m 2 ) were recruited in a setting of University hospital ambulatory care (RISC study). baseline fasting lipids, fasting and OGTT-induced insulin secretion and clearance (measured by glucose and C-peptide modeling), peripheral insulin sensitivity (by the euglycemic clamp). Lipids and OGTT were repeated in 980 subjects after 3.5years. LDL-cholesterol did not show independent associations with fasting or stimulated insulin secretion or clearance. After accounting for potential confounders, HDL-cholesterol displayed negative and triglycerides positive independent associations with fasting and OGTT insulin secretion; neither with insulin clearance. Low HDL-cholesterol and high triglycerides were associated with an increase in glucose-dependent and a decrease in non-glucose-dependent insulin secretion. Over 3.5years both an HDL-cholesterol decline and a triglycerides rise were associated with an increase in fasting insulin secretion independent of changes in body weight or plasma glucose. LDL-cholesterol does not seem to influence any major determinant of insulin bioavailability while low HDL-cholesterol and high triglycerides might contribute to sustain the abnormalities in insulin secretion that characterize the pre-diabetic state. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Elastin-derived peptides are new regulators of insulin resistance development in mice

    DEFF Research Database (Denmark)

    Blaise, Sébastien; Romier, Béatrice; Kawecki, Charlotte

    2013-01-01

    . In the current study, we show that elastin-derived peptides (EDPs) may be involved in the development of insulin resistance (IRES) in mice. In chow-fed mice, acute or chronic intravenous injections of EDPs induced hyperglycemic effects associated with glucose uptake reduction and IRES in skeletal muscle, liver......, and adipose tissue. Based on in vivo, in vitro, and in silico approaches, we propose that this IRES is due to interaction between the insulin receptor (IR) and the neuraminidase-1 subunit of the elastin receptor complex triggered by EDPs. This interplay was correlated with decreased sialic acid levels...

  20. Fixed ratio combinations of glucagon like peptide 1 receptor agonists with basal insulin: a systematic review and meta-analysis.

    Science.gov (United States)

    Liakopoulou, Paraskevi; Liakos, Aris; Vasilakou, Despoina; Athanasiadou, Eleni; Bekiari, Eleni; Kazakos, Kyriakos; Tsapas, Apostolos

    2017-06-01

    Basal insulin controls primarily fasting plasma glucose but causes hypoglycaemia and weight gain, whilst glucagon like peptide 1 receptor agonists induce weight loss without increasing risk for hypoglycaemia. We conducted a systematic review and meta-analysis of randomised controlled trials to investigate the efficacy and safety of fixed ratio combinations of basal insulin with glucagon like peptide 1 receptor agonists. We searched Medline, Embase, and the Cochrane Library as well as conference abstracts up to December 2016. We assessed change in haemoglobin A 1c , body weight, and incidence of hypoglycaemia and gastrointestinal adverse events. We included eight studies with 5732 participants in the systematic review. Switch from basal insulin to fixed ratio combinations with a glucagon like peptide 1 receptor agonist was associated with 0.72% reduction in haemoglobin A 1c [95% confidence interval -1.03 to -0.41; I 2  = 93%] and 2.35 kg reduction in body weight (95% confidence interval -3.52 to -1.19; I 2  = 93%), reducing also risk for hypoglycaemia [odds ratio 0.70; 95% confidence interval 0.57 to 0.86; I 2  = 85%] but increasing incidence of nausea (odds ratio 6.89; 95% confidence interval 3.73-12.74; I 2  = 79%). Similarly, switching patients from treatment with a glucagon like peptide 1 receptor agonist to a fixed ratio combination with basal insulin was associated with 0.94% reduction in haemoglobin A 1c (95% confidence interval -1.11 to -0.77) and an increase in body weight by 2.89 kg (95% confidence interval 2.17-3.61). Fixed ratio combinations of basal insulin with glucagon like peptide 1 receptor agonists improve glycaemic control whilst balancing out risk for hypoglycaemia and gastrointestinal side effects.

  1. Bioactive peptides released from in vitro digestion of human milk with or without pasteurization.

    Science.gov (United States)

    Wada, Yasuaki; Lönnerdal, Bo

    2015-04-01

    Pasteurized donor human milk (HM) serves as the best alternative for breast-feeding when availability of mother's milk is limited. Pasteurization is also applied to mother's own milk for very low birth weight infants, who are vulnerable to microbial infection. Whether pasteurization affects protein digestibility and therefore modulates the profile of bioactive peptides released from HM proteins by gastrointestinal digestion, has not been examined to date. HM with and without pasteurization (62.5 °C for 30 min) were subjected to in vitro gastrointestinal digestion, followed by peptidomic analysis to compare the formation of bioactive peptides. Some of the bioactive peptides, such as caseinophosphopeptide homologues, a possible opioid peptide (or propeptide), and an antibacterial peptide, were present in undigested HM and showed resistance to in vitro digestion, suggesting that these peptides are likely to exert their bioactivities in the gastrointestinal lumen, or be stably transported to target organs. In vitro digestion of HM released a large variety of bioactive peptides such as angiotensin I-converting enzyme-inhibitory, antioxidative, and immunomodulatory peptides. Bioactive peptides were released largely in the same manner with and without pasteurization. Provision of pasteurized HM may be as beneficial as breast-feeding in terms of milk protein-derived bioactive peptides.

  2. Divergent and convergent roles for insulin-like peptides in the worm, fly and mammalian nervous systems.

    Science.gov (United States)

    Lau, Hiu E; Chalasani, Sreekanth H

    2014-09-01

    Insulin signaling plays a critical role in coupling external changes to animal physiology and behavior. Despite remarkable conservation in the insulin signaling pathway components across species, divergence in the mechanism and function of the signal is evident. Focusing on recent findings from C. elegans, D. melanogaster and mammals, we discuss the role of insulin signaling in regulating adult neuronal function and behavior. In particular, we describe the transcription-dependent and transcription-independent aspects of insulin signaling across these three species. Interestingly, we find evidence of diverse mechanisms underlying complex networks of peptide action in modulating nervous system function.

  3. Lipidized prolactin-releasing peptide analogs: A new tool for obesity treatment

    Czech Academy of Sciences Publication Activity Database

    Maletínská, Lenka; Pražienková, Veronika; Zemenová, Jana; Popelová, Andrea; Blechová, Miroslava; Mikulášková, Barbora; Holubová, Martina; Železná, Blanka; Kuneš, Jaroslav

    2016-01-01

    Roč. 22, Suppl S2 (2016), S179-S180 ISSN 1075-2617. [European Peptide Symposium /34./ and International Peptide Symposium /8./. 04.09.2016-09.09.2016, Leipzig] R&D Projects: GA TA ČR(CZ) TE01020028; GA ČR(CZ) GA15-08679S Institutional support: RVO:61388963 Keywords : prolactin-releasing peptide * food intake * obesity Subject RIV: CE - Biochemistry

  4. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Almind, K; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Since relative or absolute insulin deficiency and insulin insensitivity are involved in the aetiology of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether patients with NIDDM exhibit genetic variability in the coding region of insulin receptor substrate-1 (IRS-1), a candidate...

  5. Cross-Linked Dependency of Boronic Acid-Conjugated Chitosan Nanoparticles by Diols for Sustained Insulin Release

    Directory of Open Access Journals (Sweden)

    Nabil A. Siddiqui

    2016-10-01

    Full Text Available Boronic acids have been widely investigated for their potential use as glucose sensors in glucose responsive polymeric insulin delivery systems. Interactions between cyclic diols and boronic acids, anchored to polymeric delivery systems, may result in swelling of the delivery system, releasing the drug. In this study, 4-formylphenylboronic acid conjugated chitosan was formulated into insulin containing nanoparticles via polyelectrolyte complexation. The nanoparticles had an average diameter of 140 ± 12.8 nm, polydispersity index of 0.17 ± 0.1, zeta potential of +19.1 ± 0.69 mV, encapsulation efficiency of 81% ± 1.2%, and an insulin loading capacity of 46% ± 1.8% w/w. Changes in size of the nanoparticles and release of insulin were type of sugar- and concentration-dependent. High concentration of diols resulted in a sustained release of insulin due to crosslink formation with boronic acid moieties within the nanoparticles. The formulation has potential to be developed into a self-regulated insulin delivery system for the treatment of diabetes.

  6. Improvement of autism spectrum disorder symptoms in three children by using gastrin-releasing peptide,

    Directory of Open Access Journals (Sweden)

    Michele Michelin Becker

    2016-06-01

    Full Text Available Abstract Objective: To evaluate the safety, tolerability and potential therapeutic effects of gastrin-releasing peptide in three children with autistic spectrum disorder. Methods: Case series study with the intravenous administration of gastrin-releasing peptide in the dose of 160 pmol/kg for four consecutive days. To evaluate the results, parental impressions the Childhood Autism Rating Scale (CARS and the Clinical Global Impression (CGI Scale. Each child underwent a new peptide cycle after two weeks. The children were followed for four weeks after the end of the infusions. Results: The gastrin-releasing peptide was well tolerated and no child had adverse effects. Two children had improved social interaction, with a slight improvement in joint attention and the interaction initiatives. Two showed reduction of stereotypes and improvement in verbal language. One child lost his compulsion to bathe, an effect that lasted two weeks after each infusion cycle. Average reduction in CARS score was 2.8 points. CGI was "minimally better" in two children and "much better" in one. Conclusions: This study suggests that the gastrin-releasing peptide is safe and may be effective in improving key symptoms of autism spectrum disorder, but its results should be interpreted with caution. Controlled clinical trials-randomized, double-blinded, and with more children-are needed to better evaluate the possible therapeutic effects of gastrin-releasing peptide in autism.

  7. Combining GLP-1 receptor agonists with insulin

    DEFF Research Database (Denmark)

    Holst, Jens Juul; Vilsbøll, T

    2013-01-01

    Due to the increasing prevalence of type 2 diabetes mellitus (T2DM), the emergent trend towards diagnosis in younger patients and the progressive nature of this disease, many more patients than before now require insulin to maintain glycaemic control. However, there is a degree of inertia among...... physicians and patients regarding the initiation and intensification of insulin therapy, in part due to concerns about the associated weight gain and increased risk of hypoglycaemia. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) increase insulin release and suppress glucagon secretion in a glucose......, compared with insulin, the antihyperglycaemic efficacy of GLP-1RAs is limited. The combination of a GLP-1RA and insulin might thus be highly effective for optimal glucose control, ameliorating the adverse effects typically associated with insulin. Data from clinical studies support the therapeutic...

  8. Generation of insulin-producing cells from human bone marrow-derived mesenchymal stem cells: comparison of three differentiation protocols.

    Science.gov (United States)

    Gabr, Mahmoud M; Zakaria, Mahmoud M; Refaie, Ayman F; Khater, Sherry M; Ashamallah, Sylvia A; Ismail, Amani M; El-Badri, Nagwa; Ghoneim, Mohamed A

    2014-01-01

    Many protocols were utilized for directed differentiation of mesenchymal stem cells (MSCs) to form insulin-producing cells (IPCs). We compared the relative efficiency of three differentiation protocols. Human bone marrow-derived MSCs (HBM-MSCs) were obtained from three insulin-dependent type 2 diabetic patients. Differentiation into IPCs was carried out by three protocols: conophylline-based (one-step protocol), trichostatin-A-based (two-step protocol), and β -mercaptoethanol-based (three-step protocol). At the end of differentiation, cells were evaluated by immunolabeling for insulin production, expression of pancreatic endocrine genes, and release of insulin and c-peptide in response to increasing glucose concentrations. By immunolabeling, the proportion of generated IPCs was modest ( ≃ 3%) in all the three protocols. All relevant pancreatic endocrine genes, insulin, glucagon, and somatostatin, were expressed. There was a stepwise increase in insulin and c-peptide release in response to glucose challenge, but the released amounts were low when compared with those of pancreatic islets. The yield of functional IPCs following directed differentiation of HBM-MSCs was modest and was comparable among the three tested protocols. Protocols for directed differentiation of MSCs need further optimization in order to be clinically meaningful. To this end, addition of an extracellular matrix and/or a suitable template should be attempted.

  9. Metabolic and stress-related roles of prolactin-releasing peptide.

    Science.gov (United States)

    Onaka, Tatsushi; Takayanagi, Yuki; Leng, Gareth

    2010-05-01

    In the modern world, improvements in human health can be offset by unhealthy lifestyle factors, including the deleterious consequences of stress and obesity. For energy homeostasis, humoral factors and neural afferents from the gastrointestinal tract, in combination with long-term nutritional signals, communicate information to the brain to regulate energy intake and expenditure. Energy homeostasis and stress interact with each other, and stress affects both food intake and energy expenditure. Prolactin-releasing peptide, synthesized in discrete neuronal populations in the hypothalamus and brainstem, plays an important role in integrating these responses. This review describes how prolactin-releasing peptide neurons receive information concerning both internal metabolic states and environmental conditions, and play a key role in energy homeostasis and stress responses. 2010 Elsevier Ltd. All rights reserved.

  10. Rosiglitazone stimulates the release and synthesis of insulin by enhancing GLUT-2, glucokinase and BETA2/NeuroD expression

    International Nuclear Information System (INIS)

    Kim, Hyo-Sup; Noh, Jung-Hyun; Hong, Seung-Hyun; Hwang, You-Cheol; Yang, Tae-Young; Lee, Myung-Shik; Kim, Kwang-Won; Lee, Moon-Kyu

    2008-01-01

    Peroxisome proliferator-activated receptor (PPAR)-γ is a member of the nuclear receptor superfamily, and its ligands, the thiazolidinediones, might directly stimulate insulin release and insulin synthesis in pancreatic β-cells. In the present study, we examined the effects of rosiglitazone (RGZ) on insulin release and synthesis in pancreatic β-cell (INS-1). Insulin release and synthesis were stimulated by treatment with RGZ for 24 h. RGZ upregulated the expressions of GLUT-2 and glucokinase (GCK). Moreover, it was found that RGZ increased the expression of BETA2/NeuroD gene which could regulate insulin gene expression. These results suggest that RGZ could stimulate the release and synthesis of insulin through the upregulation of GLUT-2, GCK, and BETA2/NeuroD gene expression

  11. Intra-peritoneal administration of interleukin-1 beta induces impaired insulin release from the perfused rat pancreas

    DEFF Research Database (Denmark)

    Wogensen, L; Helqvist, S; Pociot, F

    1990-01-01

    Previous studies have demonstrated a stimulatory effect of interleukin-1 beta (IL-1 beta) on insulin and glucagon release from the perfused rat pancreas, accompanied by selective lysis of 20% of beta-cells as assessed by electronmicroscopy. However, we have not observed an inhibitory action of IL-1...... beta on insulin release from the perfused pancreas as shown for isolated islets. To test whether periodical exposure of the endocrine pancreas to circulating IL-1 beta in vivo affects insulin release from the intact perfused pancreas, rats were treated with daily intraperitoneal injections of 4...

  12. Plasma Ascorbic Acid in Insulin and Non-insulin Dependent Diabetes

    African Journals Online (AJOL)

    Blood glucose, plasma ascorbic acid and haemoglobin levels were estimated in insulin dependent diabetics, non-insulin dependent diabetics and controls matched for number, sex and age. Significantly higher levels of these parameters were found in control group than in the other two groups. Statistically differences were ...

  13. Neuronal Cbl Controls Biosynthesis of Insulin-Like Peptides in Drosophila melanogaster

    Science.gov (United States)

    Yu, Yue; Sun, Ying; He, Shengqi; Yan, Cheng; Rui, Liangyou; Li, Wenjun

    2012-01-01

    The Cbl family proteins function as both E3 ubiquitin ligases and adaptor proteins to regulate various cellular signaling events, including the insulin/insulin-like growth factor 1 (IGF1) and epidermal growth factor (EGF) pathways. These pathways play essential roles in growth, development, metabolism, and survival. Here we show that in Drosophila melanogaster, Drosophila Cbl (dCbl) regulates longevity and carbohydrate metabolism through downregulating the production of Drosophila insulin-like peptides (dILPs) in the brain. We found that dCbl was highly expressed in the brain and knockdown of the expression of dCbl specifically in neurons by RNA interference increased sensitivity to oxidative stress or starvation, decreased carbohydrate levels, and shortened life span. Insulin-producing neuron-specific knockdown of dCbl resulted in similar phenotypes. dCbl deficiency in either the brain or insulin-producing cells upregulated the expression of dilp genes, resulting in elevated activation of the dILP pathway, including phosphorylation of Drosophila Akt and Drosophila extracellular signal-regulated kinase (dERK). Genetic interaction analyses revealed that blocking Drosophila epidermal growth factor receptor (dEGFR)-dERK signaling in pan-neurons or insulin-producing cells by overexpressing a dominant-negative form of dEGFR abolished the effect of dCbl deficiency on the upregulation of dilp genes. Furthermore, knockdown of c-Cbl in INS-1 cells, a rat β-cell line, also increased insulin biosynthesis and glucose-stimulated secretion in an ERK-dependent manner. Collectively, these results suggest that neuronal dCbl regulates life span, stress responses, and metabolism by suppressing dILP production and the EGFR-ERK pathway mediates the dCbl action. Cbl suppression of insulin biosynthesis is evolutionarily conserved, raising the possibility that Cbl may similarly exert its physiological actions through regulating insulin production in β cells. PMID:22778134

  14. Different growth hormone (GH) response to GH-releasing peptide and GH-releasing hormone in hyperthyroidism.

    Science.gov (United States)

    Ramos-Dias, J C; Pimentel-Filho, F; Reis, A F; Lengyel, A M

    1996-04-01

    Altered GH responses to several pharmacological stimuli, including GHRH, have been found in hyperthyroidism. The mechanisms underlying these disturbances have not been fully elucidated. GH-releasing peptide-6 (GHRP-6) is a synthetic hexapeptide that specifically stimulates GH release both in vitro and in vivo. The mechanism of action of GHRP-6 is unknown, but it probably acts by inhibiting the effects of somatostatin on GH release. The aim of this study was to evaluate the effects of GHRP-6 on GH secretion in patients with hyperthyroidism (n = 9) and in control subjects (n = 9). Each subject received GHRP-6 (1 microg/kg, iv), GHRH (100 microg, iv), and GHRP-6 plus GHRH on 3 separate days. GH peak values (mean +/- SE; micrograms per L) were significantly lower in hyperthyroid patients compared to those in control subjects after GHRH alone (9.0 +/- 1.3 vs. 27.0 +/- 5.2) and GHRP-6 plus GHRH (22.5 +/- 3.5 vs. 83.7 +/- 15.2); a lack of the normal synergistic effect of the association of both peptides was observed in thyrotoxicosis. However, a similar GH response was seen in both groups after isolated GHRP-6 injection (31.9 +/- 5.7 vs. 23.2 +/- 3.9). In summary, we have shown that hyperthyroid patients have a normal GH response to GHRP-6 together with a blunted GH responsiveness to GHRH. Our data suggest that thyroid hormones modulate GH release induced by these two peptides in a differential way.

  15. Identification of the bioactive and consensus peptide motif from Momordica charantia insulin receptor-binding protein.

    Science.gov (United States)

    Lo, Hsin-Yi; Li, Chia-Cheng; Ho, Tin-Yun; Hsiang, Chien-Yun

    2016-08-01

    Many food bioactive peptides with diverse functions have been discovered by studying plant proteins. We have previously identified a 68-residue insulin receptor (IR)-binding protein (mcIRBP) from Momordica charantia that exhibits hypoglycemic effects in mice via interaction with IR. By in vitro digestion, we found that mcIRBP-19, spanning residues 50-68 of mcIRBP, enhanced the binding of insulin to IR, stimulated the phosphorylation of PDK1 and Akt, induced the expression of glucose transporter 4, and stimulated both the uptake of glucose in cells and the clearance of glucose in diabetic mice. Furthermore, mcIRBP-19 homologs were present in various plants and shared similar β-hairpin structures and IR kinase-activating abilities to mcIRBP-19. In conclusion, our findings suggested that mcIRBP-19 is a blood glucose-lowering bioactive peptide that exhibits IR-binding potentials. Moreover, we newly identified novel IR-binding bioactive peptides in various plants which belonged to different taxonomic families. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Enhancing bioactive peptide release and identification using targeted enzymatic hydrolysis of milk proteins.

    Science.gov (United States)

    Nongonierma, Alice B; FitzGerald, Richard J

    2018-06-01

    Milk proteins have been extensively studied for their ability to yield a range of bioactive peptides following enzymatic hydrolysis/digestion. However, many hurdles still exist regarding the widespread utilization of milk protein-derived bioactive peptides as health enhancing agents for humans. These mostly arise from the fact that most milk protein-derived bioactive peptides are not highly potent. In addition, they may be degraded during gastrointestinal digestion and/or have a low intestinal permeability. The targeted release of bioactive peptides during the enzymatic hydrolysis of milk proteins may allow the generation of particularly potent bioactive hydrolysates and peptides. Therefore, the development of milk protein hydrolysates capable of improving human health requires, in the first instance, optimized targeted release of specific bioactive peptides. The targeted hydrolysis of milk proteins has been aided by a range of in silico tools. These include peptide cutters and predictive modeling linking bioactivity to peptide structure [i.e., molecular docking, quantitative structure activity relationship (QSAR)], or hydrolysis parameters [design of experiments (DOE)]. Different targeted enzymatic release strategies employed during the generation of milk protein hydrolysates are reviewed herein and their limitations are outlined. In addition, specific examples are provided to demonstrate how in silico tools may help in the identification and discovery of potent milk protein-derived peptides. It is anticipated that the development of novel strategies employing a range of in silico tools may help in the generation of milk protein hydrolysates containing potent and bioavailable peptides, which in turn may be used to validate their health promoting effects in humans. Graphical abstract The targeted enzymatic hydrolysis of milk proteins may allow the generation of highly potent and bioavailable bioactive peptides.

  17. Yak milk casein as potential precursor of angiotensin I-converting enzyme inhibitory peptides based on in silico proteolysis.

    Science.gov (United States)

    Lin, Kai; Zhang, Lan-Wei; Han, Xue; Xin, Liang; Meng, Zhao-Xu; Gong, Pi-Min; Cheng, Da-You

    2018-07-15

    Yak milk casein was selected as a potential precursor of bioactive peptides based on in silico analysis. Most notable among these are the angiotensin I-converting enzyme (ACE) inhibitory peptides. First, yak milk casein has high homology with cow milk casein by homologous analysis. The potential of yak milk casein for the releasing bioactive peptides was evaluated by determining the frequency of occurrence of fragments with a given activity. Through the BIOPEP database analysis, there are many bioactive peptides in yak milk casein sequences. Then, an in silico proteolysis using single or combined enzymes to obtained ACE inhibitory peptides was investigated. Cytotoxicity analysis using the online toxic prediction tool ToxinPred revealed that all in silico proteolysis derived ACE inhibitory peptides are non-cytotoxic. Overall, the present study highlights a in silico proteolysis approach to assist the yak milk casein releasing ACE inhibitory peptides and provides a guidance for the actual hydrolysis of proteins for the production of bioactive peptides. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Improvement of autism spectrum disorder symptoms in three children by using gastrin-releasing peptide.

    Science.gov (United States)

    Becker, Michele Michelin; Bosa, Cleonice; Oliveira-Freitas, Vera Lorentz; Goldim, José Roberto; Ohlweiler, Lygia; Roesler, Rafael; Schwartsmann, Gilberto; Riesgo, Rudimar Dos Santos

    2016-01-01

    To evaluate the safety, tolerability and potential therapeutic effects of gastrin-releasing peptide in three children with autistic spectrum disorder. Case series study with the intravenous administration of gastrin-releasing peptide in the dose of 160pmol/kg for four consecutive days. To evaluate the results, parental impressions the Childhood Autism Rating Scale (CARS) and the Clinical Global Impression (CGI) Scale. Each child underwent a new peptide cycle after two weeks. The children were followed for four weeks after the end of the infusions. The gastrin-releasing peptide was well tolerated and no child had adverse effects. Two children had improved social interaction, with a slight improvement in joint attention and the interaction initiatives. Two showed reduction of stereotypes and improvement in verbal language. One child lost his compulsion to bathe, an effect that lasted two weeks after each infusion cycle. Average reduction in CARS score was 2.8 points. CGI was "minimally better" in two children and "much better" in one. This study suggests that the gastrin-releasing peptide is safe and may be effective in improving key symptoms of autism spectrum disorder, but its results should be interpreted with caution. Controlled clinical trials-randomized, double-blinded, and with more children-are needed to better evaluate the possible therapeutic effects of gastrin-releasing peptide in autism. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  19. Dessert Formulation Using Sucralose and Dextrin Affects Favorably Postprandial Response to Glucose, Insulin, and C-Peptide in Type 2 Diabetic Patients

    OpenAIRE

    Argyri, Konstantina; Sotiropoulos, Alexios; Psarou, Eirini; Papazafiropoulou, Athanasia; Zampelas, Antonios; Kapsokefalou, Maria

    2013-01-01

    BACKGROUND: Dessert compositions may conform to diabetic diet when it contains low sugar or artificial sweetener to replace sugar. However, it is still questionable whether glycemic control in type 2 diabetes patients is improved by the use of diet-conforming dessert compositions. OBJECTIVE: To compare, in type 2 diabetes patients, the glycemic, insulin, and C-peptide responses to seven modified dessert compositions for diabetics (D-dessert) with the response to seven similar desserts of non-...

  20. Bioresponsive release of insulin-like growth factor-I from its PEGylated conjugate.

    Science.gov (United States)

    Braun, Alexandra C; Gutmann, Marcus; Mueller, Thomas D; Lühmann, Tessa; Meinel, Lorenz

    2018-06-10

    PEGylation of protein ligands, the attachment of polyethylene glycol (PEG) polymers to a therapeutic protein, increases therapeutics' half-life but frequently comes at the cost of reduced bioactivity. We are now presenting a bioinspired strategy leading out of this dilemma. To this end, we selected a position within insulin-like growth factor I (IGF-I) for decoration with a PEG 30kDa -modified protease-sensitive peptide linker (PSL) using a combination of enzymatic and chemical bioorthogonal coupling strategies. The PSL sequence responded to matrix metalloproteinases (MMP) to provide a targeted release in diseased tissue. The IGF-PSL-PEG conjugate had different binding protein affinity, cell proliferation, and endocytosis patterns as compared to the wild type. Exposure of the conjugate to elevated levels of activated MMPs, as present in inflamed tissues, fully reestablished the wild type properties through effective PSL cleavage. In conclusion, this bioinspired approach provided a blueprint for PEGylated therapeutics combining the pharmacokinetic advantages of PEGylation, while locally restoring the full suite of biological potential of therapeutics. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Thyroid cancer in toxic and non-toxic multinodular goiter

    Directory of Open Access Journals (Sweden)

    Cerci C

    2007-01-01

    Full Text Available Background : Many authors have claimed that hyperthyroidism protects against thyroid cancer and believed that the incidence of malignancy is lower in patients with toxic multinodular goiter (TMG than in those with non-toxic multinodular goiter. But in recent studies, it was reported that the incidence of malignancy with TMG is not as low as previously thought. Aim : To compare the thyroid cancer incidence in patients with toxic and non-toxic multinodular goiter. Settings and Design : Histology reports of patients treated surgically with a preoperative diagnosis of toxic and non-toxic multinodular goiter were reviewed to identify the thyroid cancer incidence. Patients having a history of neck irradiation or radioactive iodine therapy were excluded from the study. Materials and Methods : We reviewed 294 patients operated between 2001-2005 from toxic and non-toxic multinodular goiter. One hundred and twenty-four of them were toxic and 170 were non-toxic. Hyperthyroidism was diagnosed by elevated tri-iodothyroinine / thyroxine ratios and low thyroid-stimulating hormone with clinical signs and symptoms. All patients were evaluated with ultrasonography and scintigraphy and fine needle aspiration biopsy. Statistical Analysis Used : Significance of the various parameters was calculated by using ANOVA test. Results : The incidence of malignancy was 9% in the toxic and 10.58% in the non-toxic multinodular goiter group. Any significant difference in the incidence of cancer and tumor size between the two groups could not be detected. Conclusions : The incidence of malignancy in toxic multinodular goiter is not very low as thought earlier and is nearly the same in non-toxic multinodular goiter.

  2. Analysis of results of oral glucose tolerance test (OGTT) and insulin releasing test in hepatogenic diabetics

    International Nuclear Information System (INIS)

    He Haoming; Fu Qiang; Tian Xiaoping; Su Cainu

    2001-01-01

    Objective: To explore the clinical values of OGTT and insulin releasing test in hepatogenic diabetics. Method: OGTT was performed by enzymes method and insulin releasing test by RIA in 30 patients with hepatogenic diabetes, 31 cases with II diabetes and 35 controls. Results: During OGTT, blood glucose levels at various time were about the same in hepatogenic diabetics and II diabetics (P < 0.05), except at 180 min (P < 0.01). Basal hyperinsulinemia was present is hepatogenic diabetics. Conclusion: OGTT and insulin releasing test had a definite clinical value in the differential diagnosis of hepatogenic diabetics

  3. Intracellular Signalling by C-Peptide

    Directory of Open Access Journals (Sweden)

    Claire E. Hills

    2008-01-01

    Full Text Available C-peptide, a cleavage product of the proinsulin molecule, has long been regarded as biologically inert, serving merely as a surrogate marker for insulin release. Recent findings demonstrate both a physiological and protective role of C-peptide when administered to individuals with type I diabetes. Data indicate that C-peptide appears to bind in nanomolar concentrations to a cell surface receptor which is most likely to be G-protein coupled. Binding of C-peptide initiates multiple cellular effects, evoking a rise in intracellular calcium, increased PI-3-kinase activity, stimulation of the Na+/K+ ATPase, increased eNOS transcription, and activation of the MAPK signalling pathway. These cell signalling effects have been studied in multiple cell types from multiple tissues. Overall these observations raise the possibility that C-peptide may serve as a potential therapeutic agent for the treatment or prevention of long-term complications associated with diabetes.

  4. Toxic release consequence analysis tool (TORCAT) for inherently safer design plant

    International Nuclear Information System (INIS)

    Shariff, Azmi Mohd; Zaini, Dzulkarnain

    2010-01-01

    Many major accidents due to toxic release in the past have caused many fatalities such as the tragedy of MIC release in Bhopal, India (1984). One of the approaches is to use inherently safer design technique that utilizes inherent safety principle to eliminate or minimize accidents rather than to control the hazard. This technique is best implemented in preliminary design stage where the consequence of toxic release can be evaluated and necessary design improvements can be implemented to eliminate or minimize the accidents to as low as reasonably practicable (ALARP) without resorting to costly protective system. However, currently there is no commercial tool available that has such capability. This paper reports on the preliminary findings on the development of a prototype tool for consequence analysis and design improvement via inherent safety principle by utilizing an integrated process design simulator with toxic release consequence analysis model. The consequence analysis based on the worst-case scenarios during process flowsheeting stage were conducted as case studies. The preliminary finding shows that toxic release consequences analysis tool (TORCAT) has capability to eliminate or minimize the potential toxic release accidents by adopting the inherent safety principle early in preliminary design stage.

  5. The Type 2 Diabetes Associated Minor Allele of rs2237895 KCNQ1 Associates with Reduced Insulin Release Following an Oral Glucose Load

    DEFF Research Database (Denmark)

    Brunak, Søren; Holmkvist, J; Banasik, K

    2009-01-01

    , and rs2237897) on estimates of glucose stimulated insulin release. METHODOLOGY/PRINCIPAL FINDINGS: Genotypes were examined for associations with serum insulin levels following an oral glucose tolerance test (OGTT) in a population-based sample of 6,039 middle-aged and treatment-naïve individuals. Insulin...... release indices estimated from the OGTT and the interplay between insulin sensitivity and insulin release were investigated using linear regression and Hotelling T2 analyses. Applying an additive genetic model the minor C-allele of rs2237895 was associated with reduced serum insulin levels 30 min (mean......,568 individuals who were glucose tolerant. Adjustment for the degree of insulin sensitivity had no effect on the measures of reduced insulin release. The rs2237895 genotype had a similar impact in the total sample of treatment-naïve individuals. No association with measures of insulin release were identified...

  6. 77 FR 13061 - Electronic Reporting of Toxics Release Inventory Data

    Science.gov (United States)

    2012-03-05

    ...--Reporting Year SIC--Standard Industrial Code TRI--Toxics Release Inventory TRI-ME--TRI-Made Easy Desktop... EPA to ``publish a uniform toxic chemical release form for facilities covered'' by the TRI Program. 42... practicable. Similarly, EPA's Cross-Media Electronic Reporting Regulation (CROMERR) (40 CFR Part 3), published...

  7. Fluoxetine increases insulin action in obese type II (non-insulin dependent) diabetic patients

    NARCIS (Netherlands)

    Potter van Loon, B. J.; Radder, J. K.; Froelich, M.; Krans, H. Michiel J.; Zwinderman, A. H.; Meinders, A. E.

    1992-01-01

    Insulin resistance contributes to the metabolic defects in non-insulin dependent diabetes mellitus (NIDDM). Anorectic agents have been shown to improve insulin action in NIDDM, irrespective of weight reduction. In a double-blind placebo-controlled cross-over study, we examined hepatic and peripheral

  8. Design and in vivo evaluation of a patch delivery system for insulin based on thiolated polymers.

    Science.gov (United States)

    Grabovac, Vjera; Föger, Florian; Bernkop-Schnürch, Andreas

    2008-02-04

    The aim of this study was to develop and evaluate a novel three-layered oral delivery system for insulin in vivo. The patch system consisted of a mucoadhesive layer, a water insoluble backing layer made of ethylcellulose and an enteric coating made of Eudragit. Drug release studies were performed in media mimicking stomach and intestinal fluids. For in vivo studies patch systems were administered orally to conscious non-diabetic rats. Orally administered insulin in aqueous solution was used as control. After the oral administration of the patch systems a decrease of glucose and increase of insulin blood levels were measured. The mucoadhesive layer, exhibiting a diameter of 2.5mm and a weight of 5mg, comprised polycarbophil-cysteine conjugate (49%), bovine insulin (26%), gluthatione (5%) and mannitol (20%). 74.8+/-4.8% of insulin was released from the delivery system over 6h. Six hours after administration of the patch system mean maximum decrease of blood glucose level of 31.6% of the initial value could be observed. Maximum insulin concentration in blood was 11.3+/-6.2ng/ml and was reached 6h after administration. The relative bioavailability of orally administered patch system versus subcutaneous injection was 2.2%. The results indicate that the patch system provides enhancement of intestinal absorption and thereby offers a promising strategy for peroral peptide delivery.

  9. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin

    NARCIS (Netherlands)

    Ripken, D.; Wielen, N. van der; Wortelboer, H.M.; Meijerink, J.; Witkamp, R.F.; Hendriks, H.F.J.

    2016-01-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis

  10. Clinical significance of determination of serum C-peptide levels

    International Nuclear Information System (INIS)

    Wang Guohong; Xu Ruiji; Zhang Zhongshu; Wang Xiaoji

    2006-01-01

    Objective: To study the clinical meanings of changes of serum C-peptide levels and insulin/C-peptide ratio. Methods: Serum insulin and C-peptide levels were determined with RIA in 171 patients with DM-2 of all ages (31-50, n= 50, 51-60, n=60, over 60, n=61) and 50 patients with renal insufficiency. The insulin/C-peptide ratio were calculated. Results: The serum C-peptide and insulin levels in patients with renal insufficiency were significantly higher than those in diabetics of all age groups and the insulin/C-peptide ratio were significantly lower than those in diabetics (P 0.05), but the serum C-peptide levels increased as the age of patients increased with decrease of insulin/C-peptide ratio (P<0.01). Conclusion: Abnormal changes of C-peptide levels and insulin/C-peptide ratio in diabetics (the age-factor corrected) might reflect renal dysfunction. (authors)

  11. Generation of Insulin-Producing Cells from Human Bone Marrow-Derived Mesenchymal Stem Cells: Comparison of Three Differentiation Protocols

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Gabr

    2014-01-01

    Full Text Available Introduction. Many protocols were utilized for directed differentiation of mesenchymal stem cells (MSCs to form insulin-producing cells (IPCs. We compared the relative efficiency of three differentiation protocols. Methods. Human bone marrow-derived MSCs (HBM-MSCs were obtained from three insulin-dependent type 2 diabetic patients. Differentiation into IPCs was carried out by three protocols: conophylline-based (one-step protocol, trichostatin-A-based (two-step protocol, and β-mercaptoethanol-based (three-step protocol. At the end of differentiation, cells were evaluated by immunolabeling for insulin production, expression of pancreatic endocrine genes, and release of insulin and c-peptide in response to increasing glucose concentrations. Results. By immunolabeling, the proportion of generated IPCs was modest (≃3% in all the three protocols. All relevant pancreatic endocrine genes, insulin, glucagon, and somatostatin, were expressed. There was a stepwise increase in insulin and c-peptide release in response to glucose challenge, but the released amounts were low when compared with those of pancreatic islets. Conclusion. The yield of functional IPCs following directed differentiation of HBM-MSCs was modest and was comparable among the three tested protocols. Protocols for directed differentiation of MSCs need further optimization in order to be clinically meaningful. To this end, addition of an extracellular matrix and/or a suitable template should be attempted.

  12. Obesity-induced DNA released from adipocytes stimulates chronic adipose tissue inflammation and insulin resistance.

    Science.gov (United States)

    Nishimoto, Sachiko; Fukuda, Daiju; Higashikuni, Yasutomi; Tanaka, Kimie; Hirata, Yoichiro; Murata, Chie; Kim-Kaneyama, Joo-Ri; Sato, Fukiko; Bando, Masahiro; Yagi, Shusuke; Soeki, Takeshi; Hayashi, Tetsuya; Imoto, Issei; Sakaue, Hiroshi; Shimabukuro, Michio; Sata, Masataka

    2016-03-01

    Obesity stimulates chronic inflammation in adipose tissue, which is associated with insulin resistance, although the underlying mechanism remains largely unknown. Here we showed that obesity-related adipocyte degeneration causes release of cell-free DNA (cfDNA), which promotes macrophage accumulation in adipose tissue via Toll-like receptor 9 (TLR9), originally known as a sensor of exogenous DNA fragments. Fat-fed obese wild-type mice showed increased release of cfDNA, as determined by the concentrations of single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) in plasma. cfDNA released from degenerated adipocytes promoted monocyte chemoattractant protein-1 (MCP-1) expression in wild-type macrophages, but not in TLR9-deficient (Tlr9 (-/-) ) macrophages. Fat-fed Tlr9 (-/-) mice demonstrated reduced macrophage accumulation and inflammation in adipose tissue and better insulin sensitivity compared with wild-type mice, whereas bone marrow reconstitution with wild-type bone marrow restored the attenuation of insulin resistance observed in fat-fed Tlr9 (-/-) mice. Administration of a TLR9 inhibitory oligonucleotide to fat-fed wild-type mice reduced the accumulation of macrophages in adipose tissue and improved insulin resistance. Furthermore, in humans, plasma ssDNA level was significantly higher in patients with computed tomography-determined visceral obesity and was associated with homeostasis model assessment of insulin resistance (HOMA-IR), which is the index of insulin resistance. Our study may provide a novel mechanism for the development of sterile inflammation in adipose tissue and a potential therapeutic target for insulin resistance.

  13. Targeting Insulin-Degrading Enzyme to Treat Type 2 Diabetes Mellitus.

    Science.gov (United States)

    Tang, Wei-Jen

    2016-01-01

    Insulin-degrading enzyme (IDE) selectively degrades peptides, such as insulin, amylin, and amyloid β (Aβ) that form toxic aggregates, to maintain proteostasis. IDE defects are linked to the development of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD). Structural and biochemical analyses revealed the molecular basis for IDE-mediated destruction of amyloidogenic peptides and this information has been exploited to develop promising inhibitors of IDE to improve glucose homeostasis. However, the inhibition of IDE can also lead to glucose intolerance. In this review, I focus on recent advances regarding our understanding of the structure and function of IDE and the discovery of IDE inhibitors, as well as challenges in developing IDE-based therapy for human diseases, particularly T2DM. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Stress-induced release of GUT peptides in young women classified as restrained or unrestrained eaters.

    Science.gov (United States)

    Hilterscheid, Esther; Laessle, Reinhold

    2015-12-01

    Basal release of GUT peptides has been found to be altered in restrained eaters. Stress-induced secretion, however, has not yet been described, but could be a biological basis of overeating that exposes restrained eaters to a higher risk of becoming obese. The aim of the present study was to compare restrained and unrestrained eaters with respect to stress-induced release of the GUT peptides ghrelin and PYY. 46 young women were studied. Blood sampling for peptides was done before and after the Trier Social Stress Test. Ghrelin secretion after stress was significantly elevated in the restrained eaters, whereas no significant differences were detected for PYY. Stress-induced release of GUT peptides can be interpreted as a cause as well as a consequence of restrained eating.

  15. Direct Sensing of Nutrients via a LAT1-like Transporter in Drosophila Insulin-Producing Cells

    Directory of Open Access Journals (Sweden)

    Gérard Manière

    2016-09-01

    Full Text Available Dietary leucine has been suspected to play an important role in insulin release, a hormone that controls satiety and metabolism. The mechanism by which insulin-producing cells (IPCs sense leucine and regulate insulin secretion is still poorly understood. In Drosophila, insulin-like peptides (DILP2 and DILP5 are produced by brain IPCs and are released in the hemolymph after leucine ingestion. Using Ca2+-imaging and ex vivo cultured larval brains, we demonstrate that IPCs can directly sense extracellular leucine levels via minidiscs (MND, a leucine transporter. MND knockdown in IPCs abolished leucine-dependent changes, including loss of DILP2 and DILP5 in IPC bodies, consistent with the idea that MND is necessary for leucine-dependent DILP release. This, in turn, leads to a strong increase in hemolymph sugar levels and reduced growth. GDH knockdown in IPCs also reduced leucine-dependent DILP release, suggesting that nutrient sensing is coupled to the glutamate dehydrogenase pathway.

  16. Nutrient-induced glucagon like peptide-1 release is modulated by serotonin

    NARCIS (Netherlands)

    Ripken, Dina; Wielen, van der Nikkie; Wortelboer, Heleen M.; Meijerink, Jocelijn; Witkamp, Renger F.; Hendriks, Henk F.J.

    2016-01-01

    Glucagon like peptide-1 (GLP-1) and serotonin are both involved in food intake regulation. GLP-1 release is stimulated upon nutrient interaction with G-protein coupled receptors by enteroendocrine cells (EEC), whereas serotonin is released from enterochromaffin cells (ECC). The central hypothesis

  17. Fall in C-Peptide During First 4 Years From Diagnosis of Type 1 Diabetes: Variable Relation to Age, HbA1c, and Insulin Dose.

    Science.gov (United States)

    Hao, Wei; Gitelman, Steven; DiMeglio, Linda A; Boulware, David; Greenbaum, Carla J

    2016-10-01

    We aimed to describe the natural history of residual insulin secretion in Type 1 Diabetes TrialNet participants over 4 years from diagnosis and relate this to previously reported alternative clinical measures reflecting β-cell secretory function. Data from 407 subjects from 5 TrialNet intervention studies were analyzed. All subjects had baseline stimulated C-peptide values of ≥0.2 nmol/L from mixed-meal tolerance tests (MMTTs). During semiannual visits, C-peptide values from MMTTs, HbA1c, and insulin doses were obtained. The percentage of individuals with stimulated C-peptide of ≥0.2 nmol/L or detectable C-peptide of ≥0.017 nmol/L continued to diminish over 4 years; this was markedly influenced by age. At 4 years, only 5% maintained their baseline C-peptide secretion. The expected inverse relationships between C-peptide and HbA1c or insulin doses varied over time and with age. Combined clinical variables, such as insulin-dose adjusted HbA1c (IDAA1C) and the relationship of IDAA1C to C-peptide, also were influenced by age and time from diagnosis. Models using these clinical measures did not fully predict C-peptide responses. IDAA1C ≤9 underestimated the number of individuals with stimulated C-peptide ≥0.2 nmol/L, especially in children. Current trials of disease-modifying therapy for type 1 diabetes should continue to use C-peptide as a primary end point of β-cell secretory function. Longer duration of follow-up is likely to provide stronger evidence of the effect of disease-modifying therapy on preservation of β-cell function. © 2016 by the American Diabetes Association.

  18. Improvement of autism spectrum disorder symptoms in three children by using gastrin‐releasing peptide

    Directory of Open Access Journals (Sweden)

    Michele Michelin Becker

    2016-05-01

    Conclusions: This study suggests that the gastrin‐releasing peptide is safe and may be effective in improving key symptoms of autism spectrum disorder, but its results should be interpreted with caution. Controlled clinical trials–randomized, double‐blinded, and with more children–are needed to better evaluate the possible therapeutic effects of gastrin‐releasing peptide in autism.

  19. Why are Functional Amyloids Non-Toxic in Humans?

    Directory of Open Access Journals (Sweden)

    Matthew P. Jackson

    2017-09-01

    Full Text Available Amyloids were first identified in association with amyloidoses, human diseases in which proteins and peptides misfold into amyloid fibrils. Subsequent studies have identified an array of functional amyloid fibrils that perform physiological roles in humans. Given the potential for the production of toxic species in amyloid assembly reactions, it is remarkable that cells can produce these functional amyloids without suffering any obvious ill effect. Although the precise mechanisms are unclear, there are a number of ways in which amyloid toxicity may be prevented. These include regulating the level of the amyloidogenic peptides and proteins, minimising the production of prefibrillar oligomers in amyloid assembly reactions, sequestrating amyloids within membrane bound organelles, controlling amyloid assembly by other molecules, and disassembling the fibrils under physiological conditions. Crucially, a better understanding of how toxicity is avoided in the production of functional amyloids may provide insights into the prevention of amyloid toxicity in amyloidoses.

  20. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells.

    Science.gov (United States)

    Gabr, Mahmoud M; Zakaria, Mahmoud M; Refaie, Ayman F; Abdel-Rahman, Engy A; Reda, Asmaa M; Ali, Sameh S; Khater, Sherry M; Ashamallah, Sylvia A; Ismail, Amani M; Ismail, Hossam El-Din A; El-Badri, Nagwa; Ghoneim, Mohamed A

    2017-01-01

    The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs) and adipose tissue-derived mesenchymal stem cells (AT-MSCs), for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs), was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion . BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.

  1. Carboxylic Terminated Thermo-Responsive Copolymer Hydrogel and Improvement in Peptide Release Profile

    Directory of Open Access Journals (Sweden)

    Zi-Kun Rao

    2018-02-01

    Full Text Available To improve the release profile of peptide drugs, thermos-responsive triblock copolymer poly (ε-caprolactone-co-p-dioxanone-b-poly (ethylene glycol-b-poly (ε-caprolactone-co-p-dioxanone (PECP was prepared and end capped by succinic anhydride to give its carboxylic terminated derivative. Both PCEP block copolymer and its end group modified derivative showed temperature-dependent reversible sol-gel transition in water. The carboxylic end group could significantly decrease the sol-gel transition temperature by nearly 10 °C and strengthen the gel due to enhanced intermolecular force among triblock copolymer chains. Furthermore, compared with the original PECP triblock copolymer, HOOC–PECP–COOH copolymer displayed a retarded and sustained release profile for leuprorelin acetate over one month while effectively avoiding the initial burst. The controlled release was believed to be related to the formation of conjugated copolymer-peptide pair by ionic interaction and enhanced solubility of drug molecules into the hydrophobic domains of the hydrogel. Therefore, carboxyl terminated HOOC–PECP–COOH hydrogel was a promising and well-exhibited sustained release carrier for peptide drugs with the advantage of being able to develop injectable formulation by simple mixing.

  2. Reversal of the toxic effects of cachectin by concurrent insulin administration.

    Science.gov (United States)

    Fraker, D L; Merino, M J; Norton, J A

    1989-06-01

    Rats treated with recombinant human tumor necrosis factor-cachectin, 100 micrograms/kg ip twice daily for 5 consecutive days, had a 56% decrease in food intake, a 54% decrease in nitrogen balance, and a 23-g decrease in body weight gain vs. saline-treated controls. Concurrent neutral protamine hagedorn insulin administration of 2 U/100 g sc twice daily reversed all of these changes to control levels without causing any treatment deaths. The improvement seen with insulin was dose independent. Five days of cachectin treatment caused a severe interstitial pneumonitis, periportal inflammation in the liver, and an increase in wet organ weight in the heart, lungs, kidney, and spleen. Concurrent insulin treatment led to near total reversal of these histopathologic changes. Cachectin treatment did not significantly change blood glucose levels from control values of 130-140 mg/dl, but insulin plus cachectin caused a significant decrease in blood glucose from 1 through 12 h after injection. Administration of high-dose insulin can near totally reverse the nutritional and histopathologic toxicity of sublethal doses of cachectin in rats.

  3. Membrane interactions of a self-assembling model peptide that mimics the self-association, structure and toxicity of Aβ(1-40)

    Science.gov (United States)

    Salay, Luiz C.; Qi, Wei; Keshet, Ben; Tamm, Lukas K.; Fernandez, Erik J.

    2013-01-01

    β-amyloid peptide (Aβ) is a primary protein component of senile plaques in Alzheimer’s disease (AD) and plays an important, but not fully understood role in neurotoxicity. Model peptides with the demonstrated ability to mimic the structural and toxicity behavior of Aβ could provide a means to evaluate the contributions to toxicity that are common to self–associating peptides from many disease states. In this work, we have studied the peptide-membrane interactions of a model β-sheet peptide, P11-2 (CH3CO-Gln-Gln-Arg-Phe-Gln-Trp-Gln-Phe-Glu-Gln-Gln-NH2), by fluorescence, infrared spectroscopy, and hydrogen-deuterium exchange. Like Aβ(1-40), the peptide is toxic, and conditions which produce intermediate oligomers show higher toxicity against cells than either monomeric forms or higher aggregates of the peptide. Further, P11-2 also binds to both zwitterionic (POPC) and negatively charged (POPC:POPG) liposomes, acquires a partial β-sheet conformation in presence of lipid, and is protected against deuterium exchange in the presence of lipids. The results show that a simple rationally designed model β-sheet peptide recapitulates many important features of Aβ peptide structure and function, reinforcing the idea that toxicity arises, at least in part, from a common mode of action on membranes that is independent of specific aspects of the amino acid sequence. Further studies of such well-behaved model peptide systems will facilitate the investigation of the general principles that govern the molecular interactions of aggregation-prone disease-associated peptides with cell and/or membrane surfaces. PMID:19393615

  4. Insulin secretion and insulin action in non-insulin-dependent diabetes mellitus: which defect is primary?

    Science.gov (United States)

    Reaven, G M

    1984-01-01

    Defects in both insulin secretion and insulin action exist in patients with non-insulin-dependent diabetes mellitus (NIDDM). The loss of the acute plasma insulin response to intravenous glucose is seen in patients with relatively mild degrees of fasting hyperglycemia, but patients with severe fasting hyperglycemia also demonstrate absolute hypoinsulinemia in response to an oral glucose challenge. In contrast, day-long circulating insulin levels are within normal limits even in severely hyperglycemic patients with NIDDM. The relationship between NIDDM and insulin action in NIDDM is less complex, and is a characteristic feature of the syndrome. This metabolic defect is independent of obesity, and the severity of the resistance to insulin-stimulated glucose uptake increases with magnitude of hyperglycemia. Control of hyperglycemia with exogenous insulin ameliorates the degree of insulin resistance, and reduction of insulin resistance with weight loss in obese patients with NIDDM leads to an enhanced insulin response. Since neither therapeutic intervention is capable of restoring all metabolic abnormalities to normal, these observations do not tell us which of these two defects is primarily responsible for the development of NIDDM. Similarly, the observation that most patients with impaired glucose tolerance are hyperinsulinemic and insulin resistant does not prove that insulin resistance is the primary defect in NIDDM. In conclusion, reduction in both insulin secretion and action is seen in patients with NIDDM, and the relationship between these two metabolic abnormalities is very complex.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. The association between newborn regional body composition and cord blood concentrations of C-peptide and insulin-like growth factor I

    DEFF Research Database (Denmark)

    Carlsen, Emma M; Renault, Kristina M; Jensen, Rikke B

    2015-01-01

    BACKGROUND: Third trimester fetal growth is partially regulated by C-peptide and insulin-like growth factor I (IGF-I). Prenatal exposures including maternal obesity and high gestational weight gain as well as high birth weight have been linked to subsequent metabolic disease. We evaluated...... with both C-peptide (p tissue accumulation was associated with cord blood C-peptide and IGF-I. Total and abdominal fat masses were related to C-peptide but not to IGF-I. Thus, newborn adiposity is partially mediated through C-peptide and early...

  6. Correlations between fasting plasma C-peptide, glucagon-stimulated plasma C-peptide, and urinary C-peptide in insulin-treated diabetics

    DEFF Research Database (Denmark)

    Gjessing, H J; Matzen, L E; Frøland, A

    1987-01-01

    This study correlated fasting plasma C-peptide (CP), plasma CP 6 min after stimulation with 1 mg glucagon i.v., and the mean of three 24-h urinary excretions of C-peptide (UCP)/creatinine in 132 insulin-treated diabetics. Patients were divided into three groups: group 1, stimulated CP less than 0.......06 nM (n = 51); group 2, stimulated CP 0.06-0.60 nM (n = 48); and group 3, stimulated CP greater than 0.60 nM (n = 33). In all patients fasting CP was closely correlated to stimulated CP (r = .988, P less than .001), whereas the correlations between UCP and both fasting CP (r = .904, P less than .001......) and stimulated CP r = .902, P less than .001) were slightly less pronounced. The associations between UCP and both fasting CP (r = .716, P less than .001) and stimulated CP (r = .731, P less than .001) were modest in group 2, and even more so in group 3 (r = .557, P less than .001 and r = .641, P less than .001...

  7. Interaction of dipalmitoyl phosphatidylcholine (DPPC) liposomes and insulin

    Science.gov (United States)

    Mady, Mohsen M.; Elshemey, Wael M.

    2011-06-01

    Insulin, a peptide that has been used for decades in the treatment of diabetes, has well-defined properties and delivery requirements. Liposomes, which are lipid bilayer vesicles, have gained increasing attention as drug carriers which reduce the toxicity and increase the pharmacological activity of various drugs. The molecular interaction between (uncharged lipid) dipalmitoyl phosphatidylcholine (DPPC) liposomes and insulin has been characterized by using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction. The characteristic protein absorption band peaks, Amide I (at about 1660 cm-1) and Amide II band (at about 1546 cm-1) are potentially reduced in the liposome insulin complex. Wide-angle x-ray scattering measurements showed that the association of insulin with DPPC lipid of liposomes still maintains the characteristic DPPC diffraction peaks with almost no change in relative intensities or change in peak positions. The absence of any shift in protein peak positions after insulin being associated with DPPC liposomes indicates that insulin is successfully forming complex with DPPC liposomes with possibly no pronounced alterations in the structure of insulin molecule.

  8. 2004 Toxic Release Inventory Sites in Louisiana, Geographic NAD83, EPA (2006) [toxic_release_inventory_site_LA_EPA_2004

    Data.gov (United States)

    Louisiana Geographic Information Center — Data extracted from the EPA Toxics Release Inventory (TRI) system for reporting year 2004. The dataset contains facility identification, submitted and/or preferred...

  9. 2015 TRI National Analysis: Toxics Release Inventory Releases at Various Summary Levels

    Science.gov (United States)

    The TRI National Analysis is EPA's annual interpretation of TRI data at various summary levels. It highlights how toxic chemical wastes were managed, where toxic chemicals were released and how the 2015 TRI data compare to data from previous years. This dataset reports US state, county, large aquatic ecosystem, metro/micropolitan statistical area, and facility level statistics from 2015 TRI releases, including information on: number of 2015 TRI facilities in the geographic area and their releases (total, water, air, land); population information, including populations living within 1 mile of TRI facilities (total, minority, in poverty); and Risk Screening Environmental Indicators (RSEI) model related pounds, toxicity-weighted pounds, and RSEI score. The source of administrative boundary data is the 2013 cartographic boundary shapefiles. Location of facilities is provided by EPA's Facility Registry Service (FRS). Large Aquatic Ecosystems boundaries were dissolved from the hydrologic unit boundaries and codes for the United States, Puerto Rico, and the U.S. Virgin Islands. It was revised for inclusion in the National Atlas of the United States of America (November 2002), and updated to match the streams file created by the USGS National Mapping Division (NMD) for the National Atlas of the United States of America.

  10. Uniformity of Peptide Release Is Maintained by Methylation of Release Factors

    Directory of Open Access Journals (Sweden)

    William E. Pierson

    2016-09-01

    Full Text Available Termination of protein synthesis on the ribosome is catalyzed by release factors (RFs, which share a conserved glycine-glycine-glutamine (GGQ motif. The glutamine residue is methylated in vivo, but a mechanistic understanding of its contribution to hydrolysis is lacking. Here, we show that the modification, apart from increasing the overall rate of termination on all dipeptides, substantially increases the rate of peptide release on a subset of amino acids. In the presence of unmethylated RFs, we measure rates of hydrolysis that are exceptionally slow on proline and glycine residues and approximately two orders of magnitude faster in the presence of the methylated factors. Structures of 70S ribosomes bound to methylated RF1 and RF2 reveal that the glutamine side-chain methylation packs against 23S rRNA nucleotide 2451, stabilizing the GGQ motif and placing the side-chain amide of the glutamine toward tRNA. These data provide a framework for understanding how release factor modifications impact termination.

  11. Extended Release of an Anti–Heparan Sulfate Peptide From a Contact Lens Suppresses Corneal Herpes Simplex Virus-1 Infection

    Science.gov (United States)

    Jaishankar, Dinesh; Buhrman, Jason S.; Valyi-Nagy, Tibor; Gemeinhart, Richard A.; Shukla, Deepak

    2016-01-01

    Purpose To prolong the release of a heparan sulfate binding peptide, G2-C, using a commercially available contact lens as a delivery vehicle and to demonstrate the ability of the released peptide to block herpes simplex virus-1 (HSV-1) infection using in vitro, ex vivo, and in vivo models of corneal HSV-1 infection. Methods Commercially available contact lenses were immersed in peptide solution for 5 days prior to determining the release of the peptide at various time points. Cytotoxicity of the released samples was determined by MTT and cell cycle analysis, and the functional activity of the released samples were assessed by viral entry, and viral spread assay using human corneal epithelial cells (HCE). The ability to suppress infection in human and pig cornea ex vivo and mouse in vivo models were also assessed. Results Peptide G2-C was released through the contact lens. Following release for 3 days, the peptide showed significant activity by inhibiting HSV-1 viral entry and spread in HCE cells. Significant suppression of infection was also observed in the ex vivo and in vivo experiments involving corneas. Conclusions Extended release of an anti–HS peptide through a commercially available contact lens can generate significant anti–HSV-1 activity and provides a new and effective way to control corneal herpes. PMID:26780322

  12. Effect of the Glucagon-like Peptide-1 Analogue Exenatide Extended Release in Cats with Newly Diagnosed Diabetes Mellitus.

    Science.gov (United States)

    Riederer, A; Zini, E; Salesov, E; Fracassi, F; Padrutt, I; Macha, K; Stöckle, T M; Lutz, T A; Reusch, C E

    2016-01-01

    Exenatide extended release (ER) is a glucagon-like peptide-1 analogue that increases insulin secretion, inhibits glucagon secretion and induces satiation in humans with type 2 diabetes mellitus. The use of exenatide ER is safe and stimulates insulin secretion in healthy cats. The objective of this study is to assess the safety of exenatide ER and its effect on body weight, remission and metabolic control in newly diagnosed diabetic cats receiving insulin and a low-carbohydrate diet. Thirty client-owned cats. Prospective placebo-controlled clinical trial. Cats were treated with exenatide ER or 0.9% saline, administered SC, once weekly. Both groups received insulin glargine and a low-carbohydrate diet. Exenatide ER was administered for 16 weeks, or in cats that achieved remission it was given for 4 weeks after discontinuing insulin treatment. Nonparametric tests were used for statistical analysis. Cats in the exenatide ER and placebo groups had transient adverse signs including decreased appetite (60% vs. 20%, respectively, P = .06) and vomiting (53% vs. 40%, respectively, P = .715). Body weight increased significantly in the placebo group (P = .002), but not in cats receiving exenatide ER. Cats on exenatide ER achieved remission or good metabolic control in 40% or 89%, respectively, whereas in control cats percentages were 20% or 58% (P = .427 and P = .178, respectively). Exenatide ER is safe in diabetic cats and does not result in weight gain. Our pilot study suggests that, should there be an additional clinically relevant beneficial effect of exenatide ER in insulin-treated cats on rate of remission and good metabolic control, it would likely approximate 20% and 30%, respectively. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  13. Postreceptor defects causing insulin resistance in normoinsulinemic non-insulin-dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Bolinder, J.; Ostman, J.; Arner, P.

    1982-01-01

    The mechanisms of the diminished hypoglycemic response to insulin in non-insulin-dependent diabetes mellitus (NIDDM) with normal levels of circulating plasma insulin were investigated. Specific binding of mono- 125 I (Tyr A14)-insulin to isolated adipocytes and effects of insulin (5--10,000 microunits/ml) on glucose oxidation and lipolysis were determined simultaneously in subcutaneous adipose tissue of seven healthy subjects of normal weight and seven untreated NIDDM patients with normal plasma insulin levels. The two groups were matched for age, sex, and body weight. Insulin binding, measured in terms of receptor number and affinity, was normal in NIDDM, the total number of receptors averaging 350,000 per cell. Neither sensitivity nor the maximum antilipolytic effect of insulin was altered in NIDDM patients as compared with control subjects; the insulin concentration producing half the maximum effect (ED50) was 10 microunits/ml. As regards the effect of insulin on glucose oxidation, for the control subjects ED50 was 30 microunits/ml, whereas in NIDDM patients, insulin exerted no stimulatory effect. The results obtained suggest that the effect of insulin on glucose utilization in normoinsulinemic NIDDM may be diminished in spite of normal insulin binding to receptors. The resistance may be due solely to postreceptor defects, and does not involve antilipolysis

  14. Cholinergic signaling mediates the effects of xenin-25 on secretion of pancreatic polypeptide but not insulin or glucagon in humans with impaired glucose tolerance.

    Directory of Open Access Journals (Sweden)

    Songyan Wang

    Full Text Available We previously demonstrated that infusion of an intestinal peptide called xenin-25 (Xen amplifies the effects of glucose-dependent insulinotropic polypeptide (GIP on insulin secretion rates (ISRs and plasma glucagon levels in humans. However, these effects of Xen, but not GIP, were blunted in humans with type 2 diabetes. Thus, Xen rather than GIP signaling to islets fails early during development of type 2 diabetes. The current crossover study determines if cholinergic signaling relays the effects of Xen on insulin and glucagon release in humans as in mice. Fasted subjects with impaired glucose tolerance were studied. On eight separate occasions, each person underwent a single graded glucose infusion- two each with infusion of albumin, Xen, GIP, and GIP plus Xen. Each infusate was administered ± atropine. Heart rate and plasma glucose, insulin, C-peptide, glucagon, and pancreatic polypeptide (PP levels were measured. ISRs were calculated from C-peptide levels. All peptides profoundly increased PP responses. From 0 to 40 min, peptide(s infusions had little effect on plasma glucose concentrations. However, GIP, but not Xen, rapidly and transiently increased ISRs and glucagon levels. Both responses were further amplified when Xen was co-administered with GIP. From 40 to 240 min, glucose levels and ISRs continually increased while glucagon concentrations declined, regardless of infusate. Atropine increased resting heart rate and blocked all PP responses but did not affect ISRs or plasma glucagon levels during any of the peptide infusions. Thus, cholinergic signaling mediates the effects of Xen on insulin and glucagon release in mice but not humans.

  15. Modulation of the effect of acetylcholine on insulin release by the membrane potential of B cells

    International Nuclear Information System (INIS)

    Hermans, M.P.; Schmeer, W.; Henquin, J.C.

    1987-01-01

    Mouse islets were used to test the hypothesis that the B cell membrane must be depolarized for acetylcholine to increase insulin release. The resting membrane potential of B cells (at 3 mM glucose) was slightly decreased (5 mV) by acetylcholine, but no electrical activity appeared. This depolarization was accompanied by a Ca-independent acceleration of 86 Rb and 45 Ca efflux but no insulin release. When the B cell membrane was depolarized by a stimulatory concentration of glucose (10 mM), acetylcholine potentiated electrical activity, accelerated 86 Rb and 45 Ca efflux, and increased insulin release. This latter effect, but not the acceleration of 45 Ca efflux, was totally dependent on extracellular Ca. If glucose-induced depolarization of the B cell membrane was prevented by diazoxide, acetylcholine lost all effects but those produced at low glucose. In contrast, when the B cell membrane was depolarized by leucine or tolbutamide (at 3 mM glucose), acetylcholine triggered a further depolarization with appearance of electrical activity, accelerated 86 Rb and 45 Ca efflux, and stimulated insulin release. Acetylcholine produced similar effects (except for electrical activity) in the presence of high K or arginine which, unlike the above test agents, depolarize the B cell membrane by a mechanism other than a decrease in K+ permeability. Omission of extracellular Ca abolished the releasing effect of acetylcholine under all conditions but only partially decreased the stimulation of 45 Ca efflux. The results show thus that acetylcholine stimulation of insulin release does not result from mobilization of cellular Ca but requires that the B cell membrane be sufficiently depolarized to reach the threshold potential where Ca channels are activated. This may explain why acetylcholine alone does not initiate release but becomes active in the presence of a variety of agents

  16. Ultrashort peptide nanogels release in situ generated silver manoparticles to combat emerging antimicrobial resistance strains

    KAUST Repository

    Seferji, Kholoud; Susapto, Hepi Hari; Arab, Wafaa Talat Abdullah; Sharip, Ainur; Sundaramurthi, Dhakshinamoorthy; Rauf, Sakandar; Hauser, Charlotte

    2017-01-01

    Nanogels made from self-assembling ultrashort peptides (3-6 amino acids in size) are promising biomaterials for various biomedical applications such as tissue engineering, drug delivery, regenerative medicine, microbiology and biosensing.We have developed silver-releasing peptide nanogels with promising wound care applications. The peptide nanogels allow a precise control of in situ syntesized silver nanoparticles (AgNPs), using soley short UV radiation and no other chemical reducing agent. We propose these silver-releasing nanogels as excellent biomaterial to combat emerging antimicrobial resistant strains.

  17. Ultrashort peptide nanogels release in situ generated silver manoparticles to combat emerging antimicrobial resistance strains

    KAUST Repository

    Seferji, Kholoud

    2017-01-08

    Nanogels made from self-assembling ultrashort peptides (3-6 amino acids in size) are promising biomaterials for various biomedical applications such as tissue engineering, drug delivery, regenerative medicine, microbiology and biosensing.We have developed silver-releasing peptide nanogels with promising wound care applications. The peptide nanogels allow a precise control of in situ syntesized silver nanoparticles (AgNPs), using soley short UV radiation and no other chemical reducing agent. We propose these silver-releasing nanogels as excellent biomaterial to combat emerging antimicrobial resistant strains.

  18. Prolactin-releasing peptide: a new tool for obesity treatment

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jaroslav; Pražienková, V.; Popelová, A.; Mikulášková, Barbora; Zemenová, J.; Maletínská, L.

    2016-01-01

    Roč. 230, č. 2 (2016), R51-R58 ISSN 0022-0795 R&D Projects: GA ČR(CZ) GA15-08679S Institutional support: RVO:67985823 Keywords : prolactin-releasing peptide * lipidization * obesity * GPR10 * anorexigenic * mice Subject RIV: ED - Physiology Impact factor: 4.706, year: 2016

  19. From Human Mesenchymal Stem Cells to Insulin-Producing Cells: Comparison between Bone Marrow- and Adipose Tissue-Derived Cells

    Directory of Open Access Journals (Sweden)

    Mahmoud M. Gabr

    2017-01-01

    Full Text Available The aim of this study is to compare human bone marrow-derived mesenchymal stem cells (BM-MSCs and adipose tissue-derived mesenchymal stem cells (AT-MSCs, for their differentiation potentials to form insulin-producing cells. BM-MSCs were obtained during elective orthotopic surgery and AT-MSCs from fatty aspirates during elective cosmetics procedures. Following their expansion, cells were characterized by phenotyping, trilineage differentiation ability, and basal gene expression of pluripotency genes and for their metabolic characteristics. Cells were differentiated according to a Trichostatin-A based protocol. The differentiated cells were evaluated by immunocytochemistry staining for insulin and c-peptide. In addition the expression of relevant pancreatic endocrine genes was determined. The release of insulin and c-peptide in response to a glucose challenge was also quantitated. There were some differences in basal gene expression and metabolic characteristics. After differentiation the proportion of the resulting insulin-producing cells (IPCs, was comparable among both cell sources. Again, there were no differences neither in the levels of gene expression nor in the amounts of insulin and c-peptide release as a function of glucose challenge. The properties, availability, and abundance of AT-MSCs render them well-suited for applications in regenerative medicine. Conclusion. BM-MSCs and AT-MSCs are comparable regarding their differential potential to form IPCs. The availability and properties of AT-MSCs render them well-suited for applications in regenerative medicine.

  20. 76 FR 7841 - Agency Information Collection Activities; Proposed Collections; Toxic Chemical Release Reporting...

    Science.gov (United States)

    2011-02-11

    ... agencies, and others to promote reductions in toxic chemical releases. Industrial facilities use the TRI... Activities; Proposed Collections; Toxic Chemical Release Reporting; Request for Comments on Proposed Renewal... the individual listed in the preceding FOR FURTHER INFORMATION CONTACT section. Title: Toxic Chemical...

  1. Gastrin-releasing peptide stimulates glycoconjugate release from feline trachea

    International Nuclear Information System (INIS)

    Lundgren, J.D.; Baraniuk, J.N.; Ostrowski, N.L.; Kaliner, M.A.; Shelhamer, J.H.

    1990-01-01

    The effect of gastrin-releasing peptide (GRP) on respiratory glycoconjugate (RGC) secretion was investigated in a feline tracheal organ culture model. RGC secretion was stimulated by GRP in a dose-dependent fashion at concentrations from 10(-8) to 10(-5) M (range 15-38% increase above control) with a peak effect within 0.5-1 h of incubation. GRP-(14-27), the receptor binding portion of GRP, and the related molecule, bombesin, also stimulated RGC secretion by approximately 20% above control. Acetyl-GRP-(20-27) stimulated RGC release by 10%, whereas GRP-(1-16) was inactive. Autoradiographic studies with 125I-GRP revealed that specific binding was restricted to the submucosal glands and the surface epithelium. A specific radioimmunoassay showed the content of GRP in feline trachea after extraction with ethanol-acetic acid to be 156 +/- 91 fmol/g wet wt. Indirect immunohistochemistry indicated that ganglion cells located just outside the cartilage contained GRP-immunoreactive materials. GRP is a novel mucus secretagogue that may participate in regulating airway mucosal gland secretion

  2. Production of peptide antisera specific for mouse and rat proinsulin C-peptide 2

    DEFF Research Database (Denmark)

    Blume, N; Madsen, O D; Kofod, Hans

    1990-01-01

    for antibody binding to the immunizing antigen. Antisera to C-peptide 2, stained islet beta-cells on mouse and rat, but not monkey pancreas sections in immunocytochemical analysis. Preabsorption to the synthetic C-peptide 2, but not the synthetic mouse and rat C-peptide 1 abolished staining. In conclusion we......Mice and rats have two functional non-allelic insulin genes. By using a synthetic peptide representing a common sequence in mouse and rat C-peptide 2 as antigen, we have produced rabbit antisera specific for an epitope which is not present in mouse or rat C-peptide 1. Long-term immunization did...... not seem to increase the end point titre as tested in direct ELISA. The specificity of the antiserum was determined by competitive ELISA and histochemistry on pancreas sections. Only the synthetic C-peptide 2, but not the homologous synthetic C-peptide 1 from mouse and rat competed efficiently in ELISA...

  3. Signal peptide of eosinophil cationic protein is toxic to cells lacking signal peptide peptidase

    International Nuclear Information System (INIS)

    Wu, C.-M.; Chang, Margaret Dah-Tsyr

    2004-01-01

    Eosinophil cationic protein (ECP) is a toxin secreted by activated human eosinophils. The properties of mature ECP have been well studied but those of the signal peptide of ECP (ECPsp) are not clear. In this study, several chimeric proteins containing N-terminal fusion of ECPsp were generated, and introduced into Escherichia coli, Pichia pastoris, and human epidermoid carcinoma cell line A431 to study the function of ECPsp. We found that expression of ECPsp chimeric proteins inhibited the growth of E. coli and P. pastoris but not A431 cells. Primary sequence analysis and in vitro transcription/translation of ECPsp have revealed that it is a potential substrate for human signal peptide peptidase (hSPP), an intramembrane protease located in endoplasmic reticulum. In addition, knockdown of the hSPP mRNA expression in ECPsp-eGFP/A431 cells caused the growth inhibitory effect, whereas complementally expression of hSPP in P. pastoris system rescued the cell growth. Taken together, we have demonstrated that ECPsp is a toxic signal peptide, and expression of hSPP protects the cells from growth inhibition

  4. Comparison of two insulin assays for first-phase insulin release in type 1 diabetes prediction and prevention studies.

    Science.gov (United States)

    Mahon, Jeffrey L; Beam, Craig A; Marcovina, Santica M; Boulware, David C; Palmer, Jerry P; Winter, William E; Skyler, Jay S; Krischer, Jeffrey P

    2011-11-20

    Detection of below-threshold first-phase insulin release or FPIR (1+3 minute insulin concentrations during an intravenous glucose tolerance test [IVGTT]) is important in type 1 diabetes prediction and prevention studies including the TrialNet Oral Insulin Prevention Trial. We assessed whether an insulin immunoenzymometric assay (IEMA) could replace the less practical but current standard of a radioimmunoassay (RIA) for FPIR. One hundred thirty-three islet autoantibody positive relatives of persons with type 1 diabetes underwent 161 IVGTTs. Insulin concentrations were measured by both assays in 1056 paired samples. A rule classifying FPIR (below-threshold, above-threshold, uncertain) by the IEMA was derived and validated against FPIR by the RIA. The insulin IEMA-based rule accurately classified below- and above-threshold FPIRs by the RIA in 110/161 (68%) IVGTTs, but was uncertain in 51/161 (32%) tests for which FPIR by RIA is needed. An uncertain FPIR by the IEMA was more likely among below-threshold vs above-threshold FPIRs by the RIA (64% [30/47] vs. 18% [21/114], respectively; pTrialNet is limiting the insulin RIA for FPIR to the latter given the practical advantages of the more specific IEMA. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. FLUOXETINE INCREASES INSULIN ACTION IN OBESE NONDIABETIC AND IN OBESE NON-INSULIN-DEPENDENT DIABETIC INDIVIDUALS

    NARCIS (Netherlands)

    Potter van Loon, B. J.; Radder, J. K.; Froelich, M.; Krans, H. M.; Zwinderman, A. H.; Meinders, A. E.

    1992-01-01

    Insulin resistance contributes to the metabolic defects in non-insulin-dependent diabetes mellitus (NIDDM). Anorectic agents have been shown to improve insulin action in NIDDM, irrespective of weight reduction. The serotonin-reuptake inhibiting agent fluoxetine has recently been recognized as an

  6. Prolactin-releasing peptide: a new tool for obesity treatment

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jaroslav; Pražienková, Veronika; Popelová, Andrea; Mikulášková, Barbora; Zemenová, Jana; Maletínská, Lenka

    2016-01-01

    Roč. 230, č. 2 (2016), R51-R58 ISSN 0022-0795 R&D Projects: GA ČR(CZ) GA15-08679S Institutional support: RVO:61388963 Keywords : prolactin-releasing peptide * lipidization * obesity * GPR10 * anorexigenic * mice Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 4.706, year: 2016

  7. Peptide Drug Release Behavior from Biodegradable Temperature-Responsive Injectable Hydrogels Exhibiting Irreversible Gelation

    Directory of Open Access Journals (Sweden)

    Kazuyuki Takata

    2017-10-01

    Full Text Available We investigated the release behavior of glucagon-like peptide-1 (GLP-1 from a biodegradable injectable polymer (IP hydrogel. This hydrogel shows temperature-responsive irreversible gelation due to the covalent bond formation through a thiol-ene reaction. In vitro sustained release of GLP-1 from an irreversible IP formulation (F(P1/D+PA40 was observed compared with a reversible (physical gelation IP formulation (F(P1. Moreover, pharmaceutically active levels of GLP-1 were maintained in blood after subcutaneous injection of the irreversible IP formulation into rats. This system should be useful for the minimally invasive sustained drug release of peptide drugs and other water-soluble bioactive reagents.

  8. Knockout mutations of insulin-like peptide genes enhance sexual receptivity in Drosophila virgin females.

    Science.gov (United States)

    Watanabe, Kazuki; Sakai, Takaomi

    2016-01-01

    In the fruitfly Drosophila melanogaster, females take the initiative to mate successfully because they decide whether to mate or not. However, little is known about the molecular and neuronal mechanisms regulating sexual receptivity in virgin females. Genetic tools available in Drosophila are useful for identifying molecules and neural circuits involved in the regulation of sexual receptivity. We previously demonstrated that insulin-producing cells (IPCs) in the female brain are critical to the regulation of female sexual receptivity. Ablation and inactivation of IPCs enhance female sexual receptivity, suggesting that neurosecretion from IPCs inhibits female sexual receptivity. IPCs produce and release insulin-like peptides (Ilps) that modulate various biological processes such as metabolism, growth, lifespan and behaviors. Here, we report a novel role of the Ilps in sexual behavior in Drosophila virgin females. Compared with wild-type females, females with knockout mutations of Ilps showed a high mating success rate toward wild-type males, whereas wild-type males courted wild-type and Ilp-knockout females to the same extent. Wild-type receptive females retard their movement during male courtship and this reduced female mobility allows males to copulate. Thus, it was anticipated that knockout mutations of Ilps would reduce general locomotion. However, the locomotor activity in Ilp-knockout females was significantly higher than that in wild-type females. Thus, our findings indicate that the high mating success rate in Ilp-knockout females is caused by their enhanced sexual receptivity, but not by improvement of their sex appeal or by general sluggishness.

  9. Comparison of iron status and insulin resistance between non-diabetic offspring of type 2 diabetics and non-diabetic offspring of non-diabetics

    International Nuclear Information System (INIS)

    Zafar, U.; Qureshi, H.J.

    2015-01-01

    Insulin resistance is positively correlated with body iron. It is unclear whether iron is a cause or an outcome of insulin resistance. Insulin resistance precedes type 2 diabetes mellitus. Offspring of type 2 diabetics are insulin resistant as compared to those of the non-diabetics. The present study was designed to compare and correlate insulin resistance with iron parameters (including serum ferritin, transferrin saturation and blood haemoglobin) in non-diabetic offspring of type 2 diabetics and non-diabetic offspring of non-diabetics. Methods: It was a cross-sectional study, conducted on one hundred and twenty male subjects 20-40 years of age. They were divided into two groups, each group having 60 subjects. Group A included non-diabetic offspring of type 2 diabetics, while Group B included non-diabetic offspring of non-diabetics. Fasting blood sample was taken and examined for glucose, haemoglobin, insulin, iron, TIBC and ferritin. Data was analysed by SPSS-17. Results: Insulin resistance and iron parameters were significantly higher (p<0.05) in non-diabetic offspring of type 2 diabetics as compared to those of the non-diabetics. There was significant positive correlation (p=0.027) between insulin resistance and serum iron in non-diabetic offspring of type 2 diabetics. There was also significant positive correlation between insulin resistance and serum iron, transferrin saturation and haemoglobin in non-diabetic offspring of non-diabetics. Conclusion: Non-diabetic offspring of type 2 diabetics have iron load and insulin resistance, that predispose them to the development of type 2 diabetes. (author)

  10. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin-dependent diabetes mellitus

    DEFF Research Database (Denmark)

    Almind, K; Bjørbaek, C; Vestergaard, H

    1993-01-01

    Since relative or absolute insulin deficiency and insulin insensitivity are involved in the aetiology of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether patients with NIDDM exhibit genetic variability in the coding region of insulin receptor substrate-1 (IRS-1), a candidate...... with NIDDM and 3 of the controls were heterozygous at codon 972 for a polymorphism in which glycine was substituted with arginine. Moreover, at codon 513, 6 patients with NIDDM and 2 controls had a heterozygous polymorphism with a transition from alanine to proline. None of the polymorphism carriers had both...

  11. DEFECTS IN INSULIN-SECRETION IN NIDDM - B-CELL GLUCOSE INSENSITIVITY OR GLUCOSE TOXICITY

    NARCIS (Netherlands)

    VANHAEFTEN, TW

    In NIDDM, first-phase insulin release to glucose is (almost) absent. However, in contrast to older studies which suggested that in NIDDM the B-cell is ''blind'' for glucose, recent evidence indicates that the B-cell is not insensitive for glucose as far as second phase release is concerned. This

  12. Hypoglycemia in a dog with a leiomyoma of the gastric wall producing an insulin-like growth factor II-like peptide.

    Science.gov (United States)

    Boari, A; Barreca, A; Bestetti, G E; Minuto, F; Venturoli, M

    1995-06-01

    A 12-year-old mixed-breed male dog was referred to the Clinica Medica Veterinaria of Bologna University for recurrent episodes of seizures due to hypoglycemia with abnormally low plasma insulin levels (18 pmol/l). Resection of a large leiomyoma (780 g) of the gastric wall resulted in a permanent resolution of the hypoglycemic episodes. Insulin-like growth factors I and II (IGF-I and -II) were measured by RIA in serum before and after surgery and in tumor tissue. Results were compared to the serum concentration of 54 normal and to the tissue concentration observed in eight non-hypoglycemic dog gastric wall extracts. Before surgery, circulating immunoreactive IGF-I was 0.92 nmol/l, which is significantly lower than the control values (16.92 +/- 8.44 nmol/l, range 3.53-35.03), while IGF-II was 152 nmol/l, which is significantly higher than the control values (42.21 +/- 3.75, range 31.99-50.74). After surgery, IGF-I increased to 6.80 nmol/l while IGF-II decreased to 45.52 nmol/l. Tumor tissue IGF-II concentration was higher than normal (5.66 nmol/kg tissue as compared to a range in normal gastric wall tissue of 1.14-3.72 nmol/kg), while IGF-I was 0.08 nmol/kg tissue, which is close to the lowest normal value (range in controls, 0.08-1.18 nmol/kg). Partial characterization of IGF-II immunoreactivity extracted from tissue evidenced a molecular weight similar to that of mature IGF-II, thus excluding that peptide released by the tumor is a precursor molecule.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. In Vivo Imaging of the Stability and Sustained Cargo Release of an Injectable Amphipathic Peptide-Based Hydrogel.

    Science.gov (United States)

    Oyen, Edith; Martin, Charlotte; Caveliers, Vicky; Madder, Annemieke; Van Mele, Bruno; Hoogenboom, Richard; Hernot, Sophie; Ballet, Steven

    2017-03-13

    Hydrogels are promising materials for biomedical applications such as tissue engineering and controlled drug release. In the past two decades, the peptide hydrogel subclass has attracted an increasing level of interest from the scientific community because of its numerous advantages, such as biocompatibility, biodegradability, and, most importantly, injectability. Here, we report on a hydrogel consisting of the amphipathic hexapeptide H-FEFQFK-NH 2 , which has previously shown promising in vivo properties in terms of releasing morphine. In this study, the release of a small molecule, a peptide, and a protein cargo as representatives of the three major drug classes is directly visualized by in vivo fluorescence and nuclear imaging. In addition, the in vivo stability of the peptide hydrogel system is investigated through the use of a radiolabeled hydrogelator sequence. Although it is shown that the hydrogel remains present for several days, the largest decrease in volume takes place within the first 12 h of subcutaneous injection, which is also the time frame wherein the cargos are released. Compared to the situation in which the cargos are injected in solution, a prolonged release profile is observed up to 12 h, showing the potential of our hydrogel system as a scaffold for controlled drug delivery. Importantly, this study elucidates the release mechanism of the peptide hydrogel system that seems to be based on erosion of the hydrogel providing a generally applicable controlled release platform for small molecule, peptide, and protein drugs.

  14. Driving engineering of novel antimicrobial peptides from simulations of peptide-micelle interactions

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Langham, Allison A; Kaznessis, Yiannis N

    2006-01-01

    Simulations of antimicrobial peptides in membrane mimics can provide the high resolution, atomistic picture that is necessary to decipher which sequence and structure components are responsible for activity and toxicity. With such detailed insight, engineering new sequences that are active but non...... peptides and their interaction with membrane mimics. In this article, we discuss the promise and the challenges of widely used models and detail our recent work on peptide-micelle simulations as an attractive alternative to peptide-bilayer simulations. We detail our results with two large structural...... classes of peptides, helical and beta-sheet and demonstrate how simulations can assist in engineering of novel antimicrobials with therapeutic potential....

  15. Four weeks of near-normalisation of blood glucose improves the insulin response to glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Højberg, P V; Vilsbøll, T; Rabøl, R

    2008-01-01

    of near-normalisation of the blood glucose level could improve insulin responses to GIP and GLP-1 in patients with type 2 diabetes. METHODS: Eight obese patients with type 2 diabetes with poor glycaemic control (HbA(1c) 8.6 +/- 1.3%), were investigated before and after 4 weeks of near......-normalisation of blood glucose (mean blood glucose 7.4 +/- 1.2 mmol/l) using insulin treatment. Before and after insulin treatment the participants underwent three hyperglycaemic clamps (15 mmol/l) with infusion of GLP-1, GIP or saline. Insulin responses were evaluated as the incremental area under the plasma C......-peptide curve. RESULTS: Before and after near-normalisation of blood glucose, the C-peptide responses did not differ during the early phase of insulin secretion (0-10 min). The late phase C-peptide response (10-120 min) increased during GIP infusion from 33.0 +/- 8.5 to 103.9 +/- 24.2 (nmol/l) x (110 min)(-1...

  16. Hyperinsulinemic hypoglycemia associated with insulin antibodies caused by exogenous insulin analog

    Directory of Open Access Journals (Sweden)

    Chih-Ting Su

    2016-11-01

    Full Text Available Insulin antibodies (IA associated with exogenous insulin administration seldom caused hypoglycemia and had different characteristics from insulin autoantibodies (IAA found in insulin autoimmune syndrome (IAS, which was first described by Dr Hirata in 1970. The characteristic of IAS is the presence of insulin-binding autoantibodies and related fasting or late postprandial hypoglycemia. Here, we report a patient with type 1 diabetes mellitus under insulin glargine and insulin aspart treatment who developed recurrent spontaneous post-absorptive hyperinsulinemic hypoglycemia with the cause probably being insulin antibodies induced by exogenous injected insulin. Examinations of serial sera disclosed a high titre of insulin antibodies (33%, normal <5%, high insulin concentration (111.9 IU/mL and undetectable C-peptide when hypoglycemia occurred. An oral glucose tolerance test revealed persistent high serum levels of total insulin and undetectable C-peptide. Image studies of the pancreas were unremarkable, which excluded the diagnosis of insulinoma. The patient does not take any of the medications containing sulfhydryl compounds, which had been reported to cause IAS. After administering oral prednisolone for 3 weeks, hypoglycemic episodes markedly improved, and he was discharged smoothly.

  17. Gastrin-releasing peptide is a transmitter mediating porcine gallbladder contraction

    DEFF Research Database (Denmark)

    Schjoldager, Birgit; Poulsen, S.S.; Schmidt, P.

    1991-01-01

    We studied the role of gastrin-releasing peptide (GRP) for porcine gallbladder motility. Immunohistochemistry visualized nerve fibers containing GRP-like immunoreactivity in muscularis. GRP concentration dependently stimulated contractions of muscularis strips (ED50, 2.9 nM). Neuromedin B was les......-like immunoreactivity. Thus two neural inputs were defined: a cholinergic rapid onset-rapid offset excitation and a delayed, slow onset-slow offset excitation caused by release and subsequent binding of GRP to GRP-preferring receptors....

  18. Preserved glucagon-like peptide-1 responses to oral glucose, but reduced incretin effect, insulin secretion and sensitivity in young Asians with type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Yeow, Toh Peng; Pacini, Giovanni; Tura, Andrea

    2017-01-01

    are scarce. We examined the insulin resistance, β-cell function (BC), glucagon-like peptide (GLP)-1 hormone and incretin effect in Asian YT2DM. RESEARCH DESIGN AND METHODS: This case-control study recruited 25 Asian YT2DM and 15 healthy controls, matched for gender, ethnicity and body mass index. Serum......OBJECTIVE: Youth onset type 2 diabetes mellitus (YT2DM) is a globally rising phenomenon with substantial Asians representation. The understanding of its pathophysiology is derived largely from studies in the obese African-American and Caucasian populations, while studies on incretin effect...... glucose, insulin, C peptide and GLP-1 were sampled during 2-hour oral glucose tolerance tests (OGTTs) and 1-hour intravenous glucose tolerance tests (IVGTTs). Insulin sensitivity was derived from the Quantitative Insulin Sensitivity Check Index (QUICKI), Oral Glucose Insulin Sensitivity Index (OGIS...

  19. Short-term effects of beta-amyloid25-35 peptide aggregates on transmitter release in neuromuscular synapses.

    Science.gov (United States)

    Garcia, Neus; Santafé, Manel M; Tomàs, Marta; Lanuza, Maria A; Tomàs, Josep

    2008-03-01

    The beta-amyloid (AB) peptide25-35 contains the functional domain of the AB precursor protein that is both required for neurotrophic effects in normal neural tissues and is involved in the neurotoxic effects in Alzheimer disease. We demonstrated the presence of the amyloid precursor protein/AB peptide in intramuscular axons, presynaptic motor nerve terminals, terminal and myelinating Schwann cells, and the postsynaptic and subsarcolemmal region in the Levator auris longus muscle of adult rats by immunocytochemistry. Using intracellular recording, we investigated possible short-term functional effects of the AB fragment (0.1-10 micromol/L) on acetylcholine release in adult and newborn motor end plates. We found no change in evoked, spontaneous transmitter release or resting membrane potential of the muscle cells. A previous block of the presynaptic muscarinic receptor subtypes and a previous block or stimulation of protein kinase C revealed no masked effect of the peptide on the regulation of transmitter release. The aggregated form of AB peptide25-35, however, interfered acutely with acetylcholine release (quantal content reduction) when synaptic activity was maintained by electric stimulation. The possible relevance of this inhibition of neurotransmission by AB peptide25-35 to the pathogenesis of Alzheimer remains to be determined.

  20. Does Glucagon-like Peptide-1 Ameliorate Oxidative Stress in Diabetes?

    DEFF Research Database (Denmark)

    Petersen, Karen Ekkelund; Rakipovski, Günaj; Raun, Kirsten

    2016-01-01

    Glucagon-like peptide-1 (GLP-1) has shown to influence the oxidative stress status in a number of in vitro, in vivo and clinical studies. Well-known effects of GLP-1 including better glycemic control, decreased food intake, increased insulin release and increased insulin sensitivity may indirectly...... a controversial topic but could hold a therapeutic potential against micro- and macrovascular diabetic complications. This review discusses the presently available knowledge from experimental and clinical studies on the effects of GLP-1 on oxidative stress in diabetes and diabetes-related complications....

  1. Insulin-like activity in the retina

    International Nuclear Information System (INIS)

    Das, A.

    1986-01-01

    A number of studies have recently demonstrated that insulin or a homologous peptide may be synthesized outside the pancreas also. The present study was designed to investigate whether insulin-like activity exists in the retina, and if it exists, whether it is due to local synthesis of insulin or a similar peptide in the retina. To determine whether the insulin-like immunoreactivity in retinal glial cells is due to binding and uptake or local synthesis of insulin, a combined approach of immunocytochemistry and in situ DNA-RNA hybridization techniques was used on cultured rat retinal glial cells. Insulin-like immunoreactivity was demonstrated in the cytoplasma of these cells. In situ hybridization studies using labeled rat insulin cDNA indicated that these cells contain the mRNA necessary for de novo synthesis of insulin or a closely homologous peptide. Since human retinal cells have, as yet, not been conveniently grown in culture, an ocular tumor cell line, human Y79 retinoblastoma was used as a model to extend these investigations. The presence of insulin-like immunoreactivity as well as insulin-specific mRNA was demonstrated in this cell line. Light microscopic autoradiography following incubation of isolated rat retinal cells with 125 I-insulin showed the presence of insulin binding sites on the photoreceptors and amarcine cells. On the basis of these observations that rat retina glial cells, including Muller cells are sites of synthesis of insulin or a similar peptide, a model for the pathogenesis of dabetic retinopathy is proposed

  2. Stepwise-activable multifunctional peptide-guided prodrug micelles for cancerous cells intracellular drug release

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jing, E-mail: zhangjing@zjut.edu.cn; Li, Mengfei [Zhejiang University of Technology, College of Materials Science and Engineering (China); Yuan, Zhefan [Zhejiang University, Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Department of Chemical and Biological Engineering (China); Wu, Dan; Chen, Jia-da; Feng, Jie, E-mail: fengjie@zjut.edu.cn [Zhejiang University of Technology, College of Materials Science and Engineering (China)

    2016-10-15

    A novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for cancerous cells intracellular drug release. Deca-lysine sequence (K{sub 10}), a type of cell-penetrating peptide, was synthesized and terminated with azido-glycine. Then a new kind of molecule, alkyne modified doxorubicin (DOX) connecting through disulfide bond (DOX-SS-alkyne), was synthesized. After coupling via Cu-catalyzed azide–alkyne cycloaddition (CuAAC) click chemistry reaction, reduction-sensitive peptide-guided prodrug was obtained. Due to the amphiphilic property of the prodrug, it can assemble to form micelles. To prevent the nanocarriers from unspecific cellular uptake, the prodrug micelles were subsequently modified with 2,3-dimethyl maleic anhydride to obtain MPPM with a negatively charged outer shell. In vitro studies showed that MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would be activated by charge reversal of the micelles via hydrolysis of acid-labile β-carboxylic amides and regeneration of K{sub 10}, which enabled efficient internalization of MPPM by tumor cells as well as following glutathione- and protease-induced drug release inside the cancerous cells. Furthermore, since the guide peptide sequences can be accurately designed and synthesized, it can be easily changed for various functions, such as targeting peptide, apoptotic peptide, even aptamers, only need to be terminated with azido-glycine. This method can be used as a template for reduction-sensitive peptide-guided prodrug for cancer therapy.Graphical abstractA novel type of stepwise-activable multifunctional peptide-guided prodrug micelles (MPPM) was fabricated for selective drug delivery in cancerous cells. MPPM could be shielded from cells under psychological environment. However, when arriving at mild acidic tumor site, the cell-penetrating capacity of MPPM would

  3. Visualization and Quantitative Assessment of the Brain Distribution of Insulin through Nose-to-Brain Delivery Based on the Cell-Penetrating Peptide Noncovalent Strategy.

    Science.gov (United States)

    Kamei, Noriyasu; Shingaki, Tomotaka; Kanayama, Yousuke; Tanaka, Misa; Zochi, Riyo; Hasegawa, Koki; Watanabe, Yasuyoshi; Takeda-Morishita, Mariko

    2016-03-07

    Our recent work suggested that intranasal coadministration with the cell-penetrating peptide (CPP) penetratin increased the brain distribution of the peptide drug insulin. The present study aimed to distinctly certify the ability of penetratin to facilitate the nose-to-brain delivery of insulin by quantitatively evaluating the distribution characteristics in brain using radioactive (64)Cu-NODAGA-insulin. Autoradiography and analysis using a gamma counter of brain areas demonstrated that the accumulation of radioactivity was greatest in the olfactory bulb, the anterior part of the brain closest to the administration site, at 15 min after intranasal administration of (64)Cu-NODAGA-insulin with l- or d-penetratin. The brain accumulation of (64)Cu-NODAGA-insulin with penetratin was confirmed by ELISA using unlabeled insulin in which intact insulin was delivered to the brain after intranasal coadministration with l- or d-penetratin. By contrast, quantification of cerebrospinal fluid (CSF) samples showed increased insulin concentration in only the anterior portion of the CSF at 15 min after intranasal coadministration with l-penetratin. This study gives the first concrete proof that penetratin can accelerate the direct transport of insulin from the nasal cavity to the brain parenchyma. Further optimization of intranasal administration with CPP may increase the efficacy of delivery of biopharmaceuticals to the brain while reducing the risk of systemic drug exposure.

  4. Explaining psychological insulin resistance in adults with non-insulin-treated type 2 diabetes

    DEFF Research Database (Denmark)

    Holmes-Truscott, Elizabeth; Skinner, Timothy Chas; Pouwer, F

    2016-01-01

    to the model. CONCLUSIONS: Psychological insulin resistance may reflect broader distress about diabetes and concerns about its treatment but not general beliefs about medicines, depression or anxiety. Reducing diabetes distress and current treatment concerns may improve attitudes towards insulin as a potential......AIMS: To investigate the contribution of general and diabetes-specific emotional wellbeing and beliefs about medicines in the prediction of insulin therapy appraisals in adults with non-insulin-treated type 2 diabetes. METHODS: The sample included Diabetes MILES-Australia cross-sectional survey...... diabetes medications (BMQ Specific); negative insulin therapy appraisals (ITAS); depression (PHQ-9); anxiety (GAD-7), and diabetes distress (DDS-17). Factors associated with ITAS Negative scores were examined using hierarchical multiple regressions. RESULTS: Twenty-two percent of the variance in ITAS...

  5. Expression of transient receptor potential ankyrin 1 (TRPA1 and its role in insulin release from rat pancreatic beta cells.

    Directory of Open Access Journals (Sweden)

    De-Shou Cao

    Full Text Available Several transient receptor potential (TRP channels are expressed in pancreatic beta cells and have been proposed to be involved in insulin secretion. However, the endogenous ligands for these channels are far from clear. Here, we demonstrate the expression of the transient receptor potential ankyrin 1 (TRPA1 ion channel in the pancreatic beta cells and its role in insulin release. TRPA1 is an attractive candidate for inducing insulin release because it is calcium permeable and is activated by molecules that are produced during oxidative glycolysis.Immunohistochemistry, RT-PCR, and Western blot techniques were used to determine the expression of TRPA1 channel. Ca²⁺ fluorescence imaging and electrophysiology (voltage- and current-clamp techniques were used to study the channel properties. TRPA1-mediated insulin release was determined using ELISA.TRPA1 is abundantly expressed in a rat pancreatic beta cell line and freshly isolated rat pancreatic beta cells, but not in pancreatic alpha cells. Activation of TRPA1 by allyl isothiocyanate (AITC, hydrogen peroxide (H₂O₂, 4-hydroxynonenal (4-HNE, and cyclopentenone prostaglandins (PGJ₂ and a novel agonist methylglyoxal (MG induces membrane current, depolarization, and Ca²⁺ influx leading to generation of action potentials in a pancreatic beta cell line and primary cultured pancreatic beta cells. Activation of TRPA1 by agonists stimulates insulin release in pancreatic beta cells that can be inhibited by TRPA1 antagonists such as HC030031 or AP-18 and by RNA interference. TRPA1-mediated insulin release is also observed in conditions of voltage-gated Na⁺ and Ca²⁺ channel blockade as well as ATP sensitive potassium (K(ATP channel activation.We propose that endogenous and exogenous ligands of TRPA1 cause Ca²⁺ influx and induce basal insulin release and that TRPA1-mediated depolarization acts synergistically with K(ATP channel blockade to facilitate insulin release.

  6. Analysis of in vitro toxicity of five cell-penetrating peptides by metabolic profiling

    International Nuclear Information System (INIS)

    Kilk, Kalle; Mahlapuu, Riina; Soomets, Ursel; Langel, Ulo

    2009-01-01

    Cell-penetrating peptides (CPPs) are promising candidates for safe and efficient delivery vectors for a wide range of cargoes. However, any compound that is internalized into cells may affect the cell homeostasis. The plethora of possible biological responses makes large scale 'omics' studies appealing approaches for hunting any unsuspected side-effects and evaluate the toxicity of drug candidates. Here we have compared the alterations in cytosolic metabolome of CHO cells caused by five representatives of the most common CPPs: transportan (TP), penetratin (pAntp), HIV Tat derived peptide (pTat), nonaarginine (R 9 ) and model amphipathic peptide (MAP). Analysis was done by liquid chromatography-mass spectrometry techniques, principal component analysis and heatmap displays. Results showed that the intracellular metabolome was the most affected by TP followed by pTat and MAP. Only minor changes could be associated with pAntp or R 9 treatment. The cells could recover from a treatment with 5 μM TP, but no recovery was observed at higher concentration. Both metabolomic and control experiments showed that TP affected cellular redox potential, depleted energy and the pools of purines and pyrimidines. In conclusion, we have performed a metabolomic analysis comparing the safety of cell-penetrating peptides and demonstrate the toxicity of one of them.

  7. Combining insulin with metformin or an insulin secretagogue in non-obese patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Lund, Søren S; Tarnow, Lise; Frandsen, Merete

    2009-01-01

    . Patients had had type 2 diabetes for approximately 10 years. At the end of treatment, HbA(1c) concentration was reduced by a similar amount in the two treatment groups (insulin plus metformin: mean (standard deviation) HbA(1c) 8.15% (1.32) v 6.72% (0.66); insulin plus repaglinide: 8.07% (1.49) v 6.90% (0......OBJECTIVES: To study the effect of insulin treatment in combination with metformin or an insulin secretagogue, repaglinide, on glycaemic regulation in non-obese patients with type 2 diabetes. DESIGN: Randomised, double blind, double dummy, parallel trial. SETTING: Secondary care in Denmark between......% confidence interval -4.07 to -0.95). CONCLUSIONS: In non-obese patients with type 2 diabetes and poor glycaemic regulation on oral hypoglycaemic agents, overall glycaemic regulation with insulin in combination with metformin was equivalent to that with insulin plus repaglinide. Weight gain seemed less...

  8. Size of pancreas in non-insulin-dependent diabetes mellitus: a study based on CT

    International Nuclear Information System (INIS)

    Shin, Ju Won; Yoon, Soon Min; Yoon, Mi Jin; Song, Moon Gab; Kim, Yoon Suk; Yoon, Young Kyu; Jun, Se June

    1997-01-01

    To evaluate changes of pancreatic size with aging in control subjects and in non-insulin- dependent diabetic patients. Two groups of non-insulin-dependent diabetic patients were examined; one had been treated with an oral hypoglycemic agent(n=59), and the other with insulin(n=56). The CT findings of 175 patients without clinical evidence of pancreatic disease were included as a normal control. In control subjects, pancreatic size and age correlated. The pancreas was smaller in non-insulin-dependent diabetics than in control subjects and smaller in insulin- treated non-insulin-dependent diabetics than in non-insulin treated patients. The pancreas was smaller in non-insulin-dependent diabetic patients than in control subjects within the same age range

  9. Glucagon-like peptide 1 (GLP-1) suppresses ghrelin levels in humans via increased insulin secretion

    DEFF Research Database (Denmark)

    Hagemann, Dirk; Holst, Jens Juul; Gethmann, Arnica

    2007-01-01

    INTRODUCTION: Ghrelin is an orexigenic peptide predominantly secreted by the stomach. Ghrelin plasma levels rise before meal ingestion and sharply decline afterwards, but the mechanisms controlling ghrelin secretion are largely unknown. Since meal ingestion also elicits the secretion...... of the incretin hormone glucagon-like peptide 1 (GLP-1), we examined whether exogenous GLP-1 administration reduces ghrelin secretion in humans. PATIENTS AND METHODS: 14 healthy male volunteers were given intravenous infusions of GLP-1(1.2 pmol x kg(-1) min(-1)) or placebo over 390 min. After 30 min, a solid test...... meal was served. Venous blood was drawn frequently for the determination of glucose, insulin, C-peptide, GLP-1 and ghrelin. RESULTS: During the infusion of exogenous GLP-1 and placebo, GLP-1 plasma concentrations reached steady-state levels of 139+/-15 pmol/l and 12+/-2 pmol/l, respectively (p

  10. Showcasing Sustainability in Your Toxics Release Inventory Report

    Science.gov (United States)

    From a June 2012 webinar, these slides contain guidance for reporting Pollution Prevention and Source Reduction data on the Toxics Release Inventory Form R and a synopsis of EPA's use of this information.

  11. HABIT, Toxic and Radioactive Release Hazards in Reactor Control Room

    International Nuclear Information System (INIS)

    Stage, S.A.

    2005-01-01

    1 - Description of program or function: HABIT is a package of computer codes designed to be used for the evaluation of control room habitability in the event of an accidental release of toxic chemicals or radioactive materials. 2 - Methods: Given information about the design of a nuclear power plant, a scenario for the release of toxic or radionuclides, and information about the air flows and protection systems of the control room, HABIT can be used to estimate the chemical exposure or radiological dose to control room personnel

  12. Inhibition of insulin release by cyproheptadine: Effects on 3',5'-cyclic-AMP-content and /sup 45/Ca-accumulation of incubated mouse islets

    Energy Technology Data Exchange (ETDEWEB)

    Joost, H G; Beckmann, J; Lenzen, S; Hasselblatt, A [Goettingen Univ. (F.R. Germany)

    1976-01-01

    Cyproheptadine (1, 10 and 100 ..mu..m) significantly reduced insulin release from isolated mouse islets in response to glucose. In contrast, 1 mM cyproheptadine induced a large release of insulin into the incubation medium probably due to islet cell damage, since the islets had lost a considerable amount of their protein content. 3',5'-cyclic-AMP-levels of the islets were not significantly affected by 10 ..mu..M cyproheptadine in the presence as well as in the absence of theophylline (10 mM). As the inhibitory effect of cyproheptadine on insulin release was correlated with reduced accumulation of calcium-45, the agent may inhibit insulin release by interfering with the calcium handling of the ..beta..-cell.

  13. 76 FR 64022 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Science.gov (United States)

    2011-10-17

    ... Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting AGENCY: Environmental Protection Agency (EPA). ACTION: Lifting of Administrative Stay for Hydrogen Sulfide. SUMMARY: EPA is announcing... (EPCRA) section 313 toxic chemical release reporting requirements for hydrogen sulfide (Chemical...

  14. Peptide profiling of bovine kefir reveals 236 unique peptides released from caseins during its production by starter culture or kefir grains.

    Science.gov (United States)

    Ebner, Jennifer; Aşçı Arslan, Ayşe; Fedorova, Maria; Hoffmann, Ralf; Küçükçetin, Ahmet; Pischetsrieder, Monika

    2015-03-18

    Kefir has a long tradition in human nutrition due to its presupposed health promoting effects. To investigate the potential contribution of bioactive peptides to the physiological effects of kefir, comprehensive analysis of the peptide profile was performed by nano-ESI-LTQ-Orbitrap MS coupled to nano-ultrahigh-performance liquid chromatography. Thus, 257 peptides were identified, mainly released from β-casein, followed by αS1-, κ-, and αS2-casein. Most (236) peptides were uniquely detected in kefir, but not in raw milk indicating that the fermentation step does not only increase the proteolytic activity 1.7- to 2.4-fold compared to unfermented milk, but also alters the composition of the peptide fraction. The influence of the microflora was determined by analyzing kefir produced from traditional kefir grains or commercial starter culture. Kefir from starter culture featured 230 peptide sequences and showed a significantly, 1.4-fold higher proteolytic activity than kefir from kefir grains with 127 peptides. A match of 97 peptides in both varieties indicates the presence of a typical kefir peptide profile that is not influenced by the individual composition of the microflora. Sixteen of the newly identified peptides were previously described as bioactive, including angiotensin-converting enzyme (ACE)-inhibitory, antimicrobial, immunomodulating, opioid, mineral binding, antioxidant, and antithrombotic effects. The present study describes a comprehensive peptide profile of kefir comprising 257 sequences. The peptide list was used to identify 16 bioactive peptides with ACE-inhibitory, antioxidant, antithrombotic, mineral binding, antimicrobial, immunomodulating and opioid activity in kefir. Furthermore, it was shown that a majority of the kefir peptides were not endogenously present in the raw material milk, but were released from milk caseins by proteases of the microbiota and are therefore specific for the product. Consequently, the proteolytic activity and the

  15. The growth hormone (GH) response to GH-releasing peptide (His-DTrp-Ala-Trp-DPhe-Lys-NH2), GH-releasing hormone, and thyrotropin-releasing hormone in acromegaly.

    Science.gov (United States)

    Alster, D K; Bowers, C Y; Jaffe, C A; Ho, P J; Barkan, A L

    1993-09-01

    In patients with acromegaly, GH-producing pituitary tumors release GH in response to specific stimuli such as GH-releasing hormone (GHRH) and are also responsive to a variety of nonspecific stimuli, such as TRH or GnRH, and may exhibit paradoxical responses to glucose and dopamine. In healthy humans, the synthetic peptide GH-releasing peptide (GHRP) (His-D-Trp-Ala-Trp-D-Phe-Lys-NH2) releases GH by a putative mechanism of action that is independent of GHRH. How these tumors respond to GHRP is not well characterized. We studied the GH responses to GHRH, GHRP, and TRH stimulation in 11 patients with active acromegaly. The peak GH responses to GHRP and GHRH were not correlated (r = 0.57; P = 0.066). In contrast, the peak GH responses to GHRP and TRH were highly correlated (r = 0.95; P < 0.001). In conclusion, in patients with acromegaly, the GH response to GHRP is qualitatively normal and does not appear to depend on GHRH.

  16. Type 2 diabetes risk allele near CENTD2 is associated with decreased glucose-stimulated insulin release

    DEFF Research Database (Denmark)

    Nielsen, Trine; Sparsø, T; Grarup, N

    2011-01-01

    By combining multiple genome-wide association (GWA) studies and comprehensive replication efforts, 12 novel type 2 diabetes associated loci have recently been discovered. Here we evaluate the effect of lead variants of these loci on estimates of insulin release and insulin resistance derived from...

  17. TOXRISK, Toxic Gas Release Accident Analysis

    International Nuclear Information System (INIS)

    Bennett, D.E.; Chanin, D.I.; Shiver, A.W.

    1993-01-01

    1 - Description of program or function: TOXRISK is an interactive program developed to aid in the evaluation of nuclear power plant control room habitability in the event of a nearby toxic material release. The program uses a model which is consistent with the approach described in the NRC Regulatory Guide 1.78. Release of the gas is treated as an initial puff followed by a continuous plume. The relative proportions of these as well as the plume release rate are supplied by the user. Transport of the gas is modeled as a Gaussian distribution and occurs through the action of a constant velocity, constant direction wind. Great flexibility is afforded the user in specifying the release description, meteorological conditions, relative geometry of the accident and plant, and the plant ventilation system characteristics. Two types of simulation can be performed: multiple case (parametric) studies and probabilistic analyses. Upon execution, TOXRISK presents a menu, and the user chooses between the Data Base Manager, the Multiple Case program, and the Probabilistic Study Program. The Data Base Manager provides a convenient means of storing, retrieving, and modifying blocks of data required by the analysis programs. The Multiple Case program calculates resultant gas concentrations inside the control room and presents a summary of information that describes the event for each set of conditions given. Optimally, a time history profile of inside and outside concentrations can also be produced. The Probabilistic Study program provides a means for estimating the annual probability of operator incapacitation due to toxic gas accidents on surrounding transportation routes and storage sites. 2 - Method of solution: Dispersion or diffusion of the gas during transport is described by modified Pasquill-Gifford dispersion coefficients

  18. Diminished hepatic insulin removal in obesity

    International Nuclear Information System (INIS)

    Cano, I.; Salvador, J.; Rodriguez, R.; Arraiza, M.C.; Goena, M.; Barberia, J.J.; Moncada, E.

    1986-01-01

    Peripheral insulin and C-peptide levels during oral glucose load were measured in 20 obese and 23 normal weight nondiabetic subjects. The fasting C-peptide to insulin molar ratios (Cp/I), as well as the relation between incremental areas of the two polypeptides (ACp-AI)/ACp, were used as relative measures of the hepatic insulin extraction (HIE). The insulin and C-peptide basal levels as well as incremental areas under plasma curves were higher in the obese subjects (P<0.001). HIE was lower in obeses than in controls assessed in the fasting state (P<0.05), as well as after glucose load (P<0.001). Nevertheless, obeses and controls with similar insulin fasting levels showed identical hepatic insulin extraction in fasting or after glucose load. HIE was independent of obesity degree, but was related to insulin basal levels (r=-0.60, P<0.01). This study suggests the hypothesis that the decreased hepatic insulin extraction in obeses is a result of the chronically increased insulin delivery to the liver and is not a consequence of obesity, although a contributory role cannot be ruled out

  19. Diminished hepatic insulin removal in obesity

    Energy Technology Data Exchange (ETDEWEB)

    Cano, I; Salvador, J; Rodriguez, R; Arraiza, M C; Goena, M; Barberia, J J; Moncada, E

    1986-01-01

    Peripheral insulin and C-peptide levels during oral glucose load were measured in 20 obese and 23 normal weight nondiabetic subjects. The fasting C-peptide to insulin molar ratios (Cp/I), as well as the relation between incremental areas of the two polypeptides (ACp-AI)/ACp, were used as relative measures of the hepatic insulin extraction (HIE). The insulin and C-peptide basal levels as well as incremental areas under plasma curves were higher in the obese subjects (P<0.001). HIE was lower in obeses than in controls assessed in the fasting state (P<0.05), as well as after glucose load (P<0.001). Nevertheless, obeses and controls with similar insulin fasting levels showed identical hepatic insulin extraction in fasting or after glucose load. HIE was independent of obesity degree, but was related to insulin basal levels (r=-0.60, P<0.01). This study suggests the hypothesis that the decreased hepatic insulin extraction in obeses is a result of the chronically increased insulin delivery to the liver and is not a consequence of obesity, although a contributory role cannot be ruled out.

  20. Effects of exercise training on glucose control, lipid metabolism, and insulin sensitivity in hypertriglyceridemia and non-insulin dependent diabetes mellitus.

    Science.gov (United States)

    Lampman, R M; Schteingart, D E

    1991-06-01

    Exercise training has potential benefits for patients with hyperlipidemia and/or non-insulin dependent diabetes mellitus. In nondiabetic, nonobese subjects with hypertriglyceridemia, exercise training alone increased insulin sensitivity, improved glucose tolerance, and lowered serum triglyceride and cholesterol levels. These improvements did not occur when exercise training alone was given to similar patients with impaired glucose tolerance. In severely obese (X = 125 kg) subjects without diabetes melitus, a 600 calorie diet alone decreased glucose and insulin concentrations and improved glucose tolerance but did not increase insulin sensitivity. The addition of exercise training improved insulin sensitivity. Obese, non-insulin dependent diabetes mellitus subjects on sulfonylurea therapy alone increased insulin levels but failed to improve insulin sensitivity or glucose levels. In contrast, the addition of exercise training to this medication resulted in improved insulin sensitivity and lowered glucose levels. We conclude that exercise training has major effects on lowering triglyceride levels in hyperlipidemic subjects and can potentiate the effect of diet or drug therapy on glucose metabolism in patients with non-insulin dependent diabetes mellitus.

  1. The relationship between the connecting peptide of recombined single chain insulin and its biological function

    Institute of Scientific and Technical Information of China (English)

    HUANG; Yiding; (

    2001-01-01

    [1]Straus, D. S., Growth-stimulatory of insulin in vitro and in vivo, Endocr. Rev., 1984, 5(2): 356-369.[2]Svenningsen, A. F., Kanje, M., Insulin and the insulin-like growth factors I and II are mitogenic to cultured rat sciatic nerve segments and stimulate [3H] thuymidine incorporation through their respective receptors, Glia, 1996, 18(1): 68-72.[3]Ogihara, S., Yamada, M., Saito, T. et al., Insulin potentiates mitogenic effect of epidermal growth factor on cultured guinea pig gastric mucous cells, Am. J. Physiol., 1996, 271(1 Pt 1): G104-121.[4]Steiner, D. F., Oyer, P. E., The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma, Proc. Nalt. Acad. Sci. USA, 1967, 57(2): 473-480.[5]King, G. L., Kahn, C. R., The growth-promoting effects of insulin, in Growth and Maturation Factors(ed. Guroff, G.), New York: John Wiley & Sons, 1984, 223-265.[6]Peavy, D. E., Brunner, M. R., Duckworth, W. C. et al., Receptor binding and biological potency of several split forms (conversion intermediates) of human proinsulin, Studies in cultured IM-9 lymphocytes and in vivo and in vitro in rats, J. Biol. Chem., 1985, 260: 13989-13994.[7]Derewenda, U., Derewenda, Z., Dodson, E. J. et al., X-ray analysis of the single chain B29-A1 peptide-linked insulin molecule. A completely inactive analogue, J. Mol. Biol., 1991, 220: 425-433.[8]Hua, Q. X., Shoelson, S. E., Kochoyan, M. et al., Receptor binding redefined by a structural switch in a mutant human insulin, Nature, 1991, 354: 238-241.[9]Hua, Q. X., Gozani, S. N., Chance, R. E. et al., Structure of a protein in a kinetic trap, Nat. Struc. Boil, 1995, 2: 129-138.[10]Kristensen, C., Andersen, A. S., Hach, M., A single-chain insulin-like growth factor I/insulin hybrid binds with high affinity to the insulin receptor, Biochem. J., 1995, 305: 981-986.[11]Humbel, R. E., Insulin-like growth factors I and II, Euro. J. Biochem., 1990, 190: 445-462.[12]Cooke, R. M

  2. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation

    Science.gov (United States)

    Liu, Liyao; Zhou, Cuiping; Xia, Xuejun; Liu, Yuling

    2016-01-01

    Purpose Here, we investigated the formation and functional properties of self-assembled lecithin/chitosan nanoparticles (L/C NPs) loaded with insulin following insulin–phospholipid complex preparation, with the aim of developing a method for oral insulin delivery. Methods Using a modified solvent-injection method, insulin-loaded L/C NPs were obtained by combining insulin–phospholipid complexes with L/C NPs. The nanoparticle size distribution was determined by dynamic light scattering, and morphologies were analyzed by cryogenic transmission electron microscopy. Fourier transform infrared spectroscopy analysis was used to disclose the molecular mechanism of prepared insulin-loaded L/C NPs. Fast ultrafiltration and a reversed-phase high-performance liquid chromatography assay were used to separate free insulin from insulin entrapped in the L/C NPs, as well as to measure the insulin-entrapment and drug-loading efficiencies. The in vitro release profile was obtained, and in vivo hypoglycemic effects were evaluated in streptozotocin-induced diabetic rats. Results Our results indicated that insulin-containing L/C NPs had a mean size of 180 nm, an insulin-entrapment efficiency of 94%, and an insulin-loading efficiency of 4.5%. Cryogenic transmission electron microscopy observations of insulin-loaded L/C NPs revealed multilamellar structures with a hollow core, encircled by several bilayers. In vitro analysis revealed that insulin release from L/C NPs depended on the L/C ratio. Insulin-loaded L/C NPs orally administered to streptozotocin-induced diabetic rats exerted a significant hypoglycemic effect. The relative pharmacological bioavailability following oral administration of L/C NPs was 6.01%. Conclusion With the aid of phospholipid-complexation techniques, some hydrophilic peptides, such as insulin, can be successfully entrapped into L/C NPs, which could improve oral bioavailability, time-dependent release, and therapeutic activity. PMID:26966360

  3. The type 2 diabetes associated minor allele of rs2237895 KCNQ1 associates with reduced insulin release following an oral glucose load.

    Directory of Open Access Journals (Sweden)

    Johan Holmkvist

    Full Text Available BACKGROUND: Polymorphisms in the potassium channel, voltage-gated, KQT-like subfamily, member 1 (KCNQ1 have recently been reported to associate with type 2 diabetes. The primary aim of the present study was to investigate the putative impact of these KCNQ1 polymorphisms (rs2283228, rs2237892, rs2237895, and rs2237897 on estimates of glucose stimulated insulin release. METHODOLOGY/PRINCIPAL FINDINGS: Genotypes were examined for associations with serum insulin levels following an oral glucose tolerance test (OGTT in a population-based sample of 6,039 middle-aged and treatment-naïve individuals. Insulin release indices estimated from the OGTT and the interplay between insulin sensitivity and insulin release were investigated using linear regression and Hotelling T2 analyses. Applying an additive genetic model the minor C-allele of rs2237895 was associated with reduced serum insulin levels 30 min (mean+/-SD: (CC 277+/-160 vs. (AC 280+/-164 vs. (AA 299+/-200 pmol/l, p = 0.008 after an oral glucose load, insulinogenic index (29.6+/-17.4 vs. 30.2+/-18.7vs. 32.2+/-22.1, p = 0.007, incremental area under the insulin curve (20,477+/-12,491 vs. 20,503+/-12,386 vs. 21,810+/-14,685, p = 0.02 among the 4,568 individuals who were glucose tolerant. Adjustment for the degree of insulin sensitivity had no effect on the measures of reduced insulin release. The rs2237895 genotype had a similar impact in the total sample of treatment-naïve individuals. No association with measures of insulin release were identified for the less common diabetes risk alleles of rs2237892, rs2237897, or rs2283228. CONCLUSION: The minor C-allele of rs2237895 of KCNQ1, which has a prevalence of about 42% among Caucasians was associated with reduced measures of insulin release following an oral glucose load suggesting that the increased risk of type 2 diabetes, previously reported for this variant, likely is mediated through an impaired beta cell function.

  4. The Cytotoxicity, Characteristics, and Optimization of Insulin-loaded Nanoparticles

    Directory of Open Access Journals (Sweden)

    Yasemin Budama-Kilinc

    2017-04-01

    Full Text Available Controlled release systems for insulin are frequent subjects of research, because it is rapidly degraded by proteolytic enzymes in the gastrointestinal tract and minimally absorbed after oral administration. Controlled release systems also provide significant contribution to its stability.  Different techniques are used for the preparation of drug-loaded nanoparticles, and many novel techniques are being developed. The size and morphology of insulin-loaded nanoparticles may vary according to performed techniques, even if the same polymer is used. The aim of this study was to demonstrate the cytotoxicity of insulin loaded nanoparticles and the effect of various synthesis parameters on the particle size, polydispersity index (PdI, loading efficiency, and particle morphology. In the experiments, poly(lactic-co-glycolic acid (PLGA and insulin-loaded PLGA nanoparticles were prepared using the double emulsion (w/o/w method. The characterization of the nanoparticles were performed with a UV spectrometer, the Zeta-sizer system, FTIR spectroscopy, and a scanning probe microscope. Cell toxicity of different concentrations was assayed with MTT methods on L929 fibroblast cells. The optimum size of the insulin-loaded PLGA nanoparticle was obtained with a 96.5% encapsulation efficiency, a 224.5 nm average particle size, and a 0.063 polydispersity index. This study obtained and characterized spherical morphology, determined that the nanoparticles have very low toxicity, and showed the effect of different parameters on particle size and polydispersity. DOI: http://dx.doi.org/10.17807/orbital.v9i1.934 

  5. U.S./Mexico Border environmental study toxics release inventory data, 1988--1992

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, R.F.; LoPresti, C.A.

    1996-02-01

    This is a report on industrial toxic chemical releases and transfers based on information reported to the Toxics Release Inventory (TRI), a database maintained by the USEPA. This document discusses patterns of toxic chemical releases to the atmosphere, to water, to the land, and to underground injection; and transfers of toxic chemicals to Publicly Owned Treatment Works (POTW), and for disposal, treatment and other off-site transfers during the TRI reporting years 1988--1992. Geographic coverage is limited to the US side of the ``Border Area``, the geographic area situated within 100 km of the US/Mexico international boundary. A primary purpose of this study is to provide background information that can be used in the future development of potential ``indicator variables`` for tracking environmental and public health status in the Border Area in conjunction with the implementation of the North American Free Trade Agreement (NAFTA).

  6. Glucagon-Like Peptide 1 Recruits Muscle Microvasculature and Improves Insulin’s Metabolic Action in the Presence of Insulin Resistance

    Science.gov (United States)

    Chai, Weidong; Zhang, Xingxing; Barrett, Eugene J.

    2014-01-01

    Glucagon-like peptide 1 (GLP-1) acutely recruits muscle microvasculature, increases muscle delivery of insulin, and enhances muscle use of glucose, independent of its effect on insulin secretion. To examine whether GLP-1 modulates muscle microvascular and metabolic insulin responses in the setting of insulin resistance, we assessed muscle microvascular blood volume (MBV), flow velocity, and blood flow in control insulin-sensitive rats and rats made insulin-resistant acutely (systemic lipid infusion) or chronically (high-fat diet [HFD]) before and after a euglycemic-hyperinsulinemic clamp (3 mU/kg/min) with or without superimposed systemic GLP-1 infusion. Insulin significantly recruited muscle microvasculature and addition of GLP-1 further expanded muscle MBV and increased insulin-mediated glucose disposal. GLP-1 infusion potently recruited muscle microvasculature in the presence of either acute or chronic insulin resistance by increasing muscle MBV. This was associated with an increased muscle delivery of insulin and muscle interstitial oxygen saturation. Muscle insulin sensitivity was completely restored in the presence of systemic lipid infusion and significantly improved in rats fed an HFD. We conclude that GLP-1 infusion potently expands muscle microvascular surface area and improves insulin’s metabolic action in the insulin-resistant states. This may contribute to improved glycemic control seen in diabetic patients receiving incretin-based therapy. PMID:24658303

  7. Lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan as a new strategy for oral delivery of insulin: in vitro, ex vivo and in vivo characterizations.

    Science.gov (United States)

    Mahjub, Reza; Radmehr, Moojan; Dorkoosh, Farid Abedin; Ostad, Seyed Naser; Rafiee-Tehrani, Morteza

    2014-12-01

    The purpose of this research was the development, in vitro, ex vivo and in vivo characterization of lyophilized insulin nanoparticles prepared from quaternized N-aryl derivatives of chitosan. Insulin nanoparticles were prepared from methylated N-(4-N,N-dimethylaminobenzyl), methylated N-(4 pyridinyl) and methylated N-(benzyl). Insulin nanoparticles containing non-modified chitosan and also trimethyl chiotsan (TMC) were also prepared as control. The effects of the freeze-drying process on physico-chemical properties of nanoparticles were investigated. The release of insulin from the nanoparticles was studied in vitro. The mechanism of the release of insulin from different types of nanoparticles was determined using curve fitting. The secondary structure of the insulin released from the nanoparticles was analyzed using circular dichroism and the cell cytotoxicity of nanoparticles on a Caco-2 cell line was determined. Ex vivo studies were performed on excised rat jejunum using Frantz diffusion cells. In vivo studies were performed on diabetic male Wistar rats and blood glucose level and insulin serum concentration were determined. Optimized nanoparticles with proper physico-chemical properties were obtained. The lyophilization process was found to cause a decrease in zeta potential and an increase in PdI as well as and a decrease in entrapment efficiency (EE%) and loading efficiency (LE%) but conservation in size of nanoparticles. Atomic force microscopy (AFM) images showed non-aggregated, stable and spherical to sub-spherical nanoparticles. The in vitro release study revealed higher release rates for lyophilized compared to non-lyophilized nanoparticles. Cytotoxicity studies on Caco-2 cells revealed no significant cytotoxicity for prepared nanoparticles after 3-h post-incubation but did show the concentration-dependent cytotoxicity after 24 h. The percentage of cumulative insulin determined from ex vivo studies was significantly higher in nanoparticles prepared

  8. Polyacrylamide gel electrophoretic preparation of labelled and non-labelled peptides for radioimmunoassay

    International Nuclear Information System (INIS)

    Besch, W.; Woltanski, K.P.; Keilacker, H.; Kohnert, K.D.

    1986-01-01

    Radioiodinated polypeptide hormones, such as insulin, glucagon, human growth hormone, and human C-peptide are employed for radioimmunoassays for investigation of hormonal alterations in states of disturbed carbohydrate metabolism. Iodination was performed using chloramine T. Iodination products of these polypeptide hormones and, for preparation of standard material, native human C-peptide from cadaver pancreases were fractionated by polyacrylamide gel electrophoresis at pH 8.9. Disc electrophoresis in 24 cm long gel rods resulted in stable tracers with high specific activity as well as homogeneous standard material being highly suitable for radioimmunoassays. (author)

  9. Oral glutamine increases circulating glucagon-like peptide 1, glucagon, and insulin concentrations in lean, obese, and type 2 diabetic subjects

    DEFF Research Database (Denmark)

    Greenfield, Jerry R; Farooqi, I Sadaf; Keogh, Julia M

    2008-01-01

    objective was to determine whether glutamine increases circulating GLP-1 and GIP concentrations in vivo and, if so, whether this is associated with an increase in plasma insulin. DESIGN: We recruited 8 healthy normal-weight volunteers (LEAN), 8 obese individuals with type 2 diabetes or impaired glucose...... plasma insulin concentrations. Glutamine stimulated glucagon secretion in all 3 study groups. CONCLUSION: Glutamine effectively increases circulating GLP-1, GIP, and insulin concentrations in vivo and may represent a novel therapeutic approach to stimulating insulin secretion in obesity and type 2......BACKGROUND: Incretin hormones, such as glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), play an important role in meal-related insulin secretion. We previously demonstrated that glutamine is a potent stimulus of GLP-1 secretion in vitro. OBJECTIVE: Our...

  10. Release of Periplasmic Nucleotidase Induced by Human Antimicrobial Peptide in E. coli Causes Accumulation of the Immunomodulator Adenosine.

    Directory of Open Access Journals (Sweden)

    Andreia Bergamo Estrela

    Full Text Available Previous work by our group described that human β-defensin-2 induces accumulation of extracellular adenosine (Ado in E. coli cultures through a non-lytic mechanism causing severe plasmolysis. Here, we investigate the presence of AMP as a direct precursor and the involvement of a bacterial enzyme in the generation of extracellular Ado by treated bacteria. Following hBD-2 treatment, metabolites were quantified in the supernatants using targeted HPLC-MS/MS analysis. Microbial growth was monitored by optical density and cell viability was determined by colony forming units counts. Phosphatase activity was measured using chromogenic substrate pNPP. The results demonstrate that defensin-treated E. coli strain W releases AMP in the extracellular space, where it is converted to Ado by a bacterial soluble factor. An increase in phosphatase activity in the supernatant was observed after peptide treatment, similar to the effect of sucrose-induced osmotic stress, suggesting that the periplasmic 5'nucleotidase (5'-NT is released following the plasmolysis event triggered by the peptide. Ado accumulation was enhanced in the presence of Co2+ ion and inhibited by EDTA, further supporting the involvement of a metallo-phosphatase such as 5'-NT in extracellular AMP conversion into Ado. The comparative analysis of hBD-induced Ado accumulation in different E. coli strains and in Pseudomonas aeruginosa revealed that the response is not correlated to the peptide's effect on cell viability, but indicates it might be dependent on the subcellular distribution of the nucleotidase. Taken together, these data shed light on a yet undescribed mechanism of host-microbial interaction: a human antimicrobial peptide inducing selective release of a bacterial enzyme (E. coli 5'-NT, leading to the formation of a potent immunomodulator metabolite (Ado.

  11. Further studies on the structural requirements for mast cell degranulating (MCD) peptide-mediated histamine release.

    Science.gov (United States)

    Buku, A; Price, J A

    2001-12-01

    Mast cell degranulating (MCD) peptide was modified in its two disulfide bridges and in the two arginine residues in order to measure the ability of these analogs to induce histamine release from mast cells in vitro. Analogs prepared were [Ala(3,15)]MCD, [Ala(5,19)]MCD, [Orn(16)]MCD, and [Orn(7,16)]MCD. Their histamine-releasing activity was determined spectrofluorometrically with peritoneal mast cells. The monocyclic analogs in which the cysteine residues were replaced pairwise with alanine residues showed three-to ten-fold diminished histamine-releasing activity respectively, compared with the parent MCD peptide. Substantial increases in activity were observed where arginine residues were replaced by ornithines. The ornithine-mono substituted analog showed an almost six-fold increase and the ornithine-doubly substituted analog three-fold increase in histamine-releasing activity compared with the parent MCD peptide. The structural changes associated with these activities were followed by circular dichroism (CD) spectroscopy. Changes in the shape and ellipticity of the CD spectra reflected a role for the disulfide bonds and the two arginine residues in the overall conformation and biological activity of the molecule.

  12. Patterns of Nucleotide Diversity at the Regions Encompassing the Drosophila Insulin-Like Peptide (dilp) Genes: Demography vs. Positive Selection in Drosophila melanogaster

    Science.gov (United States)

    Guirao-Rico, Sara; Aguadé, Montserrat

    2013-01-01

    In Drosophila, the insulin-signaling pathway controls some life history traits, such as fertility and lifespan, and it is considered to be the main metabolic pathway involved in establishing adult body size. Several observations concerning variation in body size in the Drosophila genus are suggestive of its adaptive character. Genes encoding proteins in this pathway are, therefore, good candidates to have experienced adaptive changes and to reveal the footprint of positive selection. The Drosophila insulin-like peptides (DILPs) are the ligands that trigger the insulin-signaling cascade. In Drosophila melanogaster, there are several peptides that are structurally similar to the single mammalian insulin peptide. The footprint of recent adaptive changes on nucleotide variation can be unveiled through the analysis of polymorphism and divergence. With this aim, we have surveyed nucleotide sequence variation at the dilp1-7 genes in a natural population of D. melanogaster. The comparison of polymorphism in D. melanogaster and divergence from D. simulans at different functional classes of the dilp genes provided no evidence of adaptive protein evolution after the split of the D. melanogaster and D. simulans lineages. However, our survey of polymorphism at the dilp gene regions of D. melanogaster has provided some evidence for the action of positive selection at or near these genes. The regions encompassing the dilp1-4 genes and the dilp6 gene stand out as likely affected by recent adaptive events. PMID:23308258

  13. Cyclodextrin-insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery.

    Science.gov (United States)

    Sajeesh, S; Sharma, Chandra P

    2006-11-15

    Present investigation was aimed at developing an oral insulin delivery system based on hydroxypropyl beta cyclodextrin-insulin (HPbetaCD-I) complex encapsulated polymethacrylic acid-chitosan-polyether (polyethylene glycol-polypropylene glycol copolymer) (PMCP) nanoparticles. Nanoparticles were prepared by the free radical polymerization of methacrylic acid in presence of chitosan and polyether in a solvent/surfactant free medium. Dynamic light scattering (DLS) experiment was conducted with particles dispersed in phosphate buffer (pH 7.4) and size distribution curve was observed in the range of 500-800 nm. HPbetaCD was used to prepare non-covalent inclusion complex with insulin and complex was analyzed by Fourier transform infrared (FTIR) and fluorescence spectroscopic studies. HPbetaCD complexed insulin was encapsulated into PMCP nanoparticles by diffusion filling method and their in vitro release profile was evaluated at acidic/alkaline pH. PMCP nanoparticles displayed good insulin encapsulation efficiency and release profile was largely dependent on the pH of the medium. Enzyme linked immunosorbent assay (ELISA) study demonstrated that insulin encapsulated inside the particles was biologically active. Trypsin inhibitory effect of PMCP nanoparticles was evaluated using N-alpha-benzoyl-L-arginine ethyl ester (BAEE) and casein as substrates. Mucoadhesive studies of PMCP nanoparticles were conducted using freshly excised rat intestinal mucosa and the particles were found fairly adhesive. From the preliminary studies, cyclodextrin complexed insulin encapsulated mucoadhesive nanoparticles appear to be a good candidate for oral insulin delivery.

  14. Bioaccessible peptides released by in vitro gastrointestinal digestion of fermented goat milks.

    Science.gov (United States)

    Moreno-Montoro, Miriam; Jauregi, Paula; Navarro-Alarcón, Miguel; Olalla-Herrera, Manuel; Giménez-Martínez, Rafael; Amigo, Lourdes; Miralles, Beatriz

    2018-06-01

    In this study, ultrafiltered goat milks fermented with the classical starter bacteria Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarus subsp. thermophilus or with the classical starter plus the Lactobacillus plantarum C4 probiotic strain were analyzed using ultra-high performance liquid chromatography-quadrupole-time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) and/or high performance liquid chromatography-ion trap (HPLC-IT-MS/MS). Partial overlapping of the identified sequences with regard to fermentation culture was observed. Evaluation of the cleavage specificity suggested a lower proteolytic activity of the probiotic strain. Some of the potentially identified peptides had been previously reported as angiotensin-converting enzyme (ACE) inhibitory, antioxidant, and antibacterial and might account for the in vitro activity previously reported for these fermented milks. Simulated digestion of the products was conducted in the presence of a dialysis membrane to retrieve the bioaccessible peptide fraction. Some sequences with reported physiological activity resisted digestion but were found in the non-dialyzable fraction. However, new forms released by digestion, such as the antioxidant α s1 -casein 144 YFYPQL 149 , the antihypertensive α s2 -casein 90 YQKFPQY 96 , and the antibacterial α s2 -casein 165 LKKISQ 170 , were found in the dialyzable fraction of both fermented milks. Moreover, in the fermented milk including the probiotic strain, the k-casein dipeptidyl peptidase IV inhibitor (DPP-IV) 51 INNQFLPYPY 60 as well as additional ACE inhibitory or antioxidant sequences could be identified. With the aim of anticipating further biological outcomes, quantitative structure activity relationship (QSAR) analysis was applied to the bioaccessible fragments and led to potential ACE inhibitory sequences being proposed. Graphical abstract Ultrafiltered goat milks were fermented with the classical starter bacteria (St) and with St plus the

  15. Insulin-like growth factors: assay methods and their implications

    International Nuclear Information System (INIS)

    Guyda, H.J.; Posner, B.I.; Schiffrin, A.; Rappaport, R.; Postel-Vinay, M.C.; Corvol, M.T.

    1981-01-01

    The insulin-like growth factors (IGF's) are small molecular weight peptides (6-10 x 10 3 daltons) that circulate in blood plasma almost entirely bound to macromolecular carrier proteins. The growth-promoting and insulin-like activities of IGF's can be explained by the observed ability of these peptides to interact with the IGF receptor on the one hand and with the insulin receptor on the other. These observations have led to the establishment of radioreceptor assays (RRA's), competitive protein binding assays (CPBA's), and more recently radioimmunoassays (RIA's) for the IGF's that have different specificities. Because of their ease of performance and sensitivity, the radioligand assays have largely supplanted the biological assays originally utilized to identify and characterize these anabolic peptides. In this report the authors' studies are summarised which utilize a slightly acidic IGF which has been purified on the basis of its insulin-like activity in an insulin RRA and which was termed ILAs. They refer to purified insulin-like peptides that have the properties of a somatomedin by the generic term insulin-like growth factor (IGF). Somatomedin (SM) activity will be utilized to connote that activity in plasma or serum determined by bioassay. The competitive dose-response curves for IGF peptides in the insulin RRA as well as those in the ILAs RRA are presented. A combination of bioassays, RRA and RIA were employed to assess somatomedin activity and IGF peptide levels in a number of clinical circumstances. The correlations are discussed. (Auth.)

  16. The impact of extended release exenatide as adjuvant therapy on hemoglobin A1C, weight, and total daily dose of insulin in patients with type 2 diabetes mellitus using U-500 insulin.

    Science.gov (United States)

    Farwig, Phillip A; Zielinski, Angela J; Accursi, Mallory L; Burant, Christopher J

    2017-12-01

    To evaluate the efficacy and safety of adjuvant exenatide extended release (ER) therapy in patients treated with regular U-500 insulin. In this retrospective chart review at an ambulatory care center in the Midwest, 18 patients with type 2 diabetes being treated with regular U-500 insulin and adjuvant exenatide ER were identified. These patients were evaluated for outcomes following the addition of exenatide ER. The primary outcome was change in HbA 1C from baseline to 3, 6, and 12months. Secondary outcomes included change in weight, total daily dose (TDD) of insulin, and hypoglycemia. Repeated measures ANOVA was performed to assess the differences in mean scores over four time periods. A total of 18 of 50 patients met inclusion criteria with sufficient data to be included in analysis. HbA 1C showed non-significant findings from baseline to 12months (8.08% vs. 8.23%; p=0.75). A non-significant, modest weight loss occurred (146.4kgvs. 144.2kg; -2.2kg; p=0.31). A significant decrease in TDD of insulin was observed (378 units vs. 326 units; p1). There was a trend towards hypoglycemia from baseline to month 3 post addition of exenatide ER (0.33 events vs. 1.33 events; p=0.055). In patients treated with regular U-500 insulin, adjuvant exenatide ER therapy showed no significant improvement in HbA 1C , but did show modest weight loss as well as decreased insulin requirements to achieve a HbA 1C that was comparable to baseline. Published by Elsevier B.V.

  17. Gastrin-releasing peptide receptor imaging in human breast carcinoma versus immunohistochemistry

    NARCIS (Netherlands)

    de Wiele, Christophe Van; Phonteyne, Philippe; Pauwels, Patrick; Goethals, Ingeborg; Van den Broecke, Rudi; Cocquyt, Veronique; Dierckx, Rudi Andre

    This study reports on the uptake of (99m)Tc-RP527 by human breast carcinoma and its relationship to gastrin-releasing peptide receptor (GRIP-R) expression as measured by immunohistochemistry (IHC). Methods: Nine patients referred because of a clinical diagnosis suggestive of breast carcinoma and 5

  18. The glucagon-like peptide 1 analogue Exendin-4 attenuates the nicotine-induced locomotor stimulation, accumbal dopamine release, conditioned place preference as well as the expression of locomotor sensitization in mice.

    Directory of Open Access Journals (Sweden)

    Emil Egecioglu

    Full Text Available The gastrointestinal peptide glucagon-like peptide 1 (GLP-1 is known to regulate consummatory behavior and is released in response to nutrient ingestion. Analogues of this peptide recently emerged as novel pharmacotherapies for treatment of type II diabetes since they reduce gastric emptying, glucagon secretion as well as enhance glucose-dependent insulin secretion. The findings that GLP-1 targets reward related areas including mesolimbic dopamine areas indicate that the physiological role of GLP-1 extends beyond food intake and glucose homeostasis control to include reward regulation. The present series of experiments was therefore designed to investigate the effects of the GLP-1 receptor agonist, Exendin-4 (Ex4, on established nicotine-induced effects on the mesolimbic dopamine system in mice. Specifically, we show that treatment with Ex4, at a dose with no effect per se, attenuate nicotine-induced locomotor stimulation, accumbal dopamine release as well as the expression of conditioned place preference in mice. In accordance, Ex4 also blocks nicotine-induced expression of locomotor sensitization in mice. Given that development of nicotine addiction largely depends on the effects of nicotine on the mesolimbic dopamine system these findings indicate that the GLP-1 receptor may be a potential target for the development of novel treatment strategies for nicotine cessations in humans.

  19. Insulin-like peptide response to nutritional input in honey bee workers.

    Science.gov (United States)

    Ihle, Kate E; Baker, Nicholas A; Amdam, Gro V

    2014-10-01

    The rise in metabolic disorders in the past decades has heightened focus on achieving a healthy dietary balance in humans. This is also an increasingly important issue in the management of honey bees (Apis mellifera) where poor nutrition has negative effects on health and productivity in agriculture, and nutrition is suggested as a contributing factor in the recent global declines in honey bee populations. As in other organisms, the insulin/insulin-like signaling (IIS) pathway is likely involved in maintaining nutrient homeostasis in honey bees. Honey bees have two insulin-like peptides (Ilps) with differing spatial expression patterns in the fat body suggesting that AmIlp1 potentially functions in lipid metabolism while AmIlp2 is a more general indicator of nutritional status. We fed caged worker bees artificial diets high in carbohydrates, proteins or lipids and measured expression of AmIlp1, AmIlp2, and the insulin receptor substrate (IRS) to test their responses to dietary macronutrients. We also measured lifespan, worker weight and gustatory sensitivity to sugar as measures of individual physical condition. We found that expression of AmIlp1 was affected by diet composition and was highest on a diet high in protein. Expression of AmIlp2 and AmIRS were not affected by diet. Workers lived longest on a diet high in carbohydrates and low in protein and lipids. However, bees fed this diet weighed less than those that received a diet high in protein and low in carbohydrates and lipids. Bees fed the high carbohydrates diet were also more responsive to sugar, potentially indicating greater levels of hunger. These results support a role for AmIlp1 in nutritional homeostasis and provide new insight into how unbalanced diets impact individual honey bee health. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Immunological half-life of porcine proinsulin C-peptide

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, H; Horino, M; Matsumura, S [Kawasaki Medical Coll., Kurashiki (Japan). Div. of Endocrinology; Kobayshi, K; Suetsugu, N [Yamaguchi Univ., Ube (Japan). School of Medicine

    1975-11-01

    Immunological half-lifes of injected porcine C-peptide and insulin with RIA were studied and calculated as 9.8 and 8.0 minutes. Higher circulating levels of C-peptide as compared to insulin in normal young swines lead to speculation about a longer half-life of C-peptide. This hypothesis was verified in this study. Immunological half-lifes of porcine proinsulin and insulin in the pig were 20 and 6 minutes, respectively.

  1. Fasting insulin, insulin resistance, and risk of cardiovascular or all-cause mortality in non-diabetic adults: a meta-analysis.

    Science.gov (United States)

    Zhang, Xiaohong; Li, Jun; Zheng, Shuiping; Luo, Qiuyun; Zhou, Chunmei; Wang, Chaoyang

    2017-10-31

    Studies on elevated fasting insulin or insulin resistance (IR) and cardiovascular or all-cause mortality risk in non-diabetic individuals have yielded conflicting results. This meta-analysis aimed to evaluate the association of elevated fasting insulin levels or IR as defined by homeostasis model assessment of IR (HOMA-IR) with cardiovascular or all-cause mortality in non-diabetic adults. We searched for relevant studies in PubMed and Emabse databases until November 2016. Only prospective observational studies investigating the association of elevated fasting insulin levels or HOMA-IR with cardiovascular or all-cause mortality risk in non-diabetic adults were included. Risk ratio (RR) with its 95% confidence intervals (CIs) was pooled for the highest compared with the lowest category of fasting insulin levels or HOMA-IR. Seven articles involving 26976 non-diabetic adults were included. The pooled, adjusted RR of all-cause mortality comparing the highest with the lowest category was 1.13 (95% CI: 1.00-1.27; P =0.058) for fasting insulin levels and 1.34 (95% CI: 1.11-1.62; P =0.002) for HOMA-IR, respectively. When comparing the highest with the lowest category, the pooled adjusted RR of cardiovascular mortality was 2.11 (95% CI: 1.01-4.41; P =0.048) for HOMA-IR in two studies and 1.40 (95% CI: 0.49-3.96; P =0.526) for fasting insulin levels in one study. IR as measured by HOMA-IR but not fasting insulin appears to be independently associated with greater risk of cardiovascular or all-cause mortality in non-diabetic adults. However, the association of fasting insulin and HOMA-IR with cardiovascular mortality may be unreliable due to the small number of articles included. © 2017 The Author(s).

  2. pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery.

    Science.gov (United States)

    Mukhopadhyay, Piyasi; Chakraborty, Souma; Bhattacharya, Sourav; Mishra, Roshnara; Kundu, P P

    2015-01-01

    Chitosan-alginate (CS/ALG) nanoparticles were prepared by formation of an ionotropic pre-gelation of an alginate (ALG) core entrapping insulin, followed by chitosan (CS) polyelectrolyte complexation, for successful oral insulin administration. Mild preparation process without harsh chemicals is aimed at improving insulin bio-efficiency in in vivo model. The nanoparticles showed an average particle size of 100-200 nm in dynamic light scattering (DLS), with almost spherical or sub-spherical shape and ∼ 85% of insulin encapsulation. Again, retention of almost entire amount of encapsulated insulin in simulated gastric buffer followed by its sustained release in simulated intestinal condition proved its pH sensitivity in in vitro release studies. Significant hypoglycemic effects with improved insulin-relative bioavailability (∼ 8.11%) in in vivo model revealed the efficacy of these core-shell nanoparticles of CS/ALG as an oral insulin carrier. No systemic toxicity was found after its peroral treatment, suggesting these core-shell nanoparticles as a promising device for potential oral insulin delivery. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Delivery systems for antimicrobial peptides

    DEFF Research Database (Denmark)

    Nordström, Randi; Malmsten, Martin

    2017-01-01

    Due to rapidly increasing resistance development against conventional antibiotics, finding novel approaches for the treatment of infections has emerged as a key health issue. Antimicrobial peptides (AMPs) have attracted interest in this context, and there is by now a considerable literature...... on the identification such peptides, as well as on their optimization to reach potent antimicrobial and anti-inflammatory effects at simultaneously low toxicity against human cells. In comparison, delivery systems for antimicrobial peptides have attracted considerably less interest. However, such delivery systems...... are likely to play a key role in the development of potent and safe AMP-based therapeutics, e.g., through reducing chemical or biological degradation of AMPs either in the formulation or after administration, by reducing adverse side-effects, by controlling AMP release rate, by promoting biofilm penetration...

  4. New peptides players in metabolic disorders

    Directory of Open Access Journals (Sweden)

    Agata Mierzwicka

    2016-08-01

    Full Text Available Among new peptides responsible for the pathogenesis of metabolic disorders and carbohydrate metabolism, adipokines are of great importance. Adipokines are substances of hormonal character, secreted by adipose tissue. Apart from the well-known adipokines, adropin and preptin are relatively newly discovered, hence their function is not fully understood. They are peptides not secreted by adipose tissue but their role in the metabolic regulations seems to be significant. Preptin is a 34-amino acid peptide, a derivative of proinsulin growth factor II (pro-IGF-II, secreted by pancreatic β cells, considered to be a physiological enhancer of insulin secretion. Additionally, preptin has a stimulating effect on osteoblasts, inducing their proliferation, differentiation and survival. Adropin is a 76-amino acid peptide, encoded by the energy homeostasis associated gene (Enho, mainly in liver and brain, and its expression is dependent on a diet. Adropin is believed to play an important role in metabolic homeostasis, fatty acids metabolism control, insulin resistance prevention, dyslipidemia, and impaired glucose tolerance. The results of studies conducted so far show that the diseases resulting from metabolic syndrome, such as obesity, type 2 diabetes mellitus, polycystic ovary syndrome, non-alcoholic fatty liver disease, or cardiovascular disease are accompanied by significant changes in the concentration of these peptides. It is also important to note that preptin has an anabolic effect on bone tissue, which might be preventive in osteoporosis.

  5. Protein Nanoscaffolds for Delivering Toxic Inorganic Cargo to Cancer Cells

    Science.gov (United States)

    Cioloboc, Daniela

    Targeted delivery of anticancer drugs or prodrugs to tumors can minimize systemic toxicity and side effects. This study develops platforms for targeted delivery of two potentially less systemically toxic prodrugs by exploiting the native and/or bioinorganic properties of two ferritins, both of which function naturally as iron storage proteins. Two delivery approaches were investigated. The first system was designed to serve as either an enhancement or alternative to traditional photodynamic therapy by generating hydroxyl radical in addition to singlet oxygen as the toxic reactive oxygen species. This system used Escherichia coli bacterioferritin (Bfr) loaded with 2,500 irons and multiple zinc-porphyrin (ZnP) photosensitizers. Ferrous iron was released by photoreduction of ferric iron stored within the Bfr protein shell. Hydroxyl radicals were generated via the Fenton reaction between hydrogen peroxide and the released ferrous iron. The outer surface of the Bfr protein shell was coated with peptides that specifically bind to a receptor known to be overexpressed in many tumor cells and tumor vasculature. The iron-loaded peptide-ZnP-Bfr was endocytosed by melanoma cells, where it showed photo-triggered release of iron and light-dependent cytotoxicity. The second system, built around human heavy chain ferritin (HFn), was loaded with arsenate as a less toxic "prodrug" and designed to release arsenic in its toxic, therapeutically effective reduced form, arsenic trioxide (ATO). The Hfn shell was coated with peptides targeting receptors that are hyperexpressed in triple negative breast cancers. The arsenate/iron-loaded-Hfn was endocytosed by a breast cancer cell line and showed cytotoxicity equivalent to that of free ATO on an arsenic basis, whereas the "empty" or iron-only loaded Hfn showed no cytotoxicity. Although HFn has previously been used to deliver organic drugs and imaging agents, these new results demonstrate that both Bfr and HFn can be manipulated to function

  6. Pengaruh Transplantasi Allograf Pancreatic Stem Cell terhadap Kadar Insulin dan C-Peptide Tikus Putih Penderita Diabetes Melitus Tipe I

    Directory of Open Access Journals (Sweden)

    Boedi Setiawan

    2016-09-01

    Full Text Available Diabetes mellitus is one of the degenerative diseases in which the therapy still remains unresolved and is still a serious threat to the global health, including to the health of Indonesian people. The aim of this study was to describe the level of insulin and C-peptide in diabetes mellitus type I white rats treated with pancreatic stem cell allograft through intrapancreatic laparotomy. This study was conducted at the Institute of Tropical Diseases, Universitas Airlangga, Surabaya in a 6 month period (July–December 2014. Twelve male white rats Rattus novergicus Wistar strain, were randomly divided into two groups. The first group (P0 was injected by alloxan, 150 mg/kg body weight, without stem cell therapy. Another group was injected by alloxan, 150 mg/kg body weight, and was treated with 1x106/kg body weight pancreatic stem cell throughintrapancreatic laparotomy (P1. The experiment was finalized on the 31th day of the experiment. The results showed that the blood glucose levels at the end of experiment were highly significantly different p<0.01 between the treatment group that received stem cell therapy (P1 and P0 positive control, although the average value of blood glucose levels was not as normal as on the first day. C-peptide and insulin levels of P0 and P1 group differed significantly (p<0.01. It can be concluded that stem cell therapy through intrapancreatic laparotomy can reduce blood glucose levels and increase the levels of C-peptide and insulin.

  7. Formation of toxic peptides in irradiated rats and binding thereof with blood serum proteins

    International Nuclear Information System (INIS)

    Salomatin, V.V.; Efimenko, G.P.; Lifshits, R.I.

    1985-01-01

    Whole-body γ-irradiation of rats with a dose of 9.0 Gy caused a 1.5-fold and a 5-fold increase in excretion of bas peptides (molecular mass of 500-2000) in urea on the 2nd and 5th postirradiation days, respectively. These peptides possessed toxic activity and ability to form complexes with macroglobulins, immunoglobulins, and blood serum albumins, in particular. Irradiation decreased binding ability of serum proteins, and preliminary washing thereof by ultrafiltration increased it

  8. Lack of effects of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable and marine n-3 fatty acids on intestinal peptide release and adipokines in healthy female subjects

    Directory of Open Access Journals (Sweden)

    Ingunn Naverud

    2016-08-01

    Full Text Available Peptides released from the small intestine and colon regulate short-term food intake by suppressing appetite and inducing satiety. Intake of marine omega-3 (n-3 fatty acids from fish and fish oils is associated with beneficial health effects, whereas the relation between intake of the vegetable n-3 fatty acid α-linolenic acid and diseases is less clear. The aim of the present study was to investigate the postprandial effects of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable and marine n-3 fatty acids with their different unsaturated fatty acid composition on intestinal peptide release and the adipose tissue. Fourteen healthy lean females consumed three test meals with different fat quality in a fixed order. The test meal consisted of three cakes enriched with coconut fat, linseed oil and a combination of linseed and cod liver oil. The test days were separated by two weeks. Fasting and postprandial blood samples at three and six hours after intake were analysed. A significant postprandial effect was observed for cholecystokinin, peptide YY, glucose-dependent insulinotropic polypeptide, amylin and insulin which increased, while leptin decreased postprandially independent of the fat composition in the high-fat meal. In conclusion, in healthy, young, lean females, an intake of a high-fat meal enriched with n-3 fatty acids from different origin stimulates intestinal peptide release without any difference between the different fat compositions.

  9. 2008 Toxic Chemical Release Inventory 2008 Toxic Chemical Release Inventory Community Right-to-Know Act of 1986, Title III, Section 313

    Energy Technology Data Exchange (ETDEWEB)

    Ecology and Air Quality Group

    2009-10-01

    For reporting year 2008, Los Alamos National Laboratory (LANL) submitted a Form R report for lead as required under the Emergency Planning and Community Right-to- Know Act (EPCRA) Section 313. No other EPCRA Section 313 chemicals were used in 2008 above the reportable thresholds. This document was prepared to provide a description of the evaluation of EPCRA Section 313 chemical use and threshold determinations for LANL for calendar year 2008, as well as to provide background information about data included on the Form R reports. Section 313 of EPCRA specifically requires facilities to submit a Toxic Chemical Release Inventory Report (Form R) to the U.S. Environmental Protection Agency (EPA) and state agencies if the owners and operators manufacture, process, or otherwise use any of the listed toxic chemicals above listed threshold quantities. EPA compiles this data in the Toxic Release Inventory database. Form R reports for each chemical over threshold quantities must be submitted on or before July 1 each year and must cover activities that occurred at the facility during the previous year. In 1999, EPA promulgated a final rule on persistent bioaccumulative toxics (PBTs). This rule added several chemicals to the EPCRA Section 313 list of toxic chemicals and established lower reporting thresholds for these and other PBT chemicals that were already reportable. These lower thresholds became applicable in reporting year 2000. In 2001, EPA expanded the PBT rule to include a lower reporting threshold for lead and lead compounds. Facilities that manufacture, process, or otherwise use more than 100 lb of lead or lead compounds must submit a Form R.

  10. Updates in weight loss surgery and gastrointestinal peptides

    DEFF Research Database (Denmark)

    Svane, Maria Saur; Bojsen-Møller, Kirstine N; Madsbad, Sten

    2015-01-01

    PURPOSE OF REVIEW: Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy are referred to as 'metabolic surgery' due to hormonal shifts with impacts on diabetes remission and weight loss. The purpose of this review is to summarize recent findings in mechanisms underlying beneficial effects...... of weight loss surgery. RECENT FINDINGS: Importantly, gut hormone secretion is altered after RYGB and sleeve gastrectomy due to accelerated transit of nutrients to distal parts of the small intestine, leading to excessive release of L-cell peptide hormones [e.g. glucagon-like peptide-1 (GLP-1), peptide YY......; as demonstrated by relapse of impaired glucose tolerance in studies blocking the GLP-1 receptor by exendin 9-39, and later after major weight loss increased peripheral insulin sensitivity. Gut hormone secretion changes towards a more anorectic profile and is likely important for less caloric intake and weight...

  11. Impact of human milk pasteurization on the kinetics of peptide release during in vitro dynamic term newborn digestion.

    Science.gov (United States)

    Deglaire, Amélie; De Oliveira, Samira C; Jardin, Julien; Briard-Bion, Valérie; Emily, Mathieu; Ménard, Olivia; Bourlieu, Claire; Dupont, Didier

    2016-07-01

    Holder pasteurization (62.5°C, 30 min) ensures sanitary quality of donor's human milk but also denatures beneficial proteins. Understanding whether this further impacts the kinetics of peptide release during gastrointestinal digestion of human milk was the aim of the present paper. Mature raw (RHM) or pasteurized (PHM) human milk were digested (RHM, n = 2; PHM, n = 3) by an in vitro dynamic system (term stage). Label-free quantitative peptidomics was performed on milk and digesta (ten time points). Ascending hierarchical clustering was conducted on "Pasteurization × Digestion time" interaction coefficients. Preproteolysis occurred in human milk (159 unique peptides; RHM: 91, PHM: 151), mostly on β-casein (88% of the endogenous peptides). The predicted cleavage number increased with pasteurization, potentially through plasmin activation (plasmin cleavages: RHM, 53; PHM, 76). During digestion, eight clusters resumed 1054 peptides from RHM and PHM, originating for 49% of them from β-casein. For seven clusters (57% of peptides), the kinetics of peptide release differed between RHM and PHM. The parent protein was significantly linked to the clustering (p-value = 1.4 E-09), with β-casein and lactoferrin associated to clusters in an opposite manner. Pasteurization impacted selectively gastric and intestinal kinetics of peptide release in term newborns, which may have further nutritional consequences. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Plasma N-terminal pro-brain natriuretic peptide levels in patients with acute myocardial infarction, unstable angina pectoris and non-insulin-dependent diabetes

    International Nuclear Information System (INIS)

    Zhang Yonggang; Li Yuguang

    2004-01-01

    Objective: Determination of plasma N-terminal pro-brain natriuretic peptide [NT-proBNP (1-76)] levels is useful for the diagnosis of heart failure. Present study was to investigate the significance of changes of plasma NT-proBNP (1-76) levels in patients with acute myocardial infarction (AMI), unstable angina pectoris (UAP) and non-insulin-dependent diabetes (NIDD). Methods: Plasma NT-proBNP (1-76) levels were determined with RIA in 32 patients with AMI, 27 patients with UAP, 12 patients with NIDD and 20 controls. Moreover, 16 of the 32 AMI patients underwent percutaneous transluminal coronary angioplasty (PTCA) and plasma (1-76) levels were again determined 12hr before and 12hr after the procedure. Results: The plasma NT-proBNP (1-76) levels in controls were 360.8 ± 57.3 pg/ ml with no significant difference between the sexes. In patients with AMI, UAP and NIDD, NT-proBNP (1-76) levels were 554.1 ± 195.9 pg/ml, 525.7 ± 199.1 pg/ml and 552.6 ± 141.9 pg/ml respectively; all of them were significantly higher than those in controls (P 0.05). Conclusion: The plasma NT-proBNP (1-76) levels in patients with AMI, UAP and NIDD were increased significantly and the result suggested that NT-proBNP (1-76) might be a useful risk marker for these diseases. (authors)

  13. Generation of insulin-producing human mesenchymal stem cells using recombinant adeno-associated virus.

    Science.gov (United States)

    Kim, Jeong Hwan; Park, Si-Nae; Suh, Hwal

    2007-02-28

    The purpose of current experiment is the generation of insulin-producing human mesenchymal stem cells as therapeutic source for the cure of type 1 diabetes. Type 1 diabetes is generally caused by insulin deficiency accompanied by the destruction of islet beta-cells. In various trials for the treatment of type 1 diabetes, cell-based gene therapy using stem cells is considered as one of the most useful candidate for the treatment. In this experiment, human mesenchymal stem cells were transduced with AAV which is containing furin-cleavable human preproinsulin gene to generate insulin-producing cells as surrogate beta-cells for the type 1 diabetes therapy. In the rAAV production procedure, rAAV was generated by transfection of AD293 cells. Human mesenchymal stems cells were transduced using rAAV with a various multiplicity of infection. Transduction of recombinant AAV was also tested using beta-galactosidse expression. Cell viability was determined by using MTT assay to evaluate the toxicity of the transduction procedure. Expression and production of Insulin were tested using reverse transcriptase-polymerase chain reaction and immunocytochemistry. Secretion of human insulin and C-peptide from the cells was assayed using enzyme-linked immunosorbent assay. Production of insulin and C-peptide from the test group represented a higher increase compared to the control group. In this study, we examined generation of insulin-producing cells from mesenchymal stem cells by genetic engineering for diabetes therapy. This work might be valuable to the field of tissue engineering for diabetes treatment.

  14. The gastrin-releasing peptide analog bombesin preserves exocrine and endocrine pancreas morphology and function during parenteral nutrition

    Science.gov (United States)

    Pierre, Joseph F.; Neuman, Joshua C.; Brill, Allison L.; Brar, Harpreet K.; Thompson, Mary F.; Cadena, Mark T.; Connors, Kelsey M.; Busch, Rebecca A.; Heneghan, Aaron F.; Cham, Candace M.; Jones, Elaina K.; Kibbe, Carly R.; Davis, Dawn B.; Groblewski, Guy E.; Kudsk, Kenneth A.

    2015-01-01

    Stimulation of digestive organs by enteric peptides is lost during total parental nutrition (PN). Here we examine the role of the enteric peptide bombesin (BBS) in stimulation of the exocrine and endocrine pancreas during PN. BBS protects against exocrine pancreas atrophy and dysfunction caused by PN. BBS also augments circulating insulin levels, suggesting an endocrine pancreas phenotype. While no significant changes in gross endocrine pancreas morphology were observed, pancreatic islets isolated from BBS-treated PN mice showed a significantly enhanced insulin secretion response to the glucagon-like peptide-1 (GLP-1) agonist exendin-4, correlating with enhanced GLP-1 receptor expression. BBS itself had no effect on islet function, as reflected in low expression of BBS receptors in islet samples. Intestinal BBS receptor expression was enhanced in PN with BBS, and circulating active GLP-1 levels were significantly enhanced in BBS-treated PN mice. We hypothesized that BBS preserved islet function indirectly, through the enteroendocrine cell-pancreas axis. We confirmed the ability of BBS to directly stimulate intestinal enteroid cells to express the GLP-1 precursor preproglucagon. In conclusion, BBS preserves the exocrine and endocrine pancreas functions during PN; however, the endocrine stimulation is likely indirect, through the enteroendocrine cell-pancreas axis. PMID:26185331

  15. Direct effect of gonadal and contraceptive steroids on insulin release from mouse pancreatic islets in organ culture

    DEFF Research Database (Denmark)

    Nielsen, Jens Høiriis

    1984-01-01

    Sex steroids are supposed to contribute to the normal glucose homeostasis and to the altered glucose and insulin metabolism in pregnancy and during contraception. In the present study isolated mouse pancreatic islets were maintained in tissue culture medium RPMI 1640 supplemented with 0.5% newborn...... calf serum and 100 ng/ml of one of the following steroids: oestradiol, progesterone, testosterone, megestrol acetate, medroxyprogesterone, chlormadinone acetate, norethynodrel, norethindrone acetate, and ethynyloestradiol. Release of insulin to the culture medium was measured during a 2 week culture...... in the presence of oestradiol, progesterone, or testosterone were subjected to 30 min stimulation with 5.5, 11, 22 mmol/l glucose, only the progesterone-treated islets released more insulin in response to glucose than the control islets. It is concluded that progesterone and its derivatives have a direct effect...

  16. Quantification of peptides released during in vitro digestion of cooked meat.

    Science.gov (United States)

    Sayd, T; Chambon, C; Santé-Lhoutellier, V

    2016-04-15

    We aimed to identify and quantify the peptides generated during in vitro digestion of cooked meat by liquid chromatography coupled with high resolution mass spectrometer. A total of 940 non-redundant peptides in the gastric compartment and 989 non-redundant peptides in the intestinal compartment were quantified and identified. Among the 71 different proteins identified, 43 meat proteins were found in the two digestive compartments, 20 proteins were specific to the gastric compartment and 8 proteins to the intestinal compartment. In terms of estimation, the proteins involved in muscle contraction and structure were preferentially enzymatically hydrolyzed in the small intestine. The effect of cooking provided different but less clear patterns of digestion. To the best of our knowledge, this constitutes the highest number of peptides identified in beef meat digests and provides a comprehensive database for meat protein digestion associated with cooking conditions. Such quantitative and qualitative differences may have important nutritional consequences. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Delivery of circulating lipoproteins to specific neurons in the Drosophila brain regulates systemic insulin signaling.

    Science.gov (United States)

    Brankatschk, Marko; Dunst, Sebastian; Nemetschke, Linda; Eaton, Suzanne

    2014-10-02

    The Insulin signaling pathway couples growth, development and lifespan to nutritional conditions. Here, we demonstrate a function for the Drosophila lipoprotein LTP in conveying information about dietary lipid composition to the brain to regulate Insulin signaling. When yeast lipids are present in the diet, free calcium levels rise in Blood Brain Barrier glial cells. This induces transport of LTP across the Blood Brain Barrier by two LDL receptor-related proteins: LRP1 and Megalin. LTP accumulates on specific neurons that connect to cells that produce Insulin-like peptides, and induces their release into the circulation. This increases systemic Insulin signaling and the rate of larval development on yeast-containing food compared with a plant-based food of similar nutritional content.

  18. Liraglutide, a once-daily human GLP-1 analogue, improves pancreatic B-cell function and arginine-stimulated insulin secretion during hyperglycaemia in patients with Type 2 diabetes mellitus

    DEFF Research Database (Denmark)

    Vilsbøll, Tina; Brock, Birgitte; Perrild, Hans

    2008-01-01

    To assess the effect of liraglutide, a once-daily human glucagon-like peptide-1 analogue on pancreatic B-cell function. methods: Patients with Type 2 diabetes (n = 39) were randomized to treatment with 0.65, 1.25 or 1.9 mg/day liraglutide or placebo for 14 weeks. First- and second-phase insulin...... release were measured by means of the insulin-modified frequently sampled intravenous glucose tolerance test. Arginine-stimulated insulin secretion was measured during a hyperglycaemic clamp (20 mmol/l). Glucose effectiveness and insulin sensitivity were estimated by means of the insulin...

  19. Thiolated Eudragit nanoparticles for oral insulin delivery: preparation, characterization and in vivo evaluation.

    Science.gov (United States)

    Zhang, Yan; Wu, Xiaorong; Meng, Lingkuo; Zhang, Yu; Ai, Ruiting; Qi, Na; He, Haibing; Xu, Hui; Tang, Xing

    2012-10-15

    In the present study thiolated Eudragit L100 (Eul) based polymeric nanoparticles (NPs) were employed to develop an oral insulin delivery system. Sulfydryl modification was achieved by grafting cysteine to the carboxylic acid group of Eudragit L100, which displayed maximum conjugate level of 390.3±13.4 μmol thiol groups per gram. Eudragit L100-cysteine (Eul-cys) and Eul nanoparticles were prepared by the precipitation method, in which reversible swelling of pH-sensitive material was used for insulin loading and release. Nanoparticles were characterized in terms of their particle size, morphology, loading efficiency (LE%) and in vitro insulin release behavior. The NPs had an average size of 324.2±39.0 nm and 308.8±35.7 nm, maximal LE% of 92.2±1.7% and 96.4±0.5% for Eul-cys and Eul, respectively. The release profile of NPs in vitro showed pH-dependent behavior. Circular dichroism (CD) spectroscopy analysis proved that the secondary structure of the insulin released from NPs was unchanged compared with native insulin. The mucoadhesion study in vitro showed that Eul-cys NPs produced a 3-fold and 2.8-fold increase in rat jejunum and ileum compared with unmodified polymer NPs, respectively, which was due to the immobilization of thiol groups on Eudragit L100. Oral administration of insulin-loaded Eul-cys NPs produced a higher and prolonged hypoglycemic action, and the corresponding relative bioavailability of insulin was found to be 7.33±0.33%, an increase of 2.8-fold compared with Eul NPs (2.65±0.63%). This delivery system is a promising novel tool to improve the absorption of protein and peptide drugs in the intestinal tract. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Synthesis and in vitro anti-cancer evaluation of luteinizing hormone-releasing hormone-conjugated peptide.

    Science.gov (United States)

    Deng, Xin; Qiu, Qianqian; Ma, Ke; Huang, Wenlong; Qian, Hai

    2015-11-01

    Luteinizing hormone-releasing hormone (LHRH) is a decapeptide hormone released from the hypothalamus and shows high affinity binding to the LHRH receptors. It is reported that several cancer cells also express LHRH receptors such as breast, ovarian, prostatic, bladder and others. In this study, we linked B1, an anti-cancer peptide, to LHRH and its analogs to improve the activity against cancer cells with LHRH receptor. Biological evaluation revealed that TB1, the peptide contains triptorelin sequence, present favorable anti-cancer activity as well as plasma stability. Further investigations disclosed that TB1 trigger apoptosis by activating the mitochondria-cytochrome c-caspase apoptotic pathway, it also exhibited the anti-migratory effect on cancer cells.

  1. Patient safety and minimizing risk with insulin administration - role of insulin degludec.

    Science.gov (United States)

    Aye, Myint M; Atkin, Stephen L

    2014-01-01

    Diabetes is a lifelong condition requiring ongoing medical care and patient self-management. Exogenous insulin therapy is essential in type 1 diabetes and becomes a necessity in patients with longstanding type 2 diabetes who fail to achieve optimal control with lifestyle modification, oral agents, and glucagon-like peptide 1-based therapy. One of the risks that hinders insulin use is hypoglycemia. Optimal insulin therapy should therefore minimize the risk of hypoglycemia while improving glycemic control. Insulin degludec (IDeg) is a novel basal insulin that, following subcutaneous injection, assembles into a depot of soluble multihexamer chains. These subsequently release IDeg monomers that are absorbed at a slow and steady rate into the circulation, with the terminal half-life of IDeg being ~25 hours. Thus, it requires only once-daily dosing unlike other basal insulin preparations that often require twice-daily dosing. Despite its long half-life, once-daily IDeg does not cause accumulation of insulin in the circulation after reaching steady state. IDeg once a day will produce a steady-state profile with a lower peak:trough ratio than other basal insulins. In clinical trials, this profile translates into a lower frequency of nocturnal hypoglycemia compared with insulin glargine, as well as an ability to allow some flexibility in dose timing without compromising efficacy and safety. Indeed, a study that tested the extremes of dosing intervals of 8 and 40 hours showed no detriment in either glycemic control or hypoglycemic frequency versus insulin glargine given at the same time each day. While extreme flexibility in dose timing is not recommended, these findings are reassuring. This may be particularly beneficial to elderly patients, patients with learning difficulties, or others who have to rely on health-care professionals for their daily insulin injections. Further studies are required to confirm whether this might benefit adherence to treatment, reduce long

  2. Advanced glycation end products impair glucose-induced insulin secretion from rat pancreatic β-cells.

    Science.gov (United States)

    Hachiya, Hiroyuki; Miura, Yoshikazu; Inoue, Ken-Ichi; Park, Kyung Hwa; Takeuchi, Masayoshi; Kubota, Keiichi

    2014-02-01

    Advanced glycation end products (AGEs) are derivative compounds generated from non-enzymatic glycosylation and oxidation. In comparison with glucose-derived AGEs (Glu-AGEs), glyceraldehyde-derived AGEs (Glycer-AGEs) have stronger toxicity to living systems. In this study, we compared the effects of Glu-AGE and Glycer-AGE on insulin secretion. Rat pancreatic islets were isolated by collagenase digestion and primary-cultured in the presence of 0.1 mg/ml bovine serum albumin (BSA) or 0.1 mg/ml Glu-AGE or Glycer-AGE-albumin. After 48 h of culture, we performed an insulin secretion test and identified the defects by a battery of rescue experiments [corrected]. Also, mRNA expression of genes associated with insulin secretion was measured. Insulin secretion induced by a high glucose concentration was 164.1 ± 6.0, 124.4 ± 4.4 (P < 0.05) and 119.8 ± 7.1 (P < 0.05) μU/3 islets/h in the presence of BSA, Glu-AGE, and Glycer-AGE, respectively. Inhibition of insulin secretion by Glu-AGE or Glycer-AGE was rescued by a high extracellular potassium concentration, tolbutamide and α-ketoisocaproic acid, but not by glyceraldehyde, dihydroxacetone, methylpyruvate, glucagon-like peptide-1 and acetylcholine. Glu-AGE or Glycer-AGE reduced the expression of the malate dehydrogenase (Mdh1/2) gene, which plays a critical role in the nicotinamide adenine dinucleotide (NADH) shuttle. Despite its reported cytotoxicity, the effects of Glycer-AGE on insulin secretion are similar to those of Glu-AGE. © 2013 Japanese Society of Hepato-Biliary-Pancreatic Surgery.

  3. Molecular evolution and functional characterization of Drosophila insulin-like peptides.

    Directory of Open Access Journals (Sweden)

    Sebastian Grönke

    2010-02-01

    Full Text Available Multicellular animals match costly activities, such as growth and reproduction, to the environment through nutrient-sensing pathways. The insulin/IGF signaling (IIS pathway plays key roles in growth, metabolism, stress resistance, reproduction, and longevity in diverse organisms including mammals. Invertebrate genomes often contain multiple genes encoding insulin-like ligands, including seven Drosophila insulin-like peptides (DILPs. We investigated the evolution, diversification, redundancy, and functions of the DILPs, combining evolutionary analysis, based on the completed genome sequences of 12 Drosophila species, and functional analysis, based on newly-generated knock-out mutations for all 7 dilp genes in D. melanogaster. Diversification of the 7 DILPs preceded diversification of Drosophila species, with stable gene diversification and family membership, suggesting stabilising selection for gene function. Gene knock-outs demonstrated both synergy and compensation of expression between different DILPs, notably with DILP3 required for normal expression of DILPs 2 and 5 in brain neurosecretory cells and expression of DILP6 in the fat body compensating for loss of brain DILPs. Loss of DILP2 increased lifespan and loss of DILP6 reduced growth, while loss of DILP7 did not affect fertility, contrary to its proposed role as a Drosophila relaxin. Importantly, loss of DILPs produced in the brain greatly extended lifespan but only in the presence of the endosymbiontic bacterium Wolbachia, demonstrating a specific interaction between IIS and Wolbachia in lifespan regulation. Furthermore, loss of brain DILPs blocked the responses of lifespan and fecundity to dietary restriction (DR and the DR response of these mutants suggests that IIS extends lifespan through mechanisms that both overlap with those of DR and through additional mechanisms that are independent of those at work in DR. Evolutionary conservation has thus been accompanied by synergy

  4. Milk bioactive peptides and beta-casomorphins induce mucus release in rat jejunum.

    Science.gov (United States)

    Trompette, Aurélien; Claustre, Jean; Caillon, Fabienne; Jourdan, Gérard; Chayvialle, Jean Alain; Plaisancié, Pascale

    2003-11-01

    Intestinal mucus is critically involved in the protection of the mucosa. An enzymatic casein hydrolysate and beta-casomorphin-7, a mu-opioid peptide generated in the intestine during bovine casein digestion, markedly induce mucus discharge. Because shorter mu-opioid peptides have been described, the effects of the opioid peptides in casein, beta-casomorphin-7, -6, -4, -4NH2 and -3, and of opioid neuropeptides met-enkephalin, dynorphin A and (D-Ala2,N-Me-Phe4,glycinol5)enkephalin (DAMGO) on intestinal mucus secretion were investigated. The experiments were conducted with isolated perfused rat jejunum. Mucus secretion under the influence of beta-casomorphins and opioid neuropeptides administered intraluminally or intra-arterially was evaluated using an ELISA for rat intestinal mucus. Luminal administration of beta-casomorphin-7 (1.2 x 10(-4) mol/L) provoked a mucus discharge (500% of controls) that was inhibited by naloxone, a specific opiate receptor antagonist. Luminal beta-casomorphin-6, -4 and -4NH2 did not modify basal mucus secretion, whereas intra-arterial administration of beta-casomorphin-4 (1.2 x 10(-6) mol/L) induced a mucus discharge. In contrast, intra-arterial administration of the nonopioid peptide beta-casomorphin-3 did not release mucus. Among the opioid neuropeptides, intra-arterial infusion of Met-enkephalin or dynorphin-A did not provoke mucus secretion. In contrast, beta-endorphin (1.2 x 10(-8) to 1.2 x 10(-6) mol/L) induced a dose-dependent release of mucus (maximal response at 500% of controls). DAMGO (1.2 x 10(-6) mol/L), a mu-receptor agonist, also evoked a potent mucus discharge. Our findings suggest that mu-opioid neuropeptides, as well as beta-casomorphins after absorption, modulate intestinal mucus discharge. Milk opioid-derived peptides may thus be involved in defense against noxious agents and could have dietary and health applications.

  5. The Pseudo signal peptide of the corticotropin-releasing factor receptor type 2A prevents receptor oligomerization.

    Science.gov (United States)

    Teichmann, Anke; Rutz, Claudia; Kreuchwig, Annika; Krause, Gerd; Wiesner, Burkhard; Schülein, Ralf

    2012-08-03

    N-terminal signal peptides mediate the interaction of native proteins with the translocon complex of the endoplasmic reticulum membrane and are cleaved off during early protein biogenesis. The corticotropin-releasing factor receptor type 2a (CRF(2(a))R) possesses an N-terminal pseudo signal peptide, which represents a so far unique domain within the large protein family of G protein-coupled receptors (GPCRs). In contrast to a conventional signal peptide, the pseudo signal peptide remains uncleaved and consequently forms a hydrophobic extension at the N terminus of the receptor. The functional consequence of the presence of the pseudo signal peptide is not understood. Here, we have analyzed the significance of this domain for receptor dimerization/oligomerization in detail. To this end, we took the CRF(2(a))R and the homologous corticotropin-releasing factor receptor type 1 (CRF(1)R) possessing a conventional cleaved signal peptide and conducted signal peptide exchange experiments. Using single cell and single molecule imaging methods (fluorescence resonance energy transfer and fluorescence cross-correlation spectroscopy, respectively) as well as biochemical experiments, we obtained two novel findings; we could show that (i) the CRF(2(a))R is expressed exclusively as a monomer, and (ii) the presence of the pseudo signal peptide prevents its oligomerization. Thus, we have identified a novel functional domain within the GPCR protein family, which plays a role in receptor oligomerization and which may be useful to study the functional significance of this process in general.

  6. The road to the first, fully active and more stable human insulin variant with an additional disulfide bond

    DEFF Research Database (Denmark)

    Vinther, Tine N.; Kjeldsen, Thomas B.; Jensen, Knud Jørgen

    2015-01-01

    Insulin, a small peptide hormone, is crucial in maintaining blood glucose homeostasis. The stability and activity of the protein is directed by an intricate system involving disulfide bonds to stabilize the active monomeric species and by their non-covalent oligomerization. All known insulin...... variants in vertebrates consist of two peptide chains and have six cysteine residues, which form three disulfide bonds, two of them link the two chains and a third is an intra-chain bond in the A-chain. This classical insulin fold appears to have been conserved over half a billion years of evolution. We...... addressed the question whether a human insulin variant with four disulfide bonds could exist and be fully functional. In this review, we give an overview of the road to engineering four-disulfide bonded insulin analogs. During our journey, we discovered several active four disulfide bonded insulin analogs...

  7. Effect on Insulin-Stimulated Release of D-Chiro-Inositol-Containing Inositolphosphoglycan Mediator during Weight Loss in Obese Women with and without Polycystic Ovary Syndrome

    OpenAIRE

    Cheang, Kai I.; Sistrun, Sakita N.; Morel, Kelley S.; Nestler, John E.

    2016-01-01

    Background. A deficiency of D-chiro-inositol-inositolphosphoglycan mediator (DCI-IPG) may contribute to insulin resistance in polycystic ovary syndrome (PCOS). Whether the relationship between impaired DCI-IPG release and insulin resistance is specific to PCOS rather than obesity is unknown. We assessed insulin-released DCI-IPG and its relationship to insulin sensitivity at baseline and after weight loss in obese women with and without PCOS. Methods. Obese PCOS (n = 16) and normal (n = 15) wo...

  8. The changes in levels of C-P and insulin in glucose tolerance test in rats with experimental non-insulin dependent diabetes mellitus

    International Nuclear Information System (INIS)

    Liu Xinqiu; Lei Ming

    2001-01-01

    The changes in levels of C-P and insulin were investigated in the GT test in rats with non-insulin dependent diabetes mellitus. In order to establish a model of non-insulin dependent diabetes mellitus (NIDDM), the authors injected rats with small dose streptozocoi (i.v.). Two weeks after the injection, the rats developed impaired glucose tolerance (IGT). Then, they were fed with high energy diet for eight weeks to form NIDDM. The results showed that the highest peak time of C-P and insulin in NIDDM was remarkably later than that in normal subjects, the highest peak time was in two hours (P < 0.05). The data suggest that level of C-P could accurately respond to level of insulin, and this experimental non-insulin dependent diabetes mellitus model is ideal

  9. Toxics Release Inventory Chemical Hazard Information Profiles (TRI-CHIP) Dataset

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Toxics Release Inventory (TRI) Chemical Hazard Information Profiles (TRI-CHIP) dataset contains hazard information about the chemicals reported in TRI. Users can...

  10. The Antidiabetic Mechanisms of Polyphenols Related to Increased Glucagon-Like Peptide-1 (GLP1 and Insulin Signaling

    Directory of Open Access Journals (Sweden)

    J. Abraham Domínguez Avila

    2017-05-01

    Full Text Available Type-2 diabetes mellitus (T2DM is an endocrine disease related to impaired/absent insulin signaling. Dietary habits can either promote or mitigate the onset and severity of T2DM. Diets rich in fruits and vegetables have been correlated with a decreased incidence of T2DM, apparently due to their high polyphenol content. Polyphenols are compounds of plant origin with several documented bioactivities related to health promotion. The present review describes the antidiabetic effects of polyphenols, specifically related to the secretion and effects of insulin and glucagon-like peptide 1 (GLP1, an enteric hormone that stimulates postprandial insulin secretion. The evidence suggests that polyphenols from various sources stimulate L-cells to secrete GLP1, increase its half-life by inhibiting dipeptidyl peptidase-4 (DPP4, stimulate β-cells to secrete insulin and stimulate the peripheral response to insulin, increasing the overall effects of the GLP1-insulin axis. The glucose-lowering potential of polyphenols has been evidenced in various acute and chronic models of healthy and diabetic organisms. Some polyphenols appear to exert their effects similarly to pharmaceutical antidiabetics; thus, rigorous clinical trials are needed to fully validate this claim. The broad diversity of polyphenols has not allowed for entirely describing their mechanisms of action, but the evidence advocates for their regular consumption.

  11. Low-cost production of proinsulin in tobacco and lettuce chloroplasts for injectable or oral delivery of functional insulin and C-peptide.

    Science.gov (United States)

    Boyhan, Diane; Daniell, Henry

    2011-06-01

    Current treatment for type I diabetes includes delivery of insulin via injection or pump, which is highly invasive and expensive. The production of chloroplast-derived proinsulin should reduce cost and facilitate oral delivery. Therefore, tobacco and lettuce chloroplasts were transformed with the cholera toxin B subunit fused with human proinsulin (A, B, C peptides) containing three furin cleavage sites (CTB-PFx3). Transplastomic lines were confirmed for site-specific integration of transgene and homoplasmy. Old tobacco leaves accumulated proinsulin up to 47% of total leaf protein (TLP). Old lettuce leaves accumulated proinsulin up to 53% TLP. Accumulation was so stable that up to ~40% proinsulin in TLP was observed even in senescent and dried lettuce leaves, facilitating their processing and storage in the field. Based on the yield of only monomers and dimers of proinsulin (3 mg/g leaf, a significant underestimation), with a 50% loss of protein during the purification process, one acre of tobacco could yield up to 20 million daily doses of insulin per year. Proinsulin from tobacco leaves was purified up to 98% using metal affinity chromatography without any His-tag. Furin protease cleaved insulin peptides in vitro. Oral delivery of unprocessed proinsulin bioencapsulated in plant cells or injectable delivery into mice showed reduction in blood glucose levels similar to processed commercial insulin. C-peptide should aid in long-term treatment of diabetic complications including stimulation of nerve and renal functions. Hyper-expression of functional proinsulin and exceptional stability in dehydrated leaves offer a low-cost platform for oral and injectable delivery of cleavable proinsulin. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  12. Association of fasting glucagon and proinsulin concentrations with insulin resistance

    DEFF Research Database (Denmark)

    Ferrannini, E; Muscelli, E; Natali, A

    2007-01-01

    AIMS/HYPOTHESIS: Hyperproinsulinaemia and relative hyperglucagonaemia are features of type 2 diabetes. We hypothesised that raised fasting glucagon and proinsulin concentrations may be associated with insulin resistance (IR) in non-diabetic individuals. METHODS: We measured IR [by a euglycaemic......, controlling for known determinants of insulin sensitivity (i.e. sex, age, BMI and glucose tolerance) as well as factors potentially affecting glucagon and proinsulin (i.e. fasting plasma glucose and C-peptide concentrations), glucagon and proinsulin were still positively associated, and adiponectin...

  13. The Impact of Pollution Prevention on Toxic Environmental Releases from U.S. Manufacturing Facilities.

    Science.gov (United States)

    Ranson, Matthew; Cox, Brendan; Keenan, Cheryl; Teitelbaum, Daniel

    2015-11-03

    Between 1991 and 2012, the facilities that reported to the U.S. Environmental Protection Agency's Toxic Release Inventory (TRI) Program conducted 370,000 source reduction projects. We use this data set to conduct the first quasi-experimental retrospective evaluation of how implementing a source reduction (pollution prevention) project affects the quantity of toxic chemicals released to the environment by an average industrial facility. We use a differences-in-differences methodology, which measures how implementing a source reduction project affects a facility's releases of targeted chemicals, relative to releases of (a) other untargeted chemicals from the same facility, or (b) the same chemical from other facilities in the same industry. We find that the average source reduction project causes a 9-16% decrease in releases of targeted chemicals in the year of implementation. Source reduction techniques vary in effectiveness: for example, raw material modification causes a large decrease in releases, while inventory control has no detectable effect. Our analysis suggests that in aggregate, the source reduction projects carried out in the U.S. since 1991 have prevented between 5 and 14 billion pounds of toxic releases.

  14. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    Science.gov (United States)

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote A

  15. Clinical and Genetic Characteristics of Non-Insulin-Requiring Glutamic Acid Decarboxylase (GAD Autoantibody-Positive Diabetes: A Nationwide Survey in Japan.

    Directory of Open Access Journals (Sweden)

    Junichi Yasui

    Full Text Available Glutamic acid decarboxylase autoantibodies (GADAb differentiate slowly progressive insulin-dependent (type 1 diabetes mellitus (SPIDDM from phenotypic type 2 diabetes, but many GADAb-positive patients with diabetes do not progress to insulin-requiring diabetes. To characterize GADAb-positive patients with adult-onset diabetes who do not require insulin therapy for >5 years (NIR-SPIDDM, we conducted a nationwide cross-sectional survey in Japan.We collected 82 GADAb-positive patients who did not require insulin therapy for >5 years (NIR-SPIDDM and compared them with 63 patients with insulin-requiring SPIDDM (IR-SPIDDM. Clinical and biochemical characteristics, HLA-DRB1-DQB1 haplotypes, and predictive markers for progression to insulin therapy were investigated.Compared with the IR-SPIDDM group, the NIR-SPIDDM patients showed later diabetes onset, higher body mass index, longer duration before diagnosis, and less frequent hyperglycemic symptoms at onset. In addition, C-peptide, LDL-cholesterol, and TG were significantly higher in the NIR-SPIDDM compared to IR-SPIDDM patients. The NIR-SPIDDM group had lower frequency of susceptible HLA-DRB1*04:05-DQB1*04:01 and a higher frequency of resistant HLA-DRB1*15:01-DQB1*06:02 haplotype compared to IR-SPIDDM. A multivariable analysis showed that age at diabetes onset (OR = 0.82, duration before diagnosis of GADAb-positive diabetes (OR = 0.82, higher GADAb level (≥10.0 U/ml (OR = 20.41, and fasting C-peptide at diagnosis (OR = 0.07 were independent predictive markers for progression to insulin-requiring diabetes. An ROC curve analysis showed that the optimal cut-off points for discriminating two groups was the GADAb level of 13.6 U/ml, age of diabetes onset of 47 years, duration before diagnosis of 5 years, and fasting C-peptide of 0.65 ng/ml.Clinical, biochemical and genetic characteristics of patients with NIR-SPIDDM are different from those of IR-SPIDDM patients. Age of diabetes onset, duration before

  16. The Role of Episodic Postprandial Peptides in Exercise-Induced Compensatory Eating.

    Science.gov (United States)

    Gibbons, Catherine; Blundell, John E; Caudwell, Phillipa; Webb, Dominic-Luc; Hellström, Per M; Näslund, Erik; Finlayson, Graham

    2017-11-01

    Prolonged physical activity gives rise to variable degrees of body weight and fat loss, and is associated with variability in appetite control. Whether these effects are modulated by postprandial, peptides is unclear. We examined the role of postprandial peptide response in compensatory eating during 12 weeks of aerobic exercise and in response to high-fat, low-carbohydrate (HFLC) and low-fat, high-carbohydrate (LFHC) meals. Of the 32 overweight/obese individuals, 16 completed 12 weeks of aerobic exercise and 16 nonexercising control subjects were matched for age and body mass index. Exercisers were classified as responders or nonresponders depending on net energy balance from observed compared with expected body composition changes from measured energy expenditure. Plasma samples were collected before and after meals to compare profiles of total and acylated ghrelin, insulin, cholecystokinin, glucagon-like peptide 1 (GLP-1), and total peptide YY (PYY) between HFLC and LFHC meals, pre- and postexercise, and between groups. No differences between pre- and postintervention peptide release. Responders had greater suppression of acylated ghrelin (P exercise. Responders to exercise-induced weight loss showed greater suppression of acylated ghrelin and greater release of GLP-1 and total PYY at baseline. Therefore, episodic postprandial peptide profiles appear to form part of the pre-existing physiology of exercise responders and suggest differences in satiety potential may underlie exercise-induced compensatory eating. Copyright © 2017 Endocrine Society

  17. In silico panning for a non-competitive peptide inhibitor

    Directory of Open Access Journals (Sweden)

    Ikebukuro Kazunori

    2007-01-01

    Full Text Available Abstract Background Peptide ligands have tremendous therapeutic potential as efficacious drugs. Currently, more than 40 peptides are available in the market for a drug. However, since costly and time-consuming synthesis procedures represent a problem for high-throughput screening, novel procedures to reduce the time and labor involved in screening peptide ligands are required. We propose the novel approach of 'in silico panning' which consists of a two-stage screening, involving affinity selection by docking simulation and evolution of the peptide ligand using genetic algorithms (GAs. In silico panning was successfully applied to the selection of peptide inhibitor for water-soluble quinoprotein glucose dehydrogenase (PQQGDH. Results The evolution of peptide ligands for a target enzyme was achieved by combining a docking simulation with evolution of the peptide ligand using genetic algorithms (GAs, which mimic Darwinian evolution. Designation of the target area as next to the substrate-binding site of the enzyme in the docking simulation enabled the selection of a non-competitive inhibitor. In all, four rounds of selection were carried out on the computer; the distribution of the docking energy decreased gradually for each generation and improvements in the docking energy were observed over the four rounds of selection. One of the top three selected peptides with the lowest docking energy, 'SERG' showed an inhibitory effect with Ki value of 20 μM. PQQGDH activity, in terms of the Vmax value, was 3-fold lower than that of the wild-type enzyme in the presence of this peptide. The mechanism of the SERG blockage of the enzyme was identified as non-competitive inhibition. We confirmed the specific binding of the peptide, and its equilibrium dissociation constant (KD value was calculated as 60 μM by surface plasmon resonance (SPR analysis. Conclusion We demonstrate an effective methodology of in silico panning for the selection of a non

  18. Disturbed release of gastrointestinal peptides in anorexia nervosa and in obesity.

    Science.gov (United States)

    Baranowska, B; Radzikowska, M; Wasilewska-Dziubinska, E; Roguski, K; Borowiec, M

    2000-04-01

    It is commonly accepted that some neuropeptides play an important role in the control of appetite and hormonal secretion. Several gastrointestinal peptides may affect on central control of appetite via vagal and spinal nerves. The aim of this study was to evaluate the release of gastrointestinal peptides in anorexia nervosa and in obesity, because in these diseases the disturbances in the control of appetite and hormonal secretion were found. Material consisted of 30 women with anorexia nervosa aged 16-29 years (mean 22 years) and 23 women with obesity aged 19-33 years (mean 29 years) and 25 lean women of control group. In women with anorexia nervosa as compared with control group we observed a significant increase of plasma vasoactive intestinal peptide (VIP) levels (p anorexia nervosa. These findings suggests that dysfunction of brain-gut axis may be also an important factor in the abnormal control of appetite axcept of hypothalamic dysfunction.

  19. Temporizin and Temporizin-1 Peptides as Novel Candidates for Eliminating Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    André L A Souza

    Full Text Available Tropical diseases caused by parasitic infections continue to cause socioeconomic distress worldwide. Among these, Chagas disease has become a great concern because of globalization. Caused by Trypanosoma cruzi, there is an increasing need to discover new, more effective methods to manage infections that minimize disease onset. Antimicrobial peptides represent a possible solution to this challenge. As effector molecules of the innate immune response against pathogens, they are the first line of defense found in all multi-cellular organisms. In amphibians, temporins are a large family of antimicrobial peptides found in skin secretions. Their functional roles and modes of action present unique properties that indicate possible candidates for therapeutic applications. Here, we investigated the trypanocide activity of temporizin and temporizin-1. Temporizin is an artificial, hybrid peptide containing the N-terminal region of temporin A, the pore-forming region of gramicidin and a C-terminus consisting of alternating leucine and lysine. Temporizin-1 is a modification of temporizin with a reduction in the region responsible for insertion into membranes. Their activities were evaluated in a cell permeabilization assay by flow cytometry, an LDH release assay, electron microscopy, an MTT assay and patch clamp experiments. Both temporizin and temporizin-1 demonstrated toxicity against T. cruzi with temporizin displaying slightly more potency. At concentrations up to 100 μg/ ml, both peptides exhibited low toxicity in J774 cells, a macrophage lineage cell line, and no toxicity was observed in mouse primary peritoneal macrophages. In contrast, the peptides showed some toxicity in rat adenoma GH3 cells and Jurkat human lymphoma cells with temporizin-1 displaying lower toxicity. In summary, a shortened form of the hybrid temporizin peptide, temporizin-1, was efficient at killing T. cruzi and it has low toxicity in wild-type mammalian cells. These data suggest

  20. In nondiabetic, human immunodeficiency virus-infected patients with lipodystrophy, hepatic insulin extraction and posthepatic insulin clearance rate are decreased in proportion to insulin resistance

    DEFF Research Database (Denmark)

    Haugaard, Steen B; Andersen, Ove; Hansen, Birgitte R

    2005-01-01

    In healthy, nondiabetic individuals with insulin resistance, fasting insulin is inversely correlated to the posthepatic insulin clearance rate (MCRi) and the hepatic insulin extraction (HEXi). We investigated whether similar early mechanisms to facilitate glucose homeostasis exist in nondiabetic...... endogenous insulin secretion, which was estimated by deconvolution of C-peptide concentrations. Hepatic extraction of insulin was calculated as 1 minus the ratio of fasting posthepatic insulin delivery rate to fasting endogenous insulin secretion rate. Compared with controls, LIPO displayed increased fasting...... insulin (130%, P Hepatic extraction of insulin was similar between groups (LIPO, 55%; controls, 57%; P > .8). In LIPO, HEXi and MCRi correlated inversely with fasting insulin (r = -0.56, P

  1. Pathological consequences of C-peptide deficiency ininsulin-dependent diabetes mellitus

    Institute of Scientific and Technical Information of China (English)

    Ahmad Ghorbani; Reza Shafiee-Nick

    2015-01-01

    Diabetes is associated with several complicationssuch as retinopathy, nephropathy, neuropathy andcardiovascular diseases. Currently, insulin is the mainused medication for management of insulin-dependentdiabetes mellitus (type-1 diabetes). In this metabolicsyndrome, in addition to decrease of endogenous insulin,the plasma level of connecting peptide (C-peptide) is alsoreduced due to beta cell destruction. Studies in the pastdecade have shown that C-peptide is much more than abyproduct of insulin biosynthesis and possess differentbiological activities. Therefore, it may be possible thatC-peptide deficiency be involved, at least in part, in thedevelopment of different complications of diabetes. It hasbeen shown that a small level of remaining C-peptide isassociated with significant metabolic benefit. The purposeof this review is to describe beneficial effects of C-peptidereplacement on pathological features associated withinsulin-dependent diabetes. Also, experimental andclinical findings on the effects of C-peptide on wholebodyglucose utilization, adipose tissue metabolism andtissues blood flow are summarized and discussed. Thehypoglycemic, antilipolytic and vasodilator effects ofC-peptide suggest that it may contribute to fine-tuningof the tissues metabolism under different physiologic orpathologic conditions. Therefore, C-peptide replacementtogether with the classic insulin therapy may prevent,retard, or ameliorate diabetic complications in patientswith type-1 diabetes.

  2. Phenolic excipients of insulin formulations induce cell death, pro-inflammatory signaling and MCP-1 release

    Directory of Open Access Journals (Sweden)

    Claudia Weber

    2015-01-01

    Insulin solutions displayed cytotoxic and pro-inflammatory potential caused by phenol or m-cresol. We speculate that during insulin pump therapy phenol and m-cresol might induce cell death and inflammatory reactions at the infusion site in vivo. Inflammation is perpetuated by release of MCP-1 by activated monocytic cells leading to enhanced recruitment of inflammatory cells. To minimize acute skin complications caused by phenol/m-cresol accumulation, a frequent change of infusion sets and rotation of the infusion site is recommended.

  3. Insulin-loaded polymeric mucoadhesive nanoparticles: development, characterization and cytotoxicity evaluation

    Directory of Open Access Journals (Sweden)

    Tiago Henrique Honorato Gatti

    2018-06-01

    Full Text Available Abstract Mucoadhesive nanoparticles are particularly interesting for delivery through nasal or pulmonary routes, as an approach to overcome the mucociliary clearance. Moreover, these nanoparticles are attractive for peptide and protein delivery, particularly for insulin to treat diabetes, as an alternative to conventional parenteral administration. Thus, chitosan, a cationic mucoadhesive polysaccharide found in shells of crustaceans, and the negatively-charged dextran sulfate are able to form nanoparticles through ionic condensation, representing a potential insulin carrier. Herein, chitosan/dextran sulfate nanoparticles at various ratios were prepared for insulin loading. Formulations were characterized for particle size, zeta potential, encapsulation efficiency, scanning electron microscopy, differential scanning calorimetry, and in vitro drug release. Moreover, the interaction with mucin and the cytotoxicity against a lung cell line were studied, which altogether have not been addressed before. Results evidenced that a proper selection of polyelectrolytes is necessary for smaller particle size formation and also the composition and zeta potential impact encapsulation efficiency, which is benefited by the positive charge of chitosan. Insulin remained stable after encapsulation as evidenced by calorimetric assays, and was released in a sustained manner in the first 10 h. Positively-charged nanoparticles based on chitosan/dextran-sulfate at the ratio of 6:4 successfully interacted with mucin, which is a prerequisite for delivery to mucus-containing tissues. Finally, insulin-loaded nanoparticles displayed no cytotoxicity effect against lung cells at tested concentrations, suggesting the potential for further in vivo studies.

  4. Gastro-Resistant Insulin Receptor-Binding Peptide from Momordica charantia Improved the Glucose Tolerance in Streptozotocin-Induced Diabetic Mice via Insulin Receptor Signaling Pathway.

    Science.gov (United States)

    Lo, Hsin-Yi; Li, Chia-Cheng; Chen, Feng-Yuan; Chen, Jaw-Chyun; Hsiang, Chien-Yun; Ho, Tin-Yun

    2017-10-25

    Momordica charantia is a commonly used food and has been used for the management of diabetes. Our previous study has identified an insulin receptor (IR)-binding protein (mcIRBP) from Momordica charantia. Here we identified the gastro-resistant hypoglycemic bioactive peptides from protease-digested mcIRBP. By in vitro digestion and IR kinase activity assay, we found that a 9-amino-acid-residue peptide, mcIRBP-9, was a gastro-resistant peptide that enhanced IR kinase activities. mcIRBP-9 activated IR signaling transduction pathway, which resulted in the phosphorylation of IR, the translocation of glucose transporter 4, and the uptake of glucose in cells. Intraperitoneal and oral administration of mcIRBP-9 stimulated the glucose clearance by 30.91 ± 0.39% and 32.09 ± 0.38%, respectively, in streptozotocin-induced diabetic mice. Moreover, a pilot study showed that daily ingestion of mcIRBP-9 for 30 days decreased the fasting blood glucose levels and glycated hemoglobin (HbA1c) levels by 23.62 ± 6.14% and 24.06 ± 1.53%, respectively. In conclusion, mcIRBP-9 is a unique gastro-resistant bioactive peptide generated after the digestion of mcIRBP. Furthermore, oral administration of mcIRBP-9 improves both the glucose tolerance and the HbA1c levels in diabetic mice via targeting IR signaling transduction pathway.

  5. Caries in patients with non-insulin-dependent diabetes mellitus.

    Science.gov (United States)

    Collin, H L; Uusitupa, M; Niskanen, L; Koivisto, A M; Markkanen, H; Meurman, J H

    1998-06-01

    The purpose of this study was to investigate the prevalence and risk factors of dental caries in patients with non-insulin-dependent diabetes mellitus and to determine whether these factors are associated with metabolic control and vascular complications of the disease. Both the occurrence of caries, acidogenic oral bacteria, and yeasts and salivary flow were studied in 25 patients with non-insulin-dependent diabetes mellitus whose diagnosis had been set 13 to 14 years earlier and in whom the metabolic evolution of the disease was well established. The patients' glycemic control was determined by means of analysis of the blood hemoglobin A1C concentration at the time of dental examination. The control group consisted of 40 nondiabetic subjects in the same age group. Decayed, missing, and filled teeth indices and numbers of surfaces with caries, filled surfaces, and root caries were determined by means of clinical dental caries examination. Stimulated salivary flow was measured, and levels of Streptococcus mutans, lactobacilli, and yeasts were analyzed. The median hemoglobin A1C concentration of the patients was 8.6%, which indicates poor metabolic control of diabetes. No association was found between the metabolic control of disease and dental caries. The occurrence of dental caries was not increased in the patients with non-insulin-dependent diabetes mellitus in comparison with the control subjects. The counts of acidogenic microbes and yeasts did not differ statistically significantly between the groups. There was no association of caries with the prevalence of coronary artery disease or hypertension in either the patients or the control subjects. In a stepwise logistic regression model, a salivary flow of at least 0.8 ml/min was related to the occurrence of dental caries in patients with non-insulin-dependent diabetes mellitus, whereas negligence with respect to dental care was the most important risk predictor in the control group. Our results showed no effect

  6. Toxic chemical considerations for tank farm releases. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Van Keuren, J.C.

    1995-11-01

    This document provides a method of determining the toxicological consequences of accidental releases from Hanford Tank Farms. A determination was made of the most restrictive toxic chemicals that are expected to be present in the tanks. Concentrations were estimated based on the maximum sample data for each analyte in all the tanks in the composite. Composite evaluated were liquids and solids from single shell tanks, double shell tanks, flammable gas watch list tanks, as well as all solids, all liquids, head space gases, and 241-C-106 solids. A sum of fractions of the health effects was computed for each composite for unit releases based emergency response planning guidelines (ERPGs). Where ERPGs were not available for chemical compounds of interest, surrogate guidelines were established. The calculation method in this report can be applied to actual release scenarios by multiplying the sum of fractions by the release rate for continuous releases, or the release amount for puff releases. Risk guidelines are met if the product is less than for equal to one.

  7. Toxic chemical considerations for tank farm releases. Revision 1

    International Nuclear Information System (INIS)

    Van Keuren, J.C.

    1995-11-01

    This document provides a method of determining the toxicological consequences of accidental releases from Hanford Tank Farms. A determination was made of the most restrictive toxic chemicals that are expected to be present in the tanks. Concentrations were estimated based on the maximum sample data for each analyte in all the tanks in the composite. Composite evaluated were liquids and solids from single shell tanks, double shell tanks, flammable gas watch list tanks, as well as all solids, all liquids, head space gases, and 241-C-106 solids. A sum of fractions of the health effects was computed for each composite for unit releases based emergency response planning guidelines (ERPGs). Where ERPGs were not available for chemical compounds of interest, surrogate guidelines were established. The calculation method in this report can be applied to actual release scenarios by multiplying the sum of fractions by the release rate for continuous releases, or the release amount for puff releases. Risk guidelines are met if the product is less than for equal to one

  8. Functional nanoparticles exploit the bile acid pathway to overcome multiple barriers of the intestinal epithelium for oral insulin delivery

    DEFF Research Database (Denmark)

    Fan, Weiwei; Xia, Dengning; Zhu, Quanlei

    2018-01-01

    , especially to avoid lysosomal degradation, and basolateral release. Here, the functional material, deoxycholic acid-conjugated chitosan, is synthesized and loaded with the model protein drug insulin into deoxycholic acid-modified nanoparticles (DNPs). The DNPs designed in this study are demonstrated......Oral absorption of protein/peptide-loaded nanoparticles is often limited by multiple barriers of the intestinal epithelium. In addition to mucus translocation and apical endocytosis, highly efficient transepithelial absorption of nanoparticles requires successful intracellular trafficking...... to endolysosomal escape of DNPs. Additionally, DNPs can interact with a cytosolic ileal bile acid-binding protein that facilitates the intracellular trafficking and basolateral release of insulin. In rats, intravital two-photon microscopy also reveals that the transport of DNPs into the intestinal villi...

  9. Anorexigenic Lipopeptides Ameliorate Central Insulin Signaling and Attenuate Tau Phosphorylation in Hippocampi of Mice with Monosodium Glutamate-Induced Obesity

    Czech Academy of Sciences Publication Activity Database

    Špolcová, Andrea; Mikulášková, Barbora; Holubová, Martina; Nagelová, Veronika; Pirník, Zdenko; Zemenová, Jana; Haluzík, M.; Železná, Blanka; Galas, M. C.; Maletínská, Lenka

    2015-01-01

    Roč. 45, č. 3 (2015), s. 823-835 ISSN 1387-2877 R&D Projects: GA ČR GAP303/12/0576 Institutional support: RVO:61388963 Keywords : Alzheimer's disease * insulin signaling * liraglutide * monosodium glutamate-obese mice * obesity * pre- diabetes * prolactin-releasing peptide Subject RIV: CE - Biochemistry Impact factor: 3.920, year: 2015

  10. The study of Insulin Resistance in the Off Springs of Diabetics and Non Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Ganesh Manoorkar

    2017-12-01

    Full Text Available Introduction: Insulin resistance is one of the main cause in the pathogenesis of the development of type- 2 diabetes mellitus. Elevated insulin levels and insulin resistance may be present several years prior to the development of hyperglycaemia. Hence the diagnosis of insulin resistance at the initial stages in risk group people could be used as an effective measure to prevent type 2 diabetes mellitus and its outcome, including reduction in morbidity and mortality. Though type 2 diabetes mellitus has multifactorial aetiology, genetic factor plays an important role in the development of diabetes mellitus. So we have tried to establish relation between genetic factor and insulin resistance by studying the insulin resistance in off springs of diabetics and non diabetics patients. Aims and objectives: Estimation of insulin levels in the off springs (non diabetics of diabetics and non diabetics patients. Comparision of insulin resistance in the off springs (non diabetics of diabetics and non diabetics. To find the relation between insulin resistance and genetic factor. Material and method: This study was carried out in the department of Biochemistry Grant Government Medical College Mumbai. Total 100 non diabetic people were included in the study of age above 30 years. These are divided into two groups as- Group-I includes 50 off springs (Ist degree relatives of non diabetic people. Group-II includes 50 off springs (Ist degree relatives of diabetic people. The fasting plasma glucose and serum insulin levels are estimated in the above two groups. The insulin resistance was calculated by using HOMA-IR model. Result: Fasting plasma glucose, serum insulin level and insulin resistance is significantly increased in group-II people as compared to group-I people. Conclusion: There is a strong relation between genetic factor and insulin resistance which exist prior to the development of diabetes mellitus. The people of group-II are susceptible for the

  11. Intracellular protein delivery activity of peptides derived from insulin-like growth factor binding proteins 3 and 5

    International Nuclear Information System (INIS)

    Goda, Natsuko; Tenno, Takeshi; Inomata, Kosuke; Shirakawa, Masahiro; Tanaka, Toshiki; Hiroaki, Hidekazu

    2008-01-01

    Insulin-like growth factor binding proteins (IGFBPs) have various IGF-independent cellular activities, including receptor-independent cellular uptake followed by transcriptional regulation, although mechanisms of cellular entry remain unclear. Herein, we focused on their receptor-independent cellular entry mechanism in terms of protein transduction domain (PTD) activity, which is an emerging technique useful for clinical applications. The peptides of 18 amino acid residues derived from IGFBP-3 and IGFBP-5, which involve heparin-binding regions, mediated cellular delivery of an exogenous protein into NIH3T3 and HeLa cells. Relative protein delivery activities of IGFBP-3/5-derived peptides were approximately 20-150% compared to that of the HIV-Tat peptide, a potent PTD. Heparin inhibited the uptake of the fusion proteins with IGFBP-3 and IGFBP-5, indicating that the delivery pathway is heparin-dependent endocytosis, similar to that of HIV-Tat. The delivery of GST fused to HIV-Tat was competed by either IGFBP-3 or IGFBP-5-derived synthetic peptides. Therefore, the entry pathways of the three PTDs are shared. Our data has shown a new approach for designing protein delivery systems using IGFBP-3/5 derived peptides based on the molecular mechanisms of IGF-independent activities of IGFBPs

  12. 2001 Toxic Chemical Release Inventory Emergency Planning and Community Right to Know Act SEC 313

    International Nuclear Information System (INIS)

    ZALOUDEK, D.E.

    2002-01-01

    Pursuant to section 313 of the Emergency Planning and Community Right-To-Know Act of 1986 (EPCRA), and Executive Order 13148, Greening the Government Through Leadership in Environmental Management, the US Department of Energy has prepared and submitted a Toxic Chemical Release Inventory for the Hanford Site covering activities performed during calendar year 2001. EPCRA Section 313 requires facilities that manufacture, process, or otherwise use listed toxic chemicals in quantities exceeding established threshold levels to report total annual releases of those chemicals. During calendar year 2001, Hanford Site activities resulted in one chemical used in amounts exceeding an activity threshold. Accordingly, the Hanford Site 2001 Toxic Chemical Release Inventory, DOE/RL-2002-37, includes total annual amount of lead released to the environment, transferred to offsite locations, and otherwise managed as waste

  13. Electrodeposition to construct free-standing chitosan/layered double hydroxides hydro-membrane for electrically triggered protein release.

    Science.gov (United States)

    Zhao, Pengkun; Zhao, Yanan; Xiao, Ling; Deng, Hongbing; Du, Yumin; Chen, Yun; Shi, Xiaowen

    2017-10-01

    In this study, we report the electrodeposition of a chitosan/layered double hydroxides (LDHs) hydro-membrane for protein release triggered by an electrical signal. The electrodeposition was performed in a chitosan and insulin loaded LDHs suspension in the absence of salt. A free-standing chitosan/LDHs hydro-membrane was generated on the electrode with improved mechanical properties, which is dramatically different from the weak hydrogel deposited in the presence of salt. The amount of LDHs in the hydro-membrane affects the optical transmittance and multilayered structure of the hybrid membrane. Compared to the weak chitosan/LDHs hydrogel, the hydro-membrane has a higher insulin loading capacity and the release of insulin is relatively slow. By biasing electrical potentials to the hydro-membrane, the release behavior of insulin can be adjusted accordingly. In addition, the chitosan/LDHs hydro-membrane showed no toxicity to cells. Our results provide a facile method to construct a chitosan/LDHs hybrid multilayered hydro-membrane and suggest the great potential of the hydro-membrane in controlled protein release. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Glucagon-like peptide-1 receptor agonists compared with basal insulins for the treatment of type 2 diabetes mellitus: a systematic review and meta-analysis.

    Science.gov (United States)

    Singh, Sonal; Wright, Eugene E; Kwan, Anita Y M; Thompson, Juliette C; Syed, Iqra A; Korol, Ellen E; Waser, Nathalie A; Yu, Maria B; Juneja, Rattan

    2017-02-01

    Since 2005, several glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have been approved to treat people with type 2 diabetes. These agents are considered for use at the same point in the treatment paradigm as basal insulins. A comprehensive comparison of these drug classes, therefore, can help inform treatment decisions. This systematic review and meta-analysis assessed the clinical efficacy and safety of GLP-1 RAs compared with basal insulins. MEDLINE, EMBASE, CENTRAL and PubMed databases were searched. Randomized clinical trials (RCTs) of ≥16 weeks' duration comparing GLP-1 RAs vs basal insulins in adults with type 2 diabetes inadequately controlled with oral antihyperglycemic drugs were included. Data on the change from baseline to 26 weeks (±10 weeks) of treatment in hemoglobin A1c (HbA1c) and weight, as well as the proportion of patients experiencing hypoglycaemia, were extracted. Fixed-effect pairwise meta-analyses were conducted where data were available from ≥2 studies. Fifteen RCTs were identified and 11 were meta-analysed. The once-weekly GLP-1 RAs, exenatide long acting release (LAR) and dulaglutide, led to greater, statistically significant mean HbA1c reductions vs basal insulins (exenatide: -0.31% [95% confidence interval -0.42, -0.19], dulaglutide: -0.39% [-0.49, -0.29]) whilst once-daily liraglutide and twice-daily exenatide did not (liraglutide: 0.06% [-0.06, 0.18], exenatide: 0.01% [-0.11, 0.13]). Mean weight reduction was seen with all GLP-1 RAs while mean weight gain was seen with basal insulins. Interpretation of the analysis of hypoglycaemia was limited by inconsistent definitions and reporting. Because of the limited number of available studies sensitivity analyses to explore heterogeneity could not be conducted. Although weight reduction is seen with all GLP-1 RA's, only the once-weekly agents, exenatide LAR and dulaglutide, demonstrate significant HbA1c reductions when compared to basal insulins. © 2016 The Authors. Diabetes

  15. Children's Ability to Recognise Toxic and Non-Toxic Fruits

    Science.gov (United States)

    Fancovicova, Jana; Prokop, Pavol

    2011-01-01

    Children's ability to identify common plants is a necessary prerequisite for learning botany. However, recent work has shown that children lack positive attitudes toward plants and are unable to identify them. We examined children's (aged 10-17) ability to discriminate between common toxic and non-toxic plants and their mature fruits presented in…

  16. Strategies for the Activation and Release of the Membranolytic Peptide Melittin from Liposomes Using Endosomal pH as a Trigger.

    Science.gov (United States)

    Oude Blenke, E; Sleszynska, M; Evers, M J W; Storm, G; Martin, N I; Mastrobattista, E

    2017-02-15

    Endosomolytic peptides are often coupled to drug delivery systems to enhance endosomal escape, which is crucial for the delivery of macromolecular drugs that are vulnerable to degradation in the endolysosomal pathway. Melittin is a 26 amino acid peptide derived from bee venom that has a very high membranolytic activity. However, such lytic peptides also impose a significant safety risk when applied in vivo as they often have similar activity against red blood cells and other nontarget cell membranes. Our aim is to control the membrane-disrupting capacity of these peptides in time and space by physically constraining them to a nanocarrier surface in such a way that they only become activated when delivered inside acidic endosomes. To this end, a variety of chemical approaches for the coupling of lytic peptides to liposomes via functionalized PEG-lipids were explored, including maleimide-thiol chemistry, click-chemistry, and aldehyde-hydrazide chemistry. The latter enables reversible conjugation via a hydrazone bond, allowing for release of the peptide under endosomal conditions. By carefully choosing the conjugation site and by using a pH activated analog of the melittin peptide, lytic activity toward a model membrane is completely inhibited at physiological pH. At endosomal pH the activity is restored by hydrolysis of the acid-labile hydrazone bond, releasing the peptide in its most active, free form. Furthermore, using an analogue containing a nonhydrolyzable bond as a control, it was shown that the activity observed can be completely attributed to release of the peptide, validating dynamic covalent conjugation as a suitable strategy to maintain safety during circulation.

  17. Insulin versus Lipid Emulsion in a Rabbit Model of Severe Propranolol Toxicity: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Martyn Harvey

    2011-01-01

    Full Text Available Background and objective. Beta-blocker overdose may result in intractable cardiovascular collapse despite conventional antidotal treatments. High dose insulin/glucose (ING, and more recently intravenous lipid emulsion (ILE, have been proposed as potentially beneficial therapies in beta blocker intoxication. We compare efficacy of the novel antidotes ING, with ILE, in a rabbit model of combined enteric/intravenous propranolol toxicity. Methods. Sedated, mechanically ventilated and invasively monitored New Zealand White rabbits underwent mini-laparotomy and enterostomy formation with 40 mg/kg propranolol instilled into the proximal small bowel. At 30 minutes propranolol infusion was commenced at 4 mg/kg/hr and continued to a target mean arterial pressure (MAP of 50% baseline MAP. Animals were resuscitated with insulin at 3 U/kg plus 0.5 g/kg glucose (ING group, or 10 mL/kg 20% Intralipid (ILE group. Results. Rate pressure product (RPP; RPP = heart rate × mean arterial pressure was greatest in the ING group at 60 minutes (P<.05. A trend toward greater heart rate was observed in the ING group (P=.06. No difference was observed in survival between groups (4/5 ING versus 2/5 ILE; P=.524. Conclusions. High dose insulin resulted in greater rate pressure product compared with lipid emulsion in this rabbit model of severe enteric/intravenous propranolol toxicity.

  18. Involvement of insulin-like peptide in long-term synaptic plasticity and long-term memory of the pond snail Lymnaea stagnalis.

    Science.gov (United States)

    Murakami, Jun; Okada, Ryuichi; Sadamoto, Hisayo; Kobayashi, Suguru; Mita, Koichi; Sakamoto, Yuki; Yamagishi, Miki; Hatakeyama, Dai; Otsuka, Emi; Okuta, Akiko; Sunada, Hiroshi; Takigami, Satoshi; Sakakibara, Manabu; Fujito, Yutaka; Awaji, Masahiko; Moriyama, Shunsuke; Lukowiak, Ken; Ito, Etsuro

    2013-01-02

    The pond snail Lymnaea stagnalis is capable of learning taste aversion and consolidating this learning into long-term memory (LTM) that is called conditioned taste aversion (CTA). Previous studies showed that some molluscan insulin-related peptides (MIPs) were upregulated in snails exhibiting CTA. We thus hypothesized that MIPs play an important role in neurons underlying the CTA-LTM consolidation process. To examine this hypothesis, we first observed the distribution of MIP II, a major peptide of MIPs, and MIP receptor and determined the amounts of their mRNAs in the CNS. MIP II was only observed in the light green cells in the cerebral ganglia, but the MIP receptor was distributed throughout the entire CNS, including the buccal ganglia. Next, when we applied exogenous mammalian insulin, secretions from MIP-containing cells or partially purified MIPs, to the isolated CNS, we observed a long-term change in synaptic efficacy (i.e., enhancement) of the synaptic connection between the cerebral giant cell (a key interneuron for CTA) and the B1 motor neuron (a buccal motor neuron). This synaptic enhancement was blocked by application of an insulin receptor antibody to the isolated CNS. Finally, injection of the insulin receptor antibody into the snail before CTA training, while not blocking the acquisition of taste aversion learning, blocked the memory consolidation process; thus, LTM was not observed. These data suggest that MIPs trigger changes in synaptic connectivity that may be correlated with the consolidation of taste aversion learning into CTA-LTM in the Lymnaea CNS.

  19. Calcium phosphate-PEG-insulin-casein (CAPIC) particles as oral delivery systems for insulin.

    Science.gov (United States)

    Morçöl, T; Nagappan, P; Nerenbaum, L; Mitchell, A; Bell, S J D

    2004-06-11

    An oral delivery system for insulin was developed and functional activity was tested in a non-obese diabetic (NOD) mice model. Calcium phosphate particles containing insulin was synthesized in the presence of PEG-3350 and modified by aggregating the particles with caseins to obtain the calcium phosphate-PEG-insulin-casein (CAPIC) oral insulin delivery system. Single doses of CAPIC formulation were tested in NOD mice under fasting or fed conditions to evaluate the glycemic activity. The blood glucose levels were monitored every 1-2h for 12h following the treatments using an ACCU CHECK blood glucose monitoring system. Orally administered and subcutaneously injected free insulin solution served as controls in the study. Based on the results obtained we propose that: (1). the biological activity of insulin is preserved in CAPIC formulation; (2). insulin in CAPIC formulations, but not the free insulin, displays a prolonged hypoglycemic effect after oral administration to diabetic mice; (3). CAPIC formulation protects insulin from degradation while passing through the acidic environment of the GI track until it is released in the less acidic environment of the intestines where it can be absorbed in its biologically active form; (4). CAPIC formulation represents a new and unique oral delivery system for insulin and other macromolecules.

  20. Exposure of Cleft Lip and Palate Patients to Toxic Elements Released during Orthodontic Treatment in the Study of Non-Invasive Matrices.

    Directory of Open Access Journals (Sweden)

    Marcin Mikulewicz

    Full Text Available The aim of the study was evaluation of metal ions (nickel and chromium released from orthodontic appliances in cleft lip and palate patients and the usefulness of non-invasive matrices (saliva and hair.The material studied consisted of 100 individuals, including 59 females and 41 males of 5 to 16 years of age, which were divided into 3 groups: experimental-patients with cleft lip and palate (36 individuals, the average treatment time 5.74 years; control group-patients without cleft lip and palate, during orthodontic treatment (32 individuals, the average treatment time 1.78 years and the control group patients without cleft lip and palate, without any orthodontic appliances (32 individuals. Samples (saliva, hair were collected and subjects underwent a survey by questionnaire. Multi-elemental analyses of the composition of non-invasive matrices was conducted in an accredited laboratory by inductively coupled plasma spectrometry technique ICP-OES. The results were reported as mean contents of particular elements (Cd, Cr, Cu, Fe, Mn, Mo, Ni, Si in hair and in saliva.The concentration of Cr, Ni, Fe and Cu ions in saliva of cleft lip and palate patients were several times higher as compared with not treated orthodontically control groups and higher than in the group with orthodontic appliances. Among the assessed matrices, hair of cleft lip and palate patients seem to be not a meaningful biomarker.It was found that orthodontic appliances used in long-term treatment of cleft lip and palate patients do not release toxic levels of Cr and Ni ions.

  1. Improvement of glycaemic control and elevation of C-peptide following a diet free of dairy products in an insulin-treated, patient with type 2 diabetes with ulcerative colitis.

    Science.gov (United States)

    Tandeter, Howard

    2009-01-01

    An insulin-treated patient with type 2 diabetes mellitus started a diet free of dairy products. Unexpectedly, she developed episodes of hypoglycaemia, without any change in her usual medication (insulin NPH at bedtime and Metformin). Laboratory tests showed an improvement of endogenous insulin secretion as demonstrated by the induction of hypoglycaemia and the elevation to normalisation of C-peptide levels. The patient was rechallenged with dairy products, leading to the lowering of the C-peptide levels back to abnormal levels, and an increase in HBA1C levels. The findings in our patient contrast with the insulinotropic effect of milk in healthy subjects described in the literature. The two main "milk debates" on the relation between milk (or its components) and diabetes are presented. Further observations will be needed to clarify the question of whether a diet free of dairy products can improve glycaemic control in other insulin-treated patients with type 2 diabetes.

  2. Self-assembled lecithin/chitosan nanoparticles for oral insulin delivery: preparation and functional evaluation

    Directory of Open Access Journals (Sweden)

    Liu LY

    2016-02-01

    hypoglycemic effect. The relative pharmacological bioavailability following oral administration of L/C NPs was 6.01%.Conclusion: With the aid of phospholipid-complexation techniques, some hydrophilic peptides, such as insulin, can be successfully entrapped into L/C NPs, which could improve oral bioavailability, time-dependent release, and therapeutic activity. Keywords: insulin–phospholipid complex, lecithin, chitosan, nanoparticles, oral delivery, streptozotocin-induced diabetes

  3. Toward the assessment of food toxicity for celiac patients: characterization of monoclonal antibodies to a main immunogenic gluten peptide.

    Directory of Open Access Journals (Sweden)

    Belén Morón

    Full Text Available BACKGROUND AND AIMS: Celiac disease is a permanent intolerance to gluten prolamins from wheat, barley, rye and, in some patients, oats. Partially digested gluten peptides produced in the digestive tract cause inflammation of the small intestine. High throughput, immune-based assays using monoclonal antibodies specific for these immunotoxic peptides would facilitate their detection in food and enable monitoring of their enzymatic detoxification. Two monoclonal antibodies, G12 and A1, were developed against a highly immunotoxic 33-mer peptide. The potential of each antibody for quantifying food toxicity for celiac patients was studied. METHODS: Epitope preferences of G12 and A1 antibodies were determined by ELISA with gluten-derived peptide variants of recombinant, synthetic or enzymatic origin. RESULTS: The recognition sequences of G12 and A1 antibodies were hexameric and heptameric epitopes, respectively. Although G12 affinity for the 33-mer was superior to A1, the sensitivity for gluten detection was higher for A1. This observation correlated to the higher number of A1 epitopes found in prolamins than G12 epitopes. Activation of T cell from gluten digested by glutenases decreased equivalently to the detection of intact peptides by A1 antibody. Peptide recognition of A1 included gliadin peptides involved in the both the adaptive and innate immunological response in celiac disease. CONCLUSIONS: The sensitivity and epitope preferences of the A1 antibody resulted to be useful to detect gluten relevant peptides to infer the potential toxicity of food for celiac patients as well as to monitor peptide modifications by transglutaminase 2 or glutenases.

  4. Effect of gestational age and blood glucose on C-peptide excretion rate and clearance in neonates.

    Science.gov (United States)

    Salis, Emma R; Soelbeck, Mikkel K; Reith, David M; Wheeler, Benjamin J; Broadbent, Roland S; Medlicott, Natalie J

    2016-01-01

    The aim of this study was to measure urinary C-peptide concentrations, and then calculate C-peptide clearance (Cl), and excretion rate (UER) in neonates. In addition, the effect of gestational age (GA) and blood glucose levels (BGL) on C-peptide UER were investigated. Insulin concentrations in plasma and C-peptide concentrations were measured in plasma and urine, in 20 neonates. Chemiluminescent immunoassays were used for insulin and C-peptide measurements, with urine diluted to 40% with bovine serum albumin 1% in phosphate buffered saline. Urine volume and time of collection were recorded and used to calculate UER and Cl. The mean Cl of C-peptide was 0.309 ± 0.329 mL/min/kg, and UER was 0.0329 ± 0.0342 pmol/min/kg. Correlations between Cl or UER and GA were not significant (P > 0.05). No significant correlation was shown between Cl or UER and BGL (P > 0.05). Both Cl and UER were highly variable in neonates, but were not correlated with GA. Additionally, BGL did not appear to affect C-peptide UER and Cl. As GA and BGL did not appear to affect Cl and UER, urinary C-peptide may provide a non-invasive method of measuring insulin production in neonates. © 2015 The Authors. Journal of Paediatrics and Child Health © 2015 Paediatrics and Child Health Division (Royal Australasian College of Physicians).

  5. Effects of niacin supplementation on the insulin resistance in Holstein cows during early lactation

    OpenAIRE

    Talija Hristovska; Marko R. Cincović; Branislava Belić; Dragica Stojanović; Milanka Jezdimirović; Radojica Đoković; Bojan Toholj

    2017-01-01

    Insulin resistance in early lactation includes low glucose concentration, low insulin release and responsiveness and high lipolysis. Niacin is important antilipolytic agent and leads to increase glucose and insulin concentration. The objectives of this study were to determine the influence of niacin on the insulin resistance in cows during early lactation using the difference of value and regression analysis between blood non-esterified fatty acid (NEFA), glucose and insulin concentrations, r...

  6. Differential effects of glucagon-like peptide-1 on microvascular recruitment and glucose metabolism in short- and long-term Insulin resistance

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker; Rattigan, Stephen; Jeppesen, Jacob Fuglsbjerg

    2015-01-01

    Acute infusion of glucagon-like-peptide-1 (GLP-1) has potent effects on blood flow distribution through the microcirculation in healthy humans and rats. High fat diet induces impairments in insulin-mediated microvascular recruitment (MVR) and muscle glucose uptake, and here we examined whether......-mediated glucose uptake in skeletal muscle by 90% (Prights...

  7. The non-peptidic part determines the internalization mechanism and intracellular trafficking of peptide amphiphiles.

    Directory of Open Access Journals (Sweden)

    Dimitris Missirlis

    Full Text Available BACKGROUND: Peptide amphiphiles (PAs are a class of amphiphilic molecules able to self-assemble into nanomaterials that have shown efficient in vivo targeted delivery. Understanding the interactions of PAs with cells and the mechanisms of their internalization and intracellular trafficking is critical in their further development for therapeutic delivery applications. METHODOLOGY/PRINCIPAL FINDINGS: PAs of a novel, cell- and tissue-penetrating peptide were synthesized possessing two different lipophilic tail architectures and their interactions with prostate cancer cells were studied in vitro. Cell uptake of peptides was greatly enhanced post-modification. Internalization occurred via lipid-raft mediated endocytosis and was common for the two analogs studied. On the contrary, we identified the non-peptidic part as the determining factor of differences between intracellular trafficking and retention of PAs. PAs composed of di-stearyl lipid tails linked through poly(ethylene glycol to the peptide exhibited higher exocytosis rates and employed different recycling pathways compared to ones consisting of di-palmitic-coupled peptides. As a result, cell association of the former PAs decreased with time. CONCLUSIONS/SIGNIFICANCE: Control over peptide intracellular localization and retention is possible by appropriate modification with synthetic hydrophobic tails. We propose this as a strategy to design improved peptide-based delivery systems.

  8. Relationships between Cargo, Cell Penetrating Peptides and Cell Type for Uptake of Non-Covalent Complexes into Live Cells

    Directory of Open Access Journals (Sweden)

    Andrea-Anneliese Keller

    2013-02-01

    Full Text Available Modulating signaling pathways for research and therapy requires either suppression or expression of selected genes or internalization of proteins such as enzymes, antibodies, nucleotide binding proteins or substrates including nucleoside phosphates and enzyme inhibitors. Peptides, proteins and nucleotides are transported by fusing or conjugating them to cell penetrating peptides or by formation of non-covalent complexes. The latter is often preferred because of easy handling, uptake efficiency and auto-release of cargo into the live cell. In our studies complexes are formed with labeled or readily detectable cargoes for qualitative and quantitative estimation of their internalization. Properties and behavior of adhesion and suspension vertebrate cells as well as the protozoa Leishmania tarentolae are investigated with respect to proteolytic activity, uptake efficiency, intracellular localization and cytotoxicity. Our results show that peptide stability to membrane-bound, secreted or intracellular proteases varies between different CPPs and that the suitability of individual CPPs for a particular cargo in complex formation by non-covalent interactions requires detailed studies. Cells vary in their sensitivity to increasing concentrations of CPPs. Thus, most cells can be efficiently transduced with peptides, proteins and nucleotides with intracellular concentrations in the low micromole range. For each cargo, cell type and CPP the optimal conditions must be determined separately.

  9. AMAP, the alleged non-toxic isomer of acetaminophen, is toxic in rat and human liver

    NARCIS (Netherlands)

    Hadi, M; Dragovic, S.; van Swelm, R; Herpers, B; van de Water, B.; Russel, RG; Commandeur, J.N.M.; Groothuis, G.M.

    2013-01-01

    N-acetyl-meta-aminophenol (AMAP) is generally considered as a non-toxic regioisomer of the wellknown hepatotoxicant acetaminophen (APAP). However, so far, AMAP has only been shown to be non-toxic in mice and hamsters. To investigate whether AMAP could also be used as non-toxic analog of APAP in rat

  10. Expression of gastrin-releasing peptide by excitatory interneurons in the mouse superficial dorsal horn.

    Science.gov (United States)

    Gutierrez-Mecinas, Maria; Watanabe, Masahiko; Todd, Andrew J

    2014-12-11

    Gastrin-releasing peptide (GRP) and its receptor have been shown to play an important role in the sensation of itch. However, although GRP immunoreactivity has been detected in the spinal dorsal horn, there is debate about whether this originates from primary afferents or local excitatory interneurons. We therefore examined the relation of GRP immunoreactivity to that seen with antibodies that label primary afferent or excitatory interneuron terminals. We tested the specificity of the GRP antibody by preincubating with peptides with which it could potentially cross-react. We also examined tissue from a mouse line in which enhanced green fluorescent protein (EGFP) is expressed under control of the GRP promoter. GRP immunoreactivity was seen in both primary afferent and non-primary glutamatergic axon terminals in the superficial dorsal horn. However, immunostaining was blocked by pre-incubation of the antibody with substance P, which is present at high levels in many nociceptive primary afferents. EGFP+ cells in the GRP-EGFP mouse did not express Pax2, and their axons contained the vesicular glutamate transporter 2 (VGLUT2), indicating that they are excitatory interneurons. In most cases, their axons were also GRP-immunoreactive. Multiple-labelling immunocytochemical studies indicated that these cells did not express either of the preprotachykinin peptides, and that they generally lacked protein kinase Cγ, which is expressed by a subset of the excitatory interneurons in this region. These results show that GRP is expressed by a distinct population of excitatory interneurons in laminae I-II that are likely to be involved in the itch pathway. They also suggest that the GRP immunoreactivity seen in primary afferents in previous studies may have resulted from cross-reaction of the GRP antibody with substance P or the closely related peptide neurokinin A.

  11. Effects of glucagon-like peptide 1 on counterregulatory hormone responses, cognitive functions, and insulin secretion during hyperinsulinemic, stepped hypoglycemic clamp experiments in healthy volunteers

    DEFF Research Database (Denmark)

    Nauck, Michael A; Heimesaat, Markus M; Behle, Kai

    2002-01-01

    and neuroglucopenic symptoms were assessed, and cognitive function was tested at each plateau. Insulin secretion rates were estimated by deconvolution (two-compartment model of C-peptide kinetics). At insulin concentrations of approximately 45 mU/liter, glucose infusion rates were similar with and without GLP-1 (P......Glucagon-like peptide 1 (GLP-1) and analogues are being evaluated as a new therapeutic principle for the treatment of type 2 diabetes. GLP-1 suppresses glucagon secretion, which could lead to disturbances of hypoglycemia counterregulation. This has, however, not been tested. Nine healthy volunteers.......97). The other counterregulatory hormones and autonomic or neuroglucopenic symptom scores increased, and cognitive functions decreased with decreasing glucose concentrations, but there were no significant differences comparing experiments with GLP-1 or placebo, except for a significant reduction of GH responses...

  12. AMAP, the alleged non-toxic isomer of acetaminophen, is toxic in rat and human liver

    NARCIS (Netherlands)

    Hadi, Mackenzie; Dragovic, Sanja; van Swelm, Rachel; Herpers, Bram; van de Water, Bob; Russel, Frans G. M.; Commandeur, Jan N. M.; Groothuis, Geny M. M.

    N-acetyl-meta-aminophenol (AMAP) is generally considered as a non-toxic regioisomer of the well-known hepatotoxicant acetaminophen (APAP). However, so far, AMAP has only been shown to be non-toxic in mice and hamsters. To investigate whether AMAP could also be used as non-toxic analog of APAP in rat

  13. 78 FR 52860 - Electronic Reporting of Toxics Release Inventory Data

    Science.gov (United States)

    2013-08-27

    ... only exception to this electronic reporting requirement is for the few facilities that submit trade... rulemaking process later to require the electronic reporting of trade secrets. The EPA recognizes the... Electronic Reporting of Toxics Release Inventory Data AGENCY: Environmental Protection Agency (EPA). ACTION...

  14. Multi-objective evacuation routing optimization for toxic cloud releases

    International Nuclear Information System (INIS)

    Gai, Wen-mei; Deng, Yun-feng; Jiang, Zhong-an; Li, Jing; Du, Yan

    2017-01-01

    This paper develops a model for assessing the risks associated with the evacuation process in response to potential chemical accidents, based on which a multi-objective evacuation routing model for toxic cloud releases is proposed taking into account that the travel speed on each arc will be affected by disaster extension. The objectives of the evacuation routing model are to minimize travel time and individual evacuation risk along a path respectively. Two heuristic algorithms are proposed to solve the multi-objective evacuation routing model. Simulation results show the effectiveness and feasibility of the model and algorithms presented in this paper. And, the methodology with appropriate modification is suitable for supporting decisions in assessing emergency route selection in other cases (fires, nuclear accidents). - Highlights: • A model for assessing and visualizing the risks is developed. • A multi-objective evacuation routing model is proposed for toxic cloud releases. • A modified Dijkstra algorithm is designed to obtain an solution of the model. • Two heuristic algorithms have been developed as the optimization tool.

  15. Potentiation of insulin release in response to amino acid methyl esters correlates to activation of islet glutamate dehydrogenase activity

    DEFF Research Database (Denmark)

    Kofod, Hans; Lernmark, A; Hedeskov, C J

    1986-01-01

    Column perifusion of mouse pancreatic islets was used to study the ability of amino acids and their methyl esters to influence insulin release and activate islet glutamate dehydrogenase activity. In the absence of L-glutamine, L-serine and the methyl ester of L-phenylalanine, but neither L...... glutamate dehydrogenase activity showed that only the two methyl esters of L-phenylalanine and L-serine activated the enzyme. It is concluded that the mechanism by which methyl esters of amino acids potentiate insulin release is most likely to be mediated by the activation of pancreatic beta-cell glutamate...

  16. Anhydrous polymer-based coating with sustainable controlled release functionality for facile, efficacious impregnation, and delivery of antimicrobial peptides.

    Science.gov (United States)

    Lim, Kaiyang; Saravanan, Rathi; Chong, Kelvin K L; Goh, Sharon H M; Chua, Ray R Y; Tambyah, Paul A; Chang, Matthew W; Kline, Kimberly A; Leong, Susanna S J

    2018-04-17

    Anhydrous polymers are actively explored as alternative materials to overcome limitations of conventional hydrogel-based antibacterial coating. However, the requirement for strong organic solvent in polymerization reactions often necessitates extra protection steps for encapsulation of target biomolecules, lowering encapsulation efficiency, and increasing process complexity. This study reports a novel coating strategy that allows direct solvation and encapsulation of antimicrobial peptides (HHC36) into anhydrous polycaprolactone (PCL) polymer-based dual layer coating. A thin 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) film is layered onto the peptide-impregnated PCL as a diffusion barrier, to modulate and enhance release kinetics. The impregnated peptides are eventually released in a controlled fashion. The use of 2,2,2-trifluoroethanol (TFE), as polymerization and solvation medium, induces the impregnated peptides to adopt highly stable turned conformation, conserving peptide integrity, and functionality during both encapsulation and subsequent release processes. The dual layer coating showed sustained antibacterial functionality, lasting for 14 days. In vivo assessment using an experimental mouse wounding model demonstrated good biocompatibility and significant antimicrobial efficacy of the coating under physiological conditions. The coating was translated onto silicone urinary catheters and showed promising antibacterial efficacy, even outperforming commercial silver-based Dover cather. This anhydrous polymer-based platform holds immense potential as an effective antibacterial coating to prevent clinical device-associated infections. The simplicity of the coating process enhances its industrial viability. © 2018 Wiley Periodicals, Inc.

  17. Analyses of insulin-potentiating fragments of human growth hormone by computative simulation; essential unit for insulin-involved biological responses.

    Science.gov (United States)

    Ohkura, K; Hori, H

    2000-07-01

    We analyzed the structural features of insulin-potentiating fragments of human growth hormone by computative simulations. The peptides were designated from the N-terminus sequences of the hormone positions at 1-15 (hGH(1-15); H2N-Phe1-Pro2-Thr3-Ile4-Pro5-Leu6-Ser7-Arg8-L eu9-Phe10-Asp11-Asn12-Ala13-Met14-Leu15 -COOH), 6-13 (hGH(6-13)), 7-13 (hGH(7-13)) and 8-13 (hGH(8-13)), which enhanced insulin-producing hypoglycemia. In these peptide molecules, ionic bonds were predicted to form between 8th-arginyl residue and 11th-aspartic residue, and this intramolecular interaction caused the formation of a macrocyclic structure containing a tetrapeptide Arg8-Leu9-Phe10-Asp11. The peptide positions at 6-10 (hGH(6-10)), 9-13 (hGH(9-13)) and 10-13 (hGH(10-13)) did not lead to a macrocyclic formation in the molecules, and had no effect on the insulin action. Although beta-Ala13hGH(1-15), in which the 13th-alanine was replaced by a beta-alanyl residue, had no effect on insulin-producing hypoglycemia, the macrocyclic region (Arg8-Leu9-Phe10-Asp11) was observed by the computative simulation. An isothermal vibration analysis of both of beta-Ala13hGH(1-15) and hGH(1-15) peptide suggested that beta-Ala13hGH(1-15) is molecule was more flexible than hGH(1-15); C-terminal carboxyl group of Leu15 easily accessed to Arg8 and inhibited the ionic bond formation between Arg8 and Asp11 in beta-Ala13hGH(1-15). The peptide of hGH(8-13) dose-dependently enhanced the insulin-involved fatty acid synthesis in rat white adipocytes, and stabilized the C6-NBD-PC (1-acyl-2-[6-[(7-nitro-2,1,3benzoxadiazol-4-yl)amino]-caproyl]-sn- glycero-3-phosphatidylcholine) model membranes. In contrast, hGH(9-13) had no effect both on the fatty acid synthesis and the membrane stability. In the same culture conditions as the fatty acid synthesis assay, hGH(8-13) had no effect on the transcript levels of glucose transporter isoforms (GLUT 1, 4) and hexokinase isozymes (HK I, II) in rat white adipocytes. Judging from

  18. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.

    Science.gov (United States)

    Erak, Miloš; Bellmann-Sickert, Kathrin; Els-Heindl, Sylvia; Beck-Sickinger, Annette G

    2018-06-01

    The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Effect of single physical exercise at 35% VO{sub 2} max. intensity on secretion activity of pancreas {beta}-cells and {sup 125}J-insulin binding and degradation ability by erythrocyte receptors in children with diabetes mellitus; Einfluss der einmaligen Koerperanstrengung von 35% VO{sub 2} max. auf Sekretionsfaehigkeit von B-Zellen der Bauchspeicheldruese und auf Bindungs-und Degradationsfaehigkeit von {sup 125}J-Insulin durch Erythrozytenrezeptoren bei Kindern mit Diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Szczesniak, L; Rychlewski, T [Lehrstuhl fuer Physiologie, Biochemie und Hygiene, Akademie fuer Koerpererziehung, Poznan (Poland); Banaszak, F; Kasprzak, Z; Walczak, M [3. Klinik von Kinderkrankheiten, Medizinische Akademie, Poznan (Poland)

    1994-12-31

    In this report we showed research results of effect of single physical exercise on cycloergometer at 35% VO{sub 2} max. intensity on {sup 125}J-insulin binding and degradation ability by erythrocyte receptors in children with diabetes mellitus, secreting and non-secreting endogenous insulin. Insulin secretion was evaluated by measurement of C-peptide by Biodet test (Serono) of sensitivity threshold at 0.3 {mu}g/ml. We indicated in children non-secreting endogenous insulin (n=32) there is statistically essential lower {sup 125}J-insulin binding with erythrocyte receptor in comparison to children group with C-peptide. Physical exercise on cycloergometer at 35% VO{sub 2} max. intensity caused different reaction in range of physiological indices, like acid-base parameters, level of glucose and {sup 125}J-insulin binding and degradation. In children devoid of endogenous insulin we indicated statistically nonessential changes in {sup 125}J-insulin degradation by non-impaired erythrocytes and by hemolizate, as well. {sup 125}J-insulin binding after physical exercise increased in both groups, though change amplitude was different. Obtained research results allowed us to conclude, in children with I-type diabetes, that in dependence of impairment degree of pancreas {beta}cells sensitivity of insulin receptor and/or number of receptors on erythrocyte surface is different.

  20. Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin.

    Science.gov (United States)

    Wong, Chun Y; Al-Salami, Hani; Dass, Crispin R

    2018-02-15

    Diabetes mellitus is a chronic metabolic health disease affecting the homeostasis of blood sugar levels. However, subcutaneous injection of insulin can lead to patient non-compliance, discomfort, pain and local infection. Sub-micron sized drug delivery systems have gained attention in oral delivery of insulin for diabetes treatment. In most of the recent literature, the terms "microparticles" and "nanoparticle" refer to particles where the dimensions of the particle are measured in micrometers and nanometers respectively. For instance, insulin-loaded particles are defined as microparticles with size larger than 1 μm by most of the research groups. The size difference between nanoparticles and microparticles proffers numerous effects on the drug loading efficiency, aggregation, permeability across the biological membranes, cell entry and tissue retention. For instance, microparticulate drug delivery systems have demonstrated a number of advantages including protective effect against enzymatic degradation, enhancement of peptide stability, site-specific and controlled drug release. Compared to nanoparticulate drug delivery systems, microparticulate formulations can facilitate oral absorption of insulin by paracellular, transcellular and lymphatic routes. In this article, we review the current status of microparticles, microcapsules and microspheres for oral administration of insulin. A number of novel techniques including layer-by-layer coating, self-polymerisation of shell, nanocomposite microparticulate drug delivery system seem to be promising for enhancing the oral bioavailability of insulin. This review draws several conclusions for future directions and challenges to be addressed for optimising the properties of microparticulate drug formulations and enhancing their hypoglycaemic effects. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Insulin resistance in non-obese subjects is associated with activation of the JNK pathway and impaired insulin signaling in skeletal muscle.

    Directory of Open Access Journals (Sweden)

    Umesh B Masharani

    2011-05-01

    Full Text Available The pathogenesis of insulin resistance in the absence of obesity is unknown. In obesity, multiple stress kinases have been identified that impair the insulin signaling pathway via serine phosphorylation of key second messenger proteins. These stress kinases are activated through various mechanisms related to lipid oversupply locally in insulin target tissues and in various adipose depots.To explore whether specific stress kinases that have been implicated in the insulin resistance of obesity are potentially contributing to insulin resistance in non-obese individuals, twenty healthy, non-obese, normoglycemic subjects identified as insulin sensitive or resistant were studied. Vastus lateralis muscle biopsies obtained during euglycemic, hyperinsulinemic clamp were evaluated for insulin signaling and for activation of stress kinase pathways. Total and regional adipose stores and intramyocellular lipids (IMCL were assessed by DXA, MRI and (1H-MRS. In muscle of resistant subjects, phosphorylation of JNK was increased (1.36±0.23 vs. 0.78±0.10 OD units, P<0.05, while there was no evidence for activation of p38 MAPK or IKKβ. IRS-1 serine phosphorylation was increased (1.30±0.09 vs. 0.22±0.03 OD units, P<0.005 while insulin-stimulated tyrosine phosphorylation decreased (10.97±0.95 vs. 0.89±0.50 OD units, P<0.005. IMCL levels were twice as high in insulin resistant subjects (3.26±0.48 vs. 1.58±0.35% H(2O peak, P<0.05, who also displayed increased total fat and abdominal fat when compared to insulin sensitive controls.This is the first report demonstrating that insulin resistance in non-obese, normoglycemic subjects is associated with activation of the JNK pathway related to increased IMCL and higher total body and abdominal adipose stores. While JNK activation is consistent with a primary impact of muscle lipid accumulation on metabolic stress, further work is necessary to determine the relative contributions of the various mediators of impaired

  2. Association of the insulin-receptor variant Met-985 with hyperglycemia and non-insulin-dependent diabetes mellitus in the Netherlands : A population-based study

    NARCIS (Netherlands)

    tHart, LM; Stolk, RP; Heine, RJ; Grobbee, DE; vanderDoes, FEE; Maassen, JA

    1996-01-01

    One of the characteristics of non-insulin-dependent diabetes mellitus (NIDDM) is the presence of insulin resistance. Most NIDDM patients have a normal sequence of the insulin receptor, indicating that, if insulin-receptor mutations contribute to the development of NIDDM, they will be present only in

  3. Association of the insulin-receptor variant Met-985 with hyperglycemia and non-insulin-dependent diabetes mellitus in the Netherlands : A population-based study

    NARCIS (Netherlands)

    tHart, LM; Stolk, RP; Heine, RJ; Grobbee, DE; vanderDoes, FEE; Maassen, JA

    One of the characteristics of non-insulin-dependent diabetes mellitus (NIDDM) is the presence of insulin resistance. Most NIDDM patients have a normal sequence of the insulin receptor, indicating that, if insulin-receptor mutations contribute to the development of NIDDM, they will be present only in

  4. Agonism and antagonism at the insulin receptor

    DEFF Research Database (Denmark)

    Knudsen, Louise; Hansen, Bo Falck; Jensen, Pia

    2012-01-01

    Insulin can trigger metabolic as well as mitogenic effects, the latter being pharmaceutically undesirable. An understanding of the structure/function relationships between insulin receptor (IR) binding and mitogenic/metabolic signalling would greatly facilitate the preclinical development of new...... insulin analogues. The occurrence of ligand agonism and antagonism is well described for G protein-coupled receptors (GPCRs) and other receptors but in general, with the exception of antibodies, not for receptor tyrosine kinases (RTKs). In the case of the IR, no natural ligand or insulin analogue has been...... shown to exhibit antagonistic properties, with the exception of a crosslinked insulin dimer (B29-B'29). However, synthetic monomeric or dimeric peptides targeting sites 1 or 2 of the IR were shown to be either agonists or antagonists. We found here that the S961 peptide, previously described to be an IR...

  5. Characterization of an insulin-like growth factor-I/somatomedin-C radioimmunoassay specific for the C-peptide region

    International Nuclear Information System (INIS)

    Hintz, R.L.; Liu, F.; Seegan, G.

    1982-01-01

    Insulin-like growth factor-I (IGF-I) and somatomedin-C (SM-C) have been shown to be functionally identical by a number of criteria. We have synthesized the 12 amino acid C-peptide region of IGF-I (Gly-Tyr-Gly-Ser-Ser-Ser-Arg-Arg-Ala-Pro-Glu-Thr) and developed a RIA based on antibodies against this synthetic peptide. IGF-I and SM-C were indistinguishable in this RIA. No other peptides competed for this antiserum. The SM-C/IGF-I values of acid-chromatographed serum were strongly age dependent. The mean of children 1-5 yr old was 0.67 +/- 0.033 U/ml (mean +/- sD; n = 23), whereas the mean of children 12-17 yr old was 2.01 +/- 0.66 U/ml (n = 39) and the mean of 38 adults 26-85 yr old was 1.05 +/- 0.34. The SM-C/IGF-I values measured by this RIA were also growth hormone dependent. Thus, this region-specific RIA provides a clinically useful assessment of serum SM-C/IGF-I levels

  6. Omega-conotoxin- and nifedipine-insensitive voltage-operated calcium channels mediate K(+)-induced release of pro-thyrotropin-releasing hormone-connecting peptides Ps4 and Ps5 from perifused rat hypothalamic slices.

    Science.gov (United States)

    Valentijn, K; Tranchand Bunel, D; Vaudry, H

    1992-07-01

    The rat thyrotropin-releasing hormone (TRH) precursor (prepro-TRH) contains five copies of the TRH progenitor sequence linked together by intervening sequences. Recently, we have shown that the connecting peptides prepro-TRH-(160-169) (Ps4) and prepro-TRH-(178-199) (Ps5) are released from rat hypothalamic neurones in response to elevated potassium concentrations, in a calcium-dependent manner. In the present study, the role of voltage-operated calcium channels in potassium-induced release of Ps4 and Ps5 was investigated, using a perifusion system for rat hypothalamic slices. The release of Ps4 and Ps5 stimulated by potassium (70 mM) was blocked by the inorganic ions Co2+ (2.6 mM) and Ni2+ (5 mM). In contrast, the stimulatory effect of KCl was insensitive to Cd2+ (100 microM). The dihydropyridine antagonist nifedipine (10 microM) had no effect on K(+)-evoked release of Ps4 and Ps5. Furthermore, the response to KCl was not affected by nifedipine (10 microM) in combination with diltiazem (1 microM), a benzothiazepine which increases the affinity of dihydropyridine antagonists for their receptor. The dihydropyridine agonist BAY K 8644, at concentrations as high as 1 mM, did not stimulate the basal secretion of Ps4 and Ps5. In addition, BAY K 8644 had no potentiating effect on K(+)-induced release of Ps4 and Ps5. The marine cone snail toxin omega-conotoxin, a blocker of both L- and N-type calcium channels had no effect on the release of Ps4 and Ps5 stimulated by potassium. Similarly, the omega-conopeptide SNX-111, a selective blocker of N-type calcium channels, did not inhibit the stimulatory effect of potassium. The release of Ps4 and Ps5 evoked by high K+ was insensitive to the non-selective calcium channel blocker verapamil (20 microM). Amiloride (1 microM), a putative blocker of T-type calcium channels, did not affect KCl-induced secretion of the two connecting peptides. Taken together, these results indicate that two connecting peptides derived from the pro-TRH, Ps

  7. Non-toxic brominated perfluorocarbons radiopaque agents

    International Nuclear Information System (INIS)

    Long, D.M. Jr.

    1976-01-01

    Non-toxic bromofluorocarbon radiopaque agents are disclosed. Certain monobrominated acyclic fluorocarbons, e.g., CF 3 (CF 2 ) 6 CF 2 Br, are improved non-toxic radiopaque agents useful in diagnostic roentgenology, for example in visualizing the gastrointestinal tract, the tracheobronchial tree, the alveolar spaces or parenchyma of the lung, the spleen, the urinary bladder and ureters, the common bile duct and its radicals, the pancreatic ducts, the blood vessels, etc. 13 claims, no drawings

  8. Sequestration of the Abeta peptide prevents toxicity and promotes degradation in vivo.

    Directory of Open Access Journals (Sweden)

    Leila M Luheshi

    2010-03-01

    Full Text Available Protein aggregation, arising from the failure of the cell to regulate the synthesis or degradation of aggregation-prone proteins, underlies many neurodegenerative disorders. However, the balance between the synthesis, clearance, and assembly of misfolded proteins into neurotoxic aggregates remains poorly understood. Here we study the effects of modulating this balance for the amyloid-beta (Abeta peptide by using a small engineered binding protein (Z(Abeta3 that binds with nanomolar affinity to Abeta, completely sequestering the aggregation-prone regions of the peptide and preventing its aggregation. Co-expression of Z(Abeta3 in the brains of Drosophila melanogaster expressing either Abeta(42 or the aggressive familial associated E22G variant of Abeta(42 abolishes their neurotoxic effects. Biochemical analysis indicates that monomer Abeta binding results in degradation of the peptide in vivo. Complementary biophysical studies emphasize the dynamic nature of Abeta aggregation and reveal that Z(Abeta3 not only inhibits the initial association of Abeta monomers into oligomers or fibrils, but also dissociates pre-formed oligomeric aggregates and, although very slowly, amyloid fibrils. Toxic effects of peptide aggregation in vivo can therefore be eliminated by sequestration of hydrophobic regions in monomeric peptides, even when these are extremely aggregation prone. Our studies also underline how a combination of in vivo and in vitro experiments provide mechanistic insight with regard to the relationship between protein aggregation and clearance and show that engineered binding proteins may provide powerful tools with which to address the physiological and pathological consequences of protein aggregation.

  9. Hyperinsulinemia in the physiologic range is not superior to short-term fasting in suppressing insulin secretion in obese men.

    Science.gov (United States)

    Pincelli, A I; Brunani, A; Caumo, A; Scacchi, M; Pasqualinotto, L; Tibaldi, A; Dubini, A; Bonadonna, S; Cavagnini, F

    2001-01-01

    The negative-feedback control exerted by plasma insulin on beta-cell insulin release in normal-weight and obese subjects is still a matter of debate. Subjects submitted to a euglycemic insulin clamp undergo a suppression of insulin secretion that is due to both the infused insulin and the 2- to 3-hour fast during the procedure. We elected to elucidate the role of physiologic hyperinsulinemia per se in the insulin negative autofeedback in obese men. Ten men with massive uncomplicated obesity (age, 18 to 37 years; body mass index [BMI], 41 +/- 1.15 kg/m2) and 6 normal-weight healthy men (age, 22 to 30 years; BMI, 22 +/- 0.28 kg/m2) underwent 2 studies in random order: (1) a euglycemic-hyperinsulinemic glucose clamp with an insulin infusion rate of 1 mU/kg/min and (2) a control study with saline infusion. Serum C-peptide concentrations were significantly higher in obese versus control subjects at baseline (2.54 +/- 0.178 v 1.63 +/- 0.256 ng/mL, P < .05). Exogenous insulin infusion significantly suppressed serum C-peptide at steady state ([SS] last 30 minutes of insulin or saline infusion) in controls (mean of the last 4 measurements from 120 minutes to 150 minutes, 0.86 +/- 0.306 ng/mL, P < .05 vbaseline) but not in obese patients (2.03 +/- 0.26 ng/mL, nonsignificant [NS] v baseline). During the saline infusion studies, C-peptide levels slightly and similarly declined over time in both groups (2.71 +/- 0.350 at baseline v 2.31 +/- 0.300 ng/mL at SS in obese patients, NS, and 1.96 +/- 0.189 v 1.62 +/- 0.150 ng/mL in controls, NS). This study shows that in obese men hyperinsulinemia within the postprandial range is not superior to a 2.5-hour fast for the suppression of beta-cell activity, suggesting an impairment of the insulin negative autofeedback in this clinical condition.

  10. Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity

    OpenAIRE

    Xuemei Shi; Shaji Chacko; Feng Li; Depei Li; Douglas Burrin; Lawrence Chan; Xinfu Guan

    2017-01-01

    Objective: Glucagon-like peptides are co-released from enteroendocrine L cells in the gut and preproglucagon (PPG) neurons in the brainstem. PPG-derived GLP-1/2 are probably key neuroendocrine signals for the control of energy balance and glucose homeostasis. The objective of this study was to determine whether activation of PPG neurons per se modulates glucose homeostasis and insulin sensitivity in vivo. Methods: We generated glucagon (Gcg) promoter-driven Cre transgenic mice and injected...

  11. Effect of glucagon-like peptide-1 on alpha- and beta-cell function in C-peptide-negative type 1 diabetic patients

    DEFF Research Database (Denmark)

    Kielgast, Urd; Asmar, Meena; Madsbad, Sten

    2010-01-01

    The mechanism by which glucagon-like peptide-1 (GLP-1) suppresses glucagon secretion is uncertain, and it is not determined whether endogenous insulin is a necessary factor for this effect.......The mechanism by which glucagon-like peptide-1 (GLP-1) suppresses glucagon secretion is uncertain, and it is not determined whether endogenous insulin is a necessary factor for this effect....

  12. Cholesterol is necessary both for the toxic effect of Abeta peptides on vascular smooth muscle cells and for Abeta binding to vascular smooth muscle cell membranes.

    Science.gov (United States)

    Subasinghe, Supundi; Unabia, Sharon; Barrow, Colin J; Mok, Su San; Aguilar, Marie-Isabel; Small, David H

    2003-02-01

    Accumulation of beta amyloid (Abeta) in the brain is central to the pathogenesis of Alzheimer's disease. Abeta can bind to membrane lipids and this binding may have detrimental effects on cell function. In this study, surface plasmon resonance technology was used to study Abeta binding to membranes. Abeta peptides bound to synthetic lipid mixtures and to an intact plasma membrane preparation isolated from vascular smooth muscle cells. Abeta peptides were also toxic to vascular smooth muscle cells. There was a good correlation between the toxic effect of Abeta peptides and their membrane binding. 'Ageing' the Abeta peptides by incubation for 5 days increased the proportion of oligomeric species, and also increased toxicity and the amount of binding to lipids. The toxicities of various Abeta analogs correlated with their lipid binding. Significantly, binding was influenced by the concentration of cholesterol in the lipid mixture. Reduction of cholesterol in vascular smooth muscle cells not only reduced the binding of Abeta to purified plasma membrane preparations but also reduced Abeta toxicity. The results support the view that Abeta toxicity is a direct consequence of binding to lipids in the membrane. Reduction of membrane cholesterol using cholesterol-lowering drugs may be of therapeutic benefit because it reduces Abeta-membrane binding.

  13. Phylogenetic diversity of bacteria associated with toxic and non-toxic ...

    African Journals Online (AJOL)

    Phylogenetic diversity of bacteria associated with toxic and non-toxic strains of Alexandrium minutum. L Palacios, B Reguera, J Franco, I Marín. Abstract. Marine planktonic dinoflagellates are usually associated with bacteria, some of which seem to have a symbiotic relation with the dinoflagellate cells. The role of bacteria in ...

  14. The association between TNF-α and insulin resistance in euglycemic women.

    LENUS (Irish Health Repository)

    Walsh, Jennifer M

    2013-10-01

    Chronic low levels of inflammation have links to obesity, diabetes and insulin resistance. We sought to assess the relationship between cytokine tumor necrosis factor (TNF-α) and insulin resistance in a healthy, euglycemic population. This is a prospective study of 574 non-diabetic mother and infant pairs. Maternal body mass index (BMI), TNF-α, glucose and insulin were measured in early pregnancy and at 28 weeks. Insulin resistance was calculated by HOMA index. At delivery birthweight was recorded and cord blood analysed for fetal C-peptide and TNF-α. In a multivariate model, maternal TNF-α in early pregnancy was predicted by maternal insulin resistance at the same time-point, (β=0.54, p<0.01), and maternal TNF-α at 28 weeks was predicted by maternal insulin resistance in early pregnancy (β=0.24, p<0.01) and at 28 weeks (β=0.39, p<0.01). These results, in a large cohort of healthy, non-diabetic women have shown that insulin resistance, even at levels below those diagnostic of gestational diabetes, is associated with maternal and fetal inflammatory response. These findings have important implications for defining the pathways of fetal programming of later metabolic syndrome and childhood obesity.

  15. Dual pathways for the intracellular processing of insulin. Relationship between retroendocytosis of intact hormone and the recycling of insulin receptors

    International Nuclear Information System (INIS)

    Marshall, S.

    1985-01-01

    Adipocytes process insulin through either of two pathways: a retroendocytotic pathway that culminates in the release of intact insulin, and a degradative pathway that terminates in the intracellular catabolism and release of degraded ligand. Mechanistically, these pathways were found to differ in several ways. First, temporal differences were found in the rate at which intact and degraded products were extruded. After 125 I-insulin was preloaded into the cell interior, intact ligand was completely released during the first 10 min (t 1/2 = 2 min), whereas degraded insulin was released at a much slower rate over 1 h (t 1/2 greater than 8 min). Secondly, it was found that chloroquine profoundly inhibited the insulin degradative pathway, resulting in the intracellular accumulation of intact ligand and a reduction in the release of degraded products. In contrast, however, chloroquine was without effect on the retroendocytotic processing of insulin. Based on the known actions of chloroquine, it appears that retroendocytosis of insulin does not involve vesicular acidification or dissociation of the insulin-receptor complex and that insulin is most likely carried to the cell exterior in the same vesicles (either receptor-bound or free) as those mediating recycling receptors. Interestingly, accumulation of undergraded insulin within chloroquine-treated cells did not result in the release of additional intact ligand, suggesting that once insulin enters the degradative compartment it is committed to catabolism and cannot exit the cell through the retroendocytotic pathway. A third difference was revealed by the finding that extracellular unlabeled insulin (100 ng/ml) markedly accelerated the rate at which preloaded 125 I-insulin was released from adipocytes (t 1/2 of 3 min versus 7 min in controls cells)

  16. Glucose but not insulin or insulin resistance is associated with memory performance in middle-aged non-diabetic women : a cross sectional study

    OpenAIRE

    Backeström, Anna; Eriksson, Sture; Nilsson, Lars-Göran; Olsson, Tommy; Rolandsson, Olov

    2015-01-01

    Background: Elevated concentrations of plasma glucose appear to play a role in memory impairment, and it has been suggested that insulin might also have a negative effect on cognitive function. Our aim was to study whether glucose, insulin or insulin resistance are associated with episodic or semantic memory in a non-diabetic and non-demented population.  Methods: We linked and matched two population-based data sets identifying 291 participants (127 men and 164 women, mean age of 50.7 +/- 8.0...

  17. Peptides reproducibly released by in vivo digestion of beef meat and trout flesh in pigs.

    Science.gov (United States)

    Bauchart, Caroline; Morzel, Martine; Chambon, Christophe; Mirand, Philippe Patureau; Reynès, Christelle; Buffière, Caroline; Rémond, Didier

    2007-12-01

    Characterisation and identification of peptides (800 to 5000 Da) generated by intestinal digestion of fish or meat were performed using MS analyses (matrix-assisted laser desorption ionisation time of flight and nano-liquid chromatography electrospray-ionisation ion trap MS/MS). Four pigs fitted with cannulas at the duodenum and jejunum received a meal exclusively made of cooked Pectoralis profundus beef meat or cooked trout fillets. A protein-free meal, made of free amino acids, starch and fat, was used to identify peptides of endogenous origin. Peptides reproducibly detected in digesta (i.e. from at least three pigs) were evidenced predominantly in the first 3 h after the meal. In the duodenum, most of the fish- and meat-derived peptides were characteristic of a peptic digestion. In the jejunum, the majority of peptides appeared to result from digestion by chymotrypsin and trypsin. Despite slight differences in gastric emptying kinetics and overall peptide production, possibly in relation to food structure and texture, six and four similar peptides were released after ingestion of fish or meat in the duodenum and jejunum. A total of twenty-six different peptides were identified in digesta. All were fragments of major structural (actin, myosin) or sarcoplasmic (creatine kinase, glyceraldehyde-3-phosphate dehydrogenase and myoglobin) muscle proteins. Peptides were short ( digestion, some of them can be reproducibly observed in intestinal digesta.

  18. Identification and Relative Quantification of Bioactive Peptides Sequentially Released during Simulated Gastrointestinal Digestion of Commercial Kefir.

    Science.gov (United States)

    Liu, Yufang; Pischetsrieder, Monika

    2017-03-08

    Health-promoting effects of kefir may be partially caused by bioactive peptides. To evaluate their formation or degradation during gastrointestinal digestion, we monitored changes of the peptide profile in a model of (1) oral, (2) gastric, and (3) small intestinal digestion of kefir. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy analyses revealed clearly different profiles between digests 2/3 and kefir/digest 1. Subsequent ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry identified 92 peptides in total (25, 25, 43, and 30, partly overlapping in kefir and digests 1, 2, and 3, respectively), including 16 peptides with ascribed bioactivity. Relative quantification in scheduled multiple reaction monitoring mode showed that many bioactive peptides were released by simulated digestion. Most prominently, the concentration of angiotensin-converting enzyme inhibitor β-casein 203-209 increased approximately 10 000-fold after combined oral, gastric, and intestinal digestion. Thus, physiological digestive processes may promote bioactive peptide formation from proteins and oligopeptides in kefir. Furthermore, bioactive peptides present in certain compartments of the gastrointestinal tract may exert local physiological effects.

  19. Psyllium fiber-enriched meal strongly attenuates postprandial gastrointestinal peptide release in healthy young adults

    DEFF Research Database (Denmark)

    Karhunen, Leila J.; Juvonen, Kristiina R.; Flander, Sanna M.

    2010-01-01

    Dietary fiber (DF) and protein are essential constituents of a healthy diet and are well known for their high satiety impact. However, little is known about their influence on postprandial gastrointestinal (GI) peptide release. Our aim in this single-blind, randomized, cross-over study was to inv...

  20. Insulin Secretagogues

    Science.gov (United States)

    ... than sulfonylureas. What are the side effects and disadvantages of insulin secretagogues? Both types of insulin-releasing ... help find the cause. Questions to ask your doctor What else can I do to keep my ...

  1. Role of sialic acid in insulin action and the insulin resistance of diabetes mellitus

    International Nuclear Information System (INIS)

    Salhanick, A.I.; Amatruda, J.M.

    1988-01-01

    Adipocytes treated with neuraminidase show markedly reduced responsiveness to insulin without any alteration in insulin binding. In addition, several studies have separately demonstrated both insulin resistance and decreases in membrane sialic acid content and associated biosynthetic enzymes in diabetes mellitus. In the present study, the authors investigated the role that sialic acid residues may play in insulin action and in the hepatic insulin resistance associated with nonketotic diabetes. Primary cultures of hepatocytes from normal rats treated with neuraminidase demonstrated a dose-dependent decrease in insulin-stimulated lipogenesis. At a concentration of neuraminidase that decreases insulin action by 50%, 23% of total cellular sialic acid content was released. Neuraminidase-releasable sialic acid was significantly decreased in hepatocytes from diabetic rats and this was associated with significant insulin resistance. Treatment of hepatocytes from diabetic rats with cytidine 5'-monophospho-N-acetylneuraminic acid (CMP-NANA) enhanced insulin responsiveness 39%. The enhanced insulin responsiveness induced by CMP-NANA was blocked by cytidine 5'-monophosphate (CMP) suggesting that the CMP-NANA effect was catalyzed by a cell surface sialyl-transferase. CMP reduced neuraminidase-releasable [ 14 C]sialic acid incorporation into hepatocytes by 43%. The data demonstrate a role for cell surface sialic acid residues in hepatic insulin action and support a role for decreased cell surface sialic acid residues in the insulin resistance of diabetes mellitus

  2. Regulation of the mesolimbic dopamine circuit by feeding peptides.

    Science.gov (United States)

    Liu, S; Borgland, S L

    2015-03-19

    Polypeptides produced in the gastrointestinal tract, stomach, adipocytes, pancreas and brain that influence food intake are referred to as 'feeding-related' peptides. Most peptides that influence feeding exert an inhibitory effect (anorexigenic peptides). In contrast, only a few exert a stimulating effect (orexigenic peptides), such as ghrelin. Homeostatic feeding refers to when food consumed matches energy deficits. However, in western society where access to palatable energy-dense food is nearly unlimited, food is mostly consumed for non-homeostatic reasons. Emerging evidence implicates the mesocorticolimbic circuitry, including dopamine neurons of the ventral tegmental area (VTA), as a key substrate for non-homeostatic feeding. VTA dopamine neurons encode cues that predict rewards and phasic release of dopamine in the ventral striatum motivates animals to forage for food. To elucidate how feeding-related peptides regulate reward pathways is of importance to reveal the mechanisms underlying non-homeostatic or hedonic feeding. Here, we review the current knowledge of how anorexigenic peptides and orexigenic peptides act within the VTA. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Effect of single physical exercise at 35% VO2 max. intensity on secretion activity of pancreas β-cells and 125J-insulin binding and degradation ability by erythrocyte receptors in children with diabetes mellitus

    International Nuclear Information System (INIS)

    Szczesniak, L.; Rychlewski, T.; Banaszak, F.; Kasprzak, Z.; Walczak, M.

    1994-01-01

    In this report we showed research results of effect of single physical exercise on cycloergometer at 35% VO 2 max. intensity on 125 J-insulin binding and degradation ability by erythrocyte receptors in children with diabetes mellitus, secreting and non-secreting endogenous insulin. Insulin secretion was evaluated by measurement of C-peptide by Biodet test (Serono) of sensitivity threshold at 0.3 μg/ml. We indicated in children non-secreting endogenous insulin (n=32) there is statistically essential lower 125 J-insulin binding with erythrocyte receptor in comparison to children group with C-peptide. Physical exercise on cycloergometer at 35% VO 2 max. intensity caused different reaction in range of physiological indices, like acid-base parameters, level of glucose and 125 J-insulin binding and degradation. In children devoid of endogenous insulin we indicated statistically nonessential changes in 125 J-insulin degradation by non-impaired erythrocytes and by hemolizate, as well. 125 J-insulin binding after physical exercise increased in both groups, though change amplitude was different. Obtained research results allowed us to conclude, in children with I-type diabetes, that in dependence of impairment degree of pancreas βcells sensitivity of insulin receptor and/or number of receptors on erythrocyte surface is different

  4. Non-Toxic HAN Monopropellant Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Non-toxic monopropellants have been developed that provide better performance than toxic hydrazine. Formulations based on hydroxylammonium nitrate (HAN) have...

  5. The Noncaloric Sweetener Rebaudioside A Stimulates Glucagon-Like Peptide 1 Release and Increases Enteroendocrine Cell Numbers in 2-Dimensional Mouse Organoids Derived from Different Locations of the Intestine

    NARCIS (Netherlands)

    van der Wielen, Nikkie; Ten Klooster, Jean Paul; Muckenschnabl, Susanne; Pieters, Raymond; Hendriks, Henk Fj; Witkamp, Renger F; Meijerink, Jocelijn

    2016-01-01

    BACKGROUND: Glucagon-like peptide 1 (GLP-1) contributes to satiety and plays a pivotal role in insulin secretion and glucose homeostasis. Similar to GLP-1, peptide YY (PYY) and cholecystokinin also influence food intake. The secretion of these hormones by enteroendocrine cells along the intestine is

  6. The noncaloric sweetener rebaudioside a stimulates glucagon-like peptide 1 release and increases enteroendocrine cell numbers in 2-dimensional mouse organoids derived from different locations of the intestine

    NARCIS (Netherlands)

    Wielen, van der Nikkie; Klooster, ten Jean Paul; Muckenschnabl, Susanne; Pieters, Raymond; Hendriks, Henk F.J.; Witkamp, Renger F.; Meijerink, Jocelijn

    2016-01-01

    Background: Glucagon-like peptide 1 (GLP-1) contributes to satiety and plays a pivotal role in insulin secretion and glucose homeostasis. Similar to GLP-1, peptide YY (PYY) and cholecystokinin also influence food intake. The secretion of these hormones by enteroendocrine cells along the intestine

  7. Short-acting glucagon-like peptide-1 receptor agonists as add-on to insulin therapy in type 1 diabetes

    DEFF Research Database (Denmark)

    Albèr, Anders; Brønden, Andreas; Knop, Filip K

    2017-01-01

    emptying in patients with type 1 diabetes, which could translate into effective lowering of postprandial glucose excursions; however, these observations regarding short-acting GLP-1RAs are all derived from small open-label trials and should thus be interpreted with caution. In the present paper we review......A large proportion of patients with type 1 diabetes do not reach their glycaemic target of glycated hemoglobin (HbA1c) type 1 diabetes are overweight and obese. Treatment of type 1 diabetes is based on insulin therapy......, which is associated with well-described and unfortunate adverse effects such as hypoglycaemia and increased body weight. Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) are the focus of increasing interest as a possible adjunctive treatment to insulin in type 1 diabetes because...

  8. Determination of Insulin Resistance and Beta Cell Function in Healthy Obese and Non-obese Individuals

    International Nuclear Information System (INIS)

    Kazmi, A.; Sattar, A.; Tariq, K. M.; Najamussahar; Hashim, R.; Almani, M. I.

    2013-01-01

    Objective: To determine insulin resistance and beta cell function in healthy obese and nonobese individuals of the local population. Study Design: Case control study. Place and Duration of Study: AFIP Rawalpindi in collaboration with department of medicine military hospital(MH) Rawalpindi, from Aug 2008 to Mar 2009. Methods: Eighty obese(n=40) and non-obese(n=40) subjects were selected by non-probability convenience sampling. Plasma insulin, glucose, and serum total cholestrol were estimated in fasting state. Insulin resistance was calculated by HOMA-IR and beta cell function by HOMA- equation. Results: Significant differences were observed between obese and non-obese individuals regarding insulin resistance, beta cell function, and BMI and serum total cholesterol. Mean insulin resistance in obese group was found to be 11.1 +- 5.1(range 7.0-16.2) and in non-obese group it was 0.9+-0.4 (range 0.5-1.3). This difference was highly significant (p=0.001). There was a highly significant difference between the two groups in term of beta cell function with mean rank 60.1 for obese group and 20.9 non obese groups (Asym sig. 2 tailed 0.000). Also the correlation (r = 0.064) between insulin resistance and beta cell function in obese group is highly significant (p = 0.000). Mean serum leptin levels were lower (6.3 ng/ml) in non-obese, and high (57.2 ng/ml) in the obese group. Conclusions: Insulin resistance is found higher in obese individuals. Beta cell function is significantly different between obese and non-obese groups. (author)

  9. A novel selective VPAC2 agonist peptide-conjugated chitosan modified selenium nanoparticles with enhanced anti-type 2 diabetes synergy effects

    Directory of Open Access Journals (Sweden)

    Zhao SJ

    2017-03-01

    Full Text Available Shao-Jun Zhao,1,2,* De-Hua Wang,1,2 Yan-Wei Li,1,2 Lei Han,1,2 Xing Xiao,1,2 Min Ma,3,* David Chi-Cheong Wan,4 An Hong,1,2 Yi Ma1,2 1Institute of Biomedicine, Department of Cellular Biology, Jinan University, 2National Engineering Research Center of Genetic Medicine, Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, 3College of traditional Chinese Medicine, Institute of Integrated Traditional Chinese and Western Medicine, Jinan University, Guangdong, 4School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, People’s Republic of China *These authors contributed equally to this work Abstract: A novel neuroendocrine peptide, pituitary adenylate cyclase activating peptide (PACAP, was found to have an important role in carbohydrate or lipid metabolism and was susceptible to dipeptidyl peptidase IV degradation. It can not only mediate glucose-dependent insulin secretion and lower blood glucose by activating VPAC2 receptor, but also raise blood glucose by promoting glucagon production by VPAC1 receptor activation. Therefore, its therapeutic application is restricted by the exceedingly short-acting half-life and the stimulatory function for glycogenolysis. Herein, we generated novel peptide-conjugated selenium nanoparticles (SeNPs; named as SCD, comprising a 32-amino acid PACAP-derived peptide DBAYL that selectively binds to VPAC2, and chitosan-modified SeNPs (SeNPs-CTS, SC as slow-release carrier. The circulating half-life of SCD is 14.12 h in mice, which is 168.4- and 7.1-fold longer than wild PACAP (~5 min and DBAYL (~1.98 h, respectively. SCD (10 nmol/L significantly promotes INS-1 cell proliferation, glucose uptake, insulin secretion, insulin receptor expression and also obviously reduces intracellular reactive oxygen species levels in H2O2-injured INS-1 cells. Furthermore, the biological effects of SCD are stronger than Exendin-4 (a clinically approved drug

  10. p53- and ERK7-dependent ribosome surveillance response regulates Drosophila insulin-like peptide secretion.

    Directory of Open Access Journals (Sweden)

    Kiran Hasygar

    2014-11-01

    Full Text Available Insulin-like signalling is a conserved mechanism that coordinates animal growth and metabolism with nutrient status. In Drosophila, insulin-producing median neurosecretory cells (IPCs regulate larval growth by secreting insulin-like peptides (dILPs in a diet-dependent manner. Previous studies have shown that nutrition affects dILP secretion through humoral signals derived from the fat body. Here we uncover a novel mechanism that operates cell autonomously in the IPCs to regulate dILP secretion. We observed that impairment of ribosome biogenesis specifically in the IPCs strongly inhibits dILP secretion, which consequently leads to reduced body size and a delay in larval development. This response is dependent on p53, a known surveillance factor for ribosome biogenesis. A downstream effector of this growth inhibitory response is an atypical MAP kinase ERK7 (ERK8/MAPK15, which is upregulated in the IPCs following impaired ribosome biogenesis as well as starvation. We show that ERK7 is sufficient and essential to inhibit dILP secretion upon impaired ribosome biogenesis, and it acts epistatically to p53. Moreover, we provide evidence that p53 and ERK7 contribute to the inhibition of dILP secretion upon starvation. Thus, we conclude that a cell autonomous ribosome surveillance response, which leads to upregulation of ERK7, inhibits dILP secretion to impede tissue growth under limiting dietary conditions.

  11. Characterization of insulin-like growth factor I and insulin receptors on cultured bovine adrenal fasciculata cells. Role of these peptides on adrenal cell function

    International Nuclear Information System (INIS)

    Penhoat, A.; Chatelain, P.G.; Jaillard, C.; Saez, J.M.

    1988-01-01

    We have characterized insulin-like growth factor I (IGF-I) and insulin receptors in cultured bovine adrenal cells by binding and cross-linking affinity experiments. At equilibrium the dissociation constant and the number of binding sites per cell for IGF-I were 1.4 +/- (SE) 0.3 x 10(-9) M and 19,200 +/- 2,100, respectively. Under reduction conditions, disuccinimidyl suberate cross-linked [ 125 I]iodo-IGF-I to one receptor complex with an Mr of 125,000. Adrenal cells also contain specific insulin receptors with an apparent dissociation constant (Kd) of 10(-9) M. Under reduction conditions [ 125 I]iodo-insulin binds to one band with an approximate Mr of 125,000. IGF-I and insulin at micromolar concentrations, but not at nanomolar concentrations, slightly stimulated DNA synthesis, but markedly potentiated the mitogenic action of fibroblast growth factor. Adrenal cells cultured in a serum-free medium containing transferrin, ascorbic acid, and insulin (5 micrograms/ml) maintained fairly constant angiotensin-II (A-II) receptor concentration per cell and increased cAMP release on response to ACTH and their steroidogenic response to both ACTH and A-II. When the cells were cultured in the same medium without insulin, the number of A-II receptors significantly decreased to 65% and the increased responsiveness was blunted. Treatment of such cells for 3 days with increasing concentrations of IGF-I (1-100 ng/ml) produced a 2- to 3-fold increase in A-II receptors and enhanced the cAMP response (3- to 4-fold) to ACTH and the steroidogenic response (4- to 6-fold) to ACTH and A-II. These effects were time and dose dependent (ED50 approximately equal to 10(-9) M). Insulin at micromolar concentrations produced an effect similar to that of IGF-I, but at nanomolar concentrations the effect was far less

  12. Synthesis and characterization of insulin/zirconium phosphate@TiO2 hybrid composites for enhanced oral insulin delivery applications.

    Science.gov (United States)

    Safari, Mostafa; Kamari, Younes; Ghiaci, Mehran; Sadeghi-Aliabadi, Hojjat; Mirian, Mina

    2017-05-01

    In this work, a series of composites of insulin (Ins)/zirconium phosphate (ZrP) were synthesized by intercalation method, then, these composites were coated with TiO 2 by sol-gel method to prepare Ins/ZrP@TiO 2 hybrid composites and the drug release of the composites was investigated by using UV-Vis spectroscopy. Ins/ZrP (10, 30, 60 wt%) composites were prepared by intercalation of insulin into the ZrP layers in water. Then Ins/ZrP composites were coated with different amounts of TiO 2 (30, 50, 100 wt %) by using titanium tetra n-butoxide, as precursor. Formation of intercalated Ins/ZrP and Ins/ZrP@TiO 2 hybrid composites was characterized by FT-IR, FE-SEM, BET and XRD analysis. Zeta potential of the optimized Ins/ZrP@TiO 2 hybrid composite was determined -27.2 mV. Cytotoxic effects of the optimized Ins/ZrP@TiO 2 hybrid composite against HeLa and Hek293T cell lines were evaluated using MTT assay and the results showed that designed drug delivery system was not toxic in biological environment. Compared to the Ins/ZrP composites, incorporation of TiO 2 coating enhanced the drug entrapment considerably, and reduced the drug release. The Ins/ZrP composites without TiO 2 coating released the whole drug after 30 min in pH 7.4 (phosphate buffer solution) while the TiO 2 -coated composites released the entrapped drug after 20 h. In addition to increasing the shelf life of hormone, this nanoencapsulation and nanocoating method can convert the insulin utilization from injection to oral and present a painless and more comfortable treatment for diabetics.

  13. Large scale Full QM-MD investigation of small peptides and insulin adsorption on ideal and defective TiO2 (1 0 0) surfaces. Influence of peptide size on interfacial bonds

    Science.gov (United States)

    Dubot, Pierre; Boisseau, Nicolas; Cenedese, Pierre

    2018-05-01

    Large biomolecule interaction with oxide surface has attracted a lot of attention because it drives behavior of implanted devices in the living body. To investigate the role of TiO2 surface structure on a large polypeptide (insulin) adsorption, we use a homemade mixed Molecular Dynamics-Full large scale Quantum Mechanics code. A specific re-parameterized (Ti) and globally convergent NDDO method fitted on high level ab initio method (coupled cluster CCSD(T) and DFT) allows us to safely describe the electronic structure of the whole insulin-TiO2 surface system (up to 4000 atoms). Looking specifically at carboxylate residues, we demonstrate in this work that specific interfacial bonds are obtained from the insulin/TiO2 system that are not observed in the case of smaller peptides (tripeptides, insulin segment chains with different configurations). We also demonstrate that a large part of the adsorption energy is compensated by insulin conformational energy changes and surface defects enhanced this trend. Large slab dimensions allow us to take into account surface defects that are actually beyond ab initio capabilities owing to size effect. These results highlight the influence of the surface structure on the conformation and therefore of the possible inactivity of an adsorbed polypeptides.

  14. Bioinformatic prediction of arthropod/nematode-like peptides in non-arthropod, non-nematode members of the Ecdysozoa.

    Science.gov (United States)

    Christie, Andrew E; Nolan, Daniel H; Garcia, Zachery A; McCoole, Matthew D; Harmon, Sarah M; Congdon-Jones, Benjamin; Ohno, Paul; Hartline, Niko; Congdon, Clare Bates; Baer, Kevin N; Lenz, Petra H

    2011-02-01

    The Onychophora, Priapulida and Tardigrada, along with the Arthropoda, Nematoda and several other small phyla, form the superphylum Ecdysozoa. Numerous peptidomic studies have been undertaken for both the arthropods and nematodes, resulting in the identification of many peptides from each group. In contrast, little is known about the peptides used as paracrines/hormones by species from the other ecdysozoan taxa. Here, transcriptome mining and bioinformatic peptide prediction were used to identify peptides in members of the Onychophora, Priapulida and Tardigrada, the only non-arthropod, non-nematode members of the Ecdysozoa for which there are publicly accessible expressed sequence tags (ESTs). The extant ESTs for each phylum were queried using 106 arthropod/nematode peptide precursors. Transcripts encoding calcitonin-like diuretic hormone and pigment-dispersing hormone (PDH) were identified for the onychophoran Peripatopsis sedgwicki, with transcripts encoding C-type allatostatin (C-AST) and FMRFamide-like peptide identified for the priapulid Priapulus caudatus. For the Tardigrada, transcripts encoding members of the A-type allatostatin, C-AST, insect kinin, orcokinin, PDH and tachykinin-related peptide families were identified, all but one from Hypsibius dujardini (the exception being a Milnesium tardigradum orcokinin-encoding transcript). The proteins deduced from these ESTs resulted in the prediction of 48 novel peptides, six onychophoran, eight priapulid and 34 tardigrade, which are the first described from these phyla. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Opiate-prostaglandin interactions in the regulation of insulin secretion from rat islets of Langerhans in vitro

    International Nuclear Information System (INIS)

    Green, I.C.; Tadayyon, M.

    1988-01-01

    The inadequate insulin secretory response to glucose stimulation in non-insulin dependent diabetes has been attributed to many factors including high PGE 2 levels blunting the secretory response, and to the existence of inhibitory opiate activity in vivo. The purpose of the present work was to see if there was a connection between these two independent theories. Radioimmunoassayable PGE 2 in islets of Langerhans was found to be proportional to islet number and protein content and was typically 4 to 5pg/μg islet protein. Indomethacin sodium salicylate and chlorpropamide all lowered islet PGE 2 levels and stimulated insulin release in vitro. Dynorphin stimulated insulin release at a concentration of 6 x 10 -9 M, while lowering islet PGE 2 . Conversely, at a higher concentration, dynorphin had no stimulatory effect on insulin secretion and did not lower PGE 2 levels in islets or in the incubation media. The stimulatory effects of dynorphin and sodium salicylate on insulin secretion were blocked by exogenous PGE 2 . PGE 2 at a lower concentration did not exert any inhibitory effect on dynorphin- or sodium salicylate-induced insulin release. This concentration of exogenous PGE 2 stimulated insulin release in the presence of 6mM glucose

  16. Detecting peptidic drugs, drug candidates and analogs in sports doping: current status and future directions.

    Science.gov (United States)

    Thevis, Mario; Thomas, Andreas; Schänzer, Wilhelm

    2014-12-01

    With the growing availability of mature systems and strategies in biotechnology and the continuously expanding knowledge of cellular processes and involved biomolecules, human sports drug testing has become a considerably complex field in the arena of analytical chemistry. Proving the exogenous origin of peptidic drugs and respective analogs at lowest concentration levels in biological specimens (commonly blood, serum and urine) of rather limited volume is required to pursue an action against cheating athletes. Therefore, approaches employing chromatographic-mass spectrometric, electrophoretic, immunological and combined test methods have been required and developed. These allow detecting the misuse of peptidic compounds of lower (such as growth hormone-releasing peptides, ARA-290, TB-500, AOD-9604, CJC-1295, desmopressin, luteinizing hormone-releasing hormones, synacthen, etc.), intermediate (e.g., insulins, IGF-1 and analogs, 'full-length' mechano growth factor, growth hormone, chorionic gonadotropin, erythropoietin, etc.) and higher (e.g., stamulumab) molecular mass with desired specificity and sensitivity. A gap between the technically possible detection and the day-to-day analytical practice, however, still needs to be closed.

  17. C-Peptide Is a Sensitive Indicator for the Diagnosis of Metabolic Syndrome in Subjects from Central Mexico.

    Science.gov (United States)

    Gonzalez-Mejia, M Elba; Porchia, Leonardo M; Torres-Rasgado, Enrique; Ruiz-Vivanco, Guadalupe; Pulido-Pérez, Patricia; Báez-Duarte, Blanca G; Pérez-Fuentes, Ricardo

    2016-05-01

    Metabolic Syndrome (MetS) is associated with elevated risk for developing diabetes and cardiovascular disease. A key component of MetS is the development of insulin resistance (IR). The homeostatic model assessment (HOMA) model can determine IR by using insulin or C-peptide concentrations; however, the efficiency of insulin and C-peptide to determine MetS has not been compared. The aim of the study was to compare the efficiency of C-peptide and insulin to determine MetS in Mexicans. Anthropometrics, glucose, insulin, C-peptide, triglycerides, and high-density lipoproteins were determined in 156 nonpregnant females and 114 males. Subjects were separated into normal or positive for MetS. IR was determined by the HOMA2 calculator using insulin or C-peptide. Correlations were calculated using the Spearman correlation coefficient (ρ). Differences between correlations were determined by calculating Steiger's Z. The sensitivity was determined by the area under receiver operating characteristics curve (AUC) analysis. Independent of the MetS definition [Adult Treatment Panel III (ATP III), International Diabetes Federation (IDF), or World Health Organization (WHO)], C-peptide and insulin were significantly higher in MetS subjects (P indicator of MetS. Since C-peptide has recently emerged as a biomolecule with significant importance for inflammatory diseases, monitoring C-peptide levels will aid clinicians in preventing MetS.

  18. Targeting nanoparticles to M cells with non-peptidic ligands for oral vaccination

    OpenAIRE

    Fievez, Virginie; Plapied, Laurence; des Rieux, Anne; Pourcelle, Vincent; Freichels, Hélène; Wascotte, Valentine; Vanderhaegen, Marie-Lyse; Jérôme, Christine; Vanderplasschen, Alain; Marchand-Brynaert, Jacqueline; Préat, Véronique

    2009-01-01

    The presence of RGD on nanoparticles allows the targeting of β1 integrins at the apical surface of human M cells and the enhancement of an immune response after oral immunization. To check the hypothesis that non-peptidic ligands targeting intestinal M cells or APCs would be more efficient for oral immunization than RGD, novel non-peptidic and peptidic analogs (RGD peptidomimitic (RGDp), LDV derivative (LDVd) and LDV peptidomimetic (LDVp)) as well as mannose were grafted on the PEG chain of P...

  19. Volatile organic compounds released from Microcystis flos-aquae under nitrogen sources and their toxic effects on Chlorella vulgaris.

    Science.gov (United States)

    Xu, Qinghuan; Yang, Lin; Yang, Wangting; Bai, Yan; Hou, Ping; Zhao, Jingxian; Zhou, Lv; Zuo, Zhaojiang

    2017-01-01

    Eutrophication promotes massive growth of cyanobacteria and algal blooms, which can poison other algae and reduce biodiversity. To investigate the differences in multiple nitrogen (N) sources in eutrophicated water on the emission of volatile organic compounds (VOCs) from cyanobacteria, and their toxic effects on other algal growth, we analyzed VOCs emitted from Microcystis flos-aquae with different types and concentrations of nitrogen, and determined the effects under Normal-N and Non-N conditions on Chlorella vulgaris. M. flos-aquae released 27, 22, 20, 27, 19, 25 and 17 compounds, respectively, with NaNO 3 , NaNO 2 , NH 4 Cl, urea, Ser, Lys and Arg as the sole N source. With the reduction in N amount, the emission of VOCs was increased markedly, and the most VOCs were found under Non-N condition. C. vulgaris cell propagation, photosynthetic pigment and Fv/Fm declined significantly following exposure to M. flos-aquae VOCs under Non-N condition, but not under Normal-N condition. When C. vulgaris cells were treated with two terpenoids, eucalyptol and limonene, the inhibitory effects were enhanced with increasing concentrations. Therefore, multiple N sources in eutrophicated water induce different VOC emissions from cyanobacteria, and reduction in N can cause nutrient competition, which can result in emissions of more VOCs. Those VOCs released from M. flos-aquae cells under Non-N for nutrient competition can inhibit other algal growth. Among those VOCs, eucalyptol and limonene are the major toxic agents. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Glucose-stimulated insulin response in pregnant sheep following acute suppression of plasma non-esterified fatty acid concentrations

    Directory of Open Access Journals (Sweden)

    Sriskandarajah Nadarajah

    2004-09-01

    Full Text Available Abstract Background Elevated non-esterified fatty acids (NEFA concentrations in non-pregnant animals have been reported to decrease pancreatic responsiveness. As ovine gestation advances, maternal insulin concentrations fall and NEFA concentrations increase. Experiments were designed to examine if the pregnancy-associated rise in NEFA concentration is associated with a reduced pancreatic sensitivity to glucose in vivo. We investigated the possible relationship of NEFA concentrations in regulating maternal insulin concentrations during ovine pregnancy at three physiological states, non-pregnant, non-lactating (NPNL, 105 and 135 days gestational age (dGA, term 147+/- 3 days. Methods The plasma concentrations of insulin, growth hormone (GH and ovine placental lactogen (oPL were determined by double antibody radioimmunoassay. Insulin responsiveness to glucose was measured using bolus injection and hyperglycaemic clamp techniques in 15 non-pregnant, non-lactating ewes and in nine pregnant ewes at 105 dGA and near term at 135 dGA. Plasma samples were also collected for hormone determination. In addition to bolus injection glucose and insulin Area Under Curve calculations, the Mean Plasma Glucose Increment, Glucose Infusion Rate and Mean Plasma Insulin Increment and Area Under Curve were determined for the hyperglycaemic clamp procedures. Statistical analysis of data was conducted with Students t-tests, repeated measures ANOVA and 2-way ANOVA. Results Maternal growth hormone, placental lactogen and NEFA concentrations increased, while basal glucose and insulin concentrations declined with advancing gestation. At 135 dGA following bolus glucose injections, peak insulin concentrations and insulin area under curve (AUC profiles were significantly reduced in pregnant ewes compared with NPNL control ewes (p Conclusions Results suggest that despite an acute suppression of circulating NEFA concentrations during pregnancy, the associated steroids and hormones

  1. Microvascular Recruitment in Insulin Resistance

    DEFF Research Database (Denmark)

    Sjøberg, Kim Anker

    the resonating sound from the microbubbles in the systemic circulation were recorded for determination of microvascular recruitment in designated muscle segments. Results showed that microvascular recruitment increased with insulin stimulation by ~30% in rats and ~40% in humans (study I). Furthermore......, it was observed that muscle contractions increased muscle perfusion rapidly by 3-4 fold and by 1-2 fold compared to basal and insulin, respectively, in both rat and human skeletal muscle (study I). The real-time contrast-enhanced ultrasound method was applied to investigate the vaso-active effect of the incretin...... hormone glucagon-like-peptide-1 (GLP-1) in the microcirculation. Glucagon-like-peptide-1 analogs are drugs used for treatments of insulin resistance and type 2 diabetes but the vascular effects of GLP-1 in vivo are elusive. Here it was shown that GLP-1 rapidly increased the microvascular recruitment...

  2. Photodissociative Cross-Linking of Non-covalent Peptide-Peptide Ion Complexes in the Gas Phase

    Science.gov (United States)

    Nguyen, Huong T. H.; Andrikopoulos, Prokopis C.; Rulíšek, Lubomír; Shaffer, Christopher J.; Tureček, František

    2018-05-01

    We report a gas-phase UV photodissociation study investigating non-covalent interactions between neutral hydrophobic pentapeptides and peptide ions incorporating a diazirine-tagged photoleucine residue. Phenylalanine (Phe) and proline (Pro) were chosen as the conformation-affecting residues that were incorporated into a small library of neutral pentapeptides. Gas-phase ion-molecule complexes of these peptides with photo-labeled pentapeptides were subjected to photodissociation. Selective photocleavage of the diazirine ring at 355 nm formed short-lived carbene intermediates that underwent cross-linking by insertion into H-X bonds of the target peptide. The cross-link positions were established from collision-induced dissociation tandem mass spectra (CID-MS3) providing sequence information on the covalent adducts. Effects of the amino acid residue (Pro or Phe) and its position in the target peptide sequence were evaluated. For proline-containing peptides, interactions resulting in covalent cross-links in these complexes became more prominent as proline was moved towards the C-terminus of the target peptide sequence. The photocross-linking yields of phenylalanine-containing peptides depended on the position of both phenylalanine and photoleucine. Density functional theory calculations were used to assign structures of low-energy conformers of the (GLPMG + GLL*LK + H)+ complex. Born-Oppenheimer molecular dynamics trajectory calculations were used to capture the thermal motion in the complexes within 100 ps and determine close contacts between the incipient carbene and the H-X bonds in the target peptide. This provided atomic-level resolution of potential cross-links that aided spectra interpretation and was in agreement with experimental data. [Figure not available: see fulltext.

  3. An aqueous extract of Curcuma longa (turmeric) rhizomes stimulates insulin release and mimics insulin action on tissues involved in glucose homeostasis in vitro.

    Science.gov (United States)

    Mohankumar, Sureshkumar; McFarlane, James R

    2011-03-01

    Curcuma longa (turmeric) has been used widely as a spice, particularly in Asian countries. It is also used in the Ayurvedic system of medicine as an antiinflammatory and antimicrobial agent and for numerous other curative properties. The aim of this study was to investigate the effects of an aqueous extract of Curcuma longa (AEC) on tissues involved in glucose homeostasis. The extract was prepared by soaking 100 g of ground turmeric in 1 L of water, which was filtered and stored at -20°C prior to use. Pancreas and muscle tissues of adult mice were cultured in DMEM with 5 or 12 mmol/L glucose and varying doses of extract. The AEC stimulated insulin secretion from mouse pancreatic tissues under both basal and hyperglycaemic conditions, although the maximum effect was only 68% of that of tolbutamide. The AEC induced stepwise stimulation of glucose uptake from abdominal muscle tissues in the presence and absence of insulin, and the combination of AEC and insulin significantly potentiated the glucose uptake into abdominal muscle tissue. However, this effect was attenuated by wortmannin, suggesting that AEC possibly acts via the insulin-mediated glucose uptake pathway. In summary, water soluble compounds of turmeric exhibit insulin releasing and mimicking actions within in vitro tissue culture conditions. Copyright © 2010 John Wiley & Sons, Ltd.

  4. Proghrelin-derived peptides influence the secretion of insulin, glucagon, pancreatic polypeptide and somatostatin: a study on isolated islets from mouse and rat pancreas

    DEFF Research Database (Denmark)

    Qader, S.S.; Hakanson, R.; Lundquist, I.

    2008-01-01

    ghrelin, and to the 23-amino acid peptide obestatin, claimed to be a physiological opponent of acyl ghrelin. This study examines the effects of the proghrelin products, alone and in combinations, on the secretion of insulin, glucagon, pancreatic polypeptide (PP) and somatostatin from isolated islets...... times higher concentration than acyl ghrelin (corresponding to the ratio of the two peptides in circulation), desacyl ghrelin abolished the effects of acyl ghrelin but not those of obestatin. Acyl ghrelin and obestatin affected the secretion of glucagon, PP and somatostatin at physiologically relevant...

  5. The antimicrobial peptide nisin Z induces selective toxicity and apoptotic cell death in cultured melanoma cells.

    Science.gov (United States)

    Lewies, Angélique; Wentzel, Johannes Frederik; Miller, Hayley Christy; Du Plessis, Lissinda Hester

    2018-01-01

    Reprogramming of cellular metabolism is now considered one of the hallmarks of cancer. Most malignant cells present with altered energy metabolism which is associated with elevated reactive oxygen species (ROS) generation. This is also evident for melanoma, the leading cause of skin cancer related deaths. Altered mechanisms affecting mitochondrial bioenergetics pose attractive targets for novel anticancer therapies. Antimicrobial peptides have been shown to exhibit selective anticancer activities. In this study, the anti-melanoma potential of the antimicrobial peptide, nisin Z, was evaluated in vitro. Nisin Z was shown to induce selective toxicity in melanoma cells compared to non-malignant keratinocytes. Furthermore, nisin Z was shown to negatively affect the energy metabolism (glycolysis and mitochondrial respiration) of melanoma cells, increase reactive oxygen species generation and cause apoptosis. Results also indicate that nisin Z can decrease the invasion and proliferation of melanoma cells demonstrating its potential use against metastasis associated with melanoma. As nisin Z seems to place a considerable extra burden on the energy metabolism of melanoma cells, combination therapies with known anti-melanoma agents may be effective treatment options. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  6. Antibacterial and antiproliferative peptides in synbiotic yogurt-Release and stability during refrigerated storage.

    Science.gov (United States)

    Sah, B N P; Vasiljevic, T; McKechnie, S; Donkor, O N

    2016-06-01

    The search for alternative therapeutics is on the rise due to the extensive increase in bacterial resistance to various conventional antibiotics and side effects of conventional cancer therapies. Bioactive peptides released from natural sources such as dairy foods by lactic acid bacteria have received attention as a potential source of biotherapeutic peptides. However, liberation of peptides in yogurt depends on proteolytic activities of the cultures used. Thus, this research was conducted to establish generation of inhibitory peptides in yogurt against pathogenic bacteria and cancer cells during storage at 4°C for 28d. Water-soluble crude peptide extracts were prepared by high-speed centrifugation of plain and probiotic yogurts supplemented with or without pineapple peel powder (PPP). The inhibition zones against Escherichia coli and Staphylococcus aureus by PPP-fortified probiotic yogurt at 28d of storage were, respectively, 25.89 and 11.72mm in diameter, significantly higher than that of nonsupplemented control yogurts. Antiproliferative activity against HT29 colon cancer cells was also significantly higher in probiotic yogurt with PPP than in nonsupplemented probiotic yogurt. Overall, crude water-soluble peptide extracts of the probiotic yogurt with PPP possessed stronger inhibitory activities against bacteria and cancer cells than controls, and these activities were maintained during storage. However, activities were lowered substantially during in vitro gastrointestinal digestion. These findings support the possibility of utilizing dairy-derived bioactive peptides in the development of a superior alternative to the current generation of antibacterial and anticancer agents, as well as a functional ingredient in foods, nutraceuticals, and pharmaceuticals. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Identification of CJC-1295, a growth-hormone-releasing peptide, in an unknown pharmaceutical preparation.

    Science.gov (United States)

    Henninge, John; Pepaj, Milaim; Hullstein, Ingunn; Hemmersbach, Peter

    2010-01-01

    Several peptide drugs are being manufactured illicitly, and in some cases they are being made available to the public before entering or completing clinical trials. At the request of Norwegian police and customs authorities, unknown pharmaceutical preparations suspected to contain peptide drugs are regularly subjected to analysis. In 2009, an unknown pharmaceutical preparation was submitted for analysis by liquid chromatography-high resolution tandem mass spectrometry (LC-HRMS/MS). The preparation was found to contain a 29 amino acid peptide with a C-terminal amide function. Based on the interpretation of mass spectrometric data, an amino acid sequence was proposed. The sequence is consistent with a peptide currently marketed under the name CJC-1295. CJC-1295 is a releasing factor for growth hormone and is therefore considered a Prohibited Substance under Section S2 of the WADA Prohibited List. This substance has potential performance-enhancing effects, it is readily available, and there is reason to believe that it is being used within the bodybuilding community. Copyright © 2010 John Wiley & Sons, Ltd.

  8. Effect on Insulin-Stimulated Release of D-Chiro-Inositol-Containing Inositolphosphoglycan Mediator during Weight Loss in Obese Women with and without Polycystic Ovary Syndrome.

    Science.gov (United States)

    Cheang, Kai I; Sistrun, Sakita N; Morel, Kelley S; Nestler, John E

    2016-01-01

    Background. A deficiency of D-chiro-inositol-inositolphosphoglycan mediator (DCI-IPG) may contribute to insulin resistance in polycystic ovary syndrome (PCOS). Whether the relationship between impaired DCI-IPG release and insulin resistance is specific to PCOS rather than obesity is unknown. We assessed insulin-released DCI-IPG and its relationship to insulin sensitivity at baseline and after weight loss in obese women with and without PCOS. Methods. Obese PCOS ( n = 16) and normal ( n = 15) women underwent 8 weeks of a hypocaloric diet. The Matsuda index, area under the curve DCI-IPG (AUC DCI-IPG ), AUC insulin , and AUC DCI-IPG /AUC insulin were measured during a 2 hr OGTT at baseline and 8 weeks. Results. PCOS women had lower AUC DCI-IPG /AUC insulin at baseline and a significant relationship between AUC DCI-IPG /AUC insulin and Matsuda index ( p = 0.0003), which was not present in controls. Weight loss was similar between PCOS (-4.08 kg) and normal women (-4.29 kg, p = 0.6281). Weight loss in PCOS women did not change the relationship between AUC DCI-IPG /AUC insulin and Matsuda index ( p = 0.0100), and this relationship remained absent in control women. Conclusion. The association between AUC DCI-IPG /AUC insulin and insulin sensitivity was only found in PCOS but not in normal women, and this relationship was unaffected by weight loss. DCI and its messenger may contribute to insulin resistance in PCOS independent of obesity.

  9. Stimulation of the endogenous incretin glucose-dependent insulinotropic peptide by enteral dextrose improves glucose homeostasis and inflammation in murine endotoxemia.

    Science.gov (United States)

    Shah, Faraaz Ali; Singamsetty, Srikanth; Guo, Lanping; Chuan, Byron W; McDonald, Sherie; Cooper, Bryce A; O'Donnell, Brett J; Stefanovski, Darko; Wice, Burton; Zhang, Yingze; O'Donnell, Christopher P; McVerry, Bryan J

    2018-03-01

    Loss of glucose homeostasis during sepsis is associated with increased organ dysfunction and higher mortality. Novel therapeutic strategies to promote euglycemia in sepsis are needed. We have previously shown that early low-level intravenous (IV) dextrose suppresses pancreatic insulin secretion and induces insulin resistance in septic mice, resulting in profound hyperglycemia and worsened systemic inflammation. In this study, we hypothesized that administration of low-level dextrose via the enteral route would stimulate intestinal incretin hormone production, potentiate insulin secretion in a glucose-dependent manner, and thereby improve glycemic control in the acute phase of sepsis. We administered IV or enteral dextrose to 10-week-old male C57BL/6J mice exposed to bacterial endotoxin and measured incretin hormone release, glucose disposal, and proinflammatory cytokine production. Compared with IV administration, enteral dextrose increased circulating levels of the incretin hormone glucose-dependent insulinotropic peptide (GIP) associated with increased insulin release and insulin sensitivity, improved mean arterial pressure, and decreased proinflammatory cytokines in endotoxemic mice. Exogenous GIP rescued glucose metabolism, improved blood pressure, and increased insulin release in endotoxemic mice receiving IV dextrose, whereas pharmacologic inhibition of GIP signaling abrogated the beneficial effects of enteral dextrose. Thus, stimulation of endogenous GIP secretion by early enteral dextrose maintains glucose homeostasis and attenuates the systemic inflammatory response in endotoxemic mice and may provide a therapeutic target for improving glycemic control and clinical outcomes in patients with sepsis. Published by Elsevier Inc.

  10. The effect of 30 months of low-dose replacement therapy with recombinant human growth hormone (rhGH) on insulin and C-peptide kinetics, insulin secretion, insulin sensitivity, glucose effectiveness, and body composition in GH-deficient adults

    DEFF Research Database (Denmark)

    Rosenfalck, A M; Maghsoudi, S; Fisker, S

    2000-01-01

    The aim of the present study was to evaluate the long-term (30 months) metabolic effects of recombinant human GH (rhGH) given in a mean dose of 6.7 microg/kg x day (= 1.6 IU/day), in 11 patients with adult GH deficiency. Glucose metabolism was evaluated by an oral glucose tolerance test and an iv...... (frequently sampled iv glucose tolerance test) glucose tolerance test, and body composition was estimated by dual-energy x-ray absorptiometry. Treatment with rhGH induced persistent favorable changes in body composition, with a 10% increase in lean body mass (P ... in glucose tolerance, beta-cell response was still inappropriate. Our conclusion is that long-term rhGH-replacement therapy in GH deficiency adults induced a significant deterioration in glucose tolerance, profound changes in kinetics of C-peptide, and insulin and prehepatic insulin secretion, despite...

  11. Differentiation of insulin-producing cells from human neural progenitor cells.

    Directory of Open Access Journals (Sweden)

    Yuichi Hori

    2005-04-01

    Full Text Available BACKGROUND: Success in islet-transplantation-based therapies for type 1 diabetes, coupled with a worldwide shortage of transplant-ready islets, has motivated efforts to develop renewable sources of islet-replacement tissue. Islets and neurons share features, including common developmental programs, and in some species brain neurons are the principal source of systemic insulin. METHODS AND FINDINGS: Here we show that brain-derived human neural progenitor cells, exposed to a series of signals that regulate in vivo pancreatic islet development, form clusters of glucose-responsive insulin-producing cells (IPCs. During in vitro differentiation of neural progenitor cells with this novel method, genes encoding essential known in vivo regulators of pancreatic islet development were expressed. Following transplantation into immunocompromised mice, IPCs released insulin C-peptide upon glucose challenge, remained differentiated, and did not form detectable tumors. CONCLUSION: Production of IPCs solely through extracellular factor modulation in the absence of genetic manipulations may promote strategies to derive transplantable islet-replacement tissues from human neural progenitor cells and other types of multipotent human stem cells.

  12. Minimally Adhesive, Advanced Non-toxic Coatings of Dendrimeric Catalysts in Sol-Gel Matrices

    Science.gov (United States)

    2015-10-19

    Catalysts in Sol -Gel Matrices 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-09-1-0217 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Detty, Michael R. 5d...Technical Report for ONR N00014-09-1-0217 Minimally Adhesive, Advanced Non-toxic Coatings of Dendrimeric Catalysts in Sol -Gel Matrices Michael R. Detty, PI...Environmentally benign sol -gel antifouling and foul-releasing coatings. Ace. Chem. Res. 2014, 47, 678-687. 11) Alberto, E. E.; Müller, L. M

  13. Stimuli sensitive polymethacrylic acid microparticles (PMAA)--oral insulin delivery.

    Science.gov (United States)

    Victor, Sunita Prem; Sharma, Chandra P

    2002-10-01

    This study investigated polymethacrylic acid (PMAA) microparticles for controlled release of Insulin in oral administration. The microparticles were characterised by scanning electron microscopy (SEM) for morphological studies. The swelling behaviour and drug release profile in various pH media were studied. The % swelling of gels was found to be inversely related to the amount of crosslinker added. Inclusion complex of betaCD and Insulin was studied using polyacrylamide gel electrophoresis (PAGE). Optimum complexation was obtained in the ratio 100 mg betaCD: 200 IU Insulin. The release pattern of Insulin from Insulin-betaCD complex encapsulated PMAA microparticles showed release of Insulin for more than seven hours.

  14. Hepatic 123I-insulin binding kinetics in non-insulin-dependent (Type 2) diabetic patients after i.v. bolus administration

    International Nuclear Information System (INIS)

    Oolbekkink, M.; Veen, E.A. van der; Heine, R.J.; Hollander, W. den; Nauta, J.J.P.

    1989-01-01

    Insulin binding kinetics in the liver were studied in non insulin dependent (Type 2) diabetic patients, by i.v. bolus administration of 123 I-insulin. Eight Type 2 diabetic patients were compared with six male volunteers. Uptake of 123 I-insulin by liver and kidneys was measured by dynamic scintigraphy with a gamma camera during 30 min. Images of liver and kidneys appeared within 2-3 min after administration of 123 I-insulin at a dose of 1 mCi (37 MBq). Peak radioactivity for the liver was found 7.5±0.2 and 6.9±0.3 min after injection for the healthy and the diabetic subjects, respectively (N.S.). The percentage 123 I-insulin hepatic uptake was not significantly different for the diabetic and the healthy subjects. Although a large variation exists for maximal uptake of radioactivity within both groups, the data suggest that binding differences in the liver in Type 2 diabetic patients, as compared to healthy subjects, may not account for hepatic insulin resistance. (orig.)

  15. Quantitative analysis of secretome from adipocytes regulated by insulin

    Institute of Scientific and Technical Information of China (English)

    Hu Zhou; Yuanyuan Xiao; Rongxia Li; Shangyu Hong; Sujun Li; Lianshui Wang; Rong Zeng; Kan Liao

    2009-01-01

    Adipocyte is not only a central player involved in storage and release of energy, but also in regulation of energy metabolism in other organs via secretion of pep-tides and proteins. During the pathogenesis of insulin resistance and type 2 diabetes, adipocytes are subjected to the increased levels of insulin, which may have a major impact on the secretion of adipokines. We have undertaken cleavable isotope-coded affinity tag (clCAT) and label-free quantitation approaches to identify and quantify secretory factors that are differen-tially secreted by 3T3-LI adipocytes with or without insulin treatment. Combination of clCAT and label-free results, there are 317 proteins predicted or annotated as secretory proteins. Among these secretory proteins, 179 proteins and 53 proteins were significantly up-regulated and down-regulated, respectively. A total of 77 reported adipokines were quantified in our study, such as adiponectin, cathepsin D, cystatin C, resistin, and transferrin. Western blot analysis of these adipo-kines confirmed the quantitative results from mass spectrometry, and revealed individualized secreting pat-terns of these proteins by increasing insulin dose. In addition, 240 proteins were newly identified and quanti-fied as secreted proteins from 3T3-L1 adipocytes in our study, most of which were up-regulated upon insulin treatment. Further comprehensive bioinformatics analysis revealed that the secretory proteins in extra-cellular matrix-receptor interaction pathway and glycan structure degradation pathway were significantly up-regulated by insulin stimulation.

  16. Human lactoferricin derived di-peptides deploying loop structures induce apoptosis specifically in cancer cells through targeting membranous phosphatidylserine.

    Science.gov (United States)

    Riedl, Sabrina; Leber, Regina; Rinner, Beate; Schaider, Helmut; Lohner, Karl; Zweytick, Dagmar

    2015-11-01

    Host defense-derived peptides have emerged as a novel strategy for the development of alternative anticancer therapies. In this study we report on characteristic features of human lactoferricin (hLFcin) derivatives which facilitate specific killing of cancer cells of melanoma, glioblastoma and rhabdomyosarcoma compared with non-specific derivatives and the synthetic peptide RW-AH. Changes in amino acid sequence of hLFcin providing 9-11 amino acids stretched derivatives LF11-316, -318 and -322 only yielded low antitumor activity. However, the addition of the repeat (di-peptide) and the retro-repeat (di-retro-peptide) sequences highly improved cancer cell toxicity up to 100% at 20 μM peptide concentration. Compared to the complete parent sequence hLFcin the derivatives showed toxicity on the melanoma cell line A375 increased by 10-fold and on the glioblastoma cell line U-87mg by 2-3-fold. Reduced killing velocity, apoptotic blebbing, activation of caspase 3/7 and formation of apoptotic DNA fragments proved that the active and cancer selective peptides, e.g. R-DIM-P-LF11-322, trigger apoptosis, whereas highly active, though non-selective peptides, such as DIM-LF11-318 and RW-AH seem to kill rapidly via necrosis inducing membrane lyses. Structural studies revealed specific toxicity on cancer cells by peptide derivatives with loop structures, whereas non-specific peptides comprised α-helical structures without loop. Model studies with the cancer membrane mimic phosphatidylserine (PS) gave strong evidence that PS only exposed by cancer cells is an important target for specific hLFcin derivatives. Other negatively charged membrane exposed molecules as sialic acid, heparan and chondroitin sulfate were shown to have minor impact on peptide activity. Copyright © 2015. Published by Elsevier B.V.

  17. Streptozotocin Aggravated Osteopathology and Insulin Induced Osteogenesis Through Co-treatment with Fluoride.

    Science.gov (United States)

    Yang, Chen; Zhang, Mengmeng; Li, Yagang; Wang, Yan; Mao, Weixian; Gao, Yuan; Xu, Hui

    2015-12-01

    The role of insulin in the mechanism underlying the excessive fluoride that causes skeletal lesion was studied. The in vitro bone marrow stem cells (BMSC) collected from Kunming mice were exposed to varying concentrations of fluoride with or without insulin. The cell viability and early differentiation of BMSC co-treated with fluoride and insulin were measured by using cell counting kit-8 and Gomori modified calcium-cobalt method, respectively. We further investigated the in vivo effects of varying dose of fluoride on rats co-treated with streptozotocin (STZ). Wistar rats were divided into six groups which included normal control, 10 mg fluoride/kg day group, 20 mg fluoride/kg day group, STZ control, STZ+10 mg fluoride/kg day group, and STZ+20 mg fluoride/kg day group. The rats were administered with sodium fluoride (NaF) by gavage with water at doses 10 and 20 mg fluoride/kg day for 2 months. In a period of one month, half of rats in every group were treated with streptozotocin (STZ) once through intraperitoneal injection at 52 mg/kg body weight. The serum glucose, HbA1c, and insulin were determined. Bone mineral content and insulin release were assessed. The results showed insulin combined with fluoride stimulated BMSC cell viability in vitro. The bone mineral content reduced in rats treated with higher dose of fluoride and decreased immensely in rat co-treated with fluoride and STZ. Similarly, a combination treatment of a high dose of fluoride and STZ decreased insulin sensitivity and activity. To sum up, these data indicated fluoride influenced insulin release, activity, and sensitivity. Furthermore, the insulin state in vivo interfered in the osteogenesis in turn and implied there was a close relation between insulin and bone pathogenesis in the mechanism of fluoride toxicity.

  18. Potent Insulin Secretagogue from Scoparia dulcis Linn of Nepalese Origin.

    Science.gov (United States)

    Sharma, Khaga Raj; Adhikari, Achyut; Hafizur, Rahman M; Hameed, Abdul; Raza, Sayed Ali; Kalauni, Surya Kant; Miyazaki, Jun-Ichi; Choudhary, M Iqbal

    2015-10-01

    Ethno-botanical inspired isolation from plant Scoparia dulcis Linn. (Sweet Broomweed) yielded six compounds, coixol (1), glutinol (2), glutinone (3), friedelin (4), betulinic acid (5), and tetratriacontan-1-ol (6). There structures were identified using mass and 1D- and 2D-NMR spectroscopy techniques. Compounds 1-6 were evaluated for their insulin secretory activity on isolated mice islets and MIN-6 pancreatic β-cell line, and compounds 1 and 2 were found to be potent and mildly active, respectively. Compound 1 was further evaluated for insulin secretory activity on MIN-6 cells. Compound 1 was subjected to in vitro cytotoxicity assay against MIN-6, 3T3 cell lines, and islet cells, and in vivo acute toxicity test in mice that was found to be non-toxic. The insulin secretory activity of compounds 1 and 2 supported the ethno-botanic uses of S. dulcis as an anti-diabetic agent. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Glucose-Dependent Insulin Secretion in Pancreatic β-Cell Islets from Male Rats Requires Ca2+ Release via ROS-Stimulated Ryanodine Receptors.

    Directory of Open Access Journals (Sweden)

    Paola Llanos

    Full Text Available Glucose-stimulated insulin secretion (GSIS from pancreatic β-cells requires an increase in intracellular free Ca2+ concentration ([Ca2+]. Glucose uptake into β-cells promotes Ca2+ influx and reactive oxygen species (ROS generation. In other cell types, Ca2+ and ROS jointly induce Ca2+ release mediated by ryanodine receptor (RyR channels. Therefore, we explored here if RyR-mediated Ca2+ release contributes to GSIS in β-cell islets isolated from male rats. Stimulatory glucose increased islet insulin secretion, and promoted ROS generation in islets and dissociated β-cells. Conventional PCR assays and immunostaining confirmed that β-cells express RyR2, the cardiac RyR isoform. Extended incubation of β-cell islets with inhibitory ryanodine suppressed GSIS; so did the antioxidant N-acetyl cysteine (NAC, which also decreased insulin secretion induced by glucose plus caffeine. Inhibitory ryanodine or NAC did not affect insulin secretion induced by glucose plus carbachol, which engages inositol 1,4,5-trisphosphate receptors. Incubation of islets with H2O2 in basal glucose increased insulin secretion 2-fold. Inhibitory ryanodine significantly decreased H2O2-stimulated insulin secretion and prevented the 4.5-fold increase of cytoplasmic [Ca2+] produced by incubation of dissociated β-cells with H2O2. Addition of stimulatory glucose or H2O2 (in basal glucose to β-cells disaggregated from islets increased RyR2 S-glutathionylation to similar levels, measured by a proximity ligation assay; in contrast, NAC significantly reduced the RyR2 S-glutathionylation increase produced by stimulatory glucose. We propose that RyR2-mediated Ca2+ release, induced by the concomitant increases in [Ca2+] and ROS produced by stimulatory glucose, is an essential step in GSIS.

  20. Reduction of free fatty acids by acipimox enhances the growth hormone (GH) responses to GH-releasing peptide 2 in elderly men

    NARCIS (Netherlands)

    Smid, HEC; de Vries, WR; Niesink, M; Bolscher, E; Waasdorp, EJ; Dieguez, C; Casanueva, FF; Koppeschaar, HPF

    2000-01-01

    GH release is increased by reducing circulating free fatty acids (FFAs). Aging is associated with decreased plasma GH concentrations. We evaluated GH releasing capacity in nine healthy elderly men after administration of GH-releasing peptide 2 (GHRP-2), with or without pretreatment with the

  1. The Role of Biomarkers in Decreasing Risk of Cardiac Toxicity after Cancer Therapy

    Directory of Open Access Journals (Sweden)

    Christine Henri

    2016-01-01

    Full Text Available With the improvement of cancer therapy, survival related to malignancy has improved, but the prevalence of long-term cardiotoxicity has also increased. Cancer therapies with known cardiac toxicity include anthracyclines, biologic agents (trastuzumab, and multikinase inhibitors (sunitinib. The most frequent presentation of cardiac toxicity is dilated cardiomyopathy associated with poorest prognosis. Monitoring of cardiac toxicity is commonly performed by assessment of left ventricular (LV ejection fraction, which requires a significant amount of myocardial damage to allow detection of cardiac toxicity. Accordingly, this creates the impetus to search for more sensitive and reproducible biomarkers of cardiac toxicity after cancer therapy. Different biomarkers have been proposed to that end, the most studied ones included troponin release resulting from cardiomyocyte damage and natriuretic peptides reflecting elevation in LV filling pressure and wall stress. Increase in the levels of troponin and natriuretic peptides have been correlated with cumulative dose of anthracycline and the degree of LV dysfunction. Troponin is recognized as a highly efficient predictor of early and chronic cardiac toxicity, but there remains some debate regarding the clinical usefulness of the measurement of natriuretic peptides because of divergent results. Preliminary data are available for other biomarkers targeting inflammation, endothelial dysfunction, myocardial ischemia, and neuregulin-1. The purpose of this article is to review the available data to determine the role of biomarkers in decreasing the risk of cardiac toxicity after cancer therapy.

  2. The Association between Newborn Regional Body Composition and Cord Blood Concentrations of C-Peptide and Insulin-Like Growth Factor I.

    Directory of Open Access Journals (Sweden)

    Emma M Carlsen

    Full Text Available Third trimester fetal growth is partially regulated by C-peptide and insulin-like growth factor I (IGF-I. Prenatal exposures including maternal obesity and high gestational weight gain as well as high birth weight have been linked to subsequent metabolic disease. We evaluated the associations between newborn regional body composition and cord blood levels of C-peptide and IGF-I.We prospectively included obese and normal-weight mothers and their newborns; cord blood was collected and frozen. Analyses of C-peptide and IGF-I were performed simultaneously, after recruitment was completed. Newborn regional body composition was assessed with dual-energy X-ray absorptiometry scanning (DXA within 48 hours of birth.Three hundred thirty-six term infants were eligible to participate in the study; of whom 174 (52% infants had cord blood taken. Total, abdominal and arm and leg fat mass were positively associated with C-peptide (p < 0.001. Arm and leg fat mass was associated with IGF-I concentration: 28 g [95% confidence interval: 4, 53] per doubling of IGF-I. There was no association between total or abdominal fat mass and IGF-I. Fat-free mass was positively associated with both C-peptide (p < 0.001 and IGF-I (p = 0.004.Peripheral fat tissue accumulation was associated with cord blood C-peptide and IGF-I. Total and abdominal fat masses were related to C-peptide but not to IGF-I. Thus, newborn adiposity is partially mediated through C-peptide and early linear growth is associated with IGF-I.

  3. Bio-fabrication and physiological self-release of tissue equivalents using smart peptide amphiphile templates.

    Science.gov (United States)

    Gouveia, Ricardo M; Hamley, Ian W; Connon, Che J

    2015-10-01

    In this study we applied a smart biomaterial formed from a self-assembling, multi-functional synthetic peptide amphiphile (PA) to coat substrates with various surface chemistries. The combination of PA coating and alignment-inducing functionalised substrates provided a template to instruct human corneal stromal fibroblasts to adhere, become aligned and then bio-fabricate a highly-ordered, multi-layered, three-dimensional tissue by depositing an aligned, native-like extracellular matrix. The newly-formed corneal tissue equivalent was subsequently able to eliminate the adhesive properties of the template and govern its own complete release via the action of endogenous proteases. Tissues recovered through this method were structurally stable, easily handled, and carrier-free. Furthermore, topographical and mechanical analysis by atomic force microscopy showed that tissue equivalents formed on the alignment-inducing PA template had highly-ordered, compact collagen deposition, with a two-fold higher elastic modulus compared to the less compact tissues produced on the non-alignment template, the PA-coated glass. We suggest that this technology represents a new paradigm in tissue engineering and regenerative medicine, whereby all processes for the bio-fabrication and subsequent self-release of natural, bio-prosthetic human tissues depend solely on simple template-tissue feedback interactions.

  4. Nutritional Modulation of Non-Alcoholic Fatty Liver Disease and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Hannele Yki-Järvinen

    2015-11-01

    Full Text Available Non-alcoholic fatty liver disease (NAFLD covers a spectrum of disorders ranging from simple steatosis (non-alcoholic fatty liver, NAFL to non-alcoholic steatohepatitis (NASH and cirrhosis. NAFL increases the risk of liver fibrosis. If the liver is fatty due to causes of insulin resistance such as obesity and physical inactivity, it overproduces glucose and triglycerides leading to hyperinsulinemia and a low high-density lipoprotein (HDL cholesterol concentration. The latter features predispose to type 2 diabetes and cardiovascular disease (CVD. Understanding the impact of nutritional modulation of liver fat content and insulin resistance is therefore of interest for prevention and treatment of NAFLD. Hypocaloric, especially low carbohydrate ketogenic diets rapidly decrease liver fat content and associated metabolic abnormalities. However, any type of caloric restriction seems effective long-term. Isocaloric diets containing 16%–23% fat and 57%–65% carbohydrate lower liver fat compared to diets with 43%–55% fat and 27%–38% carbohydrate. Diets rich in saturated (SFA as compared to monounsaturated (MUFA or polyunsaturated (PUFA fatty acids appear particularly harmful as they increase both liver fat and insulin resistance. Overfeeding either saturated fat or carbohydrate increases liver fat content. Vitamin E supplementation decreases liver fat content as well as fibrosis but has no effect on features of insulin resistance.

  5. Glucose but not insulin or insulin resistance is associated with memory performance in middle-aged non-diabetic women: a cross sectional study.

    Science.gov (United States)

    Backeström, Anna; Eriksson, Sture; Nilsson, Lars-Göran; Olsson, Tommy; Rolandsson, Olov

    2015-01-01

    Elevated concentrations of plasma glucose appear to play a role in memory impairment, and it has been suggested that insulin might also have a negative effect on cognitive function. Our aim was to study whether glucose, insulin or insulin resistance are associated with episodic or semantic memory in a non-diabetic and non-demented population. We linked and matched two population-based data sets identifying 291 participants (127 men and 164 women, mean age of 50.7 ± 8.0 years). Episodic and semantic memory functions were tested, and fasting plasma insulin, fasting plasma glucose, and 2-hour glucose were analysed along with other potential influencing factors on memory function. Since men and women display different results on memory functions they were analysed separately. Insulin resistance was calculated using the HOMA-IR method. A higher fasting plasma glucose concentration was associated with lower episodic memory in women (r = -0.08, 95% CI -0.14; -0.01), but not in men. Plasma insulin levels and insulin resistance were not associated with episodic or semantic memory in women or in men after adjustments for age, fasting glucose, 2-hour glucose, BMI, education, smoking, cardiovascular disease, hypertension, cholesterol, and physical activity. This indicates that fasting glucose but not insulin, might have impact on episodic memory in middle-aged women.

  6. Active prey selection in two pelagic copepods feeding on potentially toxic and non-toxic dinoflagellates

    DEFF Research Database (Denmark)

    Schultz, Mette; Kiørboe, Thomas

    2009-01-01

    Grazing on two red tide dinoflagellates, the potentially toxic Karenia mikimotoi and the non-toxic Gyrodinium instriatum, was examined in two species of marine copepods, Pseudocalanus elongatus and Temora longicornis. Both copepods cleared K. mikimotoi at rates that were a little lower but compar......Grazing on two red tide dinoflagellates, the potentially toxic Karenia mikimotoi and the non-toxic Gyrodinium instriatum, was examined in two species of marine copepods, Pseudocalanus elongatus and Temora longicornis. Both copepods cleared K. mikimotoi at rates that were a little lower...

  7. Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery

    Science.gov (United States)

    Hurkat, Pooja; Jain, Aviral; Jain, Ashish; Shilpi, Satish; Gulbake, Arvind; Jain, Sanjay K.

    2012-11-01

    Major research issues in oral protein delivery include the stabilization of protein in delivery devices which could increase its oral bioavailability. The study deals with development of oral insulin delivery system utilizing biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and modifying its surface with Concanavalin A to increase lymphatic uptake. Surface-modified PLGA nanoparticles were characterized for conjugation efficiency of ligand, shape and surface morphology, particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro drug release. Stability of insulin in the developed formulation was confirmed by SDS-PAGE, and integrity of entrapped insulin was assessed using circular dichroism spectrum. Ex vivo study was performed on Wistar rats, which exhibited the higher intestinal uptake of Con A conjugated nanoparticles. In vivo study performed on streptozotocin-induced diabetic rats which indicate that a surface-modified nanoparticle reduces blood glucose level effectively within 4 h of its oral administration. In conclusion, the present work resulted in successful production of Con A NPs bearing insulin with sustained release profile, and better absorption and stability. The Con A NPs showed high insulin uptake, due to its relative high affinity for non-reducing carbohydrate residues i.e., fucose present on M cells and have the potential for oral insulin delivery in effective management of Type 1 diabetes condition.

  8. Concanavalin A conjugated biodegradable nanoparticles for oral insulin delivery

    Energy Technology Data Exchange (ETDEWEB)

    Hurkat, Pooja; Jain, Aviral; Jain, Ashish; Shilpi, Satish; Gulbake, Arvind; Jain, Sanjay K., E-mail: drskjainin@yahoo.com [Dr. Hari Singh Gour Vishwavidyalaya, Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences (India)

    2012-11-15

    Major research issues in oral protein delivery include the stabilization of protein in delivery devices which could increase its oral bioavailability. The study deals with development of oral insulin delivery system utilizing biodegradable poly(lactic-co-glycolic acid) (PLGA) nanoparticles and modifying its surface with Concanavalin A to increase lymphatic uptake. Surface-modified PLGA nanoparticles were characterized for conjugation efficiency of ligand, shape and surface morphology, particle size, zeta potential, polydispersity index, entrapment efficiency, and in vitro drug release. Stability of insulin in the developed formulation was confirmed by SDS-PAGE, and integrity of entrapped insulin was assessed using circular dichroism spectrum. Ex vivo study was performed on Wistar rats, which exhibited the higher intestinal uptake of Con A conjugated nanoparticles. In vivo study performed on streptozotocin-induced diabetic rats which indicate that a surface-modified nanoparticle reduces blood glucose level effectively within 4 h of its oral administration. In conclusion, the present work resulted in successful production of Con A NPs bearing insulin with sustained release profile, and better absorption and stability. The Con A NPs showed high insulin uptake, due to its relative high affinity for non-reducing carbohydrate residues i.e., fucose present on M cells and have the potential for oral insulin delivery in effective management of Type 1 diabetes condition.

  9. One-pot synthesis of water soluble iron nanoparticles using rationally-designed peptides and ligand release.

    Science.gov (United States)

    Papst, Stefanie; Cheong, Soshan; Banholzer, Moritz J; Brimble, Margaret A; Williams, David E; Tilley, Richard D

    2013-05-18

    Herein we report the rational design of new phosphopeptides for control of nucleation, growth and aggregation of water-soluble, superparamagnetic iron-iron oxide core-shell nanoparticles. The use of the designed peptides enables a one-pot synthesis that avoids utilizing unstable or toxic iron precursors, organic solvents, and the need for exchange of capping agent after synthesis of the NPs.

  10. In vivo release of calcitonin gene-related peptide-like material from the cervicotrigeminal area in the rat. Effects of electrical and noxious stimulations of the muzzle.

    Science.gov (United States)

    Pohl, M; Collin, E; Bourgoin, S; Clot, A M; Hamon, M; Cesselin, F; Le Bars, D

    1992-10-01

    The continuous perfusion with an artificial cerebrospinal fluid of the cervicotrigeminal area of the spinal cord in halothane-anaesthetized rats allowed the collection of calcitonin gene-related peptide-like material with the same immunological and chromatographic characteristics as authentic rat alpha-calcitonin gene-related peptide. The spinal release of calcitonin gene-related peptide-like material could be significantly increased by the local application of 60 mM K+ (approximately +100%), high-intensity percutaneous electrical stimulation (approximately +200%) and noxious heat (by immersion in water at 52 degrees C; approximately +150%) applied to the muzzle. By contrast, noxious mechanical (pinches) and chemical (subcutaneous formalin injection) stimulations and deep cooling (by immersion in water at 0 degrees C) of the muzzle did not alter the spinal release of calcitonin gene-related peptide-like material. In addition, low-intensity electrical stimulation, recruiting only the A alpha/beta primary afferent fibres, significantly reduced (approximately -30%) the release of calcitonin gene-related peptide-like material from the cervicotrigeminal area. These data suggest that among the various types of natural noxious stimuli, noxious heat may selectively excite calcitonin gene-related peptide-containing A delta and C primary afferent fibres projecting within the dorsal horn of the spinal cord, and that activation of A alpha/beta fibres reduces spontaneous calcitonin gene-related peptide-like material release possibly through an inhibitory presynaptic control of calcitonin gene-related peptide-containing A delta/C fibres.

  11. Glucose Control: non-insulin therapies* 9.1: Drug Summary ...

    African Journals Online (AJOL)

    Glucose Control: non-insulin therapies in 2017 SEMDSA Guideline for the Management of Type 2 Diabetes. Guideline ... Weight neutral or causes modest weight loss (-1.2kg). No weight ..... Older patients with multiple comorbidities. • Patients ...

  12. Inhibition of serotonin release by bombesin-like peptides in rat hypothalamus in vitro

    International Nuclear Information System (INIS)

    Saporito, M.S.; Warwick, R.O. Jr.

    1989-01-01

    We investigated the activity of bombesin (BN), neuromedin-C (NM-C) and neuromedin-B (NM-B) on serotonin (5-HT) release and reuptake in rat hypothalamus (HYP) in vitro. BN and NM-C but not NM-B decreased K + evoked 3 H-5-HT release from superfused HYP slices by 25%. Bacitracin, a nonspecific peptidase inhibitor, reversed the inhibitory effect of BN on K + evoked 3 H-5-HT release. Phosphoramidon (PAN, 10 μM) an endopeptidase 24.11 inhibitor, abolished the inhibitory effect of BN, but not NM-C, on K + evoked 3 H-5-HT release. The peptidyl dipeptidase A inhibitor enalaprilat (ENP, 10 μM), enhanced both BN and NM-C inhibition of 3 H-5-HT release. Bestatin (BST, 10 μM) had no effect on BN or NM-C inhibitory activity on 3 H-5-HT release. Neither BN, NM-C nor NM-B affected reuptake of 3 H-5-HT into HYP synaptosomes alone or in combination with any of the peptidase inhibitors, nor did these peptides alter the ability of fluoxetine to inhibit 3 H-5-HT uptake

  13. Thiol functionalized polymethacrylic acid-based hydrogel microparticles for oral insulin delivery.

    Science.gov (United States)

    Sajeesh, S; Vauthier, C; Gueutin, C; Ponchel, G; Sharma, Chandra P

    2010-08-01

    In the present study thiol functionalized polymethacrylic acid-polyethylene glycol-chitosan (PCP)-based hydrogel microparticles were utilized to develop an oral insulin delivery system. Thiol modification was achieved by grafting cysteine to the activated surface carboxyl groups of PCP hydrogels (Cys-PCP). Swelling and insulin loading/release experiments were conducted on these particles. The ability of these particles to inhibit protease enzymes was evaluated under in vitro experimental conditions. Insulin transport experiments were performed on Caco-2 cell monolayers and excised intestinal tissue with an Ussing chamber set-up. Finally, the efficacy of insulin-loaded particles in reducing the blood glucose level in streptozotocin-induced diabetic rats was investigated. Thiolated hydrogel microparticles showed less swelling and had a lower insulin encapsulation efficiency as compared with unmodified PCP particles. PCP and Cys-PCP microparticles were able to inhibit protease enzymes under in vitro conditions. Thiolation was an effective strategy to improve insulin absorption across Caco-2 cell monolayers, however, the effect was reduced in the experiments using excised rat intestinal tissue. Nevertheless, functionalized microparticles were more effective in eliciting a pharmacological response in diabetic animal, as compared with unmodified PCP microparticles. From these studies thiolation of hydrogel microparticles seems to be a promising approach to improve oral delivery of proteins/peptides. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  14. Exploring the role of peptides in polymer-based gene delivery.

    Science.gov (United States)

    Sun, Yanping; Yang, Zhen; Wang, Chunxi; Yang, Tianzhi; Cai, Cuifang; Zhao, Xiaoyun; Yang, Li; Ding, Pingtian

    2017-09-15

    Polymers are widely studied as non-viral gene vectors because of their strong DNA binding ability, capacity to carry large payload, flexibility of chemical modifications, low immunogenicity, and facile processes for manufacturing. However, high cytotoxicity and low transfection efficiency substantially restrict their application in clinical trials. Incorporating functional peptides is a promising approach to address these issues. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we systematically summarize the role of peptides in polymer-based gene delivery, and elaborate how to rationally design polymer-peptide based gene delivery vectors. Polymers are widely studied as non-viral gene vectors, but suffer from high cytotoxicity and low transfection efficiency. Incorporating short, bioactive peptides into polymer-based gene delivery systems can address this issue. Peptides demonstrate various functions in polymer-based gene delivery systems, such as targeting to specific cells, breaching membrane barriers, facilitating DNA condensation and release, and lowering cytotoxicity. In this review, we highlight the peptides' roles in polymer-based gene delivery, and elaborate how to utilize various functional peptides to enhance the transfection efficiency of polymers. The optimized peptide-polymer vectors should be able to alter their structures and functions according to biological microenvironments and utilize inherent intracellular pathways of cells, and consequently overcome the barriers during gene delivery to enhance transfection efficiency. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  15. Association between circulating irisin and insulin resistance in non-diabetic adults: A meta-analysis.

    Science.gov (United States)

    Qiu, Shanhu; Cai, Xue; Yin, Han; Zügel, Martina; Sun, Zilin; Steinacker, Jürgen Michael; Schumann, Uwe

    2016-06-01

    Exogenous administration of recombinant irisin improves glucose metabolism. However, the association of endogenous circulating (plasma/serum) irisin with insulin resistance remains poorly delineated. This study was aimed to examine this association by meta-analyzing the current evidence without study design restriction in non-diabetic adults. Peer-reviewed studies written in English from 3 databases were searched to December 2015. Studies that reported the association between circulating irisin and insulin resistance (or its reverse, insulin sensitivity) in non-diabetic non-pregnant adults (mean ages ≥18years) were included. The pooled correlation coefficient (r) and 95% confidence intervals (CIs) were calculated using a random-effects model. Subgroup analyses and meta-regression were performed to explore potential sources of heterogeneity. Of the 195 identified publications, 17 studies from 15 articles enrolling 1912 participants reported the association between circulating irisin and insulin resistance. The pooled effect size was 0.15 (95% CI: 0.07 to 0.22) with a substantial heterogeneity (I(2)=55.5%). This association seemed to be modified by glycemic status (fasting blood glucose ≥6.1mmol/L versus insulin sensitivity (6 studies; r=-0.17, 95% CI: -0.25 to -0.09). Circulating irisin is directly and positively associated with insulin resistance in non-diabetic adults. However, this association is rather small and requires further clarification, in particular by well-designed large epidemiological studies with overall, race-, and sex-specific analyses. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Influence of insulin therapy on circulating ghrelin and insulin-like ghrelinowth factor-1(IGF-1) levels in children with type-1 diabetes mellitus

    International Nuclear Information System (INIS)

    Moawad, A.T.; Nassar, E.M.; Mostafa, A.M.; Mohammed, S.K.

    2009-01-01

    Diabetes mellitus type 1 (IDDM)is a chronic disease associated with alterations in the growth hormone/insulin -like growth factor (GH-IGF) system and ghrelin level which may lead to changes in metabolic control. This study aimed to evaluate the circulating levels of the gut-derived peptides (ghrelin and insulin-like growth factors (IGF s ) in children with IDDM and to link these two peptides with the glucose level in diabetic children at diagnoses and after insulin therapy. Design and methods: the studied group consisted of 30 newly diagnosed diabetic children (17 females and 13 males) diagnosed in paediatric diabetes unit, children's hospital, Ain shams university. Their age ranged from (6.2-11.8) years with mean of 10.10± 1.74 years. Twenty non diabetic healthy children matching in age and sex served as controls. Serum ghrelin was determined by enzyme linked immuno absorbanet assay (ELISA), while IGF-1 and insulin-like growth factors binding proteins -1 and 3 (IGFBP s ) were assessed by radioimmunoassay(RIA). Results: body mass index (BMI) in patients was significantly decreased in the diabetic group as compared to the healthy group at diagnosis. After insulin therapy BMI was significantly increase as compared to its value at diagnosis (p< 0.05) such increase was not significant on comparing to controls. Regarding blood glucose level there was very highly significant decrease in the level of HBAI (glycolated HB) in diabetic patients after insulin therapy (p<0.0001) than at diagnosis . The mean ghrelin level was highly significantly decreased in diabetic children at diagnosis and after insulin therapy as compared to controls (p<0.0001). No differences were found in the mean ghrelin levels in diabetic children at diagnosis or after insulin therapy.conclusions : the decrease in mean gherlin levels in this study at diagnosis and after therapy could reflect an attempt by the body to decrease the glucose level and thus may prevent hyperglycemia in diabetic patients

  17. Chitosan nanofibers for transbuccal insulin delivery.

    Science.gov (United States)

    Lancina, Michael G; Shankar, Roopa Kanakatti; Yang, Hu

    2017-05-01

    In this work, they aimed at producing chitosan based nanofiber mats capable of delivering insulin via the buccal mucosa. Chitosan was electrospun into nanofibers using poly(ethylene oxide) (PEO) as a carrier molecule in various feed ratios. The mechanical properties and degradation kinetics of the fibers were measured. Insulin release rates were determined in vitro using an ELISA assay. The bioactivity of released insulin was measured in terms of Akt activation in pre-adipocytes. Insulin permeation across the buccal mucosa was measured in an ex-vivo porcine transbuccal model. Fiber morphology, mechanical properties, and in vitro stability were dependent on PEO feed ratio. Lower PEO content blends produced smaller diameter fibers with significantly faster insulin release kinetics. Insulin showed no reduction in bioactivity due to electrospinning. Buccal permeation of insulin facilitated by high chitosan content blends was significantly higher than that of free insulin. Taken together, the work demonstrates that chitosan-based nanofibers have the potential to serve as a transbuccal insulin delivery vehicle. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1252-1259, 2017. © 2017 Wiley Periodicals, Inc.

  18. [Solid state isotope hydrogen exchange for deuterium and tritium in human gene-engineered insulin].

    Science.gov (United States)

    Zolotarev, Yu A; Dadayan, A K; Kozik, V S; Gasanov, E V; Nazimov, I V; Ziganshin, R Kh; Vaskovsky, B V; Murashov, A N; Ksenofontov, A L; Haribin, O N; Nikolaev, E N; Myasoedov, N F

    2014-01-01

    The reaction of high temperature solid state catalytic isotope exchange in peptides and proteins under the action of catalyst-activated spillover hydrogen was studied. The reaction of human gene-engineered insulin with deuterium and tritium was conducted at 120-140° C to produce insulin samples containing 2-6 hydrogen isotope atoms. To determine the distribution of the isotope label over tritium-labeled insulin's amino acid residues, oxidation of the S-S bonds of insulin by performic acid was performed and polypeptide chains isolated; then their acid hydrolysis, amino acid analysis and liquid scintillation counts of tritium in the amino acids were conducted. The isotope label was shown to be incorporated in all amino acids of the protein, with the peptide fragment FVNQHLCGSHLVE of the insulin β-chain showing the largest incorporation. About 45% of the total protein isotope label was incorporated in His5 and His10 of this fragment. For the analysis of isotope label distribution in labeled insulin's peptide fragments, the recovery of the S-S bonds by mercaptoethanol, the enzymatic hydrolysis by glutamyl endopeptidase from Bacillus intermedius and HPLC division of the resulting peptides were carried out. Attribution of the peptide fragments formed due to hydrolysis at the Glu-X bond in the β-chain was accomplished by mass spectrometry. Mass spectrometry analysis data of the deuterium-labeled insulin samples' isotopomeric composition showed that the studied solid state isotope exchange reaction equally involved all the protein molecules. Biological studying of tritium-labeled insulin showed its physiological activity to be completely retained.

  19. The Insulin-like Growth Factor (IGF)-I E-Peptides Modulate Cell Entry of the Mature IGF-I Protein

    OpenAIRE

    Pfeffer, Lindsay A.; Brisson, Becky K.; Lei, Hanqin; Barton, Elisabeth R.

    2009-01-01

    Insulin-like growth factor (IGF)-I is a critical protein for cell development and growth. Alternative splicing of the igf1 gene gives rise to multiple isoforms. In rodents, proIGF-IA and proIGF-IB have different carboxy-terminal extensions called the E-peptides (EA and EB) and upon further posttranslational processing, produce the identical mature IGF-I protein. Rodent EB has been reported to have mitogenic and motogenic effects independent of IGF-I. However, effects of EA or EB on mature IGF...

  20. 1997 toxic chemical release inventory. Emergency Planning and Community Right-To-Know Act, Section 313

    International Nuclear Information System (INIS)

    Zaloudek, D.E.

    1998-01-01

    Two listed toxic chemicals were used at the Hanford Site above established activity thresholds: phosphoric acid and chlorine. Because total combined quantities of chlorine released, disposed, treated, recovered through recycle operations, co-combusted for energy recovery, and transferred to off-site locations for the purpose of recycle, energy recovery, treatment, and/or disposal, amounted to less than 500 pounds, the Hanford Site qualified for the alternate one million pound threshold for chlorine. Accordingly, this Toxic Chemical Release Inventory includes a Form A for chlorine, and a Form B for phosphoric acid

  1. Identified peptidergic neurons in the Drosophila brain regulate insulin-producing cells, stress responses and metabolism by coexpressed short neuropeptide F and corazonin.

    Science.gov (United States)

    Kapan, Neval; Lushchak, Oleh V; Luo, Jiangnan; Nässel, Dick R

    2012-12-01

    Insulin/IGF-like signaling regulates the development, growth, fecundity, metabolic homeostasis, stress resistance and lifespan in worms, flies and mammals. Eight insulin-like peptides (DILP1-8) are found in Drosophila. Three of these (DILP2, 3 and 5) are produced by a set of median neurosecretory cells (insulin-producing cells, IPCs) in the brain. Activity in the IPCs of adult flies is regulated by glucose and several neurotransmitters and neuropeptides. One of these, short neuropeptide F (sNPF), regulates food intake, growth and Dilp transcript levels in IPCs via the sNPF receptor (sNPFR1) expressed on IPCs. Here we identify a set of brain neurons that utilizes sNPF to activate the IPCs. These sNPF-expressing neurons (dorsal lateral peptidergic neurons, DLPs) also produce the neuropeptide corazonin (CRZ) and have axon terminations impinging on IPCs. Knockdown of either sNPF or CRZ in DLPs extends survival in flies exposed to starvation and alters carbohydrate and lipid metabolism. Expression of sNPF in DLPs in the sNPF mutant background is sufficient to rescue wild-type metabolism and response to starvation. Since CRZ receptor RNAi in IPCs affects starvation resistance and metabolism, similar to peptide knockdown in DLPs, it is likely that also CRZ targets the IPCs. Knockdown of sNPF, but not CRZ in DLPs decreases transcription of Dilp2 and 5 in the brain, suggesting different mechanisms of action on IPCs of the two co-released peptides. Our findings indicate that sNPF and CRZ co-released from a small set of neurons regulate IPCs, stress resistance and metabolism in adult Drosophila.

  2. Importance of radioimmunoassay of insulin secretion disorder as atherogenic factor

    Energy Technology Data Exchange (ETDEWEB)

    Knyazev, Yu A; Bespalova, V A; Vakhrusheva, L L; Kirbasova, N P; Severtseva, V V

    1984-11-01

    Using a radioimmunoassay a C-peptide levei was revealed in children, pregnant and lying-in women as well as in patients with insulin-dependent diabetes mellitus. After breakfast and insulin administration wich curative purposes the IRI concentration in children increased whereas the C-peptide level changed insignificantly. Changes of the insulin secretion were more noticeable in severe diabetes mejlitus with vascular complications and in disease decompensation. The atherogenic nature of the lipid metaboiism (an increase in the cholesterol, triglyceride and ..beta..-lipoprotein levels), changes in the liver and tendency to vascular involvement are results of insulin effect inadequacy. Such metabolic derangements in pregnant women create unfavorable conditions for the development of fetus and may lead to early atherogenic processes.

  3. In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides.

    Science.gov (United States)

    Bolhassani, Azam; Jafarzade, Behnaz Sadat; Mardani, Golnaz

    2017-01-01

    The failure of proteins to penetrate mammalian cells or target tumor cells restricts their value as therapeutic tools in a variety of diseases such as cancers. Recently, protein transduction domains (PTDs) or cell penetrating peptides (CPPs) have been shown to promote the delivery of therapeutic proteins or peptides into live cells. The successful delivery of proteins mainly depends on their physicochemical properties. Although, linear cell penetrating peptides are one of the most effective delivery vehicles; but currently, cyclic CPPs has been developed to potently transport bioactive full-length proteins into cells. Up to now, several small protein transduction domains from viral proteins including Tat or VP22 could be fused to other peptides or proteins to entry them in various cell types at a dose-dependent approach. A major disadvantage of PTD-fusion proteins is primary uptake into endosomal vesicles leading to inefficient release of the fusion proteins into the cytosol. Recently, non-covalent complex formation (Chariot) between proteins and CPPs has attracted a special interest to overcome some delivery limitations (e.g., toxicity). Many preclinical and clinical trials of CPP-based delivery are currently under evaluation. Generally, development of more efficient protein transduction domains would significantly increase the potency of protein therapeutics. Moreover, the synergistic or combined effects of CPPs with other delivery systems for protein/peptide drug delivery would promote their therapeutic effects in cancer and other diseases. In this review, we will describe the functions and implications of CPPs for delivering the therapeutic proteins or peptides in preclinical and clinical studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Clinical significance of the radioimmunological determination of C-peptide

    International Nuclear Information System (INIS)

    Dudczak, R.; Waldhaeusl, W.

    1979-01-01

    The aim of this study was to investigate the relationship of metabolic control to insulinogenic reserve in insulin-dependent diabetics. Thus, the secretory reserve of the pancreatic beta cell was estimated in insulin-dependent diabetics by measuring changes in peripheral serum immunoreactive C-peptide (IRCP) concentrations in response to intravenous arginine (n = 19; 0.5 g/kg,t = 30 min) or glibenclamide-glucose (n = 6; 2 mg HB 419 - 0.33 g/kg intravenously). In the majority of ''stable'' diabetics a small secretory reserve of the beta cell was demonstrated, but both the absolute and relative increase in IRCP was reduced after intravenous arginine or glibenclamide-glucose in comparison with normal controls. In ''unstable'' diabetics a decreased basal concentration of IRCP, significantly smaller than that seen in ''stable'' diabetics (p < 0.01), was accompanied by a complete lack of IRCP release on intravenous arginine administration. Thus, we conclude that the radioimmunological determination of IRCP is of clinical interest in assessing the residual secretory capacity of the beta cell in insulin-dependent diabetics. In revealing a lack of insulin this diagnostic tool seems to detect a group of potentially ''unstable'' diabetics in need of strict observation, which would minimize the risks of bad metabolic control. (author)

  5. Clinical significance of the radioimmunological determination of C-peptide

    Energy Technology Data Exchange (ETDEWEB)

    Dudczak, R; Waldhaeusl, W [Vienna Univ. (Austria). 1. Medizinische Klinik

    1979-10-12

    The aim of this study was to investigate the relationship of metabolic control to insulinogenic reserve in insulin-dependent diabetics. Thus, the secretory reserve of the pancreatic beta cell was estimated in insulin-dependent diabetics by measuring changes in peripheral serum immunoreactive C-peptide (IRCP) concentrations in response to intravenous arginine (n = 19; 0.5 g/kg,t = 30 min) or glibenclamide-glucose (n = 6; 2 mg HB 419 - 0.33 g/kg intravenously). In the majority of stable diabetics a small secretory reserve of the beta cell was demonstrated, but both the absolute and relative increase in IRCP was reduced after intravenous arginine or glibenclamide-glucose in comparison with normal controls. In unstable diabetics a decreased basal concentration of IRCP, significantly smaller than that seen in stable diabetics (p < 0.01), was accompanied by a complete lack of IRCP release on intravenous arginine administration. Thus, we conclude that the radioimmunological determination of IRCP is of clinical interest in assessing the residual secretory capacity of the beta cell in insulin-dependent diabetics. In revealing a lack of insulin this diagnostic tool seems to detect a group of potentially unstable diabetics in need of strict observation, which would minimize the risks of bad metabolic control.

  6. Clinical characteristics of non-insulin-dependent diabetes mellitus among southwestern American Indian youths.

    Science.gov (United States)

    Coddington, D A; Hisnanick, J J

    2001-03-01

    The clinical characteristics and presentation of non-insulin-dependent diabetes mellitus (NIDDM) among 22 youths, aged less than 20 years, of an American Indian tribe Tohono O'odham Nation in the southwestern United States were studied. Ten males and 12 females (7-20 years old) were identified with a 13.7-year mean age of onset of diabetes. Over 80% (18/22) of the patients were obese at diagnosis having a body mass index greater than the 95th percentile for their age and sex, and there was a strong family history of NIDDM; eight patients were born to mothers who had gestational diabetes, and 19 patients had at least one parent with NIDDM. At the time of diagnosis, plasma glucose levels ranged from 10.3 mmol/L to 33 mmol/L, with nearly 60% (13/22) of the patients having a glucose reading greater than 16.8 mmol/L. C-peptide levels were done on 10 patients, and these were in the normal to elevated range. Clinical management of the 22 patients varied. To control hyperglycaemia and symptoms, such as nocturia and polyuria, 14 patients were on oral hypoglycaemic medication, and five were on insulin therapy. Compliance with dietary management was very difficult for these patients as evidenced by the fact that only three patients were on dietary control for their diabetes. The cases described in this series demonstrate NIDDM in childhood and illustrate the importance of accurate classification of diabetes during childhood, particularly in children from populations at high risk for NIDDM.

  7. The correlation of plasma omentin-1 with insulin resistance in non-obese polycystic ovary syndrome.

    Science.gov (United States)

    Yang, Hai-Yan; Ma, Yan; Lu, Xin-Hong; Liang, Xing-Huan; Suo, Ying-Jun; Huang, Zhen-Xing; Lu, De-Cheng; Qin, Ying-Fen; Luo, Zuo-Jie

    2015-10-01

    Aberrant circulating adipokines are considered to be related to the pathological mechanism of polycystic ovary syndrome (PCOS). This study aims to evaluate the relationship between plasma omentin-1 levels, metabolic and hormonal parameters in the setting of non-obese Chinese women with PCOS. This was a case-controlled, cross-sectional study of 153 non-obese (BMIovary volume were analyzed in all subjects. Plasma omentin-1 levels of non-obese PCOS individuals were significantly lower than in healthy non-obese controls. Body Mass Index (BMI), homeostasis model of assessment for insulin resistance index (HOMA-IR), levels of testosterone, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), LH/FSH ratio and ovary volume (OV) were significantly higher in subjects with PCOS than controls. In the HOMA-IR stratified subgroups, PCOS individuals with insulin resistance had lower omentin-1 than those without insulin resistance after BMI adjustment. Omentin-1 was negatively correlated with BMI, HOMA-IR and fasting insulin. Multiple linear regressions revealed that BMI contributed to omentin-1 levels. Ovary volume was negatively correlated to HOMA-IR but had no correlation with omentin-1. Plasma omentin-1 concentrations were decreased in the non-obese PCOS group. Insulin resistance could further decrease plasma omentin-1 in non-obese individuals with PCOS independent of BMI status. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  8. Hot and toxic: Temperature regulates microcystin release from cyanobacteria.

    Science.gov (United States)

    Walls, Jeremy T; Wyatt, Kevin H; Doll, Jason C; Rubenstein, Eric M; Rober, Allison R

    2018-01-01

    The mechanisms regulating toxin release by cyanobacteria are poorly understood despite the threat cyanotoxins pose to water quality and human health globally. To determine the potential for temperature to regulate microcystin release by toxin-producing cyanobacteria, we evaluated seasonal patterns of water temperature, cyanobacteria biomass, and extracellular microcystin concentration in a eutrophic freshwater lake dominated by Planktothrix agardhii. We replicated seasonal variation in water temperature in a concurrent laboratory incubation experiment designed to evaluate cause-effect relationships between temperature and toxin release. Lake temperature ranged from 3 to 27°C and cyanobacteria biomass increased with warming up to 18°C, but declined rapidly thereafter with further increases in temperature. Extracellular microcystin concentration was tightly coupled with temperature and was most elevated between 20 and 25°C, which was concurrent with the decline in cyanobacteria biomass. A similar trend was observed in laboratory incubations where productivity-specific microcystin release was most elevated between 20 and 25°C and then declined sharply at 30°C. We applied generalized linear mixed modeling to evaluate the strength of water temperature as a predictor of cyanobacteria abundance and microcystin release, and determined that warming≥20°C would result in a 36% increase in microcystin release when Chlorophyll a was ≤50μgl -1 . These results show a temperature threshold for toxin release in P. agardhii, which demonstrates a potential to use water temperature to forecast bloom severity in eutrophic lakes where blooms can persist year-round with varying degrees of toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Setting accelerated dissolution test for PLGA microspheres containing peptide, investigation of critical parameters affecting drug release rate and mechanism.

    Science.gov (United States)

    Tomic, I; Vidis-Millward, A; Mueller-Zsigmondy, M; Cardot, J-M

    2016-05-30

    The objective of this study was development of accelerated in vitro release method for peptide loaded PLGA microspheres using flow-through apparatus and assessment of the effect of dissolution parameters (pH, temperature, medium composition) on drug release rate and mechanism. Accelerated release conditions were set as pH 2 and 45°C, in phosphate buffer saline (PBS) 0.02M. When the pH was changed from 2 to 4, diffusion controlled phases (burst and lag) were not affected, while release rate during erosion phase decreased two-fold due to slower ester bonds hydrolyses. Decreasing temperature from 45°C to 40°C, release rate showed three-fold deceleration without significant change in release mechanism. Effect of medium composition on drug release was tested in PBS 0.01M (200 mOsm/kg) and PBS 0.01M with glucose (380 mOsm/kg). Buffer concentration significantly affected drug release rate and mechanism due to the change in osmotic pressure, while ionic strength did not have any effect on peptide release. Furthermore, dialysis sac and sample-and-separate techniques were used, in order to evaluate significance of dissolution technique choice on the release process. After fitting obtained data to different mathematical models, flow-through method was confirmed as the most appropriate for accelerated in vitro dissolution testing for a given formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Dispersion modeling of accidental releases of toxic gases - utility for the fire brigades.

    Science.gov (United States)

    Stenzel, S.; Baumann-Stanzer, K.

    2009-09-01

    Several air dispersion models are available for prediction and simulation of the hazard areas associated with accidental releases of toxic gases. The most model packages (commercial or free of charge) include a chemical database, an intuitive graphical user interface (GUI) and automated graphical output for effective presentation of results. The models are designed especially for analyzing different accidental toxic release scenarios ("worst-case scenarios”), preparing emergency response plans and optimal countermeasures as well as for real-time risk assessment and management. The research project RETOMOD (reference scenarios calculations for toxic gas releases - model systems and their utility for the fire brigade) was conducted by the Central Institute for Meteorology and Geodynamics (ZAMG) in cooperation with the Viennese fire brigade, OMV Refining & Marketing GmbH and Synex Ries & Greßlehner GmbH. RETOMOD was funded by the KIRAS safety research program of the Austrian Ministry of Transport, Innovation and Technology (www.kiras.at). The main tasks of this project were 1. Sensitivity study and optimization of the meteorological input for modeling of the hazard areas (human exposure) during the accidental toxic releases. 2. Comparison of several model packages (based on reference scenarios) in order to estimate the utility for the fire brigades. For the purpose of our study the following models were tested and compared: ALOHA (Areal Location of Hazardous atmosphere, EPA), MEMPLEX (Keudel av-Technik GmbH), Trace (Safer System), Breeze (Trinity Consulting), SAM (Engineering office Lohmeyer). A set of reference scenarios for Chlorine, Ammoniac, Butane and Petrol were proceed, with the models above, in order to predict and estimate the human exposure during the event. Furthermore, the application of the observation-based analysis and forecasting system INCA, developed in the Central Institute for Meteorology and Geodynamics (ZAMG) in case of toxic release was

  11. Effect of Leu-enkephalin and delta sleep inducing peptide (DSIP) on endogenous noradrenaline release by rat brain synaptosomes

    International Nuclear Information System (INIS)

    Lozhanets, V.V.; Anosov, A.K.

    1986-01-01

    The nonapeptide delta-sleep inducing peptide (DSIP) causes specific changes in the encephalogram of recipient animals: It prolongs the phase of long-wave or delta sleep. The cellular mechanism of action of DSIP has not yet been explained. To test the hyporhesis that this peptide or its degradation product may be presynaptic regulators of catecholamine release, the action of Leu-enkephaline, DSIP, and amino acids composing DSIP on release of endogenous noradrenalin (NA) from synaptosomes during depolarization was compared. Subcellular fractions from cerebral hemisphere of noninbred male albino rats were isolated. Lactate dehydrogenase activity was determined in the suspension of synaptosomes before and after addition of 0.5% Triton X-100. The results were subjected to statistical analysis, using the Wilcoxon-Mann-Whitney nonparametric test

  12. Comparative Study of Serum Leptin and Insulin Resistance Levels Between Korean Postmenopausal Vegetarian and Non-vegetarian Women.

    Science.gov (United States)

    Kim, Mi-Hyun; Bae, Yun-Jung

    2015-07-01

    The present study was conducted to compare serum leptin and insulin resistance levels between Korean postmenopausal long-term semi-vegetarians and non-vegetarians. Subjects of this study belonged to either a group of postmenopausal vegetarian women (n = 54), who maintained a semi-vegetarian diet for over 20 years or a group of non-vegetarian controls. Anthropometric characteristics, serum leptin, serum glucose, serum insulin, insulin resistance (HOMA-IR; Homeostasis Model Assessment of Insulin Resistance), and nutrient intake were compared between the two groups. The vegetarians showed significantly lower body weight (p vegetarians. The HOMA-IR of the vegetarians was significantly lower than that of the non-vegetarians (p vegetarian diet might be related to lower insulin resistance independent of the % of body fat in postmenopausal women.

  13. Steric effects in release of amides from linkers in solid-phase synthesis. Molecular mechanics modeling of key step in peptide and combinatorial chemistry

    DEFF Research Database (Denmark)

    Norrby, Per-Ola; Jensen, Knud Jørgen

    2006-01-01

    Acidolytic release of an amide from a solid support by C-N bond cleavage is all ubiquitous and crucial step in many solid-phase syntheses. We have used molecular modeling of a pseudo-equilibrium to explore substituent and steric effects in the release of peptides. The high acid-lability of the ba......Acidolytic release of an amide from a solid support by C-N bond cleavage is all ubiquitous and crucial step in many solid-phase syntheses. We have used molecular modeling of a pseudo-equilibrium to explore substituent and steric effects in the release of peptides. The high acid......-lability of the backbone amide linkage (BAL), which releases sec. amides, compared to C-terminal amide anchoring, which releases primary amides, was rationalized by steric relief upon cleavage. Thus, the relative stability of the carbenium ion formed from the linker in the acidolytic release is an insufficient measure...

  14. Retroendocytosis of insulin in rat adipocytes

    International Nuclear Information System (INIS)

    Levy, J.R.; Olefsky, J.M.

    1986-01-01

    A variety of ligands internalized by receptor-mediated endocytosis follow a short circuit pathway that does not lead to degradation but results in rapid exocytosis of intact ligand, a process termed retroendocytosis. We studied the time course of [ 125 I]iodoinsulin processing and retroendocytosis after internalization in isolated rat adipocytes. After steady state binding and internalization, surface receptor-bound insulin was removed by exposing cells to a low pH at low temperatures. The cells containing internalized [ 125 I]iodoinsulin were reincubated in fresh medium; subsequently, the radioactivity remaining within the cells and released into the medium were analyzed at various times by trichloroacetic acid (TCA) precipitation, Sephadex G-50 gel filtration, and reverse phase HPLC. Cell-associated radioactivity progressively decreased after reincubation in 37 C buffer, with 50% released in 9 min and 85% by 45 min. In the media, TCA-precipitable material appeared quickly, with a t1/2 of 2 min, and plateaued by 10 min. TCA-soluble material was released continually throughout the 45-min period. The release of both TCA-precipitable and TCA-soluble material was temperature and energy dependent. Sephadex G-50 chromatography demonstrated the loss of insulin from the intracellular pool and its appearance in the medium with a time course similar to that of TCA-precipitable material. Reverse phase HPLC demonstrated that the intracellular and medium radioactivity eluting in peak II (insulin peak) on Sephadex G-50 was composed of both intact insulin and intermediates. After the internalization of insulin, rat adipocytes release not only small mol wt degradation products of insulin, but also insulin intermediates and intact insulin. The rate of retroendocytosis reported here is almost identical to the rate of insulin receptor recycling in rat adipocytes

  15. Examining the antimicrobial activity and toxicity to animal cells of different types of CO-releasing molecules.

    Science.gov (United States)

    Nobre, Lígia S; Jeremias, Hélia; Romão, Carlos C; Saraiva, Lígia M

    2016-01-28

    Transition metal carbonyl complexes used as CO-releasing molecules (CORMs) for biological and therapeutic applications may exhibit interesting antimicrobial activity. However, understanding the chemical traits and mechanisms of action that rule this activity is required to establish a rationale for the development of CORMs into useful antibiotics. In this work the bactericidal activity, the toxicity to eukaryotic cells, and the ability of CORMs to deliver CO to bacterial and eukaryotic cells were analysed for a set of seven CORMs that differ in the transition metal, ancillary ligands and the CO release profile. Most of these CORMs exhibited bactericidal properties that decrease in the following order: CORM-2 > CORM-3 > ALF062 > ALF850 > ALF186 > ALF153 > [Fe(SBPy3)(CO)](BF4)2. A similar yet not entirely coincident decreasing order was found for their induction of intracellular reactive oxygen species (ROS) in E. coli. In contrast, studies in model animal cells showed that for any given CORM, the level of intracellular ROS generated was negligible when compared with that measured inside bacteria. Importantly, these CORMs were in general not toxic to eukaryotic cells, namely murine macrophages, kidney LLC-PK1 epithelial cells, and liver cell line HepG2. CORM-2 and CORM-3 delivered CO to the intracellular space of both E. coli and the two types of tested eukaryotic cells, yet toxicity was only elicited in the case of E. coli. CO delivered by ALF186 into the intercellular space did not enter E. coli cells and the compound was not toxic to either bacteria or to eukaryotic cells. The Fe(ii) carbonyl complex [Fe(SBPy3)(CO)](2+) had the reverse, undesirable toxicity profile, being unexpectedly toxic to eukaryotic cells and non-toxic to E. coli. ALF153, the most stable complex in the whole set, was essentially devoid of toxicity or ROS induction ability in all cells. These results suggest that CORMs have a relevant therapeutic potential as antimicrobial drugs since (i) they

  16. Non-Toxic, Non-Flammable, -80 C Phase Change Materials

    Science.gov (United States)

    Cutbirth, J. Michael

    2013-01-01

    The objective of this effort was to develop a non-toxic, non-flammable, -80 C phase change material (PCM) to be used in NASA's ICEPAC capsules for biological sample preservation in flight to and from Earth orbit. A temperature of about -68 C or lower is a critical temperature for maintaining stable cell, tissue, and cell fragment storage.

  17. Structure of the superantigen staphylococcal enterotoxin B in complex with TCR and peptide-MHC demonstrates absence of TCR-peptide contacts.

    Science.gov (United States)

    Rödström, Karin E J; Elbing, Karin; Lindkvist-Petersson, Karin

    2014-08-15

    Superantigens are immune-stimulatory toxins produced by Staphylococcus aureus, which are able to interact with host immune receptors to induce a massive release of cytokines, causing toxic shock syndrome and possibly death. In this article, we present the x-ray structure of staphylococcal enterotoxin B (SEB) in complex with its receptors, the TCR and MHC class II, forming a ternary complex. The structure, in combination with functional analyses, clearly shows how SEB adopts a wedge-like position when binding to the β-chain of TCR, allowing for an interaction between the α-chain of TCR and MHC. Furthermore, the binding mode also circumvents contact between TCR and the peptide presented by MHC, which enables SEB to initiate a peptide-independent activation of T cells. Copyright © 2014 by The American Association of Immunologists, Inc.

  18. Kinetics of immobilisation and release of tryptophan, riboflavin and peptides from whey protein microbeads.

    Science.gov (United States)

    O'Neill, Graham J; Egan, Thelma; Jacquier, Jean Christophe; O'Sullivan, Michael; Dolores O'Riordan, E

    2015-08-01

    This study investigated the kinetics of immobilisation and release of riboflavin, amino acids and peptides from whey microbeads. Blank whey microbeads were placed in solutions of the compounds. As the volume of microbeads added to the solution was increased, the uptake of the compounds increased, to a maximum of 95% for the pentapeptide and 56%, 57% and 45% for the dipeptide, riboflavin and tryptophan respectively, however, the rate of uptake remained constant. The rate of uptake increased with increasing molecule hydrophobicity. The opposite was observed in the release studies, the more hydrophobic compounds had lower release rate constants (kr). When whey microbeads are used as sorbents, they show excellent potential to immobilise small hydrophobic molecules and minimise subsequent diffusion, even in high moisture environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Aggregation and toxicity of amyloid-beta peptide in relation to peptide sequence variation

    OpenAIRE

    Vandersteen, A.

    2012-01-01

    Generally, aggregation of the amyloid-ß peptide is considered the cause of neuronal death in Alzheimer disease. The heterogenous Aß peptide occurs in various lengths in vivo: Aß40 and Aß42 are the predominant forms while both shorter and longer peptides exist. Aß40 and shorter isoforms are less aggregation-prone and hence considered less dangerous than Aß42 and longer isoforms, which are more aggregation-prone. Up to now research mainly focussed on the predominant Aß peptides and their indivi...

  20. C-Peptide Is Independently Associated with an Increased Risk of Coronary Artery Disease in T2DM Subjects: A Cross-Sectional Study.

    Directory of Open Access Journals (Sweden)

    Lingshu Wang

    Full Text Available C-peptide has been reported to be a marker of subclinical atherosclerosis in type 2 diabetes mellitus (T2DM patients, whereas its role in coronary artery disease (CAD has not been clarified, especially in diabetics with differing body mass indices (BMIs.This cross-sectional study included 501 patients with T2DM. First, all subjects were divided into the following two groups: CAD and non-CAD. Then, binary logistic regression was used to determine the risk factors for CAD for all patients. To clarify the role of obesity, we re-divided all subjects into two additional groups (obese and non-obese based on BMI. Finally, binary logistic regression was used to determine the risk factors for CAD for each weight group.The patients with CAD showed a higher BMI and fasting C-peptide level in addition to an increased prevalence of traditional risk factors for CAD, such as hypertension, insulin resistance, higher cholesterol, cysteine-C (Cys-C and lower estimated glomerular filtration rate (eGFR. Logistic regression analysis showed that fasting C-peptide (OR=1.513, p=0.005, insulin treatment (OR=1.832, p=0.027 hypertension (OR=1.987, p=0.016 and hyperlipidemia (OR=4.159, p<0.001 significantly increased the risk of clinical CAD in the T2DM patients independent of age, gender, diabetes duration, smoking and alcohol statuses, fasting insulin and glucose, hypoglycemic episodes, UA and eGFR. Additionally, in both of the obese (OR=1.488, p=0.049 and non-obese (OR=1.686, p=0.037 DM groups, C-peptide was associated with an increased risk of CAD after multiple adjustments.C-peptide is associated with an increased CAD risk in T2DM patients, no matter whether they are obese or not.

  1. Partial ablation of adult Drosophila insulin-producing neurons modulates glucose homeostasis and extends life span without insulin resistance.

    Science.gov (United States)

    Haselton, Aaron; Sharmin, Effat; Schrader, Janel; Sah, Megha; Poon, Peter; Fridell, Yih-Woei C

    2010-08-01

    In Drosophila melanogaster (D. melanogaster), neurosecretory insulin-like peptide-producing cells (IPCs), analogous to mammalian pancreatic beta cells are involved in glucose homeostasis. Extending those findings, we have developed in the adult fly an oral glucose tolerance test and demonstrated that IPCs indeed are responsible for executing an acute glucose clearance response. To further develop D. melanogaster as a relevant system for studying age-associated metabolic disorders, we set out to determine the impact of adult-specific partial ablation of IPCs (IPC knockdown) on insulin-like peptide (ILP) action, metabolic outcomes and longevity. Interestingly, while IPC knockdown flies are hyperglycemic and glucose intolerant, these flies remain insulin sensitive as measured by peripheral glucose disposal upon insulin injection and serine phosphorylation of a key insulin-signaling molecule, Akt. Significant increases in stored glycogen and triglyceride levels as well as an elevated level of circulating lipid measured in adult IPC knockdown flies suggest profound modulation in energy metabolism. Additional physiological outcomes measured in those flies include increased resistance to starvation and impaired female fecundity. Finally, increased life span and decreased mortality rates measured in IPC knockdown flies demonstrate that it is possible to modulate ILP action in adult flies to achieve life span extension without insulin resistance. Taken together, we have established and validated an invertebrate genetic system to further investigate insulin action, metabolic homeostasis and regulation of aging regulated by adult IPCs.

  2. Toxic Release Inventory (TRI) Facility Points, Region 9, 2012, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) gives the public the right to know about toxic chemicals being released into the...

  3. Toxic Release Inventory (TRI) Facility Points, Region 9, 2014, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) gives the public the right to know about toxic chemicals being released into the...

  4. Toxic Release Inventory (TRI) Facility Points, Region 9, 2011, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — A federal law called the Emergency Planning and Community Right to Know Act (EPCRA) gives the public the right to know about toxic chemicals being released into the...

  5. Postprandial C-Peptide to Glucose Ratio as a Marker of β Cell Function: Implication for the Management of Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Yoshifumi Saisho

    2016-05-01

    Full Text Available C-peptide is secreted from pancreatic β cells at an equimolar ratio to insulin. Since, in contrast to insulin, C-peptide is not extracted by the liver and other organs, C-peptide reflects endogenous insulin secretion more accurately than insulin. C-peptide is therefore used as a marker of β cell function. C-peptide has been mainly used to assess the presence of an insulin-dependent state for the diagnosis of type 1 diabetes. However, recent studies have revealed that β cell dysfunction is also a core deficit of type 2 diabetes, and residual β cell function is a key factor in achieving optimal glycemic control in patients with type 2 diabetes. This review summarizes the role of C-peptide, especially the postprandial C-peptide to glucose ratio which likely better reflects maximum β cell secretory capacity compared with the fasting ratio in assessing β cell function, and discusses perspectives on its clinical utility for managing glycemic control in patients with type 2 diabetes.

  6. Cell-penetrating peptides for drug delivery across membrane barriers

    DEFF Research Database (Denmark)

    Foged, Camilla; Nielsen, Hanne Moerck

    2008-01-01

    During the last decade, cell-penetrating peptides have been investigated for their ability to overcome the plasma membrane barrier of mammalian cells for the intracellular or transcellular delivery of cargoes as diverse as low molecular weight drugs, imaging agents, oligonucleotides, peptides......, proteins and colloidal carriers such as liposomes and polymeric nanoparticles. Their ability to cross biological membranes in a non-disruptive way without apparent toxicity is highly desired for increasing drug bioavailability. This review provides an overview of the application of cell......-penetrating peptides as transmembrane drug delivery agents, according to the recent literature, and discusses critical issues and future challenges in relation to fully understanding the fundamental principles of the cell-penetrating peptide-mediated membrane translocation of cargoes and the exploitation...

  7. Insulin-related peptide 5 is involved in regulating embryo development and biochemical composition in pea aphid with wing polyphenism

    Directory of Open Access Journals (Sweden)

    Shan-Shan eGuo

    2016-02-01

    Full Text Available In aphids there is a fecundity-dispersal trade-off between wingless and winged morphs. Recent research on the molecular mechanism of wing morphs associated with dispersal reveals that insulin receptors in the insulin signaling (IS pathway regulate alteration of wing morphs in planthoppers. However, little is known about whether genes in the IS pathway are involved in developmental regulation in aphid nymphs with different wing morphs. In this study, we show that expression of the insulin-related peptide 5 gene (Apirp5 affects biochemical composition and embryo development of wingless pea aphids, Acyrthosiphon pisum. After comparing expression levels of major genes in the IS pathway between third instar winged and wingless nymphs, we found that Apirp5 showed higher expression in head and thorax of the wingless nymphs than in the winged nymphs. Although microinjection treatment affects physical performance in aphids, nymphs with RNA interference of Apirp5 had less weight, smaller embryo size and higher carbohydrate and protein contents compared to control group. Comparison between winged and wingless nymphs showed a similar trend. These results indicate that Apirp5 is involved in embryo development and metabolic regulation in wing dimorphic pea aphid.

  8. Do thyroid-stimulating immunoglobulins cause non-toxic and toxic multinodular goitre

    International Nuclear Information System (INIS)

    Brown, R.S.; Jackson, I.M.D.; Pohl, S.L.; Reichlin, S.

    1978-01-01

    The prevalence of serum thyroid-stimulating immunoglobulins, (T.S.I.) in a variety of thyroid diseases was determined in 96 patients and 35 normal controls. Significantly elevated levels of T.S.I. were found not only in patients with Graves' disease and Hashimoto's thyroiditis but also in those with non-toxic and multinodular goitre, whereas patients with a single autonomously functioning thyroid nodule, with subacute thyroiditis, and with 'hyperthyroiditis' had levels which did not differ from those in the controls. it is postulated that non-toxic multinodular goitre, like Graves' disease, may result from increased circulating T.S.I. which in some cases may be present in sufficient concentration to cause thyrotoxicosis. (author)

  9. Implementation of subcutaneous insulin protocol for non-critically ill hospitalized patients in andalusian tertiary care hospitals.

    Science.gov (United States)

    Martínez-Brocca, María Asunción; Morales, Cristóbal; Rodríguez-Ortega, Pilar; González-Aguilera, Beatriz; Montes, Cristina; Colomo, Natalia; Piédrola, Gonzalo; Méndez-Muros, Mariola; Serrano, Isabel; Ruiz de Adana, Maria Soledad; Moreno, Alberto; Fernández, Ignacio; Aguilar, Manuel; Acosta, Domingo; Palomares, Rafael

    2015-02-01

    In 2009, the Andalusian Society of Endocrinology and Nutrition designed a protocol for subcutaneous insulin treatment in hospitalized non-critically ill patients (HIP). To analyze implementation of HIP at tertiary care hospitals from the Andalusian Public Health System. A descriptive, multicenter study conducted in 8 tertiary care hospitals on a random sample of non-critically ill patients with diabetes/hyperglycemia (n=306) hospitalized for ≥48 hours in 5 non-surgical (SM) and 2 surgical (SQ) departments. Type 1 and other specific types of diabetes, pregnancy and nutritional support were exclusion criteria. 288 patients were included for analysis (62.5% males; 70.3±10.3 years; 71.5% SM, 28.5% SQ). A scheduled subcutaneous insulin regimen based on basal-bolus-correction protocol was started in 55.9% (95%CI: 50.5-61.2%) of patients, 63.1% SM vs. 37.8% SQ (P<.05). Alternatives to insulin regimen based on basal-bolus-correction included sliding scale insulin (43.7%), diet (31.3%), oral antidiabetic drugs (17.2%), premixed insulin (1.6%), and others (6.2%). For patients previously on oral antidiabetic drugs, in-hospital insulin dose was 0.32±0.1 IU/kg/day. In patients previously on insulin, in-hospital insulin dose was increased by 17% [-13-53], and in those on insulin plus oral antidiabetic drugs, in-hospital insulin dose was increased by 26.4% [-6-100]. Supplemental insulin doses used for<40 IU/day and 40-80 IU/day were 72.2% and 56.7% respectively. HbA1c was measured in 23.6% of patients (95CI%: 18.8-28.8); 27.7% SM vs. 13.3% SQ (P<.05). Strategies are needed to improve implementation of the inpatient subcutaneous insulin protocol, particularly in surgical departments. Sliding scale insulin is still the most common alternative to insulin regimen based on basal-bolus-correction scheduled insulin. Metabolic control assessment during hospitalization should be encouraged. Copyright © 2014 SEEN. Published by Elsevier España, S.L.U. All rights reserved.

  10. The effect of oral and intravenous dextrose on C-peptide secretion in ponies.

    Science.gov (United States)

    de Laat, M A; van Haeften, J J; Sillence, M N

    2016-02-01

    Managing equine hyperinsulinemia is crucial for preventing laminitis, but our understanding of the mechanisms involved in insulin dysregulation in this species is incomplete. C-peptide is co-secreted with insulin but is resistant to hepatic metabolism and can be used to study insulin dysregulation. This study examined C-peptide secretion in serial blood samples collected after oral and i.v. dextrose (0.75 g/kg) administration to 9 ponies (BCS, 7.1 ± 0.5). The ponies were designated as hyperinsulinemic (HI) or normoinsulinemic (NI) responders before the study, using oral glucose tests and fasted glucose-to-insulin ratios, and responses were compared between the 2 groups. C-peptide concentrations increased ( dextrose, with similar area under the concentration-time curve (AUC) for both tests and a significant correlation with AUC. The AUC was similar in HI and NI ponies after i.v. dextrose, indicating similar pancreatic capacity for both groups. However, for oral dextrose, the AUC and the AUC were markedly higher ( < 0.05) in the HI ponies, indicating a greater secretion rate of these peptides. Slower insulin clearance might have also contributed to the larger AUC in HI ponies, but this hypothesis requires further investigation with specific measures of hepatic insulin clearance.

  11. Calcitonin gene-related peptide and somatostatin releases correlated with the area under the lafutidine concentration-time curve in human plasma.

    Science.gov (United States)

    Ikawa, K; Shimatani, T; Azuma, Y; Inoue, M; Morikawa, N

    2006-08-01

    To examine the effects of the histamine H(2)-receptor antagonist, lafutidine, at clinical dosage (10 mg tablet after a standardized meal) on plasma levels of the gastrointestinal peptides, calcitonin gene-related peptide (CGRP), somatostatin and gastrin. Six healthy male volunteers ate a standardized meal, and received either lafutidine orally at a dose of 10 mg or water only (control). Blood samples were taken before and up to 4 h after the drug administration. Plasma lafutidine concentrations were determined by high pressure liquid chromatography. Pharmacokinetic analysis of lafutidine was performed using one-compartmental model. The levels of immunoreactive substances of plasma CGRP, somatostatin and gastrin were measured by enzyme immunoassay, and the amount of peptide release was calculated by the trapezoidal method. Lafutidine significantly increased plasma CGRP levels at 1, 1.5, 2.5 and 4 h and the total amount of CGRP release (192 +/- 14.0 pg.h/mL) compared with the control group (128 +/- 21.5 pg.h/mL). Lafutidine significantly increased the plasma somatostatin levels at 1 and 1.5 h, and the total amount of somatostatin released (107 +/- 18.2 pg.h/mL) compared with the control (78.4 +/- 7.70 pg.h/mL). The area under the drug concentration-time curve (AUC) from 0 to 4 h after administration correlated well with the Delta-CGRP and Delta-somatostatin release but not with total amount of gastrin released. However, plasma gastrin levels were significantly elevated at 1.5 h after drug administration. Lafutidine at clinical dosage increases plasma CGRP and the somatostatin. The amounts released correlated with the AUC of lafutidine in humans. These results suggest that the increased release of CGRP and somatostatin may contribute to its gastroprotective and anti-acid secretory effect.

  12. Evaluation of genetic diversity between toxic and non toxic Jatropha ...

    African Journals Online (AJOL)

    Massimo

    Indian varieties and a non-toxic variety of Mexican origin by means of about 400 RAPD ... evaluate the level of polymorphism and the capacity to discriminate between the ..... Population genetic software for teaching and research. Mol. Ecol.

  13. Metabolic surgery for non-obese type 2 diabetes: incretins, adipocytokines, and insulin secretion/resistance changes in a 1-year interventional clinical controlled study.

    Science.gov (United States)

    Geloneze, Bruno; Geloneze, Sylka Rodovalho; Chaim, Elinton; Hirsch, Fernanda Filgueira; Felici, Ana Claudia; Lambert, Giselle; Tambascia, Marcos Antonio; Pareja, José Carlos

    2012-07-01

    To compare duodenal-jejunal bypass (DJB) with standard medical care in nonobese patients with type 2 diabetes and evaluate surgically induced endocrine and metabolic changes. Eighteen patients submitted to a DJB procedure met the following criteria: overweight, diabetes diagnosis less than 15 years, current insulin treatment, residual β-cell function, and absence of autoimmunity. Patients who refused surgical treatment received standard medical care (control group). At baseline, 3, 6, and 12 months after surgery, insulin sensitivity and production of glucagon-like peptide-1 and glucose-insulinotropic polypeptide were assessed during a meal tolerance test. Fasting adipocytokines and dipeptidyl-peptidase-4 concentrations were measured. The mean age of the patients was 50 (5) years, time of diagnosis: 9 (2) years, time of insulin usage: 6 (5) months, fasting glucose: 9.9 (2.5) mmol/dL, and HbA1c (glycosylated hemoglobin) level: 8.9% (1.2%). Duodenal-jejunal bypass group showed greater reductions in fasting glucose (22% vs 6% in control group, P < 0.05) and daily insulin requirement (93% vs 15%, P < 0.01). Twelve patients from DJB group stopped using insulin and showed improvements in insulin sensitivity and β-cell function (P < 0.01), and reductions in glucose-insulinotropic polypeptide levels (P < 0.001), glucagon during the first 30 minutes after meal (P < 0.05), and leptin levels (P < 0.05). Dipeptidyl-peptidase-4 levels increased after surgery (P < 0.01), but glucagon-like peptide-1 levels did not change. Duodenal-jejunal bypass improved insulin sensitivity and β-cell function and reduced glucose-insulinotropic polypeptide, leptin, and glucagon production. Hence, DJB resulted in better glycemic control and reduction in insulin requirement but DJB did not result in remission of diabetes.

  14. Macrophage-secreted factors induce adipocyte inflammation and insulin resistance

    International Nuclear Information System (INIS)

    Permana, Paska A.; Menge, Christopher; Reaven, Peter D.

    2006-01-01

    Macrophage infiltration into adipose tissue increases with obesity, a condition associated with low-grade inflammation and insulin resistance. We investigated the direct effects of macrophage-secreted factors on adipocyte inflammation and insulin resistance. 3T3-L1 adipocytes incubated with media conditioned by RAW264.7 macrophages (RAW-CM) showed dramatically increased transcription of several inflammation-related genes, greater nuclear factor kappa B (NF-κB) activity, and enhanced binding of U937 monocytes. All of these effects were prevented by co-incubation with pyrrolidinedithiocarbamate, an NF-κB inhibitor. Adipocytes incubated with RAW-CM also released more non-esterified fatty acids and this increased lipolysis was not suppressed by insulin. In addition, RAW-CM treatment decreased insulin-stimulated glucose uptake in adipocytes. Taken together, these results indicate that macrophage-secreted factors induce inflammatory responses and reduce insulin responsiveness in adipocytes. These effects of macrophage-secreted factors on adipocytes may contribute significantly to the systemic inflammation and insulin resistance associated with obesity

  15. Characterization of the branched antimicrobial peptide M6 by analyzing its mechanism of action and in vivo toxicity.

    Science.gov (United States)

    Pini, Alessandro; Giuliani, Andrea; Falciani, Chiara; Fabbrini, Monica; Pileri, Silvia; Lelli, Barbara; Bracci, Luisa

    2007-06-01

    We analyzed functional activity of the antimicrobial peptide M6 in vitro and in vivo. The peptide was identified by our group by phage library selection, rational modification and synthesis in a tetrabranched form (Pini et al., Antimicrob. Agents Chemother. 2005; 49: 2665-72). We found that it binds lipopolysaccharide, causes perforation of cell membranes without destroying external cell morphology and strongly binds DNA. The latter feature suggests that it could inhibit metabolic pathways, blocking DNA replication and/or transcription. We also observed that M6 does not stimulate humoral immune response when repeatedly administered to animals. We also analyzed M6 toxicity when administered to animals by intraperitoneal or by intravenous injection, determining a preliminary LD50 (125 and 37.5 mg/kg, respectively), which suggested that M6 could be used in vivo. These features make the antimicrobial branched peptide M6 a promising candidate for the development of a new antibacterial drug. Copyright (c) 2007 European Peptide Society and John Wiley & Sons, Ltd.

  16. Study of Charge-Dependent Transport and Toxicity of Peptide-Functionalized Silver Nanoparticles Using Zebrafish Embryos and Single Nanoparticle Plasmonic Spectroscopy

    Science.gov (United States)

    Lee, Kerry J.; Browning, Lauren M.; Nallathamby, Prakash D.; Xu, Xiao-Hong Nancy

    2013-01-01

    Nanomaterials possess unusually high surface area-to-volume ratios, and surface-determined physicochemical properties. It is essential to understand their surface-dependent toxicity in order to rationally design biocompatible nanomaterials for a wide variety of applications. In this study, we have functionalized the surfaces of silver nanoparticles (Ag NPs, 11.7 ± 2.7 nm in diameters) with three biocompatible peptides (CALNNK, CALNNS, CALNNE) to prepare positively (Ag-CALNNK NPs+ζ), negatively (Ag-CALNNS NPs−2ζ), and more negatively charged NPs (Ag-CALNNE NPs−4ζ), respectively. Each peptide differs in a single amino acid at its C-terminus, which minimizes the effects of peptide sequences and serves as a model molecule to create positive, neutral and negative charges on the surface of the NPs at pH 4–10. We have studied their charge-dependent transport into early-developing (cleavage-stage) zebrafish embryos and their effects on embryonic development using dark-field optical microscopy and spectroscopy (DFOMS). We found that all three Ag-peptide NPs passively diffused into the embryos via their chorionic pore canals, and stayed inside the embryos throughout their entire development (120 h), showing charge-independent diffusion modes and charge-dependent diffusion coefficients. Notably, the NPs create charge-dependent toxic effects on embryonic development, showing that the Ag-CALNNK NPs+ζ (positively charged) are the most biocompatible while the Ag-CALNNE NPs–4ζ (more negatively charged) are the most toxic. By comparing with our previous studies of the same sized citrated Ag and Au NPs, the Ag-peptide NPs are much more biocompatible than the citrated Ag NPs, and nearly as biocompatible as the Au NPs, showing the dependence of nanotoxicity upon the surface charges, surface functional groups and chemical compositions of the NPs. This study also demonstrates powerful applications of single NP plasmonic spectroscopy for quantitative analysis of single NPs

  17. Cell-penetrating peptides as tools to enhance non-injectable delivery of biopharmaceuticals

    DEFF Research Database (Denmark)

    Kristensen, Mie; Nielsen, Hanne Mørck

    2016-01-01

    Non-injectable delivery of peptide and protein drugs is hampered by their labile nature, hydrophilicity, and large molecular size; thus limiting their permeation across mucosae, which represent major biochemical and physical barriers to drugs administered via e.g. the oral, nasal, and pulmonary...... routes. However, in recent years cell-penetrating peptides (CPP) have emerged as promising tools to enhance mucosal delivery of co-administered or conjugated peptide and protein cargo and more advanced CPP-cargo formulations are emerging. CPPs act as transepithelial delivery vectors, but the mechanism...... understanding, documentation of CPP-mediated delivery in higher animal species than rodent as well as extensive toxicological studies are necessary for CPP-containing non-injectable DDSs to reach the clinic....

  18. Self-assembled Nanomaterials for Chemotherapeutic Applications

    Science.gov (United States)

    Shieh, Aileen

    The self-assembly of short designed peptides into functional nanostructures is becoming a growing interest in a wide range of fields from optoelectronic devices to nanobiotechnology. In the medical field, self-assembled peptides have especially attracted attention with several of its attractive features for applications in drug delivery, tissue regeneration, biological engineering as well as cosmetic industry and also the antibiotics field. We here describe the self-assembly of peptide conjugated with organic chromophore to successfully deliver sequence independent micro RNAs into human non-small cell lung cancer cell lines. The nanofiber used as the delivery vehicle is completely non-toxic and biodegradable, and exhibit enhanced permeability effect for targeting malignant tumors. The transfection efficiency with nanofiber as the delivery vehicle is comparable to that of the commercially available RNAiMAX lipofectamine while the toxicity is significantly lower. We also conjugated the peptide sequence with camptothecin (CPT) and observed the self-assembly of nanotubes for chemotherapeutic applications. The peptide scaffold is non-toxic and biodegradable, and drug loading of CPT is high, which minimizes the issue of systemic toxicity caused by extensive burden from the elimination of drug carriers. In addition, the peptide assembly drastically increases the solubility and stability of CPT under physiological conditions in vitro, while active CPT is gradually released from the peptide chain under the slight acidic tumor cell environment. Cytotoxicity results on human colorectal cancer cells and non-small cell lung cancer cell lines display promising anti-cancer properties compared to the parental CPT drug, which cannot be used clinically due to its poor solubility and lack of stability in physiological conditions. Moreover, the peptide sequence conjugated with 5-fluorouracil formed a hydrogel with promising topical chemotherapeutic applications that also display

  19. Transthyretin protects against A-beta peptide toxicity by proteolytic cleavage of the peptide: a mechanism sensitive to the Kunitz protease inhibitor.

    Directory of Open Access Journals (Sweden)

    Rita Costa

    Full Text Available Alzheimer's disease (AD is a neurodegenerative disorder characterized by the deposition of amyloid beta-peptide (A-Beta in the brain. Transthyretin (TTR is a tetrameric protein of about 55 kDa mainly produced in the liver and choroid plexus of the brain. The known physiological functions of TTR are the transport of thyroid hormone T(4 and retinol, through binding to the retinol binding protein. TTR has also been established as a cryptic protease able to cleave ApoA-I in vitro. It has been described that TTR is involved in preventing A-Beta fibrilization, both by inhibiting and disrupting A-Beta fibrils, with consequent abrogation of toxicity. We further characterized the nature of the TTR/A-Beta interaction and found that TTR, both recombinant or isolated from human sera, was able to proteolytically process A-Beta, cleaving the peptide after aminoacid residues 1, 2, 3, 10, 13, 14,16, 19 and 27, as determined by mass spectrometry, and reversed phase chromatography followed by N-terminal sequencing. A-Beta peptides (1-14 and (15-42 showed lower amyloidogenic potential than the full length counterpart, as assessed by thioflavin binding assay and ultrastructural analysis by transmission electron microscopy. A-Beta cleavage by TTR was inhibited in the presence of an alphaAPP peptide containing the Kunitz Protease Inhibitor (KPI domain but not in the presence of the secreted alphaAPP derived from the APP isoform 695 without the KPI domain. TTR was also able to degrade aggregated forms of A-Beta peptide. Our results confirmed TTR as a protective molecule in AD, and prompted A-Beta proteolysis by TTR as a protective mechanism in this disease. TTR may prove to be a useful therapeutic agent for preventing or retarding the cerebral amyloid plaque formation implicated in AD pathology.

  20. Body fat related to daily physical activity and insulin concentrations in non-diabetic children

    DEFF Research Database (Denmark)

    Dencker, Magnus; Thorsson, Ola; Karlsson, Magnus K

    2007-01-01

    This study explored the associations between body fat versus daily physical activity and insulin concentrations in non-diabetic young children in a cross-sectional study of 172 children (93 boys and 79 girls) aged 8-11 years. Blood samples were analysed for serum insulin and daily physical activity......%). Body fat distribution was calculated as AFM/TBF. Body fat distribution was independently linked to both insulin concentrations and physical activity. In contrast, TBF, AFM, and BF% were linked to physical activity only and not to insulin concentrations. In conclusion in this population of non-diabetic...... was measured by accelerometers. Time spent performing vigorous activity was estimated from accelerometer data by using established cut-off points. Dual-energy x-ray absorptiometry (DXA) was used to quantify abdominal fat mass (AFM) and total body fat (TBF), also calculated as percentage of body weight (BF...

  1. Glucose metabolism in pigs expressing human genes under an insulin promoter.

    Science.gov (United States)

    Wijkstrom, Martin; Bottino, Rita; Iwase, Hayoto; Hara, Hidetaka; Ekser, Burcin; van der Windt, Dirk; Long, Cassandra; Toledo, Frederico G S; Phelps, Carol J; Trucco, Massimo; Cooper, David K C; Ayares, David

    2015-01-01

    Xenotransplantation of porcine islets can reverse diabetes in non-human primates. The remaining hurdles for clinical application include safe and effective T-cell-directed immunosuppression, but protection against the innate immune system and coagulation dysfunction may be more difficult to achieve. Islet-targeted genetic manipulation of islet-source pigs represents a powerful tool to protect against graft loss. However, whether these genetic alterations would impair islet function is unknown. On a background of α1,3-galactosyltransferase gene-knockout (GTKO)/human (h)CD46, additional genes (hCD39, human tissue factor pathway inhibitor, porcine CTLA4-Ig) were inserted in different combinations under an insulin promoter to promote expression in islets (confirmed by immunofluorescence). Seven pigs were tested for baseline and glucose/arginine-challenged levels of glucose, insulin, C-peptide, and glucagon. This preliminary study did not show definite evidence of β-cell deficiencies, even when three transgenes were expressed under the insulin promoter. Of seven animals, all were normoglycemic at fasting, and five of seven had normal glucose disposal rates after challenge. All animals exhibited insulin, C-peptide, and glucagon responses to both glucose and arginine challenge; however, significant interindividual variation was observed. Multiple islet-targeted transgenic expression was not associated with an overtly detrimental effect on islet function, suggesting that complex genetic constructs designed for islet protection warrants further testing in islet xenotransplantation models. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Impact of PTBP1 rs11085226 on glucose-stimulated insulin release in adult Danes

    DEFF Research Database (Denmark)

    Hansen, Tue Haldor; Vestergaard, Henrik; Jørgensen, Torben

    2015-01-01

    ,641 glucose tolerant controls, respectively. Quantitative trait analyses were performed in up to 13,605 individuals subjected to an OGTT or blood samples obtained after an overnight fast, as well as in 596 individuals subjected to an IVGTT. Results: Analyses of fasting and OGTT-derived quantitative traits did.......024; P=0.01) assuming a dominant model of inheritance, but failed to replicate a previously reported association with area under the curve (AUC) for insulin. Case control analysis did not show an association of the PTBP1 rs11085226 variant with type 2 diabetes. Conclusions: Despite failure to replicate......Background: The variant rs11085226 (G) within the gene encoding polypyrimidine tract binding protein 1 (PTBP1) was reported to associate with reduced insulin release determined by an oral glucose tolerance test (OGTT) as well as an intravenous glucose tolerance test (IVGTT). The aim of the present...

  3. [Insulin resistance--a physiopathological condition with numerous sequelae: non-insulin-dependent diabetes mellitus (NIDDM), android obesity, essential hypertension, dyslipidemia and atherosclerosis].

    Science.gov (United States)

    Pedersen, O

    1992-05-11

    Recent research has demonstrated that reduced insulin-stimulated glucose metabolism in skeletal muscle (insulin resistance) and hyperinsulinism are common features in widespread diseases such as essential hypertension, android obesity, non-insulin dependent diabetes mellitus, dyslipidemia (in the form of raised serum triglyceride and reduced serum high-density lipoprotein (HDL) cholesterol) and arteriosclerosis. Simultaneously, investigations in a comprehensive group of healthy middle-aged men have revealed insulin resistance in one fourth. On the basis of these observations, a working hypothesis is suggested which postulates that genetic abnormalities in one or more of the candidate genes in the modes of action of insulin occur in a great proportion of the population. These may result in insulin resistance (primary genetic insulin resistance). Primary insulin resistance may be potentiated by a series of circumstances such as ageing, high-fat diet, lack of physical activity, hormonal and metabolic abnormalities or drugs (secondary insulin resistance). As a consequence of the reduced effect of insulin on muscle tissue, compensatory hyperinsulinism develops. Depending on the remaining vulnerability of the individual the hyperinsulinism is presumed to result in development of one or more phenotypes. For example if the beta-cells of the pancreas are unable to secrete sufficient insulin to compensate the insulin resistance on account of genetic defects, glucose intolerance will develop. In a similar manner, hyperinsulinism in insulin-resistant individuals who are predisposed to essential hypertension is presumed to reveal genetic defects in the blood pressure regulating mechanisms and thus contribute to development of the disease.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Epinephrine impairs insulin release by a mechanism distal to calcium mobilization. Similarity to lipoxygenase inhibitors

    International Nuclear Information System (INIS)

    Metz, S.A.

    1988-01-01

    The mechanisms that enable epinephrine (EPI) and lipoxygenase inhibitors to impede insulin secretion are unknown. We examined the possibility that EPI inhibits Ca 2+ fluxes as its major mechanism by studying 45 Ca efflux from prelabeled, intact rat islets. EPI (2.5 x 10(-7) to 1 x 10(-5) M) inhibited insulin release induced by the influx of extracellular Ca 2+ (46 mM K+) or the mobilization of intracellular Ca 2+ stores (2 mM Ba 2+ ), but it did not reduce the 45 Ca efflux stimulated by either agonist. EPI also nullified insulin release induced by isobutylmethylxanthine or dibutyryl cAMP, with minimal or no effects on 45 Ca efflux, and blocked the insulinotropic effects of 12-O-tetradecanoylphorbol-13-acetate (a direct activator of protein kinase C), which is believed primarily to sensitize the exocytotic apparatus to Ca 2+ without mobilizing additional Ca 2+ . Previously we reported that similar effects were induced by inhibitors of pancreatic islet lipoxygenase. In this study, however, pretreatment with either the alpha 2-adrenergic antagonist yohimbine or pertussis toxin did not block the effects of lipoxygenase inhibitors, although either agent did block the effects of EPI. Thus, EPI, via an alpha 2-receptor mechanism, is able to reduce exocytosis largely distal to, or independent of, changes in Ca 2+ flux, cAMP formation or its Ca 2+ -mobilizing action, or generation of protein kinase C activators. Therefore, EPI may reduce the sensitivity of the exocytotic apparatus to Ca 2+ . Inhibition of islet lipoxygenase may have a similar effect; however, in this case, the effect would have to be unrelated, or distal, to stimulation of alpha 2-receptors

  5. A cocoa peptide protects Caenorhabditis elegans from oxidative stress and β-amyloid peptide toxicity.

    Directory of Open Access Journals (Sweden)

    Patricia Martorell

    Full Text Available BACKGROUND: Cocoa and cocoa-based products contain different compounds with beneficial properties for human health. Polyphenols are the most frequently studied, and display antioxidant properties. Moreover, protein content is a very interesting source of antioxidant bioactive peptides, which can be used therapeutically for the prevention of age-related diseases. METHODOLOGY/PRINCIPAL FINDINGS: A bioactive peptide, 13L (DNYDNSAGKWWVT, was obtained from a hydrolyzed cocoa by-product by chromatography. The in vitro inhibition of prolyl endopeptidase (PEP was used as screening method to select the suitable fraction for peptide identification. Functional analysis of 13L peptide was achieved using the transgenic Caenorhabditis elegans strain CL4176 expressing the human Aβ₁₋₄₂ peptide as a pre-clinical in vivo model for Alzheimer's disease. Among the peptides isolated, peptide 13L (1 µg/mL showed the highest antioxidant activity (P≤0.001 in the wild-type strain (N2. Furthermore, 13L produced a significant delay in body paralysis in strain CL4176, especially in the 24-47 h period after Aβ₁₋₄₂ peptide induction (P≤0.0001. This observation is in accordance with the reduction of Aβ deposits in CL4176 by western blot. Finally, transcriptomic analysis in wild-type nematodes treated with 13L revealed modulation of the proteosomal and synaptic functions as the main metabolic targets of the peptide. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the cocoa 13L peptide has antioxidant activity and may reduce Aβ deposition in a C. elegans model of Alzheimer's disease; and therefore has a putative therapeutic potential for prevention of age-related diseases. Further studies in murine models and humans will be essential to analyze the effectiveness of the 13L peptide in higher animals.

  6. Neurochemical evidence that cocaine- and amphetamine-regulated transcript (CART) 55-102 peptide modulates the dopaminergic reward system by decreasing the dopamine release in the mouse nucleus accumbens.

    Science.gov (United States)

    Rakovska, Angelina; Baranyi, Maria; Windisch, Katalin; Petkova-Kirova, Polina; Gagov, Hristo; Kalfin, Reni

    2017-09-01

    CART (Cocaine- and Amphetamine-Regulated Transcript) peptide is a neurotransmitter naturally occurring in the CNS and found mostly in nucleus accumbens, ventrotegmental area, ventral pallidum, amygdalae and striatum, brain regions associated with drug addiction. In the nucleus accumbens, known for its significant role in motivation, pleasure, reward and reinforcement learning, CART peptide inhibits cocaine and amphetamine-induced dopamine-mediated increases in locomotor activity and behavior, suggesting a CART peptide interaction with the dopaminergic system. Thus in the present study, we examined the effect of CART (55-102) peptide on the basal, electrical field stimulation-evoked (EFS-evoked) (30V, 2Hz, 120 shocks) and returning basal dopamine (DA) release and on the release of the DA metabolites 3,4-dihydroxyphenyl acetaldehyde (DOPAL), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 3,4-dihydroxyphenylethanol (DOPET), 3-methoxytyramine (3-MT) as well as on norepinephrine (NE) and dopamine-o-quinone (Daq) in isolated mouse nucleus accumbens, in a preparation, in which any CART peptide effects on the dendrites or soma of ventral tegmental projection neurons have been excluded. We further extended our study to assess the effect of CART (55-102) peptide on basal cocaine-induced release of dopamine and its metabolites DOPAL, DOPAC, HVA, DOPET and 3-MT as well as on NE and Daq. To analyze the amount of [ 3 H]dopamine, dopamine metabolites, Daq and NE in the nucleus accumbens superfusate, a high-pressure liquid chromatography (HPLC), coupled with electrochemical, UV and radiochemical detections was used. CART (55-102) peptide, 0.1μM, added alone, exerted: (i) a significant decrease in the basal and EFS-evoked levels of extracellular dopamine (ii) a significant increase in the EFS-evoked and returning basal levels of the dopamine metabolites DOPAC and HVA, major products of dopamine degradation and (iii) a significant decrease in the returning basal

  7. The C-terminus of the B-chain of human insulin-like peptide 5 is critical for cognate RXFP4 receptor activity.

    Science.gov (United States)

    Patil, Nitin A; Bathgate, Ross A D; Kocan, Martina; Ang, Sheng Yu; Tailhades, Julien; Separovic, Frances; Summers, Roger; Grosse, Johannes; Hughes, Richard A; Wade, John D; Hossain, Mohammed Akhter

    2016-04-01

    Insulin-like peptide 5 (INSL5) is an orexigenic peptide hormone belonging to the relaxin family of peptides. It is expressed primarily in the L-cells of the colon and has a postulated key role in regulating food intake. Its G protein-coupled receptor, RXFP4, is a potential drug target for treating obesity and anorexia. We studied the effect of modification of the C-terminus of the A and B-chains of human INSL5 on RXFP4 binding and activation. Three variants of human INSL5 were prepared using solid phase peptide synthesis and subsequent sequential regioselective disulfide bond formation. The peptides were synthesized as C-terminal acids (both A- and B-chains with free C-termini, i.e., the native form), amides (both chains as the C-terminal amide) and one analog with the C-terminus of its A-chain as the amide and the C-terminus of the B-chain as the acid. The results showed that C-terminus of the B-chain is more important than that of the A-chain for RXFP4 binding and activity. Amidation of the A-chain C-terminus does not have any effect on the INSL5 activity. The difference in RXFP4 binding and activation between the three peptides is believed to be due to electrostatic interaction of the free carboxylate of INSL5 with a positively charged residue (s), either situated within the INSL5 molecule itself or in the receptor extracellular loops.

  8. TREATMENT OF DIABETES MELLITUS IN A GOLDEN LION TAMARIN (LEONTOPITHECUS ROSALIA) WITH THE GLUCAGON-LIKE PEPTIDE-1 MIMETIC EXENATIDE.

    Science.gov (United States)

    Johnson, James G; Langan, Jennifer N; Gilor, Chen

    2016-09-01

    An 8-yr-old male golden lion tamarin ( Leontopithecus rosalia ) was diagnosed with diabetes mellitus based on hyperglycemia and persistent glycosuria. Initial treatment consisted of the oral antihyperglycemic medications glipizide and metformin that resulted in decreased blood glucose concentrations; however, marked glycosuria persisted. Insufficient improvement on oral antihyperglycemic therapy and poor feasibility of daily subcutaneous insulin therapy led to an investigation into an alternative therapy with extended-release exenatide, a glucagon-like peptide-1 (GLP-1) mimetic, at a dosage of 0.13 mg/kg subcutaneously once per month. Following treatment with exenatide, the persistent glycosuria resolved, the animal maintained normal blood glucose concentrations, and had lower serum fructosamine concentrations compared to pretreatment levels. Based on these findings, extended-release exenatide could be considered as a therapeutic option in nonhuman primates with diabetes mellitus that do not respond to oral antihyperglycemics and in which daily subcutaneous insulin is not feasible.

  9. CaMKII regulates contraction- but not insulin-induced glucose uptake in mouse skeletal muscle.

    Science.gov (United States)

    Witczak, Carol A; Jessen, Niels; Warro, Daniel M; Toyoda, Taro; Fujii, Nobuharu; Anderson, Mark E; Hirshman, Michael F; Goodyear, Laurie J

    2010-06-01

    Studies using chemical inhibitors have suggested that the Ca(2+)-sensitive serine/threonine kinase Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is a key regulator of both insulin- and contraction-stimulated glucose uptake in skeletal muscle. However, due to nonspecificity of these inhibitors, the specific role that CaMKII may play in the regulation of glucose uptake is not known. We sought to determine whether specific inhibition of CaMKII impairs insulin- and/or contraction-induced glucose uptake in mouse skeletal muscle. Expression vectors containing green fluorescent protein conjugated to a CaMKII inhibitory (KKALHRQEAVDCL) or control (KKALHAQERVDCL) peptide were transfected into tibialis anterior muscles by in vivo electroporation. After 1 wk, muscles were assessed for peptide expression, CaMK activity, insulin- and contraction-induced 2-[(3)H]deoxyglucose uptake, glycogen concentrations, and changes in intracellular signaling proteins. Expression of the CaMKII inhibitory peptide decreased muscle CaMK activity approximately 35% compared with control peptide. Insulin-induced glucose uptake was not changed in muscles expressing the inhibitory peptide. In contrast, expression of the inhibitory peptide significantly decreased contraction-induced muscle glucose uptake (approximately 30%). Contraction-induced decreases in muscle glycogen were not altered by the inhibitory peptide. The CaMKII inhibitory peptide did not alter expression of the glucose transporter GLUT4 and did not impair contraction-induced increases in the phosphorylation of AMP-activated protein kinase (Thr(172)) or TBC1D1/TBC1D4 on phospho-Akt substrate sites. These results demonstrate that CaMKII does not regulate insulin-stimulated glucose uptake in skeletal muscle. However, CaMKII plays a critical role in the regulation of contraction-induced glucose uptake in mouse skeletal muscle.

  10. Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans

    International Nuclear Information System (INIS)

    Baron, A.D.; Brechtel, G.; Wallace, P.; Edelman, S.V.

    1988-01-01

    In vivo glucose uptake can occur via two mechanisms, namely, insulin-mediated glucose uptake (IMGU) and non-insulin-mediated glucose uptake (NIMGU). Although the principal tissue sites for IMGU are skeletal muscle, the tissue sites for NIMGU at a given serum glucose concentration are not known. To examine this issue, rates of whole body glucose uptake (Rd) were measured at basal and during glucose clamp studies performed at euglycemia (approximately 90 mg/dl) and hyperglycemia (approximately 220 mg/dl) in six lean healthy men. Studies were performed during hyperinsulinemia (approximately 70 microU/ml) and during somatostatin-induced insulinopenia to measure IMGU and NIMGU, respectively. During each study, leg glucose balance (arteriovenous catheter technique) was also measured. With this approach, rates of whole body skeletal muscle IMGU and NIMGU can be estimated, and the difference between overall Rd and skeletal muscle glucose uptake represents non-skeletal muscle Rd. The results indicate that approximately 20% of basal Rd is into skeletal muscle. During insulinopenia approximately 86% of body NIMGU occurs in non-skeletal muscle tissues at euglycemia. When hyperglycemia was created, whole body NIMGU increased from 128 +/- 6 to 213 +/- 18 mg/min (P less than 0.01); NIMGU into non-skeletal muscle tissues was 134 +/- 11 and 111 +/- 6 mg/min at hyperglycemia and euglycemia, respectively, P = NS. Therefore, virtually all the hyperglycemia induced increment in NIMGU occurred in skeletal muscle. During hyperinsulinemia, IMGU in skeletal muscle represented 75 and 95% of body Rd, at euglycemia and hyperglycemia, respectively

  11. Reciprocal links between metabolic and ionic events in islet cells. Their relevance to the rhythmics of insulin release.

    Science.gov (United States)

    Malaisse, W J

    1998-02-01

    The notion of reciprocal links between metabolic and ionic events in islet cells and the rhythmics of insulin release is based on (i) the rhythmic pattern of hormonal release from isolated perfused rat pancreas, which supports the concept of an intrapancreatic pacemaker; (ii) the assumption that this phasic pattern is due to the integration of secretory activity in distinct functional units, e.g. distinct islets; and (iii) the fact that reciprocal coupling between metabolic and ionic events is operative in the secretory sequence.

  12. Studies on binding and mitogenic effect of insulin and insulin-like growth factor I in glomerular mesangial cells

    International Nuclear Information System (INIS)

    Conti, F.G.; Striker, L.J.; Lesniak, M.A.; MacKay, K.; Roth, J.; Striker, G.E.

    1988-01-01

    The mesangial cells are actively involved in regulating glomerular hemodynamics. Their overlying endothelium is fenestrated; therefore, these cells are directly exposed to plasma substances, including hormones such as insulin and insulin-like growth factor I (IGF-I). These peptides may contribute to the mesangial sclerosis and cellular hyperplasia that characterize diabetic glomerulopathy. We report herein the characterization of the receptors and the mitogenic effects of IGF-I and insulin on mouse glomerular mesangial cells in culture. The IGF-I receptor was characterized on intact cells. The Kd of the IGF-I receptor was 1.47 X 10(-9) M, and the estimated number of sites was 64,000 receptors/cell. The binding was time, temperature, and pH dependent, and the receptor showed down-regulation after exposure to serum. The expression of the receptor did not change on cells at different densities. The specific binding for insulin was too low to allow characterization of the insulin receptor on intact cells. However, it was possible to identify the insulin receptor in a wheat germ agglutinin-purified preparation of solubilized mesangial cells. This receptor showed the characteristic features of the insulin receptor, including pH dependence of binding and a curvilinear Scatchard plot. The mitogenic effects of insulin and IGF-I on mesangial cells were measured by the incorporation of [3H]thymidine into DNA. IGF-I was more potent than insulin. The half-maximal response to IGF-I stimulation occurred at 1.3 X 10(-10) M, and a similar increase with insulin was observed at concentrations in the range of 10(-7) M, suggesting that this insulin action was mediated through the IGF-I receptor. These data show that the mouse microvascular smooth muscle cells of the glomerulus express a cell surface receptor for IGF-I in vitro and that this peptide is a potent mitogen for these mesangial cells

  13. Collagencin, an antibacterial peptide from fish collagen: Activity, structure and interaction dynamics with membrane

    International Nuclear Information System (INIS)

    Ennaas, Nadia; Hammami, Riadh; Gomaa, Ahmed; Bédard, François; Biron, Éric; Subirade, Muriel; Beaulieu, Lucie; Fliss, Ismail

    2016-01-01

    In this study, we first report characterization of collagencin, an antimicrobial peptide identified from fish collagen hydrolysate. The peptide completely inhibited the growth of Staphylococcus aureus at 1.88 mM. Although non-toxic up to 470 μM, collagencin was hemolytic at higher concentrations. The secondary structure of collagencin was mainly composed by β-sheet and β-turn as determined by CD measurements and molecular dynamics. The peptide is likely to form β-sheet structure under hydrophobic environments and interacts with both anionic (phosphatidylglycerol) and zwitterionic (phosphoethanolamine and phosphatidylcholine) lipids as shown with CD spectroscopy and molecular dynamics. The peptide formed several hydrogen bonds with both POPG and POPE lipids and remained at membrane–water interface, suggesting that collagencin antibacterial action follows a carpet mechanism. Collagenous fish wastes could be processed by enzymatic hydrolysis and transformed into products of high value having functional or biological properties. Marine collagens are a promising source of antimicrobial peptides with new implications in food safety and human health. - Highlights: • Collagencin, an antibacterial (G+ & G-) peptide identified from fish collagen hydrolysate. • The peptide completely inhibited the growth of S. aureus at 1.88 mM and non-toxic at 470 μM. • The secondary structure was mainly composed by β-sheet and turn as determined by CD and MD. • Collagencin interacts with both anionic and zwitterionic lipids as shown with CD and MD. • Collagencin antibacterial action probably follows a carpet mechanism.

  14. Collagencin, an antibacterial peptide from fish collagen: Activity, structure and interaction dynamics with membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ennaas, Nadia [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Hammami, Riadh, E-mail: riadh.hammami@fsaa.ulaval.ca [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Gomaa, Ahmed [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Bédard, François; Biron, Éric [Faculty of Pharmacy, Université Laval and Laboratory of Medicinal Chemistry, CHU de Québec Research Centre, G1V 4G2 Québec, QC (Canada); Subirade, Muriel [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Beaulieu, Lucie, E-mail: lucie.beaulieu@fsaa.ulaval.ca [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada); Department of Biology, Chemistry and Geography, Université du Québec à Rimouski (UQAR), 300 Allée des Ursulines, Rimouski, QC G5L 3A1 (Canada); Fliss, Ismail, E-mail: ismail.fliss@fsaa.ulaval.ca [STELA Dairy Research Centre, Institute of Nutrition and Functional Foods, Université Laval, G1V 0A6 Québec, QC (Canada)

    2016-04-29

    In this study, we first report characterization of collagencin, an antimicrobial peptide identified from fish collagen hydrolysate. The peptide completely inhibited the growth of Staphylococcus aureus at 1.88 mM. Although non-toxic up to 470 μM, collagencin was hemolytic at higher concentrations. The secondary structure of collagencin was mainly composed by β-sheet and β-turn as determined by CD measurements and molecular dynamics. The peptide is likely to form β-sheet structure under hydrophobic environments and interacts with both anionic (phosphatidylglycerol) and zwitterionic (phosphoethanolamine and phosphatidylcholine) lipids as shown with CD spectroscopy and molecular dynamics. The peptide formed several hydrogen bonds with both POPG and POPE lipids and remained at membrane–water interface, suggesting that collagencin antibacterial action follows a carpet mechanism. Collagenous fish wastes could be processed by enzymatic hydrolysis and transformed into products of high value having functional or biological properties. Marine collagens are a promising source of antimicrobial peptides with new implications in food safety and human health. - Highlights: • Collagencin, an antibacterial (G+ & G-) peptide identified from fish collagen hydrolysate. • The peptide completely inhibited the growth of S. aureus at 1.88 mM and non-toxic at 470 μM. • The secondary structure was mainly composed by β-sheet and turn as determined by CD and MD. • Collagencin interacts with both anionic and zwitterionic lipids as shown with CD and MD. • Collagencin antibacterial action probably follows a carpet mechanism.

  15. Radio peptide imaging and therapy

    International Nuclear Information System (INIS)

    Buscombe, Jonh

    1997-01-01

    Full text. The concept of the magic bullet retains its attraction to us. If only we could take a drug or radioisotope and inject this intravenously and then will attach to the target cancer. This may allow imaging if labelled with a radio pharmaceutical or possibly even effective therapy. Initially work was started using antibodies of mouse origin. These have shown some utility in targeting tumors but there are problems in that these are essentially non-human proteins, often derived from mice. This leads to the formation of antibodies against that antibody so that repeat administrations lead to reduced efficacy and possibly may carry a risk anaphylaxis for the patient. Two different methods have evolved to deal with this situation. Either make antibodies more human or use smaller fragments, so that they are less likely to cause allergic reactions. The second method is to try and use a synthetic peptide. This will contain a series of amino acids which recognize a certain cell receptor. For example the somatostatin analogue Octreotide is an 8 amino acid peptide which has the same biological actions as natural somatostatin but an increased plasma half life. To this is added a linker a good example being DTPA and then radioisotope for example In-111. There we can have the complex In-111-DTPA-Octreotide which can be used to image somatostatin receptors in vivo. The main advantage over antibodies is that the cost production is less and many different variation of peptides for a particular receptor can be manufactured and assessed to find which is the optimal agent tumour imaging at a fraction of the cost of antibody production. There are two main approaches. Firstly to take a natural peptide hormone such as insulin or VIP and label by a simple method such as iodination with I-123. A group in Vienna have done it and shown good uptake of I-123 Insulin in primary hepatomas and of I-123 VIP in pancreatic cancers. Many natural peptide hormones however have a short plasma half

  16. Processing of thyrotropin-releasing hormone prohormone (pro-TRH) generates a biologically active peptide, prepro-TRH-(160-169), which regulates TRH-induced thyrotropin secretion

    International Nuclear Information System (INIS)

    Bulant, M.; Vaudry, H.; Roussel, J.P.; Astier, H.; Nicolas, P.

    1990-01-01

    Rat thyrotropin-releasing hormone (TRH) prohormone contains five copies of the TRH progenitor sequence Gln-His-Pro-Gly linked together by connecting sequences whose biological activity is unknown. Both the predicted connecting peptide prepro-TRH-(160-169) (Ps4) and TRH are predominant storage forms of TRH precursor-related peptides in the hypothalamus. To determine whether Ps4 is co-released with TRH, rat median eminence slices were perfused in vitro. Infusion of depolarizing concentrations of KCl induced stimulation of release of Ps4- and TRH-like immunoreactivity. The possible effect of Ps4 on thyrotropin release was investigated in vitro using quartered anterior pituitaries. Infusion of Ps4 alone had no effect on thyrotropin secretion but potentiated TRH-induced thyrotropin release in a dose-dependent manner. In addition, the occurrence of specific binding sites for 125 I-labeled Tyr-Ps4 in the distal lobe of the pituitary was demonstrated by binding analysis and autoradiographic localization. These findings indicate that these two peptides that arise from a single multifunctional precursor, the TRH prohormone, act in a coordinate manner on the same target cells to promote hormonal secretion. These data suggest that differential processing of the TRH prohormone may have the potential to modulate the biological activity of TRH

  17. Differential insulin and steroidogenic signaling in insulin resistant and non-insulin resistant human luteinized granulosa cells-A study in PCOS patients.

    Science.gov (United States)

    Belani, Muskaan; Deo, Abhilash; Shah, Preeti; Banker, Manish; Singal, Pawan; Gupta, Sarita

    2018-04-01

    Insulin resistance (IR) is one of the significant aberrations in polycystic ovarian syndrome (PCOS), however is only observed in 70%-80% of obese PCOS and 20%-25% of lean PCOS. Hyperinsulinemia accompanies PCOS-IR along with hyperandrogenemia against normal insulin and androgen levels in PCOS-non insulin resistance (NIR). This could possibly be due to defects in the downstream signaling pathways. The study thus aims to unravel insulin and steroidogenic signaling pathways in luteinized granulosa cells isolated from PCOS-IR and NIR vs matched controls. Luteinized granulosa cells from 30 controls and 39 PCOS were classified for IR based on a novel method of down regulation of protein expression of insulin receptor-β (INSR- β) as shown in our previous paper. We evaluated expression of molecules involved in insulin, steroidogenic signaling and lipid metabolism in luteinized granulosa cells followed by analysis of estradiol, progesterone and testosterone in follicular fluid. Protein expression of INSR- β, pIRS (ser 307), PI(3)K, PKC-ζ, pAkt, ERK1/2, pP38MAPK and gene expression of IGF showed differential expression in the two groups. Increased protein expression of PPAR-γ was accompanied by up regulation in SREBP1c, FAS, CPT-1 and ACC-1 genes in PCOS-IR group. Expression of StAR, CYP19A1, 17 β- HSD and 3 β- HSD demonstrated significant decrease along with increase in CYP11A1, FSH-R and LH-R in both the groups. Follicular fluid testosterone increased and progesterone decreased in PCOS-IR group. This study shows how candidate molecules that were differentially expressed, aid in designing targeted therapy against the two phenotypes of PCOS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. 76 FR 69136 - Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting

    Science.gov (United States)

    2011-11-08

    ... Hydrogen Sulfide; Community Right-to-Know Toxic Chemical Release Reporting AGENCY: Environmental Protection Agency (EPA). ACTION: Lifting of Administrative Stay for Hydrogen Sulfide; Correction. SUMMARY: The... Administrative Stay of the reporting requirements for hydrogen sulfide. The Office of the Federal Register...

  19. Increased plasma ghrelin suppresses insulin release in wethers fed with a high-protein diet.

    Science.gov (United States)

    Takahashi, T; Sato, K; Kato, S; Yonezawa, T; Kobayashi, Y; Ohtani, Y; Ohwada, S; Aso, H; Yamaguchi, T; Roh, S G; Katoh, K

    2014-06-01

    Ghrelin is a multifunctional peptide that promotes an increase of food intake and stimulates GH secretion. Ghrelin secretion is regulated by nutritional status and nutrients. Although a high-protein (HP) diet increases plasma ghrelin secretion in mammals, the mechanisms and the roles of the elevated ghrelin concentrations due to a HP diet have not been fully established. To clarify the roles of elevated acylated ghrelin upon intake of a HP diet, we investigated the regulation of ghrelin concentrations in plasma and tissues in wethers fed with either the HP diet or the control (CNT) diet for 14 days, and examined the action of the elevated plasma ghrelin by using a ghrelin-receptor antagonist. The HP diet gradually increased the plasma acylated-ghrelin concentrations, but the CNT diet did not. Although the GH concentrations did not vary significantly across the groups, an injection of ghrelin-receptor antagonist enhanced insulin levels in circulation in the HP diet group. In the fundus region of the stomach, the ghrelin levels did not differ between the HP and CNT diet groups, whereas ghrelin O-acyltransferase mRNA levels were higher in the group fed with HP diet than those of the CNT diet group were. These results indicate that the HP diet elevated the plasma ghrelin levels by increasing its synthesis; this elevation strongly suppresses the appearance of insulin in the circulation of wethers, but it is not involved in GH secretion. Overall, our findings indicate a role of endogenous ghrelin action in secretion of insulin, which acts as a regulator after the consumption of a HP diet. © 2014 Society for Endocrinology.

  20. Acute activation of GLP-1-expressing neurons promotes glucose homeostasis and insulin sensitivity.

    Science.gov (United States)

    Shi, Xuemei; Chacko, Shaji; Li, Feng; Li, Depei; Burrin, Douglas; Chan, Lawrence; Guan, Xinfu

    2017-11-01

    Glucagon-like peptides are co-released from enteroendocrine L cells in the gut and preproglucagon (PPG) neurons in the brainstem. PPG-derived GLP-1/2 are probably key neuroendocrine signals for the control of energy balance and glucose homeostasis. The objective of this study was to determine whether activation of PPG neurons per se modulates glucose homeostasis and insulin sensitivity in vivo. We generated glucagon (Gcg) promoter-driven Cre transgenic mice and injected excitatory hM3Dq-mCherry AAV into their brainstem NTS. We characterized the metabolic impact of PPG neuron activation on glucose homeostasis and insulin sensitivity using stable isotopic tracers coupled with hyperinsulinemic euglycemic clamp. We showed that after ip injection of clozapine N-oxide, Gcg-Cre lean mice transduced with hM3Dq in the brainstem NTS downregulated basal endogenous glucose production and enhanced glucose tolerance following ip glucose tolerance test. Moreover, acute activation of PPG neurons NTS enhanced whole-body insulin sensitivity as indicated by increased glucose infusion rate as well as augmented insulin-suppression of endogenous glucose production and gluconeogenesis. In contrast, insulin-stimulation of glucose disposal was not altered significantly. We conclude that acute activation of PPG neurons in the brainstem reduces basal glucose production, enhances intraperitoneal glucose tolerance, and augments hepatic insulin sensitivity, suggesting an important physiological role of PPG neurons-mediated circuitry in promoting glycemic control and insulin sensitivity. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  1. Childhood lead toxicity and impaired release of thyrotropin-stimulating hormone

    International Nuclear Information System (INIS)

    Huseman, C.A.; Moriarty, C.M.; Angle, C.R.

    1987-01-01

    Decreased stature of children is epidemiologically associated with increased blood lead independent of multiple socioeconomic and nutritional variables. Since endocrine dysfunction occurs in adult lead workers, they studied two girls, 2 years of age, before and after calcium disodium edetate chelation for blood leads (PbB) of 19-72 μg/dl. The height of both children had crossed from the 50th to below the 10th percentile during the course of chronic lead toxicity. Basal free T 4 , T 4 , T 3 , cortisol, somatomedin C, and sex steroids were normal. A decrease in the growth hormone response and elevation of basal prolcatin and gonadotropins were noted in one. Both children demonstrated blunted thyrotropin-stimulating hormone (TSH) responses to thyrotropin-releasing hormone (TRH) in six of seven challenges. This prompted in vitro studies of cultured cells from rat pituitarities. After incubation of pituitary cells with 0.1-10 μM Pb 2+ for 2 hr, followed by the addition of TRH, there was a dose-dependent inhibition of TSH release Lead did not interfere with the assay of TSH. To investigate the interaction of lead and calcium, 45 Ca 2+ kinetic analyses were done on rat pituitary slices after 1 hr incubation with 1.0 μM lead. The impaired late efflux was consistent with a decrease in the size and exchangeability of the tightly bound pool of intracellular microsomal or mitochondrial calcium. The rat pituitary cell model provides a model for the decreased TSH release of lead poisoning, supports the biological plausibility of a neuroendocrine effect on growth, and suggests that interference with calcium-mediated intracellular responses is a basic mechanism of lead toxicity

  2. Toxic chemical considerations for tank farm releases

    Energy Technology Data Exchange (ETDEWEB)

    Van Keuren, J.C.; Davis, J.S., Westinghouse Hanford

    1996-08-01

    This topical report contains technical information used to determine the accident consequences of releases of toxic chemical and gases for the Tank Farm Final Safety Analysis report (FSAR).It does not provide results for specific accident scenarios but does provide information for use in those calculations including chemicals to be considered, chemical concentrations, chemical limits and a method of summing the fractional contributions of each chemical. Tank farm composites evaluated were liquids and solids for double shell tanks, single shell tanks, all solids,all liquids, headspace gases, and 241-C-106 solids. Emergency response planning guidelines (ERPGs) were used as the limits.Where ERPGs were not available for the chemicals of interest, surrogate ERPGs were developed. Revision 2 includes updated sample data, an executive summary, and some editorial revisions.

  3. Peptide carrier-mediated non-covalent delivery of unmodified cisplatin, methotrexate and other agents via intravenous route to the brain.

    Directory of Open Access Journals (Sweden)

    Gobinda Sarkar

    Full Text Available BACKGROUND: Rapid pre-clinical evaluation of chemotherapeutic agents against brain cancers and other neurological disorders remains largely unattained due to the presence of the blood-brain barrier (BBB, which limits transport of most therapeutic compounds to the brain. A synthetic peptide carrier, K16ApoE, was previously developed that enabled transport of target proteins to the brain by mimicking a ligand-receptor system. The peptide carrier was found to generate transient BBB permeability, which was utilized for non-covalent delivery of cisplatin, methotrexate and other compounds to the brain. APPROACH: Brain delivery of the chemotherapeutics and other agents was achieved either by injecting the carrier peptide and the drugs separately or as a mixture, to the femoral vein. A modification of the method comprised injection of K16ApoE pre-mixed with cetuximab, followed by injection of a 'small-molecule' drug. PRINCIPAL FINDINGS: Seven-of-seven different small molecules were successfully delivered to the brain via K16ApoE. Depending on the method, brain uptake with K16ApoE was 0.72-1.1% for cisplatin and 0.58-0.92% for methotrexate (34-50-fold and 54-92 fold greater for cisplatin and methotrexate, respectively, with K16ApoE than without. Visually intense brain-uptake of Evans Blue, Light Green SF and Crocein scarlet was also achieved. Direct intracranial injection of EB show locally restricted distribution of the dye in the brain, whereas K16ApoE-mediated intravenous injection of EB resulted in the distribution of the dye throughout the brain. Experiments with insulin suggest that ligand-receptor signaling intrinsic to the BBB provides a natural means for passive transport of some molecules across the BBB. SIGNIFICANCE: The results suggest that the carrier peptide can non-covalently transport various chemotherapeutic agents to the brain. Thus, the method offers an avenue for pre-clinical evaluation of various small and large therapeutic molecules

  4. Effects of intranasal and peripheral oxytocin or gastrin-releasing peptide administration on social interaction and corticosterone levels in rats.

    Science.gov (United States)

    Kent, Pamela; Awadia, Alisha; Zhao, Leah; Ensan, Donna; Silva, Dinuka; Cayer, Christian; James, Jonathan S; Anisman, Hymie; Merali, Zul

    2016-02-01

    The intranasal route of drug administration has gained increased popularity as it is thought to allow large molecules, such as peptide hormones, more direct access to the brain, while limiting systemic exposure. Several studies have investigated the effects of intranasal oxytocin administration in humans as this peptide is associated with prosocial behavior. There are, however, few preclinical studies investigating the effects of intranasal oxytocin administration in rodents. Oxytocin modulates hypothalamic-pituitary-adrenal (HPA) axis functioning and it has been suggested that oxytocin's ability to increase sociability may occur through a reduction in stress reactivity. Another peptide that appears to influence both social behavior and HPA axis activity is gastrin-releasing peptide (GRP), but it is not known if these GRP-induced effects are related. With this in mind, in the present study, we assessed the effects of intranasal and intraperitoneal oxytocin and GRP administration on social interaction and release of corticosterone in rats. Intranasal and intraperitoneal administration of 20, but not 5 μg, of oxytocin significantly increased social interaction, whereas intranasal and peripheral administration of GRP (20 but not 5 μg) significantly decreased levels of social interaction. In addition, while intranasal oxytocin (20 μg) had no effect on blood corticosterone levels, a marked increase in blood corticosterone levels was observed following intraperitoneal oxytocin administration. With GRP, intranasal (20 μg) but not peripheral administration increased corticosterone levels. These findings provide further evidence that intranasal peptide delivery can induce behavioral alterations in rodents which is consistent with findings from human studies. In addition, the peptide-induced changes in social interaction were not linked to fluctuations in corticosterone levels. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Association between insulin resistance and preeclampsia in obese non-diabetic women receiving metformin.

    Science.gov (United States)

    Balani, Jyoti; Hyer, Steve; Syngelaki, Argyro; Akolekar, Ranjit; Nicolaides, Kypros H; Johnson, Antoinette; Shehata, Hassan

    2017-12-01

    To examine whether the reduced incidence of preeclampsia in non-diabetic obese pregnant women treated with metformin is mediated by changes in insulin resistance. This was a secondary analysis of obese pregnant women in a randomised trial (MOP trial). Fasting plasma glucose and insulin were measured in 384 of the 400 women who participated in the MOP trial. Homeostasis model assessment of insulin resistance (HOMA-IR) was compared in the metformin and placebo groups and in those that developed preeclampsia versus those that did not develop preeclampsia. At 28 weeks, median HOMA-IR was significantly lower in the metformin group. Logistic regression analysis demonstrated that there was a significant contribution in the prediction of preeclampsia from maternal history of chronic hypertension and gestational weight gain, but not HOMA-IR either at randomisation ( p  = 0.514) or at 28 weeks ( p  = 0.643). Reduced incidence of preeclampsia in non-diabetic obese pregnant women treated with metformin is unlikely to be due to changes in insulin resistance.

  6. Potentiation of glucose-induced insulin release in islets by desHis1[Glu9]glucagon amide

    DEFF Research Database (Denmark)

    Kofod, Hans; Unson, C G; Merrifield, R B

    1988-01-01

    Glucagon and secretin and some of their hybrid analogs potentiate glucose-induced release of insulin from isolated mouse pancreatic islets. It was recently shown that the synthetic glucagon analog, desHis1[Glu9]glucagon amide, does not stimulate the formation of cyclic adenosine monophosphate...... in the rat hepatocyte membrane, but binds well to the glucagon receptor and is a good competitive antagonist of glucagon. In the present study the effect of this analog on isolated islets was examined. desHis1-[Glu9]glucagon amide at 3 x 10(-7) M, in the presence of 0.01 M D-glucose, increased the release...

  7. Identification and characterization of insulin receptors on foetal-mouse brain-cortical cells.

    OpenAIRE

    Van Schravendijk, C F; Hooghe-Peters, E L; De Meyts, P; Pipeleers, D G

    1984-01-01

    The occurrence of insulin receptors was investigated in freshly dissociated brain-cortical cells from mouse embryos. By analogy with classical insulin-binding cell types, binding of 125I-insulin to foetal brain-cortical cells was time- and pH-dependent, only partially reversible, and competed for by unlabelled insulin and closely related peptides. Desalanine-desasparagine-insulin, pig proinsulin, hagfish insulin and turkey insulin were respectively 2%, 4%, 2% and 200% as potent as bovine insu...

  8. An approach for estimating toxic releases of H2S-containing natural gas.

    Science.gov (United States)

    Jianwen, Zhang; Da, Lei; Wenxing, Feng

    2014-01-15

    China is well known being rich in sulfurous natural gas with huge deposits widely distributed all over the country. Due to the toxic nature, the release of hydrogen sulfide-containing natural gas from the pipelines intends to impose serious threats to the human, society and environment around the release sources. CFD algorithm is adopted to simulate the dispersion process of gas, and the results prove that Gaussian plume model is suitable for determining the affected region of the well blowout of sulfide hydrogen-containing natural gas. In accordance with the analysis of release scenarios, the present study proposes a new approach for estimating the risk of hydrogen sulfide poisoning hazards, as caused by sulfide-hydrogen-containing natural gas releases. Historical accident-statistical data from the EGIG (European Gas Pipeline Incident Data Group) and the Britain Gas Transco are integrated into the approach. Also, the dose-load effect is introduced to exploit the hazards' effects by two essential parameters - toxic concentration and exposure time. The approach was applied to three release scenarios occurring on the East-Sichuan Gas Transportation Project, and the individual risk and societal risk are classified and discussed. Results show that societal risk varies significantly with different factors, including population density, distance from pipeline, operating conditions and so on. Concerning the dispersion process of hazardous gas, available safe egress time was studied from the perspective of individual fatality risks. The present approach can provide reliable support for the safety management and maintenance of natural gas pipelines as well as evacuations that may occur after release incidents. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Lipofection of insulin-producing RINm5F cells: methodological improvements.

    Science.gov (United States)

    Barbu, Andreea; Welsh, Nils

    2007-01-01

    Cationic lipid/DNA-complexes have been widely used as gene transfer vectors because they are less toxic and immunogenic than viral vectors. The aim of the present study was to improve and characterize lipofection of an insulin-producing cell line. We compared the transfection efficiency of seven commercially available lipid formulations (Lipotaxi, SuperFect, Fugene, TransFast, Dosper, GenePORTER and LipofectAMINE) by flow cytometry analysis of GFP-expression. In addition, we have determined the influences of centrifugation, serum and a nuclear localization signal peptide on the lipofection efficiency. We observed that two lipid formulations, GenePORTER and LipofectAMINE, were able to promote efficient gene transfer in RINm5F cells. However, GenePORTER exhibited the important advantage of being able to transfect cells in the presence of serum and with less cytotoxicity than LipofectAMINE. LipofectAMINE-induced RINm5F cell death could partially be counteracted by TPA, forskolin or fumonisin beta(1). Finally, both centrifugation and a nuclear localization signal peptide increased transfection efficiency.

  10. Alteration of postprandial glucose and insulin concentrations with meal frequency and composition.

    Science.gov (United States)

    Kanaley, Jill A; Heden, Timothy D; Liu, Ying; Fairchild, Timothy J

    2014-11-14

    A frequent eating pattern may alter glycaemic control and augment postprandial insulin concentrations in some individuals due to the truncation of the previous postprandial period by a subsequent meal. The present study examined glucose, insulin, C-peptide and glucose-dependent insulinotropic peptide (GIP) responses in obese individuals when meals were ingested in a high-frequency pattern (every 2 h, 6M) or in a low-frequency pattern (every 4 h, 3M) over 12 h. It also examined these postprandial responses to high-frequency, high-protein meals (6MHP). In total, thirteen obese subjects completed three 12 h study days during which they consumed 6276 kJ (1500 kcal): (1) 3M - 15 % protein and 65 % carbohydrate; (2) 6M - 15 % protein and 65 % carbohydrate; (3) 6MHP - 45 % protein and 35 % carbohydrate. Blood samples were collected every 10 min and analysed for glucose, insulin, C-peptide and GIP. Insulin total AUC (tAUC) and peak insulin concentrations (Pmeal frequency or composition. In obese subjects, ingestion of meals in a low-frequency pattern does not alter glucose tAUC, but increases postprandial insulin responses. The substitution of carbohydrates with protein in a frequent meal pattern results in tighter glycaemic control and reduced postprandial insulin responses.

  11. Effect of adrenomedullin gene delivery on insulin resistance in type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Hoda Y. Henein

    2011-01-01

    Full Text Available Type 2 diabetes mellitus is one of the common metabolic disorders that ultimately afflicts large number of individuals. Adrenomedullin (AM is a potent vasodilator peptide; previous studies reported development of insulin resistance in aged AM deficient mice. In this study, we employed a gene delivery approach to explore its potential role in insulin resistance. Four groups were included: control, diabetic, non-diabetic injected with the AM gene and diabetic injected with the AM gene. One week following gene delivery, serum glucose, insulin, triglycerides, leptin, adiponectin and corticosterone were measured as well as the insulin resistance index (HOMA-IR. Soleus muscle glucose uptake and RT-PCR of both AM and glucose transporter-4 (GLUT 4 gene expressions were assessed. A single tail vein injection of adrenomedullin gene in type 2 diabetic rats improved skeletal muscle insulin responsiveness with significant improvement of soleus muscle glucose uptake, HOMA-IR, serum glucose, insulin and triglycerides and significant increase in muscle GLUT 4 gene expression (P < 0.05 compared with the non-injected diabetic rats. The beneficial effects of AM gene delivery were accompanied by a significant increase in the serum level of adiponectin (2.95 ± 0.09 versus 2.33 ± 0.17 μg/ml in the non-injected diabetic group as well as a significant decrease in leptin and corticosterone levels (7.51 ± 0.51 and 262.88 ± 10.34 versus 10.63 ± 1.4 and 275.86 ± 11.19 ng/ml respectively in the non-injected diabetic group. The conclusion of the study is that AM gene delivery can improve insulin resistance and may have significant therapeutic applications in type 2 diabetes mellitus.

  12. Massive weight loss restores 24-hour growth hormone release profiles and serum insulin-like growth factor-I levels in obese subjects

    DEFF Research Database (Denmark)

    Rasmussen, M H; Hvidberg, A; Juul, A

    1995-01-01

    levels of insulin-like growth factor-I (IGF-I), IGF-binding protein-3 (IGFBP-3), as well as insulin in obese subjects before and after a massive weight loss. We studied 18 obese subjects (age, 26 +/- 1 yr; body mass index, 40.9 +/- 1.1 kg/m2); 18 normal age-, and sex-matched control subjects; and 9...... using anthropometric measurements and dual energy x-ray absorptiometry scanning (DXA). In the obese subjects, 24-h spontaneous GH release profiles and the GH responses to insulin-induced hypoglycemia and L-arginine as well as basal IGF-I levels and the IGF-I/IGFBP-3 molar ratio were decreased, whereas...

  13. Do Industries Pollute More in Poorer Neighborhoods? Evidence From Toxic Releasing Plants in Mexico

    OpenAIRE

    Lopamudra Chakraborti; José Jaime Sainz Santamaría

    2015-01-01

    Studies on industrial pollution and community pressure in developing countries are rare. We employ previously unused, self-reported toxics pollution data from Mexico to show that there exists some evidence of environmental justice concerns and community pressure in explaining industrial pollution behavior. We obtain historical data on toxic releases into water and land for the time period 2004 to 2012. We focus on 7 major pollutants including heavy metals and cyanide. To address endogeneity c...

  14. A Trojan-Horse Peptide-Carboxymethyl-Cytidine Antibiotic from Bacillus amyloliquefaciens.

    Science.gov (United States)

    Serebryakova, Marina; Tsibulskaya, Darya; Mokina, Olga; Kulikovsky, Alexey; Nautiyal, Manesh; Van Aerschot, Arthur; Severinov, Konstantin; Dubiley, Svetlana

    2016-12-07

    Microcin C and related antibiotics are Trojan-horse peptide-adenylates. The peptide part is responsible for facilitated transport inside the sensitive cell, where it gets processed to release a toxic warhead-a nonhydrolyzable aspartyl-adenylate, which inhibits aspartyl-tRNA synthetase. Adenylation of peptide precursors is carried out by MccB THIF-type NAD/FAD adenylyltransferases. Here, we describe a novel microcin C-like compound from Bacillus amyloliquefaciens. The B. amyloliquefaciens MccB demonstrates an unprecedented ability to attach a terminal cytidine monophosphate to cognate precursor peptide in cellular and cell free systems. The cytosine moiety undergoes an additional modification-carboxymethylation-that is carried out by the C-terminal domain of MccB and the MccS enzyme that produces carboxy-SAM, which serves as a donor of the carboxymethyl group. We show that microcin C-like compounds carrying terminal cytosines are biologically active and target aspartyl-tRNA synthetase, and that the carboxymethyl group prevents resistance that can occur due to modification of the warhead. The results expand the repertoire of known enzymatic modifications of peptides that can be used to obtain new biological activities while avoiding or limiting bacterial resistance.

  15. Central effects of some peptide and non-peptide opioids and naloxone on thermoregulation in the rabbit

    Science.gov (United States)

    Kandasamy, S. B.; Williams, B. A.

    1983-01-01

    The effects of several peptide and non-peptide opiods and naloxone on induced hyperthermia is studied in rabbits. The effect of tyical mu, kappa, and sigma receptor antagonists (morphine, ketocyclazcine and SKF 10,0 10, 047) and some opioid peptides (Beta-endorphin /BE/, methionine-enkaphalin /ME/, and D-Ala2-methionine-enkaphalin-amide /DAME/ are determined. The role of prostaglandins (PG), cAMP, and norepinephrine (NE) in morphine, BE, and DAME induced hyperthermia is investigated. In addition, the effect of naloxone on pyrogen, arachidonic acid, PGE2, prostacyclin, dibutyryl cAMP, and NE induced hyperthermia is determined. Among other results, it is found that the three receptor antagonists induced hyperthermia in rabbits. BE, ME, and DAME were also found to cause hyperthermia, and it is suggested that they act on the same type of receptor. It is also determined that neither NE nor cAMP is involved in the hyperthermia due to morphine, BE, and DAME. It is suggested that an action of endogenous peptides on naloxone sensitive receptors plays little role in normal thermoregulation or in hyperthermia.

  16. Variables associated with persistence of C-Peptide secretion among patients with Type 1 diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Ibrahim Abbood Zaboon

    2017-01-01

    Full Text Available Background: C-peptide is a reliable method for estimating the beta-cell residual function. The objective of this study to assess the variables associated with persistence of C-peptide secretion among patients with Type 1 diabetes mellitus (T1DM. Patients and Methods: This was a cross-sectional study conducted from October 2015 to September 2016. This study enrolled patients with T1DM with at least 1 year or more duration. Random C-peptide with concomitant plasma glucose at least 144 mg/dl (8 mmol/l was measured and at this cutoff considered as a stimulated value. Variables that were assessed were age at the time of enrollment, age at the diagnosis of diabetes, gender, family history of diabetes, duration of diabetes, frequency of insulin per day, insulin dose (units/kg/day, type of insulin, devices delivery, body mass index (BMI at enrollment, blood pressure, glucose (plasma, lipid profile, glycated hemoglobin (HbA1c, thyrotropin (TSH, and antibodies to glutamic acid decarboxylase (GAD65, thyroid peroxidase antibodies (anti-TPO, and tissue transglutaminase antibodies-IgA (anti-TTG-IgA. Results: A total 324 patients were included in the study. A higher level of C-peptide has been seen if the disease acquired at the age of 18 years and older with detectable C-peptide observed among 17.7% of those diagnosed at age <18 years versus 31.7% for those aged 18 years or above. The more the duration of diabetes, the more is the loss of C-peptide. On logistic regression analysis, only duration of diabetes <6 years, and insulin dose <1 U/kg/day were statistically significantly associated with the detectable level of C-peptide in this cohort of T1DM. Conclusion: Diagnosis of TIDM at a late age, positive family history of diabetes, those requiring <1 U of insulin per kg per day, and higher fasting glucose was associated with higher and more detectable C-peptide. On multivariable analysis, the only duration of diabetes <6 years and insulin dose <1 U of insulin

  17. Methods for determining microcystins (peptide hepatotoxins) and microcystin-producing cyanobacteria.

    Science.gov (United States)

    Sangolkar, Lalita N; Maske, Sarika S; Chakrabarti, Tapan

    2006-11-01

    Episodes of cyanobacterial toxic blooms and fatalities to animals and humans due to cyanobacterial toxins (CBT) are known worldwide. The hepatotoxins and neurotoxins (cyanotoxins) produced by bloom-forming cyanobacteria have been the cause of human and animal health hazards and even death. Prevailing concentration of cell bound endotoxin, exotoxin and the toxin variants depend on developmental stages of the bloom and the cyanobacterial (CB) species involved. Toxic and non-toxic strains do not show any predictable morphological difference. The current instrumental, immunological and molecular methods applied for determining microcystins (peptide hepatotoxins) and microcystin-producing cyanobacteria are reviewed.

  18. Toxicity study of antimicrobial peptides from wild bee venom and their analogs toward mammalian normal and cancer cells

    Czech Academy of Sciences Publication Activity Database

    Slaninová, Jiřina; Mlsová, V.; Kroupová, H.; Alán, Lukáš; Tůmová, Tereza; Monincová, Lenka; Borovičková, Lenka; Fučík, Vladimír; Čeřovský, Václav

    2012-01-01

    Roč. 33, č. 1 (2012), s. 18-26 ISSN 0196-9781 R&D Projects: GA ČR GA203/08/0536 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50110509 Keywords : antimicrobial peptides * venom * hymenoptera * cancer cells * toxicity * confocal microscopy Subject RIV: CE - Biochemistry Impact factor: 2.522, year: 2012

  19. Regulation of insect behavior via the insulin-signaling pathway

    Directory of Open Access Journals (Sweden)

    Renske eErion

    2013-12-01

    Full Text Available The insulin/insulin-like growth factor signaling (IIS pathway is well established as a critical regulator of growth and metabolic homeostasis across the animal kingdom. Insulin-like peptides (ILPs, the functional analogs of mammalian insulin, were initially discovered in the silkmoth Bombyx mori and subsequently identified in many other insect species. Initial research focused on the role of insulin signaling in metabolism, cell proliferation, development, reproduction and aging. More recently however, increasing attention has been given to the role of insulin in the regulation of neuronal function and behavior. Here we review the role of insulin signaling in two specific insect behaviors: feeding and locomotion.

  20. Sucralose enhances GLP-1 release and lowers blood glucose in the presence of carbohydrate in healthy subjects but not in patients with type 2 diabetes.

    Science.gov (United States)

    Temizkan, S; Deyneli, O; Yasar, M; Arpa, M; Gunes, M; Yazici, D; Sirikci, O; Haklar, G; Imeryuz, N; Yavuz, D G

    2015-02-01

    Artificial sweeteners were thought to be metabolically inactive, but after demonstrating that the gustatory mechanism was also localized in the small intestine, suspicions about the metabolic effects of artificial sweeteners have emerged. The objective of this study was to determine the effect of artificial sweeteners (aspartame and sucralose) on blood glucose, insulin, c-peptide and glucagon-like peptide-1 (GLP-1) levels. Eight newly diagnosed drug-naive type 2 diabetic patients (mean age 51.5±9.2 years; F/M: 4/4) and eight healthy subjects (mean age 45.0±4.1 years; F/M: 4/4) underwent 75 g oral glucose tolerance test (OGTT). During OGTT, glucose, insulin, c-peptide and GLP-1 were measured at 15- min intervals for 120 min. The OGTTs were performed at three settings on different days, where subjects were given 72 mg of aspartame and 24 mg of sucralose in 200 ml of water or 200 ml of water alone 15 min before OGTT in a single-blinded randomized order. In healthy subjects, the total area under the curve (AUC) of glucose was statistically significantly lower in the sucralose setting than in the water setting (P=0.002). There was no difference between the aspartame setting and the water setting (P=0.53). Total AUC of insulin and c-peptide was similar in aspartame, sucralose and water settings. Total AUC of GLP-1 was significantly higher in the sucralose setting than in the water setting (P=0.04). Total AUC values of glucose, insulin, c-peptide and GLP-1 were not statistically different in three settings in type 2 diabetic patients. Sucralose enhances GLP-1 release and lowers blood glucose in the presence of carbohydrate in healthy subjects but not in newly diagnosed type 2 diabetic patients.