WorldWideScience

Sample records for non-toxic antifouling solutions

  1. Challenges for the Development of New Non-Toxic Antifouling Solutions

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Maréchal

    2009-10-01

    Full Text Available Marine biofouling is of major economic concern to all marine industries. The shipping trade is particularly alert to the development of new antifouling (AF strategies, especially green AF paint as international regulations regarding the environmental impact of the compounds actually incorporated into the formulations are becoming more and more strict. It is also recognised that vessels play an extensive role in invasive species propagation as ballast waters transport potentially threatening larvae. It is then crucial to develop new AF solutions combining advances in marine chemistry and topography, in addition to a knowledge of marine biofoulers, with respect to the marine environment. This review presents the recent research progress made in the field of new non-toxic AF solutions (new microtexturing of surfaces, foul-release coatings, and with a special emphasis on marine natural antifoulants as well as the perspectives for future research directions.

  2. Efficacy and toxicity of self-polishing biocide-free antifouling paints

    International Nuclear Information System (INIS)

    Loeschau, Margit; Kraetke, Renate

    2005-01-01

    The ban on harmful substances in antifouling paints requires the development of new antifouling strategies. Alternatives should be as effective as conventional paints but of lower toxicity. In the present study two commercially available, self-polishing antifouling paints were examined in order to get information on their antifouling properties and toxicological potential. Efficacy was shown in settlement assays with the marine barnacle species Balanus amphitrite, however, efficacy was related to toxic effects observed on target and non-target organisms. Toxicity of the paint extracts was concentration-dependent and differed according to the paint and the species investigated. Toxicity could at least partially be attributed to zinc leached from the paints. Effects of a water-soluble paint were more pronounced in larvae of B. amphitrite, Artemia salina and in the green algae Dunaliella tertiolecta. Embryos of the freshwater species Danio rerio and Vibrio fisheri were more affected by a paint based on organic solvents. - For alternative antifouling paints efficacy as well as adverse effects on non-target organisms and the aquatic environment should be carefully assessed

  3. Acute Toxicity of the Antifouling Compound Butenolide in Non-Target Organisms

    KAUST Repository

    Zhang, Yi-Fan

    2011-08-29

    Butenolide [5-octylfuran-2(5H)-one] is a recently discovered and very promising anti-marine-fouling compound. In this study, the acute toxicity of butenolide was assessed in several non-target organisms, including micro algae, crustaceans, and fish. Results were compared with previously reported results on the effective concentrations used on fouling (target) organisms. According to OECD\\'s guideline, the predicted no effect concentration (PNEC) was 0.168 µg l^(−1), which was among one of the highest in representative new biocides. Mechanistically, the phenotype of butenolide-treated Danio rerio (zebrafish) embryos was similar to the phenotype of the pro-caspase-3 over-expression mutant with pericardial edema, small eyes, small brains, and increased numbers of apoptotic cells in the bodies of zebrafish embryos. Butenolide also induced apoptosis in HeLa cells, with the activation of c-Jun N-terminal kinases (JNK), Bcl-2 family proteins, and caspases and proteasomes/lysosomes involved in this process. This is the first detailed toxicity and toxicology study on this antifouling compound.

  4. Efficacy and Ecotoxicity of Novel Anti-Fouling Nanomaterials in Target and Non-Target Marine Species.

    Science.gov (United States)

    Avelelas, Francisco; Martins, Roberto; Oliveira, Tânia; Maia, Frederico; Malheiro, Eliana; Soares, Amadeu M V M; Loureiro, Susana; Tedim, João

    2017-04-01

    Biofouling is a global problem that affects virtually all the immersed structures. Currently, several novel environmentally friendly approaches are being tested worldwide to decrease the toxicity of biocides in non-fouling species, such as the encapsulation/immobilization of commercially available biocides, in order to achieve control over the leaching rate. The present study addresses the toxicity of two widely used booster biocides, zinc pyrithione (ZnPT) and copper pyrithione (CuPT), in its free and incorporated forms in order to assess their toxicity and anti-fouling efficacy in target and non-target species. To achieve this goal, the following marine organisms were tested; the green microalgae Tetraselmis chuii (non-target species) and both target species, the diatom Phaeodactylum tricornutum and the mussel Mytilus edulis. Organisms were exposed to both biocides, two unloaded nanostructured materials and nanomaterials loaded with biocides, from 10 μg/L to 100 mg/L total weight, following standard protocols. The most eco-friendly and simultaneously efficient anti-fouling solution against the two photosynthetic species (nanoclays loaded with ZnPT) was then tested on mussels to assess its lethal efficacy (LC 50  = 123 μg/L) and compared with free biocide (LC 50  = 211 μg/L) and unloaded material (LC 50  > 1000 μg/L). A second exposure test with sub-lethal concentrations (lower than 100 μg/L), using mussels, was carried out to assess biochemical changes caused by the tested compounds. Oxidative stress, detoxification and neurotransmission markers were not responsive; however, different antioxidant patterns were found with free ZnPT and loaded nanoclay exposures. Thus, the immobilization of the biocide ZnPT into nanoclays proved to be a promising efficient and eco-friendly anti-fouling strategy.

  5. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review.

    Science.gov (United States)

    Amara, Intissar; Miled, Wafa; Slama, Rihab Ben; Ladhari, Neji

    2018-01-01

    The production infrastructure in aquaculture invariably is a complex assortment of submerged components with cages, nets, floats and ropes. Cages are generally made from polyamide or high density polyethylene (PEHD). All of these structures serve as surfaces for biofouling. However, cage nets and supporting infrastructure offer fouling organisms thousands of square meters of multifilament netting. That's why, before immersing them in seawater, they should be coated with an antifouling agent. It helps to prevent net occlusion and to increase its lifespan. Biofouling in marine aquaculture is a specific problem and has three main negative effects. It causes net occlusion and so restricts water and oxygen exchange. Besides, the low dissolved oxygen levels from poor water exchange increases the stress levels of fish, lowers immunity and increases vulnerability to disease. Also, the extra weight imposed by fouling causes cage deformation and structural fatigue. The maintenance and loss of equipment cause the increase of production costs for the industry. Biocides are chemical substances that can prohibit or kill microorganisms responsible for biofouling. The expansion of the aquaculture industry requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. Unfortunately, the use of biocides in the aquatic environment has proved to be harmful as it has toxic effects on the marine environment. The most commonly used biocides in antifouling paints are Tributyltin (TBT), Chlorothalonil, Dichlofluanid, Sea-Nine 211, Diuron, Irgarol 1051 and Zinc Pyrithione. Restrictions were imposed on the use of TBT, that's why organic booster biocides were recently introduced. The replacement products are generally based on copper metal oxides and organic biocides. This paper provides an overview of the effects of antifouling biocides on aquatic organisms. It will focus on the eight booster biocides in

  6. Low-Toxicity Diindol-3-ylmethanes as Potent Antifouling Compounds.

    Science.gov (United States)

    Wang, Kai-Ling; Xu, Ying; Lu, Liang; Li, Yongxin; Han, Zhuang; Zhang, Jun; Shao, Chang-Lun; Wang, Chang-Yun; Qian, Pei-Yuan

    2015-10-01

    In the present study, eight natural products that belonged to di(1H-indol-3-yl)methane (DIM) family were isolated from Pseudovibrio denitrificans UST4-50 and tested for their antifouling activity against larval settlement (including both attachment and metamorphosis) of the barnacle Balanus (=Amphibalanus) amphitrite and the bryozoan Bugula neritina. All diindol-3-ylmethanes (DIMs) showed moderate to strong inhibitory effects against larval settlement of B. amphitrite with EC50 values ranging from 18.57 to 1.86 μM and could be considered as low-toxicity antifouling compounds since their LC50/EC50 ratios were larger than 15. Furthermore, the DIM- and 4-(di(1H-indol-3-yl)methyl)phenol (DIM-Ph-4-OH)-treated larvae completed normal settlement when they were transferred to clean seawater after being exposed to those compounds for 24 h. DIM also showed comparable antifouling performance to the commercial antifouling biocide Sea-Nine 211(™) in the field test over a period of 5 months, which further confirmed that DIMs can be considered as promising candidates of environmentally friendly antifouling compounds.

  7. Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels

    International Nuclear Information System (INIS)

    Karlsson, Jenny; Ytreberg, Erik; Eklund, Britta

    2010-01-01

    Leachates of anti-fouling paints for use on ships and leisure boats are examined for their ecotoxicological potential. Paint leachates were produced in both 7 per mille artificial (ASW) and natural seawater (NSW) and tested on three organisms, the bacterium Vibrio fischeri, the macroalga Ceramium tenuicorne, and the crustacean Nitocra spinipes. Generally, leaching in ASW produced a more toxic leachate and was up to 12 times more toxic to the organisms than was the corresponding NSW leachate. The toxicity could be explained by elevated concentrations of Cu and Zn in the ASW leachates. Of the NSW leachates, those from the ship paints were more toxic than those from leisure boat paints. The most toxic paint was the biocide-free leisure boat paint Micron Eco. This implies that substances other than added active agents (biocides) were responsible for the observed toxicity, which would not have been discovered without the use of biological tests. - Leachate from a biocide-free anti-fouling paint for leisure boat use was more toxic than leachates from ship paints.

  8. Potent antifouling compounds produced by marine Streptomyces

    KAUST Repository

    Xu, Ying

    2010-02-01

    Biofouling causes huge economic loss and a recent global ban on organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. Five structurally similar compounds were isolated from the crude extract of a marine Streptomyces strain obtained from deep-sea sediments. Antifouling activities of these five compounds and four other structurally-related compounds isolated from a North Sea Streptomyces strain against major fouling organisms were compared to probe structure-activity relationships of compounds. The functional moiety responsible for antifouling activity lies in the 2-furanone ring and that the lipophilicity of compounds substantially affects their antifouling activities. Based on these findings, a compound with a straight alkyl side-chain was synthesized and proved itself as a very effective non-toxic, anti-larval settlement agent against three major fouling organisms. The strong antifouling activity, relatively low toxicity, and simple structures of these compounds make them promising candidates for new antifouling additives. © 2009 Elsevier Ltd. All rights reserved.

  9. Design and Biological Evaluation of Antifouling Dihydrostilbene Oxime Hybrids.

    Science.gov (United States)

    Moodie, Lindon W K; Cervin, Gunnar; Trepos, Rozenn; Labriere, Christophe; Hellio, Claire; Pavia, Henrik; Svenson, Johan

    2018-04-01

    By combining the recently reported repelling natural dihydrostilbene scaffold with an oxime moiety found in many marine antifoulants, a library of nine antifouling hybrid compounds was developed and biologically evaluated. The prepared compounds were shown to display a low antifouling effect against marine bacteria but a high potency against the attachment and growth of microalgae down to MIC values of 0.01 μg/mL for the most potent hybrid. The mode of action can be characterized as repelling via a reversible non-toxic biostatic mechanism. Barnacle cyprid larval settlement was also inhibited at low μg/mL concentrations with low levels or no toxicity observed. Several of the prepared compounds performed better than many reported antifouling marine natural products. While several of the prepared compounds are highly active as antifoulants, no apparent synergy is observed by incorporating the oxime functionality into the dihydrostilbene scaffold. This observation is discussed in light of recently reported literature data on related marine natural antifoulants and antifouling hybrids as a potentially general strategy for generation of improved antifoulants.

  10. A multi-step approach for testing non-toxic amphiphilic antifouling coatings against marine microfouling at different levels of biological complexity.

    Science.gov (United States)

    Zecher, Karsten; Aitha, Vishwa Prasad; Heuer, Kirsten; Ahlers, Herbert; Roland, Katrin; Fiedel, Michael; Philipp, Bodo

    2018-03-01

    Marine biofouling on artificial surfaces such as ship hulls or fish farming nets causes enormous economic damage. The time for the developmental process of antifouling coatings can be shortened by reliable laboratory assays. For designing such test systems, it is important that toxic effects can be excluded, that multiple parameters can be addressed simultaneously and that mechanistic aspects can be included. In this study, a multi-step approach for testing antifouling coatings was established employing photoautotrophic biofilm formation of marine microorganisms in micro- and mesoscoms. Degree and pattern of biofilm formation was determined by quantification of chlorophyll fluorescence. For the microcosms, co-cultures of diatoms and a heterotrophic bacterium were exposed to fouling-release coatings. For the mesocosms, a novel device was developed that permits parallel quantification of a multitude of coatings under defined conditions with varying degrees of shear stress. Additionally, the antifouling coatings were tested for leaching of potential compounds and finally tested in sea trials. This multistep-approach revealed that the individual steps led to consistent results regarding antifouling activity of the coatings. Furthermore, the novel mesocosm system can be employed for advanced antifouling analysis including metagenomic approaches for determination of microbial diversity attaching to different coatings under changing shear forces. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Antifouling potentials of eight deep-sea-derived fungi from the South China Sea.

    Science.gov (United States)

    Zhang, Xiao-Yong; Xu, Xin-Ya; Peng, Jiang; Ma, Chun-Feng; Nong, Xu-Hua; Bao, Jie; Zhang, Guang-Zhao; Qi, Shu-Hua

    2014-04-01

    Marine-derived microbial secondary metabolites are promising potential sources of nontoxic antifouling agents. The search for environmentally friendly and low-toxic antifouling components guided us to investigate the antifouling potentials of eight novel fungal isolates from deep-sea sediments of the South China Sea. Sixteen crude ethyl acetate extracts of the eight fungal isolates showed distinct antibacterial activity against three marine bacteria (Loktanella hongkongensis UST950701-009, Micrococcus luteus UST950701-006 and Pseudoalteromonas piscida UST010620-005), or significant antilarval activity against larval settlement of bryozoan Bugula neritina. Furthermore, the extract of Aspergillus westerdijkiae DFFSCS013 displayed strong antifouling activity in a field trial lasting 4 months. By further bioassay-guided isolation, five antifouling alkaloids including brevianamide F, circumdatin F and L, notoamide C, and 5-chlorosclerotiamide were isolated from the extract of A. westerdijkiae DFFSCS013. This is the first report about the antifouling potentials of metabolites of the deep-sea-derived fungi from the South China Sea, and the first stage towards the development of non- or low-toxic antifouling agents from deep-sea-derived fungi.

  12. Review on Molecular Mechanisms of Antifouling Compounds: An Update since 2012.

    Science.gov (United States)

    Chen, Lianguo; Qian, Pei-Yuan

    2017-08-28

    Better understanding of the mechanisms of antifouling compounds is recognized to be of high value in establishing sensitive biomarkers, allowing the targeted optimization of antifouling compounds and guaranteeing environmental safety. Despite vigorous efforts to find new antifouling compounds, information about the mechanisms of antifouling is still scarce. This review summarizes the progress into understanding the molecular mechanisms underlying antifouling activity since 2012. Non-toxic mechanisms aimed at specific targets, including inhibitors of transmembrane transport, quorum sensing inhibitors, neurotransmission blockers, adhesive production/release inhibitors and enzyme/protein inhibitors, are put forward for natural antifouling products or shelf-stable chemicals. Several molecular targets show good potential for use as biomarkers in future mechanistic screening, such as acetylcholine esterase for neurotransmission, phenoloxidase/tyrosinase for the formation of adhesive plaques, N -acyl homoserine lactone for quorum sensing and intracellular Ca 2+ levels as second messenger. The studies on overall responses to challenges by antifoulants can be categorized as general targets, including protein expression/metabolic activity regulators, oxidative stress inducers, neurotransmission blockers, surface modifiers, biofilm inhibitors, adhesive production/release inhibitors and toxic killing. Given the current situation and the knowledge gaps regarding the development of alternative antifoulants, a basic workflow is proposed that covers the indispensable steps, including preliminary mechanism- or bioassay-guided screening, evaluation of environmental risks, field antifouling performance, clarification of antifouling mechanisms and the establishment of sensitive biomarkers, which are combined to construct a positive feedback loop.

  13. Effects of Organoboron Antifoulants on Oyster and Sea Urchin Embryo Development

    Directory of Open Access Journals (Sweden)

    Noritaka Tsunemasa

    2012-12-01

    Full Text Available Prohibition of Ot (organotin compounds was introduced in Japan in 1997 and worldwide from September 2008. This meant that the production of paints containing TBT compounds was stopped and alternatives to the available Ot antifoulants had to be developed. It has been claimed that the degradation by-products of these alternative antifoulants were less toxic than those of Ot compounds. Since the introduction of the alternative antifoulants, the accumulation of these compounds has been reported in many countries. However, the toxicity of these compounds was still largely unreported. In this research, the toxicity of the alternative Ot antifoulants TPBP (triphenylborane pyridine and TPBOA (triphenylborane octadecylamine and their degradation products on Crassostea gigas and Hemicentrotus pulcherrimus were tested. The results showed that toxic effects in Crassostea gigas was higher for each antifouling biocide than that in Hemicentrotus pulcherrimus. Also, while the toxicity of the Organoboron antifoulants and the Ots were the same, the former’s degradation products were much less harmful.

  14. Design, Synthesis, and Antifouling Activity of Glucosamine-Based Isocyanides.

    Science.gov (United States)

    Umezawa, Taiki; Hasegawa, Yuki; Novita, Ira S; Suzuki, Junya; Morozumi, Tatsuya; Nogata, Yasuyuki; Yoshimura, Erina; Matsuda, Fuyuhiko

    2017-06-29

    Biofouling, an undesirable accumulation of organisms on sea-immersed structures such as ship hulls and fishing nets, is a serious economic issue whose effects include oil wastage and clogged nets. Organotin compounds were utilized since the 1960s as an antifouling material; however, the use of such compounds was later banned by the International Maritime Organization (IMO) due to their high toxicity toward marine organisms, resulting in masculinization and imposex. Since the ban, there have been extensive efforts to develop environmentally benign antifoulants. Natural antifouling products obtained from marine creatures have been the subject of considerable attention due to their potent antifouling activity and low toxicity. These antifouling compounds often contain isocyano groups, which are well known to have natural antifouling properties. On the basis of our previous total synthesis of natural isocyanoterpenoids, we envisaged the installation of an isocyano functional group onto glucosamine to produce an environmentally friendly antifouling material. This paper describes an effective synthetic method for various glucosamine-based isocyanides and evaluation of their antifouling activity and toxicity against cypris larvae of the barnacle Amphibalanus amphitrite . Glucosamine isocyanides with an ether functionality at the anomeric position exhibited potent antifouling activity, with EC 50 values below 1 μg/mL, without detectable toxicity even at a high concentration of 10 μg/mL. Two isocyanides had EC 50 values of 0.23 and 0.25 μg/mL, comparable to that of CuSO₄, which is used as a fouling inhibitor (EC 50 = 0.27 μg/mL).

  15. A New, Sensitive Marine Microalgal Recombinant Biosensor Using Luminescence Monitoring for Toxicity Testing of Antifouling Biocides

    Science.gov (United States)

    Sanchez-Ferandin, Sophie; Leroy, Fanny; Bouget, François-Yves

    2013-01-01

    In this study, we propose the use of the marine green alga Ostreococcus tauri, the smallest free-living eukaryotic cell known to date, as a new luminescent biosensor for toxicity testing in the environment. Diuron and Irgarol 1051, two antifouling biocides commonly encountered in coastal waters, were chosen to test this new biosensor along with two degradation products of diuron. The effects of various concentrations of the antifoulants on four genetic constructs of O. tauri (based on genes involved in photosynthesis, cell cycle, and circadian clock) were compared using 96-well culture microplates and a luminometer to automatically measure luminescence over 3 days. This was compared to growth inhibition of O. tauri wild type under the same conditions. Luminescence appeared to be more sensitive than growth inhibition as an indicator of toxicity. Cyclin-dependent kinase (CDKA), a protein involved in the cell cycle, fused to luciferase (CDKA-Luc) was found to be the most sensitive of the biosensors, allowing an accurate determination of the 50% effective concentration (EC50) after only 2 days (diuron, 5.65 ± 0.44 μg/liter; Irgarol 1015, 0.76 ± 0.10 μg/liter). The effects of the antifoulants on the CDKA-Luc biosensor were then compared to growth inhibition in natural marine phytoplankton. The effective concentrations of diuron and Irgarol 1051 were found to be similar, indicating that this biosensor would be suitable as a reliable ecotoxicological test. The advantage of this biosensor over cell growth inhibition testing is that the process can be easily automated and could provide a high-throughput laboratory approach to perform short-term toxicity tests. The ability to genetically transform and culture recombinant O. tauri gives it huge potential for screening many other toxic compounds. PMID:23144143

  16. Antifouling Activity of Simple Synthetic Diterpenoids against Larvae of the Barnacle Balanus albicostatus Pilsbry

    Directory of Open Access Journals (Sweden)

    Dan-Qing Feng

    2010-11-01

    Full Text Available Five new pimarane diterpenoids 1-5 were synthesized using ent-8(14-pimarene-15R,16-diol as starting material. The structures were elucidated by means of extensive NMR and MS analysis. The antifouling activity against larval settlement of the barnacle Balanus albicostatus were evaluated using capsaicin as a positive control. Compounds 1-3 and 5 showed more potent antifouling activity than capsaicin. Compound 5, which exhibited almost the same antifouling activity as starting material, showed better stability than starting material. These compounds all showed antifouling activity in a non-toxic way against larval settlement of the barnacle B. albicostatus. Analysis of structure-activity relationships (SAR demonstrated that the substituents on the C-15 and C-16 position of pimarane diterpenoid were responsible for the antifouling activity.

  17. SeaNine 211 as antifouling biocide: A coastal pollutant of emerging concern.

    Science.gov (United States)

    Chen, Lianguo; Lam, James C W

    2017-11-01

    SeaNine 211, with 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) being the biocidal ingredient, is a widely-used antifouling agent to deter the undesirable biofouling phenomenon. It is commercially promoted as an environmentally acceptable antifoulant mainly due to its claimed rapid degradation in marine environment. However, increasing researches document varying degradative kinetics in different environments, proving that SeaNine 211 is actually not degraded equally fast around the world (half-life between antifouling coatings has also caused global contamination of marine environment in various compartments. For example, accumulation of SeaNine 211 is detected as high as 3700ng/L in Spanish seawater and 281ng/g dry weight in Korean sediment. Considering that SeaNine 211 is highly toxic against non-target marine organisms, environmental risk assessment finds that most marine organisms are endangered by SeaNine 211 in worst-case scenario. Its endocrine disrupting and reproductive impairing effects at environmentally worst-case concentrations further constitute a long-term threat to the maintenance of population stability. Therefore, in the light of the varying degradability, environmental pollution and high toxicity, especially the endocrine disruption, SeaNine 211 as an antifouling agent is likely to cause non-negligible damages to the marine ecosystem. There is an urgency to perform a systematic ecological risk assessment of SeaNine 211 to prevent the potential impacts on the health of marine environment. A regular monitoring also becomes necessary to place the usage of antifouling biocides under control. Copyright © 2017. Published by Elsevier B.V.

  18. Toxicity of noradrenaline, a novel anti-biofouling component, to two non-target zooplankton species, Daphnia magna and Ceriodaphnia dubia.

    Science.gov (United States)

    Overturf, C L; Wormington, A M; Blythe, K N; Gohad, N V; Mount, A S; Roberts, A P

    2015-05-01

    Noradrenaline (NA) is the active component of novel antifouling agents and acts by preventing attachment of fouling organisms. The goal of this study was to examine the toxicity of NA to the non-target zooplankton D. magna and C. dubia. Neonates were exposed to one of five concentrations of NA and effects on survival, reproduction and molting were determined. Calculated LC50 values were determined to be 46 and 38 μM in C. dubia and D. magna, respectively. A 10-day C. dubia study found that reproduction metrics were significantly impacted at non-lethal concentrations. In D. magna, concentrations greater than 40 μM significantly impacted molting. A toxicity test was conducted with D. magna using oxidized NA, which yielded similar results. These data indicate that both NA and oxidized NA are toxic to non-target zooplankton. Results obtained from this study can be used to guide future ecological risk assessments of catecholamine-based antifouling agents. Copyright © 2015. Published by Elsevier Inc.

  19. Antifouling Activity of Synthetic Alkylpyridinium Polymers Using the Barnacle Model

    Science.gov (United States)

    Piazza, Veronica; Dragić, Ivanka; Sepčić, Kristina; Faimali, Marco; Garaventa, Francesca; Turk, Tom; Berne, Sabina

    2014-01-01

    Polymeric alkylpyridinium salts (poly-APS) isolated from the Mediterranean marine sponge, Haliclona (Rhizoniera) sarai, effectively inhibit barnacle larva settlement and natural marine biofilm formation through a non-toxic and reversible mechanism. Potential use of poly-APS-like compounds as antifouling agents led to the chemical synthesis of monomeric and oligomeric 3-alkylpyridinium analogues. However, these are less efficient in settlement assays and have greater toxicity than the natural polymers. Recently, a new chemical synthesis method enabled the production of poly-APS analogues with antibacterial, antifungal and anti-acetylcholinesterase activities. The present study examines the antifouling properties and toxicity of six of these synthetic poly-APS using the barnacle (Amphibalanus amphitrite) as a model (cyprids and II stage nauplii larvae) in settlement, acute and sub-acute toxicity assays. Two compounds, APS8 and APS12-3, show antifouling effects very similar to natural poly-APS, with an anti-settlement effective concentration that inhibits 50% of the cyprid population settlement (EC50) after 24 h of 0.32 mg/L and 0.89 mg/L, respectively. The toxicity of APS8 is negligible, while APS12-3 is three-fold more toxic (24-h LC50: nauplii, 11.60 mg/L; cyprids, 61.13 mg/L) than natural poly-APS. This toxicity of APS12-3 towards nauplii is, however, 60-fold and 1200-fold lower than that of the common co-biocides, Zn- and Cu-pyrithione, respectively. Additionally, exposure to APS12-3 for 24 and 48 h inhibits the naupliar swimming ability with respective IC50 of 4.83 and 1.86 mg/L. PMID:24699112

  20. Antifouling Activity of Synthetic Alkylpyridinium Polymers Using the Barnacle Model

    Directory of Open Access Journals (Sweden)

    Veronica Piazza

    2014-04-01

    Full Text Available Polymeric alkylpyridinium salts (poly-APS isolated from the Mediterranean marine sponge, Haliclona (Rhizoniera sarai, effectively inhibit barnacle larva settlement and natural marine biofilm formation through a non-toxic and reversible mechanism. Potential use of poly-APS-like compounds as antifouling agents led to the chemical synthesis of monomeric and oligomeric 3-alkylpyridinium analogues. However, these are less efficient in settlement assays and have greater toxicity than the natural polymers. Recently, a new chemical synthesis method enabled the production of poly-APS analogues with antibacterial, antifungal and anti-acetylcholinesterase activities. The present study examines the antifouling properties and toxicity of six of these synthetic poly-APS using the barnacle (Amphibalanus amphitrite as a model (cyprids and II stage nauplii larvae in settlement, acute and sub-acute toxicity assays. Two compounds, APS8 and APS12-3, show antifouling effects very similar to natural poly-APS, with an anti-settlement effective concentration that inhibits 50% of the cyprid population settlement (EC50 after 24 h of 0.32 mg/L and 0.89 mg/L, respectively. The toxicity of APS8 is negligible, while APS12-3 is three-fold more toxic (24-h LC50: nauplii, 11.60 mg/L; cyprids, 61.13 mg/L than natural poly-APS. This toxicity of APS12-3 towards nauplii is, however, 60-fold and 1200-fold lower than that of the common co-biocides, Zn- and Cu-pyrithione, respectively. Additionally, exposure to APS12-3 for 24 and 48 h inhibits the naupliar swimming ability with respective IC50 of 4.83 and 1.86 mg/L.

  1. Antifouling Activity of Secondary Metabolites Isolated from Chinese Marine Organisms

    KAUST Repository

    Li, Yong Xin

    2013-04-25

    Biofouling results in tremendous economic losses to maritime industries around the world. A recent global ban on the use of organotin compounds as antifouling agents has further raised demand for safe and effective antifouling compounds. In this study, 49 secondary metabolites, including diterpenoids, steroids, and polyketides, were isolated from soft corals, gorgonians, brown algae, and fungi collected along the coast of China, and their antifouling activity was tested against cyprids of the barnacle Balanus (Amphibalanus) amphitrite. Twenty of the compounds were found to inhibit larval settlement significantly at a concentration of 25 μg ml-1. Two briarane diterpenoids, juncin O (2) and juncenolide H (3), were the most promising non-toxic antilarval settlement candidates, with EC50 values less than 0.13 μg ml-1 and a safety ratio (LC50/EC50) higher than 400. A preliminary structure-activity relationships study indicated that both furanon and furan moieties are important for antifouling activity. Intriguingly, the presence of hydroxyls enhanced their antisettlement activity. © 2013 Springer Science+Business Media New York.

  2. Antifouling Activity of Secondary Metabolites Isolated from Chinese Marine Organisms

    KAUST Repository

    Li, Yong Xin; Wu, Hui Xian; Xu, Ying; Shao, Chang Lun; Wang, Chang Yun; Qian, Pei Yuan

    2013-01-01

    Biofouling results in tremendous economic losses to maritime industries around the world. A recent global ban on the use of organotin compounds as antifouling agents has further raised demand for safe and effective antifouling compounds. In this study, 49 secondary metabolites, including diterpenoids, steroids, and polyketides, were isolated from soft corals, gorgonians, brown algae, and fungi collected along the coast of China, and their antifouling activity was tested against cyprids of the barnacle Balanus (Amphibalanus) amphitrite. Twenty of the compounds were found to inhibit larval settlement significantly at a concentration of 25 μg ml-1. Two briarane diterpenoids, juncin O (2) and juncenolide H (3), were the most promising non-toxic antilarval settlement candidates, with EC50 values less than 0.13 μg ml-1 and a safety ratio (LC50/EC50) higher than 400. A preliminary structure-activity relationships study indicated that both furanon and furan moieties are important for antifouling activity. Intriguingly, the presence of hydroxyls enhanced their antisettlement activity. © 2013 Springer Science+Business Media New York.

  3. Potent Antifouling Marine Dihydroquinolin-2(1H)-one-Containing Alkaloids from the Gorgonian Coral-Derived Fungus Scopulariopsis sp.

    Science.gov (United States)

    Shao, Chang-Lun; Xu, Ru-Fang; Wang, Chang-Yun; Qian, Pei-Yuan; Wang, Kai-Ling; Wei, Mei-Yan

    2015-08-01

    Marine biofouling has a major economic impact, especially when it occurs on ship hulls or aquaculture facilities. Since the International Maritime Organization (IMO) treaty to ban the application of organotin-based paints to ships went into effect in 2008, there is an urgent demand for the development of efficient and environmentally friendly antifouling agents. Marine microorganisms have proved to be a potential source of antifouling natural compounds. In this study, six dihydroquinolin-2-one-containing alkaloids, three monoterpenoids combined with a 4-phenyl-3,4-dihydroquinolin-2(1H)-one (1-3) and three 4-phenyl-3,4-dihydroquinolin-2(1H)-one alkaloids (4-6), were isolated from the gorgonian coral-derived fungus Scopulariopsis sp. collected in the South China Sea. These dihydroquinolin-2-one-containing alkaloids were evaluated against the larval settlement of barnacle Balanus amphitrite, and antifouling activity was detected for the first time for this class of metabolites. All of them except 6 showed strong antifouling activity. Compounds 1 and 2 were discovered to be the most promising non-toxic antilarval settlement candidates. Especially, compound 1 is the strongest antifouling compound in nature until now which showed highly potent activity with picomolar level (EC50 17.5 pM) and a very safety and high therapeutic ratio (LC50/EC50 1200). This represents an effective non-toxic, anti-larval settlement structural class of promising antifouling lead compound.

  4. Potent Antifouling Marine Dihydroquinolin-2(1H)-one-Containing Alkaloids from the Gorgonian Coral-Derived Fungus Scopulariopsis sp.

    KAUST Repository

    Shao, Chang Lun

    2015-04-02

    Marine biofouling has a major economic impact, especially when it occurs on ship hulls or aquaculture facilities. Since the International Maritime Organization (IMO) treaty to ban the application of organotin-based paints to ships went into effect in 2008, there is an urgent demand for the development of efficient and environmentally friendly antifouling agents. Marine microorganisms have proved to be a potential source of antifouling natural compounds. In this study, six dihydroquinolin-2-one-containing alkaloids, three monoterpenoids combined with a 4-phenyl-3,4-dihydroquinolin-2(1H)-one (1–3) and three 4-phenyl-3,4-dihydroquinolin-2(1H)-one alkaloids (4–6), were isolated from the gorgonian coral-derived fungus Scopulariopsis sp. collected in the South China Sea. These dihydroquinolin-2-one-containing alkaloids were evaluated against the larval settlement of barnacle Balanus amphitrite, and antifouling activity was detected for the first time for this class of metabolites. All of them except 6 showed strong antifouling activity. Compounds 1 and 2 were discovered to be the most promising non-toxic antilarval settlement candidates. Especially, compound 1 is the strongest antifouling compound in nature until now which showed highly potent activity with picomolar level (EC50 17.5 pM) and a very safety and high therapeutic ratio (LC50/EC50 1200). This represents an effective non-toxic, anti-larval settlement structural class of promising antifouling lead compound. © 2015 Springer Science+Business Media New York

  5. Isocyanides Derived from α,α-Disubstituted Amino Acids: Synthesis and Antifouling Activity Assessment.

    Science.gov (United States)

    Inoue, Yuki; Takashima, Shuhei; Nogata, Yasuyuki; Yoshimura, Erina; Chiba, Kazuhiro; Kitano, Yoshikazu

    2018-03-01

    Herein, we contribute to the development of environmentally friendly antifoulants by synthesizing eighteen isocyanides derived from α,α-disubstituted amino acids and evaluating their antifouling activity/toxicity against the cypris larvae of the Balanus amphitrite barnacle. Almost all isocyanides showed good antifouling activity without significant toxicity and exhibited EC 50 values of 0.07 - 7.30 μg/mL after 120-h exposure. The lowest EC 50 values were observed for valine-, methionine-, and phenylalanine-derived isocyanides, which achieved > 95% cypris larvae settlement inhibition at concentrations of less than 30 μg/mL without exhibiting significant toxicity. Thus, the prepared isocyanides should be useful for further research focused on the development of environmentally friendly antifouling agents. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  6. Field results of antifouling techniques for optical instruments

    Science.gov (United States)

    Strahle, W.J.; Hotchkiss, F.S.; Martini, Marinna A.

    1998-01-01

    An anti-fouling technique is developed for the protection of optical instruments from biofouling which leaches a bromide compound into a sample chamber and pumps new water into the chamber prior to measurement. The primary advantage of using bromide is that it is less toxic than the metal-based antifoulants. The drawback of the bromide technique is also discussed.

  7. Risks of Using Antifouling Biocides in Aquaculture

    Science.gov (United States)

    Guardiola, Francisco Antonio; Cuesta, Alberto; Meseguer, José; Esteban, Maria Angeles

    2012-01-01

    Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT). The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211®), Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine), zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i) predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii) the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF) biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms. PMID:22408407

  8. Risks of Using Antifouling Biocides in Aquaculture

    Directory of Open Access Journals (Sweden)

    José Meseguer

    2012-02-01

    Full Text Available Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT. The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211®, Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine, zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms.

  9. Antifouling potential of the marine microalga Dunaliella salina.

    Science.gov (United States)

    Gao, Min; Li, Fengchao; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2014-11-01

    Marine organisms have usually been viewed as sources of environmentally friendly compounds with antifouling activity. We performed a series of operations to investigate the antifouling potential of the marine microalga Dunaliella salina. For the ethyl acetate crude extract, the antialgal activity was significant, and the EC50 value against Skeletonema costatum was 58.9 μg ml(-1). The isolated purified extract was tested for antifouling activity, the EC 50 value against S. costatum was 21.2 μg ml(-1), and the LC50 against Balanus amphitrite larvae was 18.8 μg ml(-1). Subsequently, both UHR-TOF-MS and GC-MS were used for the structural elucidation of the compounds, and a series of unsaturated and saturated 16- and 18-carbon fatty acids were detected. The data suggested that the fatty acid extracts from D. salina possess high antifouling activity, and could be used as substitutes for potent, toxic antifouling compounds.

  10. New biocides for antifouling paints

    International Nuclear Information System (INIS)

    Mazziotti, Isabella; Massanisso, Paolo; Cremisini, Carlo; Chiavarini, Salvatore; Fantini, Michele; Morabito, Roberto

    2005-01-01

    The antifouling paints are used for protecting the hulls of the boasts from the undesirable accumulation of micro-organisms, plants, and animals on artificial surfaces (marine biological fouling). These paints constitute a potential risk for the marine environment, because of the presence in their formulation, among the other potentially toxic components, of organic compounds acting as biocide. The environmental problems associated with the use of the organotin compounds as biocides in the antifouling paints, have lead to the international ban of these compounds. In the article the new antifouling paints coming up the national and international market are shortly introduced and discussed, with particular attention respect to the new organic compounds used as biocides. In Italy quite a few marine monitoring campaigns have been carried out for organotin compounds, on the contrary there is a lack of data regarding the presence of other biocides [it

  11. Layer-by-layer-assembled healable antifouling films.

    Science.gov (United States)

    Chen, Dongdong; Wu, Mingda; Li, Bochao; Ren, Kefeng; Cheng, Zhongkai; Ji, Jian; Li, Yang; Sun, Junqi

    2015-10-21

    Healable antifouling films are fabricated by the exponential layer-by-layer assembly of PEGylated branched poly(ethylenimine) and hyaluronic acid followed by post-crosslinking. The antifouling function originates from the grafted PEG and the extremely soft nature of the films. The rapid and multiple healing of damaged antifouling functions caused by cuts and scratches can be readily achieved by immersing the films in normal saline solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Evaluation of low copper content antifouling paints containing natural phenolic compounds as bioactive additives.

    Science.gov (United States)

    Pérez, Miriam; García, Mónica; Blustein, Guillermo

    2015-08-01

    Cuprous oxide is the most commonly used biocide in antifouling paints. However, copper has harmful effects not only on the fouling community but also on non-target species. In the current study, we investigated the use of thymol, eugenol and guaiacol in this role combined with small quantities of copper. Phenolic compounds were tested for anti-settlement activity against cyprid larvae of the barnacle Balanus amphitrite and for their toxicity to nauplius larvae. Thymol, eugenol and guaiacol were active for anti-settlement but guaiacol had the disadvantage of being toxic to nauplius larvae. However, all of them showed therapeutic ratio>1. Antifouling paints with thymol (low copper content/thymol, LCP/T), eugenol (low copper content/eugenol, LCP/E) and guaiacol (low copper content/guaiacol, LCP/G) combined with small copper content were formulated for field trials. After 12 months exposure in the sea, statistical analysis revealed that LCP/T and LCP/E paints were the most effective combinations and had similar performances to control paints with high copper content (traditional cuprous oxide based paints). In contrast, LCP/G paint was only partially effective in preventing and inhibiting biofouling and was colonized by some hard and soft foulers. However, this antifouling paint was effective against calcareous tubeworm Hydroides elegans. In the light of various potential applications, thymol, eugenol and guaiacol have thus to be considered in future antifouling formulations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Antifouling Activity of Marine Natural Products

    KAUST Repository

    Qian, Pei-Yuan

    2012-01-01

    With the global ban of application of organotin-based marine coatings by International Maritime Organization in 2008, there is a practical and urgent need of identifying environmentally friendly low-toxic and nontoxic antifouling compounds for marine industries. Marine natural products have been considered as one of the most promising sources of antifouling compounds in recent years. In antifouling compound screening processes, bioassay systems often play most critical/vital roles in screening efforts. To meet various needs, a variety of bioassay systems have been developed and/or adopted in both research and commercial laboratories. In this chapter, we provide a brief outline of common bioassay procedures for both antimicrofouling and antimacrofouling assays, which can serve as a general guideline for setting up bioassay systems in laboratories engaged in antifouling compound screening. Some bioassay procedures currently practiced in various laboratories are not included in this book chapter for various reasons. Individual laboratories should modify bioassay protocols based on their research interests or needs. Nevertheless, we highly recommend the research laboratories to adapt high-throughput assays as much as possible for preliminary screening assays, followed by more complex bioassay processes using multiple target species. We argue strongly for studies in mode-of-action of antifouling compounds against settling propagules, which shall lead to discovery of molecular biomarkers (genes, proteins, receptors, or receptor system) and will allow us to design more targeted bioassay systems.

  14. Minimally Adhesive, Advanced Non-toxic Coatings of Dendrimeric Catalysts in Sol-Gel Matrices

    Science.gov (United States)

    2015-10-19

    Catalysts in Sol -Gel Matrices 5a. CONTRACT NUMBER 5b. GRANT NUMBER N00014-09-1-0217 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Detty, Michael R. 5d...Technical Report for ONR N00014-09-1-0217 Minimally Adhesive, Advanced Non-toxic Coatings of Dendrimeric Catalysts in Sol -Gel Matrices Michael R. Detty, PI...Environmentally benign sol -gel antifouling and foul-releasing coatings. Ace. Chem. Res. 2014, 47, 678-687. 11) Alberto, E. E.; Müller, L. M

  15. Antifouling efficacy of a controlled depletion paint formulation with acetophenone

    Directory of Open Access Journals (Sweden)

    Sangmok Jung

    2017-12-01

    Full Text Available Biofouling is an inevitable problem that occurs continually on marine fishing vessels and other small crafts. The nature of the antifouling (AF coatings used to prevent biofouling on these small vessels is of great environmental concern. Therefore, the efficacy of a non-toxic AF candidate, acetophenone, was evaluated in preliminary laboratory assays using marine bacteria, diatom and Ulva spores. At a low concentration of 100 μg cm–2 of acetophenone, spore attachment of a green fouling alga was significantly reduced (p < 0.01. Similarly, 40% acetophenone coatings significantly inhibited diatom attachment. This new non-toxic AF agent was incorporated into controlled depletion paint (CDP. Fouling coverage (%, biomass, and fouling resistance (% were estimated. On CDP coatings made with acetophenone (40%, a significant decrease in fouling biomass was estimated (p < 0.01.

  16. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingjing, E-mail: jjwang1@hotmail.com; Wei, Jun

    2016-09-30

    Highlights: • Crosslinked hydrogel brushes were grafted from SS surfaces for marine antifouling. • All brush-coated SS surfaces could effectively reduce the adhesion of biofouling. • The antifouling efficacy increased with the crosslinking density of hydrogels. - Abstract: Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  17. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    International Nuclear Information System (INIS)

    Wang, Jingjing; Wei, Jun

    2016-01-01

    Highlights: • Crosslinked hydrogel brushes were grafted from SS surfaces for marine antifouling. • All brush-coated SS surfaces could effectively reduce the adhesion of biofouling. • The antifouling efficacy increased with the crosslinking density of hydrogels. - Abstract: Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  18. Preparation of robust braid-reinforced poly(vinyl chloride) ultrafiltration hollow fiber membrane with antifouling surface and application to filtration of activated sludge solution.

    Science.gov (United States)

    Zhou, Zhuang; Rajabzadeh, Saeid; Fang, Lifeng; Miyoshi, Taro; Kakihana, Yuriko; Matsuyama, Hideto

    2017-08-01

    Braid-reinforced hollow fiber membranes with high mechanical properties and considerable antifouling surface were prepared by blending poly(vinyl chloride) (PVC) with poly(vinyl chloride-co-poly(ethylene glycol) methyl ether methacrylate) (poly(VC-co-PEGMA)) copolymer via non-solvent induced phase separation (NIPS). The tensile strength of the braid-reinforced PVC hollow fiber membranes were significantly larger than those of previously reported various types of PVC hollow fiber membranes. The high interfacial bonding strength indicated the good compatibility between the coating materials and the surface of polyethylene terephthalate (PET)-braid. Owing to the surface segregation phenomena, the membrane surface PEGMA coverage increased upon increasing the poly(VC-co-PEGMA)/PVC blending ratio, resulting in higher hydrophilicities and bovine serum albumin (BSA) repulsion. To compare the fouling properties, membranes with similar PWPs were prepared by adjusting the dope solution composition to eliminate the effect of hydrodynamic conditions on the membrane fouling performance. The blend membranes surface exhibited considerable fouling resistance to the molecular adsorption from both BSA solution and activated sludge solution. In both cases, the flux recovered to almost 80% of the initial flux using only water backflush. Considering their great mechanical properties and antifouling resistance to activated sludge solution, these novel membranes show good potential for application in wastewater treatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Microfouling on biocidal and non-biocidal antifouling coatings

    Directory of Open Access Journals (Sweden)

    Thirumahal Muthukrishnan

    2015-01-01

    Full Text Available Although antifouling marine paints have been used to prevent biofouling, not much is known about their effectiveness in preventing attachment of microorganisms. The current study aims at estimating the abundance of bacteria within biofilms developed on various commercial antifouling coatings in Marina Bandar Rowdha and Marina Shangri La, Oman. Coatings tested included Pettit #1863 and #1792, West Marine #11046620, #5566252 and #10175206, Hempel Hard Racing #76484, Hempel Olympic #86950, Hempasil X3 and International YBA920. All coatings were applied on clean plastic slides. Slides without any coating were used as controls. Microbial biofilms were harvested after 2, 7 and 14 days of biofouling. Bacterial density was estimated using epifluorescence microscopy. There was a significant difference between the various treatments (coatings and control after 2, 7 and 14 days of biofouling. Although there were significant differences between both locations after 2 and 14 days of biofouling, no significant difference was observed after 7 days of biofouling at both locations. At Shangri La, the lowest bacterial density was found on International YBA920, Pettit #1792 and Hempasil X3 after 2 days, 7 days and 14 days respectively in comparison to the control treatments. However at Bandar Rowdha, International YBA920 showed the lowest bacterial density after 2 days while West Marine #10175206 showed the lowest bacterial density after both 7 days and 14 days of biofouling in comparison to the control treatment. The differential performance of tested antifouling coatings may be attributed to several factors including varying environmental conditions, difference in microfouling communities, time of exposure and physical and chemical properties of antifouling coating.

  20. Surface thiolation of silicon for antifouling application.

    Science.gov (United States)

    Zhang, Xiaoning; Gao, Pei; Hollimon, Valerie; Brodus, DaShan; Johnson, Arion; Hu, Hongmei

    2018-02-07

    Thiol groups grafted silicon surface was prepared as previously described. 1H,1H,2H,2H-perfluorodecanethiol (PFDT) molecules were then immobilized on such a surface through disulfide bonds formation. To investigate the contribution of PFDT coating to antifouling, the adhesion behaviors of Botryococcus braunii (B. braunii) and Escherichia coli (E. coli) were studied through biofouling assays in the laboratory. The representative microscope images suggest reduced B. braunii and E. coli accumulation densities on PFDT integrated silicon substrate. However, the antifouling performance of PFDT integrated silicon substrate decreased over time. By incubating the aged substrate in 10 mM TCEP·HCl solution for 1 h, the fouled PFDT coating could be removed as the disulfide bonds were cleaved, resulting in reduced absorption of algal cells and exposure of non-fouled silicon substrate surface. Our results indicate that the thiol-terminated substrate can be potentially useful for restoring the fouled surface, as well as maximizing the effective usage of the substrate.

  1. Probing structure-antifouling activity relationships of polyacrylamides and polyacrylates.

    Science.gov (United States)

    Zhao, Chao; Zhao, Jun; Li, Xiaosi; Wu, Jiang; Chen, Shenfu; Chen, Qiang; Wang, Qiuming; Gong, Xiong; Li, Lingyan; Zheng, Jie

    2013-07-01

    We have synthesized two different polyacrylamide polymers with amide groups (polySBAA and polyHEAA) and two corresponding polyacrylate polymers without amide groups (polySBMA and polyHEA), with particular attention to the evaluation of the effect of amide group on the hydration and antifouling ability of these systems using both computational and experimental approaches. The influence of polymer architectures of brushes, hydrogels, and nanogels, prepared by different polymerization methods, on antifouling performance is also studied. SPR and ELISA data reveal that all polymers exhibit excellent antifouling ability to repel proteins from undiluted human blood serum/plasma, and such antifouling ability can be further enhanced by presenting amide groups in polySBAA and polyHEAA as compared to polySBMA and polyHEA. The antifouling performance is positively correlated with the hydration properties. Simulations confirm that four polymers indeed have different hydration characteristics, while all presenting a strong hydration overall. Integration of amide group with pendant hydroxyl or sulfobetaine group in polymer backbones is found to increase their surface hydration of polymer chains and thus to improve their antifouling ability. Importantly, we present a proof-of-concept experiment to synthesize polySBAA nanogels, which show a switchable property between antifouling and pH-responsive functions driven by acid-base conditions, while still maintaining high stability in undiluted fetal bovine serum and minimal toxicity to cultured cells. This work provides important structural insights into how very subtle structural changes in polymers can yield great improvement in biological activity, specifically the inclusion of amide group in polymer backbone/sidechain enables to obtain antifouling materials with better performance for biomedical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    Science.gov (United States)

    Wang, Jingjing; Wei, Jun

    2016-09-01

    Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  3. Negatively charged polysulfone membranes with hydrophilicity and antifouling properties based on in situ cross-linked polymerization.

    Science.gov (United States)

    Zhu, Lijing; Song, Haiming; Zhang, Dawei; Wang, Gang; Zeng, Zhixiang; Xue, Qunji

    2017-07-15

    Polysulfone (PSf) membrane has been widely used in water separation and purification, although, membrane fouling is still a serious problem limiting its potential. We aim to improve the antifouling of PSf membranes via a very simple and efficient method. In this work, antifouling PSf membranes were fabricated via in situ cross-linked polymerization coupled with non-solvent induced phase separation. In brief, acrylic acid (AA) and vinyltriethoxysilane (VTEOS) were copolymerized in PSf solution, then directly casted into membranes without purification. With the increase of monomers concentration, the morphology of the as-cast membranes changed from a finger-like morphology to a fully sponge-like structure due to the increased viscosity and decreased precipitation rate of the polymer solutions. Meanwhile, the hydrophilicity and electronegativity of modified membranes were highly improved leading to inhibited protein adsorption and improved antifouling property. Furthermore, in order to further find out the different roles player by AA and VTESO, the modified membrane without VTEOS was prepared and characterized. The results indicated that AA is more effective in the membrane hydrophilicity improvement, VTEOS is more crucial to improve membrane stability. This work provides valuable guidance for fabricating PSf membranes with hydrophilicity and antifouling property via in situ cross-linked polymerization. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Effect of Surface Hydration on Antifouling Properties of Mixed Charged Polymers.

    Science.gov (United States)

    Leng, Chuan; Huang, Hao; Zhang, Kexin; Hung, Hsiang-Chieh; Xu, Yao; Li, Yaoxin; Jiang, Shaoyi; Chen, Zhan

    2018-05-07

    Interfacial water structure on a polymer surface in water (or surface hydration) is related to the antifouling activity of the polymer. Zwitterionic polymer materials exhibit excellent antifouling activity due to their strong surface hydration. It was proposed to replace zwitterionic polymers using mixed charged polymers because it is much easier to prepare mixed charged polymer samples with much lower costs. In this study, using sum frequency generation (SFG) vibrational spectroscopy, we investigated interfacial water structures on mixed charged polymer surfaces in water, and how such structures change while exposing to salt solutions and protein solutions. The 1:1 mixed charged polymer exhibits excellent antifouling property while other mixed charged polymers with different ratios of the positive/negative charges do not. It was found that on the 1:1 mixed charged polymer surface, SFG water signal is dominated by the contribution of the strongly hydrogen bonded water molecules, indicating strong hydration of the polymer surface. The responses of the 1:1 mixed charged polymer surface to salt solutions are similar to those of zwitterionic polymers. Interestingly, exposure to high concentrations of salt solutions leads to stronger hydration of the 1:1 mixed charged polymer surface after replacing the salt solution with water. Protein molecules do not substantially perturb the interfacial water structure on the 1:1 mixed charged polymer surface and do not adsorb to the surface, showing that this mixed charged polymer is an excellent antifouling material.

  5. Antifouling activity of the methanolic extract of Syringodium isoetifolium, and its toxicity relative to tributyltin on the ovarian development of brown mussel Perna indica.

    Science.gov (United States)

    Iyapparaj, P; Revathi, P; Ramasubburayan, R; Prakash, S; Anantharaman, P; Immanuel, G; Palavesam, A

    2013-03-01

    The present study evaluated reproductive toxicity and antifouling activity of methanolic extract of seagrass Syringodium isoetifolium (25 μg/ml) relative to the conventional antifoulant, tributyltin (TBT; 100 ng/l) on the ovarian development of the brown mussel Perna indica. Gonado Somatic Index (GSI) and Digestive Gland Index (DGI) of TBT exposed mussels decreased in comparison with mussels exposed to S. isoetifolium extract. Interestingly, mussels treated with S. isoetifolium showed normal cellular architecture in gills, digestive gland, muscle and ovary. However, TBT increased interfilamental space and fusion of the filaments in gills, disruption in the digestive tubules and reduction in basement membrane thickness. Besides in adductor muscle, TBT induced muscle degeneration, and necrotic muscle layer. In ovary, TBT inflicted the fusion of developing oocytes. TBT had significantly retarded the ovarian development and substantially affected the biochemical constituents leading to an impairment of oogenesis as against the null effects noticed from the S. isoetifolium extract treated mussels. On the ground of eco-friendly properties, the seagrass S. isoetifolium could be used as a source for the production of green antifoulant. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Natural antifouling compound production by microbes associated with marine macroorganisms — A review

    Directory of Open Access Journals (Sweden)

    Sathianeson Satheesh

    2016-05-01

    Full Text Available In the marine environment, all hard surfaces including marine macroorganims are colonized by microorganisms mainly from the surrounding environment. The microorganisms associated with marine macroorganisms offer tremendous potential for exploitation of bioactive metabolites. Biofouling is a continuous problem in marine sectors which needs huge economy for control and cleaning processes. Biotechnological way for searching natural product antifouling compounds gained momentum in recent years because of the environmental pollution associated with the use of toxic chemicals to control biofouling. While, natural product based antifoulants from marine organisms particularly sponges and corals attained significance due to their activities in field assays, collection of larger amount of organisms from the sea is not a viable one. The microorganisms associated with sponges, corals, ascidians, seaweeds and seagrasses showed strong antimicrobial and also antifouling activities. This review highlights the advances in natural product antifoulants research from microbes associated with marine organisms.

  7. Superior Antifouling Performance of a Zwitterionic Peptide Compared to an Amphiphilic, Non-Ionic Peptide.

    Science.gov (United States)

    Ye, Huijun; Wang, Libing; Huang, Renliang; Su, Rongxin; Liu, Boshi; Qi, Wei; He, Zhimin

    2015-10-14

    The aim of this study was to explore the influence of amphiphilic and zwitterionic structures on the resistance of protein adsorption to peptide self-assembled monolayers (SAMs) and gain insight into the associated antifouling mechanism. Two kinds of cysteine-terminated heptapeptides were studied. One peptide had alternating hydrophobic and hydrophilic residues with an amphiphilic sequence of CYSYSYS. The other peptide (CRERERE) was zwitterionic. Both peptides were covalently attached onto gold substrates via gold-thiol bond formation. Surface plasmon resonance analysis results showed that both peptide SAMs had ultralow or low protein adsorption amounts of 1.97-11.78 ng/cm2 in the presence of single proteins. The zwitterionic peptide showed relatively higher antifouling ability with single proteins and natural complex protein media. We performed molecular dynamics simulations to understand their respective antifouling behaviors. The results indicated that strong surface hydration of peptide SAMs contributes to fouling resistance by impeding interactions with proteins. Compared to the CYSYSYS peptide, more water molecules were predicted to form hydrogen-bonding interactions with the zwitterionic CRERERE peptide, which is in agreement with the antifouling test results. These findings reveal a clear relation between peptide structures and resistance to protein adsorption, facilitating the development of novel peptide-containing antifouling materials.

  8. Image Cytometric Analysis of Algal Spores for Evaluation of Antifouling Activities of Biocidal Agents.

    Science.gov (United States)

    Il Koo, Bon; Lee, Yun-Soo; Seo, Mintae; Seok Choi, Hyung; Leng Seah, Geok; Nam, Taegu; Nam, Yoon Sung

    2017-07-31

    Chemical biocides have been widely used as marine antifouling agents, but their environmental toxicity impose regulatory restriction on their use. Although various surrogate antifouling biocides have been introduced, their comparative effectiveness has not been well investigated partly due to the difficulty of quantitative evaluation of their antifouling activity. Here we report an image cytometric method to quantitatively analyze the antifouling activities of seven commercial biocides using Ulva prolifera as a target organism, which is known to be a dominant marine species causing soft fouling. The number of spores settled on a substrate is determined through image analysis using the intrinsic fluorescence of chlorophylls in the spores. Pre-determined sets of size and shape of spores allow for the precise determination of the number of settled spores. The effects of biocide concentration and combination of different biocides on the spore settlement are examined. No significant morphological changes of Ulva spores are observed, but the amount of adhesive pad materials is appreciably decreased in the presence of biocides. It is revealed that the growth rate of Ulva is not directly correlated with the antifouling activities against the settlement of Ulva spores. This work suggests that image cytometric analysis is a very convenient, fast-processable method to directly analyze the antifouling effects of biocides and coating materials.

  9. Effects of antifouling biocides to the germination and growth of the marine macroalga, Hormosira banksii (Turner) Desicaine

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Jackie H. [School of Ecology and Environment, Deakin University, P.O. Box 423, Warrnambool, Victoria 3280 (Australia) and Department of Primary Industries Research Victoria, Queenscliff, P.O. Box 114 Queenscliff, Victoria 3225 (Australia) and School of Biological Sciences, Monash University, Clayton Campus, Clayton, Victoria 3800 (Australia)]. E-mail jhmyers@deakin.edu.au; Gunthorpe, Leanne [Department of Primary Industries Research Victoria, Queenscliff, P.O. Box 114 Queenscliff, Victoria 3225 (Australia)]. E-mail Leanne.Gunthorpe@dpi.vic.gov.au; Allinson, Graeme [School of Ecology and Environment, Deakin University, P.O. Box 423, Warrnambool, Victoria 3280 (Australia)]. E-mail graemea@deakin.edu.au; Duda, Susan [Department of Primary Industries Research Victoria, Queenscliff, P.O. Box 114 Queenscliff, Victoria 3225 (Australia)]. E-mail Susan.Duda@dpi.vic.gov.au

    2006-09-15

    The International Maritime Organisation's (IMO) ban on the use of tributyltin in antifouling paints has inevitability increased the use of old fashioned antifoulants and/or the development of new paints containing 'booster biocides'. These newer paints are intended to be environmentally less harmful, however the broader environmental effects of these 'booster biocides' are poorly known. Germination and growth inhibition tests using the marine macroalga, Hormosira banksii (Turner) Desicaine were conducted to evaluate the toxicity of four new antifouling biocides in relation to tributyltin-oxide (TBTO). Each of the biocides significantly inhibited germination and growth of Hormosira banksii spores. Toxicity was in increasing order: diuron < zineb < seanine 211 < zinc pyrithione < TBTO. However, the lack of knowledge on partitioning in the environment makes it difficult to make a full assessment on whether the four biocides tested offer an advantage over organotin paints in terms of environmental impact.

  10. Effects of antifouling biocides to the germination and growth of the marine macroalga, Hormosira banksii (Turner) Desicaine

    International Nuclear Information System (INIS)

    Myers, Jackie H. . E-mail jhmyers@deakin.edu.au; Gunthorpe, Leanne . E-mail Leanne.Gunthorpe@dpi.vic.gov.au; Allinson, Graeme . E-mail graemea@deakin.edu.au; Duda, Susan . E-mail Susan.Duda@dpi.vic.gov.au

    2006-01-01

    The International Maritime Organisation's (IMO) ban on the use of tributyltin in antifouling paints has inevitability increased the use of old fashioned antifoulants and/or the development of new paints containing 'booster biocides'. These newer paints are intended to be environmentally less harmful, however the broader environmental effects of these 'booster biocides' are poorly known. Germination and growth inhibition tests using the marine macroalga, Hormosira banksii (Turner) Desicaine were conducted to evaluate the toxicity of four new antifouling biocides in relation to tributyltin-oxide (TBTO). Each of the biocides significantly inhibited germination and growth of Hormosira banksii spores. Toxicity was in increasing order: diuron < zineb < seanine 211 < zinc pyrithione < TBTO. However, the lack of knowledge on partitioning in the environment makes it difficult to make a full assessment on whether the four biocides tested offer an advantage over organotin paints in terms of environmental impact

  11. Antifouling Compounds from Marine Macroalgae.

    Science.gov (United States)

    Dahms, Hans Uwe; Dobretsov, Sergey

    2017-08-28

    Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way.

  12. Sediments indicate the continued use of banned antifouling compounds.

    Science.gov (United States)

    Egardt, Jenny; Nilsson, Per; Dahllöf, Ingela

    2017-12-15

    Antifouling paints are widely used to avoid organisms settling on boat hulls. The active ingredients in the paints have differed over the years where lead, TBT, irgarol and diuron have been deemed too harmful to non-target organisms and subsequently been banned within the EU. Most of these compounds however are persistent in the environment and can cause problems long after they are deposited. We have examined if present-day and banned substances used in antifouling paints can be found in sediments in a national park on the Swedish west coast. Sampled locations include waterways, natural harbours and small marinas for leisure crafts to investigate if number of visiting boats affect the concentration of antifouling compounds in sediments. Few significant differences were found when comparing the different locations types, suggesting that overall boat presence is more important than specific mooring sites, however, several banned antifouling compounds were found in the surface sediments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Antifouling effect of bioactive compounds from marine sponge Acanthella elongata and different species of bacterial film on larval attachment of Balanus amphitrite (cirripedia, crustacea

    Directory of Open Access Journals (Sweden)

    Viswambaran Ganapiriya

    2012-06-01

    Full Text Available The antifouling activity of bioactive compounds from marine sponge Acanthella elongata (Dendy and five species of bacterial biofilm were studied. Larvae of Balanus amphitrite (Cyprids and nauplii were used to monitor the settlement inhibition and the extent to which inhibition was due to toxicity. The crude extract and partially purified fractions of A.elongata showed significant inhibition over the settlement individually, and with the interaction of bacterial species. No bacterial film stimulated the barnacle settlement. The high but variable levels of antifouling activity in combination with less amount of toxicity showed the potential of these metabolites in environmentally-friendly antifouling preparations.

  14. Characterization of Terpenoids from the Root of Ceriops tagal with Antifouling Activity

    Science.gov (United States)

    Chen, Jun-De; Yi, Rui-Zao; Lin, Yi-Ming; Feng, Dan-Qing; Zhou, Hai-Chao; Wang, Zhan-Chang

    2011-01-01

    One new dimeric diterpenoid, 8(14)-enyl-pimar-2′(3′)-en-4′(18′)-en-15′(16′)-endolabr- 16,15,2′,3′-oxoan-16-one (1) and five known terpenoids: Tagalsin C (2), Tagalsin I (3), lup-20(29)-ene-3β,28-diol (4), 3-oxolup-20(29)-en-28-oic acid (5) and 28-hydroxylup- 20(29)-en-3-one (6) were isolated from the roots of the mangrove plant Ceriops tagal. Their structures and relative stereochemistry were elucidated by means of extensive NMR, IR and MS analysis. The antifouling activity against larval settlement of the barnacle Balanus albicostatus were evaluated using capsaicin as a positive control. All these terpenoids exhibited antifouling activity against cyprid larvae of the barnacle without significant toxicity. The structure-activity relationship results demonstrated that the order of antifouling activity was diterpenoid (Compound 2) > triterpenoid (Compounds 4, 5 and 6) > dimeric diterpenoid (Compounds 1 and 3). The functional groups on the C-28 position of lupane triterpenoid significantly affect the antifouling activity. The diterpenoid dimmer with two identical diterpenoid subunits might display more potent antifouling activity than one with two different diterpenoid subunits. The stability test showed that Compounds 2, 4, 5 and 6 remained stable over 2-month exposure under filtered seawater. PMID:22072902

  15. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions

    KAUST Repository

    Chen, Lianguo

    2015-01-01

    © 2014 Elsevier Ltd. Here, we investigated the degradation kinetics of butenolide, a promising antifouling compound, under various environmental conditions. The active ingredient of the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), was used as positive control. The results showed that the degradation rate increased with increasing temperature. Half-lives of butenolide at 4. °C, 25. °C and 40. °C were. >64. d, 30.5. d and 3.9. d, respectively. Similar half-lives were recorded for DCOIT: >64. d at 4. °C, 27.9. d at 25. °C and 4.5. d at 40. °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7. d and 6.8. d, respectively, compared with 9.7. d and 14.4. d for the dark control. Biodegradation led to the fastest rate of butenolide removal from natural seawater, with a half-life of 0.5. d, while no obvious degradation was observed for DCOIT after incubation for 4. d. The biodegradative ability of natural seawater for butenolide was attributed mainly to marine bacteria. During the degradation of butenolide and DCOIT, a gradual decrease in antifouling activity was observed, as indicated by the increased settlement percentage of cypris larvae from barnacle Balanus amphitrite. Besides, increased cell growth of marine diatom Skeletonema costatum demonstrated that the toxicity of seawater decreased gradually without generation of more toxic by-products. Overall, rapid degradation of butenolide in natural seawater supported its claim as a promising candidate for commercial antifouling industry.

  16. Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings.

    Science.gov (United States)

    Bixler, Gregory D; Theiss, Andrew; Bhushan, Bharat; Lee, Stephen C

    2014-04-01

    Material scientists often look to biology for new engineering solutions to materials science problems. For example, unique surface characteristics of rice leaves and butterfly wings combine the shark skin (antifouling) and lotus leaf (self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we study antifouling properties of four microstructured surfaces inspired by rice leaves and fabricated with photolithography and hot embossing techniques. Anti-biofouling effectiveness is determined with bioassays using Escherichia coli whilst inorganic fouling with simulated dirt particles. Antifouling data are presented to understand the role of surface geometrical features resistance to fouling. Conceptual modeling provides design guidance when developing novel antifouling surfaces for applications in the medical, marine, and industrial fields. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Integrated antifouling and bactericidal polymer membranes through bioinspired polydopamine/poly(N-vinyl pyrrolidone) coating

    International Nuclear Information System (INIS)

    Wang, Xianghong; Yuan, Shuaishuai; Shi, Dean; Yang, Yingkui; Jiang, Tao; Yan, Shunjie; Shi, Hengchong; Luan, Shifang; Yin, Jinghua

    2016-01-01

    Graphical abstract: - Highlights: • Antifouling and bactericidal capabilities were facilely integrated into a surface via bioinspired coating. • The modification technique was very facile and universal to different types of substrate materials. • The integrated antifouling and bactericidal surfaces have great potential in wound dressing applications. - Abstract: Polypropylene (PP) non-woven has been widely used as wound dressing; however, the hydrophobic nature of PP can initiate bacterial attachment and subsequent biofilm formation. Herein, we propose a facile approach to functionalize PP non-woven with poly(ethylene glycol) (PEG) and poly(N-vinyl pyrrolidone)-iodine complex (PVP-I). PVP and PEG were successively tethered onto PP non-woven surface via versatile bioinspired dopamine (DA) chemistry, followed by complexing iodine with PVP moieties. It was demonstrated through the field emission scanning electron microscope (SEM) and spread plate method that the as-modified PP non-woven integrated both antifouling property of PEG for suppressing bacterial adhesion, and bactericidal property of PVP-I for killing the few adherent bacteria. Meanwhile, it could greatly resist platelet and red blood cell adhesion. The integrated antifouling and bactericidal PP non-woven surfaces might have great potential in various wound dressing applications.

  18. Integrated antifouling and bactericidal polymer membranes through bioinspired polydopamine/poly(N-vinyl pyrrolidone) coating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianghong [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Yuan, Shuaishuai [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Shi, Dean, E-mail: deanshi2012@yahoo.com [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Yang, Yingkui; Jiang, Tao [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Yan, Shunjie; Shi, Hengchong [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Luan, Shifang, E-mail: sfluan@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin, Jinghua [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2016-07-01

    Graphical abstract: - Highlights: • Antifouling and bactericidal capabilities were facilely integrated into a surface via bioinspired coating. • The modification technique was very facile and universal to different types of substrate materials. • The integrated antifouling and bactericidal surfaces have great potential in wound dressing applications. - Abstract: Polypropylene (PP) non-woven has been widely used as wound dressing; however, the hydrophobic nature of PP can initiate bacterial attachment and subsequent biofilm formation. Herein, we propose a facile approach to functionalize PP non-woven with poly(ethylene glycol) (PEG) and poly(N-vinyl pyrrolidone)-iodine complex (PVP-I). PVP and PEG were successively tethered onto PP non-woven surface via versatile bioinspired dopamine (DA) chemistry, followed by complexing iodine with PVP moieties. It was demonstrated through the field emission scanning electron microscope (SEM) and spread plate method that the as-modified PP non-woven integrated both antifouling property of PEG for suppressing bacterial adhesion, and bactericidal property of PVP-I for killing the few adherent bacteria. Meanwhile, it could greatly resist platelet and red blood cell adhesion. The integrated antifouling and bactericidal PP non-woven surfaces might have great potential in various wound dressing applications.

  19. Antifouling potential of Nature-inspired sulfated compounds

    Science.gov (United States)

    Almeida, Joana R.; Correia-da-Silva, Marta; Sousa, Emília; Antunes, Jorge; Pinto, Madalena; Vasconcelos, Vitor; Cunha, Isabel

    2017-02-01

    Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL-1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL-1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina ( 1000 μg.mL-1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents.

  20. Inorganic precursor peroxides for antifouling coatings

    DEFF Research Database (Denmark)

    Olsen, S.M.; Pedersen, L.T.; Hermann, M.H.

    2009-01-01

    Modern antifouling coatings are generally based on cuprous oxide (Cu2O) and organic biocides as active ingredients. Cu2O is prone to bioaccumulation, and should therefore be replaced by more environmentally benign compounds when technically possible. However, cuprous oxide does not only provide...... antifouling properties, it is also a vital ingredient for the antifouling coating to obtain its polishing and leaching mechanism. In this paper, peroxides of strontium, calcium, magnesium, and zinc are tested as pigments in antifouling coatings. The peroxides react with seawater to create hydrogen peroxide...... matrix provides antifouling properties exceeding those of a similar coating based entirely on zinc oxide....

  1. Antifouling properties of hydrogels

    International Nuclear Information System (INIS)

    Murosaki, Takayuki; Gong, Jian Ping; Ahmed, Nafees

    2011-01-01

    Marine sessile organisms easily adhere to submerged solids such as rocks, metals and plastics, but not to seaweeds and fishes, which are covered with soft and wet 'hydrogel'. Inspired by this fact, we have studied long-term antifouling properties of hydrogels against marine sessile organisms. Hydrogels, especially those containing hydroxy group and sulfonic group, show excellent antifouling activity against barnacles both in laboratory assays and in the marine environment. The extreme low settlement on hydrogels in vitro and in vivo is mainly caused by antifouling properties against the barnacle cypris. (topical review)

  2. Antifouling properties of hydrogels

    Directory of Open Access Journals (Sweden)

    Takayuki Murosaki, Nafees Ahmed and Jian Ping Gong

    2011-01-01

    Full Text Available Marine sessile organisms easily adhere to submerged solids such as rocks, metals and plastics, but not to seaweeds and fishes, which are covered with soft and wet 'hydrogel'. Inspired by this fact, we have studied long-term antifouling properties of hydrogels against marine sessile organisms. Hydrogels, especially those containing hydroxy group and sulfonic group, show excellent antifouling activity against barnacles both in laboratory assays and in the marine environment. The extreme low settlement on hydrogels in vitro and in vivo is mainly caused by antifouling properties against the barnacle cypris.

  3. Enzyme-based antifouling coatings: a review

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller; Pedersen, Leif Toudal; Laursen, M.H.

    2007-01-01

    A systematic overview is presented of the literature that reports the antifouling (AF) protection of underwater structures via the action of enzymes. The overall aim of this review is to assess the state of the art of enzymatic AF technology, and to highlight the obstacles that have to be overcome...... for successful development of enzymatic AF coatings. The approaches described in the literature are divided into direct and indirect enzymatic AF, depending on the intended action of the enzymes. Direct antifouling is used when the enzymes themselves are active antifoulants. Indirect antifouling refers...

  4. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lijing, E-mail: zhulijing@nimte.ac.cn; Song, Haiming; Wang, Jiarong; Xue, Lixin, E-mail: xuelx@nimte.ac.cn

    2017-05-01

    Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique. The prepared membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which suggested that VP and VTEOS have been cross-linked copolymerized in PSf membranes. The modified PSf membranes with high polymer content showed improved hydrophilicity, ultrafiltration and protein antifouling ability. In addition, the modified PSf membranes showed lower protein adsorption, inhibited platelet adhesion and deformation, prolonged the activated partial thromboplastin time (APTT), prothrombin time (PT), and decreased the content of fibrinogen (FIB) transferring to fibrin, indicating enhanced hemocompatibility. In a word, the present work provides a simple and effective one-step modification method to construct PSf membranes with improved hydrophilicity, antifouling and hemocompatibility. - Highlights: • PSf membranes were modified by in situ cross-linked polymerization. • The modified PSf membranes showed enhanced hydrophilicity. • The anti-fouling and hemocompatibility of PSf membranes were improved.

  5. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization

    International Nuclear Information System (INIS)

    Zhu, Lijing; Song, Haiming; Wang, Jiarong; Xue, Lixin

    2017-01-01

    Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique. The prepared membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which suggested that VP and VTEOS have been cross-linked copolymerized in PSf membranes. The modified PSf membranes with high polymer content showed improved hydrophilicity, ultrafiltration and protein antifouling ability. In addition, the modified PSf membranes showed lower protein adsorption, inhibited platelet adhesion and deformation, prolonged the activated partial thromboplastin time (APTT), prothrombin time (PT), and decreased the content of fibrinogen (FIB) transferring to fibrin, indicating enhanced hemocompatibility. In a word, the present work provides a simple and effective one-step modification method to construct PSf membranes with improved hydrophilicity, antifouling and hemocompatibility. - Highlights: • PSf membranes were modified by in situ cross-linked polymerization. • The modified PSf membranes showed enhanced hydrophilicity. • The anti-fouling and hemocompatibility of PSf membranes were improved.

  6. Praktijktest antifouling op touwen

    NARCIS (Netherlands)

    Kamermans, P.; Gool, van A.C.M.; Perdon, K.J.

    2003-01-01

    In een bassin op het RIVO is een praktijktest van 6 weken uitgevoerd ten behoeve van een kwantitatieve onderbouwing van de effectiviteit van antifouling op vezels voor viskooien. Er zijn twee typen antifouling (Netrex en Lago) en drie typen vezels getest. Gedurende de gehele proef vond geen aangroei

  7. Silica micro- and nanoparticles reduce the toxicity of surfactant solutions.

    Science.gov (United States)

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Fernández-Serrano, Mercedes; Jurado, Encarnación; Lechuga, Manuela

    2018-04-20

    In this work, the toxicity of hydrophilic fumed silica micro- and nanoparticles of various sizes (7 nm, 12 nm, and 50 μm) was evaluated using the luminescent bacteria Vibrio fischeri. In addition, the toxicity of an anionic surfactant solution (ether carboxylic acid), a nonionic surfactant solution (alkyl polyglucoside), and a binary (1:1) mixture of these solutions all containing these silica particles was evaluated. Furthermore, this work discusses the adsorption of surfactants onto particle surfaces and evaluates the effects of silica particles on the surface tension and critical micellar concentration (CMC) of these anionic and nonionic surfactants. It was determined that silica particles can be considered as non-toxic and that silica particles reduce the toxicity of surfactant solutions. Nevertheless, the toxicity reduction depends on the ionic character of the surfactants. Differences can be explained by the different adsorption behavior of surfactants onto the particle surface, which is weaker for nonionic surfactants than for anionic surfactants. Regarding the effects on surface tension, it was found that silica particles increased the surface activity of anionic surfactants and considerably reduced their CMC, whereas in the case of nonionic surfactants, the effects were reversed. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Molecular Design of Antifouling Polymer Brushes Using Sequence-Specific Peptoids.

    Science.gov (United States)

    Lau, King Hang Aaron; Sileika, Tadas S; Park, Sung Hyun; Sousa, Ana Maria Leal; Burch, Patrick; Szleifer, Igal; Messersmith, Phillip B

    2015-01-07

    Material systems that can be used to flexibly and precisely define the chemical nature and molecular arrangement of a surface would be invaluable for the control of complex biointerfacial interactions. For example, progress in antifouling polymer biointerfaces that prevent non-specific protein adsorption and cell attachment, which can significantly improve the performance of an array of biomedical and industrial applications, is hampered by a lack of chemical models to identify the molecular features conferring their properties. Poly(N-substituted glycine) "peptoids" are peptidomimetic polymers that can be conveniently synthesized with specific monomer sequences and chain lengths, and are presented as a versatile platform for investigating the molecular design of antifouling polymer brushes. Zwitterionic antifouling polymer brushes have captured significant recent attention, and a targeted library of zwitterionic peptoid brushes with a different charge densities, hydration, separations between charged groups, chain lengths, and grafted chain densities, is quantitatively evaluated for their antifouling properties through a range of protein adsorption and cell attachment assays. Specific zwitterionic brush designs were found to give rise to distinct but subtle differences in properties. The results also point to the dominant roles of the grafted chain density and chain length in determining the performance of antifouling polymer brushes.

  9. Synthesis and characterization of antifouling poly(N-acryloylaminoethoxyethanol) with ultralow protein adsorption and cell attachment.

    Science.gov (United States)

    Chen, Hong; Zhang, Mingzhen; Yang, Jintao; Zhao, Chao; Hu, Rundong; Chen, Qiang; Chang, Yung; Zheng, Jie

    2014-09-02

    Rational design of effective antifouling polymers is challenging but important for many fundamental and applied applications. Herein we synthesize and characterize an N-acryloylaminoethoxyethanol (AAEE) monomer, which integrates three hydrophilic groups of hydroxyl, amide, and ethylene glycol in the same material. AAEE monomers were further grafted and polymerized on gold substrates to form polyAAEE brushes with well-controlled thickness via surface-initiated atomic transfer radical polymerization (SI-ATRP), with particular attention to a better understanding of the molecular structure-antifouling property relationship of hydroxyl-acrylic-based polymers. The surface hydrophilicity and antifouling properties of polyAAEE brushes as a function of film thickness are studied by combined experimental and computational methods including surface plasmon resonance (SPR) sensors, atomic force microscopy (AFM), cell adhesion assay, and molecular dynamics (MD) simulations. With the optimal polymer film thicknesses (∼10-40 nm), polyAAEE-grafted surfaces can effectively resist protein adsorption from single-protein solutions and undiluted human blood plasma and serum to a nonfouling level (i.e., antifouling properties. The molecular structure-antifouling properties relationship of a series of hydroxyl-acrylic-based polymers is also discussed. This work hopefully provides a promising structural motif for the design of new effective antifouling materials beyond traditional ethylene glycol-based antifouling materials.

  10. Zwitterionic materials for antifouling membrane surface construction.

    Science.gov (United States)

    He, Mingrui; Gao, Kang; Zhou, Linjie; Jiao, Zhiwei; Wu, Mengyuan; Cao, Jialin; You, Xinda; Cai, Ziyi; Su, Yanlei; Jiang, Zhongyi

    2016-08-01

    Membrane separation processes are often perplexed by severe and ubiquitous membrane fouling. Zwitterionic materials, keeping electric neutrality with equivalent positive and negative charged groups, are well known for their superior antifouling properties and have been broadly utilized to construct antifouling surfaces for medical devices, biosensors and marine coatings applications. In recent years, zwitterionic materials have been more and more frequently utilized for constructing antifouling membrane surfaces. In this review, the antifouling mechanisms of zwitterionic materials as well as their biomimetic prototypes in cell membranes will be discussed, followed by the survey of common approaches to incorporate zwitterionic materials onto membrane surfaces including surface grafting, surface segregation, biomimetic adhesion, surface coating and so on. The potential applications of these antifouling membranes are also embedded. Finally, we will present a brief perspective on the future development of zwitterionic materials modified antifouling membranes. Membrane fouling is a severe problem hampering the application of membrane separation technology. The properties of membrane surfaces play a critical role in membrane fouling and antifouling behavior/performance. Antifouling membrane surface construction has evolved as a hot research issue for the development of membrane processes. Zwitterionic modification of membrane surfaces has been recognized as an effective strategy to resist membrane fouling. This review summarizes the antifouling mechanisms of zwitterionic materials inspired by cell membranes as well as the popular approaches to incorporate them onto membrane surfaces. It can help form a comprehensive knowledge about the principles and methods of modifying membrane surfaces with zwitterionic materials. Finally, we propose the possible future research directions of zwitterionic materials modified antifouling membranes. Copyright © 2016 Acta Materialia Inc

  11. Antifouling Compounds from Marine Invertebrates

    OpenAIRE

    Qi, Shu-Hua; Ma, Xuan

    2017-01-01

    In this review, a comprehensive overview about the antifouling compounds from marine invertebrates is described. In total, more than 198 antifouling compounds have been obtained from marine invertebrates, specifically, sponges, gorgonian and soft corals.

  12. Antifouling Compounds from Marine Invertebrates.

    Science.gov (United States)

    Qi, Shu-Hua; Ma, Xuan

    2017-08-28

    In this review, a comprehensive overview about the antifouling compounds from marine invertebrates is described. In total, more than 198 antifouling compounds have been obtained from marine invertebrates, specifically, sponges, gorgonian and soft corals.

  13. Corrosion protection and antifouling properties of varnish-coated steel containing natural additive

    Directory of Open Access Journals (Sweden)

    Abd-El-Nabey Besheir Ahmed A.

    2017-01-01

    Full Text Available The corrosion protection and antifouling properties of varnish-coated steel panels containing different amounts of cannabis extracts were investigated using electrochemical impedance spectroscopy (EIS, salt spray and immersion tests in 0.5 M NaCl solution and subjected to a field test in seawater. Analysis of the experimental data showed that the presence of cannabis extract resisted the deterioration (peeling off tendency of the varnish-coated steel panels exposed to aggressive environments. Visual inspection showed that the cannabis extract also provided good antifouling properties.

  14. Developmental toxicity of organotin compounds in animals

    Directory of Open Access Journals (Sweden)

    Lijiao eWu

    2014-09-01

    Full Text Available Organotin compounds (OTs have been used as biocides in antifouling paints and agriculture. The IMO introduced a global ban on the use of OTs in antifouling systems in 2001 due to their high toxicity. However, OTs have still been detected in the environment and pose a threat to the ecosystem. Several research groups have summarized the analytical methods, environmental fate, biochemistry, reproductive toxicity and mechanisms of actions of OTs. Here, we reviewed the developmental toxicity of OTs in various organisms such as sea urchin, ascidian, mussel and fish. The differences in sensitivity to OT exposure exist not only in different species but also at different stages in the same species. Though some hypotheses have been proposed to explain the developmental toxicity of OTs, the solid evidences are greatly in need.

  15. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization.

    Science.gov (United States)

    Zhu, Lijing; Song, Haiming; Wang, Jiarong; Xue, Lixin

    2017-05-01

    Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique. The prepared membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which suggested that VP and VTEOS have been cross-linked copolymerized in PSf membranes. The modified PSf membranes with high polymer content showed improved hydrophilicity, ultrafiltration and protein antifouling ability. In addition, the modified PSf membranes showed lower protein adsorption, inhibited platelet adhesion and deformation, prolonged the activated partial thromboplastin time (APTT), prothrombin time (PT), and decreased the content of fibrinogen (FIB) transferring to fibrin, indicating enhanced hemocompatibility. In a word, the present work provides a simple and effective one-step modification method to construct PSf membranes with improved hydrophilicity, antifouling and hemocompatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Incorporation of the zosteric sodium salt in silica nanocapsules: synthesis and characterization of new fillers for antifouling coatings

    Science.gov (United States)

    Ruggiero, Ludovica; Crociani, Laura; Zendri, Elisabetta; El Habra, Naida; Guerriero, Paolo

    2018-05-01

    In the last decade many commercial biocides were gradually banned for toxicity. This work reports, for the first time, the synthesis and characterization of silica nanocontainers loaded with a natural product antifoulant (NPA), the zosteric sodium salt which is a non-commercial and environmentally friendly product with natural origin. The synthesis approach is a single step dynamic self-assembly with tetraethoxysilane (TEOS) as silica precursor. Unlike conventional mesoporous silica nanoparticles, the structure of these silica nanocontainers provides loading capacity and allows prolonged release of biocide species. The obtained nanocapsules have been characterized morphologically by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The encapsulation was checked by FTIR ATR spectroscopy and thermogravimetric analyses. The results of the release studies show the great potential of the here presented newly developed nanofillers in all applications where a controlled release of non-toxic and environmentally friendly biocides is required.

  17. New Antifouling Platform Characterized by Single-Molecule Imaging

    Science.gov (United States)

    2015-01-01

    Antifouling surfaces have been widely studied for their importance in medical devices and industry. Antifouling surfaces mostly achieved by methoxy-poly(ethylene glycol) (mPEG) have shown biomolecular adsorption less than 1 ng/cm2 which was measured by surface analytical tools such as surface plasmon resonance (SPR) spectroscopy, quartz crystal microbalance (QCM), or optical waveguide lightmode (OWL) spectroscopy. Herein, we utilize a single-molecule imaging technique (i.e., an ultimate resolution) to study antifouling properties of functionalized surfaces. We found that about 600 immunoglobulin G (IgG) molecules are adsorbed. This result corresponds to ∼5 pg/cm2 adsorption, which is far below amount for the detection limit of the conventional tools. Furthermore, we developed a new antifouling platform that exhibits improved antifouling performance that shows only 78 IgG molecules adsorbed (∼0.5 pg/cm2). The antifouling platform consists of forming 1 nm TiO2 thin layer, on which peptidomimetic antifouling polymer (PMAP) is robustly anchored. The unprecedented antifouling performance can potentially revolutionize a variety of research fields such as single-molecule imaging, medical devices, biosensors, and others. PMID:24503420

  18. New antifouling platform characterized by single-molecule imaging.

    Science.gov (United States)

    Ryu, Ji Young; Song, In Taek; Lau, K H Aaron; Messersmith, Phillip B; Yoon, Tae-Young; Lee, Haeshin

    2014-03-12

    Antifouling surfaces have been widely studied for their importance in medical devices and industry. Antifouling surfaces mostly achieved by methoxy-poly(ethylene glycol) (mPEG) have shown biomolecular adsorption less than 1 ng/cm(2) which was measured by surface analytical tools such as surface plasmon resonance (SPR) spectroscopy, quartz crystal microbalance (QCM), or optical waveguide lightmode (OWL) spectroscopy. Herein, we utilize a single-molecule imaging technique (i.e., an ultimate resolution) to study antifouling properties of functionalized surfaces. We found that about 600 immunoglobulin G (IgG) molecules are adsorbed. This result corresponds to ∼5 pg/cm(2) adsorption, which is far below amount for the detection limit of the conventional tools. Furthermore, we developed a new antifouling platform that exhibits improved antifouling performance that shows only 78 IgG molecules adsorbed (∼0.5 pg/cm(2)). The antifouling platform consists of forming 1 nm TiO2 thin layer, on which peptidomimetic antifouling polymer (PMAP) is robustly anchored. The unprecedented antifouling performance can potentially revolutionize a variety of research fields such as single-molecule imaging, medical devices, biosensors, and others.

  19. Thyroid cancer in toxic and non-toxic multinodular goiter

    Directory of Open Access Journals (Sweden)

    Cerci C

    2007-01-01

    Full Text Available Background : Many authors have claimed that hyperthyroidism protects against thyroid cancer and believed that the incidence of malignancy is lower in patients with toxic multinodular goiter (TMG than in those with non-toxic multinodular goiter. But in recent studies, it was reported that the incidence of malignancy with TMG is not as low as previously thought. Aim : To compare the thyroid cancer incidence in patients with toxic and non-toxic multinodular goiter. Settings and Design : Histology reports of patients treated surgically with a preoperative diagnosis of toxic and non-toxic multinodular goiter were reviewed to identify the thyroid cancer incidence. Patients having a history of neck irradiation or radioactive iodine therapy were excluded from the study. Materials and Methods : We reviewed 294 patients operated between 2001-2005 from toxic and non-toxic multinodular goiter. One hundred and twenty-four of them were toxic and 170 were non-toxic. Hyperthyroidism was diagnosed by elevated tri-iodothyroinine / thyroxine ratios and low thyroid-stimulating hormone with clinical signs and symptoms. All patients were evaluated with ultrasonography and scintigraphy and fine needle aspiration biopsy. Statistical Analysis Used : Significance of the various parameters was calculated by using ANOVA test. Results : The incidence of malignancy was 9% in the toxic and 10.58% in the non-toxic multinodular goiter group. Any significant difference in the incidence of cancer and tumor size between the two groups could not be detected. Conclusions : The incidence of malignancy in toxic multinodular goiter is not very low as thought earlier and is nearly the same in non-toxic multinodular goiter.

  20. Generation of Hybrid Peptide-Silver Nanoparticles for Antibacterial and Antifouling Applications

    KAUST Repository

    Seferji, Kholoud

    2018-01-01

    and antifouling agents. Our innovative antibacterial agents are hybrid peptide silver nanoparticles (CH-01-AgNPs) that are created de novo and in situ from a silver nitrate solution (AgNO3) in the presence of ultrashort self-assembling peptides compounds

  1. A new bioassay for the inspection and identification of TBT-containing antifouling paint.

    Science.gov (United States)

    Gueuné, Hervé; Thouand, Gérald; Durand, Marie-José

    2009-11-01

    Since the 1960s tributyl (TBT)-based antifouling paints are widely applied to protect ship's hulls from biofouling. Due to its high toxicity to aquatic ecosystem most of the countries (28 nations in 2008) signed the AFS convention to control the use of harmful antifouling systems on ships. Nevertheless there is currently no simple method to control the presence of organotin in paint. In this study, we propose a bioassay based on the use of a recombinant bioluminescent bacteria to detect directly in paint the presence of TBT. We also propose a simple device as an inspection system to control the absence of organotin in the ship's hull paint. The presence of organotin could be revealed in less than three hours.

  2. Preparation and Characterization of Amphiphilic Triblock Terpolymer-Based Nanofibers as Antifouling Biomaterials

    KAUST Repository

    Cho, Youngjin; Cho, Daehwan; Park, Jay Hoon; Frey, Margaret W.; Ober, Christopher K.; Joo, Yong Lak

    2012-01-01

    as KB) and fabricated amphiphilic nanofibers by electrospinning of solutions prepared by mixing the KB with poly(lactic acid) (PLA) polymer. The resulting fibers with amphiphilic polymer groups exhibited superior antifouling performance to the fibers

  3. Accumulation of Cu and Zn from antifouling paint particles by the marine macroalga, Ulva lactuca

    International Nuclear Information System (INIS)

    Turner, Andrew; Pollock, Heather; Brown, Murray T.

    2009-01-01

    The marine macroalga, Ulva lactuca, has been exposed to different concentrations of antifouling paint particles (4-200 mg L -1 ) in the presence of a fixed quantity of clean estuarine sediment and its photosynthetic response and accumulation of Cu and Zn monitored over a period of 2 days. An immediate (<2 h) toxic effect was elicited under all experimental conditions that was quantitatively related to the concentration of contaminated particles present. Likewise, the rate of leaching of both Cu and Zn was correlated with the concentration of paint particles added. Copper accumulation by the alga increased linearly with aqueous Cu concentration, largely through adsorption to the cell surface, but significant accumulation of Zn was not observed. Thus, in coastal environments where boat maintenance is practiced, discarded antifouling paint particles are an important source of Cu, but not Zn, to U. lactuca. - The marine macroalga, Ulva lactuca, is able to accumulate Cu but not Zn from discarded antifouling paint particles.

  4. Accumulation of Cu and Zn from antifouling paint particles by the marine macroalga, Ulva lactuca

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Andrew, E-mail: aturner@plymouth.ac.u [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Pollock, Heather [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Brown, Murray T. [School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-08-15

    The marine macroalga, Ulva lactuca, has been exposed to different concentrations of antifouling paint particles (4-200 mg L{sup -1}) in the presence of a fixed quantity of clean estuarine sediment and its photosynthetic response and accumulation of Cu and Zn monitored over a period of 2 days. An immediate (<2 h) toxic effect was elicited under all experimental conditions that was quantitatively related to the concentration of contaminated particles present. Likewise, the rate of leaching of both Cu and Zn was correlated with the concentration of paint particles added. Copper accumulation by the alga increased linearly with aqueous Cu concentration, largely through adsorption to the cell surface, but significant accumulation of Zn was not observed. Thus, in coastal environments where boat maintenance is practiced, discarded antifouling paint particles are an important source of Cu, but not Zn, to U. lactuca. - The marine macroalga, Ulva lactuca, is able to accumulate Cu but not Zn from discarded antifouling paint particles.

  5. The feasibility and application of PPy in cathodic polarization antifouling.

    Science.gov (United States)

    Jia, Meng-Yang; Zhang, Zhi-Ming; Yu, Liang-Min; Wang, Jia; Zheng, Tong-Tong

    2018-04-01

    Cathodic polarization antifouling deserves attention because of its environmentally friendly nature and good sustainability. It has been proven that cathodic voltages applied on metal substrates exhibit outstanding antifouling effects. However, most metals immersed in marine environment are protected by insulated anticorrosive coatings, restricting the cathodic polarization applied on metals. This study developed a conducting polypyrrole (PPy)/acrylic resin coating (σ = 0.18 Scm -1 ), which can be applied in cathodic polarization antifouling. The good stability and electro-activity of PPy in the negative polarity zone in alkalescent NaCl solution were verified by linear sweep voltammetry (LSV), chronoamperometry (CA), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), demonstrating the feasibility of PPy as cathodic polarization material. Furthermore, the antifouling effects of PPy/acrylicresin coating on 24-h old Escherichia coli bacteria (E. coli) which formed on PPy/acrylic resin-coated plastic plate were measured under different cathodic potentials and treatment time, characterized by fluorescent microscope. The results suggest that at cathodic potential around -0.5 V (vs. saturated calomel electrode (SCE)), there was little trace of attached bacteria on the substrate after 20 min of treatment. PPy/acrylicresin-coated substrates were also subjected to repeated cycles of biofilm formation and electrochemical removal, where high removal efficiencies were maintained throughout the total polarization process. Under these conditions, the generation of hydrogen peroxide is believed to be responsible for the antifouling effects because of causing oxidative damage to cells, suggesting the potential of the proposed technology for application on insulated surfaces in various industrial settings. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Nontoxic piperamides and their synthetic analogues as novel antifouling reagents

    KAUST Repository

    Huang, Xiang-Zhong

    2014-03-25

    Bioassay-guided isolation of an acetone extract from a terrestrial plant Piper betle produced four known piperamides with potent antifouling (AF) activities, as evidenced by inhibition of settlement of barnacle cypris larvae. The AF activities of the four piperamides and 15 synthesized analogues were compared and their structure-activity relationships were probed. Among the compounds, piperoleine B and 1-[1-oxo-7-(3′,4′-methylenedioxyphenyl)-6E-heptenyl]-piperidine (MPHP) showed strong activity against settlement of cyprids of the barnacle Balanus amphitrite, having EC50 values of 1.1 ± 0.3 and 0.5 ± 0.2 μg ml-1, respectively. No toxicity against zebra fish was observed following incubation with these two compounds. Besides being non-toxic, 91% of piperoleine B-treated cyprids and 84% of MPHP-treated cyprids at a concentration of 100 μM completed normal metamorphosis in recovery bioassays, indicating that the anti-settlement effect of these two compounds was reversible. Hydrolysis and photolysis experiments indicated that MPHP could be decomposed in the marine environment. It is concluded that piperamides are promising compounds for use in marine AF coatings. © 2014 © 2014 Taylor & Francis.

  7. Entrapment of subtilisin in ceramic sol-gel coating for antifouling applications.

    Science.gov (United States)

    Regina, Viduthalai Rasheedkhan; Søhoel, Helmer; Lokanathan, Arcot Raghupathi; Bischoff, Claus; Kingshott, Peter; Revsbech, Niels Peter; Meyer, Rikke Louise

    2012-11-01

    Enzymes with antifouling properties are of great interest in developing nontoxic antifouling coatings. A bottleneck in developing enzyme-based antifouling coatings is to immobilize the enzyme in a suitable coating matrix without compromising its activity and stability. Entrapment of enzymes in ceramics using the sol-gel method is known to have several advantages over other immobilization methods. The sol-gel method can be used to make robust coatings, and the aim of this study was to explore if sol-gel technology can be used to develop robust coatings harboring active enzymes for antifouling applications. We successfully entrapped a protease, subtilisin (Savinase, Novozymes), in a ceramic coating using a sol-gel method. The sol-gel formulation, when coated on a stainless steel surface, adhered strongly and cured at room temperature in less than 8 h. The resultant coating was smoother and less hydrophobic than stainless steel. Changes in the coating's surface structure, thickness and chemistry indicate that the coating undergoes gradual erosion in aqueous medium, which results in release of subtilisin. Subtilisin activity in the coating increased initially, and then gradually decreased. After 9 months, 13% of the initial enzyme activity remained. Compared to stainless steel, the sol-gel-coated surfaces with active subtilisin were able to reduce bacterial attachment of both Gram positive and Gram negative bacteria by 2 orders of magnitude. Together, our results demonstrate that the sol-gel method is a promising coating technology for entrapping active enzymes, presenting an interesting avenue for enzyme-based antifouling solutions.

  8. Structural optimization and evaluation of butenolides as potent antifouling agents: modification of the side chain affects the biological activities of compounds

    KAUST Repository

    Li, Yongxin

    2012-09-01

    A recent global ban on the use of organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. In this study, a series of new butenolide derivatives with various amine side chains was synthesized and evaluated for their anti-larval settlement activities in the barnacle, Balanus amphitrite. Side chain modification of butenolide resulted in butenolides 3c-3d, which possessed desirable physico-chemical properties and demonstrated highly effective non-toxic anti-larval settlement efficacy. A structure-activity relationship analysis revealed that varying the alkyl side chain had a notable effect on anti-larval settlement activity and that seven to eight carbon alkyl side chains with a tert-butyloxycarbonyl (Boc) substituent on an amine terminal were optimal in terms of bioactivity. Analysis of the physico-chemical profile of butenolide analogues indicated that lipophilicity is a very important physico-chemical parameter contributing to bioactivity. © 2012 Copyright Taylor and Francis Group, LLC.

  9. Structural optimization and evaluation of butenolides as potent antifouling agents: modification of the side chain affects the biological activities of compounds

    KAUST Repository

    Li, Yongxin; Zhang, Fengying; Xu, Ying; Matsumura, Kiyotaka; Han, Zhuang; Liu, Lingli; Lin, Wenhan; Jia, Yanxing; Qian, Pei Yuan

    2012-01-01

    A recent global ban on the use of organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. In this study, a series of new butenolide derivatives with various amine side chains was synthesized and evaluated for their anti-larval settlement activities in the barnacle, Balanus amphitrite. Side chain modification of butenolide resulted in butenolides 3c-3d, which possessed desirable physico-chemical properties and demonstrated highly effective non-toxic anti-larval settlement efficacy. A structure-activity relationship analysis revealed that varying the alkyl side chain had a notable effect on anti-larval settlement activity and that seven to eight carbon alkyl side chains with a tert-butyloxycarbonyl (Boc) substituent on an amine terminal were optimal in terms of bioactivity. Analysis of the physico-chemical profile of butenolide analogues indicated that lipophilicity is a very important physico-chemical parameter contributing to bioactivity. © 2012 Copyright Taylor and Francis Group, LLC.

  10. Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors

    Directory of Open Access Journals (Sweden)

    Anna Miodek

    2015-09-01

    Full Text Available An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT and further passivated with 1-mercapto-6-hexanol (MCH. HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS, the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples.

  11. Antifouling Activity of Marine Natural Products

    KAUST Repository

    Qian, Pei-Yuan; Xu, Sharon Ying

    2012-01-01

    for marine industries. Marine natural products have been considered as one of the most promising sources of antifouling compounds in recent years. In antifouling compound screening processes, bioassay systems often play most critical/vital roles in screening

  12. Preparation and Characterization of Amphiphilic Triblock Terpolymer-Based Nanofibers as Antifouling Biomaterials

    KAUST Repository

    Cho, Youngjin

    2012-05-14

    Antifouling surfaces are critical for the good performance of functional materials in various applications including water filtration, medical implants, and biosensors. In this study, we synthesized amphiphilic triblock terpolymers (tri-BCPs, coded as KB) and fabricated amphiphilic nanofibers by electrospinning of solutions prepared by mixing the KB with poly(lactic acid) (PLA) polymer. The resulting fibers with amphiphilic polymer groups exhibited superior antifouling performance to the fibers without such groups. The adsorption of bovine serum albumin (BSA) on the amphiphilic fibers was about 10-fold less than that on the control surfaces from PLA and PET fibers. With the increase of the KB content in the amphiphilic fibers, the resistance to adsorption of BSA was increased. BSA was released more easily from the surface of the amphiphilic fibers than from the surface of hydrophobic PLA or PET fibers. We have also investigated the structural conformation of KB in fibers before and after annealing by contact angle measurements, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and coarse-grained molecular dynamics (CGMD) simulation to probe the effect of amphiphilic chain conformation on antifouling. The results reveal that the amphiphilic KB was evenly distributed within as-spun hybrid fibers, while migrated toward the core from the fiber surface during thermal treatment, leading to the reduction in antifouling. This suggests that the antifouling effect of the amphiphilic fibers is greatly influenced by the arrangement of amphiphilic groups in the fibers. © 2012 American Chemical Society.

  13. Facile modification of electrospun fibrous structures with antifouling zwitterionic hydrogels.

    Science.gov (United States)

    Xu, Tong; Yang, Jing; Zhang, Jiamin; Zhu, Yingnan; Li, Qingsi; Pan, Chao; Zhang, Lei

    2017-12-28

    Electrospinning technology can easily produce different shaped fibrous structures, making them highly valuable to various biomedical applications. However, surface contamination of biomolecules, cells, or blood has emerged as a significant challenge to the success of electrospun devices, especially artificial blood vessels, catheters and wound dressings etc. Many efforts have been made to resist the surface non-specific biomolecules or cells adsorption, but most of them require complex pre-treatment processes, hard-to-remove metal catalysts or rigorous reaction conditions. In addition, the stability of antifouling coatings, especially in complex conditions, is still a major concern. In this work, inspired by the interpenetrating polymer network and reinforced concrete structure, an efficient and facile strategy for modifying hydrophobic electrospun meshes and tubes with antifouling zwitterionic hydrogels has been introduced. The resulting products could efficiently resist the adhesion of proteins, cells, or even fresh whole blood. Meanwhile, they could maintain the shapes and mechanical strength of the original electrospun structures. Furthermore, the hydrogel structures could retain stable in a physiological condition for at least 3 months. This paper provided a general antifouling and hydrophilicity surface modification strategy for various fibrous structures, and could be of great value for many biomedical applications where antifouling properties are critical.

  14. Searching for “Environmentally-Benign” Antifouling Biocides

    Directory of Open Access Journals (Sweden)

    Yan Ting Cui

    2014-05-01

    Full Text Available As the result of the ecological impacts from the use of tributyltins (TBT in shipping, environmental legislation for the registration of chemicals for use in the environment has grown to a monumental challenge requiring product dossiers to include information on the environmental fate and behavior of any chemicals. Specifically, persistence, bioaccumulation and toxicity, collectively known as PBT, are properties of concern in the assessment of chemicals. However, existing measurements of PBT properties are a cumbersome and expensive process, and thus not applied in the early stages of the product discovery and development. Inexpensive methods for preliminary PBT screening would minimize risks arising with the subsequent registration of products. In this article, we evaluated the PBT properties of compounds reported to possess anti-fouling properties using QSAR (quantitative structure-activity relationship prediction programs such as BIOWIN™ (a biodegradation probability program, KOWWIN™ (log octanol-water partition coefficient calculation program and ECOSAR™ (Ecological Structure Activity Relationship Programme. The analyses identified some small (Mr < 400 synthetic and natural products as potential candidates for environmentally benign biocides. We aim to demonstrate that while these methods of estimation have limitations, when applied with discretion, they are powerful tools useful in the early stages of research for compound selection for further development as anti-foulants.

  15. Mini-review: Molecular mechanisms of antifouling compounds

    KAUST Repository

    Qian, Pei-Yuan

    2013-04-01

    Various antifouling (AF) coatings have been developed to protect submerged surfaces by deterring the settlement of the colonizing stages of fouling organisms. A review of the literature shows that effective AF compounds with specific targets are ones often considered non-toxic. Such compounds act variously on ion channels, quorum sensing systems, neurotransmitters, production/release of adhesive, and specific enzymes that regulate energy production or primary metabolism. In contrast, AF compounds with general targets may or may not act through toxic mechanisms. These compounds affect a variety of biological activities including algal photosynthesis, energy production, stress responses, genotoxic damage, immunosuppressed protein expression, oxidation, neurotransmission, surface chemistry, the formation of biofilms, and adhesive production/release. Among all the targets, adhesive production/release is the most common, possibly due to a more extensive research effort in this area. Overall, the specific molecular targets and the molecular mechanisms of most AF compounds have not been identified. Thus, the information available is insufficient to draw firm conclusions about the types of molecular targets to be used as sensitive biomarkers for future design and screening of compounds with AF potential. In this review, the relevant advantages and disadvantages of the molecular tools available for studying the molecular targets of AF compounds are highlighted briefly and the molecular mechanisms of the AF compounds, which are largely a source of speculation in the literature, are discussed. © 2013 Copyright Taylor and Francis Group, LLC.

  16. Effects of Antifouling Biocides on Molecular and Biochemical Defense System in the Gill of the Pacific Oyster Crassostrea gigas.

    Science.gov (United States)

    Park, Mi Seon; Kim, Young Dae; Kim, Bo-Mi; Kim, Youn-Jung; Kim, Jang Kyun; Rhee, Jae-Sung

    2016-01-01

    Antifouling biocides such as organotin compounds and their alternatives are potent toxicants in marine ecosystems. In this study, we employed several molecular and biochemical response systems of the Pacific oyster Crassostrea gigas to understand a potential mode of action of antifouling biocides (i.e. tributyltin (TBT), diuron and irgarol) after exposure to different concentrations (0.01, 0.1, and 1 μg L-1) for 96 h. As a result, all the three antifouling biocides strongly induced the antioxidant defense system. TBT reduced both enzymatic activity and mRNA expression of Na+/K+-ATPase and acetylcholinesterase (AChE). Lower levels of both Na+/K+-ATPase activity and AChE mRNA expression were observed in the diuron-exposed oysters compared to the control, while the irgarol treatment reduced only the transcriptional expression of AChE gene. We also analyzed transcript profile of heat shock protein (Hsp) superfamily in same experimental conditions. All antifouling biocides tested in this study significantly modulated mRNA expression of Hsp superfamily with strong induction of Hsp70 family. Taken together, overall results indicate that representative organotin TBT and alternatives have potential hazardous effects on the gill of C. gigas within relatively short time period. Our results also suggest that analyzing a series of molecular and biochemical parameters can be a way of understanding and uncovering the mode of action of emerging antifouling biocides. In particular, it was revealed that Pacific oysters have different sensitivities depend on the antifouling biocides.

  17. Effects of Antifouling Biocides on Molecular and Biochemical Defense System in the Gill of the Pacific Oyster Crassostrea gigas

    Science.gov (United States)

    Park, Mi Seon; Kim, Young Dae; Kim, Bo-Mi; Kim, Youn-Jung; Kim, Jang Kyun; Rhee, Jae-Sung

    2016-01-01

    Antifouling biocides such as organotin compounds and their alternatives are potent toxicants in marine ecosystems. In this study, we employed several molecular and biochemical response systems of the Pacific oyster Crassostrea gigas to understand a potential mode of action of antifouling biocides (i.e. tributyltin (TBT), diuron and irgarol) after exposure to different concentrations (0.01, 0.1, and 1 μg L-1) for 96 h. As a result, all the three antifouling biocides strongly induced the antioxidant defense system. TBT reduced both enzymatic activity and mRNA expression of Na+/K+-ATPase and acetylcholinesterase (AChE). Lower levels of both Na+/K+-ATPase activity and AChE mRNA expression were observed in the diuron-exposed oysters compared to the control, while the irgarol treatment reduced only the transcriptional expression of AChE gene. We also analyzed transcript profile of heat shock protein (Hsp) superfamily in same experimental conditions. All antifouling biocides tested in this study significantly modulated mRNA expression of Hsp superfamily with strong induction of Hsp70 family. Taken together, overall results indicate that representative organotin TBT and alternatives have potential hazardous effects on the gill of C. gigas within relatively short time period. Our results also suggest that analyzing a series of molecular and biochemical parameters can be a way of understanding and uncovering the mode of action of emerging antifouling biocides. In particular, it was revealed that Pacific oysters have different sensitivities depend on the antifouling biocides. PMID:28006823

  18. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    Science.gov (United States)

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  19. Imidazole and Triazole Coordination Chemistry for Antifouling Coatings

    Directory of Open Access Journals (Sweden)

    Markus Andersson Trojer

    2013-01-01

    Full Text Available Fouling of marine organisms on the hulls of ships is a severe problem for the shipping industry. Many antifouling agents are based on five-membered nitrogen heterocyclic compounds, in particular imidazoles and triazoles. Moreover, imidazole and triazoles are strong ligands for Cu2+ and Cu+, which are both potent antifouling agents. In this review, we summarize a decade of work within our groups concerning imidazole and triazole coordination chemistry for antifouling applications with a particular focus on the very potent antifouling agent medetomidine. The entry starts by providing a detailed theoretical description of the azole-metal coordination chemistry. Some attention will be given to ways to functionalize polymers with azole ligands. Then, the effect of metal coordination in azole-containing polymers with respect to material properties will be discussed. Our work concerning the controlled release of antifouling agents, in particular medetomidine, using azole coordination chemistry will be reviewed. Finally, an outlook will be given describing the potential for tailoring the azole ligand chemistry in polymers with respect to Cu2+ adsorption and Cu2+→Cu+ reduction for antifouling coatings without added biocides.

  20. Local toxicity of benzalkonium chloride in ophthalmic solutions following repeated applications.

    Science.gov (United States)

    Okahara, Akihiko; Kawazu, Kouichi

    2013-01-01

    We performed repeated toxicity studies of benzalkonium chloride (BAK)-containing vehicles of ophthalmic solutions in monkeys and rabbits to assess the local toxicity of BAK after repeated applications on the ocular surface. Local toxicity of BAK was evaluated by toxicity studies in which a 0.01% BAK-containing vehicle was applied twice/day for 52 weeks, 4 times/day for 39 weeks, or 6 times/day for 13 weeks, or in which a 0.005% BAK-containing vehicle was applied 6 times/day for 52 weeks or twice/day for 4 weeks in monkeys. Local toxicity of BAK was also evaluated where a 0.01% BAK-containing vehicle was applied 6 times/day for 6 weeks, or a 0.005% BAK-containing vehicle was applied twice/day for 39 weeks or 8 times/day for 4 weeks in rabbits. These doses were chosen because BAK is generally used at concentrations up to 0.01% in ophthalmic solutions. The BAK-containing vehicle did not cause ophthalmological changes suggestive of irritation, allergy, or corneal damage. We also did not observe any histopathological changes in the eyeball, eyelid, lacrimal gland, and nasal cavity, with repeated applications of BAK for up to 52 weeks, up to 8 times/day, or at concentrations up to 0.01%, in monkeys and rabbits. Our results suggest that BAK in concentrations up to 0.01% in ophthalmic solution is non-toxic to the eyeball, its accessory organs, and the nasal cavity after long repeated applications.

  1. Antifouling leaching technique for optical lenses

    Science.gov (United States)

    Strahle, William J.; Perez, C. L.; Martini, Marinna A.

    1994-01-01

    The effectiveness of optical lenses deployed in water less than 100 m deep is significantly reduced by biofouling caused by the settlement of macrofauna, such as barnacles, hydroids, and tunicates. However, machineable porous plastic rings can be used to dispense antifoulant into the water in front of the lens to retard macrofaunal growth without obstructing the light path. Unlike coatings which can degrade the optical performance, antifouling rings do not interfere with the instrument optics. The authors have designed plastic, reusable cup-like antifouling rings to slip over the optical lenses of a transmissometer. These rings have been used for several deployments on shallow moorings in Massachusetts Bay, MA and have increased the time before fouling degrades optical characteristics

  2. Antifouling activity of green-synthesized 7-hydroxy-4-methylcoumarin.

    Science.gov (United States)

    Pérez, Miriam; García, Mónica; Ruiz, Diego; Autino, Juan Carlos; Romanelli, Gustavo; Blustein, Guillermo

    2016-02-01

    In the search for new environmental-friendly antifoulants for replace metallic biocides, 7-hydroxy-4-methylcoumarin was synthesized according to green chemistry procedures. This compound was characterized by current organic analysis and its antifouling properties were firstly evaluated on the bivalve Mytilus edulis platensis in the laboratory. In the second stage, a soluble matrix antifouling coating formulated with this compound was assayed in marine environment. Laboratory experiments showed that 7-hydroxy-4-methylcoumarin was effective in inhibiting both the settlement as well as the byssogenesis of mussels. In addition, after exposure time in the sea, painted panels containing this compound showed strong antifouling effect on conspicuous species of the fouling community of Mar el Plata harbor. In conclusion, green-synthesized coumarin could be a suitable antifoulant candidate for marine protective coatings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Dam-Johansen, Kim

    2004-01-01

    , by some of the paint-producing companies. An exhaustive review of the historical development of antifouling systems and a detailed characterisation of sea water are also included. The need for studies on the behaviour of chemically active paints under different sea water conditions is emphasised...... in two main ways: imitation of the natural antifouling processes and modification of the characteristics of the substrate. The former mostly focuses on the study of the large amount of secondary metabolites secreted by many different marine organisms to control the fouling on their surfaces. The many...

  4. Polymer Nanocomposite Membranes for Antifouling Nanofiltration.

    Science.gov (United States)

    Kamal, Tahseen; Ali, Nauman; Naseem, Abbas A; Khan, Sher B; Asiri, Abdullah M

    2016-01-01

    Fouling refers to the unwanted and undesirable attachment of biological macromolecules, inorganic, organic matter, and microorganisms on water contact surfaces. Fouling reduces the performance of devices involving these submerged surfaces and is considered the bottle-neck issue for various applications in the biomedical industry, food processing, and water treatment, especially in reverse osmosis (RO) desalination. Investigations have proven that nanocomposite membranes can exhibit enhanced antifouling performances and can be used for longer life times. The nanocomposite means addition of nanomaterials to main matrix at low loadings, exhibiting better properties compared to virgin matrix. In this review, a summarized description about related methods and their mechanisms for the fabrication of nanocomposite membranes with antifouling properties has been documented. Around 87 manuscripts including 10 patents were used to demonstrate the antifouling applications of of various nanocomposite membranes.

  5. Generation of Hybrid Peptide-Silver Nanoparticles for Antibacterial and Antifouling Applications

    KAUST Repository

    Seferji, Kholoud

    2018-05-01

    An alarming increase of antibiotic-resistant bacterial strains has made the demand for novel antibacterial agents, for example, more effective antibiotics, highly crucial. One of the oldest antimicrobial agents is elementary silver which has been used for thousands of years. Even in our days, elementary silver is used for medical purposes, such as for burns, wounds, and microbial infections. We have taken the effectiveness of elementary silver into consideration to generate novel antibacterial and antifouling agents. Our innovative antibacterial agents are hybrid peptide silver nanoparticles (CH-01-AgNPs) that are created de novo and in situ from a silver nitrate solution (AgNO3) in the presence of ultrashort self-assembling peptides compounds. The nucleation of CH-01-AgNPs is initiated by irradiating the peptide solution mixed with the AgNO3 solution using ultraviolet (UV) light at a wavelength of 254 nm, in the absence of any reducing or capping agents. Obviously, the peptide itself serves as the reducing agent. The ultrashort peptides are four amino acids in length with an innate ability to self-assemble into nanofibrous scaffolds. Using these ultrashort peptides CH-01 we were able to create hybrid peptide silver nanoparticles CH-01-AgNPs with a diameter of 4-6 nm. The synthesized CH-01-AgNPs were further characterized using ultraviolet-visible spectroscopy, transmission electron microscopy, dynamic light scattering, and X-ray photoelectron spectroscopy. The antibacterial and antifouling activity of CH-01-AgNPs were then investigated using either gram-negative bacteria, such as antibiotic-resistant Top10 Escherichia coli and Pseudomonas aeruginosa PDO300, or gram-positive bacteria, such as Staphylococcus aureus CECT 976. The hybrid nanoparticles demonstrated very promising antibacterial and antifouling activity with higher antibacterial and antifouling activity as commercial silver nanoparticles. Quantitative Polymerase Chain Reaction (qPCR) results showed

  6. Antifouling activity of twelve demosponges from Brazil

    Directory of Open Access Journals (Sweden)

    SM. Ribeiro

    Full Text Available Benthic marine organisms are constantly exposed to fouling, which is harmful to most host species. Thus, the production of secondary metabolites containing antifouling properties is an important ecological advantage for sessile organisms and may also provide leading compounds for the development of antifouling paints. High antifouling potential of sponges has been demonstrated in the Indian and Pacific oceans and in the Caribbean and Mediterranean seas. Brazilian sponges remain understudied concerning antifouling activities. Only two scientific articles reported this activity in sponges of Brazil. The objective of this study was to test crude extracts of twelve species of sponges from Brazil against the attachment of the mussel Perna perna through laboratorial assays, and highlight promising species for future studies. The species Petromica citrina, Amphimedon viridis, Desmapsamma anchorata, Chondrosia sp., Polymastia janeirensis, Tedania ignis, Aplysina fulva, Mycale angulosa, Hymeniacidon heliophila, Dysidea etheria, Tethya rubra, and Tethya maza were frozen and freeze-dried before extraction with acetone or dichloromethane. The crude extract of four species significantly inhibited the attachment of byssus: Tethya rubra (p = 0.0009, Tethya maza (p = 0.0039, Petromica citrina (p = 0.0277, and Hymeniacidon heliophila (p = 0.00003. These species, specially, should be the target of future studies to detail the substances involved in the ability antifouling well as to define its amplitude of action.

  7. Non-Toxic, Low-Freezing, Drop-In Replacement Heat Transfer Fluids

    Science.gov (United States)

    Cutbirth, J. Michael

    2012-01-01

    A non-toxic, non-flammable, low-freezing heat transfer fluid is being developed for drop-in replacement within current and future heat transfer loops currently using water or alcohol-based coolants. Numerous water-soluble compounds were down-selected and screened for toxicological, physical, chemical, compatibility, thermodynamic, and heat transfer properties. Two fluids were developed, one with a freezing point near 0 C, and one with a suppressed freezing point. Both fluids contain an additive package to improve material compatibility and microbial resistance. The optimized sub-zero solution had a freezing point of 30 C, and a freezing volume expansion of 10-percent of water. The toxicity of the solutions was experimentally determined as LD(50) greater than 5g/kg. The solutions were found to produce minimal corrosion with materials identified by NASA as potentially existing in secondary cooling loops. Thermal/hydrodynamic performance exceeded that of glycol-based fluids with comparable freezing points for temperatures Tf greater than 20 C. The additive package was demonstrated as a buffering agent to compensate for CO2 absorption, and to prevent microbial growth. The optimized solutions were determined to have physically/chemically stable shelf lives for freeze/thaw cycles and longterm test loop tests.

  8. Investigation of leaching of an antifouling agent from marine paint formulations using radiotracer technique

    International Nuclear Information System (INIS)

    Pant, H.J.; Sharma, V.K.; Gursharan Singh; Kalgutkar, D.B.; Patil, S.P.; Jayachandran, N.; Unni, V.K.P.

    2012-01-01

    A radiotracer technique was used to investigate the leaching of an antifouling agent from different marine paint formulations with an objective to select the best paint formulation for bulk production. The antifouling agent (Diuron) itself was labeled with carbon-14 (half-life: 5,730 years, β-energy: 156 keV) and used as a radiotracer. The different paint formulations added with radiolabeled Diuron were applied onto suitably selected substrates and measured for initial intensity of β-radiation using a Geiger-Muller detector connected to a ratemeter. The painted substrates were subjected to shower tests for a pre-decided time and subsequently measured for β-radiations. The comparison of intensity of β-radiations in substrates prior and post shower tests provides information about leaching of antifouling agent Diuron from the paint formulation. The high leaching percentage of antifouling agent Diuron post shower tests indicates non-suitability of paint formulation for marine and civil structures. However, low leaching rate of Diuron will make a paint formulation more efficient and suitable. Based on the results of investigation, a paint formulation with minimum leaching rate was identified and selected for bulk production by a paint company. (author)

  9. Probing the structural dependence of carbon space lengths of poly(N-hydroxyalkyl acrylamide)-based brushes on antifouling performance.

    Science.gov (United States)

    Yang, Jintao; Zhang, Mingzhen; Chen, Hong; Chang, Yung; Chen, Zhan; Zheng, Jie

    2014-08-11

    Numerous biocompatible antifouling polymers have been developed for a wide variety of fundamental and practical applications in drug delivery, biosensors, marine coatings, and many other areas. Several antifouling mechanisms have been proposed, but the exact relationship among molecular structure, surface hydration property, and antifouling performance of antifouling polymers still remains elusive. Here this work strives to provide a better understanding of the structure-property relationship of poly(N-hydroxyalkyl acrylamide)-based materials. We have designed, synthesized, and characterized a series of polyHAAA brushes of various carbon spacer lengths (CSLs), that is, poly(N-hydroxymethyl acrylamide) (polyHMAA), poly(N-(2-hydroxyethyl)acrylamide) (polyHEAA), poly(N-(3-hydroxypropyl)acrylamide) (polyHPAA), and poly(N-(5-hydroxypentyl)acrylamide) (polyHPenAA), to study the structural dependence of CSLs on their antifouling performance. HMAA, HEAA, HPAA, and HPenAA monomers contained one, two, three, and five methylene groups between hydroxyl and amide groups, while the other groups in polymer backbones were the same as each other. The relation of such small structural differences of polymer brushes to their surface hydration and antifouling performance was studied by combined experimental and computational methods including surface plasmon resonance sensors, sum frequency generation (SFG) vibrational spectroscopy, cell adhesion assay, and molecular simulations. Antifouling results showed that all polyHAAA-based brushes were highly surface resistant to protein adsorption from single protein solutions, undiluted blood serum and plasma, as well as cell adhesion up to 7 days. In particular, polyHMAA and polyHEAA with the shorter CSLs exhibited higher surface hydration and better antifouling ability than polyHPMA and polyHPenAA. SFG and molecular simulations further revealed that the variation of CSLs changed the ratio of hydrophobicity/hydrophilicity of polymers

  10. Determination of Five Alternative Antifouling Agents Found Along the Korean Coasts.

    Science.gov (United States)

    Lee, Seongeon; Lee, Dongsup; Lee, Yong-Woo

    2017-07-01

      Since the ban of tri-butyl tin, other various alternative antifouling agents have been used. In this study, the contamination levels from these antifouling agents were examined in the main harbors in Korea. The sampled harbors were classified into four types and the levels of contamination from the antifouling agents were analyzed. The highest degree of contamination was found in the big harbors, followed by the fishing harbors, harbors near agricultural areas, and military and coast guard harbors. In addition, an increase in the number of ships that entered the ports significantly influenced the contamination by the antifouling agents. Correlation analysis was conducted to characterize the alternative antifouling agents. The results revealed strong correlations between the dichlofluanid and chlorothalonil, and between the chlorothalonil and TCMTB, because unlike Irgarol 1051 and SEA-NINE 211, which are used only as antifouling agents, chlorothalonil, dichlofluanid, and TCMTB are also used in agriculture.

  11. Exploration of zwitterionic cellulose acetate antifouling ultrafiltration membrane for bovine serum albumin (BSA) separation.

    Science.gov (United States)

    Liu, Yang; Huang, Haitao; Huo, Pengfei; Gu, Jiyou

    2017-06-01

    This study focused on the preparation of a new kind of membrane material, zwitterionic cellulose acetate (ZCA), via a three-step procedure consist of oxidization, Schiff base and quaternary amination reaction, and the fabrication of antifouling ZCA ultrafiltration membrane by the non-solvent-induced phase separation method (NIPS). The morphologies, surface chemical structures and compositions of the obtained CA and ZCA membranes were thoroughly characterized by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray (EDX) spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS), respectively. Meanwhile, the thermal stability, porosity and average pore size of two investigated membranes were also studied. As a result, the ZCA membrane displayed significantly improved hydrophilicity and water permeability compared with those of the reference CA membrane, despite a slight decrease in the protein rejection ratio. According to the cycle ultrafiltration performance of bovine serum albumin (BSA) solution and protein adsorption experiment, ZCA membrane exhibited better flux recovery property and fouling resistant ability, especially irreversible fouling resistant ability, suggesting superior antifouling performance. This new approach gives polymer-based membrane a long time life and excellent ultrafiltration performance, and seems promising for potential applications in the protein separation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Influence of antifouling paint on freshwater invertebrates (Mytilidae, Chironomidae and Naididae): density, richness and composition.

    Science.gov (United States)

    Fujita, D S; Takeda, A M; Coutinho, R; Fernandes, F C

    2015-11-01

    We conducted a study about invertebrates on artificial substrates with different antifouling paints in order to answer the following questions 1) is there lower accumulation of organic matter on substrates with antifouling paints, 2) is invertebrate colonization influenced by the release of biocides from antifouling paints, 3) is the colonization of aquatic invertebrates positively influenced by the material accumulated upon the substrate surface and 4) is the assemblage composition of invertebrates similar among the different antifouling paints? To answer these questions, four structures were installed in the Baía River in February 1st, 2007. Each structure was composed of 7 wood boards: 5 boards painted with each type of antifouling paints (T1, T2, T3, T4 and T5), one painted only with the primer (Pr) and the other without any paint (Cn). After 365 days, we observed a greater accumulation of organic matter in the substrates with T2 and T3 paint coatings. Limnoperna fortunei was recorded in all tested paints, with higher densities in the control, primer, T2 and T3. The colonization of Chironomidae and Naididae on the substrate was positively influenced by L. fortunei density. The non-metric multidimensional scaling (NMDS) of the invertebrate community provided evidence of the clear distinction of invertebrate assemblages among the paints. Paints T2 and T3 were the most similar to the control and primer. Our results suggest that antifouling paints applied on substrates hinder invertebrate colonization by decreasing the density and richness of invertebrates.

  13. Antifouling Thermoplastic Composites with Maleimide Encapsulated in Clay Nanotubes.

    Science.gov (United States)

    Fu, Ye; Gong, Congcong; Wang, Wencai; Zhang, Liqun; Ivanov, Evgenii; Lvov, Yuri

    2017-09-06

    An antifouling ethylene-vinyl acetate copolymer (EVA) coating with halloysite clay nanotubes loaded with maleimide (TCPM) is prepared. Such antifoulant encapsulation allowed for extended release of TCPM and a long-lasting, efficient protection of the coated surface against marine microorganisms proliferation. Halloysite also induces the composite's anisotropy due to parallel alignment of the nanotubes. The maleimide loaded halloysite incorporated into the polymer matrix allowed for 12-month release of the bacterial inhibitor preventing fouling; it is much longer than the 2-3 month protection when TCPM is directly admixed into EVA. The antifouling properties of the EVA-halloysite nanocomposites were tested by monitoring surface adhesion and proliferation of marine V. natriegens bacteria with SEM. As compared to the composite directly doped with TCPM-antifoulant, there were much less bacteria accumulated on the EVA-halloysite-TCPM coating after a 2-month exposure to seawater. Field tests at South China Sea marine station further confirmed the formulation efficiency. The doping of 28 wt % TCPM loaded halloysite drastically enhanced material antifouling property, which promises wide applications for protective marine coating.

  14. Enhancing performance and surface antifouling properties of polysulfone ultrafiltration membranes with salicylate-alumoxane nanoparticles

    Science.gov (United States)

    Mokhtari, Samaneh; Rahimpour, Ahmad; Shamsabadi, Ahmad Arabi; Habibzadeh, Setareh; Soroush, Masoud

    2017-01-01

    To improve the hydrophilicity and antifouling properties of polysulfone (PS) ultrafiltration membranes, we studied the use of salicylate-alumoxane (SA) nanoparticles as a novel hydrophilic additive. The effects of SA nanoparticles on the membrane characteristics and performance were investigated in terms of membrane structure, permeation flux, solute rejection, hydrophilicity, and antifouling ability. The new mixed-matrix membranes (MMMs) possess asymmetric structures. They have smaller finger-like pores and smoother surfaces than the neat PS membranes. The embedment of SA nanoparticles in the polymer matrix and the improvement of surface hydrophilicity were investigated. Ultrafiltration experiments indicated that the pure-water flux of the new MMMs initially increases with SA nanoparticles loading followed by a decrease at high loadings. Higher BSA solution flux was achieved for the MMMs compared to the neat PS membranes. Membranes with 1 wt.% SA nanoparticles exhibit the highest flux recovery ratio of 87% and the lowest irreversible fouling of 13%.

  15. Functionalizing aluminum substrata by quaternary ammonium for antifouling performances

    Science.gov (United States)

    He, Xiaoyan; Suo, Xinkun; Bai, Xiuqin; Yuan, Chengqing; Li, Hua

    2018-05-01

    Due to the great loss induced by biofouling, developing new strategies for combating biofouling has attracted extensive attention. Quaternary ammonium salts are potent cationic antimicrobials used in consumer products and their use for surface immobilization could create a contact-active antimicrobial layer. Here we report the facile preparation of a contact-active antifouling coating by tethering polyethyleneimine (PEI) onto flat/nanostructured aluminum surface by hydrogen bonding between PEI and AlOOH. Quaternized PEI (QPEI) is obtained through quaternization reactions. Biofouling testing suggests excellent antifouling performances of the samples by declining the adhesion of 95% Phaeodactylum tricornutum and 98% of Chlorella pyrenoidosa. The antifouling properties of PEI/QPEI are attributed predominately to their hydrophilic and antimicrobial nature. The technical route of PEI/QPEI surface grafting shows great potential for modifying marine infrastructures for enhanced antifouling performances.

  16. Integrated antibacterial and antifouling surfaces via cross-linking chitosan-g-eugenol/zwitterionic copolymer on electrospun membranes.

    Science.gov (United States)

    Li, Zhenguang; Hu, Wenhong; Zhao, Yunhui; Ren, Lixia; Yuan, Xiaoyan

    2018-04-27

    Integrated antibacterial and antifouling surfaces in favor of avoiding implant-related infections are necessarily required for biomaterials when they contact with the body fluid. In this work, an antibacterial and antifouling membrane was developed via cross-linking chitosan-g-eugenol and the zwitterionic copolymer poly(sulfobetaine methylacrylate-co-2-aminoethyl methacrylate) on the electrospun polycarbonate urethane substrate using genipin as a cross-linker. Antibacterial assays demonstrated that the prepared membranes had efficient antibacterial activity with 92.8 ± 2.5% and 95.2 ± 1.3% growth inhibition rates against Escherichia coli and Staphylococcus aureus, respectively. The investigations on antifouling activity and hemocompatibility of the membranes showed significant resistances to bacterial attachment, non-specific protein adsorption and platelet adhesion, and presented lower hemolytic activity and good anticoagulant activity as well. Moreover, cell culture assays indicated that the prepared membranes exerted no obvious cytotoxicity with more than 80% of relative L929 fibroblast viability. Therefore, the membranes with integrated antibacterial and antifouling properties could be potentially applied in promising indwelling devices. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Antifouling membranes for sustainable water purification: strategies and mechanisms.

    Science.gov (United States)

    Zhang, Runnan; Liu, Yanan; He, Mingrui; Su, Yanlei; Zhao, Xueting; Elimelech, Menachem; Jiang, Zhongyi

    2016-10-24

    One of the greatest challenges to the sustainability of modern society is an inadequate supply of clean water. Due to its energy-saving and cost-effective features, membrane technology has become an indispensable platform technology for water purification, including seawater and brackish water desalination as well as municipal or industrial wastewater treatment. However, membrane fouling, which arises from the nonspecific interaction between membrane surface and foulants, significantly impedes the efficient application of membrane technology. Preparing antifouling membranes is a fundamental strategy to deal with pervasive fouling problems from a variety of foulants. In recent years, major advancements have been made in membrane preparation techniques and in elucidating the antifouling mechanisms of membrane processes, including ultrafiltration, nanofiltration, reverse osmosis and forward osmosis. This review will first introduce the major foulants and the principal mechanisms of membrane fouling, and then highlight the development, current status and future prospects of antifouling membranes, including antifouling strategies, preparation techniques and practical applications. In particular, the strategies and mechanisms for antifouling membranes, including passive fouling resistance and fouling release, active off-surface and on-surface strategies, will be proposed and discussed extensively.

  18. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings.

    Science.gov (United States)

    Xing, Cheng-Mei; Meng, Fan-Ning; Quan, Miao; Ding, Kai; Dang, Yuan; Gong, Yong-Kuan

    2017-09-01

    A versatile fabrication and performance optimization strategy of PEG and zwitterionic polymer coatings is developed on the sensor chip of surface plasma resonance (SPR) instrument. A random copolymer bearing phosphorylcholine zwitterion and active ester side chains (PMEN) and carboxylic PEG coatings with comparable thicknesses were deposited on SPR sensor chips via amidation coupling on the precoated polydopamine (PDA) intermediate layer. The PMEN coating showed much stronger resistance to bovine serum albumin (BSA) adsorption than PEG coating at very thin thickness (∼1nm). However, the BSA resistant efficacy of PEG coating could exceed that of PMEN due to stronger steric repelling effect when the thickness increased to 1.5∼3.3nm. Interestingly, both the PEG and PMEN thick coatings (≈3.6nm) showed ultralow fouling by BSA and bovine plasma fibrinogen (Fg). Moreover, changes in the PEG end group from -OH to -COOH, protein adsorption amount could increase by 10-fold. Importantly, the optimized PMEN and PEG-OH coatings were easily duplicated on other substrates due to universal adhesion of the PDA layer, showed excellent resistance to platelet, bacteria and proteins, and no significant difference in the antifouling performances was observed. These detailed results can explain the reported discrepancy in performances between PEG and zwitterionic polymer coatings by thickness. This facile and substrate-independent coating strategy may benefit the design and manufacture of advanced antifouling biomedical devices and long circulating nanocarriers. Prevention of biofouling is one of the biggest challenges for all biomedical applications. However, it is very difficult to fabricate a highly hydrophilic antifouling coating on inert materials or large devices. In this study, PEG and zwitterion polymers, the most widely investigated polymers with best antifouling performance, are conveniently immobilized on different kinds of substrates from their aqueous solutions by

  19. Degradation models and ecotoxicity in marine waters of two antifouling compounds: sodium hypochlorite and an alkylamine surfactant.

    Science.gov (United States)

    López-Galindo, Cristina; Garrido, M Carmen; Casanueva, José F; Nebot, Enrique

    2010-03-15

    Industrial wastes have a substantial impact on coastal environments. Therefore, to evaluate the impact of cooling water discharges from coastal power plants, we studied the kinetics of the degradative processes and the ecotoxicity of two antifouling products: (1) a classic antifouling product; sodium hypochlorite (NaClO) and (2) an alternative one; aliphatic amines (commercial under the registered trade mark Mexel432). To assess the persistence of both compounds the decay of sodium hypochlorite and the primary biodegradation rate of Mexel432 were determined in natural seawater at 20 degrees C. The results indicated a more rapid decay of NaClO than Mexel432. The degradation behavior of both chemicals was described following a logistic model, which permitted calculating kinetic parameters such as t(50) or t(90). The t(50) was 1h and 2d for NaClO and Mexel432, respectively. To evaluate the potential risks of the aforementioned treatments to marine organisms, the acute toxicity of both antifouling products was studied on the microalgae Isochrysis galbana and Dunaliella salina, and on the invertebrate Brachionus plicatilis, using growth inhibition and death tests as toxic response, respectively. For I. galbana, the 96-h EC(50) values were 2.91+/-0.15mg/L of NaClO and 4.55+/-0.11mg/L of Mexel432. D. salina showed values of 96-h EC(50) of 1.73+/-0.16mg/L of NaClO and 7.21+/-0.1mg/L of Mexel432. Brachionus plicatilis showed a 24-h LC(50) of 1.23+/-0.1mg/L of NaClO and 3.62+/-0.37mg/L of Mexel432. Acute toxicity was highly dependent on the chemical and species tested. NaClO presented more toxic effects than Mexel432, also B. plicatilis was the most sensitive species in both cases. The lowest NOECs obtained, 0.25mg/L for NaClO and 2.12mg/L for Mexel432, were similar to the theoretical residual concentrations of these biocides in cooling water discharges. Therefore, these discharges can cause undesirable negative effects upon the aquatic organisms present.

  20. The use of nanomaterials as an alternative to biocidal antifouling coatings and their environmental impact; Einsatz von Nanomaterialien als Alternative zu biozidhaltigen Antifouling-Anstrichen und deren Umweltauswirkungen

    Energy Technology Data Exchange (ETDEWEB)

    Watermann, B T; Daehne, D; Fuerle, C [LimnoMar - Labor fuer limnische/marine Forschung und vergleichende Pathologie, Hamburg (Germany)

    2010-07-15

    This study revealed that a variety of nanomaterials are already in use for antifouling paint systems. On the market for leisure boats 22 antifouling products and 3 under water coatings to reduce the friction could be identified (after an update in Mai 2010 only 14 products could be identified). These products are available on the German, the European and the global market. For all antifouling systems and underwater coatings on the market, the specification of the used nanomaterials was not specified e.g. in the Technical Data Sheets or Safety and Health Data Sheets. A clear labelling for the consumer would be helpful and necessary Actually, nanotechnology based antifouling systems on the leisure boat market and on the professional market cannot be regarded as alternatives to antifouling systems which are not using nanotechnology This is partly due to the lacking evidence of efficacy, the fact that some products contain biocides without declaring them, some of them are even not allowed to be used as biocides in antifouling paints (e.g. zinc oxide and silver) and due to the lack of specified nanomaterials which make a risk assessment or ecotoxicological evaluation impossible. It can be expected that the next generation of nanotechnology based antifouling systems will be much more sophisticated and effective, despite of the lack of scientific sound data on their environmental impact. (orig.)

  1. Marine sponges: a potential source of eco-friendly antifouling compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Wagh, A.B.; Thakur, N.L.; Anil, A.C.; Venkat, K.

    biocides have environmental concerns. In view of this search for ecofriendly antifouling protocols gained momentum. Sourcing of such antifouling compounds has often been explored with marine organism. This paper reviews the efforts in this domain...

  2. Recent development of antifouling polymers: structure, evaluation, and biomedical applications in nano/micro-structures.

    Science.gov (United States)

    Liu, Lingyun; Li, Wenchen; Liu, Qingsheng

    2014-01-01

    Antifouling polymers have been proven to be vital to many biomedical applications such as medical implants, drug delivery, and biosensing. This review covers the major development of antifouling polymers in the last 2 decades, including the material chemistry, structural factors important to antifouling properties, and how to challenge or evaluate the antifouling performances. We then discuss the applications of antifouling polymers in nano/micro-biomedical applications in the form of nanoparticles, thin coatings for medical devices (e.g., artificial joint, catheter, wound dressing), and nano/microscale fibers. © 2014 Wiley Periodicals, Inc.

  3. Characterization of ZnS thin films synthesized through a non-toxic precursors chemical bath

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, C.A. [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile); Sandoval-Paz, M.G. [Department of Physics, Faculty of Physics and Mathematics, University of Concepción, Concepción (Chile); Cabello, G. [Department of Basic Sciences, Faculty of Sciences, University of Bío-Bío, Campus Fernando May, Chillán (Chile); Flores, M.; Fernández, H. [Department of Physics, Faculty of Physics and Mathematics, University of Chile, Beauchef 850, Santiago (Chile); Carrasco, C., E-mail: ccarrascoc@udec.cl [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile)

    2014-12-15

    Highlights: • High quality ZnS thin films have been deposited by chemical bath deposition technique from a non-toxic precursor’s solution. • Nanocrystalline ZnS thin films with large band gap energy were synthesized without using ammonia. • Evidence that the growing of the thin films is carried out by means of hydroxide mechanism was found. • The properties of these ZnS thin films are similar and in some cases better than the corresponding ones produced using toxic precursors such as ammonia. - Abstract: In solar cells, ZnS window layer deposited by chemical bath technique can reach the highest conversion efficiency; however, precursors used in the process normally are materials highly volatile, toxic and harmful to the environment and health (typically ammonia and hydrazine). In this work the characterization of ZnS thin films deposited by chemical bath in a non-toxic alkaline solution is reported. The effect of deposition technique (growth in several times) on the properties of the ZnS thin film was studied. The films exhibited a high percentage of optical transmission (greater than 80%); as the deposition time increased a decreasing in the band gap values from 3.83 eV to 3.71 eV was observed. From chemical analysis, the presence of ZnS and Zn(OH){sub 2} was identified and X-ray diffraction patterns exhibited a clear peak corresponding to ZnS hexagonal phase (1 0 3) plane, which was confirmed by electron diffraction patterns. From morphological studies, compact samples with well-defined particles, low roughness, homogeneous and pinhole-free in the surface were observed. From obtained results, it is evident that deposits of ZnS–CBD using a non-toxic solution are suitable as window layer for TFSC.

  4. Development of Nano TiO2–Geopolymer Functional Composite as Antifouling Bricks

    Directory of Open Access Journals (Sweden)

    Kusuma Wardani Nurul

    2017-01-01

    Full Text Available The purpose of study is to examine the ability of nano TiO2 – geopolymer functional composite as antifouling bricks. The samples were synthesized through alkali-activation method at 70°C for 1 hour by mixing metaclay with TiO2 nanoparticles and activated with sodium silicate solution. There were two series of samples produced, namely, GT_A with addition of 2% nanoTiO2 and GT_B with addition of 4% nano TiO2 relative to the mass of metaclay. The samples were immersed in water and in 1M H2SO4 solution for 4 days to examine the resistance of composites in hars environment. The x-ray diffraction (XRD was performed to examine the chemical compositions of the samples before and after environmental test. The morphology of the samples surfaces was examined by using Scanning Electron Microscopy (SEM coupled with energy dispersive spectroscopy (EDS. Based on this study, sample GT_A shows its excellent properties as antifouling bricks. The addition of nano TiO2 was found to improve the quality of geopolymers as a high performance bricks.

  5. Novel antifouling self-healing poly(carboxybetaine methacrylamide-co-HEMA) nanocomposite hydrogels with superior mechanical properties

    NARCIS (Netherlands)

    Kostina, Nina Yu.; Sharifi, Shahriar; Pereira, Andres de los Santos; Michalek, Jiri; Grijpma, Dirk W.; Rodriguez-Emmenegger, Cesar

    2013-01-01

    Novel antifouling highly wettable hydrogels with superior mechanical and self-healing properties are presented. Hydrogels were prepared by UV-initiated copolymerisation of non-fouling zwitterionic carboxybetaine methacrylamide (CBMAA-3) and 2-hydroxyethyl methacrylate (HEMA) in the presence of

  6. Mathematical Modeling of Tin-Free Chemically-Active Antifouling Paint Behavior

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Dam-Johansen, Kim

    2006-01-01

    Mathematical modeling has been used to characterize and validate the working mechanisms of tin-free, chemically-active antifouling (AF) paints. The model-based analysis of performance data from lab-scale rotary experiments has shown significant differences between antifouling technologies...... of Chemical Engineers....

  7. TOXIC LEADERSHIP: A SYSTEMIC APPROACH TO SHIFT FROM REACTIVE TO PROACTIVE SOLUTIONS

    Science.gov (United States)

    2017-03-01

    AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY TOXIC LEADERSHIP: A SYSTEMIC APPROACH TO SHIFT FROM REACTIVE TO PROACTIVE SOLUTIONS...DISTRIBUTION A. Approved for public release: distribution unlimited. Toxic Leadership: A Systemic Approach to Shift From Reactive to Proactive Solutions 1...US military loses valuable personnel when it is too late to implement corrective action and after those toxic Toxic Leadership: A Systemic Approach

  8. Review of the use of Ceramium tenuicorne growth inhibition test for testing toxicity of substances, effluents, products sediment and soil

    Science.gov (United States)

    Eklund, Britta

    2017-08-01

    A growth inhibition test has been developed based on two clones of the red macroalga Ceramium tenuicorne, one originating from 7 PSU and the other from 20 PSU. The species can be adapted to different salinities and the test can be carried out between 4 and 32 PSU. This test became an ISO standard in 2010 (ISO 107 10) for testing of chemicals and water effluents. In this study new and published data has been compiled on toxicity of single substances, waste waters from pulp mills, leachates from antifouling paints, harbour sediments and soil used for maintenance of leisure boats. The results show that the alga is sensitive to both metals and organic compounds and to biocides used in antifouling paints. By testing leachates from antifouling paints these could be ranked according to their toxicity. Similarly, the toxicity of waste waters from pulp mills was determined and the efficiency of secondary treatment evaluated. Further, the test method proved useful to test the toxicity in sediment samples. Sediments from small town harbours and ship lanes were shown to be harmful and compounds originating from antifouling paints were responsible for a large part of the inhibiting effect. The alga proved to be sensitive to contaminants leaking from boat yard soil. The growth inhibition test is a robust test that has high repeatability and reproducibility and easily can be applied on water, soil and sediment samples without being too costly. The species is found worl-wide in temperate waters, which makes the results relevant for large areas. In the Baltic Sea C. tenuicorne is the most common red alga species and is thus particularly relevant for this area. The overall results show that contaminants from boat activities and the use of antifouling paints in particular pose a threat to the environment.

  9. Protein and Bacterial Antifouling Behavior of Melt-Coextruded Nanofiber Mats.

    Science.gov (United States)

    Kim, Si-Eun; Zhang, Cong; Advincula, Abigail A; Baer, Eric; Pokorski, Jonathan K

    2016-04-13

    Antifouling surfaces are important for biomedical devices to prevent secondary infections and mitigate the effects of the foreign body response. Herein, we describe melt-coextruded poly(ε-caprolactone) (PCL) nanofiber mats grafted with antifouling polymers. Nonwoven PCL fiber mats are produced using a multilayered melt coextrusion process followed by high-pressure hydroentanglement to yield porous patches. The resulting fiber mats show submicrometer cross-sectional fiber dimensions and yield pore sizes that were nearly uniform, with a mean pore size of 1.6 ± 0.9 μm. Several antifouling polymers, including hydrophilic, zwitterionic, and amphipathic molecules, are grafted to the surface of the mats using a two-step procedure that includes photochemistry followed by the copper-catalyzed azide-alkyne cycloaddition reaction. Fiber mats are evaluated using separate adsorption tests for serum proteins and E. coli. The results indicate that poly(oligo(ethylene glycol) methyl ether methacrylate)-co-(trifluoroethyl methacrylate) (poly(OEGMEMA-co-TFEMA)) grafted mats exhibit approximately 85% less protein adhesion and 97% less E. coli adsorption when compared to unmodified PCL fibermats. In dynamic antifouling testing, the amphiphilic fluorous polymer surface shows the highest flux and highest rejection value of foulants. The work presented within has implications on the high-throughput production of antifouling microporous patches for medical applications.

  10. Children's Ability to Recognise Toxic and Non-Toxic Fruits

    Science.gov (United States)

    Fancovicova, Jana; Prokop, Pavol

    2011-01-01

    Children's ability to identify common plants is a necessary prerequisite for learning botany. However, recent work has shown that children lack positive attitudes toward plants and are unable to identify them. We examined children's (aged 10-17) ability to discriminate between common toxic and non-toxic plants and their mature fruits presented in…

  11. Bioassays and selected chemical analysis of biocide-free antifouling coatings

    NARCIS (Netherlands)

    Watermann, B.T.; Daehne, B.; Sievers, S.; Dannenberg, R.; Overbeke, J.C.; Klijnstra, J.W.; Heemken, O.

    2005-01-01

    Over the years several types of biocide-free antifouling paints have entered the market. The prohibition of biocidal antifouling paints in special areas of some European countries such as Sweden, Denmark and Germany has favoured the introduction of these paints to the market. Several types of

  12. Comparisons of Flow Patterns over a Hierarchical and a Non-hierarchical Surface in Relation to Biofouling Control

    Directory of Open Access Journals (Sweden)

    Bin Ahmad Fawzan Mohammed Ridha

    2018-01-01

    Full Text Available Biofouling can be defined as unwanted deposition and development of organisms on submerged surfaces. It is a major problem as it causes water contamination, infrastructures damage and increase in maintenance and operational cost especially in the shipping industry. There are a few methods that can prevent this problem. One of the most effective methods which is using chemicals particularly Tributyltin has been banned due to adverse effects on the environment. One of the non-toxic methods found to be effective is surface modification which involves altering the surface topography so that it becomes a low-fouling or a non-stick surface to biofouling organisms. Current literature suggested that non-hierarchical topographies has lower antifouling performance compared to hierarchical topographies. It is still unclear if the effects of the flow on these topographies could have aided in their antifouling properties. This research will use Computational Fluid Dynamics (CFD simulations to study the flow on these two topographies which also involves comparison study of the topographies used. According to the results obtained, it is shown that hierarchical topography has higher antifouling performance compared to non-hierarchical topography. This is because the fluid characteristics at the hierarchical topography is more favorable in controlling biofouling. In addition, hierarchical topography has higher wall shear stress distribution compared to non-hierarchical topography

  13. Corrosion and antifouling characteristics of technetium 99 in seawater

    International Nuclear Information System (INIS)

    Spitsyn, V.I.; Strekalov, P.V.; Balakhovskij, O.A.; Mikhajlovskij, Yu.N.

    1982-01-01

    The results are presented of studying the corrosive and antifouling properties of metallic technetium-99 in the Barents Sea and the Sea of Japan. Foil of 99 Tc glued on acrylic plastic served as a sample. High corrosion resistance and antifouling properties exhibited by 99 Tc in seawater point to favorable prospects of further studies aimed at development of new methods for protection against corrosion and fouling of metallic structures and parts with the use of technetium. The antifouling properties of technetium would evidently be used most efficiently when coating materials of high corrosion resistance to seawater (titanium, stainless steels, special alloys, etc.) with layers of technetium. The use of technetium for coating low-alloyed or carbon steels employed in seawater is yet problematic

  14. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  15. Role of Monomer Sequence, Hydrogen Bonding and Mesoscale Architecture in Marine Antifouling Coatings

    Science.gov (United States)

    Segalman, Rachel

    Polypeptoids are non-natural, sequence specific polymers that offer the opportunity to probe the effect of monomer sequence, chirality, and chain shape on self-assembly and surface properties. Additionally, polypeptoid synthesis is more scaleable than traditional polypeptides suggesting their utility in large area applications. We have designed efficient marine anti-fouling coatings by using triblock copolymer scaffolds to which polypeptoids are tethered in order to tune both the modulus and surface energies with great precision. Surprisingly, when short sequences are tethered to a polymer backbone, polypeptoids consistently outperform analogous polypeptides in antifouling properties. We hypothesize that the hydrogen bonding inherent to the polypeptide backbone drives the observed differences in performance. We also find that the polymer scaffold housing the polypeptoids also plays a crucial role in directing surface presentation and therefore the overall coating properties.

  16. Assessment of Cost Impacts of Using Non-Toxic Propulsion in Satellites

    Science.gov (United States)

    Schiebener, P. J.; Gies, O.; Stuhlberger, J.; Schmitz, H.-D.

    2002-01-01

    The growing costs of space missions, the need for increased mission performance, and concerns associated with environmental issues deeply influence propulsion system design and propellant selection criteria. A propellant's performance was defined in the past exclusively in terms of specific impulse and density, but now high-performance, non-toxic, non-sophisticated mono- propellant systems are key drivers, and are considered for development to replace the traditional hydrazine (N2H4) mono-propellant thrusters. The mono-propellants under consideration are propellant formulations, which should be environmentally friendly, should have a high density, equal or better performance and better thermal characteristics than hydrazine. These considerations raised interest specially in the candidates of Hydroxylammonium Nitrate (HAN)-based propellants, Ammoniumdinitramide (ADN)-based propellants, Tri-ethanol (TEAN)-based propellants, Hydrazinium Nitroformate (HNF)-based propellants, Hydrogen Peroxide (H2O2)-based propellants. A near-term objective in consideration of satellite related process optimisation is to significantly reduce on-ground operations costs and at the same time improve mission performance. A far-term objective is to obtain a system presenting a very high performance, illustrated by a high specific impulse. Moving to a "non-toxic" propulsion system seems to be a solution to these two goals. The sought after benefits for non-toxic spacecraft mono-propellant propulsion are under investigation taking into account the four main parameters which are mandatory for customer satisfaction while meeting the price constraints: - Reliability, availability, maintainability and safety, - Manufacturing, assembly, integration and test, - Launch preparation and support, - Ground support equipment. These benefits of non-toxic mono-propellants can be proven by various examples, like an expected reduction of development costs due the non-toxicity of propellants which might allow

  17. Pore channel surface modification for enhancing anti-fouling membrane distillation

    Science.gov (United States)

    Qiu, Haoran; Peng, Yuelian; Ge, Lei; Villacorta Hernandez, Byron; Zhu, Zhonghua

    2018-06-01

    Membrane surface modification by forming a functional layer is an effective way to improve the anti-fouling properties of membranes; however, the additional layer and the potential blockage of bulk pores may increase the mass transfer resistance and reduce the permeability. In this study, we applied a novel method of preparing anti-fouling membranes for membrane distillation by dispersing graphene oxide (GO) on the channel surface of polyvinylidene fluoride membranes. The surface morphology and properties were characterized by scanning electron microscopy, atomic force microscope, and Fourier transform infrared spectrometry. Compared to the membrane surface modification by nanoparticles (e.g. SiO2), GO was mainly located on the pore surface of the membrane bulk, rather than being formed as an individual layer onto the membrane surface. The performance was evaluated via a direct-contact membrane distillation process with anionic and cationic surfactants as the foulants, separately. Compared to the pristine PVDF membrane, the anti-fouling behavior and distillate flux of the GO-modified membranes were improved, especially when using the anionic surfactant as the foulant. The enhanced anti-fouling performance can be attributed to the oxygen containing functional groups in GO and the healing of the membrane pore defects. This method may provide an effective route to manipulate membrane pore surface properties for anti-fouling separation without increasing mass transfer resistance.

  18. Grafting of Oligo(ethylene glycol) Functionalized Calix[4]arene-tetra-diazonium Salts for Antifouling Germanium and Gold Surfaces.

    Science.gov (United States)

    Blond, Pascale; Mattiuzzi, Alice; Valkenier, Hennie; Troian-Gautier, Ludovic; Bergamini, Jean-François; Doneux, Thomas; Goormaghtigh, Erik; Raussens, Vincent; Jabin, Ivan

    2018-05-03

    Biosensors that can determine protein concentration and structure are highly desired for biomedical applications. For the development of such biosensors, the use of Fourier transformed infra-red (FTIR) spectroscopy with the attenuated internal total reflection (ATR) configuration is particularly attractive but it requires appropriate surface functionalization of the ATR optical element. Indeed, the surface has to specifically interact with a target protein in close contact with the optical element and must display antifouling properties to prevent nonspecific adsorption of other proteins. We here report robust monolayers of calix[4]arenes bearing oEGs chains, which were grafted on germanium and gold surfaces via their tetra-diazonium salts. The formation of monolayers of oEGylated calix[4]arenes was confirmed by AFM, IR and contact angle measurements. The antifouling properties of these modified surfaces were studied by ATR-FTIR spectroscopy and fluorescence microscopy and the non-specific absorption of BSA was found to be reduced by 85% compared to non-modified germanium. In other words, the organic coating by oEGylated calix[4]arenes provides remarkable antifouling properties, opening the way to the design of germanium- and gold-based biosensors.

  19. Surface and anti-fouling properties of a polyampholyte hydrogel grafted onto a polyethersulfone membrane.

    Science.gov (United States)

    Zhang, Wei; Yang, Zhe; Kaufman, Yair; Bernstein, Roy

    2018-05-01

    Zwitterion polymers have anti-fouling properties; therefore, grafting new zwitterions to surfaces, particularly as hydrogels, is one of the leading research directions for preventing fouling. Specifically, polyampholytes, polymers of random mixed charged subunits with a net-electric charge, offer a synthetically easy alternative for studying new zwitterions with a broad spectrum of charged moieties. Here, a novel polyampholyte hydrogel was grafted onto the surface of polyethersulfone membrane by copolymerizing a mixture of vinylsulfonic acid (VSA) and [2-(methacryloyloxy)ethyl]trimethylammonium chloride (METMAC) as the negatively and positively charged monomers, respectively, using various monomer ratios in the polymerization solution, and with N,N'-methylenebisacrylamide as the crosslinker. The physicochemical, morphological and anti-fouling properties of the modified membranes were systematically investigated. Hydrophilic hydrogels were successfully grafted using monomers at different molar ratios. A thin-film zwitterion hydrogel (∼90 nm) was achieved at a 3:1 [VSA:METMAC] molar ratio in the polymerization solution. Among all examined membranes, the zwitterion polyampholyte-modified membrane demonstrated the lowest adsorption of proteins, humic acid, and sodium alginate. It also had low fouling and high flux recovery following filtration with a protein or with an extracellular polymeric substance solution. These findings suggest that this polyampholyte hydrogel is applicable as a low fouling surface coating. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. AMAP, the alleged non-toxic isomer of acetaminophen, is toxic in rat and human liver

    NARCIS (Netherlands)

    Hadi, M; Dragovic, S.; van Swelm, R; Herpers, B; van de Water, B.; Russel, RG; Commandeur, J.N.M.; Groothuis, G.M.

    2013-01-01

    N-acetyl-meta-aminophenol (AMAP) is generally considered as a non-toxic regioisomer of the wellknown hepatotoxicant acetaminophen (APAP). However, so far, AMAP has only been shown to be non-toxic in mice and hamsters. To investigate whether AMAP could also be used as non-toxic analog of APAP in rat

  1. Antifouling Metabolites from the Mangrove Plant Ceriops tagal

    Directory of Open Access Journals (Sweden)

    Yi Ming Lin

    2008-01-01

    Full Text Available The new diterpene methoxy-ent-8(14-pimarenely-15-one (1 and three knownmetabolites: ent-8(14-pimarene-15R,16-diol (2, stigmasterol (3 and β-sitosterol (4, wereisolated from the roots of the mangrove plant Ceriops tagal. Their structures and relativestereochemistry were elucidated by means of extensive NMR, IR and MS analysis.Compounds 1, 2, 3 and 4 exhibited significant antifouling activities against cyprid larvaeof the barnacle Balanus albicostatus Pilsbry, with EC50 values of 0.32 ± 0.01, 0.04 ± 0.00,4.05 ± 0.15 and 18.47 ± 0.40 μg/cm2, respectively, whereas their toxicities towards cypridswere very low, with LC50 values all above 10 μg/cm2.

  2. AMAP, the alleged non-toxic isomer of acetaminophen, is toxic in rat and human liver

    NARCIS (Netherlands)

    Hadi, Mackenzie; Dragovic, Sanja; van Swelm, Rachel; Herpers, Bram; van de Water, Bob; Russel, Frans G. M.; Commandeur, Jan N. M.; Groothuis, Geny M. M.

    N-acetyl-meta-aminophenol (AMAP) is generally considered as a non-toxic regioisomer of the well-known hepatotoxicant acetaminophen (APAP). However, so far, AMAP has only been shown to be non-toxic in mice and hamsters. To investigate whether AMAP could also be used as non-toxic analog of APAP in rat

  3. Controlled release of environmentally friendly antifouling agents from marine coatings

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller

    som antifouling agent er derfor en central del i dette arbejde. Det overordnede mål er at kunne evaluere antifouling effekten af en maling, der ved hjælp af to enzymer omdanner stivelse til hydrogenperoxid. I første kapitel vil der blive givet en introduktion til fouling, det marine miljø, og...

  4. Improved antifouling performance of ultrafiltration membrane via preparing novel zwitterionic polyimide

    Science.gov (United States)

    Huang, Haitao; Yu, Jiayu; Guo, Hanxiang; Shen, Yibo; Yang, Fan; Wang, Han; Liu, Rong; Liu, Yang

    2018-01-01

    On the basis of the outstanding fouling resistance of zwitterionic polymers, an antifouling ultrafiltration membrane was fabricated through phase inversion induced by immersion precipitation method, directly using the novel zwitterionic polyimide (Z-PI), which was synthesized via a two-step procedure including polycondensation and quaternary amination reaction, as membrane material. The chemical structure and composition of the obtained polymer were confirmed by using FTIR, 1H NMR and XPS analysis, and its thermal stability was thoroughly characterized by TGA measurement, respectively. The introduction of zwitterionic groups into polyimide could effectively increase membrane pore size, porosity and wettability, and convert the membrane surface from hydrophobic to highly hydrophilic. As a result, Z-PI membrane displayed significantly improved water permeability compared with that of the reference polyimide (R-PI) membrane without having an obvious compromise in protein rejection. According to the static adsorption and dynamic cycle ultrafiltration experiments of bovine serum albumin (BSA) solution, Z-PI membrane exhibited better fouling resistant ability, especially irreversible fouling resistant ability, suggesting superior antifouling property and long-term performance stability. Moreover, Z-PI membrane had a water flux recovery ratio of 93.7% after three cycle of BSA solution filtration, whereas only about 68.5% was obtained for the control R-PI membrane. These findings demonstrated the advantages of Z-PI membrane material and aimed to provide a facile and scalable method for the large-scale preparation of low fouling ultrafiltration membranes for potential applications.

  5. A study on antifouling technique through seawater electrolyzing reaction on ship hull surface 【Article】

    OpenAIRE

    Huang, Yi; Saito, Kimio; Usami, Masahiro

    2003-01-01

    The antifouling technique through seawater electrolysis for ship hulls may be realized by an antifoul-ing system consisting of a power unit and the electro-conductive film. In the electric field formed bysuch an antifouling system, besides that both the electro-conductive film layer sub-region and the sea-water sub-region are included, polarization occurs on the interface between electro-conductive film layerand seawater. Therefore, based on the Interface Electro-Double Layer theory, a numeri...

  6. Environmental management aspects for TBT antifouling wastes from the shipyards.

    Science.gov (United States)

    Kotrikla, Anna

    2009-02-01

    Tributyltin (TBT)-based antifouling paints have been successfully used for over 40 years to protect a ship's hull from biofouling. However, due to its high toxicity to marine organisms, the International Maritime Organization (IMO), in 1990, adopted a resolution recommending governments to adopt measures to eliminate antifouling paints containing TBT. High concentrations of TBT are detected in the vicinity of ports and shipyards. TBT is also usually detected in the sediment, in which it accumulates. This study reviews recent literature for the best management practices (BMPs) in order to minimize the environmental effects of TBT. The paper focuses on the evaluation of the available techniques for the removal of TBT from shipyard wastes and from the sediment. The most effective treatment methods are highlighted. BMPs include recycling of abrasive materials, use of cleaner abrasive materials, reuse of spent abrasive materials, substitution of hydroblasting by vacuum blasting or containment or ultra-high-pressure water blasting and confinement of pollution by enclosure and containment systems. The treatment of the TBT wastes by conventional biological wastewater treatment processes is probably not suitable, because the concentrations of TBT found in shipyards' wastewaters are toxic to microorganisms. Advanced technologies such as activated carbon adsorption and dissolved air flotation, in combination with filtration and coagulation-clarification, photodegradation and electrochemical treatment, are required to remove TBT. However, advanced methods should be further optimized to meet the regulatory limit of 200 ng/L. To date, only one published work examines the efficiency of incineration for the treatment of solid sandblast wastes. Regarding the treatment of sediment, land deposition of the less polluted fraction of sediment is a feasible option. Such treatment must take into account the risk of contamination of groundwater and the surroundings, and it requires

  7. Non-toxic brominated perfluorocarbons radiopaque agents

    International Nuclear Information System (INIS)

    Long, D.M. Jr.

    1976-01-01

    Non-toxic bromofluorocarbon radiopaque agents are disclosed. Certain monobrominated acyclic fluorocarbons, e.g., CF 3 (CF 2 ) 6 CF 2 Br, are improved non-toxic radiopaque agents useful in diagnostic roentgenology, for example in visualizing the gastrointestinal tract, the tracheobronchial tree, the alveolar spaces or parenchyma of the lung, the spleen, the urinary bladder and ureters, the common bile duct and its radicals, the pancreatic ducts, the blood vessels, etc. 13 claims, no drawings

  8. Antimicrobial and Antifouling Polymeric Agents for Surface Functionalization of Medical Implants.

    Science.gov (United States)

    Zeng, Qiang; Zhu, Yiwen; Yu, Bingran; Sun, Yujie; Ding, Xiaokang; Xu, Chen; Wu, Yu-Wei; Tang, Zhihui; Xu, Fu-Jian

    2018-05-09

    Combating implant-associated infections is an urgent demand due to the increasing numbers in surgical operations such as joint replacements and dental implantations. Surface functionalization of implantable medical devices with polymeric antimicrobial and antifouling agents is an efficient strategy to prevent bacterial fouling and associated infections. In this work, antimicrobial and antifouling branched polymeric agents (GPEG and GEG) were synthesized via ring-opening reaction involving gentamicin and ethylene glycol species. Due to their rich primary amine groups, they can be readily coated on the polydopamine-modified implant (such as titanium) surfaces. The resultant surface coatings of Ti-GPEG and Ti-GEG produce excellent in vitro antibacterial efficacy toward both Staphylococcus aureus and Escherichia coli, while Ti-GPEG exhibit better antifouling ability. Moreover, the infection model with S. aureus shows that implanted Ti-GPEG possessed excellent antibacterial and antifouling ability in vivo. This study would provide a promising strategy for the surface functionalization of implantable medical devices to prevent implant-associated infections.

  9. Phylogenetic diversity of bacteria associated with toxic and non-toxic ...

    African Journals Online (AJOL)

    Phylogenetic diversity of bacteria associated with toxic and non-toxic strains of Alexandrium minutum. L Palacios, B Reguera, J Franco, I Marín. Abstract. Marine planktonic dinoflagellates are usually associated with bacteria, some of which seem to have a symbiotic relation with the dinoflagellate cells. The role of bacteria in ...

  10. Chemical study and antifouling activity of Caribbean octocoral Eunicea laciniata

    International Nuclear Information System (INIS)

    Cuadrado Silva, Carmen Tatiana; Castellanos Hernandez, Leonardo; Osorno Reyes, Oscar Eduardo; Ramos Rodriguez, Freddy Alejandro; Duque Beltran, Carmenza

    2010-01-01

    The bioassay guided purification of the octocoral Eunicea laciniata organic extract, collected at Santa Marta bay, Colombia, allowed the isolation of the new compound (-)-3β-pregna-5,20-dienyl-β-D-arabinopyranoside (1), along with the known compounds 1(S * ),11(R * )-dolabell-3(E),7(E),12(18)-triene (2), 13-keto-1(S),11(R)-dolabell-3(E),7(E),12(18)-triene (3), cholest- 5,22-dien-3β-ol (4), cholesterol (5), y brassicasterol (6). The structure and absolute configuration of 1 was determined on based spectroscopic analyses (NMR and CD). The extract showed antifouling activity against five strains of marine bacteria associated to heavy fouled surfaces. Also showed activity against the cypris of the cosmopolitan barnacle Balanus amphitrite, and low toxicity in Artemia salina test. (author)

  11. Zebra Mussel Antifouling Activity of the Marine Natural Product Aaptamine and Analogs

    Science.gov (United States)

    Diers, Jeffrey A.; Bowling, John J.; Duke, Stephen O.; Wahyuono, Subagus; Kelly, Michelle; Hamann, Mark T.

    2016-01-01

    Several aaptamine derivatives were selected as potential zebra mussel (Dreissena polymorpha) antifoulants because of the noteworthy absence of fouling observed on Aaptos sponges. Sponges of the genus Aaptos collected in Manado, Indonesia consistently produce aaptamine-type alkaloids. To date, aaptamine and its derivatives have not been carefully evaluated for their antifoulant properties. Structure–activity relationship studies were conducted using several aaptamine derivatives in a zebra mussel antifouling assay. From these data, three analogs have shown significant antifouling activity against zebra mussel attachment. Aaptamine, isoaaptamine, and the demethylated aaptamine compounds used in the zebra mussel assay produced EC50 values of 24.2, 11.6, and 18.6 μM, respectively. In addition, neither aaptamine nor isoaaptamine produced a phytotoxic response (as high as 300 μM) toward a nontarget organism, Lemna pausicostata, in a 7-day exposure. The use of these aaptamine derivatives from Aaptos sp. as potential environmentally benign antifouling alternatives to metal-based paints and preservatives is significant, not only as a possible control of fouling organisms, but also to highlight the ecological importance of these and similar biochemical defenses. PMID:16718618

  12. On the hydration of subnanometric antifouling organosilane adlayers: a molecular dynamics simulation.

    Science.gov (United States)

    Sheikh, Sonia; Blaszykowski, Christophe; Nolan, Robert; Thompson, Damien; Thompson, Michael

    2015-01-01

    The connection between antifouling and surface hydration is a fascinating but daunting question to answer. Herein, we use molecular dynamics (MD) computer simulations to gain further insight into the role of surface functionalities in the molecular-level structuration of water (surface kosmotropicity)--within and atop subnanometric organosilane adlayers that were shown in previous experimental work to display varied antifouling behavior. Our simulations support the hypothesized intimate link between surface hydration and antifouling, in particular the importance of both internal and interfacial hydrophilicity and kosmotropicity. The antifouling mechanism is also discussed in terms of surface dehydration energy and water dynamicity (lability and mobility), notably the crucial requirement for clustered water molecules to remain tightly bound for extensive periods of time--i.e. exhibit slow exchange dynamics. A substrate effect on surface hydration, which would also participate in endowing antifouling adlayers with hydrogel-like characteristics, is also proposed. In contrast, the role of adlayer flexibility, if any, is assigned a secondary role in these ultrathin structures made of short building blocks. The conclusions from this work are well in line with those previously drawn in the literature. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Drag resistance measurements for newly applied antifouling coatings and welding seams on ship hull surface

    DEFF Research Database (Denmark)

    Wang, Xueting; Olsen, S. M.; Andres, E.

    Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared in their......Drag resistances of newly applied antifouling coatings and welding seams on ship hull surface have been investigated using a pilot-scale rotary setup. Both conventional biocide-based antifouling (AF) coatings and silicone-based fouling release (FR) coatings have been studied and compared...

  14. Australian DefenceScience. Volume 13. Number 1, Autumn

    Science.gov (United States)

    2005-01-01

    marine communities in the surrounding environment. Antifouling paints containing the agent tributyltin ( TBT ) were recently banned under a new...are presently seen as the most promising non- toxic alternative to biocidal antifouling paints. However, some diatoms still adhere to these surfaces

  15. Non-Toxic HAN Monopropellant Propulsion, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Non-toxic monopropellants have been developed that provide better performance than toxic hydrazine. Formulations based on hydroxylammonium nitrate (HAN) have...

  16. In Situ Synthesis of Antimicrobial Silver Nanoparticles within Antifouling Zwitterionic Hydrogels by Catecholic Redox Chemistry for Wound Healing Application.

    Science.gov (United States)

    GhavamiNejad, Amin; Park, Chan Hee; Kim, Cheol Sang

    2016-03-14

    A multifunctional hydrogel that combines the dual functionality of both antifouling and antimicrobial capacities holds great potential for many bioapplications. Many approaches and different materials have been employed to synthesize such a material. However, a systematic study, including in vitro and in vivo evaluation, on such a material as wound dressings is highly scarce at present. Herein, we report on a new strategy that uses catecholic chemistry to synthesize antimicrobial silver nanoparticles impregnated into antifouling zwitterionic hydrogels. For this purpose, hydrophobic dopamine methacrylamide monomer (DMA) was mixed in an aqueous solution of sodium tetraborate decahydrate and DMA monomer became soluble after increasing pH to 9 due to the complexation between catechol groups and boron. Then, cross-linking polymerization of zwitterionic monomer was carried out with the solution of the protected dopamine monomer to produce a new hydrogel. When this new hydrogel comes in contact with a silver nitrate solution, silver nanoparticles (AgNPs) are formed in its structure as a result of the redox property of the catechol groups and in the absence of any other external reducing agent. The results obtained from TEM and XRD measurements indicate that AgNPs with diameters of around 20 nm had formed within the networks. FESEM images confirmed that the silver nanoparticles were homogeneously incorporated throughout the hydrogel network, and FTIR spectroscopy demonstrated that the catechol moiety in the polymeric backbone of the hydrogel is responsible for the reduction of silver ions into the AgNPs. Finally, the in vitro and in vivo experiments suggest that these mussel-inspired, antifouling, antibacterial hydrogels have great potential for use in wound healing applications.

  17. Molecular Understanding and Structural-Based Design of Polyacrylamides and Polyacrylates as Antifouling Materials.

    Science.gov (United States)

    Chen, Hong; Zhao, Chao; Zhang, Mingzhen; Chen, Qiang; Ma, Jie; Zheng, Jie

    2016-04-12

    Design and synthesis of highly bioinert and biocompatible antifouling materials are crucial for a broad range of biomedical and engineering applications. Among antifouling materials, polyacrylamides and polyacrylates have proved so promising because of cheap raw materials, ease of synthesis and applicability, and abundant functional groups. The strong surface hydration and the high surface packing density of polyacrylamides and polyacrylates are considered to be the key contributors to their antifouling property. In this article, we review our studies on the design and synthesis of a series of polyacrylamides and polyacrylates with different molecular structures. These polymers can be fabricated into different architectural forms (brushes, nanoparticles, nanogels, and hydrogels), all of which are highly resistant to the attachment of proteins, cells, and bacteria. We find that small structural changes in the polymers can lead to large enhancement in surface hydration and antifouling performance, both showing a positive correlation. This reveals a general design rule for effective antifouling materials. Furthermore, polyacrylamides and polyacrylates are readily functionalized with other bioactive compounds to achieve different new multifunctionalities.

  18. Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive.

    Science.gov (United States)

    Zhao, Yi-Fan; Zhang, Pei-Bin; Sun, Jian; Liu, Cui-Jing; Yi, Zhuan; Zhu, Li-Ping; Xu, You-Yi

    2015-06-15

    Here we describe the development of versatile antifouling polyethersulfone (PES) filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. Amphiphilic polyethersulfone-block-poly(2-hydroxyethyl methacrylate) (PES-b-PHEMA) was beforehand designed and used as the blending additive of PES membranes prepared by phase inversion technique. The surface enriched PHEMA blocks on membrane surface acted as an anchor to immobilize the initiating site. Poly(sulfobetaine methacrylate) (PSBMA) were subsequently grafted onto the PES blend membranes by surface-initiated atom transfer radical polymerization (SI-ATRP). The analysis of surface chemistry confirmed the successful grafting of zwitterionic PSBMA brushes on PES membrane surface. The resulted PES-g-PSBMA membranes were capable of separating proteins from protein solution and oil from oil/water emulsion efficiently. Furthermore, the modified membranes showed high hydrophilicity and strongly antifouling properties due to the incorporation of well-defined PSBMA layer. In addition, the PES-g-PSBMA membranes exhibited excellent blood compatibility and durability during the washing process. The developed antifouling PES membranes are versatile and can find their applications in protein filtration, blood purification and oil/water separation, etc. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. From TBT to booster biocides: Levels and impacts of antifouling along coastal areas of Panama.

    Science.gov (United States)

    Batista-Andrade, Jahir Antonio; Caldas, Sergiane Souza; Batista, Rodrigo Moço; Castro, Italo Braga; Fillmann, Gilberto; Primel, Ednei Gilberto

    2018-03-01

    Antifouling biocides in surface sediments and gastropod tissues were assessed for the first time along coastal areas of Panama under the influence of maritime activities, including one of the world's busiest shipping zones: the Panama Canal. Imposex incidence was also evaluated in five muricid species distributed along six coastal areas of Panama. This TBT-related biological alteration was detected in three species, including the first report in Purpura panama. Levels of organotins (TBT, DBT, and MBT) in gastropod tissues and surficial sediments ranged from TBT inputs were observed in areas considered as moderate to highly contaminated mainly by inputs from fishing and leisure boats. Regarding booster biocides, TCMTB and dichlofluanid were not detected in any sample, while irgarol 1051, diuron and DCOIT levels ranged from TBT (149 ng Sn g -1 ) and irgarol 1051 (2.8 ng g -1 ), as well as relevant level of DCOIT (5.7 ng g -1 ), were detected in a marina used by recreational boats. Additionally, relatively high diuron values (14.1 ng g -1 ) were also detected in the Panama Canal associate to a commercial port. DCOIT concentrations were associated with the presence of antifouling paint particles in sediments obtained nearby shipyard or boat maintenance sites. The highest levels of TBT, irgarol 1051, and diuron exceeded international sediment quality guidelines indicating that toxic effects could be expected in coastal areas of Panama. Thus, the simultaneous impacts produced by new and old generations of antifouling paints highlight a serious environmental issue in Panamanian coastal areas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Increased persistence of antifouling paint biocides when associated with paint particles

    International Nuclear Information System (INIS)

    Thomas, K.V.; McHugh, M.; Hilton, M.; Waldock, M.

    2003-01-01

    Release of biocides associated with paint particles into marinas may increase their persistence in the environment. - Current regulatory risk assessment procedures only assess the impact of antifouling paint biocides that are released through leaching from a painted surface. Hull cleaning activities can lead to particles of antifouling paint containing biocides to enter the environment. Comparative pseudo-first order anaerobic degradation rate constants and half-lives were determined for a selection of common antifouling paint booster biocides, their degradation products, and associated with paint particles. Anaerobic half-lives of <0.5 days were calculated for chlorothalonil, dichlofluanid, and SeaNine 211, between 1 and 3 days for DCPMU and DCPU, between 14 and 35 days for diuron and CPDU, and over 226 days for GS26575 and Irgarol 1051. Increased persistence was observed when the compounds were introduced to sediments associated with antifouling paint particles. When present as antifouling paint particles, an increased half-life of 9.9 days for SeaNine 211 and 1.4 days was calculated for dichlofluanid, no significant degradation was observed for diuron. It is suspected that this is due to much of the biocide being initially bound within the matrix of the paint particle that is slowly released through dissolution processes into the sediment pore water prior to degradation. The release of booster biocides associated with paint particles into marinas has the potential to lead to their accumulation unless activities such as hull cleaning are strictly regulated

  1. Increased persistence of antifouling paint biocides when associated with paint particles

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, K.V.; McHugh, M.; Hilton, M.; Waldock, M

    2003-05-01

    Release of biocides associated with paint particles into marinas may increase their persistence in the environment. - Current regulatory risk assessment procedures only assess the impact of antifouling paint biocides that are released through leaching from a painted surface. Hull cleaning activities can lead to particles of antifouling paint containing biocides to enter the environment. Comparative pseudo-first order anaerobic degradation rate constants and half-lives were determined for a selection of common antifouling paint booster biocides, their degradation products, and associated with paint particles. Anaerobic half-lives of <0.5 days were calculated for chlorothalonil, dichlofluanid, and SeaNine 211, between 1 and 3 days for DCPMU and DCPU, between 14 and 35 days for diuron and CPDU, and over 226 days for GS26575 and Irgarol 1051. Increased persistence was observed when the compounds were introduced to sediments associated with antifouling paint particles. When present as antifouling paint particles, an increased half-life of 9.9 days for SeaNine 211 and 1.4 days was calculated for dichlofluanid, no significant degradation was observed for diuron. It is suspected that this is due to much of the biocide being initially bound within the matrix of the paint particle that is slowly released through dissolution processes into the sediment pore water prior to degradation. The release of booster biocides associated with paint particles into marinas has the potential to lead to their accumulation unless activities such as hull cleaning are strictly regulated.

  2. Evaluation of the toxic effect on zebrafish (Danio rerio) exposed to uranium mill tailings leaching solution

    International Nuclear Information System (INIS)

    Fang Geng; Nan Hu; Ji-Fang Zheng; Cheng-Lei Wang; Xin Chen; Jia Yu; De-Xin Ding

    2012-01-01

    The objective of this study was to evaluate the potential ecological danger and toxic effect of uranium mill tailings leaching solution (UMTLS) on aquatic animals. UMTLS was identified to contain two radioactive elements, nine heavy metal elements, and five non-metallic materials. The acute toxicity test indicated that the 1, 12, 24, 48, 72, 96 h LC 50 values of UMTLS to the zebrafish were 12.1, 7.1, 4.4, 3.8, 3.4, and 2.9%, respectively. In sub-lethal toxicity tests, superoxide dismutase, catalase, Na + -K + -ATPase activities, and malondialdehyde content were respectively determined and analyzed in the zebrafish gill, gonad, muscle, and liver after exposed to four different concentration levels of UMTLS for 7 and 14 days, respectively. The result showed that the most sensitivity of the antioxidant system in zebrafish tissues in UMTLS was gill, and then decreased in gonad, muscle and liver respectively. Na + -K + -ATPase activity in the liver and gonad may be considered as a reference biomarker of UMTLS stress. The data in this study may be valuable that the toxicity of such as the leaching solution of potentially hazardous material was compared with that of each constituent. (author)

  3. Biofouling growth in cold estuarine waters and evaluation of some chitosan and copper anti-fouling paints.

    Science.gov (United States)

    Pelletier, Emilien; Bonnet, Claudie; Lemarchand, Karine

    2009-07-14

    Ecological concerns about antifouling paints containing non-green tin and copper compounds have highlighted the need for environmentally friendly alternatives. We report here a field test conducted in estuarine waters over two months designed to evaluate the efficiency of a number of active natural and man-made chemical ingredients added into a silicon-polyurethane marine paint. Early steps of biofouling in cold seawater of the St. Lawrence Estuary (Canada) were observed. Analyses, including dry biomass, flow cytometry and spectrofluorimetry, demonstrated a short-term antibacterial action of chitosan-based paints although no significant anti-algal action was observed. Cuprous oxide paints were efficient against bacteria and algae invasion in the first two weeks, especially those with added organic biocides such as isothiazolone and copper pyrithione. However, the overall dry biomass and chlorophyll a content were similar for all chitosan-and copper-based paints after 63 days. Microscopic observations revealed variation in the highly diverse benthic diatom population including species Navicula, Melosira, Cocconeis, Nitshzcia, Fragilaria and Amphora. Results suggest no real long-term efficiency for tested antifouling paints and highlight a particular need for green antifouling ingredients that are active under northern estuarine conditions.

  4. Biofouling Growth in Cold Estuarine Waters and Evaluation of Some Chitosan and Copper Anti-Fouling Paints

    Directory of Open Access Journals (Sweden)

    Karine Lemarchand

    2009-07-01

    Full Text Available Ecological concerns about antifouling paints containing non-green tin and copper compounds have highlighted the need for environmentally friendly alternatives. We report here a field test conducted in estuarine waters over two months designed to evaluate the efficiency of a number of active natural and man-made chemical ingredients added into a silicon-polyurethane marine paint. Early steps of biofouling in cold seawater of the St. Lawrence Estuary (Canada were observed. Analyses, including dry biomass, flow cytometry and spectrofluorimetry, demonstrated a short-term antibacterial action of chitosan-based paints although no significant anti-algal action was observed. Cuprous oxide paints were efficient against bacteria and algae invasion in the first two weeks, especially those with added organic biocides such as isothiazolone and copper pyrithione. However, the overall dry biomass and chlorophyll a content were similar for all chitosan- and copper-based paints after 63 days. Microscopic observations revealed variation in the highly diverse benthic diatom population including species Navicula, Melosira, Cocconeis, Nitshzcia, Fragilaria and Amphora. Results suggest no real long-term efficiency for tested antifouling paints and highlight a particular need for green antifouling ingredients that are active under northern estuarine conditions.

  5. Fabrication of high flux and antifouling mixed matrix fumarate-alumoxane/PAN membranes via electrospinning for application in membrane bioreactors

    Science.gov (United States)

    Moradi, Golshan; Zinadini, Sirus; Rajabi, Laleh; Dadari, Soheil

    2018-01-01

    The nanofibrous Polyacrylonitrile (PAN) membranes embedded with fumarate-alumoxane (Fum-A) nanoparticles were prepared via electrospinning technique as high flux and antifouling membranes for membrane bioreactor (MBR) applications. The effect of Fum-A nanoparticles on membrane morphology, surface hydrophilicity, pure water flux, effluent turbidity and the antifouling property was investigated. Fum-A is a carboxylate-alumoxane nanoparticle covered by extra hydroxyl and carboxylate groups on its surface. By embedding Fum-A nanoparticles into the spinning solution, the surface hydrophilicity and pure water flux of the resulted membranes were improved. The smooth surface of fibers at the low amount of nanoparticles and the agglomeration of nanoparticles at their high concentration were shown in SEM images of the membranes surface. The energy dispersive spectroscopy (EDS) and Fourier transform infrared spectroscopy (FTIR) analysis of the prepared Fum-A/PAN membrane confirmed the presence of carboxylate and hydroxyl functional groups of Fum-A nanoparticles on the surface of the Fum-A nanoparticles containing membrane. The results obtained from the filtration of activated sludge suspension revealed that by addition of a low amount of Fum-A nanoparticles, the irreversible fouling was significantly decreased due to the higher hydrophilicity. The Fum-A/PAN membranes showed superior permeate flux and antifouling properties compared to bare electrospun PAN membrane. Finally, 2 wt.% Fum-A/PAN membrane exhibited the highest FRR of 96% and the lowest irreversible fouling of 4% with excellent durability of antifouling property during twenty repeated activated sludge filtrations.

  6. Comparative toxicological effects of two antifouling biocides on the marine diatom Chaetoceros lorenzianus: Damage and post-exposure recovery.

    Science.gov (United States)

    Chavan, Pooja; Kumar, Rajesh; Kirubagaran, Ramalingam; Venugopalan, Vayalam P

    2017-10-01

    Antifouling biocides are commonly used in coastal electric power stations to prevent biofouling in their condenser cooling systems. However, the environmental impact of the chemical biocides is less understood than the thermal stress effects caused by the condenser effluents. In this study, Chaetoceros lorenzianus, a representative marine diatom, was used to analyse the toxicity of two antifouling biocides, chlorine and chlorine dioxide. The diatom cells were subjected to a range of concentrations of the biocides (from 0.05 to 2mg/L, as total residual oxidants, TRO) for contact time of 30min. They were analysed for viability, genotoxicity, chlorophyll a and cell density endpoints. The cells were affected at all concentrations of the biocides (0.05-2mg/L), showing dose-dependent decrease in viability and increase in DNA damage. The treated cells were later incubated in filtered seawater devoid of biocide to check for recovery. The cells were able to recover in terms of overall viability and DNA damage, when they had been initially treated with low concentrations of the biocides (0.5mg/L of Cl 2 or 0.2mg/L of ClO 2 ). Chlorophyll a analysis showed irreparable damage at all concentrations, while cell density showed increasing trend of reduction, if treated above 0.5mg/L of Cl 2 and 0.2mg/L of ClO 2 . The data indicated that in C. lorenzianus, cumulative toxic effects and recovery potential of ClO 2 up to 0.2mg/L were comparable with those of Cl 2 , up to 0.5mg/L concentration in terms of the studied endpoints. The results indicate that at the biocide levels currently being used at power stations, recovery of the organism is feasible upon return to ambient environment. Similar studies should be carried out on other planktonic and benthic organisms, which will be helpful in the formulation of future guidelines for discharge of upcoming antifouling biocides such as chlorine dioxide. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Active prey selection in two pelagic copepods feeding on potentially toxic and non-toxic dinoflagellates

    DEFF Research Database (Denmark)

    Schultz, Mette; Kiørboe, Thomas

    2009-01-01

    Grazing on two red tide dinoflagellates, the potentially toxic Karenia mikimotoi and the non-toxic Gyrodinium instriatum, was examined in two species of marine copepods, Pseudocalanus elongatus and Temora longicornis. Both copepods cleared K. mikimotoi at rates that were a little lower but compar......Grazing on two red tide dinoflagellates, the potentially toxic Karenia mikimotoi and the non-toxic Gyrodinium instriatum, was examined in two species of marine copepods, Pseudocalanus elongatus and Temora longicornis. Both copepods cleared K. mikimotoi at rates that were a little lower...

  8. Phylogenetic analysis and antifouling potentials of culturable fungi in mangrove sediments from Techeng Isle, China.

    Science.gov (United States)

    Zhang, Xiao-Yong; Fu, Wen; Chen, Xiao; Yan, Mu-Ting; Huang, Xian-De; Bao, Jie

    2018-06-09

    To search for more microbial resources for screening environment-friendly antifoulants, we investigated the phylogenetic diversity and antifouling potentials of culturable fungi in mangrove sediments from Techeng Isle, China. A total of 176 isolates belonging to 57 fungal taxa were recovered and identified. The high levels of diversity and abundance of mangrove fungi from Techeng Isle were in accordance with previous studies on fungi from other mangrove ecosystems. Fifteen of the 176 isolates demonstrated high divergence (87-93%) from the known fungal taxa in GenBank. Moreover, 26 isolates recorded in mangrove ecosystems for the first time. These results suggested that mangrove sediments from Techeng Isle harbored some new fungal communities compared with other mangrove ecosystems. The antifouling activity of 57 representative isolates (belonging to 57 different fungal taxa) was tested against three marine bacteria (Loktanella hongkongensis, Micrococcus luteus and Pseudoalteromonas piscida) and two marine macrofoulers (bryozoan Bugula neritina and barnacle Balanus amphitrite). Approximately 40% of the tested isolates displayed distinct antifouling activity. Furthermore, 17 fungal isolates were found to display strong or a wide spectrum of antifouling activity in this study, suggesting that these isolates deserve further study as potential sources of novel antifouling metabolites. To our knowledge, this is the first report on the investigation of the phylogenetic diversity and antifouling potential of culturable fungi in mangrove sediments from Techeng Isle, China. These results contribute to our knowledge of mangrove fungi and further increases the pool of fungi available for natural bioactive product screening.

  9. Toxicity alarm: Case history

    International Nuclear Information System (INIS)

    Hogan, D.; Retallack, J.

    1993-01-01

    In late fall 1991, the Novacor petrochemical plant near Joffre, Alberta experienced a toxicity alarm, the first since its startup 14 years ago. Fish exposed to a normal toxicity test were stressed within 2 h and showed 100% mortality after 24 h. A history of the events leading up to, during, and after the toxicity alarm is presented. The major effluent sources were three cooling water systems. Although these sources are well characterized, the event causes were not immediately clear. Initial toxic screening indicated that one was very toxic, another moderately toxic, and the third not toxic at all. All three systems utilized the same chemical treatment program to avoid fouling: stabilized phosphates with minor variants. The most toxic of the cooling systems operated at 10-12 cycles, had three chemicals for biocide control, and had three makeup streams. Toxic and nontoxic system characteristics were compared. An in-depth modified toxicity identification and evaluation program was then performed to identify and evaluate the cause of the toxicity alarm for future prevention. The most probable causes of toxicity were identified by elimination. The combination of high numbers of cycles, hydrocarbons in the makeup water, and bromine added as an antifoulant resulted in formation of aromatic bromamines which are capable of causing the toxic condition experienced. 2 tabs

  10. Preparation of antifouling poly(vinylidene fluoride) membranes via different coating methods using a zwitterionic copolymer

    International Nuclear Information System (INIS)

    Ma, Wenzhong; Rajabzadeh, Saeid; Matsuyama, Hideto

    2015-01-01

    Graphical abstract: - Highlights: • We successfully coated the poly(MPC-co-BMA) copolymer on the ultrafiltration membrane. • The hydrophilicity and antifouling were improved by coating poly(MPC-co-BMA). • The flow-through method showed better anti-fouling properties compared with immersion method. • P(MPC-co-BMA) was quite stable on the coated membranes. - Abstract: To reduce the fouling resistance of poly(vinylidene fluoride) membranes, a copolymer of 2-methacryloyloxyethyl phosphorylcholine (MPC) and n-butyl methacrylate (BMA) [poly(MPC-co-BMA)] was coated on a membrane and into its pores from an aqueous solution using two different methods, the immersion and flow-through methods. The effects of poly(MPC-co-BMA) coating on the water flux, surface morphology, and fouling propensity of three types of commercial ultrafiltration membranes with molecular-weight cutoffs ranging from 50 to 250 kDa were investigated. The fouling resistances of modified membranes to bovine serum albumin were compared to those of the unmodified membranes. The evaluation of X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy of the modified membranes confirmed that poly(MPC-co-BMA) was coated on the membrane surfaces. Although both modification methods effectively prevented protein fouling, the flow-through coating method demonstrated a better antifouling propensity. The coated copolymer stability results indicated that the coated copolymer layer on the membrane surface using both coating methods was quite stable even after ultrasonic treatment.

  11. Silica Nanoparticles Functionalized with Zwitterionic Sulfobetaine Siloxane for Application as a Versatile Antifouling Coating System.

    Science.gov (United States)

    Knowles, Brianna R; Wagner, Pawel; Maclaughlin, Shane; Higgins, Michael J; Molino, Paul J

    2017-06-07

    The growing need to develop surfaces able to effectively resist biological fouling has resulted in the widespread investigation of nanomaterials with potential antifouling properties. However, the preparation of effective antifouling coatings is limited by the availability of reactive surface functional groups and our ability to carefully control and organize chemistries at a materials' interface. Here, we present two methods of preparing hydrophilic low-fouling surface coatings through reaction of silica-nanoparticle suspensions and predeposited silica-nanoparticle films with zwitterionic sulfobetaine (SB). Silica-nanoparticle suspensions were functionalized with SB across three pH conditions and deposited as thin films via a simple spin-coating process to generate hydrophilic antifouling coatings. In addition, coatings of predeposited silica nanoparticles were surface functionalized via exposure to zwitterionic solutions. Quartz crystal microgravimetry with dissipation monitoring was employed as a high throughput technique for monitoring and optimizing reaction to the silica-nanoparticle surfaces. Functionalization of nanoparticle films was rapid and could be achieved over a wide pH range and at low zwitterion concentrations. All functionalized particle surfaces presented a high degree of wettability and resulted in large reductions in adsorption of bovine serum albumin protein. Particle coatings also showed a reduction in adhesion of fungal spores (Epicoccum nigrum) and bacteria (Escherichia coli) by up to 87 and 96%, respectively. These results indicate the potential for functionalized nanosilicas to be further developed as versatile fouling-resistant coatings for widespread coating applications.

  12. Preparation of antifouling poly(vinylidene fluoride) membranes via different coating methods using a zwitterionic copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wenzhong; Rajabzadeh, Saeid; Matsuyama, Hideto, E-mail: matuyama@kobe-u.ac.jp

    2015-12-01

    Graphical abstract: - Highlights: • We successfully coated the poly(MPC-co-BMA) copolymer on the ultrafiltration membrane. • The hydrophilicity and antifouling were improved by coating poly(MPC-co-BMA). • The flow-through method showed better anti-fouling properties compared with immersion method. • P(MPC-co-BMA) was quite stable on the coated membranes. - Abstract: To reduce the fouling resistance of poly(vinylidene fluoride) membranes, a copolymer of 2-methacryloyloxyethyl phosphorylcholine (MPC) and n-butyl methacrylate (BMA) [poly(MPC-co-BMA)] was coated on a membrane and into its pores from an aqueous solution using two different methods, the immersion and flow-through methods. The effects of poly(MPC-co-BMA) coating on the water flux, surface morphology, and fouling propensity of three types of commercial ultrafiltration membranes with molecular-weight cutoffs ranging from 50 to 250 kDa were investigated. The fouling resistances of modified membranes to bovine serum albumin were compared to those of the unmodified membranes. The evaluation of X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy of the modified membranes confirmed that poly(MPC-co-BMA) was coated on the membrane surfaces. Although both modification methods effectively prevented protein fouling, the flow-through coating method demonstrated a better antifouling propensity. The coated copolymer stability results indicated that the coated copolymer layer on the membrane surface using both coating methods was quite stable even after ultrasonic treatment.

  13. Does antifouling paint select for antibiotic resistance?

    Science.gov (United States)

    Flach, Carl-Fredrik; Pal, Chandan; Svensson, Carl Johan; Kristiansson, Erik; Östman, Marcus; Bengtsson-Palme, Johan; Tysklind, Mats; Larsson, D G Joakim

    2017-07-15

    There is concern that heavy metals and biocides contribute to the development of antibiotic resistance via co-selection. Most antifouling paints contain high amounts of such substances, which risks turning painted ship hulls into highly mobile refuges and breeding grounds for antibiotic-resistant bacteria. The objectives of this study were to start investigate if heavy-metal based antifouling paints can pose a risk for co-selection of antibiotic-resistant bacteria and, if so, identify the underlying genetic basis. Plastic panels with one side painted with copper and zinc-containing antifouling paint were submerged in a Swedish marina and biofilms from both sides of the panels were harvested after 2.5-4weeks. DNA was isolated from the biofilms and subjected to metagenomic sequencing. Biofilm bacteria were cultured on marine agar supplemented with tetracycline, gentamicin, copper sulfate or zinc sulfate. Biofilm communities from painted surfaces displayed lower taxonomic diversity and enrichment of Gammaproteobacteria. Bacteria from these communities showed increased resistance to both heavy metals and tetracycline but not to gentamicin. Significantly higher abundance of metal and biocide resistance genes was observed, whereas mobile antibiotic resistance genes were not enriched in these communities. In contrast, we found an enrichment of chromosomal RND efflux system genes, including such with documented ability to confer decreased susceptibility to both antibiotics and biocides/heavy metals. This was paralleled by increased abundances of integron-associated integrase and ISCR transposase genes. The results show that the heavy metal-based antifouling paint exerts a strong selection pressure on marine bacterial communities and can co-select for certain antibiotic-resistant bacteria, likely by favoring species and strains carrying genes that provide cross-resistance. Although this does not indicate an immediate risk for promotion of mobile antibiotic resistance, the

  14. Antifouling evaluation of extracts from Red Sea soft corals against primary biofilm and biofouling

    Directory of Open Access Journals (Sweden)

    Yosry Abdel Aziz Soliman

    2017-11-01

    Conclusions: The strong antifouling activity makes them promising candidates for new antifouling additives. After the screening and application of natural organic compounds from soft corals, marine organisms show activity against micro and macro fouling organisms.

  15. Mini-review: Molecular mechanisms of antifouling compounds

    KAUST Repository

    Qian, Pei-Yuan; Chen, Lianguo; Xu, Ying

    2013-01-01

    Various antifouling (AF) coatings have been developed to protect submerged surfaces by deterring the settlement of the colonizing stages of fouling organisms. A review of the literature shows that effective AF compounds with specific targets

  16. Potent antifouling compounds produced by marine Streptomyces

    KAUST Repository

    Xu, Ying; He, Hongping; Schulz, Stefan; Liu, Xin; Fusetani, Nobushino; Xiong, Hairong; Xiao, Xiang; Qian, Peiyuan

    2010-01-01

    of a marine Streptomyces strain obtained from deep-sea sediments. Antifouling activities of these five compounds and four other structurally-related compounds isolated from a North Sea Streptomyces strain against major fouling organisms were compared

  17. Bioaccessibility of metals in soils and dusts contaminated by marine antifouling paint particles

    International Nuclear Information System (INIS)

    Turner, Andrew; Singh, Nimisha; Richards, Jonathan P.

    2009-01-01

    Fragments of antifouling paint and environmental geosolids have been sampled from the island of Malta and analysed for total and bioaccessible metals. Total concentrations of Ba, Cd, Cu, Pb, Sn and Zn were two to three orders of magnitude higher in spent antifouling composites relative to respective values in background soils and road dusts. Paint fragments were visible in geosolids taken from the immediate vicinity of boat maintenance facilities and mass balance calculations, based on Ba as a paint tracer, suggested that the most contaminated soils, road dusts and boatyard dusts contained about 1%, 7% and 9%, respectively, of antifouling particles. Human bioaccessibilities of metals were evaluated in selected samples using a physiologically based extraction technique. Accessibilities of Cd, Cu, Pb and Zn in the most contaminated solids were sufficient to be cause for concern for individuals working in the boat repair industry and to the wider, local community. - Geosolids near boat maintenance facilities are contaminated by antifouling paint particles containing high concentrations of bioaccessible metals.

  18. Bioaccessibility of metals in soils and dusts contaminated by marine antifouling paint particles

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Andrew, E-mail: aturner@plymouth.ac.u [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Singh, Nimisha; Richards, Jonathan P. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-05-15

    Fragments of antifouling paint and environmental geosolids have been sampled from the island of Malta and analysed for total and bioaccessible metals. Total concentrations of Ba, Cd, Cu, Pb, Sn and Zn were two to three orders of magnitude higher in spent antifouling composites relative to respective values in background soils and road dusts. Paint fragments were visible in geosolids taken from the immediate vicinity of boat maintenance facilities and mass balance calculations, based on Ba as a paint tracer, suggested that the most contaminated soils, road dusts and boatyard dusts contained about 1%, 7% and 9%, respectively, of antifouling particles. Human bioaccessibilities of metals were evaluated in selected samples using a physiologically based extraction technique. Accessibilities of Cd, Cu, Pb and Zn in the most contaminated solids were sufficient to be cause for concern for individuals working in the boat repair industry and to the wider, local community. - Geosolids near boat maintenance facilities are contaminated by antifouling paint particles containing high concentrations of bioaccessible metals.

  19. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yapei; Pitet, Louis M.; Finlay, John A.; Brewer, Lenora H.; Cone, Gemma; Betts, Douglas E.; Callow, Maureen E.; Callow, James A.; Wendt, Dean E.; Hillmyer, Marc A.; DeSimone, Joseph M. (Birmingham UK); (NCSU); (UNC); (Cal. Polytech.); (UMM)

    2013-03-07

    The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M{sub w} = 1500 g mol{sup -1}) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M{sub w} = 300, 475, 1100 g mol{sup -1}), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.

  20. Investigation of the role of hydrophilic chain length in amphiphilic perfluoropolyether/poly(ethylene glycol) networks: towards high-performance antifouling coatings.

    Science.gov (United States)

    Wang, Yapei; Pitet, Louis M; Finlay, John A; Brewer, Lenora H; Cone, Gemma; Betts, Douglas E; Callow, Maureen E; Callow, James A; Wendt, Dean E; Hillmyer, Marc A; DeSimonea, Joseph M

    2011-01-01

    The facile preparation of amphiphilic network coatings having a hydrophobic dimethacryloxy-functionalized perfluoropolyether (PFPE-DMA; M(w) = 1500 g mol(-1)) crosslinked with hydrophilic monomethacryloxy functionalized poly(ethylene glycol) macromonomers (PEG-MA; M(w) = 300, 475, 1100 g mol(-1)), intended as non-toxic high-performance marine coatings exhibiting antifouling characteristics is demonstrated. The PFPE-DMA was found to be miscible with the PEG-MA. Photo-cured blends of these materials containing 10 wt% of PEG-MA oligomers did not swell significantly in water. PFPE-DMA crosslinked with the highest molecular weight PEG oligomer (ie PEG1100) deterred settlement (attachment) of algal cells and cypris larvae of barnacles compared to a PFPE control coating. Dynamic mechanical analysis of these networks revealed a flexible material. Preferential segregation of the PEG segments at the polymer/air interface resulted in enhanced antifouling performance. The cured amphiphilic PFPE/PEG films showed decreased advancing and receding contact angles with increasing PEG chain length. In particular, the PFPE/PEG1100 network had a much lower advancing contact angle than static contact angle, suggesting that the PEG1100 segments diffuse to the polymer/water interface quickly. The preferential interfacial aggregation of the larger PEG segments enables the coating surface to have a substantially enhanced resistance to settlement of spores of the green seaweed Ulva, cells of the diatom Navicula and cypris larvae of the barnacle Balanus amphitrite as well as low adhesion of sporelings (young plants) of Ulva, adhesion being lower than to a polydimethyl elastomer, Silastic T2.

  1. Electrografted diazonium salt layers for antifouling on the surface of surface plasmon resonance biosensors.

    Science.gov (United States)

    Zou, Qiongjing; Kegel, Laurel L; Booksh, Karl S

    2015-02-17

    Electrografted diazonium salt layers on the surface of surface plasmon resonance (SPR) sensors present potential for a significant improvement in antifouling coatings. A pulsed potential deposition profile was used in order to circumvent mass-transport limitations for layer deposition rate. The influence of number of pulses with respect to antifouling efficacy was evaluated by nonspecific adsorption surface coverage of crude bovine serum proteins. Instead of using empirical and rough estimated values, the penetration depth and sensitivity of the SPR instrument were experimentally determined for the calculation of nonspecific adsorption surface coverage. This provides a method to better examine antifouling surface coatings and compare crossing different coatings and experimental systems. Direct comparison of antifouling performance of different diazonium salts was facilitated by a tripad SPR sensor design. The electrografted 4-phenylalanine diazonium chloride (4-APhe) layers with zwitterionic characteristic demonstrate ultralow fouling.

  2. Development of High-Antifouling PPSU Ultrafiltration Membrane by Using Compound Additives: Preparation, Morphologies, and Filtration Resistant Properties

    OpenAIRE

    Jie Liu; Zhencheng Zhong; Rui Ma; Weichen Zhang; Jiding Li

    2016-01-01

    In this study, flat sheet asymmetric polyphenylsulfone (PPSU) ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS) method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was a...

  3. Ecotoxicity and Preliminary Risk Assessment of Nonivamide as a Promising Marine Antifoulant

    Directory of Open Access Journals (Sweden)

    Sujing Liu

    2016-01-01

    Full Text Available The unclear environmental performance of nonivamide limits its application as a marine antifoulant. In this study, the natural degradation of nonivamide was studied in seawater and tap water. The half-life was 5.8 d, 8.8 d, 12.2 d, and 14.7 d in seawater and tap water in photolysis and biolysis, respectively. Furthermore, the ecotoxicity of nonivamide was assessed using marine microalgae, Chlorella vulgaris and Platymonas sp.; EC50,  6 d values on the growth of Chlorella vulgaris and Platymonas sp. were 16.9 mg L−1 and 19.21 mg L−1, respectively. The toxicity and environmental risk of nonivamide on microalgae were significantly decreased due to the natural degradation in seawater.

  4. Mussel-inspired chitosan-polyurethane coatings for improving the antifouling and antibacterial properties of polyethersulfone membranes.

    Science.gov (United States)

    Wang, Rui; Song, Xin; Xiang, Tao; Liu, Qiang; Su, Baihai; Zhao, Weifeng; Zhao, Changsheng

    2017-07-15

    A straightforward mussel-inspired approach was proposed to construct chitosan-polyurethane coatings and load Ag nanoparticles (AgNPs) to endow polyethersulfone (PES) membranes with dual-antibacterial and antifouling properties. The macromolecule O-carboxymethyl chitosan (CMC) was directly reacted with catechol in the absence of carbodiimide chemistry to form the coating and load AgNPs via in situ reduction; while lysine (Lys) was used as a representative small molecule for comparison. Then, PEG-based polyurethane (PU) was used for constructing Lys-Ag-PU and CMC-Ag-PU composite coatings, which substantially improved the protein antifouling property of the membranes. Furthermore, the CMC-Ag-PU coating exhibited superior broad-spectrum antibacterial property towards E. coli and S. aureus than Lys-Ag-PU coating. Meanwhile, the CMC-Ag-PU coating showed sustained antifouling property against bacteria and could reload AgNPs to be regenerated as antibacterial and antifouling coating. This approach is believed to have potential to fabricate reusable antifouling and antibacterial coatings on materials surfaces for aquatic industries. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Non-Toxic, Non-Flammable, -80 C Phase Change Materials

    Science.gov (United States)

    Cutbirth, J. Michael

    2013-01-01

    The objective of this effort was to develop a non-toxic, non-flammable, -80 C phase change material (PCM) to be used in NASA's ICEPAC capsules for biological sample preservation in flight to and from Earth orbit. A temperature of about -68 C or lower is a critical temperature for maintaining stable cell, tissue, and cell fragment storage.

  6. Regulating antifouling paints for leisure boats - a patchwork of rules across three Baltic Sea countries

    DEFF Research Database (Denmark)

    Kymenvaara, Sara; Anker, Helle Tegner; Baaner, Lasse

    2017-01-01

    This article analyses how the use of antifouling paints for leisure boats is regulated in Denmark, Finland and Sweden. All three countries appear to apply a somewhat fragmented approach to the different matters related to antifouling paints, including environmental quality (e.g. water quality...... sufficient measures and conduct. Environmental protection regulation, including waste legislation, generally excludes smaller leisure boat marinas and boat clubs from permitting and waste management requirements. In product regulation, the authorisation and/or restriction rules of antifouling paints...

  7. Do thyroid-stimulating immunoglobulins cause non-toxic and toxic multinodular goitre

    International Nuclear Information System (INIS)

    Brown, R.S.; Jackson, I.M.D.; Pohl, S.L.; Reichlin, S.

    1978-01-01

    The prevalence of serum thyroid-stimulating immunoglobulins, (T.S.I.) in a variety of thyroid diseases was determined in 96 patients and 35 normal controls. Significantly elevated levels of T.S.I. were found not only in patients with Graves' disease and Hashimoto's thyroiditis but also in those with non-toxic and multinodular goitre, whereas patients with a single autonomously functioning thyroid nodule, with subacute thyroiditis, and with 'hyperthyroiditis' had levels which did not differ from those in the controls. it is postulated that non-toxic multinodular goitre, like Graves' disease, may result from increased circulating T.S.I. which in some cases may be present in sufficient concentration to cause thyrotoxicosis. (author)

  8. Proteomic changes in brain tissues of marine medaka (Oryzias melastigma) after chronic exposure to two antifouling compounds: Butenolide and 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT)

    KAUST Repository

    Chen, Lianguo

    2014-12-01

    SeaNine 211 with active ingredient of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) has been used as a "green" antifouling agent worldwide but has raised serious biosafety concerns in coastal environments. DCOIT has the potential to disrupt the neurotransmission in nervous system, but the underlying mechanism has not been clarified. In the present study, we used TMT six-plex labeling coupled with two-dimensional LC-MS/MS analysis to investigate the protein expression profiles in brain tissues of the marine medaka (Oryzias melastigma) after a 28-day exposure to environmentally-realistic concentration of DCOIT at 2.55. μg/L (0.009. μM) or butenolide, one promising antifouling compound, at 2.31. μg/L (0.012. μM). DCOIT and butenolide induced differential expression of 26 and 18 proteins in male brains and of 27 and 23 proteins in female brains, respectively. Distinct mechanisms of toxicity were initiated by DCOIT and butenolide in males, whereas the protein expression profiles were largely similar in females treated by these two compounds. In males, DCOIT exposure mainly led to disruption of mitogen-activated protein kinase (MAPK) signaling pathway, while butenolide affected proteins related to the cytoskeletal disorganization that is considered as a general response to toxicant stress. Furthermore, a sex-dependent protein expression profile was also noted between male and female fish, as evident by the inverse changes in the expressions of common proteins (5 proteins for butenolide- and 2 proteins for DCOIT-exposed fish). Overall, this study provided insight into the molecular mechanisms underlying the toxicity of DCOIT and butenolide. The extremely low concentrations used in this study highlighted the ecological relevance, arguing for thorough assessments of their ecological risks before the commercialization of any new antifouling compound.

  9. Evaluation of genetic diversity between toxic and non toxic Jatropha ...

    African Journals Online (AJOL)

    Massimo

    Indian varieties and a non-toxic variety of Mexican origin by means of about 400 RAPD ... evaluate the level of polymorphism and the capacity to discriminate between the ..... Population genetic software for teaching and research. Mol. Ecol.

  10. A brief review of environmentally benign antifouling and foul-release coatings for marine applications

    NARCIS (Netherlands)

    Buskens, P.J.P.; Wouters, M.E.L.; Rentrop, C.H.A.; Vroon, Z.A.E.P.

    2013-01-01

    Antifouling coatings for ship hulls are a very important topic in coating research. They are essential with respect to fuel consumption of ships: without antifouling coating, biological species start to adhere to the ship's exterior, leading to a gradual increase in fuel consumption. To date, the

  11. Contribution of Charges in Polyvinyl Alcohol Networks to Marine Antifouling.

    Science.gov (United States)

    Yang, Wufang; Lin, Peng; Cheng, Daocang; Zhang, Longzhou; Wu, Yang; Liu, Yupeng; Pei, Xiaowei; Zhou, Feng

    2017-05-31

    Semi-interpenetrated polyvinyl alcohol polymer networks (SIPNs) were prepared by integrating various charged components into polyvinyl alcohol polymer. Contact angle measurement, attenuated total reflection Fourier transform infrared spectroscopy, field emission scanning electron microscopy, and tensile tests were used to characterize the physicochemical properties of the prepared SIPNs. To investigate the contribution of charges to marine antifouling, the adhesion behaviors of green algae Dunaliella tertiolecta and diatoms Navicula sp. in the laboratory and of the actual marine animals in field test were studied for biofouling assays. The results suggest that less algae accumulation densities are observed for neutral-, anionic-, and zwitterionic-component-integrated SIPNs. However, for the cationic SIPNs, despite the hydration shell induced by the ion-dipole interaction, the resistance to biofouling largely depends on the amount of cationic component because of the possible favorable electrostatic attraction between the cationic groups in SIPNs and the negatively charged algae. Considering that the preparation of novel nontoxic antifouling coating is a long-standing and cosmopolitan industrial challenge, the SIPNs may provide a useful reference for marine antifouling and some other relevant fields.

  12. Leaching of copper and zinc from spent antifouling paint particles

    International Nuclear Information System (INIS)

    Singh, Nimisha; Turner, Andrew

    2009-01-01

    Leaching of Cu and Zn from a composite of spent antifouling paint particles, containing about 300 mg g -1 and 110 mg g -1 of the respective metals, was studied in batch experiments. For a given set of simulated environmental conditions, release of Cu was independent of paint particle concentration due to attainment of pseudo-saturation, but Zn was less constrained by solubility effects and release increased with increasing particle concentration. Leaching of Cu increased but Zn decreased with increasing salinity, consistent with mechanisms governing the dissolution of Cu 2 O in the presence of chloride and Zn acrylates in the presence of seawater cations. Because of complex reaction kinetics and the presence of calcium carbonate in the paint matrix, metal leaching appeared to be greater at 4 deg. C than 19 deg. C under many conditions. These findings have important environmental and biological implications regarding the deliberate or inadvertent disposal of antifouling paint residues. - Copper and zinc are readily leached from particles of spent antifouling paint under a range of environmental conditions

  13. Leaching of copper and zinc from spent antifouling paint particles

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Nimisha [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Turner, Andrew [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: aturner@plymouth.ac.uk

    2009-02-15

    Leaching of Cu and Zn from a composite of spent antifouling paint particles, containing about 300 mg g{sup -1} and 110 mg g{sup -1} of the respective metals, was studied in batch experiments. For a given set of simulated environmental conditions, release of Cu was independent of paint particle concentration due to attainment of pseudo-saturation, but Zn was less constrained by solubility effects and release increased with increasing particle concentration. Leaching of Cu increased but Zn decreased with increasing salinity, consistent with mechanisms governing the dissolution of Cu{sub 2}O in the presence of chloride and Zn acrylates in the presence of seawater cations. Because of complex reaction kinetics and the presence of calcium carbonate in the paint matrix, metal leaching appeared to be greater at 4 deg. C than 19 deg. C under many conditions. These findings have important environmental and biological implications regarding the deliberate or inadvertent disposal of antifouling paint residues. - Copper and zinc are readily leached from particles of spent antifouling paint under a range of environmental conditions.

  14. Corals like it waxed: paraffin-based antifouling technology enhances coral spat survival.

    Directory of Open Access Journals (Sweden)

    Jan Tebben

    Full Text Available The early post-settlement stage is the most sensitive during the life history of reef building corals. However, few studies have examined the factors that influence coral mortality during this period. Here, the impact of fouling on the survival of newly settled coral spat of Acropora millepora was investigated by manipulating the extent of fouling cover on settlement tiles using non-toxic, wax antifouling coatings. Survival of spat on coated tiles was double that on control tiles. Moreover, there was a significant negative correlation between percentage cover of fouling and spat survival across all tiles types, suggesting that fouling in direct proximity to settled corals has detrimental effects on early post-settlement survival. While previous studies have shown that increased fouling negatively affects coral larval settlement and health of juvenile and adult corals, to the best of our knowledge, this is the first study to show a direct relationship between fouling and early post-settlement survival for a broadcast spawning scleractinian coral. The negative effects of fouling on this sensitive life history stage may become more pronounced in the future as coastal eutrophication increases. Our results further suggest that targeted seeding of coral spat on artificial surfaces in combination with fouling control could prove useful to improve the efficiency of sexual reproduction-based coral propagation for reef rehabilitation.

  15. Field experimental evaluation of secondary metabolites from marine invertebrates as antifoulants

    Directory of Open Access Journals (Sweden)

    PEREIRA R. C

    2002-01-01

    Full Text Available The crude organic extracts of the endemic gorgonian Phyllogorgia dilatata and two sponge species Aplysina fulva and Mycale microsigmatosa were evaluated for anti-fouling properties through field experiments. To investigate this property in ecologically meaningful conditions, crude extracts from these invertebrates were incorporated at concentrations naturally found in these marine organisms into a stable gel used as a substratum for fouling settlement. Crude extract from A. fulva showed no significant anti-fouling property at the natural concentrations used in the field experiments. In fact, fouling organisms settled significantly more on gels treated with A. fulva extract than on the control gel. On the other hand, both M. microsigmatosa and P. dilatata yielded crude extracts that exhibited a selective action inhibiting only the settlement of barnacles. The evidences obtained here by means of field experiments can provide a basis for future development of one kind of natural antifoulant technology to prevent marine biofouling.

  16. One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance

    International Nuclear Information System (INIS)

    Zhao, Lin; Liu, Qi; Gao, Rui; Wang, Jun; Yang, Wanlu; Liu, Lianhe

    2014-01-01

    Highlights: •The myristic acid iron superhydrophobic surface was formatted on AZ31. •Two procedures to build a super-hydrophobic were simplified to one step. •The superhydrophobic surface shows good anticorrosion, antifouling properties. •We report a new approach for the superhydrophobic surface protection on AZ31. -- Abstract: Inspired by the lotus leaf, various methods to fabricate artificial superhydrophobic surfaces have been developed. Our purpose is to create a simple, one-step and environment-friendly method to construct a superhydrophobic surface on a magnesium alloy substrate. The substrate was immersed in a solution containing ferric chloride (FeCl 3 ·6H 2 O), deionized water, tetradecanoic acid (CH 3 (CH 2 ) 12 COOH) and ethanol. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared (FT-IR) were employed to characterize the substrate surface. The obtained surface showed a micron rough structure, a high contact angle (CA) of 165° ± 2° and desirable corrosion protection and antifouling properties

  17. Evaluation of the natural product antifoulant, zosteric acid, for preventing the attachment of quagga mussels--a preliminary study.

    Science.gov (United States)

    Ram, Jeffrey L; Purohit, Sonal; Newby, Bi-Min Zhang; Cutright, Teresa J

    2012-01-01

    The effectiveness of zosteric acid, a natural antifoulant from the marine seagrass Zostera marina, in preventing the attachment of quagga mussels, a biofouling bivalve, was investigated. Animals were exposed to water containing zosteric acid ranging from 0 to 1000 ppm, and their attachment to the container glass walls was tracked with time. 500 ppm zosteric acid was not effective at detaching animals that had already attached, but was able to prevent the attachment of most unattached animals for two days. The anti-fouling effect increased with higher concentration. Low concentrations (250 ppm and below) were not effective at preventing attachment; however, 1000 ppm zosteric acid prevented attachment of mussels for the first three days of zosteric acid exposure, and only 20% of the mussels were attached by day 4. In contrast, animals in control (no zosteric acid) solutions began to attach within one day. In conclusion, zosteric acid is an effective natural product deterrent of attachment of a biofouling bivalve.

  18. Erbium Salts as Non-Toxic Catalysts Compatible with Alternative Reaction Media

    Directory of Open Access Journals (Sweden)

    Manuela Oliverio

    2018-03-01

    Full Text Available Green catalysts must be non-toxic, easy to manage, able to be recovered and reused, active under alternative reaction conditions and cheap. Erbium salts meet all the previously listed characteristics and today they are emerging as a valuable catalytic solution to a number of organic transformations needing a Lewis acid catalyst in wet conditions or under alternative heating sources. This review aims to summarize the application of erbium salts in green organic transformations, with particular emphasis on their versatility under both homogeneous and heterogeneous conditions. The erbium salts’ role in bifunctional catalysis is also presented.

  19. Adding stimuli-responsive extensions to antifouling hairy particles

    NARCIS (Netherlands)

    Munoz Bonilla, Sandra; Herk, van A.M.; Heuts, J.P.A.

    2010-01-01

    The use of living block copolymers as stabilisers in emulsion polymerisation allowed preparation of multilayer functional hairy particles via surface-initiated ATRP. Polymer films prepared from the obtained particles present antifouling properties along with stimuli-responsive behaviour.

  20. Inputs of antifouling paint-derived dichlorodiphenyltrichloroethanes (DDTs) to a typical mariculture zone (South China): Potential impact on aquafarming environment

    International Nuclear Information System (INIS)

    Yu Huanyun; Shen Rulang; Liang Yan; Cheng, Hefa; Zeng, Eddy Y.

    2011-01-01

    Existing evidence indicated that dichlorodiphenyltrichloroethane (DDT)-containing antifouling paints were an important source of DDT residues to mariculture zones. However, the magnitude of the impact on aquafarming environment has remained largely unknown. In the present study, the concentrations of DDT and its metabolites (designated as DDXs) were determined in harbor sediment and antifouling paint samples collected from a typical mariculture zone in South China. Compositional and concentration correlation analyses implicated the DDT-containing antifouling paints for fishing boat maintenance as an important source of DDT in the mariculture zone. The annual emission of DDXs to the study region was estimated at 0.58 tons/yr. Furthermore, a comparison of the expected DDT loadings in pelagic fish and field measurements indicated that fish feed especially trash fish was a major source of DDTs in the fish body. Nevertheless, the use of DDT-containing antifouling paints should be limited to prevent further deterioration in aquafarming environment. - Highlights: → Use of antifouling paints in boat maintenance was deemed a main source of DDTs. → The majority of antifouling paint-derived DDTs was sequestered in sediment. → Fish feed has remained the main input source of DDTs in fish body. - The potential impact from the use of DDT-containing antifouling paints on aquafarming environment is examined.

  1. Acute toxicity assessment of explosive-contaminated soil extracting solution by luminescent bacteria assays.

    Science.gov (United States)

    Xu, Wenjie; Jiang, Zhenming; Zhao, Quanlin; Zhang, Zhenzhong; Su, Hongping; Gao, Xuewen; Ye, Zhengfang

    2016-11-01

    Explosive-contaminated soil is harmful to people's health and the local ecosystem. The acute toxicity of its extracting solution was tested by bacterial luminescence assay using three kinds of luminescent bacteria to characterize the toxicity of the soil. An orthogonal test L 16 (4 5 ) was designed to optimize the soil extracting conditions. The optimum extracting conditions were obtained when the ultrasonic extraction time, ultrasonic extraction temperature, and the extraction repeat times were 6 h, 40 °C, and three, respectively. Fourier transform infrared spectroscopy (FTIR) results showed that the main components of the contaminated soil's extracting solution were 2,4-dinitrotoluene-3-sulfonate (2,4-DNT-3-SO 3 - ); 2,4-dinitrotoluene-5-sulfonate (2,4-DNT-5-SO 3 - ); and 2,6-dinitrotoluene (2,6-DNT). Compared with Photobacterium phosphoreum and Vibrio fischeri, Vibrio qinghaiensis sp. Nov. is more suitable for assessing the soil extracting solution's acute toxicity. Soil washing can remove most of the contaminants toxic to luminescent bacterium Vibrio qinghaiensis sp. Nov., suggesting that it may be a potential effective remediation method for explosive-contaminated soil.

  2. Health and ecological risk-based characterization of soil and sediment contamination in shipyard with long-term use of DDT-containing antifouling paint

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Guanlin; Zhang, Chao [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Wu, Guanglong; Ding, Qiong [Foreign Economic Cooperation Office, Ministry of Environmental Protection of China, Beijing, 100035 (China); Wang, Shijie [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Li, Fasheng, E-mail: Lifs@craes.org.cn [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China)

    2013-04-15

    Dichlorodiphenyltrichloroethane (DDT) was a frequently occurring type of persistent organic environmental pollutant in China and DDT-containing antifouling paint could be the main contributor of DDT to shipyards and fishing harbors. A field survey was conducted in a shipyard in southern China to investigate the content and distribution of DDT in soil and sediments. Human health and screening-level ecological risk assessments were conducted for DDT contamination in soil and sediments and the results indicated that total DDT in all samples tested exceeded present advisory safe limits. Analysis of the composition and distribution implicated DDT-containing antifouling paint used for ship maintenance as an important source of DDT. Individual and cumulative health risks for residents exceeded the extra lifetime cancer risks of 10{sup −6} and 10{sup −5}, mainly from exposure to soil, ingestion and dermal contact. DDT in sediments is associated with a high level of toxicity for the benthic community when > 99% of samples exceed the threshold concentration likely to be responsible for effects and severe effects. Further risk control for DDT is required to ensure safety for human health, the benthic community and the environment. - Highlights: ► DDT ranked high concentration both in sediments and soil in a shipyard. ► Composition analysis indicated DDT antifouling paint was the main source. ► High loading DDT in sediments resulted in high probability of ecological risks. ► Potential health risks for residents were mainly from the exposure of ingestion.

  3. Health and ecological risk-based characterization of soil and sediment contamination in shipyard with long-term use of DDT-containing antifouling paint

    International Nuclear Information System (INIS)

    Guo, Guanlin; Zhang, Chao; Wu, Guanglong; Ding, Qiong; Wang, Shijie; Li, Fasheng

    2013-01-01

    Dichlorodiphenyltrichloroethane (DDT) was a frequently occurring type of persistent organic environmental pollutant in China and DDT-containing antifouling paint could be the main contributor of DDT to shipyards and fishing harbors. A field survey was conducted in a shipyard in southern China to investigate the content and distribution of DDT in soil and sediments. Human health and screening-level ecological risk assessments were conducted for DDT contamination in soil and sediments and the results indicated that total DDT in all samples tested exceeded present advisory safe limits. Analysis of the composition and distribution implicated DDT-containing antifouling paint used for ship maintenance as an important source of DDT. Individual and cumulative health risks for residents exceeded the extra lifetime cancer risks of 10 −6 and 10 −5 , mainly from exposure to soil, ingestion and dermal contact. DDT in sediments is associated with a high level of toxicity for the benthic community when > 99% of samples exceed the threshold concentration likely to be responsible for effects and severe effects. Further risk control for DDT is required to ensure safety for human health, the benthic community and the environment. - Highlights: ► DDT ranked high concentration both in sediments and soil in a shipyard. ► Composition analysis indicated DDT antifouling paint was the main source. ► High loading DDT in sediments resulted in high probability of ecological risks. ► Potential health risks for residents were mainly from the exposure of ingestion

  4. Triblock Copolymers with Grafted Fluorine-Free Amphiphilic Non-Ionic Side Chains for Antifouling and Fouling-Release Applications

    Energy Technology Data Exchange (ETDEWEB)

    Y Cho; H Sundaram; C Weinman; M Paik; M Dimitriou; J Finlay; M Callow; J Callow; E Kramer; C Ober

    2011-12-31

    Fluorine-free, amphiphilic, nonionic surface active block copolymers (SABCs) were synthesized through chemical modification of a polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene triblock copolymer precursor with selected amphiphilic nonionic Brij and other surfactants. Amphiphilicity was imparted by a hydrophobic aliphatic group combined with a hydrophilic poly(ethylene glycol) (PEG) group-containing moiety. The surfaces were characterized by dynamic water contact angle, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure (NEXAFS) analysis. In biofouling assays, settlement (attachment) of both spores of the green alga Ulva and cells of the diatom Navicula on SABCs modified with Brij nonionic side chains was significantly reduced relative to a PDMS standard, with a nonionic surfactant combining a PEG group and an aliphatic moiety demonstrating the best performance. Additionally, a fouling-release assay using sporelings (young plants) of Ulva and Navicula suggested that the SABC derived from nonionic Brij side chains also out-performed PDMS as a fouling-release material. Good antifouling and fouling-release properties were not demonstrated for the other two amphiphilic surfaces derived from silicone and aromatic group containing nonionic surfactants included in this study. The results suggest that small differences in chemical surface functionality impart more significant changes with respect to the antifouling settlement and fouling-release performance of materials than overall wettability behavior.

  5. Electrochemical Approach for Effective Antifouling and Antimicrobial Surfaces.

    Science.gov (United States)

    Gaw, Sheng Long; Sarkar, Sujoy; Nir, Sivan; Schnell, Yafit; Mandler, Daniel; Xu, Zhichuan J; Lee, Pooi See; Reches, Meital

    2017-08-09

    Biofouling, the adsorption of organisms to a surface, is a major problem today in many areas of our lives. This includes: (i) health, as biofouling on medical device leads to hospital-acquired infections, (ii) water, since the accumulation of organisms on membranes and pipes in desalination systems harms the function of the system, and (iii) energy, due to the heavy load of the organic layer that accumulates on marine vessels and causes a larger consumption of fuel. This paper presents an effective electrochemical approach for generating antifouling and antimicrobial surfaces. Distinct from previously reported antifouling or antimicrobial electrochemical studies, we demonstrate the formation of a hydrogen gas bubble layer through the application of a low-voltage square-waveform pulses to the conductive surface. This electrochemically generated gas bubble layer serves as a separation barrier between the surroundings and the target surface where the adhesion of bacteria can be deterred. Our results indicate that this barrier could effectively reduce the adsorption of bacteria to the surface by 99.5%. We propose that the antimicrobial mechanism correlates with the fundamental of hydrogen evolution reaction (HER). HER leads to an arid environment that does not allow the existence of live bacteria. In addition, we show that this drought condition kills the preadhered bacteria on the surface due to water stress. This work serves as the basis for the exploration of future self-sustainable antifouling techniques such as incorporating it with photocatalytic and photoelectrochemical reactions.

  6. pH and redox responsive polymer for antifouling surface coating

    International Nuclear Information System (INIS)

    Lee, Kang Seok; In, Insik; Park, Sung Young

    2014-01-01

    Graphical abstract: Dual responsive surface with highly fouling resistance with the formation of a pH-dependent benzoic imine and redox-sensitive disulfide bond has been developed using a catechol/benzoic acid conjugated polymer and disulfide containing amine end-capped Pluronic. - Highlights: • Stimuli-responsive antifouling surface was prepared by layer-by-layer method. • The surface contact angle showed responsive behavior via pH and redox environments. • Simply coated polymer completely prevented cell adhesion onto surfaces. - Abstract: A dual environmentally responsive polymer with a highly fouling-resistant surface has been developed using poly[(hydroxyethyl methacrylate-g-benzoic acid)-co-(dimethylaminoethyl methacrylate-g-2-chloro-3′, 4′-dihydroxyacetophenone)] [poly[(HEMA-BA)-co-(DMAEMA-CCDP)], P1] as a coating material. The redox-sensitive disulfide containing amine end-capped Pluronic [(Plu-S-S-NH 2 ), P2] was then introduced over the P1 surface via the formation of a pH-dependent benzoic imine bond, where the polyethylene glycol (PEG) acts as an antifouling agent. The successful adhesion of P1 and the deposition of P2 onto the P1-coated substrate were ascertained with X-ray photoelectron spectroscopy (XPS). In vitro cell adhesion followed by scanning electron microscopy (SEM) indicated an excellent antifouling nature of the P2 layer. Consequently, the reattachment of Hela cells was strongly observed when P2 layered on P1-coated substrates (P1–P2) was pretreated at lower pH and high redox conditions. The P1–P2 bilayer-coated substrate has exhibited a great advantage in its effective antifouling behaviors with well-tuned cell attachment and detachment

  7. pH and redox responsive polymer for antifouling surface coating

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Seok [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); In, Insik, E-mail: in1@ut.ac.kr [Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Park, Sung Young, E-mail: parkchem@ut.ac.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of)

    2014-09-15

    Graphical abstract: Dual responsive surface with highly fouling resistance with the formation of a pH-dependent benzoic imine and redox-sensitive disulfide bond has been developed using a catechol/benzoic acid conjugated polymer and disulfide containing amine end-capped Pluronic. - Highlights: • Stimuli-responsive antifouling surface was prepared by layer-by-layer method. • The surface contact angle showed responsive behavior via pH and redox environments. • Simply coated polymer completely prevented cell adhesion onto surfaces. - Abstract: A dual environmentally responsive polymer with a highly fouling-resistant surface has been developed using poly[(hydroxyethyl methacrylate-g-benzoic acid)-co-(dimethylaminoethyl methacrylate-g-2-chloro-3′, 4′-dihydroxyacetophenone)] [poly[(HEMA-BA)-co-(DMAEMA-CCDP)], P1] as a coating material. The redox-sensitive disulfide containing amine end-capped Pluronic [(Plu-S-S-NH{sub 2}), P2] was then introduced over the P1 surface via the formation of a pH-dependent benzoic imine bond, where the polyethylene glycol (PEG) acts as an antifouling agent. The successful adhesion of P1 and the deposition of P2 onto the P1-coated substrate were ascertained with X-ray photoelectron spectroscopy (XPS). In vitro cell adhesion followed by scanning electron microscopy (SEM) indicated an excellent antifouling nature of the P2 layer. Consequently, the reattachment of Hela cells was strongly observed when P2 layered on P1-coated substrates (P1–P2) was pretreated at lower pH and high redox conditions. The P1–P2 bilayer-coated substrate has exhibited a great advantage in its effective antifouling behaviors with well-tuned cell attachment and detachment.

  8. Suspension Flame Spray Construction of Polyimide-Copper Layers for Marine Antifouling Applications

    Science.gov (United States)

    Liu, Yi; Xu, Xiaomin; Suo, Xinkun; Gong, Yongfeng; Li, Hua

    2018-01-01

    Individual capsule-like polyimide splats have been fabricated by suspension flame spray, and the polyimide splat exhibits hollow structure with an inner pore and a tiny hole on its top surface. Enwrapping of 200-1000-nm copper particles inside the splats is accomplished during the deposition for constrained release of copper for antifouling performances. Antifouling testing of the coatings by 24-h exposure to Escherichia coli-containing artificial seawater shows that the Cu-doped splat already prohibits effectively attachment of the bacteria. The prohibited adhesion of bacteria obviously impedes formation and further development of bacterial biofilm. This capsulated splat with releasing and loading of copper biocides results in dual-functional structures bearing both release-killing and contact-killing mechanisms. The suspension flame spray route and the encapsulated structure of the polyimide-Cu coatings would open a new window for designing and constructing marine antifouling layers for long-term applications.

  9. Antifouling effect of two saturated copper coatings applied on carbon steel structures

    Directory of Open Access Journals (Sweden)

    Guiamet, P. S.

    2008-10-01

    Full Text Available Biofouling is the colonization of man-made substrata by sessile organisms. The aim of this paper is to evaluate the performance of two antifouling saturated copper coating. Bioassays were carried out at a harbor in Argentine (38°02’S- 57°32’W. During six months, one series of pipes and panels were removed monthly to estimate the recruitment of macro and microfouling species and immediately replaced by clean ones. Another series was removed from the beginning of exposure to monitor the development of the established community (accumulative pipes and panels along six months. Data obtained from control (without a saturated copper coating and saturated-copper coated pipes and panels were compared in order to estimate performance of the coating. One of two saturated copper coating demonstrated a good effect antifouling.

    El biofouling es la colonización por organismos sésiles en sistemas de sustratos hechos por el hombre. El objetivo fue evaluar el efecto antifouling de dos cubiertas saturadas de cobre. Los estudios se llevaron a cabo en un puerto de la Argentina (38°02’S-57°32’W. Durante seis meses, una serie de caños y paneles fueron removidos mensualmente para estimar el reclutamiento de las especies del macro y microfouling, y fueron sustituidos inmediatamente por caños y paneles limpios. La otra serie de caños y paneles fueron removidas desde el inicio de la exposición en forma acumulativa durante los seis meses, para seguir el desarrollo de la comunidad. Los datos obtenidos de los controles sin cubierta y de los caños y paneles con las cubiertas saturadas de cobre fueron comparados para estimar el comportamiento antifouling de las mismas. Una de las dos cubiertas saturadas de cobre demostró un buen efecto antifouling.

  10. Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method

    International Nuclear Information System (INIS)

    Liu, Zhixiao; Mi, Zhiming; Chen, Chunhai; Zhou, Hongwei; Zhao, Xiaogang; Wang, Daming

    2017-01-01

    Graphical abstract: The mechanisms fouling and cleaning process of PSF-COOH membranes (A) the content of carboxyl less than 80%. (B) the content of carboxyl at 80%, 100%. - Highlights: • Phenolphthalin (PPL) containing carboxyl was successfully introduced into the molecule backbone of polysulfone (PSF). • A series of PSF-COOH copolymers with different carboxylation degree was synthesized and prepared as ultrafiltration membranes. • The introduction of PPL significantly improved the hydrophilicity, permeation flux and antifouling property of membranes. • This method is valuable for large-scale industrial production of hydrophilic membrane material. - Abstract: In this task, carboxylated polysulfone (PSF-COOH) was achieved by introducing the monomer of phenolphthalin (PPL) containing carboxyl to the molecule backbone of polysulfone (PSF). And a series of PSF-COOH copolymers with different carboxylation degree was synthesized by adjusting the molar (%) of bisphenol A (BPA) and PPL in direct copolymerization method and was prepared as PSF-COOH ultrafiltration membranes via phase separation method. The effect of PPL molar (%) in copolymers on the morphology, hydrophilicity, permeation flux, antifouling and mechanical properties of membranes was investigated by scanning electron microscope (SEM), atomic force microscope (AFM), water contact angle, ultrafiltration experiments and universal testing machine, respectively. The results showed that with the increased carboxyl content in membranes, the hydrophilicity, permeation fluxes and antifouling properties of membranes gradually increased. When the molar (%) of PPL to BPA was 100:0, the membrane exhibited the highest pure water flux (329.6 L/m"2 h) and the maximum flux recovery rate (92.5%). When the content of carboxyl in the membrane was 80% or more, after three cycles of BSA solution (1 g/L) filtration, the flux recovery rate was basically constant or showed a slightly increase. Thus, it can achieve the goal of

  11. Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhixiao; Mi, Zhiming; Chen, Chunhai; Zhou, Hongwei; Zhao, Xiaogang; Wang, Daming, E-mail: wangdaming@jlu.edu.cn

    2017-04-15

    Graphical abstract: The mechanisms fouling and cleaning process of PSF-COOH membranes (A) the content of carboxyl less than 80%. (B) the content of carboxyl at 80%, 100%. - Highlights: • Phenolphthalin (PPL) containing carboxyl was successfully introduced into the molecule backbone of polysulfone (PSF). • A series of PSF-COOH copolymers with different carboxylation degree was synthesized and prepared as ultrafiltration membranes. • The introduction of PPL significantly improved the hydrophilicity, permeation flux and antifouling property of membranes. • This method is valuable for large-scale industrial production of hydrophilic membrane material. - Abstract: In this task, carboxylated polysulfone (PSF-COOH) was achieved by introducing the monomer of phenolphthalin (PPL) containing carboxyl to the molecule backbone of polysulfone (PSF). And a series of PSF-COOH copolymers with different carboxylation degree was synthesized by adjusting the molar (%) of bisphenol A (BPA) and PPL in direct copolymerization method and was prepared as PSF-COOH ultrafiltration membranes via phase separation method. The effect of PPL molar (%) in copolymers on the morphology, hydrophilicity, permeation flux, antifouling and mechanical properties of membranes was investigated by scanning electron microscope (SEM), atomic force microscope (AFM), water contact angle, ultrafiltration experiments and universal testing machine, respectively. The results showed that with the increased carboxyl content in membranes, the hydrophilicity, permeation fluxes and antifouling properties of membranes gradually increased. When the molar (%) of PPL to BPA was 100:0, the membrane exhibited the highest pure water flux (329.6 L/m{sup 2} h) and the maximum flux recovery rate (92.5%). When the content of carboxyl in the membrane was 80% or more, after three cycles of BSA solution (1 g/L) filtration, the flux recovery rate was basically constant or showed a slightly increase. Thus, it can achieve the

  12. Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology

    Science.gov (United States)

    Hynninen, Ville; Vuori, Leena; Hannula, Markku; Tapio, Kosti; Lahtonen, Kimmo; Isoniemi, Tommi; Lehtonen, Elina; Hirsimäki, Mika; Toppari, J. Jussi; Valden, Mika; Hytönen, Vesa P.

    2016-01-01

    A straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E. coli was reduced by more than 65%. Moreover, the potential of the overlayer to be further modified was demonstrated by successfully coupling biotinylated alkaline phosphatase (bAP) to a silane-PEG-biotin overlayer via avidin-biotin bridges. The activity of the immobilized enzyme was shown to be well preserved without compromising the achieved antifouling properties. Overall, the simple solution-based approach enables the tailoring of SS to enhance its activity for biomedical and biotechnological applications. PMID:27381834

  13. Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology

    Science.gov (United States)

    Hynninen, Ville; Vuori, Leena; Hannula, Markku; Tapio, Kosti; Lahtonen, Kimmo; Isoniemi, Tommi; Lehtonen, Elina; Hirsimäki, Mika; Toppari, J. Jussi; Valden, Mika; Hytönen, Vesa P.

    2016-07-01

    A straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E. coli was reduced by more than 65%. Moreover, the potential of the overlayer to be further modified was demonstrated by successfully coupling biotinylated alkaline phosphatase (bAP) to a silane-PEG-biotin overlayer via avidin-biotin bridges. The activity of the immobilized enzyme was shown to be well preserved without compromising the achieved antifouling properties. Overall, the simple solution-based approach enables the tailoring of SS to enhance its activity for biomedical and biotechnological applications.

  14. Development of high performance nano-porous polyethersulfone ultrafiltration membranes with hydrophilic surface and superior antifouling properties

    International Nuclear Information System (INIS)

    Rahimpour, Ahmad; Madaeni, Sayed Siavash; Jahanshahi, Mohsen; Mansourpanah, Yaghoub; Mortazavian, Narmin

    2009-01-01

    Hydrophilic nano-porous polyethersulfone ultrafiltration membranes were developed for milk concentration. The membranes were prepared from new dope solution containing polyethersulfone (PES)/polyvinylpirrolidone (PVP)/polyethyleneglycole (PEG)/cellulose acetate phthalate (CAP)/acrylic acid/Triton X-100 using phase inversion induced by immersion precipitation technique. This casting solution leads to formation of new hydrophilic membranes. The morphological studies were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, the hydrophilicity and performance of membranes were examined by contact angel measurements and cross-flow filtration (pure water flux, milk water permeation, protein rejection and antifouling measurements). The contact angle measurements indicate that a surface with superior hydrophilicity was obtained for PES membranes. Two concentrations of PES (16 and 14.4 wt.%) and two different non-solvents (pure water and mixtures of water and IPA) were used for preparation of membranes. The morphological studies showed that the higher concentration of PES and the presence of IPA in the gelation media results in formation of a membrane with a dense top and sub-layer with small pores on the surface. The pure water flux of membranes was decreased when higher polymer concentration and mixtures of water and IPA were employed for membrane formation. On the other hand, the milk water permeation and protein rejection were increased using mixtures of water and IPA as non-solvent. Furthermore, the fouling analysis of the membranes demonstrated that the membrane surface with fewer tendencies for fouling was obtained.

  15. Antiparasitic, Nematicidal and Antifouling Constituents from Juniperus Berries

    Science.gov (United States)

    A bioassay-guided fractionation of Juniperus procera berries yielded antiparasitic, nematicidal and antifouling constituents, including a wide range of known abietane, pimarane and labdane diterpenes. Among these, abieta-7,13-diene (1) demonstrated in vitro antimalarial activity against Plasmodium f...

  16. Antifouling composites with self-adaptive controlled release based on an active compound intercalated into layered double hydroxides

    Science.gov (United States)

    Yang, Miaosen; Gu, Lianghua; Yang, Bin; Wang, Li; Sun, Zhiyong; Zheng, Jiyong; Zhang, Jinwei; Hou, Jian; Lin, Cunguo

    2017-12-01

    This paper reports a novel method to prepare the antifouling composites with properties of self-adaptive controlled release (defined as control the release rate autonomously and adaptively according to the change of environmental conditions) by intercalation of sodium paeonolsilate (PAS) into MgAl and ZnAl layered double hydroxide (LDH) with the molar ratio (M2+/M3+) of 2:1 and 3:1, respectively. The powder X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) confirm the intercalation of PAS into the galleries of LDH. The controlled release behavior triggered by temperature for the PAS-LDH composites has been investigated, and the results show that the release rate of all PAS-LDH composites increases as the increase of temperature. However, the MgAl-PAS-LDH composites (Mg2Al-PAS-LDH and Mg3Al-PAS-LDH) exhibit the increased release rate of 0.21 ppm/°C from 15 to 30 °C in 3.5% NaCl solution, more than three times of the ZnAl-PAS-LDH composites (0.06 ppm/°C), owing to the confined microenvironment influenced by metal types in LDH layers. In addition, a possible diffusion-controlled process with surface diffusion, bulk diffusion and heterogeneous flat surface diffusion has been revealed via fitting four kinetic equations. Moreover, to verify the practical application of the PAS-LDH composites, a model coating denoted as Mg2Al-PAS-LDH coating was fabricated. The release result displays that the release rate increases or decreases as temperature altered at 15 and 25 °C alternately, indicating its self-adaptive controlled release behavior with temperature. Moreover, the superior resistance to the settlement of Ulva spores at 15 and 25 °C was observed for the Mg2Al-PAS-LDH coating, as a result of the controllable release of antifoulant. Therefore, this work provides a facile and effective method for the fabrication of antifouling composites with self-adaptive controlled release behavior in response to temperature, which can be used to prolong

  17. Non-Kaehler heterotic string solutions with non-zero fluxes and non-constant dilaton

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Marisa [Universidad del País Vasco,Facultad de Ciencia y Tecnología, Departamento de Matemáticas,Apartado 644, 48080 Bilbao (Spain); Ivanov, Stefan [University of Sofia “St. Kl. Ohridski”,Faculty of Mathematics and Informatics,Blvd. James Bourchier 5, 1164 Sofia (Bulgaria); Institute of Mathematics and Informatics, Bulgarian Academy of Sciences (Bulgaria); Ugarte, Luis [Departamento de Matemáticas - I.U.M.A., Universidad de Zaragoza,Campus Plaza San Francisco, 50009 Zaragoza (Spain); Vassilev, Dimiter [Department of Mathematics and Statistics, University of New Mexico,Albuquerque, New Mexico, 87131-0001 (United States)

    2014-06-12

    Conformally compact and complete smooth solutions to the Strominger system with non vanishing flux, non-trivial instanton and non-constant dilaton using the first Pontrjagin form of the (−)-connection on 6-dimensional non-Kähler nilmanifold are presented. In the conformally compact case the dilaton is determined by the real slices of the elliptic Weierstrass function. The dilaton of non-compact complete solutions is given by the fundamental solution of the Laplacian on R{sup 4}. All solutions satisfy the heterotic equations of motion up to the first order of α{sup ′}.

  18. Preparation and characterization of a novel highly hydrophilic and antifouling polysulfone/nanoporous TiO2 nanocomposite membrane

    Science.gov (United States)

    Cheraghi Bidsorkhi, H.; Riazi, H.; Emadzadeh, D.; Ghanbari, M.; Matsuura, T.; Lau, W. J.; Ismail, A. F.

    2016-10-01

    In this research, novel ultrafiltration nanocomposite membranes were prepared by incorporating self-synthesized nanoporous titanium dioxide (NTiO2) nanoparticles into polysulfone. The surface of the nanoparticle was treated with a silane-based modifier to improve its distribution in the host polymer. Atomic-force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller, transmission electron microscopy, energy-dispersive x-ray spectroscopy, porosity and contact angle tests were conducted to characterize the properties of the particles as well as the fabricated nanocomposite membranes. The effects of the nanoparticle incorporation were evaluated by conducting ultrafiltration experiments. It was reported that the membrane pure water flux was increased with increasing NTiO2 loading owing to the high porosity of the nanoparticles embedded and/or formation of enlarged pores upon addition of them. The antifouling capacity of the membranes was also tested by ultrafiltration of bovine serum albumin fouling solution. It was found that both water flux and antifouling capacity tended to reach desired level if the NTiO2 added was at optimized loading.

  19. Antifouling phenyl ethers and other compounds from the invertebrates and their symbiotic fungi collected from the South China Sea.

    Science.gov (United States)

    Wang, Chao-Yi; Wang, Kai-Ling; Qian, Pei-Yuan; Xu, Ying; Chen, Min; Zheng, Juan-Juan; Liu, Min; Shao, Chang-Lun; Wang, Chang-Yun

    2016-12-01

    Marine organism-derived secondary metabolites are promising potential sources for discovering environmentally safe antifouling agents. In present study, 55 marine secondary metabolites and their synthesized derivatives were tested and evaluated for their antifouling activities and security. These compounds include 44 natural products isolated from marine invertebrates and their symbiotic microorganisms collected from the South China Sea and 11 structural modified products derived from the isolated compounds. The natural secondary metabolites, covering phenyl ether derivatives, terpenoids, 9, 11-secosteroids, anthraquinones, alkaloids, nucleoside derivatives and peptides, were isolated from two corals, one sponge and five symbiotic fungi. All of the isolated and synthesized compounds were tested for their antifouling activities against the cyprids of barnacle Balanus (Amphibalanus) amphitrite Darwin. Noticeably, five phenyl ether derivatives (9, 11, 13-15) exhibited potent anti-larval settlement activity with the EC 50 values lower than 3.05 μM and the LC 50 /EC 50 ratios higher than 15. The study of structure-activity relationship (SAR) revealed that the introduction of acetoxy groups and bromine atoms to phenyl ether derivatives could significantly improve their antifouling activities. This is the first report on the SAR of phenyl ether derivatives on antifouling activity against barnacle B. amphitrite. The polybrominated diphenyl ether derivative, 2, 4, 6, 2', 4', 6'-hexabromo-diorcinol (13), which displayed excellent antifouling activity, was considered as a promising candidate of environmentally friendly antifouling agents.

  20. Radioiodine therapy in non-toxic multinodular goitre

    International Nuclear Information System (INIS)

    Miah, S.R.; Rahman, H.

    2007-01-01

    Full text: The effect of radioiodine in the treatment of non-toxic multinodular goitre has not been adequately evaluated. The aim of the study was to see the effect of radioiodine on thyroid size and function in patients with non-toxic multinodular goitre. We prospectively studied 55 non-toxic multinodular goitre patients treated with radioiodine of which 15 were males and 40 were females with age ranged from 25 years to 60 years (mean ± SD 40.45 ± 10.70 years) for a minimum of 12 months. Patients who were selected were those with local compression symptoms or for cosmetic reasons and the treatment was chosen because of a high operative risk or refusal to be operated on. Thyroid volume and T3, T4, TSH of all patients were determined before treatment and 6 months interval after treatment. Radioiodine was given in the dose ranged from 333 MBq (9 mCi) to 555 MBq (15 mCi) (mean ± SD 11.45 ± 2.04 mCi). The mean thyroid volume was reduced from 44.75 ± 37.44 ml to 28.76 ± 27.25 ml at 12 months (p < 0.001) i.e., reduced by 35.73%. Thyroid volume reduction at 6 months was 21.07%. Hypothyroidism occurred in 9.1% of the patients at 12 months. Side effects were few. Three cases developed radiation thyroiditis and two cases developed hyperthyroidism that was managed conservatively. It has been concluded that radioiodine is effective and well tolerated in the treatment of non-toxic multinodular goitre and may be the treatment of choice in elderly patients, in patients in whom surgery is contraindicated and in patients who are unwilling to undergo surgery. (author)

  1. Toxicities of diuron and irgarol on the hatchability and early stage development of Artemia salina

    OpenAIRE

    ALYÜRÜK, Hakan; ÇAVAŞ, Levent

    2013-01-01

    Booster biocides are widely used in antifouling paints as bioactive agents against fouling organisms. In previously published reports, acute toxicity tests on Artemia salina (Linnaeus, 1758) were only focused on a part of the life cycle of the organism. The aim of this study was to investigate the toxicities of diuron and irgarol on the hatching stage of A. salina. According to the results, diuron significantly decreased the hatching percentage of A. salina cysts and prevented the hatching of...

  2. Antifouling Activity of Lipidic Metabolites Derived from Padina tetrastromatica.

    Science.gov (United States)

    Suresh, Murugan; Iyapparaj, Palanisamy; Anantharaman, Perumal

    2016-07-01

    An attempt has been made to identify the potential seaweed for antifouling property due to the growing need for environmentally safe antifouling systems. The antibacterial, antimicroalgal, and antimussel foot adherence potentials of methanol, dichloromethane, and hexane extracts of the chosen seaweeds such as Padina tetrastromatica, Caulerpa taxifolia, and Amphiroa fragilissima have been compared against copper sulfate. Among the extracts, the maximum antibacterial activities were exhibited by the methanol extract of P. tetrastromatica. The minimum inhibitory concentration (MIC) of the methanolic extract of P. tetrastromatica was found to be 10 and 1 μg/ml against test biofilm bacteria and diatoms, respectively. The antimussel foot adherence assay indicated that the extract had inhibited the foot adherence of the green mussels Perna viridis with the effective concentration (EC50) of 25.51 ± 0.03 μg/ml, and lethal concentration for 50 % mortality (LC50) was recorded at 280.22 ± 0.12 μg/ml. Based on the prolific results, the crude methanolic extract of P. tetrastromatica was subjected to purification using silica gel column and thin-layer chromatography (TLC). Then, the active compounds of the bioassay-guided fraction (F13) were identified using gas chromatography coupled with mass spectroscopy (GC-MS), and it was observed that fatty acids were the major components, which may be responsible for the antifouling properties.

  3. Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings.

    Science.gov (United States)

    Buzzacchera, Irene; Vorobii, Mariia; Kostina, Nina Yu; de Los Santos Pereira, Andres; Riedel, Tomáš; Bruns, Michael; Ogieglo, Wojciech; Möller, Martin; Wilson, Christopher J; Rodriguez-Emmenegger, Cesar

    2017-06-12

    Implantable sensor devices require coatings that efficiently interface with the tissue environment to mediate biochemical analysis. In this regard, bioinspired polymer hydrogels offer an attractive and abundant source of coating materials. However, upon implantation these materials generally elicit inflammation and the foreign body reaction as a consequence of protein fouling on their surface and concomitant poor hemocompatibility. In this report we investigate a strategy to endow chitosan hydrogel coatings with antifouling properties by the grafting of polymer brushes in a "grafting-from" approach. Chitosan coatings were functionalized with polymer brushes of oligo(ethylene glycol) methyl ether methacrylate and 2-hydroxyethyl methacrylate using photoinduced single electron transfer living radical polymerization and the surfaces were thoroughly characterized by XPS, AFM, water contact angle goniometry, and in situ ellipsometry. The antifouling properties of these new bioinspired hydrogel-brush coatings were investigated by surface plasmon resonance. The influence of the modifications to the chitosan on hemocompatibility was assessed by contacting the surfaces with platelets and leukocytes. The coatings were hydrophilic and reached a thickness of up to 180 nm within 30 min of polymerization. The functionalization of the surface with polymer brushes significantly reduced the protein fouling and eliminated platelet activation and leukocyte adhesion. This methodology offers a facile route to functionalizing implantable sensor systems with antifouling coatings that improve hemocompatibility and pave the way for enhanced device integration in tissue.

  4. Assessing Bioinspired Topographies for their Antifouling Potential Control Using Computational Fluid Dynamics (CFD

    Directory of Open Access Journals (Sweden)

    Ling Jacky

    2018-01-01

    Full Text Available Biofouling is the accumulation of unwanted material on surfaces submerged or semi submerged over an extended period. This study investigates the antifouling performance of a new bioinspired topography design. A shark riblets inspired topography was designed with Solidworks and CFD simulations were antifouling performance. The study focuses on the fluid flow velocity, the wall shear stress and the appearance of vortices are to be noted to determine the possible locations biofouling would most probably occur. The inlet mass flow rate is 0.01 kgs-1 and a no-slip boundary condition was applied to the walls of the fluid domain. Simulations indicate that Velocity around the topography averaged at 7.213 x 10-3 ms-1. However, vortices were observed between the gaps. High wall shear stress is observed at the peak of each topography. In contrast, wall shear stress is significantly low at the bed of the topography. This suggests the potential location for the accumulation of biofouling. Results show that bioinspired antifouling topography can be improved by reducing the frequency of gaps between features. Linear surfaces on the topography should also be minimized. This increases the avenues of flow for the fluid, thus potentially increasing shear stresses with surrounding fluid leading to better antifouling performance.

  5. Antifouling sesquiterpene from the Indian soft coral, Sinularia kavarattiensis Alderslade and Prita

    Digital Repository Service at National Institute of Oceanography (India)

    LimnaMol, V.P.; Raveendran, T.V.; Parameswaran, P.S.; Kunnath, R.J.; Sathyan, N.

    analysis of preference data, Appl Entomol Zool, 33 (1998) 339-347. 16 Williams D H & Faulkner D J, Two practical syntheses of an anti-inflammatory sesquiterpene furoic acid from Sinularia spp. Tetrahedron, 52 (1996) 4245-4256. 17 Rittschof D, Lai C H..., Kok L M & Teo S L M, Pharmaceuticals as antifoulants: Concept and principles, Biofouling, 19 (2003) 207-212. 18 Kwong T F N, Miao L, Li X & Qian P Y, Novel Antifouling and Antimicrobial Compound from a Marine-Derived Fungus Ampelomyces sp., Mar...

  6. Efficient Preparation of Super Antifouling PVDF Ultrafiltration Membrane with One Step Fabricated Zwitterionic Surface.

    Science.gov (United States)

    Zhao, Xinzhen; He, Chunju

    2015-08-19

    On the basis of the excellent fouling resistance of zwitterionic materials, the super antifouling polyvinylidene fluoride (PVDF) membrane was efficiently prepared though one-step sulfonation of PVDF and polyaniline blend membrane in situ. The self-doped sulfonated polyaniline (SPANI) was generated as a novel zwitterionic polymer to improve the antifouling property of PVDF ultrafiltration membrane used in sewage treatment. Surface attenuated total reflection Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, surface zeta potential, and water contact angle demonstrated the successful fabrication of zwitterionic interface by convenient sulfonation modification. The static adsorption fouling test showed the quantified adsorption mass of bovine serum albumin (BSA) pollutant on the PVDF/SPANI membrane surface decreases to 3(±2) μg/cm(2), and the water flux recovery ratio (FRR) values were no less than 95% for the three model pollutants of BSA, sodium alginate (SA), and humic acid (HA), which were corresponding hydrophobic, hydrophilic, and natural pollutants in sewage, respectively. This Research Article demonstrated the antifouling advantages of zwitterionic SPANI and aimed to provide a simple method for the large scale preparation of zwitterionic antifouling ultrafiltration membranes.

  7. Environmentally benign sol-gel antifouling and foul-releasing coatings.

    Science.gov (United States)

    Detty, Michael R; Ciriminna, Rosaria; Bright, Frank V; Pagliaro, Mario

    2014-02-18

    Biofouling on ships and boats, characterized by aquatic bacteria and small organisms attaching to the hull, is an important global issue, since over 80000 tons of antifouling paint is used annually. This biofilm, which can form in as little as 48 hours depending on water temperature, increases drag on watercraft, which greatly reduces their fuel efficiency. In addition, biofouling can lead to microbially induced corrosion (MIC) due to H2S formed by the bacteria, especially sulfate-reducing bacteria. When the International Maritime Organization (IMO) international convention banned the use of effective but environmentally damaging coatings containing tributyl tin in 2008, the development of clean and effective antifouling systems became more important than ever. New nonbiocidal coatings are now in high demand. Scientists have developed new polymers, materials, and biocides, including new elastomeric coatings that they have obtained by improving the original silicone (polydimethylsiloxane) formulation patented in 1975. However, the high cost of silicones, especially of fluoropolymer-modified silicones, has generally prevented their large-scale diffusion. In 2009, traditional antifouling coatings using cuprous oxide formulated in copolymer paints still represented 95% of the global market volume of anti-fouling paints. The sol-gel nanochemistry approach to functional materials has emerged as an attractive candidate for creating low fouling surfaces due to the unique structure and properties of silica-based coatings and of hybrid inorganic-organic silicas in particular. Sol-gel formulations easily bind to all types of surfaces, such as steel, fiberglass, aluminum, and wood. In addition, they can cure at room temperature and form thin glassy coatings that are markedly different from thick silicone elastomeric foul-releasing coatings. Good to excellent performance against biofouling, low cure temperatures, enhanced and prolonged chemical and physical stability, ease of

  8. Exploration of permeability and antifouling performance on modified cellulose acetate ultrafiltration membrane with cellulose nanocrystals.

    Science.gov (United States)

    Lv, Jinling; Zhang, Guoquan; Zhang, Hanmin; Yang, Fenglin

    2017-10-15

    Cellulose nanocrystals (CNCs) were introduced into cellulose diacetate (CDA) matrix via immerged phase-inversion process, aiming to improve the filtration and antifouling performance of CNCs/CDA blending membrane. The effects of CNCs on membrane morphologies, hydrophilicity, permeability and antifouling property were investigated. Results showed that the incorporation of CNCs into CDA membrane could effectively enhance the permeability and antifouling property of CNCs/CDA blending membrane by optimizing membrane microstructure and improving membrane hydrophilicity. A high pure water flux of 173.8L/m 2 h was achieved for the CNCs/CDA blending membrane at 200KPa, which is 24 times that of the CDA membrane (7.2L/m 2 h). The bovine serum albumin (BSA) adsorption amount of the CNCs/CDA blending membrane decreased about 48% compared to that of the CDA membrane. Additionally, the CNCs/CDA blending membrane exhibited better antifouling performance with the flux recovery ratio (FRR) of 89.5% after three fouling cycles, compared to 59.7% for the CDA membrane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Antifouling phenyl ethers and other compounds from the invertebrates and their symbiotic fungi collected from the South China Sea

    KAUST Repository

    Wang, Chao-Yi

    2016-10-26

    Marine organism-derived secondary metabolites are promising potential sources for discovering environmentally safe antifouling agents. In present study, 55 marine secondary metabolites and their synthesized derivatives were tested and evaluated for their antifouling activities and security. These compounds include 44 natural products isolated from marine invertebrates and their symbiotic microorganisms collected from the South China Sea and 11 structural modified products derived from the isolated compounds. The natural secondary metabolites, covering phenyl ether derivatives, terpenoids, 9, 11-secosteroids, anthraquinones, alkaloids, nucleoside derivatives and peptides, were isolated from two corals, one sponge and five symbiotic fungi. All of the isolated and synthesized compounds were tested for their antifouling activities against the cyprids of barnacle Balanus (Amphibalanus) amphitrite Darwin. Noticeably, five phenyl ether derivatives (9, 11, 13–15) exhibited potent anti-larval settlement activity with the EC50 values lower than 3.05 μM and the LC50/EC50 ratios higher than 15. The study of structure–activity relationship (SAR) revealed that the introduction of acetoxy groups and bromine atoms to phenyl ether derivatives could significantly improve their antifouling activities. This is the first report on the SAR of phenyl ether derivatives on antifouling activity against barnacle B. amphitrite. The polybrominated diphenyl ether derivative, 2, 4, 6, 2′, 4′, 6′-hexabromo-diorcinol (13), which displayed excellent antifouling activity, was considered as a promising candidate of environmentally friendly antifouling agents.

  10. Antifouling Properties of Fluoropolymer Brushes toward Organic Polymers: The Influence of Composition, Thickness, Brush Architecture, and Annealing.

    Science.gov (United States)

    Wang, Zhanhua; Zuilhof, Han

    2016-07-05

    Fluoropolymer brushes are widely used to prevent nonspecific adsorption of commercial polymeric or biological materials due to their strongly hydrophobic character. Herein, a series of fluoropolymer brushes with different compositions, thicknesses and molecular architectures was prepared via surface-initiated atom transfer radical polymerization (ATRP). Subsequently, the antifouling properties of these fluoropolymer brushes against organic polymers were studied in detail using X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) measurements and polystyrene as a representative fouling polymer. Among all of the molecular architectures studied, homopolymerized methacrylate-based fluoropolymer brushes (PMAF17) show the best antifouling properties. Annealing the fluoropolymer brushes improves the antifouling property dramatically due to the reregulated surface composition. These fluoropolymer brushes can be combined with, e.g., micro- and nanostructuring and other advanced materials properties to yield even better long-term antifouling behavior under harsh environments.

  11. Tethering of hyperbranched polyols using PEI as a building block to synthesize antifouling PVDF membranes

    Science.gov (United States)

    Wang, Xushan; Wang, Zihong; Wang, Zhe; Cao, Yu; Meng, Jianqiang

    2017-10-01

    Antifouling PVDF membranes were prepared by grafting hyperbranched polyols on the membrane surface via a three-step modification method. The membrane was first prepared by alkaline treatment to introduce alkenyl groups, then chemically immobilizing hyperbranched poly(ethyleneimine) (HPEI) on membrane surface through Michael reaction followed by ring opening reaction of the glycidol with amine groups. Chemical compositions, surface morphology and physicochemical properties of the original and modified membranes were characterized via attenuated total refection-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), water contact angle (WCA) and zeta potential measurements. The antifouling property of the modified membrane was assessed by the static bovine serum albumin (BSA) and lysozyme (LZM) adsorption as well as cross-flow filtration of BSA aqueous solution. The results explicate that surface modification using hyperbranched polymers can alter membrane chemistry and morphology significantly. In contrast to the original PVDF membrane, the modified membrane shows superhydrophilic property and relatively high capability to resist nonspecific protein adsorption. Three HPEIs were used for modification and the obtained PVDFA-g-PG60,000 membrane has a static BSA protein adsorption of 45 μg/cm2 and shows the highest protein resistance. However, the PVDF-g-PG membrane is positively charged due to the unreacted amine groups. As a result, the PVDF-g-PG membranes also show high flux decline during the filtration of BSA aqueous solution due to the electrostatic interaction. In spite of that, the PVDF-g-PG membranes still maintain high flux recovery ratio and good washing properties.

  12. Comparative safety of the antifouling compound butenolide and 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) to the marine medaka (Oryzias melastigma)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lianguo [Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region (Hong Kong); Ye, Rui [State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Xu, Ying; Gao, Zhaoming [Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region (Hong Kong); Au, Doris W.T. [State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Qian, Pei-Yuan, E-mail: boqianpy@ust.hk [Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region (Hong Kong)

    2014-04-01

    Highlights: • Adverse effects of antifouling compound butenolide were studied using marine medaka. • The active ingredient in SeaNine 211, DCOIT, was employed as positive control. • Butenolide induced transient, reversible biological effects on marine medaka. • Lower toxicity of butenolide on marine biota highlights its promising application. • The increased sensitivity of male medaka addresses the gender difference. - Abstract: This study evaluated the potential adverse effects of butenolide, a promising antifouling compound, using the marine medaka (Oryzias melastigma), a model fish for marine ecotoxicology. The active ingredient used in the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) was employed as the positive control. Adult marine medaka (4-month-old) were exposed to various concentrations of butenolide or DCOIT for 28 days and then depurated in clean seawater for 14 days (recovery). A suite of sensitive biomarkers, including hepatic oxidative stress, neuronal signal transmission, endocrine disruption, and reproductive function, was used to measure significant biological effects induced by the chemicals. Compared to DCOIT, chronic exposure to butenolide induced a lower extent of oxidative stress in the liver of male and female medaka. Furthermore, butenolide-exposed fish could recover faster from oxidative stress than fish exposed to DCOIT. Regarding neurotransmission, DCOIT significantly inhibited acetylcholinesterase (AChE) activity in the brain of both male and female medaka, whereas this was not significant for butenolide. In addition, plasma estradiol (E{sub 2}) level was elevated and testosterone (T) level was decreased in male medaka exposed to DCOIT. This greatly imbalanced sex hormones ratio (E{sub 2}/T) in exposed males, indicating that DCOIT is a potent endocrine disruptive chemical. In contrast, butenolide induced only moderate effects on sex hormone levels in exposed males, which could be

  13. Comparative safety of the antifouling compound butenolide and 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) to the marine medaka (Oryzias melastigma)

    International Nuclear Information System (INIS)

    Chen, Lianguo; Ye, Rui; Xu, Ying; Gao, Zhaoming; Au, Doris W.T.; Qian, Pei-Yuan

    2014-01-01

    Highlights: • Adverse effects of antifouling compound butenolide were studied using marine medaka. • The active ingredient in SeaNine 211, DCOIT, was employed as positive control. • Butenolide induced transient, reversible biological effects on marine medaka. • Lower toxicity of butenolide on marine biota highlights its promising application. • The increased sensitivity of male medaka addresses the gender difference. - Abstract: This study evaluated the potential adverse effects of butenolide, a promising antifouling compound, using the marine medaka (Oryzias melastigma), a model fish for marine ecotoxicology. The active ingredient used in the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) was employed as the positive control. Adult marine medaka (4-month-old) were exposed to various concentrations of butenolide or DCOIT for 28 days and then depurated in clean seawater for 14 days (recovery). A suite of sensitive biomarkers, including hepatic oxidative stress, neuronal signal transmission, endocrine disruption, and reproductive function, was used to measure significant biological effects induced by the chemicals. Compared to DCOIT, chronic exposure to butenolide induced a lower extent of oxidative stress in the liver of male and female medaka. Furthermore, butenolide-exposed fish could recover faster from oxidative stress than fish exposed to DCOIT. Regarding neurotransmission, DCOIT significantly inhibited acetylcholinesterase (AChE) activity in the brain of both male and female medaka, whereas this was not significant for butenolide. In addition, plasma estradiol (E 2 ) level was elevated and testosterone (T) level was decreased in male medaka exposed to DCOIT. This greatly imbalanced sex hormones ratio (E 2 /T) in exposed males, indicating that DCOIT is a potent endocrine disruptive chemical. In contrast, butenolide induced only moderate effects on sex hormone levels in exposed males, which could be gradually

  14. ­A practical application of reduced-copper antifouling paint in marine biological research

    Directory of Open Access Journals (Sweden)

    Andrea S. Jerabek

    2016-07-01

    Full Text Available Biofouling of experimental cages and other field apparatuses can be problematic for scientists and has traditionally been addressed using frequent manual removal (e.g., scraping, scrubbing. Recent environmental restrictions and legislative changes have driven the development of less hazardous antifouling products, making antifouling paint a potential alternative option to manual removal. Consequently, the viability of using these newly developed products as a replacement for the manual cleaning of exclusion cages was experimentally investigated. There were six treatments tested, comprising three with settlement tiles in experimental cages coated with antifouling paint, two with settlement tiles in unpainted experimental cages, and one cage-free suspended tile. The three antifouling treatments comprised two reduced-copper paints (21% Cu2O and 40% Cu2O and one copper-free, Econea™-based paint (labeled “ecofriendly”. Antifouling paints were assessed for performance of preventing fouling of the cages and whether they elicited local effects on settlement tiles contained within them. All three paints performed well to reduce fouling of the cages during the initial six weeks of the experiment, but the efficacy of “ecofriendly” paint began to decrease during an extended deployment that lasted 14 weeks. The macro-community composition, biomass, and percent cover of settled organism on tiles within cages treated with copper-based paints (21% and 40% concentrations were indistinguishable from tiles within the manually scrubbed cages. In contrast, settlement to tiles from the “ecofriendly” treatment was different in composition of macro-community and lower in biomass, suggesting the presence of local effects and therefore rendering it unsuitable for use in settlement experiments. The results of this study suggest that reduced-copper paints have the potential to serve as an alternative to manual maintenance, which may be useful for deployments

  15. {sup 131}I treatment of nodular non-toxic goitre

    Energy Technology Data Exchange (ETDEWEB)

    Nygaard, B.; Faber, J.; Hegdeues, L.; Hansen, J.M. [Herlev Hospital (Denmark)

    1996-01-01

    The traditional treatment of a growing nodular non-toxic goitre has for many years been surgical resection or levothyroxine suppressive treatment. During recent years, several studies have reported promising results of {sup 131}I treatment in terms of thyroid size reduction. This review outlines the different treatment modalities on non-toxic nodular goitre with special emphasis on {sup 131}I treatment. By the term nodular goitre the authors include glands with solitary or multiple thyroid nodules with uptake on a scintiscan. At what point of the natural history of non-toxic multinodular goitre {sup 131}I therapy should be used is not clear. In principle, the best result is obtained in smaller goitres and it is possible that the best effect of {sup 131}I is seen if treatment is given to patients with diffuse goitre before these become nodular. However, then there is a potential risk to swing in the direction to where {sup 131}I is used in an indiscriminate way, since the prevalence of non-toxic multinodular goitre is much higher than that of hyperthyroidism. Although we have data on the long-term hazards of {sup 131}I treatment in hyperthyroidism in terms of risk of cancer, we have only follow-up periods of 5 to 10 years for non-toxic goitres in small groups of patients and no data regarding the long-term risk of high-dose {sup 131}I treatment (>600 MBq) for this condition. Ideally, long term randomized studies comparing the effect, side effect and cost-benefit of surgery as opposed to {sup 131}I treatment should be performed. Awaiting this, it is at present mandatory that each individual patient be given a choice of treatment after proper information. 44 refs.

  16. Molecular characterization and identification of markers for toxic and non-toxic varieties of Jatropha curcas L. using RAPD, AFLP and SSR markers.

    Science.gov (United States)

    Sudheer Pamidimarri, D V N; Singh, Sweta; Mastan, Shaik G; Patel, Jalpa; Reddy, Muppala P

    2009-07-01

    Jatropha curcas L., a multipurpose shrub has acquired significant economic importance for its seed oil which can be converted to biodiesel, is emerging as an alternative to petro-diesel. The deoiled seed cake remains after oil extraction is toxic and cannot be used as a feed despite having best nutritional contents. No quantitative and qualitative differences were observed between toxic and non-toxic varieties of J. curcas except for phorbol esters content. Development of molecular marker will enable to differentiate non-toxic from toxic variety in a mixed population and also help in improvement of the species through marker assisted breeding programs. The present investigation was undertaken to characterize the toxic and non-toxic varieties at molecular level and to develop PCR based molecular markers for distinguishing non-toxic from toxic or vice versa. The polymorphic markers were successfully identified specific to non-toxic and toxic variety using RAPD and AFLP techniques. Totally 371 RAPD, 1,442 AFLP markers were analyzed and 56 (15.09%) RAPD, 238 (16.49%) AFLP markers were found specific to either of the varieties. Genetic similarity between non-toxic and toxic verity was found to be 0.92 by RAPD and 0.90 by AFLP fingerprinting. In the present study out of 12 microsatellite markers analyzed, seven markers were found polymorphic. Among these seven, jcms21 showed homozygous allele in the toxic variety. The study demonstrated that both RAPD and AFLP techniques were equally competitive in identifying polymorphic markers and differentiating both the varieties of J. curcas. Polymorphism of SSR markers prevailed between the varieties of J. curcas. These RAPD and AFLP identified markers will help in selective cultivation of specific variety and along with SSRs these markers can be exploited for further improvement of the species through breeding and Marker Assisted Selection (MAS).

  17. Adverse Effect of Antifouling Compounds on the Reproductive Mechanisms of the Ascidian Ciona intestinalis

    Directory of Open Access Journals (Sweden)

    Alessandra Gallo

    2013-09-01

    Full Text Available Fertilization and embryo development that occur in sea water are sensitive to xenobiotics from anthropogenic sources. In this work, we evaluated the influence of two antifouling biocides, tributyltin (TBT and diuron, on the reproductive mechanisms of the marine invertebrate Ciona intestinalis. By using electrophysiological techniques, we examined the impact of these compounds on the electrical properties of the mature oocytes and of events occurring at fertilization. With different toxicity assays, we studied the effect of the two biocides on the gametes by evaluating fertilization rate and embryo development. Results show that sodium (Na+ currents were significantly reduced by either of the two biocides, whereas conductance was significantly increased. The fertilization current frequency and amplitude, fertilization rate and larval development were affected only by TBT. This study suggests that: (i the two biocides affect either the electrical properties of the oocyte plasma membrane and the reproductive success representing a risk factor for the survival of the species exposed to environmental pollution; (ii the ascidian Ciona intestinalis may represent a good model organism to test toxicity of marine pollutants. Possible mechanisms of action of the two biocides are discussed.

  18. Adverse Effect of Antifouling Compounds on the Reproductive Mechanisms of the Ascidian Ciona intestinalis

    Science.gov (United States)

    Gallo, Alessandra; Tosti, Elisabetta

    2013-01-01

    Fertilization and embryo development that occur in sea water are sensitive to xenobiotics from anthropogenic sources. In this work, we evaluated the influence of two antifouling biocides, tributyltin (TBT) and diuron, on the reproductive mechanisms of the marine invertebrate Ciona intestinalis. By using electrophysiological techniques, we examined the impact of these compounds on the electrical properties of the mature oocytes and of events occurring at fertilization. With different toxicity assays, we studied the effect of the two biocides on the gametes by evaluating fertilization rate and embryo development. Results show that sodium (Na+) currents were significantly reduced by either of the two biocides, whereas conductance was significantly increased. The fertilization current frequency and amplitude, fertilization rate and larval development were affected only by TBT. This study suggests that: (i) the two biocides affect either the electrical properties of the oocyte plasma membrane and the reproductive success representing a risk factor for the survival of the species exposed to environmental pollution; (ii) the ascidian Ciona intestinalis may represent a good model organism to test toxicity of marine pollutants. Possible mechanisms of action of the two biocides are discussed. PMID:24065165

  19. Adverse effect of antifouling compounds on the reproductive mechanisms of the ascidian Ciona intestinalis.

    Science.gov (United States)

    Gallo, Alessandra; Tosti, Elisabetta

    2013-09-20

    Fertilization and embryo development that occur in sea water are sensitive to xenobiotics from anthropogenic sources. In this work, we evaluated the influence of two antifouling biocides, tributyltin (TBT) and diuron, on the reproductive mechanisms of the marine invertebrate Ciona intestinalis. By using electrophysiological techniques, we examined the impact of these compounds on the electrical properties of the mature oocytes and of events occurring at fertilization. With different toxicity assays, we studied the effect of the two biocides on the gametes by evaluating fertilization rate and embryo development. Results show that sodium (Na⁺) currents were significantly reduced by either of the two biocides, whereas conductance was significantly increased. The fertilization current frequency and amplitude, fertilization rate and larval development were affected only by TBT. This study suggests that: (i) the two biocides affect either the electrical properties of the oocyte plasma membrane and the reproductive success representing a risk factor for the survival of the species exposed to environmental pollution; (ii) the ascidian Ciona intestinalis may represent a good model organism to test toxicity of marine pollutants. Possible mechanisms of action of the two biocides are discussed.

  20. Environmental risk limits for antifouling substances

    International Nuclear Information System (INIS)

    Wezel, Annemarie P. van; Vlaardingen, P. van

    2004-01-01

    In 1989, the EU restricted the use of tributyl-tin (TBT) and the International Maritime Organisation (IMO) decided for a world-wide ban on TBT in 2003. As a replacement for TBT, new antifouling agents are entering the market. Environmental risk limits (ERLs) are derived for substances that are used as TBT-substitutes, i.e. the compounds Irgarol 1051, dichlofluanid, ziram, chlorothalonil and TCMTB. ERLs represent the potential risk of the substances to the ecosystem and are derived using data on (eco)toxicology and environmental chemistry. Only toxicity studies with endpoints related to population dynamics are taken into account. For Irgarol 1051 especially plants appear to be sensitive; the mode of action is inhibition of photosynthetic electron transport. Despite the higher sensitivity of the plants, the calculated ERL for water based on plants only is higher than the ERL based on all data due to the lower variability in the plant only dataset. Because there is a mechanistic basis to state that plants are the most sensitive species, we propose to base the ERL for water on the plants only dataset. As dichlofluanid is highly unstable in the water phase, it is recommended to base the ERL on the metabolites formed and not on the parent compound. No toxicity data of the studied compounds for organisms living in sediments were found, the ERLs for sediment are derived with help of the equilibrium partitioning method. For dichlofluanid and chlorothalonil the ERL for soil is directly based on terrestrial data, for Irgarol 1051 and ziram the ERL for soil is derived using equilibrium partitioning. Except for Irgarol 1051, no information was encountered in the open literature on the environmental occurrence in The Netherlands of the chemicals studied. The measured concentrations for Irgarol 1051 are close to the derived ERL. For this compound it is concluded that the species composition and thereby ecosystem functioning cannot be considered as protected

  1. Environmental risk limits for antifouling substances

    Energy Technology Data Exchange (ETDEWEB)

    Wezel, Annemarie P. van; Vlaardingen, P. van

    2004-03-10

    In 1989, the EU restricted the use of tributyl-tin (TBT) and the International Maritime Organisation (IMO) decided for a world-wide ban on TBT in 2003. As a replacement for TBT, new antifouling agents are entering the market. Environmental risk limits (ERLs) are derived for substances that are used as TBT-substitutes, i.e. the compounds Irgarol 1051, dichlofluanid, ziram, chlorothalonil and TCMTB. ERLs represent the potential risk of the substances to the ecosystem and are derived using data on (eco)toxicology and environmental chemistry. Only toxicity studies with endpoints related to population dynamics are taken into account. For Irgarol 1051 especially plants appear to be sensitive; the mode of action is inhibition of photosynthetic electron transport. Despite the higher sensitivity of the plants, the calculated ERL for water based on plants only is higher than the ERL based on all data due to the lower variability in the plant only dataset. Because there is a mechanistic basis to state that plants are the most sensitive species, we propose to base the ERL for water on the plants only dataset. As dichlofluanid is highly unstable in the water phase, it is recommended to base the ERL on the metabolites formed and not on the parent compound. No toxicity data of the studied compounds for organisms living in sediments were found, the ERLs for sediment are derived with help of the equilibrium partitioning method. For dichlofluanid and chlorothalonil the ERL for soil is directly based on terrestrial data, for Irgarol 1051 and ziram the ERL for soil is derived using equilibrium partitioning. Except for Irgarol 1051, no information was encountered in the open literature on the environmental occurrence in The Netherlands of the chemicals studied. The measured concentrations for Irgarol 1051 are close to the derived ERL. For this compound it is concluded that the species composition and thereby ecosystem functioning cannot be considered as protected.

  2. Antifouling Cellulose Hybrid Biomembrane for Effective Oil/Water Separation.

    Science.gov (United States)

    Kollarigowda, Ravichandran H; Abraham, Sinoj; Montemagno, Carlo D

    2017-09-06

    Oil/water separation has been of great interest worldwide because of the increasingly serious environmental pollution caused by the abundant discharge of industrial wastewater, oil spill accidents, and odors. Here, we describe simple and economical superhydrophobic hybrid membranes for effective oil/water separation. Eco-friendly, antifouling membranes were fabricated for oil/water separation, waste particle filtration, the blocking of thiol-based odor materials, etc., by using a cellulose membrane (CM) filter. The CM was modified from its original superhydrophilic nature into a superhydrophobic surface via a reversible addition-fragmentation chain transfer technique. The block copolymer poly{[3-(trimethoxysilyl)propyl acrylate]-block-myrcene} was synthesized using a "grafting-from" approach on the CM. The surface contact angle that we obtained was >160°, and absorption tests of several organic contaminants (oils and solvents) exhibited superior levels of extractive activity and excellent reusability. These properties rendered this membrane a promising surface for oil/water separation. Interestingly, myrcene blocks thiol (through "-ene-" chemistry) contaminants, thereby bestowing a pleasant odor to polluted water by acting as an antifouling material. We exploited the structural properties of cellulose networks and simple chemical manipulations to fabricate an original material that proved to be effective in separating water from organic and nano/microparticulate contaminants. These characteristics allowed our material to effectively separate water from oily/particulate phases as well as embed antifouling materials for water purification, thus making it an appropriate absorber for chemical processes and environmental protection.

  3. Mimetic marine antifouling films based on fluorine-containing polymethacrylates

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qianhui [College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); Li, Hongqi, E-mail: hongqili@dhu.edu.cn [College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); Xian, Chunying; Yang, Yihang [College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); Song, Yanxi [School of Environmental Science and Technology, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433 (China); Cong, Peihong [State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2015-07-30

    Graphical abstract: - Highlights: • Copolymers containing catechol and trifluoromethyl groups were prepared. • The copolymers could adhere to surfaces of glass, plastics and metals. • The polymer films showed excellent resistance to water, salt, base and acid. • The polymer films displayed good antifouling property. - Abstract: Novel methacrylate copolymers containing catechol and trifluoromethyl pendant side groups were synthesized by free radical polymerization of N-(3,4-dihydroxyphenyl)ethyl methacrylamide (DMA) and 2,2,2-trifluoroethyl methacrylate (TFME) with α,α′-azobisisobutyronitrile (AIBN) as initiator. A series of copolymers with different content of TFME ranging from 3% to 95% were obtained by changing the molar ratio of DMA to TFME from 25:1 to 1:25. Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used to characterize the copolymers, which displayed a certain degree of hardness and outstanding thermostability reflected from their high glass transition temperatures. The copolymers could adhere to surfaces of glass, plastics and metals due to introduction of catechol groups as multivalent hydrogen bonding anchors. Water contact angle on the polymer films was up to 117.4°. Chemicals resistance test manifested that the polymer films possessed excellent resistance to water, salt, acid and alkali. Moreover, the polymer films displayed fair antifouling property and might be used as promising environmentally friendly marine antifouling coatings.

  4. Mimetic marine antifouling films based on fluorine-containing polymethacrylates

    International Nuclear Information System (INIS)

    Sun, Qianhui; Li, Hongqi; Xian, Chunying; Yang, Yihang; Song, Yanxi; Cong, Peihong

    2015-01-01

    Graphical abstract: - Highlights: • Copolymers containing catechol and trifluoromethyl groups were prepared. • The copolymers could adhere to surfaces of glass, plastics and metals. • The polymer films showed excellent resistance to water, salt, base and acid. • The polymer films displayed good antifouling property. - Abstract: Novel methacrylate copolymers containing catechol and trifluoromethyl pendant side groups were synthesized by free radical polymerization of N-(3,4-dihydroxyphenyl)ethyl methacrylamide (DMA) and 2,2,2-trifluoroethyl methacrylate (TFME) with α,α′-azobisisobutyronitrile (AIBN) as initiator. A series of copolymers with different content of TFME ranging from 3% to 95% were obtained by changing the molar ratio of DMA to TFME from 25:1 to 1:25. Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used to characterize the copolymers, which displayed a certain degree of hardness and outstanding thermostability reflected from their high glass transition temperatures. The copolymers could adhere to surfaces of glass, plastics and metals due to introduction of catechol groups as multivalent hydrogen bonding anchors. Water contact angle on the polymer films was up to 117.4°. Chemicals resistance test manifested that the polymer films possessed excellent resistance to water, salt, acid and alkali. Moreover, the polymer films displayed fair antifouling property and might be used as promising environmentally friendly marine antifouling coatings

  5. Clickable antifouling polymer brushes for polymer pen lithography

    Czech Academy of Sciences Publication Activity Database

    Bog, U.; de los Santos Pereira, Andres; Mueller, S. L.; Havenridge, S.; Parrillo, Viviana; Bruns, M.; Holmes, A. E.; Rodriguez-Emmenegger, C.; Fuchs, H.; Hirtz, M.

    2017-01-01

    Roč. 9, č. 13 (2017), s. 12109-12117 ISSN 1944-8244 R&D Projects: GA ČR(CZ) GJ15-09368Y Institutional support: RVO:61389013 Keywords : antifouling * biofunctional interfaces * polymer brushes Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 7.504, year: 2016

  6. Encapsulation of Antifouling Organic Biocides in Poly(lactic acid) Nanoparticles.

    Science.gov (United States)

    Kamtsikakis, Aristotelis; Kavetsou, Eleni; Chronaki, Konstantina; Kiosidou, Evangelia; Pavlatou, Evangelia; Karana, Alexandra; Papaspyrides, Constantine; Detsi, Anastasia; Karantonis, Antonis; Vouyiouka, Stamatina

    2017-09-26

    The scope of the current research was to assess the feasibility of encapsulating three commercial antifouling compounds, Irgarol 1051, Econea and Zinc pyrithione, in biodegradable poly(lactic acid) (PLA) nanoparticles. The emulsification-solvent evaporation technique was herein utilized to manufacture nanoparticles with a biocide:polymer ratio of 40%. The loaded nanoparticles were analyzed for their size and size distribution, zeta potential, encapsulation efficiency and thermal properties, while the relevant physicochemical characteristics were correlated to biocide-polymer system. In addition, the encapsulation process was scaled up and the prepared nanoparticles were dispersed in a water-based antifouling paint in order to examine the viability of incorporating nanoparticles in such coatings. Metallic specimens were coated with the nanoparticles-containing paint and examined regarding surface morphology.

  7. Encapsulation of Antifouling Organic Biocides in Poly(lactic acid) Nanoparticles

    Science.gov (United States)

    Kamtsikakis, Aristotelis; Kavetsou, Eleni; Chronaki, Konstantina; Kiosidou, Evangelia; Pavlatou, Evangelia; Karana, Alexandra; Papaspyrides, Constantine; Detsi, Anastasia; Karantonis, Antonis; Vouyiouka, Stamatina

    2017-01-01

    The scope of the current research was to assess the feasibility of encapsulating three commercial antifouling compounds, Irgarol 1051, Econea and Zinc pyrithione, in biodegradable poly(lactic acid) (PLA) nanoparticles. The emulsification–solvent evaporation technique was herein utilized to manufacture nanoparticles with a biocide:polymer ratio of 40%. The loaded nanoparticles were analyzed for their size and size distribution, zeta potential, encapsulation efficiency and thermal properties, while the relevant physicochemical characteristics were correlated to biocide–polymer system. In addition, the encapsulation process was scaled up and the prepared nanoparticles were dispersed in a water-based antifouling paint in order to examine the viability of incorporating nanoparticles in such coatings. Metallic specimens were coated with the nanoparticles-containing paint and examined regarding surface morphology. PMID:28952560

  8. Switchable antifouling coatings and uses thereof

    Science.gov (United States)

    Denton, Michele L. Baca; Dirk, Shawn M.; Johnson, Ross Stefan

    2017-02-28

    The present invention relates to antifouling coatings capable of being switched by using heat or ultraviolet light. Prior to switching, the coating includes an onium cation component having antimicrobial and antibacterial properties. Upon switching, the coating is converted to a conjugated polymer state, and the cationic component is released with any adsorbed biofilm layer. Thus, the coatings herein have switchable and releasable properties. Methods of making and using such coatings are also described.

  9. Isolation and Antifouling Activity of Azulene Derivatives from the Antarctic Gorgonian Acanthogorgia laxa.

    Science.gov (United States)

    Patiño Cano, Laura P; Quintana Manfredi, Rodrigo; Pérez, Miriam; García, Mónica; Blustein, Guillermo; Cordeiro, Ralf; Pérez, Carlos D; Schejter, Laura; Palermo, Jorge A

    2018-01-01

    Three azulenoid sesquiterpenes (1 - 3) were isolated from the Antarctic gorgonian Acanthogorgia laxa collected by bottom trawls at -343 m. Besides linderazulene (1), and the known ketolactone 2, a new brominated C 16 linderazulene derivative (3) was also identified. This compound has an extra carbon atom at C(7) of the linderazulene framework. The antifouling activity of compounds 1 and 2 was assayed in the laboratory with Artemia salina larvae, and also in field tests, by incorporation in soluble-matrix experimental antifouling paints. The results obtained after a 45 days field trial of the paints, showed that compounds 1 and 2 displayed good antifouling potencies against a wide array of organisms. Compound 3, a benzylic bromide, was unstable and for this reason was not submitted to bioassays. Two known cembranolides: pukalide and epoxypukalide, were also identified as minor components of the extract. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  10. Improvement of antifouling performances for modified PVDF ultrafiltration membrane with hydrophilic cellulose nanocrystal

    Science.gov (United States)

    Lv, Jinling; Zhang, Guoquan; Zhang, Hanmin; Zhao, Chuanqi; Yang, Fenglin

    2018-05-01

    Hydrophilic cellulose nanocrystal (CNC) was incorporated into hydrophobic poly(vinylidene fluoride) (PVDF) membrane via phase inversion process to improve membrane antifouling property. The effects of CNC on membrane morphology, hydrophilicity, permeability and antifouling property were investigated in-detail. Results indicated that the introduction of CNC into PVDF membrane enhanced the permeability by optimizing membrane microstructure and improving membrane hydrophilicity. A higher pure water flux of 206.9 L m-2 h-1 was achieved for CNC/PVDF membrane at 100 kPa, which was 20 times that of PVDF membrane (9.8 L m-2 h-1). In bovine serum albumin filtration measurements, the permeation flux and flux recovery ratio of CNC/PVDF membrane were increased remarkably, while the irreversible fouling-resistance of CNC/PVDF membrane decreased by 48.8%. These results indicated that the CNC/PVDF membrane possessed superior antifouling property due to the hydrophilicity of CNC that formed a hydration layer on the membrane surface to effectively reduce contaminants adsorption/deposition.

  11. Hydroacoustic Antifouling Systems

    OpenAIRE

    D'Hoore, S.; De Vuyst, T.; De Vos, L.; Dobbelaere, A.

    2017-01-01

    Biofouling has a major impact on the global shipping industry. The fouling demands extensive efforts to clean the fouled vessels, increases the expenses for the shipping companies and worsens a number of environmental problems, such as carbon dioxide emissions due to increased drag, or the transport of organisms outside their habitat. In the past, toxic paints were found to be the solution for this problem. The ban of TBT (tributyltin), because of its negative impact on the environment, has l...

  12. Potent Antifouling Marine Dihydroquinolin-2(1H)-one-Containing Alkaloids from the Gorgonian Coral-Derived Fungus Scopulariopsis sp.

    KAUST Repository

    Shao, Chang Lun; Xu, Ru Fang; Wang, Chang Yun; Qian, Pei Yuan; Wang, Kai Ling; Wei, Mei Yan

    2015-01-01

    in 2008, there is an urgent demand for the development of efficient and environmentally friendly antifouling agents. Marine microorganisms have proved to be a potential source of antifouling natural compounds. In this study, six dihydroquinolin-2-one-containing

  13. Recovery of Pyruvic Acid using Tri-n-butylamine Dissolved in Non-Toxic Diluent (Rice Bran Oil)

    Science.gov (United States)

    Pal, Dharm; Keshav, Amit

    2016-04-01

    An attempt has been made to investigate the effectiveness of the vegetable oil based biocompatible solvent for the separation of pyruvic acid from fermentation broth, by using rice bran oil as natural, non-toxic diluent. Reactive extraction of pyruvic acid (0.1-0.5 k mol/m3) from aqueous solutions has been studied using tri-n-butylamine (TBA; 10-70 %) as an extractant dissolved in non toxic rice bran oil at T = 30 ± 1 °C. Results were presented in terms of distribution coefficient (Kd), extraction efficiency (E %), loading ratio (Z), and complexation constant (\\varphi_{α β }). Extraction equilibrium was interpreted using mass action modeling approach. Based on the extent of loading (Z < 0.5) only (1:1), pyruvic acid: TBA complex was proposed. Equilibrium complexation constant was evaluated to 1.22 m3/k mol. Results obtained are useful in understanding the extraction mechanism.

  14. Are metals of antifouling paints transferred to marine biota?

    Directory of Open Access Journals (Sweden)

    Wladimir C. Paradas

    2007-03-01

    Full Text Available Because of its high toxicity, TBT (trybutiltin was banned since 2003, which resulted in a greater re-use of Cu as based-biocide in antifouling paints (AFP. The aim of this work is to determine if metals form of AFP are transferred to benthic organisms from Guanabara Bay (GB (Rio de Janeiro, Brazil. Metal concentrations were measured in two main fouling algae species Ulva flexuosa and U. fasciata and one isopod species, Sphaeroma serratum, in two GB marinas areas from sites with artificial substrate covered by AFP and natural substrate.In addition, control samples were collected in an adjacent open ocean area. Concentrations of Cd, Cr, Cu, Pb and Zn were determined by Atomic Absortion Spectrophotometry. Higher concentrations of Cu, Pb and Zn were detected in both algal species from GB in relation to control areas. Among samples of algae and isopod species from GB, populations collected over artificial surfaces covered by AFP presented significantly higher metal concentration than population of rocky natural substrate. Our data showed that the leaching of metals by antifouling paints present on decks and boats are being taken up by algae and isopods. These results indicate that antifouling coatings are the main source of heavy metal to biota of GB marina area.Devido sua alta toxicidade, o TBT está banido desde 2003, o que resultou na re-utilização de tintas a base de cobre. O objetivo deste trabalho é determinar se os metais provenientes das tintas anti-incrustantes (AFP são transferidos para organismos bentônicos da Baía de Guanabara (BG (Rio de janeiro, Brasil. Concentrações de metais foram analisadas em duas espécies de algas Ulva flexuosa e U. fasciata e no isópoda, Sphaeroma serratum, em duas áreas de marinas em locais de substrato artificial coberto com tintas AFP e em locais de substrato natural. Também foram coletadas amostras em uma área oceânica (controle. Concentrações de Cd, Cr, Cu, Pb e Zn foram determinadas por

  15. Antifouling polymer brushes displaying antithrombogenic surface properties

    Czech Academy of Sciences Publication Activity Database

    de los Santos Pereira, Andres; Sheikh, S.; Blaszykowski, C.; Pop-Georgievski, Ognen; Fedorov, K.; Thompson, M.; Rodriguez-Emmenegger, Cesar

    2016-01-01

    Roč. 17, č. 3 (2016), s. 1179-1185 ISSN 1525-7797 R&D Projects: GA ČR(CZ) GJ15-09368Y; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : polymer brushes * surface characterization * antifouling surfaces Subject RIV: BO - Biophysics Impact factor: 5.246, year: 2016

  16. Remediation of lead-contaminated soil with non-toxic biodegradable natural ligands extracted from soybean.

    Science.gov (United States)

    Lee, Yong-Woo; Kim, Chulsung

    2012-01-01

    Bench-scale soil washing studies were performed to evaluate the potential application of non-toxic, biodegradable extracted soybean-complexing ligands for the remediation of lead-contaminated soils. Results showed that, with extracted soybean-complexing ligands, lead solubility extensively increased when pH of the solution was higher than 6, and approximately 10% (500 mg/kg) of lead was removed from a rifle range soil. Two potential primary factors controlling the effectiveness of lead extraction from lead-contaminated soils with natural ligands are adsorption of extracted aqueous lead ions onto the ground soybean and the pH of the extraction solution. More complexing ligands were extracted from the ground soybean as the reaction pH increased. As a result, significantly higher lead extraction efficiency was observed under basic environments. In addition, less adsorption onto soybean was observed when the pH of the solution was higher than 7. Among two available Lewis base functional groups in the extracted soybean-complexing ligands such as carboxylate and the alpha-amino functional groups, the non-protonated alpha-amino functional groups may play an important role for the dissolution of lead from lead-contaminated soil through the formation of soluble lead--ligand complexes.

  17. Nontoxic piperamides and their synthetic analogues as novel antifouling reagents

    KAUST Repository

    Huang, Xiang-Zhong; Xu, Ying; Zhang, Yi-Fan; Zhang, Yu; Wong, Yue Him; Han, Zhuang; Yin, Yan; Qian, Pei-Yuan

    2014-01-01

    Bioassay-guided isolation of an acetone extract from a terrestrial plant Piper betle produced four known piperamides with potent antifouling (AF) activities, as evidenced by inhibition of settlement of barnacle cypris larvae. The AF activities

  18. Highly Specific Binding on Antifouling Zwitterionic Polymer-Coated Microbeads as Measured by Flow Cytometry.

    Science.gov (United States)

    van Andel, Esther; de Bus, Ian; Tijhaar, Edwin J; Smulders, Maarten M J; Savelkoul, Huub F J; Zuilhof, Han

    2017-11-08

    Micron- and nano-sized particles are extensively used in various biomedical applications. However, their performance is often drastically hampered by the nonspecific adsorption of biomolecules, a process called biofouling, which can cause false-positive and false-negative outcomes in diagnostic tests. Although antifouling coatings have been extensively studied on flat surfaces, their use on micro- and nanoparticles remains largely unexplored, despite the widespread experimental (specifically, clinical) uncertainties that arise because of biofouling. Here, we describe the preparation of magnetic micron-sized beads coated with zwitterionic sulfobetaine polymer brushes that display strong antifouling characteristics. These coated beads can then be equipped with recognition elements of choice, to enable the specific binding of target molecules. First, we present a proof of principle with biotin-functionalized beads that are able to specifically bind fluorescently labeled streptavidin from a complex mixture of serum proteins. Moreover, we show the versatility of the method by demonstrating that it is also possible to functionalize the beads with mannose moieties to specifically bind the carbohydrate-binding protein concanavalin A. Flow cytometry was used to show that thus-modified beads only bind specifically targeted proteins, with minimal/near-zero nonspecific protein adsorption from other proteins that are present. These antifouling zwitterionic polymer-coated beads, therefore, provide a significant advancement for the many bead-based diagnostic and other biosensing applications that require stringent antifouling conditions.

  19. Chemotherapy related toxicity in locally advanced non-small cell lung cancer

    Directory of Open Access Journals (Sweden)

    Bahl Amit

    2006-01-01

    Full Text Available Background: For inoperable non-small cell lung cancer combined chemotherapy and radiotherapy plays an important role as a therapeutic modality. The aim of the present study was to analyze neoadjuvant chemotherapy related acute toxicity in locally advanced lung cancer (stage IIIA and IIIB in Indian patients using Cisplatin and Etoposide combination chemotherapy. Material and methods: Forty patients of locally advanced Non small cell lung cancer received three cycles neoadjuvant chemotherapy using Injection Cisplatin and Etoposide. The patients were taken for Radical radiotherapy to a dose of 60 Gray over 30 fractions in conventional fractionation after completing chemotherapy. Chemotherapy associated toxicity was assessed using common toxicity criteria (CTC v2.0 Results: Forty patients were available for final evaluation. Median age of presentation of patients was fifty-six years. Thirteen patients had Non small cell lung cancer stage IIIA while twenty-seven patients had Stage IIIB disease. Anemia was the most common hematological toxicity observed (seen in 81% of patients. Nausea and vomiting were the most common non -hematological toxicity seen. Sensory neuropathy was seen in 38%of patients. 88% patients developed alopecia. Seven patients developed febrile neutropenias. Conclusion: Neo-adjuvant chemotherapy using Cisplatin and Etoposide continues to be a basic regimen in the Indian set up despite availability of higher molecules, since it is cost effective, well tolerated and therapeutically effective. Blood transfusions, growth factors and supportive care can be used effectively to over come toxicity associated with this regimen.

  20. Processing of antifouling paint particles by Mytilus edulis

    International Nuclear Information System (INIS)

    Turner, Andrew; Barrett, Mark; Brown, Murray T.

    2009-01-01

    Particles of spent antifouling paint collected from a marine boatyard were ground and subsequently administered to the filter-feeding bivalve, Mytilus edulis, maintained in static aquaria. Concentrations of Cu and Zn were measured in seawater throughout a 16 h feeding phase and a 24 h depuration phase, in rejected and egested particles collected during the respective phases, and in the organisms themselves at the end of the experiments. Concentrations and distributions of Cu and Zn in processed particles indicated that M. edulis was able to ingest paint particles, regardless of whether nutritionally viable silt was present, and no mechanism of particle discrimination was evident. Enrichment of Cu and Zn in the visceral mass of individuals and in the aqueous phase during depuration supported these assertions, although elevated concentrations in other compartments of the organism (e.g. shell, gill) suggested that biotic and abiotic uptake of aqueous metal was also important. - Particles of antifouling paint enriched in Cu and Zn are ingested and digested by the marine bivalve M. edulis

  1. Processing of antifouling paint particles by Mytilus edulis

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Andrew [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)], E-mail: aturner@plymouth.ac.uk; Barrett, Mark [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Brown, Murray T. [School of Biological Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2009-01-15

    Particles of spent antifouling paint collected from a marine boatyard were ground and subsequently administered to the filter-feeding bivalve, Mytilus edulis, maintained in static aquaria. Concentrations of Cu and Zn were measured in seawater throughout a 16 h feeding phase and a 24 h depuration phase, in rejected and egested particles collected during the respective phases, and in the organisms themselves at the end of the experiments. Concentrations and distributions of Cu and Zn in processed particles indicated that M. edulis was able to ingest paint particles, regardless of whether nutritionally viable silt was present, and no mechanism of particle discrimination was evident. Enrichment of Cu and Zn in the visceral mass of individuals and in the aqueous phase during depuration supported these assertions, although elevated concentrations in other compartments of the organism (e.g. shell, gill) suggested that biotic and abiotic uptake of aqueous metal was also important. - Particles of antifouling paint enriched in Cu and Zn are ingested and digested by the marine bivalve M. edulis.

  2. Environmental levels, toxicity and human exposure to tributyltin (TBT)-contaminated marine environment. a review. b_antizar@hotmail.com.

    Science.gov (United States)

    Antizar-Ladislao, Blanca

    2008-02-01

    Tributyltin (TBT) is a toxic chemical used for various industrial purposes such as slime control in paper mills, disinfection of circulating industrial cooling waters, antifouling agents, and the preservation of wood. Due to its widespread use as an antifouling agent in boat paints, TBT is a common contaminant of marine and freshwater ecosystems exceeding acute and chronic toxicity levels. TBT is the most significant pesticide in marine and freshwaters in Europe and consequently its environmental level, fate, toxicity and human exposure are of current concern. Thus, the European Union has decided to specifically include TBT compounds in its list of priority compounds in water in order to control its fate in natural systems, due to their toxic, persistent, bioaccumulative and endocrine disruptive characteristics. Additionally, the International Maritime Organization has called for a global treaty that bans the application of TBT-based paints starting 1 of January 2003, and total prohibition by 1 of January 2008. This paper reviews the state of the science regarding TBT, with special attention paid to the environmental levels, toxicity, and human exposure. TBT compounds have been detected in a number of environmental samples. In humans, organotin compounds have been detected in blood and in the liver. As for other persistent organic pollutants, dietary intake is most probably the main route of exposure to TBT compounds for the general population. However, data concerning TBT levels in foodstuffs are scarce. It is concluded that investigations on experimental toxicity, dietary intake, potential human health effects and development of new sustainable technologies to remove TBT compounds are clearly necessary.

  3. Non-Toxic Orbital Maneuvering System Engine Development

    Science.gov (United States)

    Green, Christopher; Claflin, Scott; Maeding, Chris; Butas, John

    1999-01-01

    Recent results using the Aestus engine operated with LOx/ethanol propellant are presented. An experimental program at Rocketdyne Propulsion and Power is underway to adapt this engine for the Boeing Reusable Space Systems Division non-toxic Orbital Maneuvering System/Reaction control System (OMS/RCS) system. Daimler-Chrysler Aerospace designed the Aestus as an nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) upper-stage engine for the Ariane 5. The non-toxic OMS/RCS system's preliminary design requires a LOx/ethanol (O2/C2H5OH) engine that operates with a mixture ratio of 1.8, a specific impulse of 323 seconds, and fits within the original OMS design envelope. This paper describes current efforts to meet these requirements including, investigating engine performance using LOx/ethanol, developing the en-ine system sizing package, and meeting the vehicle operation parameters. Data from hot-fire testing are also presented and discussed.

  4. Replacement of traditional seawater-soluble pigments by starch and hydrolytic enzymes in polishing antifouling coatings

    DEFF Research Database (Denmark)

    Olsen, Søren Martin; Pedersen, L. T.; Dam-Johansen, Kim

    2010-01-01

    The use of starch and hydrolytic enzymes as replacement for traditional polishing pigments (e.g., Cu2O and ZnO) in antifouling coatings has been investigated. The enzymes facilitate a slow conversion of water-insoluble starch into water-soluble glucose, and dissolution of glucose causes the devel......The use of starch and hydrolytic enzymes as replacement for traditional polishing pigments (e.g., Cu2O and ZnO) in antifouling coatings has been investigated. The enzymes facilitate a slow conversion of water-insoluble starch into water-soluble glucose, and dissolution of glucose causes...... the development of a leached (porous) layer in the wetted, outermost part of the coating. Subsequent water-binder interaction at the pore walls gives rise to polishing, in a manner similar to that of conventional antifouling coatings. Different starch types have been evaluated and classified as potential coating...

  5. Development of High-Antifouling PPSU Ultrafiltration Membrane by Using Compound Additives: Preparation, Morphologies, and Filtration Resistant Properties.

    Science.gov (United States)

    Liu, Jie; Zhong, Zhencheng; Ma, Rui; Zhang, Weichen; Li, Jiding

    2016-06-21

    In this study, flat sheet asymmetric polyphenylsulfone (PPSU) ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS) method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was achieved by establishing a bridge between the membrane preparation parameters and separation performances. All prepared membranes were characterized by using a scanning electron microscope (SEM), contact angle analysis, porosity, maximum pore size, water and BSA solution permeability studies. The performance efficiency of the membrane was evaluated by using BSA as a model foulant in terms of permeability, solute rejection (R), Rm (membrane inherent resistance), Rc (cake layer resistance), and Rp (pore plugging resistance). The results showed that when the compound additives were used, the inter-connected pores were observed, maximum pore size, contact angle and membrane filtration resistance decreased, while the porosity increased. When PVP compound additives were added, the water flux increased from 80.4 to 148.1 L/(m²·h), the BSA rejection increased from 53.2% to 81.5%. A similar trend was observed for membranes with added PEG compound additives; the water flux and BSA rejection simultaneously increased. The filtration resistance decreased as a result of compound additives. The uniformity of membrane and the number of effective pores could be enhanced by adding compound additives through the cooperation of different additives.

  6. Development of High-Antifouling PPSU Ultrafiltration Membrane by Using Compound Additives: Preparation, Morphologies, and Filtration Resistant Properties

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2016-06-01

    Full Text Available In this study, flat sheet asymmetric polyphenylsulfone (PPSU ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was achieved by establishing a bridge between the membrane preparation parameters and separation performances. All prepared membranes were characterized by using a scanning electron microscope (SEM, contact angle analysis, porosity, maximum pore size, water and BSA solution permeability studies. The performance efficiency of the membrane was evaluated by using BSA as a model foulant in terms of permeability, solute rejection (R, Rm (membrane inherent resistance, Rc (cake layer resistance, and Rp (pore plugging resistance. The results showed that when the compound additives were used, the inter-connected pores were observed, maximum pore size, contact angle and membrane filtration resistance decreased, while the porosity increased. When PVP compound additives were added, the water flux increased from 80.4 to 148.1 L/(m2·h, the BSA rejection increased from 53.2% to 81.5%. A similar trend was observed for membranes with added PEG compound additives; the water flux and BSA rejection simultaneously increased. The filtration resistance decreased as a result of compound additives. The uniformity of membrane and the number of effective pores could be enhanced by adding compound additives through the cooperation of different additives.

  7. Improved antifouling properties of polymer membranes using a ‘layer-by-layer’ mediated method

    KAUST Repository

    Chen, Lin

    2013-01-01

    Polymeric reverse osmosis membranes were modified with antifouling polymer brushes through a \\'layer by layer\\' (LBL) mediated method. Based on pure physical electrostatic interaction, the attachment of LBL films did not alter separation performance of the membranes. In addition, the incorporation of an LBL film also helped to amplify the number of potential reaction sites on the membrane surfaces for attachment of antifouling polymer brushes, which were then attached to the surface. Attachment of the brushes included two different approaches, grafting to and grafting from. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements showed successful growth of the LBL films and subsequently the polymer brushes. Using this method to modify reverse osmosis membranes, preliminary performance testing showed the antifouling properties of the as-modified membranes were much better than the virgin membrane with no significant loss in water flux and salt rejection. © 2013 The Royal Society of Chemistry.

  8. Antifouling and antibacterial polyketides from marine gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023.

    Science.gov (United States)

    Bao, Jie; Sun, Yu-Lin; Zhang, Xiao-Yong; Han, Zhuang; Gao, Hai-Chun; He, Fei; Qian, Pei-Yuan; Qi, Shu-Hua

    2013-04-01

    Two new polyketides, 6,8,5'6'-tetrahydroxy-3'-methylflavone (1) and paecilin C (2), together with six known analogs secalonic acid D (3), secalonic acid B (4) penicillixanthone A (5), emodin (6), citreorosein (7) and isorhodoptilometrin (8) were obtained from a broth of gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023. Compounds 1 and 6-8 had significant antifouling activity against Balanus amphitrite larvae settlement with EC50 values of 6.7, 6.1, 17.9 and 13.7 μg ml(-1), respectively, and 3-5 showed medium antibacterial activity against four tested bacterial strains. This was the first report of antibacterial activity of 3-5 against marine bacteria and antifouling activity of 6-8 against marine biofouling organism's larvae. The results indicated that gorgonian coral-associated fungus Penicillium sp. SCSGAF 0023 strain could produce antifouling and antibacterial compounds that might aid the host gorgonian coral in protection against marine pathogen bacteria, biofouling organisms and other intruders.

  9. A new concept for anti-fouling paint for Yachts

    DEFF Research Database (Denmark)

    Wallstroem, Eva; Jespersen, Henrik T.; Schaumburg, Kjeld

    2011-01-01

    It is shown to be possible to develop yacht paint with a reduction of 70% of biocide, without pigments/fillers (cuprous oxide and zinc oxide) that may cause long-term adverse effects in the aquatic environment, and to obtain application and usage properties that match present commercial anti......-fouling products for yachts. To be able to reduce the amount of biocide, in this case zinc pyrithione, it is necessary to have control over the amount of biocide present in the surface layer. The control is achieved by encapsulating the biocide in a silica gel. The silica gel is dispersed together with pigments...... that is formulated without introducing new compounds and with reduced amount of zinc pyrithione (1/3). Finally, it is shown that it is possible to make antifouling paint for yachts without zinc or copper based pigments by using other traditional pigments and fillers, which have no known long-term adverse effect...

  10. Concentration of Antifouling Biocides and Metals in Sediment Core Samples in the Northern Part of Hiroshima Bay

    Directory of Open Access Journals (Sweden)

    Noritaka Tsunemasa

    2014-06-01

    Full Text Available Accumulation of Ot alternative antifoulants in sediment is the focus of this research. Much research had been done on surface sediment, but in this report, the accumulation in the sediment core was studied. The Ot alternative antifoulants, Diuron, Sea-Nine211, and Irgarol 1051, and the latter’s degradation product, M1, were investigated in five samples from the northern part of Hiroshima Bay. Ot compounds (tributyltin (TBT and triphenyltin (TPT were also investigated for comparison. In addition, metal (Pb, Cu, Zn, Fe and Mn levels and chronology were measured to better understand what happens after accumulation on the sea floor. It was discovered that Ot alternative antifoulant accumulation characteristics in sediment were like Ot compounds, with the concentration in the sediment core being much higher than surface sediment. The concentration in sediment seems to have been affected by the regulation of Ot compounds in 1990, due to the concentration of Ot alternative antifoulants and Ot compounds at the survey point in front of the dock, showing an increase from almost the same layer after the regulation.

  11. Antifouling briarane type diterpenoids from South China Sea gorgonians Dichotella gemmacea

    KAUST Repository

    Sun, Jian Fan; Han, Zhuang; Zhou, Xue Feng; Yang, Bin; Lin, Xiuping; Liu, Juan; Peng, Yan; Yang, Xian Wen; Liu, Yonghong

    2013-01-01

    Our continued investigation on the South China Sea gorgonian Dichotella gemmacea led to the isolation of 16 new briarane-type diterpenoids, dichotellides F-U (1-16), along with 18 known analogues (17-34). Their structures were determined by MS, 1D and 2D NMR spectra analyses and by comparison with those reported in literature. The absolute configuration of 15 was confirmed by single-crystal X-ray diffraction data. The antifouling test showed that compounds 3, 4, 6-11, 16, and 23 had potent antifouling activities at nontoxic concentrations with EC50 values of 4.1, 1.82, 6.3, 7.6, 4.6, 1.2, 5.6, 0.79, 2.0, and 0.2 μg/mL, respectively. © 2012 Elsevier Ltd. All rights reserved.

  12. Antifoulant (butyltin and copper) concentrations in sediments from the Great Barrier Reef World Heritage Area, Australia

    International Nuclear Information System (INIS)

    Haynes, David; Loong, Dominica

    2002-01-01

    Antifoulant concentrations are generally low in the Great Barrier Reef, although ship grounding sites present a previously unidentified significant source of antifoulant pollutants in the Great Barrier Reef. - Antifoulant concentrations were determined in marine sediments collected from commercial harbours, marinas, mooring locations on mid-shelf continental islands, and outer reef sites in four regions within the Great Barrier Reef World Heritage Area in 1999. Highest copper concentrations were present in sediments collected from commercial harbour sampling sites (28-233 μg Cu g -1 dry wt.). In contrast, copper concentrations in sediments collected from boat mooring sites on mid-shelf continental islands and outer reef sites were at background concentrations (i.e. -1 dry wt.). Butyltin was only detectable in four of the 42 sediments sampled for analysis, and was only present in sediments collected from commercial harbours (18-1275 ng Sn g -1 dry wt.) and from marinas (4-5 ng Sn g -1 dry wt.). The detection of tributyltin at marina sites implies that this antifoulant may continue to be used illegally on the hulls of smaller recreational vessels. Sediment samples were also collected opportunistically from the site of a 22,000 t cargo ship grounding in May 1999 at Heath Reef, in the far northern Great Barrier Reef. Butyltin concentrations were grossly elevated (660-340,000 ng Sn g -1 dry wt.) at the grounding site. The impact of residual antifoulants at large ship grounding sites should be recognised as a significant, long-term environmental problem unless antfoulant clean-up strategies are undertaken

  13. Seawater-Soluble Pigments and Their Potential Use in Self-Polishing Antifouling Paints: Simulation-based Screening Tool

    DEFF Research Database (Denmark)

    Kiil, Søren; Dam-Johansen, Kim; Erik Weinell, Claus

    2002-01-01

    This work concerns the on-going development of efficient and environmentally friendly antifouling paints for biofouling control on large ocean-going ships. It is illustrated how a detailed mathematical model for a self-polishing antifouling paint exposed to seawater can be used as a product...... solubility and seawater diffusivity of dissolved pigment species have a significant influence on the polishing and leaching behaviour of a typical self-polishing paint system. The pigment size distribution, on the other hand, only has a minor influence on the paint-seawater interaction. Simulations also...... indicate that only compounds which are effective against biofouling at very low seawater concentrations are useful as active antifouling paint ingredients. The need for model verification and exploration of practical issues, subsequent a given pigment has been found of interest, is discussed. The model...

  14. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats

    International Nuclear Information System (INIS)

    Ytreberg, Erik; Bighiu, Maria Alexandra; Lundgren, Lennart; Eklund, Britta

    2016-01-01

    Tributyltin (TBT) and other organotin compounds have been restricted for use on leisure boats since 1989 in the EU. Nonetheless, release of TBT is observed from leisure boats during hull maintenance work, such as pressure hosing. In this work, we used a handheld X-ray Fluorescence analyser (XRF) calibrated for antifouling paint matrixes to measure tin, copper and zinc in antifouling paints coated on leisure boats in Sweden. Our results show that over 10% of the leisure boats (n = 686) contain >400 μg/cm 2 of tin in their antifouling coatings. For comparison, one layer (40 μm dry film) of a TBT-paint equals ≈ 800 μg Sn/cm 2 . To our knowledge, tin has never been used in other forms than organotin (OT) in antifouling paints. Thus, even though the XRF analysis does not provide any information on the speciation of tin, the high concentrations indicate that these leisure boats still have OT coatings present on their hull. On several leisure boats we performed additional XRF measurements by progressively scraping off the top coatings and analysing each underlying layer. The XRF data show that when tin is detected, it is most likely present in coatings close to the hull with several layers of other coatings on top. Thus, leaching of OT compounds from the hull into the water is presumed to be negligible. The risk for environmental impacts arises during maintenance work such as scraping, blasting and high pressure hosing activities. The data also show that many boat owners apply excessive paint layers when following paint manufacturers recommendations. Moreover, high loads of copper were detected even on boats sailing in freshwater, despite the more than 20 year old ban, which poses an environmental risk that has not been addressed until now. - Highlights: • A new XRF application for analysing metals in antifouling paints has been used. • Almost 700 leisure boats were analysed for tin, copper and zinc. • Over 10% of the leisure boats contained high, >400

  15. Novel electrospun polyvinylidene fluoride-graphene oxide-silver nanocomposite membranes with protein and bacterial antifouling characteristics

    Directory of Open Access Journals (Sweden)

    C. Liu

    2018-04-01

    Full Text Available We developed and fabricated novel polyvinylidene fluoride (PVDF-(0.5–2%Ag and PVDF-(0.5–2%Ag-1% graphene oxide (GO nanocomposite membranes with antifouling properties through electrospinning. Silver nanoparticles (AgNPs were in situ synthesized from silver nitrate precursor directly. The tensile properties, wetting, antifouling characteristics of pristine PVDF and its nanocomposite membranes were studied. Tensile tests showed that the addition of 0.5–2% AgNPs to PVDF improves its elastic modulus and tensile strength markedly. A further increase in both tensile modulus and strength of PVDF were obtained by hybridizing AgNPs with 1% GO. Water contact angle measurements revealed that the incorporation of AgNPs or AgNPs/GO nanofillers into PVDF decreases its degree of hydrophobicity. This led to the nanocomposite membranes having higher water flux permeation. In addition, AgNPs and AgNPs/GO fillers played a crucial role against protein and bacterial fouling of the resulting composite membranes. The antibacterial activities of electrospun nanocomposite membranes were assessed against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. On the basis of water contact angle, water permeation flux and antifouling results, electrospun PVDF-2% Ag-GO composite membrane was found to exhibit excellent filtration performance, protein antifouling and bactericidal activities. Thus such a fibrous nanocomposite is considered as a high-potential membrane for water purification and disinfection applications.

  16. Structural studies on a non-toxic homologue of type II RIPs from ...

    Indian Academy of Sciences (India)

    Structural studies on a non-toxic homologue of type II RIPs from bitter gourd: Molecular basis of non-toxicity, conformational selection and glycan structure. MS accepted http://www.ias.ac.in/jbiosci. THYAGESHWAR CHANDRAN, ALOK SHARMA and M VIJAYAN. J. Biosci. 40(5), October 2015, 929–941, © Indian Academy of ...

  17. Non-Toxic Orbiter Maneuvering System (OMS) and Reaction Control System

    Science.gov (United States)

    Hurlbert, Eric A.; Nicholson, Leonard S. (Technical Monitor)

    1999-01-01

    NASA is pursuing the technology and advanced development of a non-toxic (NT) orbital maneuvering system (OMS) and reaction control system (RCS) for shuttle upgrades, RLV, and reusable first stages. The primary objectives of the shuttle upgrades program are improved safety, improved reliability, reduced operations time and cost, improved performance or capabilities, and commonality with future space exploration needs. Non-Toxic OMS/RCS offers advantages in each of these categories. A non-toxic OMS/RCS eliminates the ground hazards and the flight safety hazards of the toxic and corrosive propellants. The cost savings for ground operations are over $24M per year for 7 flights, and the savings increase with increasing flight rate up to $44M per year. The OMS/RCS serial processing time is reduced from 65 days to 13 days. The payload capability can be increased up to 5100 Ibms. The non-toxic OMS/RCS also provides improved space station reboost capability up to 20 nautical miles over the current toxic system of 14 nautical miles. A NT OMS/RCS represents a clear advancement in the SOA over MMH/NTO. Liquid oxygen and ethanol are clean burning, high-density propellants that provide a high degree of commonality with other spacecraft subsystems including life support, power, and thermal control, and with future human exploration and development of space missions. The simple and reliable pressure-fed design uses sub-cooled liquid oxygen at 250 to 350 psia, which allows a propellant to remain cryogenic for longer periods of time. The key technologies are thermal insulation and conditioning techniques are used to maintain the sub-cooling. Phase I successfully defined the system architecture, designed an integrated OMS/RCS propellant tank, analyzed the feed system, built and tested the 870 lbf RCS thrusters, and tested the 6000 lbf OMS engine. Phase 11 is currently being planned for the development and test of full-scale prototype of the system in 1999 and 2000

  18. Change in interfacial properties of polymer antifouling coating by controlling ring architecture of functional nanocomposites

    International Nuclear Information System (INIS)

    Yin, Bing; Zhang, Li; Liu, Tao; Li, Jing

    2014-01-01

    Greener protocols, long duration and applications are the necessary conditions of antifouling coating. The stability of anti-bacterial function decides its duration. Core–shell structured nanoparticles with Ag NPs and Ag + were successfully in situ fabricated in polyelectrolyte matrix, to avoid antimicrobial nanomaterials leaching out in the form of Ag or Ag + from the matrix. The nanocomposite materials prepared were well characterized by XRD, XPS, TEM and UV–visible. Through monitoring the hybrid polymer films soaked in the solution, sparingly soluble AgI as the shell in the hybrid structure nanoparticles showed excellent barrier effect. Using the synergy of Ag NPs and Ag + toward the killing of microbes, the duration of antimicrobial activity was prolonged. (paper)

  19. Long-term stability of PEG-based antifouling surfaces in seawater

    DEFF Research Database (Denmark)

    Noguer, Albert Camós; Olsen, Stefan Møller; Hvilsted, Søren

    2016-01-01

    Poly(ethylene glycol) (PEG) is a hydrophilic polymer that has been extensively used in the biomedical and marine environment due to its antifouling properties. In the biomedical field, PEG has been successfully used to functionalize surfaces due to its resistance to cell and nonspecific protein...

  20. Studies on the antifouling properties of some natural products from Goa

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Wagh, A.B.

    Methanol extracts of the fruits of the terrestrial plants @iRandia brandisii@@ and @iSapindus trifoliatus@@ were screened for their antifouling activities on the marine fouling diatoms @iNavicula subinflata@@ and @iN. crucicula@@. Both extracts...

  1. Acute and Chronic Effects of Tributyltin on the Mysid Acanthomysis sculpta (Crustacea, Mysidacea).

    Science.gov (United States)

    1986-05-01

    juveniles . . . 19 12. Summary of chronic values in pg/L TBT . . . 26 viii INTRODUCTION Tributyltin ( TBT ) is commonly used as an antifouling toxicant in...juveniles was determined at 0 42-jig L TBT . Reproductive effects were the most sensitive sublethal indicator of TBT toxicity . A chronic value of 0.14-pgL...SI[CUmITV CLAShIFICATION OF THIS PASU M DAI &W- A comparison of TBT toxicity was performed using a TBT solution leached from painted panels

  2. Preparation and antifouling property of polyurethane film modified by chondroitin sulfate

    Science.gov (United States)

    Yuan, Huihui; Xue, Jing; Qian, Bin; Chen, Huaying; Zhu, Yonggang; Lan, Minbo

    2017-02-01

    An antifouling polyurethane film modified by chondroitin sulfate (PU-CS) was prepared by chemical grafting with N-Boc-1,3-propanediamine as a spacer. The different mass fraction of N-Boc-1,3-propanediamine was investigated to obtain PU-CS films with different CS grafting density. The surface properties of PU-CS films were comprehensively characterized. Proteins adsorption and glycosaminoglycans adhesion on films were evaluated. Moreover, inorganic salt deposition on film with highest CS grafting density (3.70 μg/cm2) was briefly investigated. The results showed that the increase of CS grafting density improved not only the hydrophilicity but the antifouling performance of films. The best antifouling film reduced the adsorption of fibrinogen (BFG), human serum albumin (HSA) and lysozyme (LYS) by 81.4%, 95.0% and 76.5%, respectively, and the adhesion of chondroitin (CS), heparin (HP) and hyaluronic acid (HA) by 70.6%, 87.4% and 81.3%, respectively. In addition, the co-adsorption of proteins and glycosaminoglycans reduced up to 86.9% and 75.5%, respectively. Changes in inorganic salt deposition after co-adsorption of proteins and glycosaminoglycans on PU-CS(3) suggested that the proteins promoted the inorganic salt deposition, while glycosaminoglycans inhibited the crystal growth. The negatively charged polysaccharides might promote the generation of smaller crystals which could be conducive to provide theoretical and practical guide to develop novel urinary stents with significant anti-encrustation properties.

  3. Non-static vacuum strings: exterior and interior solutions

    International Nuclear Information System (INIS)

    Stein-Schabes, J.A.

    1986-01-01

    New non-static cylindrically symmetric solutions of Einsteins's equations are presented. Some of these solutions represent string-like objects. An exterior vacuum solution is matched to a non-vacuum interior solution for different forms of the energy-momentum tensor. They generalize the standard static string. 12 refs

  4. Review of reproductive and developmental toxicity induced by organotins in aquatic organisms and experimental animals

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, A.; Takagi, A.; Nishimura, T.; Kanno, J.; Ema, M. [National Inst. of Health Sciences, Tokyo (Japan)

    2004-09-15

    Widespread use of organotins has caused increasing amounts to be released into the environment. The most important non-pesticidal route of entry of organotins into the environment is through leaching of organotin-stabilized PVC in water, and the use in antifouling agents, resulting in the introduction of organotin into the aquatic environment. Data are available regarding the detection of butyltins and phenyltins in aquatic marine organisms and marine products. Food chain bioamplification of butyltin in oysters, mud crabs, marine mussels, chinook salmons, dolphins, tunas, and sharks and of phenyltin in carps and horseshoe crabs has been reported. These findings indicate that organotins accumulate in the food chain and are bioconcentrated, and that humans can be exposed to organotins via seafood. The levels of organotin compounds in seafood are not considered to be sufficiently high to affect human health. However, Belfroid et al. (2000) noted that more research on residual TBT levels in seafood was needed before a definitive conclusion on possible health risks could be drawn. Although the toxicity of organotins has been extensively reviewed, the reproductive and developmental toxicity of organotins is not well understood. We summarized the data of the studies on reproductive and developmental toxicity of organotins in aquatic organisms and experimental animals.

  5. Non linear photons: a non singular cosmological solution

    International Nuclear Information System (INIS)

    Alves, G.A.

    1986-01-01

    The validity of equivalence principle as principle of minimum coupling between field interactions, is discussed. The non minimum coupling between vector field and gravitational field, and some consequences of this coupling are analysed. Starting from spherical symmetry metric, the coupled field equations, obtaining exact solutions and interpreting these solutions, are solved. (M.C.K.) [pt

  6. Impact of the antifouling agent Irgarol 1051 on marine phytoplankton species

    NARCIS (Netherlands)

    Buma, Anita G. J.; Sjollema, Sascha B.; van de Poll, Willem H.; Klamer, Hans J. C.; Bakker, Joop F.

    In the present study we tested the hypothesis that environmental concentrations of the antifouling agent Irgarol 1051, as measured in coastal Western European waters, affect marine phytoplankton performance. The impact of Irgarol was investigated in the phytoplankton species Thalassiosira

  7. 100-lbf Non-Toxic Storable Liquid Propulsion, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's Road Maps for both Launch and In Space Propulsion call for the development of non-toxic, monopropellant reaction control systems to replace current...

  8. Trace metals in antifouling paint particles and their heterogeneous contamination of coastal sediments

    International Nuclear Information System (INIS)

    Singh, Nimisha; Turner, Andrew

    2009-01-01

    Antifouling paint residues collected from the hard-standings of a marine leisure boat facility have been chemically characterised. Scanning electron microscopy revealed distinct layers, many containing oxidic particles of Cu and Zn. Quantitative analysis indicated concentrations of Cu and Zn averaging about 300 and 100 mg g -1 , respectively, and small proportions of these metals ( -1 , respectively. Estuarine sediment collected near a boatyard contained concentrations of Cu and Zn an order of magnitude greater than respective concentrations in 'background' sediment, and mass balance calculations suggested that the former sample was contaminated by about 1% by weight of paint particles. Clearly, antifouling residues represent a highly significant, heterogeneous source of metallic contamination in the marine environment where boating activities occur.

  9. Advanced Marine Coatings for Naval Vessels - Phase 1. Antifouling and Fouling Release Coatings

    National Research Council Canada - National Science Library

    McCarthy, Gregory

    2003-01-01

    ... in combinatorial materials chemistry high-throughput discovery and evaluation methodology. The protective coatings application being addressed is environmentally compliant antifouling and fouling release coating for Navy ships...

  10. Antifouling biocides in German marinas: Exposure assessment and calculation of national consumption and emission.

    Science.gov (United States)

    Daehne, Dagmar; Fürle, Constanze; Thomsen, Anja; Watermann, Burkard; Feibicke, Michael

    2017-09-01

    The authorization of biocidal antifouling products for leisure boats is the subject of the European Union Biocides Regulation 528/2012. National specifics may be regarded by the member states in their assessment of environmental risks. The aim of this survey was to collect corresponding data and to create a database for the environmental risk assessment of antifouling active substances in German surface waters. Water concentrations of current antifouling active substances and selected breakdown products were measured in a single-sampling campaign covering 50 marinas at inland and coastal areas. Increased levels were found for Zn, Cu, and cybutryne. For the latter, the maximum allowable concentration according to Directive 2013/39/EU was exceeded at 5 marinas. For Cu, local environmental quality standards were exceeded at 10 marinas. Base data on the total boat inventory in Germany were lacking until now. For that reason, a nationwide survey of mooring berths was conducted by use of aerial photos. About 206 000 mooring berths obviously used by boats with a potential antifouling application were counted. The blind spot of very small marinas was estimated at 20 000 berths. Seventy-one percent of berths were located at freshwater sites, illustrating the importance of navigable inland waterways for leisure boat activities and underlining the need for a customized exposure assessment in these areas. Moreover, the national consumption of all antifouling products for leisure boats was calculated. The total amount of 794 tonnes/annum (t/a) consisted of 179 t/a of inorganic Cu compounds, 19 t/a of organic cobiocides, and 49.5 t/a of Zn. With regard to weight proportion, 141 t/a Cu and 40 t/a Zn were consumed. Assuming an emission ratio of 50% during service life, 70.5 t/a of Cu amounted to 15% of all external sources for Cu release to German surface waters. These figures highlight the need for mitigation measures. Integr Environ Assess Manag 2017;13:892-905. © 2017 The

  11. Estimation of Polishing and Leaching Behaviour of Antifouling Paints Using Mathematical Modelling

    DEFF Research Database (Denmark)

    Kiil, Søren; Dam-Johansen, Kim; Erik Weinell, Claus

    2003-01-01

    The development of chemically active antifouling paints has traditionally been based on an empirical approach. Optimisation and evaluation of novel and existing products are frequently conducted by means of, for example, systematic paint rotary tests in the laboratory or at sea sites. In this rev......The development of chemically active antifouling paints has traditionally been based on an empirical approach. Optimisation and evaluation of novel and existing products are frequently conducted by means of, for example, systematic paint rotary tests in the laboratory or at sea sites....... In this review, the usefulness of combining rotary experiments with the development of detailed mathematical models of paint behaviour will be discussed with reference to the relevant literature. Mathematical models can generally be used in the design of suitable release systems for various active components...

  12. A novel XRF method to measure environmental release of copper and zinc from antifouling paints.

    Science.gov (United States)

    Ytreberg, Erik; Lagerström, Maria; Holmqvist, Albin; Eklund, Britta; Elwing, Hans; Dahlström, Magnus; Dahl, Peter; Dahlström, Mia

    2017-06-01

    The release of copper (Cu) and zinc (Zn) from vessels and leisure crafts coated with antifouling paints can pose a threat to water quality in semi-enclosed areas such as harbors and marinas as well as to coastal archipelagos. However, no reliable, practical and low-cost method exists to measure the direct release of metals from antifouling paints. Therefore, the paint industry and regulatory authorities are obliged to use release rate measurements derived from either mathematical models or from laboratory studies. To bridge this gap, we have developed a novel method using a handheld X-Ray Fluorescence spectrometer (XRF) to determine the cumulative release of Cu and Zn from antifouling paints. The results showed a strong linear relationship between XRF K α net intensities and metal concentrations, as determined by ICP-MS. The release of Cu and Zn were determined for coated panels exposed in harbors located in the Baltic Sea and in Kattegat. The field study showed salinity to have a strong impact on the release of Cu, i.e. the release increased with salinity. Contrary, the effect of salinity on Zn was not as evident. As exemplified in this work, the XRF method also makes it possible to identify the governing parameters to the release of Cu and Zn, e.g. salinity and type of paint formulation. Thus, the XRF method can be used to measure environmentally relevant releases of metallic compounds to design more efficient and optimized antifouling coatings. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. [Individualized clinical treatment from the prospective of hepatotoxicity of non-toxic traditional Chinese medicine].

    Science.gov (United States)

    Yang, Nan; Chen, Juan; Hou, Xue-Feng; Song, Jie; Feng, Liang; Jia, Xiao-Bin

    2017-04-01

    Traditional Chinese medicine has a long history in clinical application, and been proved to be safe and effective. In recent years, the toxicity and side-effects caused by the western medicine have been attracted much attention. As a result, increasing people have shifted their attention to traditional Chinese medicine. Nonetheless, due to the natural origin of traditional Chinese medicine and the lack of basic knowledge about them, many people mistakenly consider the absolute safety of traditional Chinese medicine, except for well-known toxic ones, such as arsenic. However, according to the clinical practices and recent studies, great importance shall be attached to the toxicity of non-toxic traditional Chinese medicine, in particular the hepatotoxicity. Relevant studies indicated that the toxicity of non-toxic traditional Chinese medicine is closely correlated with individual gene polymorphism and constitution. By discussing the causes and mechanisms of the hepatotoxicity induced by non-toxic traditional Chinese medicine in clinical practices, we wrote this article with the aim to provide new ideas for individualized clinical therapy of traditional Chinese medicine and give guidance for rational and safe use of traditional Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.

  14. Highly porous polytriazole ion exchange membranes cast from solutions in non-toxic cosolvents

    KAUST Repository

    Chisca, Stefan

    2017-04-04

    The development of highly functionalized porous materials for protein separation is important for biotech processes. We report the preparation of highly porous polytriazole with sulfonic acid functionalization. The resulting ion exchange membranes are selective for protein adsorption. The starting material was a hydroxyl-functionalized polytriazole, which is an advantageous platform for further modification. The polymer was dissolved in a mixture of 1-ethyl-3-methylimidazolium acetate ([C2mim]OAc) and dimethyl carbonate (DMC), which can be both considered green solvents. The polymer solubilization was only possible due to an interesting effect of cosolvency, which is discussed, based in phase diagrams. Membranes were prepared by solution casting, followed by immersion in a non-solvent bath. We then grafted sulfone groups on the membranes, by reacting the hydroxyl groups with 1,3-propane sultone and 1,4-butane sultone. Lysozyme adsorption was successfully evaluated. Membranes modified with 1,4-butane sultone adsorbed more protein than those with 1,3-propane sultone.

  15. A Novel Non-Toxic Xylene Substitute (SBO) for Histology

    OpenAIRE

    Kunhua, Wang; Chuming, Fan; Tao, Lai; Yanmei, Yang; Xin, Yang; Xiaoming, Zhang; Xuezhong, Guo; Xun, Lai

    2011-01-01

    Xylene has been generally used as a clearing and deparaffinizing agent in histology. Because of the potential toxic and flammable nature of xylene, its substitutes have been introduced into some laboratories. In this study, we introduced a novel, non-toxic xylene substitute (SBO), which was generated through a mixture of 86% of white oil No.2 and 14% of N-heptane. SBO had a high boiling point (188°C) and flash point (144°C) coupled with a scentless and decreased volatility. To compare the eff...

  16. Terrestrial plants: a potent source for isolation of eco-friendly antifouling compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Wagh, A.B.

    by number of workers in the past. However, little attention is paid towards terrestrial plants. In light of this some selected plants have been screened for antifouling activity. These plants are Acacia pennata and Barringtonia acutangula. These plants...

  17. Comparing differential tolerance of native and non-indigenous marine species to metal pollution using novel assay techniques

    International Nuclear Information System (INIS)

    Piola, Richard F.; Johnston, Emma L.

    2009-01-01

    Recent research suggests anthropogenic disturbance may disproportionately advantage non-indigenous species (NIS), aiding their establishment within impacted environments. This study used novel laboratory- and field-based toxicity testing to determine whether non-indigenous and native bryozoans (common within marine epibenthic communities worldwide) displayed differential tolerance to the common marine pollutant copper (Cu). In laboratory assays on adult colonies, NIS showed remarkable tolerance to Cu, with strong post-exposure recovery and growth. In contrast, native species displayed negative growth and reduced feeding efficiency across most exposure levels. Field transplant experiments supported laboratory findings, with NIS growing faster under Cu conditions. In field-based larval assays, NIS showed strong recruitment and growth in the presence of Cu relative to the native species. We suggest that strong selective pressures exerted by the toxic antifouling paints used on transport vectors (vessels), combined with metal contamination in estuarine environments, may result in metal tolerant NIS advantaged by anthropogenically modified selection regimes. - Greater tolerance to pollutants in marine NIS may increase the risk of invasion in port and harbours worldwide by providing a competitive advantage over native taxa.

  18. Dissolution rate measurements of sea water soluble pigments for antifouling paints

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Erik Weinell, Claus

    2006-01-01

    The dissolution of soluble pigments from both tin-based and tin-free chemically active antifouling (AF) paints is a key process influencing their polishing and biocide leaching rates. In this context, a low time- and resources-consuming method capable of screening the pigment behaviour in the sea...

  19. Zwitterionic sulfobetaine polymer-immobilized surface by simple tyrosinase-mediated grafting for enhanced antifouling property.

    Science.gov (United States)

    Kwon, Ho Joon; Lee, Yunki; Phuong, Le Thi; Seon, Gyeung Mi; Kim, Eunsuk; Park, Jong Chul; Yoon, Hyunjin; Park, Ki Dong

    2017-10-01

    Introducing antifouling property to biomaterial surfaces has been considered an effective method for preventing the failure of implanted devices. In order to achieve this, the immobilization of zwitterions on biomaterial surfaces has been proven to be an excellent way of improving anti-adhesive potency. In this study, poly(sulfobetaine-co-tyramine), a tyramine-conjugated sulfobetaine polymer, was synthesized and simply grafted onto the surface of polyurethane via a tyrosinase-mediated reaction. Surface characterization by water contact angle measurements, X-ray photoelectron spectroscopy and atomic force microscopy demonstrated that the zwitterionic polymer was successfully introduced onto the surface of polyurethane and remained stable for 7days. In vitro studies revealed that poly(sulfobetaine-co-tyramine)-coated surfaces dramatically reduced the adhesion of fibrinogen, platelets, fibroblasts, and S. aureus by over 90% in comparison with bare surfaces. These results proved that polyurethane surfaces grafted with poly(sulfobetaine-co-tyramine) via a tyrosinase-catalyzed reaction could be promising candidates for an implantable medical device with excellent bioinert abilities. Antifouling surface modification is one of the key strategy to prevent the thrombus formation or infection which occurs on the surface of biomaterial after transplantation. Although there are many methods to modify the surface have been reported, necessity of simple modification technique still exists to apply for practical applications. The purpose of this study is to modify the biomaterial's surface by simply immobilizing antifouling zwitterion polymer via enzyme tyrosinase-mediated reaction which could modify versatile substrates in mild aqueous condition within fast time period. After modification, pSBTA grafted surface becomes resistant to various biological factors including proteins, cells, and bacterias. This approach appears to be a promising method to impart antifouling property on

  20. Anti-fouling properties of Fab’ fragments immobilized on silane-based adlayers

    International Nuclear Information System (INIS)

    Crivianu-Gaita, Victor; Romaschin, Alexander; Thompson, Michael

    2015-01-01

    Highlights: • Simple and mixed adlayers formed with Fab’ linker and/or spacers. • Binding of Fab’ fragments through TUBTS linker resulted in oriented immobilization. • Immobilized Fab’ fragments have inherent anti-fouling character. • Up to 80% fouling reduction when Fab’ fragments introduced to surfaces. • Used the minimally fouling surfaces to detect a cancer biomarker (PTHrP) in serum. - Graphical abstract: Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a difficult task. The last decade has seen an increase in the use of immobilized antigen-binding antibody fragments (Fab’) in biosensors. One Fab’ linker compound S-(11-trichlorosilyl-undecanyl)-benzothiosulfonate (TUBTS) and three spacers were used to create the silane-based adlayers. The ultra-high frequency electromagnetic piezoelectric acoustic sensor (EMPAS) was used to gauge the fouling properties of the various surfaces using bovine serum albumin (BSA), goat IgG, and mouse serum. X-ray photoelectron spectroscopy (XPS), contact angle, and atomic force microscopy (AFM) were employed to characterize the surfaces. It was discovered that immobilized oriented Fab’ fragments reduced the fouling levels of surfaces up to 80% compared to the surfaces without fragments. An explanation for this phenomenon is that the antibody fragments increase the hydration of the surfaces and aid in the formation of an anti-fouling water barrier. The anti-fouling effect of the Fab’ fragments is at its maximum when there is an even distribution of fragments across the surfaces. Finally, using Fab’-covered surfaces, a cancer biomarker was detected from serum, showing the applicability of this work to the field of biodetection. - Abstract: Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a

  1. Anti-fouling properties of Fab’ fragments immobilized on silane-based adlayers

    Energy Technology Data Exchange (ETDEWEB)

    Crivianu-Gaita, Victor [Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6 (Canada); Romaschin, Alexander [Clinical Biochemistry, St. Michael' s Hospital, Toronto, ON M5B 1W8 (Canada); Thompson, Michael, E-mail: mikethom@chem.utoronto.ca [Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6 (Canada)

    2015-12-30

    Highlights: • Simple and mixed adlayers formed with Fab’ linker and/or spacers. • Binding of Fab’ fragments through TUBTS linker resulted in oriented immobilization. • Immobilized Fab’ fragments have inherent anti-fouling character. • Up to 80% fouling reduction when Fab’ fragments introduced to surfaces. • Used the minimally fouling surfaces to detect a cancer biomarker (PTHrP) in serum. - Graphical abstract: Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a difficult task. The last decade has seen an increase in the use of immobilized antigen-binding antibody fragments (Fab’) in biosensors. One Fab’ linker compound S-(11-trichlorosilyl-undecanyl)-benzothiosulfonate (TUBTS) and three spacers were used to create the silane-based adlayers. The ultra-high frequency electromagnetic piezoelectric acoustic sensor (EMPAS) was used to gauge the fouling properties of the various surfaces using bovine serum albumin (BSA), goat IgG, and mouse serum. X-ray photoelectron spectroscopy (XPS), contact angle, and atomic force microscopy (AFM) were employed to characterize the surfaces. It was discovered that immobilized oriented Fab’ fragments reduced the fouling levels of surfaces up to 80% compared to the surfaces without fragments. An explanation for this phenomenon is that the antibody fragments increase the hydration of the surfaces and aid in the formation of an anti-fouling water barrier. The anti-fouling effect of the Fab’ fragments is at its maximum when there is an even distribution of fragments across the surfaces. Finally, using Fab’-covered surfaces, a cancer biomarker was detected from serum, showing the applicability of this work to the field of biodetection. - Abstract: Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a

  2. Microcystin uptake and biochemical responses in the freshwater clam Corbicula leana P. exposed to toxic and non-toxic Microcystis aeruginosa: Evidence of tolerance to cyanotoxins.

    Science.gov (United States)

    Pham, Thanh-Luu; Shimizu, Kazuya; Dao, Thanh-Son; Hong-Do, Lan-Chi; Utsumi, Motoo

    2015-01-01

    We investigated the accumulation and adverse effects of toxic and non-toxic Microcystis in the edible clam Corbicula leana . Treated clams were exposed to toxic Microcystis at 100 μg of MC (microcystin)-LR eq  L -1 for 10 days. The experimental organism was then placed in toxin-free water and fed on non-toxic Microcystis for the following 10 days for depuration. Filtering rates (FRs) by C. leana of toxic and non-toxic Microcystis and of the green alga Chlorella vulgaris as a control were estimated. Adverse effects were evaluated though the activity of catalase (CAT), superoxide dismutase (SOD) and glutathione S-transferase (GST). Clam accumulated MCs (up to 12.7 ± 2.5 μg g -1 dry weight (DW) of free MC and 4.2 ± 0.6 μg g -1 DW of covalently bound MC). Our results suggest that although both toxic and non-toxic cyanobacteria caused adverse effects by inducing the detoxification and antioxidant defense system, the clam was quite resistant to cyanotoxins. The estimated MC concentration in C. leana was far beyond the World Health Organization's (WHO) provisional tolerable daily intake (0.04 μg kg -1  day -1 ), suggesting that consuming clams harvested during cyanobacterial blooms carries a high health risk.

  3. Microcystin uptake and biochemical responses in the freshwater clam Corbicula leana P. exposed to toxic and non-toxic Microcystis aeruginosa: Evidence of tolerance to cyanotoxins

    Directory of Open Access Journals (Sweden)

    Thanh-Luu Pham

    2015-01-01

    Full Text Available We investigated the accumulation and adverse effects of toxic and non-toxic Microcystis in the edible clam Corbicula leana. Treated clams were exposed to toxic Microcystis at 100 μg of MC (microcystin-LReq L−1 for 10 days. The experimental organism was then placed in toxin-free water and fed on non-toxic Microcystis for the following 10 days for depuration. Filtering rates (FRs by C. leana of toxic and non-toxic Microcystis and of the green alga Chlorella vulgaris as a control were estimated. Adverse effects were evaluated though the activity of catalase (CAT, superoxide dismutase (SOD and glutathione S-transferase (GST. Clam accumulated MCs (up to 12.7 ± 2.5 μg g−1 dry weight (DW of free MC and 4.2 ± 0.6 μg g−1 DW of covalently bound MC. Our results suggest that although both toxic and non-toxic cyanobacteria caused adverse effects by inducing the detoxification and antioxidant defense system, the clam was quite resistant to cyanotoxins. The estimated MC concentration in C. leana was far beyond the World Health Organization's (WHO provisional tolerable daily intake (0.04 μg kg−1 day−1, suggesting that consuming clams harvested during cyanobacterial blooms carries a high health risk.

  4. Toxic metabolities of disulfoton: behavior in bean-seedlings, in soil, and in nutrient solution

    International Nuclear Information System (INIS)

    Andrea, M.M. de

    1986-10-01

    The absorption, translocation and degradation in bean-seedlings of three toxic metabolites of the pesticide 14 C- disulfoton from nutrient solution or three different types of Brazilian soils is studied. (M.A.C.) [pt

  5. Creation of antifouling microarrays by photopolymerization of zwitterionic compounds for protein assay and cell patterning.

    Science.gov (United States)

    Sun, Xiuhua; Wang, Huaixin; Wang, Yuanyuan; Gui, Taijiang; Wang, Ke; Gao, Changlu

    2018-04-15

    Nonspecific binding or adsorption of biomolecules presents as a major obstacle to higher sensitivity, specificity and reproducibility in microarray technology. We report herein a method to fabricate antifouling microarray via photopolymerization of biomimetic betaine compounds. In brief, carboxybetaine methacrylate was polymerized as arrays for protein sensing, while sulfobetaine methacrylate was polymerized as background. With the abundant carboxyl groups on array surfaces and zwitterionic polymers on the entire surfaces, this microarray allows biomolecular immobilization and recognition with low nonspecific interactions due to its antifouling property. Therefore, low concentration of target molecules can be captured and detected by this microarray. It was proved that a concentration of 10ngmL -1 bovine serum albumin in the sample matrix of bovine serum can be detected by the microarray derivatized with anti-bovine serum albumin. Moreover, with proper hydrophilic-hydrophobic designs, this approach can be applied to fabricate surface-tension droplet arrays, which allows surface-directed cell adhesion and growth. These light controllable approaches constitute a clear improvement in the design of antifouling interfaces, which may lead to greater flexibility in the development of interfacial architectures and wider application in blood contact microdevices. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Antifouling property of the fruits of Randia brandisii (Rubiaceae) and Sapindus trifoliatus (Sapindaceae)

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Wagh, A.B.

    Methanol extracts of fruits of Randia brandisii (Gamble) and Sapindus trifoliatus (Vah) were assessed for marine antifouling properties. The coatings of these crude extracts on aluminium coupons were found to inhibit settlement of macrofoulers...

  7. Non-orthogonally transitive G2 spike solution

    International Nuclear Information System (INIS)

    Lim, Woei Chet

    2015-01-01

    We generalize the orthogonally transitive (OT) G 2 spike solution to the non-OT G 2 case. This is achieved by applying Geroch’s transformation on a Kasner seed. The new solution contains two more parameters than the OT G 2 spike solution. Unlike the OT G 2 spike solution, the new solution always resolves its spike. (fast track communication)

  8. Antifouling activity of seaweed extracts from Guarujá, São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Heloisa Elias Medeiros

    2007-12-01

    Full Text Available Marine biofouling historically constitutes one of the major constraints faced by mankind in its oceanic activities. The search for alternatives to TBT-based antifouling paints has led several researchers to focus efforts in the development of environmentally friendly natural compounds. This work has contributed with this search, testing the antifouling potential of crude organic extracts from four seaweed species collected at Praia Branca, Guarujá district, São Paulo, Brazil. Throughout laboratory antifouling assays in which the attachment of a common fouling organism, the brown mussel Perna perna, was employed, antifouling activity (p A incrustação biológica constitui, historicamente, um dos maiores problemas encontrados pelo homem em suas atividades no mar. A busca por alternativas a tintas antiincrustantes contendo tributilestanho (TBT tem levado diversos pesquisadores a concentrar esforços no desenvolvimento de substâncias naturais menos danosas à biota marinha. Este trabalho procurou contribuir com essa busca, testando o potencial antiincrustante de quatro diferentes espécies de macroalgas da Praia Branca, município de Guarujá, SP. Através de testes antiincrustantes em laboratório utilizando a fixação de um organismo incrustante comum, o mexilhão Perna perna, foi constatado que os extratos de Jania rubens (Rhodophyta, Cryptonemiales e Bryothamnion seaforthii (Rhodophyta, Ceramiales, à concentração natural, apresentaram atividade antiincrustante significativa (p < 0,05, enquanto Dictyopteris delicatula (Phaeophyta, Dictyotales e Heterosiphonia gibbesii (Rhodophyta, Ceramiales não demonstraram eficiência na inibição da fixação de bissos do molusco. Das algas que indicaram potencial atividade contra a incrustação, J. rubens apresentou melhor desempenho em relação a B. seaforthii. Futuras investigações em campo serão necessárias para a obtenção de resultados que possam refletir melhor as condições naturais

  9. Enhanced antifouling behaviours of polyvinylidene fluoride membrane modified through blending with nano-TiO2/polyethylene glycol mixture

    International Nuclear Information System (INIS)

    Zhang, Jie; Wang, Zhiwei; Zhang, Xingran; Zheng, Xiang; Wu, Zhichao

    2015-01-01

    Graphical abstract: - Highlights: • Nano-TiO 2 /polyethylene glycol (PEG) mixture was used to modify PVDF membranes. • The steric hindrance effects of PEG enabled the dispersion of nanoparticles. • The energy barrier between SMP and modified membranes was increased. • The modification by nano-TiO 2 /PEG well improved the anti-fouling ability. - Abstract: Titanium dioxide (TiO 2 ) nanoparticles/polyethylene glycol (PEG) mixture was used to modify polyvinylidene fluoride (PVDF) membranes aiming to improve their antifouling ability. The use of PEG could improve the dispersion of nanoparticles thanks to steric hindrance effects. Test results showed that compared to the original PVDF membrane, the modified membranes had higher hydrophilicity and lower negative Zeta potential, facilitating membrane fouling control. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that the addition of TiO 2 nanoparticles improved their electron donor monopolarity, i.e., enhanced electron-donating ability. The interaction energy barrier between soluble microbial products (SMP) and membrane surfaces was also improved, indicating that anti-fouling ability of the modified membrane was elevated. The optimal dosage of nano-TiO 2 was found to be 0.15%, and further increase of dosage resulted in the aggregation of nanoparticles which consequently impaired the modification efficiency. Quartz crystal microbalance with dissipation (QCM-D) monitoring and SMP filtration tests confirmed the antifouling ability of the modified membrane

  10. Analytical exact solution of the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da

    2011-01-01

    Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)

  11. Supersymmetric solutions for non-relativistic holography

    International Nuclear Information System (INIS)

    Donos, Aristomenis; Gauntlett, Jerome P.

    2009-01-01

    We construct families of supersymmetric solutions of type IIB and D=11 supergravity that are invariant under the non-relativistic conformal algebra for various values of dynamical exponent z≥4 and z≥3, respectively. The solutions are based on five- and seven-dimensional Sasaki-Einstein manifolds and generalise the known solutions with dynamical exponent z=4 for the type IIB case and z=3 for the D=11 case, respectively. (orig.)

  12. Preparation and antifouling properties of 2-(meth-acryloyloxy)ethyl cholinephosphate based polymers modified surface with different molecular architectures by ATRP.

    Science.gov (United States)

    Jiang, Yuchen; Su, Yuling; Zhao, Lili; Meng, Fancui; Wang, Quanxin; Ding, Chunmei; Luo, Jianbin; Li, Jianshu

    2017-08-01

    Choline phosphate (CP) containing polymers modified surfaces have been shown good resist to the adhesion of proteins while prompt the attaching of mammalian cells due to the dipole pairing between the CP groups of the polymer and the phosphorylcholine (PC) groups on the cell membrane. However, the antifouling activities of CP modified surface against microbes have not been investigated at present. In addition, CP containing polymers modified surface with different molecular architectures has not been prepared and studied. To this end, glass slides surface modified with two different 2-(meth-acryloyloxy)ethyl cholinephosphate (MCP) containing polymer (PMCP) structures, i.e. brush-like (Glass-PMCP) and bottle brush-like (Glass-PHEMA-g-PMCP) architectures, were prepared in this work by surface-initiated atom transfer radical polymerization (SI-ATRP). The surface physichemical and antifouling properties of the prepared surfaces were characterized and studied. The Glass-PMCP shows improved antifouling properties against proteins and bacteria as compared to pristine glass slides (Glass-OH) and glass slides grafted with poly(2-hydroxyethyl methacrylate) (Glass-PHEMA). Notably, a synergetic fouling resistant properties of PHEMA and PMCP is presented for Glass-PHEMA-g-PMCP, which shows superior antifouling activities over Glass-PHEMA and Glass-PMCP. Furthermore, glass slides containing PMCP, i.e. Glass-PMCP and Glas-PHEMA-g-PMCP, decrease platelet adhesion and prevent their activation significantly. Therefore, the combination of antifouling PHEMA and PMCP into one system holds potential for prevention of bacterial fouling and biomaterial-centered infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Grafting poly ethylene glycol chains for antifouling purposes using supercritical CO2

    DEFF Research Database (Denmark)

    Lokanathan, Arcot R.

    2011-01-01

    solvent in processes involving PEG grafting for antifouling purposes. Significant chemical efficiency and extremely low surface tension makes scCO2 an apt solvent for Grafting PEG brushes into three dimensional micro or nano porous scaffolds related to tissue engineering. References: 1. Peter Kingshott...

  14. Presence and effects of marine microbial biofilms on biocide-based antifouling paints

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Erik Weinell, Claus

    2006-01-01

    of the dense extracellular polymeric substances (EPS) matrix on the release rate of the compounds involved in antifouling paint performance (i.e. active compounds and controlled-release binder molecules). A deeper understanding of these phenomena is of interest for both environmental legislators and paint...

  15. Natural product antifoulants from the octocorals of Indian waters

    Digital Repository Service at National Institute of Oceanography (India)

    Raveendran, T.V.; LimnaMol, V.P.; Parameswaran, P.S.

    stream_size 22497 stream_content_type text/plain stream_name Int_Biodeterior_Biodegrad_65_265a.pdf.txt stream_source_info Int_Biodeterior_Biodegrad_65_265a.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8... 1 Author version: International Biodeterioration & Biodegradation, vol.65(1); 2011; 265-268 Natural Product Antifoulants from the Octocorals of Indian waters T.V. Raveendran * , V.P. Limna Mol, P.S. Parameswaran National Institute...

  16. Anticoagulant rodenticide toxicity to non-target wildlife under controlled exposure conditions

    Science.gov (United States)

    Rattner, Barnett A.; Mastrota, F. Nicholas; van den Brink, Nico; Elliott, J.; Shore, R.; Rattner, B.

    2018-01-01

    Much of our understanding of anticoagulant rodenticide toxicity to non-target wildlife has been derived from molecular through whole animal research and registration studies in domesticated birds and mammals, and to a lesser degree from trials with captive wildlife. Using these data, an adverse outcome pathway identifying molecular initiating and anchoring events (inhibition of vitamin K epoxide reductase, failure to activate clotting factors), and established and plausible linkages (coagulopathy, hemorrhage, anemia, reduced fitness) associated with toxicity, is presented. Controlled exposure studies have demonstrated that second-generation anticoagulant rodenticides (e.g., brodifacoum) are more toxic than first- and intermediate-generation compounds (e.g., warfarin, diphacinone), however the difference in potency is diminished when first- and intermediate-generation compounds are administered on multiple days. Differences in species sensitivity are inconsistent among compounds. Numerous studies have compared mortality rate of predators fed prey or tissue containing anticoagulant rodenticides. In secondary exposure studies in birds, brodifacoum appears to pose the greatest risk, with bromadiolone, difenacoum, flocoumafen and difethialone being less hazardous than brodifacoum, and warfarin, coumatetralyl, coumafuryl, chlorophacinone and diphacinone being even less hazardous. In contrast, substantial mortality was noted in secondary exposure studies in mammals ingesting prey or tissue diets containing either second- or intermediate-generation compounds. Sublethal responses (e.g., prolonged clotting time, reduced hematocrit and anemia) have been used to study the sequelae of anticoagulant intoxication, and to some degree in the establishment of toxicity thresholds or toxicity reference values. Surprisingly few studies have undertaken histopathological evaluations to identify cellular lesions and hemorrhage associated with anticoagulant rodenticide exposure in non

  17. Solutions for a non-Markovian diffusion equation

    International Nuclear Information System (INIS)

    Lenzi, E.K.; Evangelista, L.R.; Lenzi, M.K.; Ribeiro, H.V.; Oliveira, E.C. de

    2010-01-01

    Solutions for a non-Markovian diffusion equation are investigated. For this equation, we consider a spatial and time dependent diffusion coefficient and the presence of an absorbent term. The solutions exhibit an anomalous behavior which may be related to the solutions of fractional diffusion equations and anomalous diffusion.

  18. Degradation and detoxification of aqueous nitrophenol solutions by electron beam irradiation

    International Nuclear Information System (INIS)

    Song Weihua; Zheng Zheng; Rami, Abual-Suud; Zhou Tao; Hang Desheng

    2002-01-01

    The goal of this research was to study the degradation of nitrophenol solutions by high-energy electron beam irradiation. The results showed that the degradation processes obey an apparent first-order degradation. At the higher irradiation doses the pH of solutions decreased; however, the dissolved organic carbon of the solutions was essentially unchanged. To investigate the toxicity of the radiolytic products the oxygen uptake rate of activated sludge was determined. The toxicity of irradiated nitrophenol solutions decreased from the initial non-irradiated solutions

  19. Comparative acute toxicity of neonicotinoid and pyrethroid insecticides to non-target crayfish (Procambarus clarkii) associated with rice-crayfish crop rotations.

    Science.gov (United States)

    Barbee, Gary C; Stout, Michael J

    2009-11-01

    Most insecticides used to control rice water weevil (Lissorhoptrus oryzophilus Kuscel) infestations are pyrethroids. However, pyrethroids are highly toxic to non-target crayfish associated with rice-crayfish crop rotations. One solution to the near-exclusive reliance on pyrethroids in a rice-crayfish pest management program is to incorporate neonicotinoid insecticides, which are insect specific and effective against weevils but not extremely toxic to crayfish. This study aimed to take the first step to assess neonicotinoids as alternatives to pyrethroids in rice-crayfish crop rotations by measuring the acute toxicities of three candidate neonicotinoid insecticides, clothianidin, dinotefuran and thiamethoxam, to juvenile Procambarus clarkii (Girard) crayfish and comparing them with the acute toxicities of two currently used pyrethroid insecticides, lambda-cyhalothrin and etofenprox. Neonicotinoid insecticides are at least 2-3 orders of magnitude less acutely toxic (96 h LC(50)) than pyrethroids to juvenile Procambarid crayfish: lambda-cyhalothrin (0.16 microg AI L(-1)) = etofenprox (0.29 microg AI L(-1)) > clothianidin (59 microg AI L(-1)) > thiamethoxam (967 microg AI L(-1)) > dinotefuran (2032 microg AI L(-1)). Neonicotinoid insecticides appear to be much less hazardous alternatives to pyrethroids in rice-crayfish crop rotations. Further field-level neonicotinoid acute and chronic toxicity testing with crayfish is needed. (c) 2009 Society of Chemical Industry.

  20. In situ glass antifouling using Pt nanoparticle coating for periodic electrolysis of seawater

    Science.gov (United States)

    Xue, Yuxi; Zhao, Jin; Qiu, Ri; Zheng, Jiyong; Lin, Cunguo; Ma, Bojiang; Wang, Peng

    2015-12-01

    In situ electrochemical chlorination is a promising way to prohibit the biofouling on glass used for optical devices in seawater. To make this approach practical, a conductive glass should have low overpotential to generate Cl2, so that the electrical energy consumption, a critical issue for field application, will be low. Moreover, a long sustainability should also be taken into consideration from the application perspective. Following these criteria, we propose Pt/ITO surface to electrochemically generate Cl2, which immunizes biofouling for glass substrate. In this report, firstly, Pt nanoparticle/ITO is prepared via an electrodeposition approach. Secondly, electrocatalysis capability of Pt/ITO is elucidated, which shows the catalysis for Cl2 generation from NaCl solution and seawater has been sparked with Pt on the surface. Also, Pt/ITO is more sustainable and efficient than the bare ITO in natural seawater. Thirdly, the antifouling property is evaluated taking diatom as the target organism. Electrochemical chlorination on Pt/ITO can efficiently prevent the glass from fouling.

  1. Improved antifouling properties of polymer membranes using a ‘layer-by-layer’ mediated method

    KAUST Repository

    Chen, Lin; Thé rien-Aubin, Hé loï se; Wong, Mavis C. Y.; Hoek, Eric M. V.; Ober, Christopher K.

    2013-01-01

    Polymeric reverse osmosis membranes were modified with antifouling polymer brushes through a 'layer by layer' (LBL) mediated method. Based on pure physical electrostatic interaction, the attachment of LBL films did not alter separation performance

  2. Reaction rate estimation of controlled-release antifouling paint binders: Rosin-based systems

    DEFF Research Database (Denmark)

    Meseguer Yebra, Diego; Kiil, Søren; Dam-Johansen, Kim

    2005-01-01

    Biofouling on ship hulls is prevented by the use of antifouling (A/F) paints. Typically, sea water soluble rosin or rosin-derivatives are used as the primary means of adjusting the polishing rate of the current chemically active self-polishing paint systems to a suitable value. Previous studies h...

  3. Non-infectious chemotherapy-associated acute toxicities during childhood acute lymphoblastic leukemia therapy

    DEFF Research Database (Denmark)

    Schmiegelow, Kjeld; Müller, Klaus Gottlob; Mogensen, Signe Sloth

    2017-01-01

    During chemotherapy for childhood acute lymphoblastic leukemia, all organs can be affected by severe acute side effects, the most common being opportunistic infections, mucositis, central or peripheral neuropathy (or both), bone toxicities (including osteonecrosis), thromboembolism, sinusoidal...... useful risk factors, and across study groups there has been wide diversity in toxicity definitions, capture strategies, and reporting, thus hampering meaningful comparisons of toxicity incidences for different leukemia protocols. Since treatment of acute lymphoblastic leukemia now yields 5-year overall...... obstruction syndrome, endocrinopathies (especially steroid-induced adrenal insufficiency and hyperglycemia), high-dose methotrexate-induced nephrotoxicity, asparaginase-associated hypersensitivity, pancreatitis, and hyperlipidemia. Few of the non-infectious acute toxicities are associated with clinically...

  4. Hemocompatible polyethersulfone/polyurethane composite membrane for high-performance antifouling and antithrombotic dialyzer.

    Science.gov (United States)

    Yin, Zehua; Cheng, Chong; Qin, Hui; Nie, Chuanxiong; He, Chao; Zhao, Changsheng

    2015-01-01

    Researches on blood purification membranes are fuelled by diverse clinical needs, such as hemodialysis, hemodiafiltration, hemofiltration, plasmapheresis, and plasma collection. To approach high-performance dialyzer, the integrated antifouling and antithrombotic properties are highly necessary for the design/modification of advanced artificial membranes. In this study, we propose and demonstrate that the physical blend of triblock polyurethane (PU) and polyethersulfone (PES) may advance the performance of hemodialysis membranes with greatly enhanced blood compatibility. It was found that the triblock PU could be blended with PES at high ratio owing to their excellent miscibility. The surfaces of the PES/PU composite membranes were characterized using attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, water contact angle measurement, and surface ζ-potentials. The results indicated that the membrane surfaces were assembled with hydrophilic segregation layer owing to the migration of amphiphilic PU segments during membrane preparation, which might confer the composite membranes with superior hemocompatibility. The cross-section scanning electron microscopy images of the composite membranes exhibited structure transformation from finger-like structure to sponge-like structure, which indicated that the composite membrane had tunable porosity and permeability. The further ultrafiltration experiments indicated that the composite membranes showed increased permeability and excellent antifouling ability. The blood compatibility observation indicated that PES/PU composite membranes owned decreased protein adsorption, suppressed platelet adhesion, and prolonged plasma recalcification time. These results indicated that the PES/PU composite membranes exhibited enhanced antifouling and antithrombotic properties than the pristine PES membrane. The strategy may forward the fabrication of blood compatible composite membranes for

  5. Enhanced antifouling behaviours of polyvinylidene fluoride membrane modified through blending with nano-TiO{sub 2}/polyethylene glycol mixture

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Wang, Zhiwei, E-mail: zwwang@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Zhang, Xingran [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Zheng, Xiang, E-mail: zhengxiang7825@163.com [School of Environment and Natural Resources, Renmin University of China, Beijing, 100872 (China); Wu, Zhichao [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China)

    2015-08-01

    Graphical abstract: - Highlights: • Nano-TiO{sub 2}/polyethylene glycol (PEG) mixture was used to modify PVDF membranes. • The steric hindrance effects of PEG enabled the dispersion of nanoparticles. • The energy barrier between SMP and modified membranes was increased. • The modification by nano-TiO{sub 2}/PEG well improved the anti-fouling ability. - Abstract: Titanium dioxide (TiO{sub 2}) nanoparticles/polyethylene glycol (PEG) mixture was used to modify polyvinylidene fluoride (PVDF) membranes aiming to improve their antifouling ability. The use of PEG could improve the dispersion of nanoparticles thanks to steric hindrance effects. Test results showed that compared to the original PVDF membrane, the modified membranes had higher hydrophilicity and lower negative Zeta potential, facilitating membrane fouling control. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that the addition of TiO{sub 2} nanoparticles improved their electron donor monopolarity, i.e., enhanced electron-donating ability. The interaction energy barrier between soluble microbial products (SMP) and membrane surfaces was also improved, indicating that anti-fouling ability of the modified membrane was elevated. The optimal dosage of nano-TiO{sub 2} was found to be 0.15%, and further increase of dosage resulted in the aggregation of nanoparticles which consequently impaired the modification efficiency. Quartz crystal microbalance with dissipation (QCM-D) monitoring and SMP filtration tests confirmed the antifouling ability of the modified membrane.

  6. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

    International Nuclear Information System (INIS)

    Xu, Chen; Liu, Xiaojiu; Xie, Binbin; Yao, Chen; Hu, Wenhan; Li, Yi; Li, Xinsong

    2016-01-01

    Highlights: • Amino acids have been successfully grafted onto the surface of PES membranes via amino groups induced epoxy ring opening. • Zwitterionic PES ultrafiltration membranes exhibit excellent antifouling performance and improved permeation properties. • A facile strategy to combat fouling of PES ultrafiltration membranes is developed by grafting natural amino acids. - Abstract: In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption

  7. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen; Liu, Xiaojiu; Xie, Binbin; Yao, Chen [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China); Hu, Wenhan; Li, Yi [Suzhou Faith & Hope Membrane Technology Co., Ltd., Suzhou, 215000 (China); Li, Xinsong, E-mail: lixs@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China)

    2016-11-01

    Highlights: • Amino acids have been successfully grafted onto the surface of PES membranes via amino groups induced epoxy ring opening. • Zwitterionic PES ultrafiltration membranes exhibit excellent antifouling performance and improved permeation properties. • A facile strategy to combat fouling of PES ultrafiltration membranes is developed by grafting natural amino acids. - Abstract: In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption

  8. The use of non-living biomass to recover heavy metals from aqueous solutions

    International Nuclear Information System (INIS)

    Darnall, D.W.

    1993-01-01

    The use of microorganisms in the treatment of hazardous wastes containing both inorganic and organic pollutants is becoming more and more attractive. There have been two approaches to the use of microorganisms in waste treatment. One involves the use of living organisms and the other involves the use of non-viable biomass derived from microorganisms. While the use of living organisms is often successful in the treatment of toxic organic contaminants, living organisms have not been found to be useful in the treatment of solutions containing heavy metal ions. This is because once the metal ion concentration becomes too high or sufficient metal ions are adsorbed by the microorganism, metabolism is disrupted causing the organism to die. This disadvantage is not encountered if non-living organisms or biological materials derived from microorganisms are used to adsorb metal ions from solution. Instead the biomass is treated as another reagent, a surrogate ion exchange resin. The binding, or biosorption, of metal ions by the biomass results from coordination of the metal ions to various functional groups in or on the cell. These chelating groups, contributed by the cell biopolymers, include carboxyl, imidazole, sulfhydryl, amino, phosphate, sulfate, thioether, phenol, carbonyl, amide, and hydroxyl moieties (Darnall et al.)

  9. High dietary quality of non-toxic cyanobacteria for a benthic grazer and its implications for the control of cyanobacterial biofilms.

    Science.gov (United States)

    Groendahl, Sophie; Fink, Patrick

    2017-05-18

    Mass occurrences of cyanobacteria frequently cause detrimental effects to the functioning of aquatic ecosystems. Consequently, attempts haven been made to control cyanobacterial blooms through naturally co-occurring herbivores. Control of cyanobacteria through herbivores often appears to be constrained by their low dietary quality, rather than by the possession of toxins, as also non-toxic cyanobacteria are hardly consumed by many herbivores. It was thus hypothesized that the consumption of non-toxic cyanobacteria may be improved when complemented with other high quality prey. We conducted a laboratory experiment in which we fed the herbivorous freshwater gastropod Lymnaea stagnalis single non-toxic cyanobacterial and unialgal diets or a mixed diet to test if diet-mixing may enable these herbivores to control non-toxic cyanobacterial mass abundances. The treatments where L. stagnalis were fed non-toxic cyanobacteria and a mixed diet provided a significantly higher shell and soft-body growth rate than the average of all single algal, but not the non-toxic cyanobacterial diets. However, the increase in growth provided by the non-toxic cyanobacteria diets could not be related to typical determinants of dietary quality such as toxicity, nutrient stoichiometry or essential fatty acid content. These results strongly contradict previous research which describes non-toxic cyanobacteria as a low quality food resource for freshwater herbivores in general. Our findings thus have strong implications to gastropod-cyanobacteria relationships and suggest that freshwater gastropods may be able to control mass occurrences of benthic non-toxic cyanobacteria, frequently observed in eutrophied water bodies worldwide.

  10. Potent Antifouling Resorcylic Acid Lactones from the Gorgonian-Derived Fungus Cochliobolus lunatus

    KAUST Repository

    Shao, Chang Lun; Wu, Hui Xian; Wang, Chang Yun; Liu, Qing Ai; Xu, Ying; Wei, Mei Yan; Qian, Pei Yuan; Gu, Yu Cheng; Zheng, Cai Juan; She, Zhi Gang; Lin, Yong Cheng

    2011-01-01

    Three new 14-membered resorcylic acid lactones, two with a rare natural acetonide group and one with a 5-chloro-substituted lactone, named cochliomycins A-C (1-3), together with four known analogues, zeaenol (4), LL-Z1640-1 (5), LL-Z1640-2 (6), and paecilomycin F (7), were isolated from the culture broth of Cochliobolus lunatus, a fungus obtained from the gorgonian Dichotella gemmacea collected in the South China Sea. Their structures and the relative configurations of 1-3 were elucidated using comprehensive spectroscopic methods including NOESY spectra and chemical conversions. A transetherification reaction was also observed in which cochliomycin B (2) in a solution of CDCl3 slowly rearranged to give cochliomycin A (1) at room temperature. These resorcylic acid lactones were evaluated against the larval settlement of barnacle Balanus amphitrite, and antifouling activity was detected for the first time for this class of metabolites. The antibacterial and cytotoxic activities of these compounds were also examined. © 2011 The American Chemical Society and American Society of Pharmacognosy.

  11. Potent Antifouling Resorcylic Acid Lactones from the Gorgonian-Derived Fungus Cochliobolus lunatus

    KAUST Repository

    Shao, Chang Lun

    2011-04-25

    Three new 14-membered resorcylic acid lactones, two with a rare natural acetonide group and one with a 5-chloro-substituted lactone, named cochliomycins A-C (1-3), together with four known analogues, zeaenol (4), LL-Z1640-1 (5), LL-Z1640-2 (6), and paecilomycin F (7), were isolated from the culture broth of Cochliobolus lunatus, a fungus obtained from the gorgonian Dichotella gemmacea collected in the South China Sea. Their structures and the relative configurations of 1-3 were elucidated using comprehensive spectroscopic methods including NOESY spectra and chemical conversions. A transetherification reaction was also observed in which cochliomycin B (2) in a solution of CDCl3 slowly rearranged to give cochliomycin A (1) at room temperature. These resorcylic acid lactones were evaluated against the larval settlement of barnacle Balanus amphitrite, and antifouling activity was detected for the first time for this class of metabolites. The antibacterial and cytotoxic activities of these compounds were also examined. © 2011 The American Chemical Society and American Society of Pharmacognosy.

  12. The potentiation effect makes the difference: Non-toxic concentrations of ZnO nanoparticles enhance Cu nanoparticle toxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lingxiangyu [State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 (China); Fernández-Cruz, María Luisa; Connolly, Mona [Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040 (Spain); Conde, Estefanía; Fernández, Marta [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid 28040 (Spain); Schuster, Michael [Department of Chemistry, Technische Universität München, Garching 85747 (Germany); Navas, José María, E-mail: jmnavas@inia.es [Departamento de Medio Ambiente, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid 28040 (Spain)

    2015-02-01

    Here we examined whether the addition of a non-toxic concentration (6.25 μg/mL) of zinc oxide nanoparticles (ZnONPs: 19, 35 and 57 nm, respectively) modulates the cytotoxicity of copper nanoparticles (CuNPs, 63 nm in size) in the human hepatoma cell line HepG2. The cytotoxic effect of CuNPs on HepG2 cells was markedly enhanced by the ZnONPs, the largest ZnONPs causing the highest increase in toxicity. However, CuNPs cytotoxicity was not affected by co-incubation with medium containing only zinc ions, indicating the increase in toxicity might be attributed to the particle form of ZnONPs. Transmission electron microscopy (TEM) revealed the presence of CuNPs and ZnONPs inside the cells co-exposed to both types of NP and outflow of cytoplasm through the damaged cell membrane. Inductively coupled plasma mass spectrometry (ICP-MS) determined an increase in the concentration of zinc and a decrease in that of copper in co-exposed cells. On the basis of these results, we propose that accumulation of large numbers of ZnONPs in the cells alters cellular membranes and the cytotoxicity of CuNPs is increased. - Highlights: • ZnONPs at non-toxic concentrations increased the toxicity of CuNPs in vitro. • ZnONPs of larger size provoked a stronger synergistic effect with CuNPs. • The synergistic effect was attributed to the particle fraction of ZnONPs.

  13. Improved antifouling potential of polyether sulfone polymeric membrane containing silver nanoparticles: self-cleaning membranes.

    Science.gov (United States)

    Rana, Sidra; Nazar, Umair; Ali, Jafar; Ali, Qurat Ul Ain; Ahmad, Nasir M; Sarwar, Fiza; Waseem, Hassan; Jamil, Syed Umair Ullah

    2018-06-01

    A new strategy to enhance the antifouling potential of polyether sulfone (PES) membrane is presented. Chemically synthesized silver nanoparticles (AgNPs) were used to prepare a mixed-matrix PES membrane by the phase inversion technique. Primarily, AgNPs synthesis was confirmed by surface plasmon resonance at 410-430 nm using UV-Visible spectroscopy. X-ray diffraction analysis revealed that AgNPs were crystalline with a diameter of 21 ± 2 nm. Furthermore, PES membranes were characterized by energy dispersive X-ray spectroscopy to confirm the incorporation of AgNPs in membranes. Hydrophilicity of the membranes was enhanced, whereas roughness, mechanical strength and biofouling were relatively reduced after embedding the AgNPs. Antibacterial potential of AgNPs was evaluated for E. coli in the disc diffusion and colony-forming unit (CFU) count method. All of the membranes were assessed for antifouling activity by filtering a control dilution (10 6  CFU/ml) of E. coli and by counting CFU. Anti-biofouling activity of the membrane was observed with different concentrations of AgNPs. Maximum reduction (66%) was observed in membrane containing 1.5% of AgNPs. The addition of antibiotic ceftriaxone enhanced the antibacterial effect of AgNPs in PES membranes. Our practicable antifouling strategy may be applied to other polymeric membranes which may pave the new way to achieve sustainable and self-cleaning membrane reactors on large scale.

  14. Toxicity of Diuron and copper pyrithione on the brine shrimp, Artemia franciscana: the effects of temperature and salinity.

    Science.gov (United States)

    Koutsaftis, Apostolos; Aoyama, Isao

    2008-12-01

    Diuron and copper pyrithione (CuPT) are two substances that have been used worldwide as alternatives to tributyltin (TBT) in antifouling paints for the protection of ship hulls. In this study their toxicity against the brine shrimp Artemia franciscana is examined under several combinations of salinity and temperature using the LC(20), LC(50) and LC(80) values found for the 25 degrees C and 35 per thousand standard conditions. A significant interaction between temperature and salinity effects was observed for both chemicals. Decreasing temperature almost eliminated Diuron's toxicity, while a toxicity reduction was also observed for CuPT. Decreasing salinity decreased Diuron's toxicity, while for CuPT the effect of salinity was more complex. These two natural environmental parameters had a profound influence on the ecotoxicity of the two tested chemicals, and this highlights the importance of considering the implications of such factors when conducting ecological risk assessment.

  15. [Problems of cardiovascular toxicity of coxibs and non-selective NSA].

    Science.gov (United States)

    Forejtová, S

    2006-01-01

    Non-steroidal antirheumatics (NSA) belong to the most often prescribed drugs. Certain observation studies indicate that they are used by 20 to 30% of population of developed countries. The most common NSA's adverse effects are gastrointestinal complications. Coxibs have been developed as an alternative to conventional non-selective NSA; with similar efficacy, they should reduce the risk of development of gastrointestinal complications. In the few last years, possible toxicity of coxibs and other non-steroidal antirheumatics has been widely discussed. The VIGOR study, which was performed 6 years ago, showed five times higher incidence of nonfatal myocardial infarction in patients with rofecoxib therapy as compared with naproxen. Afterwards, there was much debate about rofecoxib, and coxibs in general, whose cardiotoxicity was supported and confuted at the same time. Possible cardioprotective effect of naproxen was discussed too. Later on, results of the APPROVE study (Adenoma Polyp Prevention on Vioxx) made Merck & Co., Inc. withdraw rofecoxib from all markets voluntarily. In the end of 2004, three controversial studies on celecoxib were published. Although the first study (Adenoma Prevention with Celecoxib study, APC) showed higher cardiovascular risk of celecoxib, the second study (Prevention of Adenomatosus Polyps, PreSAP) did not verify these results. Surprisingly, the third study (Alzheimer Disease and Prevention Trial, ADAPT) proved 50% increase of the risk of cardiovascular (CV) toxicity of naproxen. In the last year, researchers have tried to decide whether CV toxicity is a class effect of coxib group or a class effect of all NSA. Many observation studies proved higher CV risk both of coxibs (particularly rofecoxib) and non-selective NSA including naproxen. These new findings moved the American FDA (Food and Drug Administration) to publish guidance concerning higher CV risk of all coxibs and NSA. For the time being, the EMEA (European Agency for Evaluation

  16. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments

    NARCIS (Netherlands)

    Ekblad, T.; Bergström, G.; Ederth, T.; Conlan, S.L.; Mutton, R.; Clare, A.S.; Wang, S.; Liu, Y.; Zhao, Q.; D'Souza, F.; Donnelly, G.T.; Willemsen, P.R.; Pettitt, M.E.; Callow, M.E.; Callow, J.A.; Liedberg, B.

    2008-01-01

    This work describes the fabrication, characterization, and biological evaluation of a thin protein-resistant poly(ethylene glycol) (PEG)-based hydrogel coating for antifouling applications. The coating was fabricated by free-radical polymerization on silanized glass and silicon and on

  17. Non-infectious chemotherapy-associated acute toxicities during childhood acute lymphoblastic leukemia therapy

    Science.gov (United States)

    Schmiegelow, Kjeld; Müller, Klaus; Mogensen, Signe Sloth; Mogensen, Pernille Rudebeck; Wolthers, Benjamin Ole; Stoltze, Ulrik Kristoffer; Tuckuviene, Ruta; Frandsen, Thomas

    2017-01-01

    During chemotherapy for childhood acute lymphoblastic leukemia, all organs can be affected by severe acute side effects, the most common being opportunistic infections, mucositis, central or peripheral neuropathy (or both), bone toxicities (including osteonecrosis), thromboembolism, sinusoidal obstruction syndrome, endocrinopathies (especially steroid-induced adrenal insufficiency and hyperglycemia), high-dose methotrexate-induced nephrotoxicity, asparaginase-associated hypersensitivity, pancreatitis, and hyperlipidemia. Few of the non-infectious acute toxicities are associated with clinically useful risk factors, and across study groups there has been wide diversity in toxicity definitions, capture strategies, and reporting, thus hampering meaningful comparisons of toxicity incidences for different leukemia protocols. Since treatment of acute lymphoblastic leukemia now yields 5-year overall survival rates above 90%, there is a need for strategies for assessing the burden of toxicities in the overall evaluation of anti-leukemic therapy programs. PMID:28413626

  18. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Indrani; Pangule, Ravindra C.; Kane, Ravi S. [Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Ricketts Building, Troy, NY 12180 (United States)

    2011-02-08

    The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed. Biofouling is of great concern in numerous applications ranging from biosensors to biomedical implants and devices, and from food packaging to industrial and marine equipment. The two major approaches to combat surface fouling are based on either preventing biofoulants from attaching or degrading them. One of the key strategies for imparting adhesion resistance involves the functionalization of surfaces with poly(ethylene glycol) (PEG) or oligo(ethylene glycol). Several alternatives to PEG-based coatings have also been designed over the past decade. While protein-resistant coatings may also resist bacterial attachment and subsequent biofilm formation, in order to overcome the fouling-mediated risk of bacterial infection it is highly desirable to design coatings that are bactericidal. Traditional techniques involve the design of coatings that release biocidal agents, including antibiotics, quaternary ammonium salts (QAS), and silver, into the surrounding aqueous environment. However, the emergence of antibiotic- and silver-resistant pathogenic strains has necessitated the development of alternative strategies. Therefore, other techniques based on the use of polycations, enzymes, nanomaterials, and photoactive agents are being investigated. With regard to marine antifouling coatings, restrictions on the use of biocide-releasing coatings have made the generation of nontoxic antifouling surfaces more important. While considerable progress has been made in the design of antifouling coatings, ongoing research in this area should result in the development of even better antifouling materials in the future. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. A non-toxic fluorogenic dye for mitochondria labeling.

    Science.gov (United States)

    Han, Junyan; Han, Myung Shin; Tung, Ching-Hsuan

    2013-11-01

    Mitochondria, powerhouses of cells, are responsible for many critical cellular functions, such as cell energy metabolism, reactive oxygen species production, and apoptosis regulation. Monitoring mitochondria morphology in live cells temporally and spatially could help with the understanding of the mechanisms of mitochondrial functional regulation and the pathogenesis of mitochondria-related diseases. A novel non-cytotoxic fluorogenic compound, AcQCy7, was developed as a mitochondria-specific dye. AcQCy7 emitted no fluorescent signal outside of cells, but it became fluorescent after intracellular hydrolysis of the acetyl group. The hydrolyzed fluorescent product was well retained in mitochondria, enabling long-lasting fluorescence imaging of mitochondria without cell washing. A 2-day culture study using AcQCy7 showed no sign of cytotoxicity, whereas a commonly used mitochondria-staining probe, Mitochondria Tracker Green, caused significant cell death even at a much lower concentration. Apoptosis-causing mitochondria fission was monitored clearly in real time by AcQCy7. A simple add-and-read mitochondria specific dye AcQCy7 has been validated in various cell models. Bright mitochondria specific fluorescent signal in treated cells lasted several days without noticeable toxicity. The probe AcQCy7 has been proofed to be a non-toxic agent for long-term mitochondria imaging. © 2013.

  20. Acute Toxicity of the Antifouling Compound Butenolide in Non-Target Organisms

    KAUST Repository

    Zhang, Yi-Fan; Xiao, Kang; Chandramouli, Kondethimmanahalli; Xu, Ying; Pan, Ke; Wang, Wen-Xiong; Qian, Pei-Yuan

    2011-01-01

    in representative new biocides. Mechanistically, the phenotype of butenolide-treated Danio rerio (zebrafish) embryos was similar to the phenotype of the pro-caspase-3 over-expression mutant with pericardial edema, small eyes, small brains, and increased numbers

  1. Non-extremal black hole solutions from the c-map

    International Nuclear Information System (INIS)

    Errington, D.; Mohaupt, T.; Vaughan, O.

    2015-01-01

    We construct new static, spherically symmetric non-extremal black hole solutions of four-dimensional N=2 supergravity, using a systematic technique based on dimensional reduction over time (the c-map) and the real formulation of special geometry. For a certain class of models we actually obtain the general solution to the full second order equations of motion, whilst for other classes of models, such as those obtainable by dimensional reduction from five dimensions, heterotic tree-level models, and type-II Calabi-Yau compactifications in the large volume limit a partial set of solutions are found. When considering specifically non-extremal black hole solutions we find that regularity conditions reduce the number of integration constants by one half. Such solutions satisfy a unique set of first order equations, which we identify. Several models are investigated in detail, including examples of non-homogeneous spaces such as the quantum deformed STU model. Though we focus on static, spherically symmetric solutions of ungauged supergravity, the method is adaptable to other types of solutions and to gauged supergravity.

  2. Certain Solutions Of Shock-Waves In Non-Ideal Gases

    Directory of Open Access Journals (Sweden)

    Kanti Pandey

    2016-05-01

    Full Text Available In present paper non similar solutions for plane, cylindrical and spherical unsteady flows of non-ideal gas behind shock wave of arbitrary strength initiated by the instantaneous release of finite energy and propagating in a non-ideal gas is investigated. Asymptotic analysis is applied to obtain a solution up to second order. Solution for numerical calculation Runga-Kutta method of fourth order is applied and is concluded that for non-ideal case there is a decrease in velocity, pressure and density for 0th and IInd order in comparison to ideal gas but a increasing tendency in velocity, pressure and density for Ist order in comparison to ideal gas. The energy of explosion J0 for ideal gas is greater in comparison to non-ideal gas for plane, cylindrical and spherical waves.

  3. Further study of the reactions of fishes to toxic solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J R.E.

    1948-01-01

    This paper records some further observations on the reactions of fish to toxic solutions. The method of experimentation resembles that described in a previous paper by the writer (Jones, 1947b). In every case the solution is presented as an alternative to the Aberystwyth tap water, which is well aerated, very soft, of pH 6.8. In experiments with sodium sulphide a supply system is arranged in which dilute sodium sulphide solution, brought to pH 6.8 by the addition of sulphuric acid, is automatically made up as it runs into the observation vessel. Gasterosteus aculeatus l. reacts negatively to a 0.001N solution almost immediately; at greater dilution the reaction time lengthens, at 0.00008N is about 47 min. Over the concentration range tested the reaction time is always shorter than the survival time. Gasterosteus is positive to 0.04N lead nitrate. As a positive reaction is also displayed to equivalent concentrations of calcium nitrate, sodium nitrate and sodium chloride it is possible that the osmotic pressure of the solution is its attractive feature. At 0.01N the positive response to lead nitrate disappears and at 0.004N is replaced by a very definite negative reaction which is maintained down to 0.00002N. The minnow (Phoxinus phoxinus l.) is also negative to dilute lead nitrate and will detect and avoid a 0.000004N solution. Gasterosteus will avoid water more acid than pH 5.6 or more alkaline than pH 11.4. Over the range 5.8-11.2 the fish are indifferent or very vaguely positive. Gasterosteus is negative to 0.04 and 0.01N ammonia solution, positive to 0.001 and 0.0001N. The general result with ammonia is thus the converse of that observed with lead nitrate.

  4. Effects of marine microbial biofilms on the biocide release rate from antifouling paints – A model-based analysis

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Erik Weinell, Claus

    2006-01-01

    The antifouling (AF) paint model of Kiil et al. [S. Kiil, C.E. Weinell, M.S. Pedersen, K. Dam-Johansen, Analysis of self-polishing antifouling paints using rotary experiments and mathematical modelling, Ind. Eng. Chem. Res. 40 (2001) 3906-3920] and the simplified biofilm. growth model of Gujer...... and Warmer [W. Gujer, O. Warmer, Modeling mixed population biofilms, in: W.G. Characklis, K.C. Marshall (Eds.), Biofilms, Wiley-Interscience, New York, 1990] are used to provide a reaction engineering-based insight to the effects of marine microbial slimes on biocide leaching and, to a minor extent...

  5. Poly-ethers from Winogradskyella poriferorum: Antifouling potential, time-course study of production and natural abundance

    KAUST Repository

    Dash, Swagatika; Nogata, Yasuyuki; Zhou, Xiaojian; Zhang, Yifan; Xü , Ying; Guo, Xian Rong; Zhang, Xixiang; Qian, Peiyuan

    2011-01-01

    A sponge-associated bacterium, Winogradskyella poriferorum strain UST030701-295T was cultured up to 100l for extraction of antifouling bioactive compounds. Five poly-ethers were isolated and partially characterized based on nuclear magnetic

  6. A Method for Evaluating the Efficacy of Antifouling Paints Using Mytilus galloprovincialis in the Laboratory in a Flow-Through System

    Science.gov (United States)

    Satuito, Cyril Glenn Perez; Katsuyama, Ichiro; Ando, Hirotomo; Seki, Yasuyuki; Senda, Tetsuya

    2016-01-01

    A laboratory test with a flow-through system was designed and its applicability for testing antifouling paints of varying efficacies was investigated. Six different formulations of antifouling paints were prepared to have increasing contents (0 to 40 wt.%) of Cu2O, which is the most commonly used antifouling substance, and each formulation of paint was coated on just one surface of every test plate. The test plates were aged for 45 days by rotating them at a speed of 10 knots inside a cylinder drum. A behavioral test was then conducted using five mussels (Mytilus galloprovincialis) that were pasted onto the coated surface of each aged test plate. The number of the byssus threads produced by each mussel generally decreased with increasing Cu2O content of the paint. The newly designed method was considered valid owing to the high consistency of its results with observations from the field experiment. PMID:27959916

  7. Toxic effects of non-steroidal anti-inflammatory agents in rats ...

    African Journals Online (AJOL)

    The toxicosis of some non-steroidal anti-inflammatory drugs, piroxicam, indomethacin, phenylbutazone, and aspirin, which occasionally are locally used in Nigeria as rodenticides have been evaluated in rats using changes in the serum biochemical and haematological parameters as indices of toxicity. In the study, no ...

  8. Adsorption from solutions of non-electrolytes

    CERN Document Server

    Kipling, J J

    1965-01-01

    Adsorption from Solutions of Non-Electrolytes provides a general discussion of the subject, which has so far been given little or no attention in current textbooks of physical chemistry. A general view of the subject is particularly needed at a time when we wish to see how far it will be possible to use theories of solutions to explain the phenomena of adsorption. The book opens with an introductory chapter on the types of interface, aspects of adsorption from solution, types of adsorption, and classification of systems. This is followed by separate chapters on experimental methods, adsorption

  9. Assessment of organotin and tin-free antifouling paints contamination in the Korean coastal area.

    Science.gov (United States)

    Lee, Mi-Ri-Nae; Kim, Un-Jung; Lee, In-Seok; Choi, Minkyu; Oh, Jeong-Eun

    2015-10-15

    Twelve organotins (methyl-, octyl-, butyl-, and phenyl-tin), and eight tin-free antifouling paints and their degradation products were measured in marine sediments from the Korean coastal area, and Busan and Ulsan bays, the largest harbor area in Korea. The total concentration of tin-free antifouling paints was two- to threefold higher than the total concentration of organotins. Principal component analysis was used to identify sites with relatively high levels of contamination in the inner bay area of Busan and Ulsan bays, which were separated from the coastal area. In Busan and Ulsan bays, chlorothalonil and DMSA were more dominant than in the coastal area. However, Sea-Nine 211 and total diurons, including their degradation products, were generally dominant in the Korean coastal area. The concentrations of tin and tin-free compounds were significantly different between the east and west coasts. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Ecotoxicological characterization of polyoxyethylene glycerol ester non-ionic surfactants and their mixtures with anionic and non-ionic surfactants.

    Science.gov (United States)

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Lechuga, Manuela; Fernández-Serrano, Mercedes

    2017-04-01

    This paper reports on a study that investigated the aquatic toxicity of new non-ionic surfactants derived from renewable raw materials, polyoxyethylene glycerol ester (PGE), and their binary mixtures with anionic and non-ionic surfactants. Toxicity of pure PGEs was determined using representative organisms from different trophic levels: luminescent bacteria (Vibrio fischeri), microalgae (Pseudokirchneriella subcapitata), and freshwater crustaceans (Daphnia magna). Relationships between toxicity and the structural parameters such as unit of ethylene oxide (EO) and hydrophilic-lipophilic balance (HLB) were evaluated. Critical micellar concentration (CMC) in the conditions of the toxicity test was also determined. It was found that the toxicity of the aqueous solutions of PGE decreased when the number of EO units in the molecule, HLB, and CMC increased. PGEs showed lower CMC in marine medium, and the toxicity to V. ficheri is lower when the CMC was higher. Given their non-polar nature, narcosis was expected to be the primary mode of toxic action of PGEs. For the mixture of surfactants, we observed that the mixtures with PGE that had the higher numbers of EO units were more toxic than the aqueous solutions of pure surfactants. Moreover, we found that concentration addition was the type of action more likely to occur for mixtures of PGE with lower numbers of EO units with non-ionic surfactants (alkylpolyglucoside and fatty alcohol ethoxylate), whereas for the mixture of PGE with lower EO units and anionic surfactant (ether carboxylic derivative), the most common response type was response addition. In case of mixtures involving amphoteric surfactants and PGEs with the higher numbers of EO units, no clear pattern with regard to the mixture toxicity response type could be observed.

  11. Various mortars for anti-fouling purposes in marine environments

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Hideyuki; Masuda, Tomoka [Department of Materials Science and Engineering, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294 (Japan); Miura, Yoko; Kuroda, Daisuke [Department of General Education, The Company, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294 (Japan); Hirai, Nobumitsu [Department of Chemistry and Biochemistry, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294 (Japan); Yokoyama, Seiji [Department of Mechanical Engineering, Toyohashi University of Technology, 1-1, Hibarigaoka, Tenpaku, Toyohashi, Aichi, 441-8580 (Japan)

    2014-02-20

    The antifouling properties for some mortars with steel making slags were investigated by real marine immersion tests and a unique laboratory acceleration tests with a specially devised biofilm acceleration reactors. Mortars mixed with steel making slags containing abundant iron elements tended to form biofilm and also bifouling. The two kinds of biofilm formation tests were used in this study. Real immersion in marine environments and laboratory test with a specially devised biofilm acceleration reactor. The former evaluated the biofouling characteristics more properly, while the latter did the biofilm formation characteristics more effectively.

  12. Various mortars for anti-fouling purposes in marine environments

    International Nuclear Information System (INIS)

    Kanematsu, Hideyuki; Masuda, Tomoka; Miura, Yoko; Kuroda, Daisuke; Hirai, Nobumitsu; Yokoyama, Seiji

    2014-01-01

    The antifouling properties for some mortars with steel making slags were investigated by real marine immersion tests and a unique laboratory acceleration tests with a specially devised biofilm acceleration reactors. Mortars mixed with steel making slags containing abundant iron elements tended to form biofilm and also bifouling. The two kinds of biofilm formation tests were used in this study. Real immersion in marine environments and laboratory test with a specially devised biofilm acceleration reactor. The former evaluated the biofouling characteristics more properly, while the latter did the biofilm formation characteristics more effectively

  13. Thielavins W–Z7, New Antifouling Thielavins from the Marine-Derived Fungus Thielavia sp. UST030930-004

    KAUST Repository

    Han, Zhuang; Li, Yong-Xin; Liu, Ling-Li; Lu, Liang; Guo, Xianrong; Zhang, Xixiang; Zhang, Xiao-Yong; Qi, Shu-Hua; Xu, Ying; Qian, Pei-Yuan

    2017-01-01

    Eleven new depsides-thielavins W-Z (1-4) and thielavins Z₁-Z₇ (5-11)-and also four known thielavins-A, H, J, and K (12-15)-were isolated from the ethyl acetate extract of a marine-derived fungal strain Thielavia sp UST030930-004. All of these compounds were evaluated for antifouling activity against cyprids of the barnacle Balanus (=Amphibalanus) amphitrite. The results showed that compounds 1-3 and 6-13 were active, with EC50 values ranging from 2.95 ± 0.59 to 69.19 ± 9.51 μM, respectively. The inhibitive effect of compounds 1-3 and 7 was reversible. This is the first description of the antifouling activity of thielavins against barnacle cyprids.

  14. Thielavins W–Z7, New Antifouling Thielavins from the Marine-Derived Fungus Thielavia sp. UST030930-004

    KAUST Repository

    Han, Zhuang

    2017-05-02

    Eleven new depsides-thielavins W-Z (1-4) and thielavins Z₁-Z₇ (5-11)-and also four known thielavins-A, H, J, and K (12-15)-were isolated from the ethyl acetate extract of a marine-derived fungal strain Thielavia sp UST030930-004. All of these compounds were evaluated for antifouling activity against cyprids of the barnacle Balanus (=Amphibalanus) amphitrite. The results showed that compounds 1-3 and 6-13 were active, with EC50 values ranging from 2.95 ± 0.59 to 69.19 ± 9.51 μM, respectively. The inhibitive effect of compounds 1-3 and 7 was reversible. This is the first description of the antifouling activity of thielavins against barnacle cyprids.

  15. Maximum permissible concentrations and negligible concentrations for antifouling substances. Irgarol 1051, dichlofluanid, ziram, chlorothalonil and TCMTB

    NARCIS (Netherlands)

    Wezel AP van; Vlaardingen P van; CSR

    2001-01-01

    This report presents maximum permissible concentrations and negligible concentrations that have been derived for various antifouling substances used as substitutes for TBT. Included here are Irgarol 1051, dichlofluanide, ziram, chlorothalonil and TCMTB.

  16. A case report on a systemic toxicity following ingestion of 20% chlorhexidine gluconate solution

    Directory of Open Access Journals (Sweden)

    Koiahi-e-Kazerani J

    2003-07-01

    Full Text Available Chlorhexidine is bonded well to the oral mucosa and dental pellicle and is poorly absorbed from the astrointestinal tract, but in high concentration it is absorbed enough to produce liver necrosis. In this case a dentistry student accidentally ingested a shot of 20% chlorhexidine gluconate solution. Treatments included washing the oral cavity with lots of tooth paste, drinking of 5% alginate syrup and ingestion of 5g small pieces of cork .The following adverse effects were experienced: headache, giddiness, mild mist, euphoria, stomachache, diarrhea and complete loss of taste sensation for 8h, which recurred gradually during the last 48 hours. According to the poor absorption, low toxicity and low concentration of conventional mouthwashes, systemic toxicity following drinking of some shots of this solution is rare. Ultimately if may cause gastritis. Other treatments which are helpful in the same cases are: drinking of hard water, kaolin and tragacant syrup, bicarbonates such as baking soda, carbonates such as beverage , citrates such as lemon-juice and chlorides such as brine and so on.

  17. The interactive effects of the antifouling herbicides Irgarol 1051 and Diuron on the seagrass Zostera marina (L.).

    Science.gov (United States)

    Chesworth, J C; Donkin, M E; Brown, M T

    2004-02-25

    The herbicides Irgarol 1051 (2-(tert-butylamino)-4-cyclopropylamino)-6-(methylthio)-1,3,5-triazine) and Diuron (3-(3',4'-dichlorophenyl)-1,1-dimethylurea) are commonly incorporated into antifouling paints to boost the efficacy of the compound towards algae. Previous investigations have identified environmental concentrations of these herbicides as being a threat to non-target organisms, such as seagrasses. Their individual toxicity has been assessed, but they can co-occur and interact, potentially increasing their toxicity and the threat posed to seagrass meadows. Chlorophyll fluorescence (Fv:Fm) and leaf specific biomass ratio (representing plant growth) were examined in Zostera marina L. after a 10-day exposure to the individual herbicides. The EC20 for each herbicide was determined and these then used in herbicide mixtures to assess their interactive effects. Irgarol 1051 was found to be more toxic than Diuron with lowest observable effect concentrations for Fv:Fm reduction of 0.5 and 1.0 +/- microg/l and 10-day EC50 values of 1.1 and 3.2 microg/l, respectively. Plants exposed to Irgarol 1051 and Diuron showed a significant reduction in growth at concentrations of 1.0 and 5.0 microg/l, respectively. When Z. marina was exposed to mixtures, the herbicides commonly interacted additively or antagonistically, and no significant further reduction in photosynthetic efficiency was found at any concentration when compared to plants exposed to the individual herbicides. However, on addition of the Diuron EC20 to varying Irgarol 1051 concentrations and the Irgarol 1051 EC20 to varying Diuron concentrations, significant reductions in Fv:Fm were noted at an earlier stage. The growth of plants exposed to Diuron plus the Irgarol 1051 EC20 were significantly reduced when compared to plants exposed to Diuron alone, but only at the lower concentrations. Growth of plants exposed to Irgarol 1051 and the Diuron EC20 showed no significant reduction when compared to the growth of

  18. Bioinspired Surface for Low Drag, Self-Cleaning, and Antifouling: Shark Skin, Butterfly and Rice Leaf Effects

    Science.gov (United States)

    Bixler, Gregroy D.

    In this thesis, first presented is an overview of inorganic-fouling and biofouling which is generally undesirable for many medical, marine, and industrial applications. A survey of nature's flora and fauna are studied in order to discover new antifouling methods that could be mimicked for engineering applications. New antifouling methods will presumably incorporate a combination of physical and chemical controls. Presented are mechanisms and experimental results focusing on laminar and turbulent drag reducing shark skin inspired riblet surfaces. This includes new laser etched and riblet film samples for closed channel drag using water, oil, and air as well as in wind tunnel. Also presented are mechanisms and experimental results focusing on the newly discovered rice and butterfly wing effect surfaces. Morphology, drag, self-cleaning, contact angle, and contact angle hysteresis data are presented to understand the role of sample geometrical dimensions, wettability, viscosity, and velocity. Hierarchical liquid repellent coatings combining nano- and micro-sized features and particles are utilized to recreate or combine various effects. Such surfaces have been fabricated with photolithography, soft lithography, hot embossing, and coating techniques. Discussion is provided along with new conceptual models describing the role of surface structures related to low drag, self-cleaning, and antifouling properties. Modeling provides design guidance when developing novel low drag and self-cleaning surfaces for medical, marine, and industrial applications.

  19. Toxicity of diuron in human cancer cells.

    Science.gov (United States)

    Huovinen, Marjo; Loikkanen, Jarkko; Naarala, Jonne; Vähäkangas, Kirsi

    2015-10-01

    Diuron is a substituted phenylurea used as a herbicide to control broadleaf and grass weeds and as a biocidal antifouling agent. Diuron is carcinogenic in rat urinary bladder and toxic to the reproductive system of oysters, sea urchins and lizards. The few studies carried out in human cells do not include the genotoxicity of diuron. We have investigated the toxicity of diuron in human breast adenocarcinoma (MCF-7) and human placental choriocarcinoma (BeWo) cells. The production of reactive oxygen species (ROS) was statistically significantly increased in both cell lines but only at the highest 200 μM concentration. Diuron clearly reduced the viability of BeWo, but not MCF-7 cells. The relative cell number was decreased in both cell lines indicative of inhibition of cell proliferation. In the Comet assay, diuron increased DNA fragmentation in MCF-7 but not in BeWo cells. The expressions of p53 protein, a marker for cell stress, and p21 protein, a transcriptional target of p53, were increased, but only in MCF-7 cells. In conclusion, our results suggest that diuron is cytotoxic and potentially genotoxic in a tissue-specific manner and that ROS play a role in its toxicity. Thus, exposure to diuron may exert harmful effects on fetal development and damage human health. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology.

    Directory of Open Access Journals (Sweden)

    Nina Cedergreen

    Full Text Available Cocktail effects and synergistic interactions of chemicals in mixtures are an area of great concern to both the public and regulatory authorities. The main concern is whether some chemicals can enhance the effect of other chemicals, so that they jointly exert a larger effect than predicted. This phenomenon is called synergy. Here we present a review of the scientific literature on three main groups of environmentally relevant chemical toxicants: pesticides, metal ions and antifouling compounds. The aim of the review is to determine 1 the frequency of synergy, 2 the extent of synergy, 3 whether any particular groups or classes of chemicals tend to induce synergy, and 4 which physiological mechanisms might be responsible for this synergy. Synergy is here defined as mixtures with minimum two-fold difference between observed and predicted effect concentrations using Concentration Addition (CA as a reference model and including both lethal and sub-lethal endpoints. The results showed that synergy occurred in 7%, 3% and 26% of the 194, 21 and 136 binary pesticide, metal and antifoulants mixtures included in the data compilation on frequency. The difference between observed and predicted effect concentrations was rarely more than 10-fold. For pesticides, synergistic mixtures included cholinesterase inhibitors or azole fungicides in 95% of 69 described cases. Both groups of pesticides are known to interfere with metabolic degradation of other xenobiotics. For the four synergistic metal and 47 synergistic antifoulant mixtures the pattern in terms of chemical groups inducing synergy was less clear. Hypotheses in terms of mechanisms governing these interactions are discussed. It was concluded that true synergistic interactions between chemicals are rare and often occur at high concentrations. Addressing the cumulative rather than synergistic effect of co-occurring chemicals, using standard models as CA, is therefore regarded as the most important step in

  1. Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology.

    Science.gov (United States)

    Cedergreen, Nina

    2014-01-01

    Cocktail effects and synergistic interactions of chemicals in mixtures are an area of great concern to both the public and regulatory authorities. The main concern is whether some chemicals can enhance the effect of other chemicals, so that they jointly exert a larger effect than predicted. This phenomenon is called synergy. Here we present a review of the scientific literature on three main groups of environmentally relevant chemical toxicants: pesticides, metal ions and antifouling compounds. The aim of the review is to determine 1) the frequency of synergy, 2) the extent of synergy, 3) whether any particular groups or classes of chemicals tend to induce synergy, and 4) which physiological mechanisms might be responsible for this synergy. Synergy is here defined as mixtures with minimum two-fold difference between observed and predicted effect concentrations using Concentration Addition (CA) as a reference model and including both lethal and sub-lethal endpoints. The results showed that synergy occurred in 7%, 3% and 26% of the 194, 21 and 136 binary pesticide, metal and antifoulants mixtures included in the data compilation on frequency. The difference between observed and predicted effect concentrations was rarely more than 10-fold. For pesticides, synergistic mixtures included cholinesterase inhibitors or azole fungicides in 95% of 69 described cases. Both groups of pesticides are known to interfere with metabolic degradation of other xenobiotics. For the four synergistic metal and 47 synergistic antifoulant mixtures the pattern in terms of chemical groups inducing synergy was less clear. Hypotheses in terms of mechanisms governing these interactions are discussed. It was concluded that true synergistic interactions between chemicals are rare and often occur at high concentrations. Addressing the cumulative rather than synergistic effect of co-occurring chemicals, using standard models as CA, is therefore regarded as the most important step in the risk

  2. Presidential Green Chemistry Challenge: 1996 Designing Greener Chemicals Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 1996 award winner, Rohm and Haas, developed Sea-Nine, a marine antifoulant to control plants and animals on ship hulls. Sea-Nine replaces persistent, toxic organotin antifoulants.

  3. The role of chemical antifouling defence in the invasion success of Sargassum muticum: A comparison of native and invasive brown algae.

    Directory of Open Access Journals (Sweden)

    Nicole Schwartz

    Full Text Available Competition and fouling defence are important traits that may facilitate invasions by non-indigenous species. The 'novel weapons hypothesis' (NWH predicts that the invasive success of exotic species is closely linked to the possession of chemical defence compounds that the recipient community in the new range is not adapted to. In order to assess whether chemical defence traits contribute to invasion success, anti-bacterial, anti-quorum sensing, anti-diatom, anti-larval and anti-algal properties were investigated for the following algae: a the invasive brown alga Sargassum muticum from both, its native (Japan and invasive (Germany range, b the two non- or weak invasive species Sargassum fusiforme and Sargassum horneri from Japan, and c Fucus vesiculosus, a native brown alga from Germany. Crude and surface extracts and lipid fractions of active extracts were tested against common fouling organisms and zygotes of a dominant competing brown alga. Extracts of the native brown alga F. vesiculosus inhibited more bacterial strains (75% than any of the Sargassum spp. (17 to 29%. However, Sargassum spp. from Japan exhibited the strongest settlement inhibition against the diatom Cylindrotheca closterium, larvae of the bryozoan Bugula neritina and zygotes of the brown alga F. vesiculosus. Overall, extracts of S. muticum from the invasive range were less active compared to those of the native range suggesting an adaptation to lower fouling pressure and competition in the new range resulting in a shift of resource allocation from costly chemical defence to reproduction and growth. Non-invasive Sargassum spp. from Japan was equally defended against fouling and competitors like S. muticum from Japan indicating a necessity to include these species in European monitoring programs. The variable antifouling activity of surface and crude extracts highlights the importance to use both for an initial screening for antifouling activity.

  4. Non-infectious chemotherapy-associated acute toxicities during childhood acute lymphoblastic leukemia therapy

    DEFF Research Database (Denmark)

    Schmiegelow, Kjeld; Müller, Klaus Gottlob; Mogensen, Signe Sloth

    2017-01-01

    obstruction syndrome, endocrinopathies (especially steroid-induced adrenal insufficiency and hyperglycemia), high-dose methotrexate-induced nephrotoxicity, asparaginase-associated hypersensitivity, pancreatitis, and hyperlipidemia. Few of the non-infectious acute toxicities are associated with clinically...

  5. Mathematical modelling of a self-polishing antifouling paint exposed to seawater: A parameter study

    DEFF Research Database (Denmark)

    Kiil, Søren; Pedersen, M. S.; Dam-Johansen, Kim

    2002-01-01

    , and to suggest ways of controlling biocide release rates. A case study with an antifouling paint based on the well-known tributyltin self-polishing copolymer system showed that the rate of paint polishing was influenced, to various degrees, by the following parameters: seawater pH and concentration of Na...

  6. Library of Antifouling Surfaces Derived From Natural Amino Acids by Click Reaction.

    Science.gov (United States)

    Xu, Chen; Hu, Xin; Wang, Jie; Zhang, Ye-Min; Liu, Xiao-Jiu; Xie, Bin-Bin; Yao, Chen; Li, Yi; Li, Xin-Song

    2015-08-12

    Biofouling is of great concern in numerous applications ranging from ophthalmological implants to catheters, and from bioseparation to biosensors. In this report, a general and facile strategy to combat surface fouling is developed by grafting of amino acids onto polymer substrates to form zwitterionic structure through amino groups induced epoxy ring opening click reaction. First of all, a library of poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) hydrogels with zwitterionic surfaces were prepared, resulting in the formation of pairs of carboxyl anions and protonated secondary amino cations. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the successful immobilization of amino acids on the hydrogel surfaces. After that, the contact angle and equilibrium water content of the modified hydrogels showed that the hydrogels exhibited improved hydrophilicity compared with the parent hydrogel. Furthermore, the protein deposition was evaluated by bicinchoninic acid assay using bovine serum albumin (BSA) and lysozyme as models. The results indicated that the performance of the hydrogels was determined by the nature of incorporated amino acid: the hydrogels incorporated with neutral amino acids had nonspecific antiadsorption capability to both BSA and lysozyme; the hydrogels incorporated with charged amino acids showed antiadsorption behaviors against protein with same charge and enhanced adsorption to the protein with opposite charge; the optimal antiadsorption performance was observed on the hydrogels incorporated with polar amino acids with a hydroxyl residual. The improvement of antiprotein fouling of the neutral amino acids grafted hydrogels can be ascribed to the formation of zwitterionic surfaces. Finally, a couple of soft contact lenses grafted with amino acids were fabricated having improved antifouling property and hydrophilicity. The result demonstrated the success of

  7. Antifouling Activity towards Mussel by Small-Molecule Compounds from a Strain of Vibrio alginolyticus Bacterium Associated with Sea Anemone Haliplanella sp.

    Science.gov (United States)

    Wang, Xiang; Huang, Yanqiu; Sheng, Yanqing; Su, Pei; Qiu, Yan; Ke, Caihuan; Feng, Danqing

    2017-03-28

    Mussels are major fouling organisms causing serious technical and economic problems. In this study, antifouling activity towards mussel was found in three compounds isolated from a marine bacterium associated with the sea anemone Haliplanella sp. This bacterial strain, called PE2, was identified as Vibrio alginolyticus using morphology, biochemical tests, and phylogenetic analysis based on sequences of 16S rRNA and four housekeeping genes ( rpoD, gyrB, rctB, and toxR ). Three small-molecule compounds (indole, 3-formylindole, and cyclo (Pro-Leu)) were purified from the ethyl acetate extract of V. alginolyticus PE2 using column chromatography techniques. They all significantly inhibited byssal thread production of the green mussel Perna viridis , with EC 50 values of 24.45 μg/ml for indole, 50.07 μg/ml for 3-formylindole, and 49.24 μg/ml for cyclo (Pro-Leu). Previous research on the antifouling activity of metabolites from marine bacteria towards mussels is scarce. Indole, 3-formylindole and cyclo (Pro-Leu) also exhibited antifouling activity against settlement of the barnacle Balanus albicostatus (EC 50 values of 8.84, 0.43, and 11.35 μg/ml, respectively) and the marine bacterium Pseudomonas sp. (EC 50 values of 42.68, 69.68, and 39.05 μg/ml, respectively). These results suggested that the three compounds are potentially useful for environmentally friendly mussel control and/or the development of new antifouling additives that are effective against several biofoulers.

  8. Analytical solution using computer algebra of a biosensor for detecting toxic substances in water

    Science.gov (United States)

    Rúa Taborda, María. Isabel

    2014-05-01

    In a relatively recent paper an electrochemical biosensor for water toxicity detection based on a bio-chip as a whole cell was proposed and numerically solved and analyzed. In such paper the kinetic processes in a miniaturized electrochemical biosensor system was described using the equations for specific enzymatic reaction and the diffusion equation. The numerical solution shown excellent agreement with the measured data but such numerical solution is not enough to design efficiently the corresponding bio-chip. For this reason an analytical solution is demanded. The object of the present work is to provide such analytical solution and then to give algebraic guides to design the bio-sensor. The analytical solution is obtained using computer algebra software, specifically Maple. The method of solution is the Laplace transform, with Bromwich integral and residue theorem. The final solution is given as a series of Bessel functions and the effective time for the bio-sensor is computed. It is claimed that the analytical solutions that were obtained will be very useful to predict further current variations in similar systems with different geometries, materials and biological components. Beside of this the analytical solution that we provide is very useful to investigate the relationship between different chamber parameters such as cell radius and height; and electrode radius.

  9. Antifouling paint particles: Sources, occurrence, composition and dynamics.

    Science.gov (United States)

    Soroldoni, Sanye; Castro, Ítalo Braga; Abreu, Fiamma; Duarte, Fabio Andrei; Choueri, Rodrigo Brasil; Möller, Osmar Olinto; Fillmann, Gilberto; Pinho, Grasiela Lopes Leães

    2018-06-15

    Sources, occurrence, composition and dynamics of antifouling paint particles (APPs) were assessed in Patos Lagoon estuary (PLE), Southern Brazil. Ten areas including boatyards, a marina and artisanal fishing harbors were identified in the estuarine system as potential sources of APPs. The APPs generated in these areas were highly heterogeneous considering the size, shape and composition. Based on an estimate of antifouling paint usage and amount of boats in each studied area, artisanal fishing harbors could be the main source of particles to PLE. However, relatively high amounts of APPs, which ranged from 130 to 40,300 μg g -1 , were detected in sediments collected in front of boatyards and a marina. The uneven distribution of APPs levels among the sediment samples were probably due to the presence of diffuse sources (fishing harbors) associated to "hotspots" (boatyards and marina) along the study area. Additionally, data of settling experiment indicate that size, shape and density of APPs, combined to local hydrodynamics, appears to contribute to the mobility of these residues within the estuary. In the main channel of PLE, smaller particles tend to be transported to adjacent coastal zone while particles tend to be deposited in the sediment surface of sheltered areas. Since different trace metals, and booster biocides were detected in APPs that were not correctly disposed, these particles can be considered as an important source of contamination to aquatic environments. The present data suggest that APPs represent an environmental problem for aquatic systems in Brazil, since the country lacks legislation in addition to inefficient control mechanisms. An improvement in boat maintenance processes are urgently needed to avoid this continuous release of APPs into the aquatic systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. A survey of antifoulants in sediments from Ports and Marinas along the French Mediterranean coast.

    Science.gov (United States)

    Cassi, Roberto; Tolosa, Imma; de Mora, Stephen

    2008-11-01

    Due to deleterious effects on non-target organisms, the use of organotin compounds on boat hulls of small vessels (ports and marinas along the France Mediterranean coastline (Cote d'Azur) and analysed for organotin compounds, Irgarol 1051, Sea-nine 211, Chlorothalonil, Dichlofluanid and Folpet. Every port and marina exhibited high levels of organotin compounds, with concentrations in sediments ranging from 37 ng Sn g(-1) dry wt in Menton Garavan to over 4000 ng Sn g(-1) dry wt close to the ship chandler within the port of Villefranche-sur-Mer. TBT degradation indexes suggested that fresh inputs are still made. Among the other antifoulants monitored, only Irgarol 1051 exhibited measurable concentrations in almost every port, with concentrations ranging from 40 ng g(-1) dry wt (Cannes) to almost 700 ng g(-1) dry wt (Villefranche-sur-Mer, ship chandler).

  11. Imprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling

    NARCIS (Netherlands)

    Puniredd, S.R.; Janczewski, D.; Go, D.P.; Zhu, X.; Guo, S.; Teo, S.L-M.; Lee, S.S.C.; Vancso, Gyula J.

    2015-01-01

    Polymeric films constructed using the layer-by-layer (LbL) fabrication process were employed as a platform for metal ion immobilization and applied as a marine antifouling coating. The novel Cu2+ ion imprinting process described is based on the use of metal ion templates and LbL multilayer covalent

  12. Non-Perturbative Formulation of Time-Dependent String Solutions

    CERN Document Server

    Alexandre, J; Mavromatos, Nikolaos E; Alexandre, Jean; Ellis, John; Mavromatos, Nikolaos E.

    2006-01-01

    We formulate here a new world-sheet renormalization-group technique for the bosonic string, which is non-perturbative in the Regge slope alpha' and based on a functional method for controlling the quantum fluctuations, whose magnitudes are scaled by the value of alpha'. Using this technique we exhibit, in addition to the well-known linear-dilaton cosmology, a new, non-perturbative time-dependent background solution. Using the reparametrization invariance of the string S-matrix, we demonstrate that this solution is conformally invariant to alpha', and we give a heuristic inductive argument that conformal invariance can be maintained to all orders in alpha'. This new time-dependent string solution may be applicable to primordial cosmology or to the exit from linear-dilaton cosmology at large times.

  13. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kunwar P., E-mail: kpsingh_52@yahoo.com; Gupta, Shikha

    2014-03-15

    Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R{sup 2}) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R{sup 2} and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals. - Graphical abstract: Importance of input variables in DTB and DTF classification models for (a) two-category, and (b) four-category toxicity intervals in T. pyriformis data. Generalization and predictive abilities of the

  14. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches

    International Nuclear Information System (INIS)

    Singh, Kunwar P.; Gupta, Shikha

    2014-01-01

    Ensemble learning approach based decision treeboost (DTB) and decision tree forest (DTF) models are introduced in order to establish quantitative structure–toxicity relationship (QSTR) for the prediction of toxicity of 1450 diverse chemicals. Eight non-quantum mechanical molecular descriptors were derived. Structural diversity of the chemicals was evaluated using Tanimoto similarity index. Stochastic gradient boosting and bagging algorithms supplemented DTB and DTF models were constructed for classification and function optimization problems using the toxicity end-point in T. pyriformis. Special attention was drawn to prediction ability and robustness of the models, investigated both in external and 10-fold cross validation processes. In complete data, optimal DTB and DTF models rendered accuracies of 98.90%, 98.83% in two-category and 98.14%, 98.14% in four-category toxicity classifications. Both the models further yielded classification accuracies of 100% in external toxicity data of T. pyriformis. The constructed regression models (DTB and DTF) using five descriptors yielded correlation coefficients (R 2 ) of 0.945, 0.944 between the measured and predicted toxicities with mean squared errors (MSEs) of 0.059, and 0.064 in complete T. pyriformis data. The T. pyriformis regression models (DTB and DTF) applied to the external toxicity data sets yielded R 2 and MSE values of 0.637, 0.655; 0.534, 0.507 (marine bacteria) and 0.741, 0.691; 0.155, 0.173 (algae). The results suggest for wide applicability of the inter-species models in predicting toxicity of new chemicals for regulatory purposes. These approaches provide useful strategy and robust tools in the screening of ecotoxicological risk or environmental hazard potential of chemicals. - Graphical abstract: Importance of input variables in DTB and DTF classification models for (a) two-category, and (b) four-category toxicity intervals in T. pyriformis data. Generalization and predictive abilities of the

  15. Non-classical solutions of a continuum model for rock descriptions

    Directory of Open Access Journals (Sweden)

    Mikhail A. Guzev

    2014-06-01

    Full Text Available The strain-gradient and non-Euclidean continuum theories are employed for construction of non-classical solutions of continuum models. The linear approximation of both models' results in identical structures in terms of their kinematic and stress characteristics. The solutions obtained in this study exhibit a critical behaviour with respect to the external loading parameter. The conclusions are obtained based on an investigation of the solution for the scalar curvature in the non-Euclidean continuum theory. The proposed analysis enables us to use different theoretical approaches for description of rock critical behaviour under different loading conditions.

  16. Keampferol-3-O-rhamnoside abrogates amyloid beta toxicity by modulating monomers and remodeling oligomers and fibrils to non-toxic aggregates

    Directory of Open Access Journals (Sweden)

    Sharoar Md

    2012-12-01

    Full Text Available Abstract Background Aggregation of soluble, monomeric β- amyloid (Aβ to oligomeric and then insoluble fibrillar Aβ is a key pathogenic feature in development of Alzheimer’s disease (AD. Increasing evidence suggests that toxicity is linked to diffusible Aβ oligomers, rather than to insoluble fibrils. The use of naturally occurring small molecules for inhibition of Aβ aggregation has recently attracted significant interest for development of effective therapeutic strategies against the disease. A natural polyphenolic flavone, Kaempferol-3-O-rhamnoside (K-3-rh, was utilized to investigate its effects on aggregation and cytotoxic effects of Aβ42 peptide. Several biochemical techniques were used to determine the conformational changes and cytotoxic effect of the peptide in the presence and absence of K-3-rh. Results K-3-rh showed a dose-dependent effect against Aβ42 mediated cytotoxicity. Anti-amyloidogenic properties of K-3-rh were found to be efficient in inhibiting fibrilogenesis and secondary structural transformation of the peptide. The consequence of these inhibitions was the accumulation of oligomeric structural species. The accumulated aggregates were smaller, soluble, non-β-sheet and non-toxic aggregates, compared to preformed toxic Aβ oligomers. K-3-rh was also found to have the remodeling properties of preformed soluble oligomers and fibrils. Both of these conformers were found to remodel into non-toxic aggregates. The results showed that K-3-rh interacts with different Aβ conformers, which affects fibril formation, oligomeric maturation and fibrillar stabilization. Conclusion K-3-rh is an efficient molecule to hinder the self assembly and to abrogate the cytotoxic effects of Aβ42 peptide. Hence, K-3-rh and small molecules with similar structure might be considered for therapeutic development against AD.

  17. Characterization of pigment-leached antifouling coatings using BET surface area measurements and mercury porosimetry

    DEFF Research Database (Denmark)

    Kiil, Søren; Dam-Johansen, Kim

    2007-01-01

    of antifouling coating behaviour because the active binder surface area and porosity of the leached layer are substantially increased. A similar effect was not observed for a coating with a mixture of ZnO and TiO2 pigments. The two experimental methods are expected to be useful for practical analysis of leaching...

  18. Quantifying bacterial adhesion on antifouling polymer brushes via single-cell force spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Rodriguez-Emmenegger, Cesar; Janel, S.; de los Santos Pereira, Andres; Bruns, M.; Lafont, F.

    2015-01-01

    Roč. 6, č. 31 (2015), s. 5740-5751 ISSN 1759-9954 R&D Projects: GA ČR(CZ) GJ15-09368Y; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:OPPK(XE) CZ.2.16/3.1.00/21545 Program:OPPK Institutional support: RVO:61389013 Keywords : antifouling polymer brushes * single-cell force spectroscopy * bacterial adhesion Subject RIV: BO - Biophysics Impact factor: 5.687, year: 2015

  19. Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations

    International Nuclear Information System (INIS)

    Kaikina, Elena I; Naumkin, Pavel I; Shishmarev, Il'ya A

    2009-01-01

    The large-time asymptotic behaviour of solutions of the Cauchy problem is investigated for a non-linear Sobolev-type equation with dissipation. For small initial data the approach taken is based on a detailed analysis of the Green's function of the linear problem and the use of the contraction mapping method. The case of large initial data is also closely considered. In the supercritical case the asymptotic formulae are quasi-linear. The asymptotic behaviour of solutions of a non-linear Sobolev-type equation with a critical non-linearity of the non-convective kind differs by a logarithmic correction term from the behaviour of solutions of the corresponding linear equation. For a critical convective non-linearity, as well as for a subcritical non-convective non-linearity it is proved that the leading term of the asymptotic expression for large times is a self-similar solution. For Sobolev equations with convective non-linearity the asymptotic behaviour of solutions in the subcritical case is the product of a rarefaction wave and a shock wave. Bibliography: 84 titles.

  20. Zwitterionic peptide anchored to conducting polymer PEDOT for the development of antifouling and ultrasensitive electrochemical DNA sensor.

    Science.gov (United States)

    Wang, Guixiang; Han, Rui; Su, Xiaoli; Li, Yinan; Xu, Guiyun; Luo, Xiliang

    2017-06-15

    Zwitterionic peptides were anchored to a conducting polymer of citrate doped poly(3,4-ethylenedioxythiophene) (PEDOT) via the nickel cation coordination, and the obtained peptide modified PEDOT, with excellent antifouling ability and good conductivity, was further used for the immobilization of a DNA probe to construct an electrochemical biosensor for the breast cancer marker BRCA1. The DNA biosensor was highly sensitive (with detection limit of 0.03fM) and selective, and it was able to detect BRCA1 in 5% (v/v) human plasma with satisfying accuracy and low fouling. The marriage of antifouling and biocompatible peptides with conducting polymers opened a new avenue to construct electrochemical biosensors capable of assaying targets in complex biological media with high sensitivity and without biofouling. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Thielavins W–Z7, New Antifouling Thielavins from the Marine-Derived Fungus Thielavia sp. UST030930-004

    Directory of Open Access Journals (Sweden)

    Zhuang Han

    2017-04-01

    Full Text Available Eleven new depsides—thielavins W–Z (1–4 and thielavins Z1–Z7 (5–11—and also four known thielavins—A, H, J, and K (12–15—were isolated from the ethyl acetate extract of a marine-derived fungal strain Thielavia sp UST030930-004. All of these compounds were evaluated for antifouling activity against cyprids of the barnacle Balanus (=Amphibalanus amphitrite. The results showed that compounds 1–3 and 6–13 were active, with EC50 values ranging from 2.95 ± 0.59 to 69.19 ± 9.51 μM, respectively. The inhibitive effect of compounds 1–3 and 7 was reversible. This is the first description of the antifouling activity of thielavins against barnacle cyprids.

  2. In situ release rates of Cu and Zn from commercial antifouling paints at different salinities.

    Science.gov (United States)

    Lagerström, Maria; Lindgren, J Fredrik; Holmqvist, Albin; Dahlström, Mia; Ytreberg, Erik

    2018-02-01

    Antifouling paints are environmentally risk assessed based on their biocidal release rates to the water phase. In situ release rates of copper (Cu) and zinc (Zn) were derived for five commercial paints in two recreational marinas with different salinities (5 and 14 PSU) using an X-Ray Fluorescence spectrometer (XRF). Salinity was found to significantly affect the Cu release, with twice the amount of Cu released at the higher salinity, while its influence on the Zn release was paint-specific. Site-specific release rates for water bodies with salinity gradients, e.g. the Baltic Sea, are therefore necessary for more realistic risk assessments of antifouling paints. Furthermore, the in situ release rates were up to 8 times higher than those generated using standardized laboratory or calculation methods. The environmental risk assessment repeated with the field release rates concludes that it is questionable whether the studied products should be allowed on the Swedish market. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Proteomic and metabolomic profiles of marine Vibrio sp. 010 in response to an antifoulant challenge

    KAUST Repository

    Chandramouli, Kondethimmanahalli; Dash, Swagatika; Zhang, Yu; Ravasi, Timothy; Qian, Peiyuan

    2013-01-01

    Vibrio spp. have the ability to form biofilms, which may contribute to the subsequent successful colonization by microfouling and macrofouling organisms. The effects of an antifouling compound, poly-ether B, on Vibrio sp. 010 were investigated using flow cytometry, proteomics, and metabolomics. A 2-D gel-based proteomic analysis was used to identify proteins responsive to poly-ether B treatment. The profiles of biofilm metabolites were analyzed by ultra-performance liquid chromatography-mass spectrometry. Poly-ether B caused a significant reduction in viability. The proteins affected by the treatment were related to nucleotide metabolism, the glyoxylate cycle, and stress responses. Metabolites such as tripeptides, fatty acids, and quorum-sensing molecules were regulated differentially. Down-regulation of proteins and metabolites potentially led to a loss in colonisation ability, thereby affecting the structure of the biofilm. These results suggest that the proteins and metabolites identified may serve as target molecules for potent antifouling compounds. © 2013 Copyright Taylor and Francis Group, LLC.

  4. Proteomic and metabolomic profiles of marine Vibrio sp. 010 in response to an antifoulant challenge

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2013-08-01

    Vibrio spp. have the ability to form biofilms, which may contribute to the subsequent successful colonization by microfouling and macrofouling organisms. The effects of an antifouling compound, poly-ether B, on Vibrio sp. 010 were investigated using flow cytometry, proteomics, and metabolomics. A 2-D gel-based proteomic analysis was used to identify proteins responsive to poly-ether B treatment. The profiles of biofilm metabolites were analyzed by ultra-performance liquid chromatography-mass spectrometry. Poly-ether B caused a significant reduction in viability. The proteins affected by the treatment were related to nucleotide metabolism, the glyoxylate cycle, and stress responses. Metabolites such as tripeptides, fatty acids, and quorum-sensing molecules were regulated differentially. Down-regulation of proteins and metabolites potentially led to a loss in colonisation ability, thereby affecting the structure of the biofilm. These results suggest that the proteins and metabolites identified may serve as target molecules for potent antifouling compounds. © 2013 Copyright Taylor and Francis Group, LLC.

  5. Comparative safety of the antifouling compound butenolide and 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) to the marine medaka (Oryzias melastigma).

    Science.gov (United States)

    Chen, Lianguo; Ye, Rui; Xu, Ying; Gao, Zhaoming; Au, Doris W T; Qian, Pei-Yuan

    2014-04-01

    evident by clear alterations of the E2/T ratio. The relatively low toxicity of butenolide on marine biota highlights its promising application in the antifouling industry. The present findings also emphasize gender difference in fish susceptibility to chemical treatment (male>female), which is an important consideration for ecological risk assessment. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Comparative safety of the antifouling compound butenolide and 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) to the marine medaka (Oryzias melastigma)

    KAUST Repository

    Chen, Lianguo

    2014-04-01

    evident by clear alterations of the E2/T ratio. The relatively low toxicity of butenolide on marine biota highlights its promising application in the antifouling industry. The present findings also emphasize gender difference in fish susceptibility to chemical treatment (male>female), which is an important consideration for ecological risk assessment. © 2014 Elsevier B.V.

  7. Design and characterization of non-toxic nano-hybrid coatings for corrosion and fouling resistance

    Directory of Open Access Journals (Sweden)

    P. Saravanan

    2016-09-01

    Full Text Available Epoxy resin modified with nano scale fillers offers excellent combination of properties such as enhanced dimensional stability, mechanical and electrical properties, which make them ideally suitable for a wide range of applications. However, the studies about functionalized nano-hybrid for coating applications still require better insight. In the present work we have developed silane treated nanoparticles and to reinforce it with diglycidyl epoxy resin to fabricate surface functionalized nano-hybrid epoxy coatings. The effect of inorganic nano particles on the corrosion and fouling resistance properties was studied by various (1, 3, 5 and 7 wt% filler loading concentrations. Diglycidyl epoxy resin (DGEBA commonly was used for coating. 3-Aminopropyltriethoxysilane (APTES was used as a coupling agent to surface treats the TiO2 nanoparticles. The corrosion and fouling resistant properties of these coatings were evaluated by electrochemical impedance and static immersion tests, respectively. Nano-hybrid coating (3 wt% of APTES–TiO2 showed corrosion resistance up to 108 Ω cm2 after 30 days immersion in 3.5% NaCl solution indicating an excellent corrosion resistance. Static immersion test was carried out in Bay of Bengal (Muttukadu which has reflected good antifouling efficiency of the 3 wt% APTES–TiO2 loaded nano-hybrid coating up to 6 months.

  8. Relation between the electrolytic solution pressures of the metals and their toxicity to the stickleback (Gasterosteus acelueatus l. )

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J R.E.

    1939-01-01

    Lethal concentration limits have been determined for the hydrogen ion and the ions of eighteen metals. The three-spined stickleback (Gasterosteus aculeatus l.) has been employed as test animal. According to their lethal concentration limits on a mg./l. basis their order of increasing toxicity is: Sr, Ca, Na, Ba, Mg, K, Mn, Co, Cr, Ni, Au, Zn, Cd, Pb, Al, Cu, H, Hg, and Ag. On a molar concentration basis the order is as follows: Na, Ca, Sr, Mg, Ba, K, Mn, Co, Cr, Ni, H, Zn, Al, Au, Cd, Pb, Cu, Hg, Ag. All these ions, with the exception of the first six (the metals of the alkalis and alkaline earths), bring about the death of fish by precipitating the gill secretions, thus causing asphyxiation. The alkali and alkaline earth metals appear to enter the body and act as true internal poisons. The position of iron is uncertain. The toxicity of solutions of iron salts appears to be due, mainly if not entirely, to their acidity. On a mg./l. or molar concentration basis there is a marked relationship between the toxicity of the metals and their solution pressures. The metals of very low solution pressure (Ag, Cu, etc.), i.e. those whose ions are most ready to part with their charges and enter into combination with other ions or compounds, are the most toxic as they precipitate the gill secretions and bring about asphyxiation with extreme rapidity. Metals of somewhat higher solution pressure (Zn, Pb, Cd) act in the same way but more slowly. Manganese, which of all the heavy metals has the highest solution pressure, takes effect very slowly and the ions of the alkali and alkaline earth metals, which have a high affinity for their charges, do not precipitate the gill secretions at all. In the case of all ions other than those of the alkali and alkaline earth metals the reactions responsible for the death of the fish take place outside the body. Thus their speed of action does not depend on their penetrating power and the permeability factor does not enter.

  9. Corrosion and biofouling on the non-heat-exchanger surfaces of an ocean thermal energy conversion power plant: a survey

    Energy Technology Data Exchange (ETDEWEB)

    Castelli, V.J. (ed.)

    1979-05-01

    Of the many foreseeable problems confronting economical ocean thermal energy conversion operation, two major items are the deterioration of the structural and functional components, which prevents efficient operation, and the biofouling of the surfaces, which adds excess weight to the floating ocean platform. The techniques required for effective long-term control of deterioration and corrosion have been investigated actively for many years, and successful solutions for most situations have been developed. For the most part, these solutions can be directly transferred to the ocean thermal energy conversion plant. The majority of problems in these areas are expected to be associated with scale-up and will require some advanced development due to the immensity of the ocean thermal energy conversion platform. Current antifouling control systems are not effective for long-term fouling prevention. Commercially available antifouling coatings are limited to a 3-year service life in temperate waters, and even shorter in tropical waters. However, underwater cleaning techniques and some fouling-control systems presently being used by conventional power plants may find utility on an ocean thermal energy conversion plant. In addition, some recent major advances in long-term antifouling coatings sponsored by the Navy may be applicable to ocean thermal energy conversion. 132 references.

  10. Structure elucidation and toxicity analyses of the radiolytic products of aflatoxin B{sub 1} in methanol-water solution

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Feng [Institute of Agro-food Science and Technology of Chinese Academy of Agricultural Sciences, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Graduate School of Chinese Academy of Agricultural Sciences, 12th Zhongguancun South Road, Hai Dian District, Beijing 100081 (China); Xie, Fang [Institute of Agro-food Science and Technology of Chinese Academy of Agricultural Sciences, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Xue, Xiaofeng [Bee Research Institute of Chinese Academy of Agricultural Sciences, 1st Xiangshan North Ditch, Hai Dian District, Beijing 100093 (China); Wang, Zhidong; Fan, Bei [Institute of Agro-food Science and Technology of Chinese Academy of Agricultural Sciences, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Ha, Yiming, E-mail: wxfay2011@hotmail.com [Institute of Agro-food Science and Technology of Chinese Academy of Agricultural Sciences, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China); Key Opening Laboratory of Agricultural Products Processing and Quality Control, Ministry of Agriculture, 2nd Yuanmingyuan West Road, Hai Dian District, Beijing 100193 (China)

    2011-09-15

    Highlights: {yields} Radiolytic products of aflatoxin B{sub 1} were produced under gamma irradiation. {yields} Seven key radiolytic products were structure-elucidated. {yields} Free-radical species in radiolytic solution resulted in the formation of products. {yields} Based on the structure-activity relationship analysis, the toxicity of radiolytic products was significantly reduced compared with that of AFB{sub 1}. {yields} The addition reaction on furan ring double bond was the reason for the reduced toxicity. - Abstract: The identification of the radiolytic products of mycotoxins is a key issue in the feasibility study of gamma ray radiation detoxification. Methanol-water solution (60:40, v/v) spiked with aflatoxin B{sub 1} (AFB{sub 1}; 20 mg L{sup -1}) was irradiated with Co{sup 60} gamma ray to generate radiolytic products. Liquid chromatography-quadruple time-of-flight mass spectrometry was applied to identify the radiolytic products of AFB{sub 1}. Accurate mass and proposed molecular formulas with a high-matching property of more than 20 radiolytic products were obtained. Seven key radiolytic products were proposed based on the molecular formulas and tandem mass spectrometry spectra. The analyses of toxicity and formation pathways were proposed based on the structure of the radiolytic products. The addition reaction caused by the free-radical species in the methanol-water solution resulted in the formation of most radiolytic products. Based on the structure-activity relationship analysis, the toxicity of radiolytic products was significantly reduced compared with that of AFB{sub 1} because of the addition reaction that occurred on the double bond in the terminal furan ring. For this reason, gamma irradiation is deemed an effective tool for the detoxification of AFB{sub 1}.

  11. Role of monomer sequence and backbone chemistry in polypeptoid copolymers for marine antifouling coatings

    Science.gov (United States)

    Patterson, Anastasia; Wenning, Brandon; Rizis, Georgios; Calabrese, David; Finlay, John; Franco, Sofia; Clare, Anthony; Kramer, Edward; Ober, Christopher; Segalman, Rachel

    The design rules elucidated in this work suggest that antifouling coatings bearing pendant peptoid side chains perform better overall in marine fouling tests than those with peptide side chains, with extremely low attachment of N. incerta and high removal of U. linza. This difference in performance is likely due to the lack of a hydrogen bond donor in the peptoid backbone. Furthermore, we show that the bulk polymer material of these hierarchical coatings (based on PEO or PDMS) plays a key role in determining both surface presentation and fouling release performance. We demonstrate these trends utilizing a modular coating based on a triblock copolymer consisting of polystyrene and a vinyl-containing midblock, to which sequence-defined pendant oligomers (peptides or peptoids with sequences of oligo-PEO and fluoroalkyl groups) are attached via thiol-ene ``click'' chemistry. Surface presentation was analyzed with X-ray photoelectron spectroscopy and captive bubble water contact angle, and antifouling performance was evaluated with attachment and removal bioassays of the marine macroalga U. linza and diatom N. incerta. NSF GRFP and ONR PECASE.

  12. The GLOFOULING Partnerships project and the anti-fouling systems: challenges for Marine Environment Protection

    Directory of Open Access Journals (Sweden)

    Fabián Ramírez Cabrales

    2018-05-01

    Full Text Available Within the framework of the Agenda 2030 for Sustainable Development, the regulation of international maritime transport is a priority to face the challenges on the Protection of the Marine Environment. However, some states present difficulties in complying with international or normative agreements adopted by the International Maritime Organization (IMO. In particular, we revised the Guidelines for the control and management of ships’ biofouling to minimize the transfer of invasive aquatic species and their linkage with the Glofouling Associations project, including the adverse effects of the use of antifouling systems and the biocides that may contain. As preliminary results, we identified the challenges that this global project entails for States, shipbuilders, ship maintenance and cleaning companies, universities, port authorities, repair facilities, dry docks and ship recycling, manufacturers and suppliers of anti-fouling paints and other stakeholders. We concluded that the challenges for the international maritime community are linked to the ability of States and stakeholders to enhance scientific knowledge, develop research capacity and transfer marine technology to mitigate marine biological contamination of ships.

  13. Heavy metal toxicities in vegetable crops. VI. The effect of potassium and calcium concentration in the nutrient solution on manganese toxicities in vegetable crops

    Energy Technology Data Exchange (ETDEWEB)

    Osawa, T; Ikeda, H

    1977-01-01

    Eight species of vegetable crops were grown in solution culture in order to investigate the effect of potassium and calcium concentration in the nutrient solution on manganese toxicities in vegetable crops. Manganese was supplied at levels of 0.5, 30, and 100 ppm. At each manganese level potassium or calcium was supplied at rates of 2, 6, and 18 me/l. The pH of the nutrient solution was adjusted to 5. Manganese excess induced interveinal chlorosis on upper leaves in bean, eggplant, pepper, and spinach, and marginal chlorosis on lower leaves in cabbage, lettuce, and celery. In Welsh onions chlorosis was induced on lower leaves. Increasing the supply of potassium and calcium reduced the severity of manganese-induced chlorosis. This beneficial effect was generally more marked with calcium than with potassium. Increasing the supply of potassium and calcium was effective in alleviating the growth reduction of vegetable crops due to manganese excess. This effect also was more marked with calcium than with potassium. With increasing manganese level in the nutrient solution the manganese concentration in leaves of vegetable crops increased. Increasing the supply of potassium and calcium inhibited excessive accumulation of manganese in leaves. The influence of calcium was stronger than that of potassium. In any of the vegetable crops tested, regardless of potassium and calcium treatments, manganese concentration in leaves was closely related to manganese toxicities; the more the accumulation of manganese in leaves increased, the more the severity of manganese-induced chlorosis and growth reduction increased.

  14. Manganese toxicity in pasture legumes. II. Effects of pH and molybdenum levels in the substrate

    Energy Technology Data Exchange (ETDEWEB)

    Truong, N V; Andrew, C S; Wilson, G L

    1971-06-01

    The effects of pH and Mo levels in the growing media on Mn toxicity were investigated for white clover and five tropical pasture legume species. In solution culture, high Mo supply did not influence Mn toxicity. However, in two species, it caused Mo toxicity. High solution pH intensified Mn toxicity in white clover, probably by way of uptake. The effects of Ca and P on Mn toxicity reported in a previous paper, were not greatly influenced by solution pH. In the soil, Mo application greatly increased dry matter yield of white clover grown on soils high in exchangeable Mn. This effect was more easily attributed to an influence on N metabolism of the legume plant than on Mn toxicity. Measured soil pH was found to have little influence on the level of exchangeable Mn in the soil. However the larger pH changes in small soil pockets, resulting from non-uniform incorporation of chemicals in the soil, might have a more important effect on this fraction of soil Mn. 31 references, 7 tables.

  15. Les peintures marines antisalissures à base de polymères organostanniques Antifouling Marine Paints Containing Organo-Tin Polymers

    Directory of Open Access Journals (Sweden)

    Dawans F.

    2006-11-01

    Full Text Available Le dépôt des salissures marines sur les ouvrages immergés est influencé par plusieurs facteurs et il entraîne des conséquences néfastes, en particulier pour la maintenance des supports de plates-formes de production du pétrole en mer et pour la consommation d'énergie requise pour la propulsion des navires. Divers moyens de lutte antisalissure ont été envisagés parmi lesquels les peintures marines antisalissures occupent une place de choix. Ces peintures contiennent, en général, un composé métallique toxique envers les organismes marins d'origine animale ou végétale et différents mécanismes d'action ont été proposés. Les dérivés organostanniques sont des agents biocides très efficaces et lorsqu'ils sont liés chimiquement sur un polymère, en particulier sous forme de greffons, on obtient un contrôle amélioré de leur lixiviation dans la phase aqueuse et par conséquent la durée de vie du revêtement antisalissure est prolongée. La synthèse de polymères comportant un cation organostannique toxique peut être effectuée, soit par la polymérisation ou la copolymérisation de monomères insaturés organostanniques, soit par la réaction chimique de composés organostanniques avec un substrat polymère comportant des groupes fonctionnels appropriés. Les avantages et les inconvénients de diverses formulations de peintures à base de dérivés organostanniques sont discutés. Marine fouling deposits on submerged structures are influenced by several factors and bring about harmful consequences, especially with regard to offshore oil-production platform structures and for the energy consumption required for ship propulsion. Various antifouling methods have been considered, including antifouling marine coatings in particular. Such paints generally contain a metallic compound which is toxic with regard to marine organisms of animal or vegetable origin, and various action mechanisms have been proposed. Organo

  16. Microencapsulation of Biocides for Reduced Copper, Long-life Antifouling Coatings

    Science.gov (United States)

    2007-02-01

    NEHC - Naval Environmental Health Center ONR – Office of Naval Research PVA – polyvinyl alcohol QPL – qualified products list TBT – tributyltin ...also organotin) TSCA - Toxic Substance Control Act UNDS - Uniform National Discharge Standards US – United States VOC – volatile organic content...mechanisms, and are designed to erode or polish with time to ensure long service lives (Yebra et. al., 2004). Fouling release coatings are a non- toxic

  17. New hybrid materials based on poly(ethyleneoxide-grafted polysilazane by hydrosilylation and their anti-fouling activities

    Directory of Open Access Journals (Sweden)

    Thi Dieu Hang Nguyen

    2013-10-01

    Full Text Available The objective of this work was to develop new coating materials based on poly(ethyleneoxide (PEO, which was grafted onto polysilazane (PSZ by hydrosilylation. Three types of PEO with different molecular weights (350, 750, 2000 g/mol were studied. The kinetics and yields of this reaction have been surveyed by 1H and 13C NMR spectroscopy. The PEO grafting-density onto PSZ by hydrosilylation increases with a reduction of the S–H/allyl ratio and a decrease of the PEO chain-length. The PEO-graft-PSZ (PSZ-PEO hybrid coatings, which can be used to prevent the adhesion of marine bacteria on surfaces, were applied by moisture curing at room temperature. The anti-adhesion performance, and thus the anti-fouling activity, of the coatings against three marine bacteria species, Clostridium sp. SR1, Neisseria sp. LC1 and Neisseria sp. SC1, was examined. The anti-fouling activity of the coatings depends on the grafting density and the chain length of PEO. The shortest PEO(350 g/mol-graft-PSZ with the highest graft density was found to have the best anti-fouling activity. As the density of grafted PEO(750 g/mol and PEO(2000 g/mol chains onto the PSZ surface is approximately equal, the relative effectiveness of these two types of PEO is controlled by the length of the PEO chain. The PEO(2000 g/mol-graft-PSZ coatings are more efficient than the PEO(750 g/mol-graft-PSZ coatings for the bacterial anti-adhesion.

  18. Response of non-added solutes during nutrient addition experiments in streams

    Science.gov (United States)

    Rodriguez-Cardona, B.; Wymore, A.; Koenig, L.; Coble, A. A.; McDowell, W. H.

    2015-12-01

    Nutrient addition experiments, such as Tracer Additions for Spiraling Curve Characterization (TASCC), have become widely popular as a means to study nutrient uptake dynamics in stream ecosystems. However, the impact of these additions on ambient concentrations of non-added solutes is often overlooked. TASCC addition experiments are ideal for assessing interactions among solutes because it allows for the characterization of multiple solute concentrations across a broad range of added nutrient concentrations. TASCC additions also require the addition of a conservative tracer (NaCl) to track changes in conductivity during the experimental manipulation. Despite its use as a conservative tracer, chloride (Cl) and its associated sodium (Na) might change the concentrations of other ions and non-added nutrients through ion exchange or other processes. Similarly, additions of biologically active solutes might change the concentrations of other non-added solutes. These methodological issues in nutrient addition experiments have been poorly addressed in the literature. Here we examine the response of non-added solutes to pulse additions (i.e. TASCC) of NaCl plus nitrate (NO3-), ammonium, and phosphate across biomes including temperate and tropical forests, and arctic taiga. Preliminary results demonstrate that non-added solutes respond to changes in the concentration of these added nutrients. For example, concentrations of dissolved organic nitrogen (DON) in suburban headwater streams of New Hampshire both increase and decrease in response to NO3- additions, apparently due to biotic processes. Similarly, cations such as potassium, magnesium, and calcium also increase during TASCC experiments, likely due to cation exchange processes associated with Na addition. The response of non-added solutes to short-term pulses of added nutrients and tracers needs to be carefully assessed to ensure that nutrient uptake metrics are accurate, and to detect biotic interactions that may

  19. Geometrical Solutions of Some Quadratic Equations with Non-Real Roots

    Science.gov (United States)

    Pathak, H. K.; Grewal, A. S.

    2002-01-01

    This note gives geometrical/graphical methods of finding solutions of the quadratic equation ax[squared] + bx + c = 0, a [not equal to] 0, with non-real roots. Three different cases which give rise to non-real roots of the quadratic equation have been discussed. In case I a geometrical construction and its proof for finding the solutions of the…

  20. Numerical solution of non-linear diffusion problems

    International Nuclear Information System (INIS)

    Carmen, A. del; Ferreri, J.C.

    1998-01-01

    This paper presents a method for the numerical solution of non-linear diffusion problems using finite-differences in moving grids. Due to the presence of steep fronts in the solution domain and to the presence of advective terms originating in the grid movement, an implicit TVD scheme, first order in time and second order in space has been developed. Some algebraic details of the derivation are given. Results are shown for the pure advection of a scalar as a test case and an example dealing with the slow spreading of viscous fluids over plane surfaces. The agreement between numerical and analytical solutions is excellent. (author). 8 refs., 3 figs

  1. SYNTHESIS, THERMAL STUDIES AND CONVERSION DEGREE OF DIMETHACRYLATE POLYMERS USING NEW NON-TOXIC COINITIATORS

    Directory of Open Access Journals (Sweden)

    Rafael Turra Alarcon

    Full Text Available The aim of this paper is to replace toxic coinitiators (tertiary amines by non-toxic compounds such as glycerol and inositol (polyalcohol in dimethacrylate resins. For this purpose, mid infrared spectroscopy (MIR was used to calculate the monomers' degree of conversion (%DC; as well as simultaneous Thermogravimetric Analysis – Differential Thermal Analysis (TGA-DTA and Differential Scanning Calorimetry (DSC were conducted to evaluate thermal stability, degradation steps, and thermal events. The use of different initiator systems did not modify the thermal events or the thermal stability of each of the dimethacrylate resins. Results show a substitution of system 2 (toxicity by system 3 (low toxicity, which had a good conversion velocity and total conversion in some monomers, is plausible.

  2. Some examples of non-linear systems and characteristics of their solutions

    CSIR Research Space (South Africa)

    Greben, JM

    2006-07-01

    Full Text Available . In contrast to certain other applications in complexity theory, these non-linear solutions are characterized by great stability. To go beyond the dominant non-perturbative solution one has to consider the source term as well. The parameter freedom...

  3. On the stability of non-supersymmetric supergravity solutions

    Science.gov (United States)

    Imaanpur, Ali; Zameni, Razieh

    2017-09-01

    We examine the stability of some non-supersymmetric supergravity solutions that have been found recently. The first solution is AdS5 ×M6, for M6 an stretched CP3. We consider breathing and squashing mode deformations of the metric, and find that the solution is stable against small fluctuations of this kind. Next we consider type IIB solution of AdS2 ×M8, where the compact space is a U (1) bundle over N (1 , 1). We study its stability under the deformation of M8 and the 5-form flux. In this case we also find that the solution is stable under small fluctuation modes of the corresponding deformations.

  4. On the stability of non-supersymmetric supergravity solutions

    Directory of Open Access Journals (Sweden)

    Ali Imaanpur

    2017-09-01

    Full Text Available We examine the stability of some non-supersymmetric supergravity solutions that have been found recently. The first solution is AdS5×M6, for M6 an stretched CP3. We consider breathing and squashing mode deformations of the metric, and find that the solution is stable against small fluctuations of this kind. Next we consider type IIB solution of AdS2×M8, where the compact space is a U(1 bundle over N(1,1. We study its stability under the deformation of M8 and the 5-form flux. In this case we also find that the solution is stable under small fluctuation modes of the corresponding deformations.

  5. Non-toxic, non-biocide-release antifouling coatings based on molecular structure design for marine applications

    NARCIS (Netherlands)

    Nurioglu, A.G.; Carvalho Esteves, de A.C.; With, de G.

    2015-01-01

    Marine biofouling generally refers to the undesirable accumulation of biological organisms on surfaces in contact with seawater. This natural phenomenon represents a major economic concern for marine industries, e.g. for ships and vessels, oil and wind-turbine sea-platforms, pipelines, water valves

  6. Determination of diuron and the antifouling paint biocide Irgarol 1051 in Dutch marinas and coastal waters

    NARCIS (Netherlands)

    Lamoree, M.H.; Swart, C.P.; van der Horst, A.; van Hattum, A.G.M.

    2002-01-01

    A sensitive LC-electrospray MS-MS method using off-line solid-phase extraction for the determination of diuron and Irgarol 1051 has been developed, enabling determination of both compounds at sub-ppt levels. Diuron and Irgarol 1051 are used as alternatives for tributyltin in antifouling paints that

  7. Demonstration of a Non-Toxic Reaction Control Engine

    Science.gov (United States)

    Robinson, Philip J.; Turpin, Alicia A.; Veith, Eric M.

    2007-01-01

    T:hree non-toxic demonstration reaction control engines (RCE) were successfully tested at the Aerojet Sacramento facility under a technology contract sponsored by the National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC). The goals of the NASA MSFC contract (NAS8-01109) were to develop and expand the technical maturity of a non-toxic, on-orbit auxiliary propulsion system (APS) thruster under the auspices of the Exploration Systems Mission Directorate. The demonstration engine utilized Liquid Oxygen (LOX) and Ethanol as propellants to produce 870 lbf thrust. The Aerojet RCE's were successfully acceptance tested over a broad range of operating conditions. Steady state tests evaluated engine response to varying chamber pressures and mixture ratios. In addition to the steady state tests, a variety of pulsing tests were conducted over a wide range of electrical pulse widths (EPW). Each EPW condition was also tested over a range of percent duty cycles (DC), and bit impulse and pulsing specific impulse were determined for each of these conditions. Subsequent to acceptance testing at Aerojet, these three engines were delivered to the NASA White Sands Test Facility (WSTF) in April 2005 for incorporation into a cryogenic Auxiliary Propulsion System Test Bed (APSTB). The APSTB is a test article that will be utilized in an altitude test cell to simulate anticipated mission applications. The objectives of this APSTB testing included evaluation of engine performance over an extended duty cycle map of propellant pressure and temperature, as well as engine and system performance at typical mission duty cycles over extended periods of time. This paper provides acceptance test results and a status of the engine performance as part of the system level testing.

  8. Surface modification of polyamide reverse osmosis membrane with organic-inorganic hybrid material for antifouling

    Science.gov (United States)

    Zhang, Yang; Wan, Ying; Pan, Guoyuan; Yan, Hao; Yao, Xuerong; Shi, Hongwei; Tang, Yujing; Wei, Xiangrong; Liu, Yiqun

    2018-03-01

    A series of thin-film composite reverse osmosis membranes based on polyamide have been modified by coating the polyvinyl alcohol and 3-mercaptopropyltriethoxysilane aqueous solution prepared by a sol-gel process on the membrane surface, followed by thermal crosslinking treatment. In order to improve the hydrophilicity of the modified TFC membranes, the membranes were then immersed into H2O2 aqueous solution to convert -SH into -SO3H. The resulting TFC membranes were characterized by SEM, AFM, ATR-FTIR, streaming potential, XPS as well as static contact angle. After surface modification with the organic-inorganic hybrid material, the TFC membranes show increased NaCl rejection and decreased water flux with increasing 3-mercaptopropyltrimethoxysilane content in coating solution. The optimal modification membrane (PA-SMPTES-0.8) exhibits a NaCl rejection of 99.29%, higher than that (97.20%) of the virgin PA membrane, and a comparable water flux to virgin PA membrane (41.7 L/m2 h vs 47.9 L/m2 h). More importantly, PA-SMPTES-0.8 membrane shows much more improved fouling resistance to BSA than virgin PA and PVA modified PA (PA-PVA-1.0) membranes. PA-SMPTES-0.8 membrane loses about 13% of the initial flux after BSA fouling for 12 h, which is lower than that of virgin PA and PA-PVA-1.0 membranes (42% and 18%). Furthermore, the flux recovery of PA-SMPTES-0.8 membrane reaches 94% after cleaning. Thus the TFC membranes modified by this organic-inorganic hybrid technology show potential applications as antifouling RO membrane for desalination and purification.

  9. Comparative gene expression in toxic versus non-toxic strains of the marine dinoflagellate Alexandrium minutum

    Directory of Open Access Journals (Sweden)

    Glöckner Gernot

    2010-04-01

    Full Text Available Abstract Background The dinoflagellate Alexandrium minutum typically produces paralytic shellfish poisoning (PSP toxins, which are known only from cyanobacteria and dinoflagellates. While a PSP toxin gene cluster has recently been characterized in cyanobacteria, the genetic background of PSP toxin production in dinoflagellates remains elusive. Results We constructed and analysed an expressed sequence tag (EST library of A. minutum, which contained 15,703 read sequences yielding a total of 4,320 unique expressed clusters. Of these clusters, 72% combined the forward-and reverse reads of at least one bacterial clone. This sequence resource was then used to construct an oligonucleotide microarray. We analysed the expression of all clusters in three different strains. While the cyanobacterial PSP toxin genes were not found among the A. minutum sequences, 192 genes were differentially expressed between toxic and non-toxic strains. Conclusions Based on this study and on the lack of identified PSP synthesis genes in the two existent Alexandrium tamarense EST libraries, we propose that the PSP toxin genes in dinoflagellates might be more different from their cyanobacterial counterparts than would be expected in the case of a recent gene transfer. As a starting point to identify possible PSP toxin-associated genes in dinoflagellates without relying on a priori sequence information, the sequences only present in mRNA pools of the toxic strain can be seen as putative candidates involved in toxin synthesis and regulation, or acclimation to intracellular PSP toxins.

  10. Cysteine as a non toxic corrosion inhibitor for copper alloys in conservation

    DEFF Research Database (Denmark)

    Gravgaard, Mari; van Lanschot, Jettie

    2012-01-01

    studies of colour changes in the corrosion products. The results obtained in this article demonstrate that cysteine could be a non-toxic alternative to BTA. Cysteine performed as well as BTA on pre-corroded coupons with bronze disease in high humidity and showed acceptable results during testing...

  11. Formation of H2O2 at UV-photolysis of water solutions of phenol

    International Nuclear Information System (INIS)

    Guliyeva, U.A.; Gurbanov, M.A.; Mahmudov, H.M.

    2013-01-01

    Non-traditional methods, based on application of ionizing and UV-radiation widely used for cleaning of water solutions from toxic substances, including phenols. These methods have simultaneously effect including of disinfection and chemical cleaning of water solutions from various industrial processes

  12. Poly(ethylene glycol)-based thiol-ene hydrogel coatings: curing chemistry, aqueous stability, and potential marine antifouling applications

    NARCIS (Netherlands)

    Lundberg, P.; Bruin, A.; Klijnstra, J.W.; Nyström, A.M.; Johansson, M.; Malkoch, M.; Hult, A.

    2010-01-01

    Photocured thiol-ene hydrogel coatings based on poly(ethylene glycol) (PEG) were investigated for marine antifouling purposes. By varying the PEG length, vinylic end-group, and thiol cross-linker, a library of hydrogel coatings with different structural composition was efficiently accomplished, with

  13. Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): Effects of temperature and salinity

    International Nuclear Information System (INIS)

    Kwok, K.W.H.; Leung, K.M.Y.

    2005-01-01

    Intertidal harpacticoid copepods are commonly used in eco-toxicity tests worldwide. They predominately live in mid-high shore rock pools and often experience a wide range of temperature and salinity fluctuation. Most eco-toxicity tests are conducted at fixed temperature and salinity and thus the influence of these environmental factors on chemical toxicity is largely unknown. This study investigated the combined effect of temperature and salinity on the acute toxicity of the copepod Tigriopus japonicus against two common biocides, copper (Cu) and tributyltin (TBT) using a 2 x 3 x 4 factorial design (i.e. two temperatures: 25 and 35 o C; three salinities: 15.0 per mille , 34.5 per mille and 45.0 per mille ; three levels of the biocide plus a control). Copper sulphate and tributyltin chloride were used as the test chemicals while distilled water and acetone were utilised as solvents for Cu and TBT respectively. 96h-LC50s of Cu and TBT were 1024 and 0.149 μg l -1 respectively (at 25 o C; 34.5 per mille ) and, based on these results, nominal biocide concentrations of LC0 (i.e. control), LC30, LC50 and LC70 were employed. Analysis of Covariance using 'concentration' as the covariate and both 'temperature' and 'salinity' as fixed factors, showed a significant interaction between temperature and salinity effects for Cu, mortality increasing with temperature but decreasing with elevated salinity. A similar result was revealed for TBT. Both temperature and salinity are, therefore, important factors affecting the results of acute eco-toxicity tests using these marine copepods. We recommend that such eco-toxicity tests should be conducted at a range of environmentally realistic temperature/salinity regimes, as this will enhance the sensitivity of the test and improve the safety margin in line with the precautionary principle

  14. Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): Effects of temperature and salinity

    Energy Technology Data Exchange (ETDEWEB)

    Kwok, K.W.H. [Swire Institute of Marine Science, Department of Ecology and Biodiversity, University of Hong Kong, Pokfulam, Hong Kong (China); Leung, K.M.Y. [Swire Institute of Marine Science, Department of Ecology and Biodiversity, University of Hong Kong, Pokfulam, Hong Kong (China)]. E-mail: kmyleung@hkucc.hku.hk

    2005-07-01

    Intertidal harpacticoid copepods are commonly used in eco-toxicity tests worldwide. They predominately live in mid-high shore rock pools and often experience a wide range of temperature and salinity fluctuation. Most eco-toxicity tests are conducted at fixed temperature and salinity and thus the influence of these environmental factors on chemical toxicity is largely unknown. This study investigated the combined effect of temperature and salinity on the acute toxicity of the copepod Tigriopus japonicus against two common biocides, copper (Cu) and tributyltin (TBT) using a 2 x 3 x 4 factorial design (i.e. two temperatures: 25 and 35 {sup o}C; three salinities: 15.0 per mille , 34.5 per mille and 45.0 per mille ; three levels of the biocide plus a control). Copper sulphate and tributyltin chloride were used as the test chemicals while distilled water and acetone were utilised as solvents for Cu and TBT respectively. 96h-LC50s of Cu and TBT were 1024 and 0.149 {mu}g l{sup -1} respectively (at 25 {sup o}C; 34.5 per mille ) and, based on these results, nominal biocide concentrations of LC0 (i.e. control), LC30, LC50 and LC70 were employed. Analysis of Covariance using 'concentration' as the covariate and both 'temperature' and 'salinity' as fixed factors, showed a significant interaction between temperature and salinity effects for Cu, mortality increasing with temperature but decreasing with elevated salinity. A similar result was revealed for TBT. Both temperature and salinity are, therefore, important factors affecting the results of acute eco-toxicity tests using these marine copepods. We recommend that such eco-toxicity tests should be conducted at a range of environmentally realistic temperature/salinity regimes, as this will enhance the sensitivity of the test and improve the safety margin in line with the precautionary principle.

  15. Poly-ethers from Winogradskyella poriferorum: Antifouling potential, time-course study of production and natural abundance

    KAUST Repository

    Dash, Swagatika

    2011-08-01

    A sponge-associated bacterium, Winogradskyella poriferorum strain UST030701-295T was cultured up to 100l for extraction of antifouling bioactive compounds. Five poly-ethers were isolated and partially characterized based on nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS); two of them showed inhibitory effects on biofilm formation of marine bacteria and larval settlement of macro-foulers but did not produce any adverse effects on the phenotypes of zebra fish embryos at a concentration of 5μgml -1. The effect of culture duration on the production of the poly-ethers and the bioactivity of the relevant extracts was monitored over a period of 12days. The total crude poly-ether production increased from day 2 to day 5 and the highest bioactivity was observed on day 3. The poly-ethers were found to be localized in the cellular fraction of the extracts, implying their natural occurrence. The potent bioactivity of these poly-ethers together with their high natural abundance in bacteria makes them promising candidates as ingredients in antifouling applications. © 2011 Elsevier Ltd.

  16. Enhanced permeability and antifouling performance of cellulose acetate ultrafiltration membrane assisted by l-DOPA functionalized halloysite nanotubes.

    Science.gov (United States)

    Mu, Keguang; Zhang, Dalun; Shao, Ziqiang; Qin, Dujian; Wang, Yalong; Wang, Shuo

    2017-10-15

    l-Dopa functionalized halloysite nanotubes (HNTs) were prepared by the self-polymerization of l-dopa in the weak alkaline condition. Then different contents of l-dopa coated HNTs (LPDHNTs) were blended into cellulose acetate to prepare enhanced performance ultrafiltration membranes via the phase inversion method. The HNTs and LPDHNTs were characterized by FTIR, XPS, and TEM anysis. And the membranes morphologies, separation performance, antifouling performance, mechanical properties and hydrophilicity were also investigated. It was found that the composite membranes exhibited excellent antifouling performance. The pure water flux of 3.0wt% LPDHNTs/CA membrane increased from 11.4Lm -2 h -1 to 92.9Lm -2 h -1 , while the EA rejection ratio of the membrane was about 91.2%. In addition, the mechanical properties of the resultant membranes were strengthened compared with the CA ultrafiltration membrane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Synthesis of Polydimethylsiloxane-Modified Polyurethane and the Structure and Properties of Its Antifouling Coatings

    Directory of Open Access Journals (Sweden)

    Zhan-Ping Zhang

    2018-04-01

    Full Text Available Polydimethylsiloxane (PDMS could be used to improve the antifouling properties of the fouling release coatings based on polyurethane (PU. A series of polydimethylsiloxane-modified polyurethane coatings were synthesized with various PDMS contents, using the solvent-free method. The effects of PDMS content and seawater immersion on the chain structure and surface morphology were investigated by confocal laser scanning microscopy (CLSM, atomic force microscopy (AFM, Fourier transform infrared spectroscopy (FTIR, differential scanning calorimetry (DSC, thermogravimetric analysis (TGA and X-ray diffraction (XRD. Based on the measurements of contact angles of deionized water and diiodomethane, surface free energies of the coatings were estimated according to the Owens two-liquid method. The PDMS-modified polyurethane exhibited lower surface free energy and a lower glass transition temperature than polyurethane. The presence of PDMS increased the degree of microphase separation, and enhanced the water resistance of the coatings. The optimum amount of PDMS reduced the elastic modulus and increased the ductility of the coating. The presence of PDMS benefited the removal of weakly attached organisms. Panel tests in the Yellow Sea demonstrated the antifouling activity of the PDMS-modified polyurethane.

  18. Femtosecond Non-Markovian Optical Dynamics in Solution

    NARCIS (Netherlands)

    Nibbering, Erik T.J.; Wiersma, Douwe A.; Duppen, Koos

    1991-01-01

    Femtosecond photon-echo experiments on sodium resorufin in dimethylsulfoxide at room temperature show that optical dephasing in solution is of non-Markovian character. A single Gauss-Markov stochastic modulation process is used to interpret both the femtosecond light-scattering results and the

  19. Survey of four marine antifoulant constituents (copper, zinc, diuron and Irgarol 1051) in two UK estuaries.

    Science.gov (United States)

    Comber, S D W; Gardner, M J; Boxall, A B A

    2002-06-01

    A field survey of antifoulant concentrations was undertaken in two UK estuaries (Hamble and Orwell) in 1998 and 1999. The two locations offered variations in physical aspects (Orwell estuary being significantly larger than the Hamble) as well as differences in boat densities (Hamble having almost twice as many vessels moored in the estuary and marinas). Samples were analysed for copper, zinc, diuron and Irgarol 1051, and were collected in summer and winter in order to identify potential seasonal variations in concentrations. The effect that different marina types (e.g. locked marina, one located in a natural inlet and pontooned ones in the open estuary) had on antifoulant concentrations were also investigated. Concentrations of the organic booster biocides, diuron and Irgarol 1051 in the marinas and estuaries were mainly influenced by leaching from antifoulant paints applied to the hulls of leisure craft, and so levels reflected the number of vessels present in the water. As a consequence significantly higher concentrations were found in marinas (up to ca. 900 ng l(-1) for diuron and 240 ng l(-1) for Irgarol 1051) compared with estuaries (up to ca. 400 ng l(-1) for diuron and 100 ng l(-1) for Irgarol 1051) and in summer compared with winter. Sediment concentrations of Irgarol 1051 and diuron were rarely detectable other than in the marinas where high concentrations were detected near slipways assumed to be derived from washed off paint chips. Dissolved concentration profiles for copper and zinc in the estuaries and marinas were different from those for the organic booster biocides partly because other sources of these metals contributed to estuarine and marina loads. In particular, riverine loads and inputs from sacrificial anodes attached to leisure craft, exhibited a major influence of estuarine levels of zinc. Consequently, only in the Hamble estuary for copper was there a clear distinction between summer (typically 3-4 microg l(-1)) and winter dissolved values

  20. Fabrication of Copper Nanowire Films and their Incorporation into Polymer Matrices for Antibacterial and Marine Antifouling Applications

    NARCIS (Netherlands)

    Jiang, S.; Sreethawong, T.; Siew Chen Lee, S.; Bee Jin Low, M.; Yin Win, BrzozowskaK.; Brzozowska, A.M.; Lay Ming Teo, S.; Vancso, Gyula J.; Janczewski, D.; Han, M-Y

    2015-01-01

    With the ban of tributyltin, copper-based biocides are now widely used in antifouling coatings as the major active ingredients. Given the past experience of heavy-metal accumulation in harbors with limited water exchange, there is a significant interest in developing copper materials that greatly

  1. Antifouling activity exhibited by secondary metabolites of the marine sponge, Haliclona exigua (Kirkpatrick)

    Digital Repository Service at National Institute of Oceanography (India)

    LimnaMol, V.P.; Raveendran, T.V.; Parameswaran, P.S.

    stream_size 29406 stream_content_type text/plain stream_name Int_Biodeterior_Biodegrad_63_67.pdf.txt stream_source_info Int_Biodeterior_Biodegrad_63_67.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8... 1    Author version: Int. Biodeterior. Biodegrad.: 63(1); 2009; 67-72 Antifouling activity exhibited by secondary metabolites of the marine sponge, Haliclona exigua (Kirkpatrick) VP LIMNA MOL a , TV RAVEENDRAN a, * & PS PARAMESWARAN b a...

  2. Antifouling activity of Indian marine invertebrate against the green mussel Perna viridis L.

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Jayasree, V.; Naik, C.G.; Parameswaran, P.S.; Raveendran, T.V.; Kamat, S.Y.

    antifouling activ- ity, which was evident from the few observations made in the present study, for example, C. kremfi collected from Kalpeni showed moderate activity, while that from Kada- math showed no activity. Similarly, C. pachyclados from Kalpeni showed... moderate activity, while that from Kada- math showed strong activity. This was also the case with Suberogorgia suberosa from Mandapam and Beyt Dwarka, which showed no and positive activity, respectively. Intra- specific variability in the chemically...

  3. The characterization, replication and testing of dermal denticles of Scyliorhinus canicula for physical mechanisms of biofouling prevention

    International Nuclear Information System (INIS)

    Sullivan, Timothy; Regan, Fiona

    2011-01-01

    There is a current need to develop novel non-toxic antifouling materials. The mechanisms utilized by marine organisms to prevent fouling of external surfaces are of interest in this regard. Biomimicry of these mechanisms and the ability to transfer the antifouling characteristics of these surfaces to artificial surfaces are a highly attractive prospect to those developing antifouling technologies. In order to achieve this, the mechanisms responsible for any antifouling ability must be elucidated from the study of the natural organism and the critical surface parameters responsible for fouling reduction. Dermal denticles of members of the shark family have been speculated to possess some natural, as yet unidentified antifouling mechanism related to the physical presence of denticles. In this study, the dermal denticles of one particular member of the slow-swimming sharks, Scyliorhinus canicula were characterized and it was found that a significant natural variation in denticle dimensions exists in this species. The degree of denticle surface contamination was quantified on denticles at various locations and it was determined that the degree of contamination of the dorsal surface of denticles varies with the position on the shark body. In addition, we successfully produced synthetic sharkskin samples using the real skin as a template. Testing of the produced synthetic skin in field conditions resulted in significant differences in material attachment on surfaces exhibiting denticles of different dimensions.

  4. The characterization, replication and testing of dermal denticles of Scyliorhinus canicula for physical mechanisms of biofouling prevention

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Timothy; Regan, Fiona, E-mail: fiona.regan@dcu.ie [Marine and Environmental Sensing Technology Hub (MESTECH), National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland)

    2011-12-15

    There is a current need to develop novel non-toxic antifouling materials. The mechanisms utilized by marine organisms to prevent fouling of external surfaces are of interest in this regard. Biomimicry of these mechanisms and the ability to transfer the antifouling characteristics of these surfaces to artificial surfaces are a highly attractive prospect to those developing antifouling technologies. In order to achieve this, the mechanisms responsible for any antifouling ability must be elucidated from the study of the natural organism and the critical surface parameters responsible for fouling reduction. Dermal denticles of members of the shark family have been speculated to possess some natural, as yet unidentified antifouling mechanism related to the physical presence of denticles. In this study, the dermal denticles of one particular member of the slow-swimming sharks, Scyliorhinus canicula were characterized and it was found that a significant natural variation in denticle dimensions exists in this species. The degree of denticle surface contamination was quantified on denticles at various locations and it was determined that the degree of contamination of the dorsal surface of denticles varies with the position on the shark body. In addition, we successfully produced synthetic sharkskin samples using the real skin as a template. Testing of the produced synthetic skin in field conditions resulted in significant differences in material attachment on surfaces exhibiting denticles of different dimensions.

  5. The characterization, replication and testing of dermal denticles of Scyliorhinus canicula for physical mechanisms of biofouling prevention.

    Science.gov (United States)

    Sullivan, Timothy; Regan, Fiona

    2011-12-01

    There is a current need to develop novel non-toxic antifouling materials. The mechanisms utilized by marine organisms to prevent fouling of external surfaces are of interest in this regard. Biomimicry of these mechanisms and the ability to transfer the antifouling characteristics of these surfaces to artificial surfaces are a highly attractive prospect to those developing antifouling technologies. In order to achieve this, the mechanisms responsible for any antifouling ability must be elucidated from the study of the natural organism and the critical surface parameters responsible for fouling reduction. Dermal denticles of members of the shark family have been speculated to possess some natural, as yet unidentified antifouling mechanism related to the physical presence of denticles. In this study, the dermal denticles of one particular member of the slow-swimming sharks, Scyliorhinus canicula were characterized and it was found that a significant natural variation in denticle dimensions exists in this species. The degree of denticle surface contamination was quantified on denticles at various locations and it was determined that the degree of contamination of the dorsal surface of denticles varies with the position on the shark body. In addition, we successfully produced synthetic sharkskin samples using the real skin as a template. Testing of the produced synthetic skin in field conditions resulted in significant differences in material attachment on surfaces exhibiting denticles of different dimensions.

  6. Significance of antifouling paint flakes to the distribution of dichlorodiphenyltrichloroethanes (DDTs) in estuarine sediment

    International Nuclear Information System (INIS)

    Wu, Chen-Chou; Bao, Lian-Jun; Tao, Shu; Zeng, Eddy Y.

    2016-01-01

    Recently published literature indicated that dichlorodiphenyltrichloroethane (DDT)-containing antifouling paint flakes were heterogeneously distributed within estuarine sediments. However, the significance of antifouling paint flakes in the fate and transport of DDT compounds and other organic pollutants in estuarine sediment is yet to be adequately addressed. To fill this knowledge gap, estuarine sediment and paint flakes from cabin and boat surfaces were collected from a fishery base in Guangdong Province of South China and analyzed for DDT compounds. Coarse fractioned samples collected from the vicinity of boat maintenance facilities contained appreciable amounts of colorful particles, which were identified as paint flakes by Fourier transform infrared spectroscopy. The highest concentrations of DDXs (sum of DDTs and its metabolites) occurred in the heavy-density (>1.7 g cm"−"3) fraction of coarse-size (200–2000 μm) sediments from near the boat maintenance facilities, suggesting the importance of paint flakes in the distribution pattern of “hot spots” in estuarine sediment. Moreover, the desorption rates of DDT compounds from paint flakes and the heavy-density fraction of coarse-size sediment were both extremely slow. Apparently, unevenly distributed paint flakes in sediment can artificially inflate the sorption capacity of heavy-density sediment for DDT compounds, and therefore can substantially change the environmental fate and behavior of hydrophobic organic chemicals in estuarine sediment. Finally, commonly used source diagnostic indices of DDT compounds were mostly grain-size and density dependent in sediment, as a result of the occurrence of paint flakes, which may strongly compromise the outcome of any source diagnostics efforts. - Highlights: • Concentrations of DDTs were elevated in coarse and high-density fractions. • The desorption rates of DDTs from coarse and high-density fraction were extreme slow. • DDTs-containing antifouling

  7. Non toxic additives for improved fabric filter performance

    Energy Technology Data Exchange (ETDEWEB)

    Bustard, C.J.; Baldrey, K.E.; Ebner, T.G. [ADA Technologies, Inc., Englewood, CO (United States)] [and others

    1995-11-01

    The overall objective of this three-phase Small Business innovative Research (SBIR) program funded by the Department of Energy pittsburgh Energy Technology Center (PETC) is to commercialize a technology based upon the use of non-toxic, novel flue gas conditioning agents to improve particulate air toxic control and overall fabric filter performance. The ultimate objective of the Phase II program currently in progress is to demonstrate that the candidate additives are successful at full-scale on flue gas from a coal-fired utility boiler. This paper covers bench-scale field tests conducted during the period February through May, 1995. The bench-scale additives testing was conducted on a flue gas slipstream taken upstream of the existing particulate control device at a utility power plant firing a Texas lignite coal. These tests were preceded by extensive testing with additives in the laboratory using a simulated flue gas stream and re-dispersed flyash from the same power plant. The bench-scale field testing was undertaken to demonstrate the performance with actual flue gas of the bet candidate additives previously identified in the laboratory. Results from the bench-scale tests will be used to establish operating parameters for a larger-scale demonstration on either a single baghouse compartment or a full baghouse at the same site.

  8. Changes in soil toxicity by phosphate-aided soil washing: effect of soil characteristics, chemical forms of arsenic, and cations in washing solutions.

    Science.gov (United States)

    Jho, Eun Hea; Im, Jinwoo; Yang, Kyung; Kim, Young-Jin; Nam, Kyoungphile

    2015-01-01

    This study was set to investigate the changes in the toxicity of arsenic (As)-contaminated soils after washing with phosphate solutions. The soil samples collected from two locations (A: rice paddy and B: forest land) of a former smelter site were contaminated with a similar level of As. Soil washing (0.5 M phosphate solution for 2 h) removed 24.5% As, on average, in soil from both locations. Regardless of soil washing, Location A soil toxicities, determined using Microtox, were greater than that of Location B and this could be largely attributed to different soil particle size distribution. With soils from both locations, the changes in As chemical forms resulted in either similar or greater toxicities after washing. This emphasizes the importance of considering ecotoxicological aspects, which are likely to differ depending on soil particle size distribution and changes in As chemical forms, in addition to the total concentration based remedial goals, in producing ecotoxicologically-sound soils for reuse. In addition, calcium phosphate used as the washing solution seemed to contribute more on the toxic effects of the washed soils than potassium phosphate and ammonium phosphate. Therefore, it would be more appropriate to use potassium or ammonium phosphate than calcium phosphate for phosphate-aided soil washing of the As-contaminated soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Effects of poly-ether B on proteome and phosphoproteome expression in biofouling Balanus amphitrite cyprids

    KAUST Repository

    Dash, Swagatika

    2012-04-01

    Biofouling is ubiquitous in marine environments, and the barnacle Balanus amphitrite is one of the most recalcitrant and aggressive biofoulers in tropical waters. Several natural antifoulants that were claimed to be non-toxic have been isolated in recent years, although the mechanism by which they inhibit fouling is yet to be investigated. Poly-ether B has shown promise in the non-toxic inhibition of larval barnacle attachment. Hence, in this study, multiplex two-dimensional electrophoresis (2-DE) was applied in conjunction with mass spectrometry to investigate the effects of poly-ether B on barnacle larvae at the molecular level. The cyprid proteome response to poly-ether B treatment was analyzed at the total proteome and phosphoproteome levels, with 65 protein and 19 phosphoprotein spots found to be up- or down-regulated. The proteins were found to be related to energy-metabolism, oxidative stress, and molecular chaperones, thus indicating that poly-ether B may interfere with the redox-regulatory mechanisms governing the settlement of barnacle larvae. The results of this study demonstrate the usefulness of the proteomic technique in revealing the working mechanisms of antifouling compounds. © 2012 Copyright Taylor and Francis Group, LLC.

  10. Pseudoalteromonas spp. serve as initial bacterial attractants in mesocosms of coastal waters but have subsequent antifouling capacity in mesocosms and when embedded in paint.

    Science.gov (United States)

    Bernbom, Nete; Ng, Yoke Yin; Olsen, Stefan Møller; Gram, Lone

    2013-11-01

    The purpose of the present study was to determine if the monoculture antifouling effect of several pigmented pseudoalteromonads was retained in in vitro mesocosm systems using natural coastal seawater and when the bacteria were embedded in paint used on surfaces submerged in coastal waters. Pseudoalteromonas piscicida survived on a steel surface and retained antifouling activity for at least 53 days in sterile seawater, whereas P. tunicata survived and had antifouling activity for only 1 week. However, during the first week, all Pseudoalteromonas strains facilitated rather than prevented bacterial attachment when used to coat stainless steel surfaces and submerged in mesocosms with natural seawater. The bacterial density on surfaces coated with sterile growth medium was 10(5) cells/cm(2) after 7 days, whereas counts on surfaces precoated with Pseudoalteromonas were significantly higher, at 10(6) to 10(8) cells/cm(2). However, after 53 days, seven of eight Pseudoalteromonas strains had reduced total bacterial adhesion compared to the control. P. piscicida, P. antarctica, and P. ulvae remained on the surface, at levels similar to those in the initial coating, whereas P. tunicata could not be detected. Larger fouling organisms were observed on all plates precoated with Pseudoalteromonas; however, plates coated only with sterile growth medium were dominated by a bacterial biofilm. Suspensions of a P. piscicida strain and a P. tunicata strain were incorporated into ship paints (Hempasil x3 87500 and Hempasil 77500) used on plates that were placed at the Hempel A/S test site in Jyllinge Harbor. For the first 4 months, no differences were observed between control plates and treated plates, but after 5 to 6 months, the control plates were more fouled than the plates with pseudoalteromonad-based paint. Our study demonstrates that no single laboratory assay can predict antifouling effects and that a combination of laboratory and real-life methods must be used to determine

  11. Superhydrophilic Thin-Film Composite Forward Osmosis Membranes for Organic Fouling Control: Fouling Behavior and Antifouling Mechanisms

    KAUST Repository

    Tiraferri, Alberto

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes. © 2012 American Chemical Society.

  12. Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms.

    Science.gov (United States)

    Tiraferri, Alberto; Kang, Yan; Giannelis, Emmanuel P; Elimelech, Menachem

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes.

  13. Immobilized nickel hexacyanoferrate on activated carbons for efficient attenuation of radio toxic Cs(I) from aqueous solutions

    International Nuclear Information System (INIS)

    Lalhmunsiama; Lalhriatpuia, C.; Tiwari, Diwakar; Lee, Seung-Mok

    2014-01-01

    Highlights: • Rice hulls and areca nut wastes are utilized to obtain activated carbons. • Nickel hexacyanoferrate is immobilized on activated carbon samples. • Materials are characterized by SEM–EDX and XRD data. • Materials are employed in attenuation of Cs(I) under batch and column studies. • Possible mechanism is deduced at solid/solution interface. - Abstract: The aim of this study is to immobilize nickel hexacyanoferrate onto the large surface of activated carbons (ACs) precursor to rice hulls and areca nut waste materials. These nickel hexacyanoferrate immobilized materials are then assessed in the effective attenuation of radio logically important cesium ions from aqueous solutions. The solid samples are characterized by the XRD analytical method and surface morphology is obtained from the SEM images. The batch reactor experiments show that an increase in sorptive pH (2.0–10.0) apparently not affecting the high percent uptake of Cs(I). Equilibrium modeling studies suggest that the data are reasonably and relatively fitted well to the Langmuir adsorption isotherm. Kinetic studies show that sorption process is fairly rapid and the kinetic data are fitted well to the pseudo-second order rate model. Increasing the background electrolyte concentration from 0.001 to 0.1 mol/L NaCl causes insignificant decrease in Cs(I) removal which infers the higher selectivity of these materials for Cs(I) from aqueous solutions. Further, the column reactor operations enable to obtain the breakthrough data which are then fitted to the Thomas non-linear equation as to obtain the loading capacity of column for Cs(I). The results show that the modified materials show potential applicability in the attenuation of radio toxic cesium from aqueous solution

  14. Barley root hair growth and morphology in soil, sand, and water solution media and relationship with nickel toxicity.

    Science.gov (United States)

    Lin, Yanqing; Allen, Herbert E; Di Toro, Dominic M

    2016-08-01

    Barley, Hordeum vulgare (Doyce), was grown in the 3 media of soil, hydroponic sand solution (sand), and hydroponic water solution (water) culture at the same environmental conditions for 4 d. Barley roots were scanned, and root morphology was analyzed. Plants grown in the 3 media had different root morphology and nickel (Ni) toxicity response. Root elongations and total root lengths followed the sequence soil > sand > water. Plants grown in water culture were more sensitive to Ni toxicity and had greater root hair length than those from soil and sand cultures, which increased root surface area. The unit root surface area as root surface area per centimeter of length of root followed the sequence water > sand > soil and was found to be related with root elongation. Including the unit root surface area, the difference in root elongation and 50% effective concentration were diminished, and percentage of root elongations can be improved with a root mean square error approximately 10% for plants grown in different media. Because the unit root surface area of plants in sand culture is closer to that in soil culture, the sand culture method, not water culture, is recommended for toxicity parameter estimation. Environ Toxicol Chem 2016;35:2125-2133. © 2016 SETAC. © 2016 SETAC.

  15. Antifouling phenyl ethers and other compounds from the invertebrates and their symbiotic fungi collected from the South China Sea

    KAUST Repository

    Wang, Chao-Yi; Wang, Kai-Ling; Ghosheh, Yanal; Xu, Ying; Chen, Min; Zheng, Juan-Juan; Liu, Min; Shao, Chang-Lun; Wang, Chang-Yun

    2016-01-01

    for their antifouling activities and security. These compounds include 44 natural products isolated from marine invertebrates and their symbiotic microorganisms collected from the South China Sea and 11 structural modified products derived from the isolated compounds

  16. Electrochemical degradation and toxicity reduction of C.I. Basic Red 29 solution and textile wastewater by using diamond anode

    International Nuclear Information System (INIS)

    Koparal, A. Savas; Yavuz, Yusuf; Guerel, Canan; Oguetveren, Ulker Bakir

    2007-01-01

    Electrochemical oxidation of Basic Red 29 (BR29) was studied in a bipolar trickle tower (BTT) reactor by using Raschig ring shaped boron-doped diamond (BDD) electrodes, which were originally employed by the present researchers, in a recirculated batch mode. The model solution was prepared with BR29 using distilled water. The effects of initial dye concentration, Na 2 SO 4 concentration as supporting electrolyte, current density, flow rate and initial pH on the removal efficiency were investigated, and practically, complete BR29 removal (over 99%) was obtained in all the studies. After optimum experimental conditions were determined, textile wastewater has also studied by monitoring the destruction of color and COD. With the textile wastewater, 97.2% of color and 91% of COD removal were, respectively, achieved at the current density of 1 mA/cm 2 . Microtox toxicity tests were performed in both BR29 solution and textile wastewater under optimum experimental conditions, and relatively good toxicity reductions were obtained with respect to the initial values. According to the results, BDD anode was seen to be a unique material for the degradation of BR29 and COD and also the reduction of toxicity simultaneously

  17. Electrochemical degradation and toxicity reduction of C.I. Basic Red 29 solution and textile wastewater by using diamond anode

    Energy Technology Data Exchange (ETDEWEB)

    Koparal, A. Savas [Anadolu Universitesi, Cevre Sor.Uyg. ve Aras, Merkezi, Eskisehir (Turkey)]. E-mail: askopara@anadolu.edu.tr; Yavuz, Yusuf [Anadolu Universitesi, Cevre Sor.Uyg. ve Aras, Merkezi, Eskisehir (Turkey); Guerel, Canan [Anadolu Universitesi, Cevre Sor.Uyg. ve Aras, Merkezi, Eskisehir (Turkey); Oguetveren, Ulker Bakir [Anadolu Universitesi, Cevre Sor.Uyg. ve Aras, Merkezi, Eskisehir (Turkey)

    2007-06-25

    Electrochemical oxidation of Basic Red 29 (BR29) was studied in a bipolar trickle tower (BTT) reactor by using Raschig ring shaped boron-doped diamond (BDD) electrodes, which were originally employed by the present researchers, in a recirculated batch mode. The model solution was prepared with BR29 using distilled water. The effects of initial dye concentration, Na{sub 2}SO{sub 4} concentration as supporting electrolyte, current density, flow rate and initial pH on the removal efficiency were investigated, and practically, complete BR29 removal (over 99%) was obtained in all the studies. After optimum experimental conditions were determined, textile wastewater has also studied by monitoring the destruction of color and COD. With the textile wastewater, 97.2% of color and 91% of COD removal were, respectively, achieved at the current density of 1 mA/cm{sup 2}. Microtox toxicity tests were performed in both BR29 solution and textile wastewater under optimum experimental conditions, and relatively good toxicity reductions were obtained with respect to the initial values. According to the results, BDD anode was seen to be a unique material for the degradation of BR29 and COD and also the reduction of toxicity simultaneously.

  18. Current and future perspectives on the development, evaluation and application of in silico approaches for predicting toxicity

    Science.gov (United States)

    Safety-related problems continue to be one of the major reasons of attrition in drug development. Non-testing approaches to predict toxicity could form part of the solution. This review provides a perspective of current status of non-testing approaches available for the predictio...

  19. Economic benefits of the use of non-toxic mono-propellants for spacecraft applications

    NARCIS (Netherlands)

    Bombelli, V.; Simon, D.; Marée, T.; Moerel, J.L.

    2003-01-01

    The European Space Agency and other institutions have identified the use of non-toxic (or "green") propellants as a substantial cost saving opportunity in manufacturing and ground operating of spacecrafts. This paper attempts to identify and quantify this potential by replacing, in the near future,

  20. Toxic clinical hypoxic radiation sensitizers plus radiation-induced toxicity

    International Nuclear Information System (INIS)

    Richmond, R.C.

    1984-01-01

    The operational definition espoused twelve years ago that clinical hypoxic radiation sensitizers should be nontoxic interferes with the recognition and research of useful radiation sensitizers. Eight years ago the toxic antitumor drug cis-dichlorodiammineplatinum(II) was reported to be a hypoxic radiation sensitizer and the selective antitumor action of this drug was stressed as potentially creating tumor-targeted radiation sensitization. This rationale of oxidative antitumor drugs as toxic and targeted clinical sensitizers is useful, and has led to the study reported here. The antitumor drug cis-(1,1-cyclobutane-dicarboxylato)diammineplatinum(II), or JM-8, is being tested in clinical trials. Cells of S. typhimurium in PBS in the presence of 0.2mM JM-8 are found to be sensitized to irradiation under hypoxic, but not oxic, conditions. JM-8 is nontoxic to bacteria at this concentration, but upon irradiation the JM-8 solution becomes highly toxic. This radiation induced toxicity of JM-8 preferentially develops from hypoxic solution, and thus contributes to the rationale of hypoxic tumor cell destruction

  1. Preparation of antifouling ultrafiltration membranes via irradiation induced graft polymerization technique

    International Nuclear Information System (INIS)

    Deng Bo; Liu Zhognying; Lu Xiaofeng; Li Jingye; Yang Xuanxuan; Yu Ming; Zhang Bowu

    2010-01-01

    PVDF powders were irradiated in air at dose of 15 kGy by using gamma-rays. Macromolecular peroxides transformed from free radicals in the irradiated PVDF powders in air can be preserved for long-term at appropriate temperature stably. By mixing acrylic monomers with irradiated PVDF powders then the graft polymerization can be initiated by heating. Then a series of hydrophilic ultrafiltration (UF) membranes were fabricated by dissolving the PVDF-g-PAAc powders in the NMP under phase inversion method. The antifouling performances of UF membranes cast from virgin and grafted PVDF powders were compared. (authors)

  2. Non-Intrusive Solution of Stochastic and Parametric Equations

    KAUST Repository

    Matthies, Hermann

    2015-01-07

    Many problems depend on parameters, which may be a finite set of numerical values, or mathematically more complicated objects like for example processes or fields. We address the situation where we have an equation which depends on parameters; stochastic equations are a special case of such parametric problems where the parameters are elements from a probability space. One common way to represent this dependability on parameters is by evaluating the state (or solution) of the system under investigation for different values of the parameters. But often one wants to evaluate the solution quickly for a new set of parameters where it has not been sampled. In this situation it may be advantageous to express the parameter dependent solution with an approximation which allows for rapid evaluation of the solution. Such approximations are also called proxy or surrogate models, response functions, or emulators. All these methods may be seen as functional approximations—representations of the solution by an “easily computable” function of the parameters, as opposed to pure samples. The most obvious methods of approximation used are based on interpolation, in this context often labelled as collocation. In the frequent situation where one has a “solver” for the equation for a given parameter value, i.e. a software component or a program, it is evident that this can be used to independently—if desired in parallel—solve for all the parameter values which subsequently may be used either for the interpolation or in the quadrature for the projection. Such methods are therefore uncoupled for each parameter value, and they additionally often carry the label “non-intrusive”. Without much argument all other methods— which produce a coupled system of equations–are almost always labelled as “intrusive”, meaning that one cannot use the original solver. We want to show here that this not necessarily the case. Another approach is to choose some other projection onto

  3. Non-Intrusive Solution of Stochastic and Parametric Equations

    KAUST Repository

    Matthies, Hermann

    2015-01-01

    Many problems depend on parameters, which may be a finite set of numerical values, or mathematically more complicated objects like for example processes or fields. We address the situation where we have an equation which depends on parameters; stochastic equations are a special case of such parametric problems where the parameters are elements from a probability space. One common way to represent this dependability on parameters is by evaluating the state (or solution) of the system under investigation for different values of the parameters. But often one wants to evaluate the solution quickly for a new set of parameters where it has not been sampled. In this situation it may be advantageous to express the parameter dependent solution with an approximation which allows for rapid evaluation of the solution. Such approximations are also called proxy or surrogate models, response functions, or emulators. All these methods may be seen as functional approximations—representations of the solution by an “easily computable” function of the parameters, as opposed to pure samples. The most obvious methods of approximation used are based on interpolation, in this context often labelled as collocation. In the frequent situation where one has a “solver” for the equation for a given parameter value, i.e. a software component or a program, it is evident that this can be used to independently—if desired in parallel—solve for all the parameter values which subsequently may be used either for the interpolation or in the quadrature for the projection. Such methods are therefore uncoupled for each parameter value, and they additionally often carry the label “non-intrusive”. Without much argument all other methods— which produce a coupled system of equations–are almost always labelled as “intrusive”, meaning that one cannot use the original solver. We want to show here that this not necessarily the case. Another approach is to choose some other projection onto

  4. Solutions to fouling in power station condensers

    Energy Technology Data Exchange (ETDEWEB)

    Cristiani, Pierangela [CESI SpA, v. Rubattino 54, 20034 Milan (Italy)

    2005-11-01

    The chlorine use was banned in the Italian Lagoon of Venice, as a consequence, alternative antifouling treatments had to be tested, optimised and, finally, adopted. Now, chlorine dioxide is in use in many plants instead of sodium hypochlorite. Peracetic acid (as antislime) and ammonium quaternary salts (as molluschicide) are also employed in some cases. The treatments are often combined with in-service mechanical cleaning, reducing significantly their cost. The dosage of the alternative oxidant products, now in use, has been optimised by the electrochemical monitoring system BIOX. As requested by Italian regulation, toxicity tests were performed and passed successfully before the adoption of each new treatment. Furthermore, new type of treatments, based on electrochemical low production of oxidant, were also preliminary tested, without significant production of trihalomethanes. The present paper illustrates some detail about the new treatments. (author)

  5. A synergetic analysis method for antifouling behavior investigation on PES ultrafiltration membrane with self-assembled TiO2 nanoparticles.

    Science.gov (United States)

    Li, Xin; Li, Jiansheng; Fang, Xiaofeng; Bakzhan, Kariboz; Wang, Lianjun; Van der Bruggen, Bart

    2016-05-01

    Fouling of ultrafiltration (UF) membranes is a major impediment for their use in drinking water production. Mixed matrix membranes (MMMs) may have great opportunities in dealing with this challenge due to their hierarchical structures and multiple functionalities. In this study, a synergetic analysis method based on intermolecular adhesion force measurement and fouling process simulation was applied to investigate the fouling mechanism of polyethersulfone (PES) UF membranes containing in situ self-assembled TiO2 nanoparticles (NPs). The fouling resistance behavior and antifouling mechanism of the newly developed composite membranes were investigated with sodium alginate (SA), bovine serum albumin (BSA) and humic acid (HA) as model organic foulants. An improved antifouling effect was conspicuously observed for the composite membranes, expressed by a lower flux decline and significantly better cleaning efficiency. A strong correlation between the self-assembled structure of TiO2 NPs and the antifouling behavior of the composite membrane was observed. A lower magnitude and a narrower distribution of adhesion forces for the composite membrane suggest the effective suppression of foulants adsorption on the clean or fouled membrane. The simulation analysis indicates that the main fouling mechanism was standard blocking and cake filtration, further confirming the superiority of the NPs self-assembled structure in mitigating membrane fouling. This dual analysis method may provide a promising technological support for the application of modified UF membranes with self-assembled NPs in drinking water production. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Antifouling Coatings Influence both Abundance and Community Structure of Colonizing Biofilms: a Case Study in the Northwestern Mediterranean Sea

    Science.gov (United States)

    Camps, Mercedes; Barani, Aude; Gregori, Gérald; Bouchez, Agnès; Le Berre, Brigitte; Bressy, Christine; Blache, Yves

    2014-01-01

    When immersed in seawater, substrates are rapidly colonized by both micro- and macroorganisms. This process is responsible for important economic and ecological prejudices, particularly when related to ship hulls or aquaculture nets. Commercial antifouling coatings are supposed to reduce biofouling, i.e., micro- and macrofoulers. In this study, biofilms that primarily settled on seven different coatings (polyvinyl chloride [PVC], a fouling release coating [FRC], and five self-polishing copolymer coatings [SPC], including four commercial ones) were quantitatively studied, after 1 month of immersion in summer in the Toulon Bay (Northwestern Mediterranean Sea, France), by using flow cytometry (FCM), microscopy, and denaturing gradient gel electrophoresis. FCM was used after a pretreatment to separate cells from the biofilm matrix, in order to determine densities of heterotrophic bacteria, picocyanobacteria, and pico- and nanoeukaryotes on these coatings. Among diatoms, the only microphytobenthic class identified by microscopy, Licmophora, Navicula, and Nitzschia were determined to be the dominant taxa. Overall, biocide-free coatings showed higher densities than all other coatings, except for one biocidal coating, whatever the group of microorganisms. Heterotrophic bacteria always showed the highest densities, and diatoms showed the lowest, but the relative abundances of these groups varied depending on the coating. In particular, the copper-free SPC failed to prevent diatom settlement, whereas the pyrithione-free SPC exhibited high picocyanobacterial density. These results highlight the interest in FCM for antifouling coating assessment as well as specific selection among microbial communities by antifouling coatings. PMID:24907329

  7. A solution approach for non-linear analysis of concrete members

    International Nuclear Information System (INIS)

    Hadi, N. M.; Das, S.

    1999-01-01

    Non-linear solution of reinforced concrete structural members, at and beyond its maximum strength poses complex numerical problems. This is due to the fact that concrete exhibits strain softening behaviour once it reaches its maximum strength. This paper introduces an improved non-linear solution capable to overcome the numerical problems efficiently. The paper also presents a new concept of modeling discrete cracks in concrete members by using gap elements. Gap elements are placed in between two adjacent concrete elements in tensile zone. The magnitude of elongation of gap elements, which represents the width of the crack in concrete, increases edith the increase of tensile stress in those elements. As a result, transfer of local from one concrete element to adjacent elements reduces. Results of non-linear finite element analysis of three concrete beams using this new solution strategy are compared with those obtained by other researchers, and a good agreement is achieved. (authors). 13 refs. 9 figs.,

  8. Copper and Cadmium Toxicity to Marine Phytoplankton, Chaetoceros gracilis and Isochrysis sp.

    Directory of Open Access Journals (Sweden)

    Suratno Suratno

    2015-07-01

    Full Text Available In Copper (Cu based antifouling (AF paints Cu was largely used as booster biocide after organotin was banned. Cu is micronutrient which is important in photosynthesis process because Cu is an essential metal as component of enzyme and electron transport chain. But in certain dosage, Cu could be toxic to marine organism. Chaetoceros gracilis and Isochrysis sp. are dominant microalgae in aquatic ecosystem. In this study the effect of Cu and Cadmium (Cd on two marine microalgae, C. gracilis and Isochrysis sp. were compared. Toxicity test was based on American Standard for Testing Material (ASTM. IC50-96 h of Cd as reference toxicant was 2,370 mg.L-1 for C. gracilis and 490 mg.L-1 for Isochrysis sp. IC50-96 h of Cu to growth of C. gracilis was 63.75 mg.L-1 and Isochrysis sp. was 31.80 mg.L-1. Both Cd and Cu were inhibited growth of microalgae. Based on IC50-96 h value, it could be concluded that Cu was more toxic than Cd. Toxicity of Cu was 37 times stronger than Cd for C. gracilis and 15 times for Isochrysis sp. It was estimated that at concentration 10 mg.L-1 Cu does not show observable effect (NOEC to C. gracilis and 5 mg.L-1 to Isochrysis sp. The lowest observable effect of Cu (LOEC to C. gracilis was at concentration 17 mg.L-1 and 10 mg.L-1 for Isochrysis sp.

  9. Marine Bacteria from Danish Coastal Waters Show Antifouling Activity against the Marine Fouling Bacterium Pseudoalteromonas sp. Strain S91 and Zoospores of the Green Alga Ulva australis Independent of Bacteriocidal Activity▿†

    Science.gov (United States)

    Bernbom, Nete; Ng, Yoke Yin; Kjelleberg, Staffan; Harder, Tilmann; Gram, Lone

    2011-01-01

    The aims of this study were to determine if marine bacteria from Danish coastal waters produce antifouling compounds and if antifouling bacteria could be ascribed to specific niches or seasons. We further assess if antibacterial effect is a good proxy for antifouling activity. We isolated 110 bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrionaceae based on phenotypic tests and partial 16S rRNA gene sequence similarity. The numbers of bioactive bacteria were significantly higher in warmer than in colder months. While some species were isolated at all sampling locations, others were niche specific. We repeatedly isolated Phaeobacter gallaeciensis at surfaces from one site and Pseudoalteromonas tunicata at two others. Twenty-two strains, representing the major taxonomic groups, different seasons, and isolation strategies, were tested for antiadhesive effect against the marine biofilm-forming bacterium Pseudoalteromonas sp. strain S91 and zoospores of the green alga Ulva australis. The antiadhesive effects were assessed by quantifying the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from attaching to steel surfaces. P. piscicida killed S91 bacteria in the suspension cultures, whereas P. tunicata and P. ulvae did not; however, they did prevent adhesion by nonbactericidal mechanism(s). Seven Pseudoalteromonas species, including P. piscicida and P. tunicata, reduced the number of settling Ulva zoospores to less than 10% of the number settling on control surfaces. The antifouling alpP gene was detected only in P. tunicata strains (with purple and yellow pigmentation), so

  10. Surface modification of silicon wafer by grafting zwitterionic polymers to improve its antifouling property

    Science.gov (United States)

    Sun, Yunlong; Chen, Changlin; Xu, Heng; Lei, Kun; Xu, Guanzhe; Zhao, Li; Lang, Meidong

    2017-10-01

    Silicon (111) wafer was modified by triethoxyvinylsilane containing double bond as an intermedium, and then P4VP (polymer 4-vinyl pyridine) brush was "grafted" onto the surface of silicon wafer containing reactive double bonds by adopting the "grafting from" way and Si-P4VP substrate (silicon wafer grafted by P4VP) was obtained. Finally, P4VP brush of Si-P4VP substrate was modified by 1,3-propanesulfonate fully to obtain P4VP-psl brush (zwitterionic polypyridinium salt) and the functional Si-P4VP-psl substrate (silicon wafer grafted by zwitterionic polypyridinium salt based on polymer 4-vinyl pyridine) was obtained successfully. The antifouling property of the silicon wafer, the Si-P4VP substrate and the Si-P4VP-psl substrate was investigated by using bovine serum albumin, mononuclear macrophages (RAW 264.7) and Escherichia coli (E. coli) ATTC25922 as model bacterium. The results showed that compared with the blank sample-silicon wafer, the Si-P4VP-psl substrate had excellent anti-adhesion ability against bovine serum albumin, cells and bacterium, due to zwitterionic P4VP-psl brush (polymer 4-vinyl pyridine salt) having special functionality like antifouling ability on biomaterial field.

  11. Asymptotic solution of the non-isothermal Cahn-Hilliard system

    International Nuclear Information System (INIS)

    Omel'yanov, G.A.

    1995-05-01

    The non-isothermal Cahn-Hillard questions with a small parameter in the n-dimensional case (n = 2.3) are considered. The small parameter is proportional both to the relaxation time and to the linear scale of transition zone, so the large time process is examined. The asymptotic solution describing the free interface dynamics is constructed. As the small parameter tends to zero, the limiting solution satisfies the modified Stefan problem with corrected Gibbs-Thomson law. The justification of the asymptotic solution is proved. (author). 26 refs

  12. Novel antifouling self-healing poly(carboxybetaine methacrylamide-co-HEMA) nanocomposite hydrogels with superior mechanical properties

    Czech Academy of Sciences Publication Activity Database

    Kostina, Nina Yu.; Sharifi, S.; de los Santos Pereira, Andres; Michálek, Jiří; Grijpma, D. W.; Rodriguez-Emmenegger, Cesar

    2013-01-01

    Roč. 1, č. 41 (2013), s. 5644-5650 ISSN 2050-750X R&D Projects: GA AV ČR KAN200520804; GA ČR GA13-00939S; GA ČR GAP205/12/1702; GA ČR GAP106/12/1451; GA ČR GBP205/12/G118 Institutional support: RVO:61389013 Keywords : hydrogels * self- healing * antifouling Subject RIV: CD - Macromolecular Chemistry

  13. Principles of interactions in non-aqueous electrolyte solutions

    NARCIS (Netherlands)

    Lyklema, J.

    2013-01-01

    In this paper a review is presented on the molecular interactions in non-aqueous media of low dielectric permittivity. Qualitative and quantitative distinctions with aqueous solutions are emphasized. The reviewed themes include dispersion forces, dissociation and association equilibria,

  14. Some problems on non-linear semigroups and the blow-up of integral solutions

    International Nuclear Information System (INIS)

    Pavel, N.H.

    1983-07-01

    After some introductory remarks, this highly mathematical document considers a unifying approach in the theory of non-linear semigroups. Then a brief survey is given on blow-up of mild solutions from the semilinear case. Finally, the global behavior of solutions to non-linear evolution equations is addressed; it is found that classical results on the behavior of the maximal solution u as t up-arrow tsub(max) hold also for integral solutions

  15. Organotins and new antifouling biocides in water and sediments from three Korean Special Management Sea Areas following ten years of tributyltin regulation: Contamination profiles and risk assessment.

    Science.gov (United States)

    Lam, Nguyen Hoang; Jeong, Hui-Ho; Kang, Su-Dong; Kim, Dae-Jin; Ju, Mi-Jo; Horiguchi, Toshihiro; Cho, Hyeon-Seo

    2017-08-15

    A simultaneous monitoring study on organotins (butyltins and phenyltins) and most frequently used alternative antifouling biocides (Irgarol 1051, Diuron, Sea-Nine 211 and M1) in water and sediments (n=44) collected from three Special Management Sea Areas operated by Korean government. The lower concentration of butyltins (BTs) than that of new antifouling biocides (NEW) was found in water but the significant greater concentration of BTs than that of NEW was still found in sediments. The tributyltin (TBT) levels in water exceeded the chronic criterion to protect seawater aquatic life at several sites. Even ten years after the ban of the use of TBT-based antifouling paint, the concentrations of TBT, Diuron and Irgarol 1051 in sediments from shipyards exceeded global sediment quality guidelines and potentially poses adverse risks on marine organisms and extremely high concentration of TBT up to 2304ng/g was found for a sediment collected at a shipyard. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Pseudoalteromonas spp. Serve as Initial Bacterial Attractants in Mesocosms of Coastal Waters but Have Subsequent Antifouling Capacity in Mesocosms and when Embedded in Paint

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yin; Møller, Stefan

    2013-01-01

    . Pseudoalteromonas piscicida survived on a steel surface and retained antifouling activity for at least 53 days in sterile seawater, whereas P. tunicata survived and had antifouling activity for only 1 week. However, during the first week, all Pseudoalteromonas strains facilitated rather than prevented bacterial...... attachment when used to coat stainless steel surfaces and submerged in mesocosms with natural seawater. The bacterial density on surfaces coated with sterile growth medium was 105 cells/cm2 after 7 days, whereas counts on surfaces precoated with Pseudoalteromonas were significantly higher, at 106 to 108...

  17. Ground state solutions for non-local fractional Schrodinger equations

    Directory of Open Access Journals (Sweden)

    Yang Pu

    2015-08-01

    Full Text Available In this article, we study a time-independent fractional Schrodinger equation with non-local (regional diffusion $$ (-\\Delta^{\\alpha}_{\\rho}u + V(xu = f(x,u \\quad \\text{in }\\mathbb{R}^{N}, $$ where $\\alpha \\in (0,1$, $N > 2\\alpha$. We establish the existence of a non-negative ground state solution by variational methods.

  18. Method for Non-Invasive Determination of Chemical Properties of Aqueous Solutions

    Science.gov (United States)

    Todd, Paul W. (Inventor); Jones, Alan (Inventor); Thomas, Nathan A. (Inventor)

    2016-01-01

    A method for non-invasively determining a chemical property of an aqueous solution is provided. The method provides the steps of providing a colored solute having a light absorbance spectrum and transmitting light through the colored solute at two different wavelengths. The method further provides the steps of measuring light absorbance of the colored solute at the two different transmitted light wavelengths, and comparing the light absorbance of the colored solute at the two different wavelengths to determine a chemical property of an aqueous solution.

  19. Complex shaped ZnO nano- and microstructure based polymer composites: mechanically stable and environmentally friendly coatings for potential antifouling applications.

    Science.gov (United States)

    Hölken, Iris; Hoppe, Mathias; Mishra, Yogendra K; Gorb, Stanislav N; Adelung, Rainer; Baum, Martina J

    2016-03-14

    Since the prohibition of tributyltin (TBT)-based antifouling paints in 2008, the development of environmentally compatible and commercially realizable alternatives is a crucial issue. Cost effective fabrication of antifouling paints with desired physical and biocompatible features is simultaneously required and recent developments in the direction of inorganic nanomaterials could play a major role. In the present work, a solvent free polymer/particle-composite coating based on two component polythiourethane (PTU) and tetrapodal shaped ZnO (t-ZnO) nano- and microstructures has been synthesized and studied with respect to mechanical, chemical and biocompatibility properties. Furthermore, antifouling tests have been carried out in artificial seawater tanks. Four different PTU/t-ZnO composites with various t-ZnO filling fractions (0 wt%, 1 wt%, 5 wt%, 10 wt%) were prepared and the corresponding tensile, hardness, and pull-off test results revealed that the composite filled with 5 wt% t-ZnO exhibits the strongest mechanical properties. Surface free energy (SFE) studies using contact angle measurements showed that the SFE value decreases with an increase in t-ZnO filler amounts. The influence of t-ZnO on the polymerization reaction was confirmed by Fourier transform infrared-spectroscopy measurements and thermogravimetric analysis. The immersion tests demonstrated that fouling behavior of the PTU/t-ZnO composite with a 1 wt% t-ZnO filler has been decreased in comparison to pure PTU. The composite with a 5 wt% t-ZnO filler showed almost no biofouling.

  20. Existence of entire solutions of some non-linear differential-difference equations.

    Science.gov (United States)

    Chen, Minfeng; Gao, Zongsheng; Du, Yunfei

    2017-01-01

    In this paper, we investigate the admissible entire solutions of finite order of the differential-difference equations [Formula: see text] and [Formula: see text], where [Formula: see text], [Formula: see text] are two non-zero polynomials, [Formula: see text] is a polynomial and [Formula: see text]. In addition, we investigate the non-existence of entire solutions of finite order of the differential-difference equation [Formula: see text], where [Formula: see text], [Formula: see text] are two non-constant polynomials, [Formula: see text], m , n are positive integers and satisfy [Formula: see text] except for [Formula: see text], [Formula: see text].

  1. In vitro regeneration from petiole explants of non-toxic Jatropha curcas

    KAUST Repository

    Kumar, Nitish

    2011-01-01

    Jatropha curcas, a multipurpose shrub has acquired significant economic potential as biodiesel plant. The seeds or pressed cake is toxic due to the presence of toxic substances and is not useful as food/fodder despite having the best protein composition. A simple, efficient, and reproducible method for plant regeneration through direct organogenesis from petiole explants of non-toxic J. curcas was developed using Murashige and Skoog (MS) medium supplemented with different concentrations of thidiazuron (TDZ). The best induction of shoot buds (57.61%), and number of shoot buds (4.98) per explant were obtained when in vitro petiole explants were placed horizontally on MS medium supplemented with 2.27 mu M TDZ. The Induced shoot buds were transferred to MS medium containing 10 mu M kinetin (Kn), 4.5 mu M 6-benzyl aminopurine (BA), and 5.5 mu M alpha-naphthaleneacetic acid (NAA) for shoot proliferation and subsequent elongation was achieved on MS medium supplemented with 2.25 mu M BA and 8.5 mu M IAA. The elongated shoots could be rooted on half-strength MS medium with 15 mu M IBA, 11.4 mu M IAA and 5.5 mu M NAA with more than 90% survival rate. (C) 2010 Elsevier B.V. All rights reserved.

  2. XeBr excilamp based on a non-toxic component mixture

    Energy Technology Data Exchange (ETDEWEB)

    Kelman, V A; Shpenik, Yu O; Zhmenyak, Yu V, E-mail: mironkle@rambler.ru [Institute of Electron Physics, National Academy of Sciences of Ukraine, Universitetska 21, 88017 Uzhgorod (Ukraine)

    2011-06-29

    This paper presents the results of experimental studies on obtaining UV luminescence of XeBr* molecules at the excitation of a non-toxic Xe-CsBr gas-vapour mixture by a longitudinal pulse-periodic discharge. Effective UV emission yield of the exciplex XeBr* molecules (spectral maximum at 282 nm) is observed within a wide range of excitation conditions. The spectral distribution in the UV emission under the optimal excitation conditions does not differ essentially from that in other XeBr excilamps based on toxic components. The emission of the B {yields} X band of the XeBr* molecules provides the main contribution to the total power of the discharge UV emission. The determined average power of the UV emission for the experimental discharge tube is 12 W at an efficiency of 1%. Spectral, power-related and time-dependent parameters of the laboratory excilamp are presented for a wide range of excitation parameters. A new mechanism of exciplex molecule formation at the excitation of a rare gas/alkali halide vapour mixture is discussed.

  3. XeBr excilamp based on a non-toxic component mixture

    International Nuclear Information System (INIS)

    Kelman, V A; Shpenik, Yu O; Zhmenyak, Yu V

    2011-01-01

    This paper presents the results of experimental studies on obtaining UV luminescence of XeBr* molecules at the excitation of a non-toxic Xe-CsBr gas-vapour mixture by a longitudinal pulse-periodic discharge. Effective UV emission yield of the exciplex XeBr* molecules (spectral maximum at 282 nm) is observed within a wide range of excitation conditions. The spectral distribution in the UV emission under the optimal excitation conditions does not differ essentially from that in other XeBr excilamps based on toxic components. The emission of the B → X band of the XeBr* molecules provides the main contribution to the total power of the discharge UV emission. The determined average power of the UV emission for the experimental discharge tube is 12 W at an efficiency of 1%. Spectral, power-related and time-dependent parameters of the laboratory excilamp are presented for a wide range of excitation parameters. A new mechanism of exciplex molecule formation at the excitation of a rare gas/alkali halide vapour mixture is discussed.

  4. Evaporation of a non-ideal solution and its application to writing ink aging.

    Science.gov (United States)

    Cantú, Antonio A

    2015-02-01

    The evaporation of a solution consisting of a non-volatile solute dissolved in a volatile solvent has been previously treated using a simple model called the beaker model. This model considers the solution to be in a non-porous container that has vertical walls like a glass beaker and assumes the solution is an ideal solution so that Raoult's law is obeyed. A particular novel finding was that under a certain condition, the evaporation or aging curve of the solution has a point of maximum acceleration. Prior to this point, the solution is in its fast drying mode and after this point, it is in its slow drying mode. This phenomenon is observed in the drying of many writing inks. In this work this model is modified to consider the evaporation of (a) a non-ideal solution, (b) a solution that become saturated, (c) a solution on a glass slide, and (d) a solution on a porous substrate. In each of these cases, the existence and location of the point of maximum acceleration of the drying process are examined. These modifications lead to a description of the dying process of a solution that is remarkably similar to that of writing inks but obtained via an entirely different physical model. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Imprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling

    OpenAIRE

    Puniredd, S.R.; Janczewski, D.; Go, D.P.; Zhu, X.; Guo, S.; Teo, S.L-M.; Lee, S.S.C.; Vancso, Gyula J.

    2015-01-01

    Polymeric films constructed using the layer-by-layer (LbL) fabrication process were employed as a platform for metal ion immobilization and applied as a marine antifouling coating. The novel Cu2+ ion imprinting process described is based on the use of metal ion templates and LbL multilayer covalent cross-linking. Custom synthesized, peptide mimicking polycations composed of histidine grafted poly(allylamine) (PAH) to bind metal ions, and methyl ester containing polyanions for convenient cross...

  6. Synthesis of non-toxic As and Cr nanoparticles through redox activity of highly flexible layered coordination polymer of Ni(II)

    Science.gov (United States)

    Agarwal, Rashmi A.

    2018-03-01

    A simple method for the sequestration of As(III) and Cr(VI) from water has been demonstrated by utilizing a highly flexible porous coordination polymer (PCP) of Ni(II) in its as synthesized form or without solvent removal. This PCP reduces the high toxicity of As(III) and Cr(VI) ions into non-toxic As(0) and Cr/Cr2O3/CrO2 (zero, tri and tetravalent) nanoparticles (NPs) within its pores, and this is characterized by powder x-ray diffraction, x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy analysis. The high functionality of this polymer is due to the presence of monodentate carboxylate groups of a benzenetricarboxylate linker, which provide anchoring sites to the metal ions of the metal precursors. Due to the highly oxidising nature of these toxic ions, a redox reaction takes place between the framework metal ions and toxic metal ions, which is explained by an electron paramagnetic resonance study. This is the first report to synthesize non-toxic, as well as useful, NPs of As and Cr from their highly toxic ions within the cavities of a PCP for remediation of the toxic waste stream and contaminated waste water.

  7. Synthesis of non-toxic As and Cr nanoparticles through redox activity of highly flexible layered coordination polymer of Ni(II).

    Science.gov (United States)

    Agarwal, Rashmi A

    2018-03-09

    A simple method for the sequestration of As(III) and Cr(VI) from water has been demonstrated by utilizing a highly flexible porous coordination polymer (PCP) of Ni(II) in its as synthesized form or without solvent removal. This PCP reduces the high toxicity of As(III) and Cr(VI) ions into non-toxic As(0) and Cr/Cr 2 O 3 /CrO 2 (zero, tri and tetravalent) nanoparticles (NPs) within its pores, and this is characterized by powder x-ray diffraction, x-ray photoelectron spectroscopy and high-resolution transmission electron microscopy analysis. The high functionality of this polymer is due to the presence of monodentate carboxylate groups of a benzenetricarboxylate linker, which provide anchoring sites to the metal ions of the metal precursors. Due to the highly oxidising nature of these toxic ions, a redox reaction takes place between the framework metal ions and toxic metal ions, which is explained by an electron paramagnetic resonance study. This is the first report to synthesize non-toxic, as well as useful, NPs of As and Cr from their highly toxic ions within the cavities of a PCP for remediation of the toxic waste stream and contaminated waste water.

  8. The Presence of Algae Mitigates the Toxicity of Copper-Based Algaecides to a Non-Target Organism.

    Science.gov (United States)

    Bishop, West M; Willis, Ben E; Richardson, Robert J; Cope, W Gregory

    2018-05-07

    Copper-based algaecides are routinely applied to target noxious algal blooms in freshwaters. Standard toxicity testing data with copper suggest typical concentrations used to control algae can cause deleterious acute impacts to non-target organisms. These "clean" water experiments lack algae, which are specifically targeted in field applications of algaecides and contain competing ligands. This research measured the influence of algae on algaecide exposure and subsequent response of the non-target species Daphnia magna to copper sulfate and an ethanolamine-chelated copper algaecide (Captain®). Significant shifts (Palgae were present in exposures along with a copper salt or chelated copper formulation. Copper sulfate 48-h LC50 values shifted from 75.3 to 317.8 and 517.8 µg Cu/L whereas Captain increased from 353.8 to 414.2 and 588.5 µg Cu/L in no algae, 5 × 10 5 and 5 × 10 6 cells/mL algae treatments, respectively. Larger shifts were measured with copper sulfate exposures, although Captain was less toxic to Daphnia magna in all corresponding treatments. Captain was more effective at controlling Scenedesmus dimorphus at most concentrations, and control was inversely proportional to toxicity to D. magna. Overall, incorporating target competing ligands (i.e., algae) into standard toxicity testing is important for accurate risk assessment, and copper formulation can significantly alter algaecidal efficacy and risks to non-target organisms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Quantitative structure activity relationships (QSAR) for binary mixtures at non-equitoxic ratios based on toxic ratios-effects curves.

    Science.gov (United States)

    Tian, Dayong; Lin, Zhifen; Yin, Daqiang

    2013-01-01

    The present study proposed a QSAR model to predict joint effects at non-equitoxic ratios for binary mixtures containing reactive toxicants, cyanogenic compounds and aldehydes. Toxicity of single and binary mixtures was measured by quantifying the decrease in light emission from the Photobacterium phosphoreum for 15 min. The joint effects of binary mixtures (TU sum) can thus be obtained. The results showed that the relationships between toxic ratios of the individual chemicals and their joint effects can be described by normal distribution function. Based on normal distribution equations, the joint effects of binary mixtures at non-equitoxic ratios ( [Formula: see text]) can be predicted quantitatively using the joint effects at equitoxic ratios ( [Formula: see text]). Combined with a QSAR model of [Formula: see text]in our previous work, a novel QSAR model can be proposed to predict the joint effects of mixtures at non-equitoxic ratios ( [Formula: see text]). The proposed model has been validated using additional mixtures other than the one used for the development of the model. Predicted and observed results were similar (p>0.05). This study provides an approach to the prediction of joint effects for binary mixtures at non-equitoxic ratios.

  10. The Effect of Digestive Capacity on the Intake Rate of Toxic and Non-Toxic Prey in an Ecological Context.

    Directory of Open Access Journals (Sweden)

    Thomas Oudman

    Full Text Available Digestive capacity often limits food intake rate in animals. Many species can flexibly adjust digestive organ mass, enabling them to increase intake rate in times of increased energy requirement and/or scarcity of high-quality prey. However, some prey species are defended by secondary compounds, thereby forcing a toxin limitation on the forager's intake rate, a constraint that potentially cannot be alleviated by enlarging digestive capacity. Hence, physiological flexibility may have a differential effect on intake of different prey types, and consequently on dietary preferences. We tested this effect in red knots (Calidris canutus canutus, medium-sized migratory shorebirds that feed on hard-shelled, usually mollusc, prey. Because they ingest their prey whole and crush the shell in their gizzard, the intake rate of red knots is generally constrained by digestive capacity. However, one of their main prey, the bivalve Loripes lucinalis, imposes a toxin constraint due to its symbiosis with sulphide-oxidizing bacteria. We manipulated gizzard sizes of red knots through prolonged exposure to hard-shelled or soft foods. We then measured maximum intake rates of toxic Loripes versus a non-toxic bivalve, Dosinia isocardia. We found that intake of Dosinia exponentially increased with gizzard mass, confirming earlier results with non-toxic prey, whereas intake of Loripes was independent of gizzard mass. Using linear programming, we show that this leads to markedly different expected diet preferences in red knots that try to maximize energy intake rate with a small versus a large gizzard. Intra- and inter-individual variation in digestive capacity is found in many animal species. Hence, the here proposed functional link with individual differences in foraging decisions may be general. We emphasize the potential relevance of individual variation in physiology when studying trophic interactions.

  11. Surface modification of polyamide reverse osmosis membrane with sulfonated polyvinyl alcohol for antifouling

    Science.gov (United States)

    Zhang, Yang; Wan, Ying; Pan, Guoyuan; Shi, Hongwei; Yan, Hao; Xu, Jian; Guo, Min; Wang, Zhe; Liu, Yiqun

    2017-10-01

    Sulfonated polyvinyl alcohol (SPVA) was synthesized by esterification reaction of PVA and sulfuric acid, and the structure was characterized by FTIR spectrum. Then a series of TFC membranes modified with cross-linked SPVA layer were fabricated by coating method, with glutaraldehyde as the cross-linker. The resulting TFC membranes were characterized by SEM, AFM, ATR-FTIR, XPS, streaming potential as well as static contact angle. The TFC membranes modified with SPVA exhibit decreased water flux and increased NaCl rejection with SPVA content increasing in the coating aqueous solution. The optimal PA-SPVA-0.5 sample exhibits a NaCl rejection of 99.18%, which is higher than the 98.32% of the virgin PA membrane. More importantly, the PA-SPVA-0.5 membrane shows much more improved fouling resistance to BSA and CTAB than virgin PA membrane and the TFC sample modified with PVA (PA-PVA-0.5). PA-SPVA-0.5 membrane loses about 8% of the initial flux after BSA fouling for 12 h, which is much lower than those of virgin PA and PA-PVA-0.5 membranes (28% and 15%, respectively). Furthermore, the flux recovery of the PA-SPVA-0.5 membrane reaches above 95% after cleaning. Thus, the PA-SPVA-0.5 membrane shows potential applications as antifouling RO membrane for desalination and purification.

  12. Antifouling activities of β-cyclodextrin stabilized peg based silver nanocomposites

    Science.gov (United States)

    Punitha, N.; Saravanan, P.; Mohan, R.; Ramesh, P. S.

    2017-01-01

    Self-polishing polymer composites which release metal biocide in a controlled rate have been widely used in the design of antimicrobial agents and antifouling coatings. The present work focuses on the environmental friendly green synthesis of PEG based SNCs and their application to biocidal activity including marine biofouling. Biocompatible polymer β-CD and adhesive resistance polymer PEG were used to functionalize the SNPs and the as synthesized SNCs exhibit excellent micro fouling activities. The structural and optical properties were confirmed by XRD and UV-visible techniques respectively. The particle surface and cross sectional characteristics were examined by SEM-EDS, HR-TEM, AFM and FTIR. The surface potential was evaluated using ZP analysis and assessment of antibiofouling property was investigated using static immersion method.

  13. Analysis of Toxic and Non-Toxic Alexandrium (Dinophyceae) Species Using Ribosomal RNA Gene Sequences

    Science.gov (United States)

    1993-02-01

    Therriault, J.-C. (1988). Cladistic analysis of electrophoretic variants within the toxic dinoflagellate genus Protogonyaulax. Botanica Marina 31: 39- 51. 8... Botanica Marina 34: 575-587. Halegraeff, G. M., and Bolch, C.J. (1992). Transport of toxic dinoflagellate cysts via ship’s ballast water: implications...analysis of electrophoretic variants within the toxic dinoflagellate genus Protogonv-u.!a,. Botanica Marina 31: 39-51. Curran, J., Baillie, D.L

  14. Non-monotone positive solutions of second-order linear differential equations: existence, nonexistence and criteria

    Directory of Open Access Journals (Sweden)

    Mervan Pašić

    2016-10-01

    Full Text Available We study non-monotone positive solutions of the second-order linear differential equations: $(p(tx'' + q(t x = e(t$, with positive $p(t$ and $q(t$. For the first time, some criteria as well as the existence and nonexistence of non-monotone positive solutions are proved in the framework of some properties of solutions $\\theta (t$ of the corresponding integrable linear equation: $(p(t\\theta''=e(t$. The main results are illustrated by many examples dealing with equations which allow exact non-monotone positive solutions not necessarily periodic. Finally, we pose some open questions.

  15. Non-Invasive Acoustic-Based Monitoring of Heavy Water and Uranium Process Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Pantea, Cristian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sinha, Dipen N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lakis, Rollin Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Beedle, Christopher Craig [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Davis, Eric Sean [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-20

    This presentation includes slides on Project Goals; Heavy Water Production Monitoring: A New Challenge for the IAEA; Noninvasive Measurements in SFAI Cell; Large Scatter in Literature Values; Large Scatter in Literature Values; Highest Precision Sound Speed Data Available: New Standard in H/D; ~400 pts of data; Noninvasive Measurements in SFAI Cell; New funding from NA241 SGTech; Uranium Solution Monitoring: Inspired by IAEA Challenge in Kazakhstan; Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions; Non-Invasive Acoustic-Based Monitoring of Uranium in Solutions; and finally a summary.

  16. Acute toxicity of ingested fluoride.

    Science.gov (United States)

    Whitford, Gary Milton

    2011-01-01

    This chapter discusses the characteristics and treatment of acute fluoride toxicity as well as the most common sources of overexposure, the doses that cause acute toxicity, and factors that can influence the clinical outcome. Cases of serious systemic toxicity and fatalities due to acute exposures are now rare, but overexposures causing toxic signs and symptoms are not. The clinical course of systemic toxicity from ingested fluoride begins with gastric signs and symptoms, and can develop with alarming rapidity. Treatment involves minimizing absorption by administering a solution containing calcium, monitoring and managing plasma calcium and potassium concentrations, acid-base status, and supporting vital functions. Approximately 30,000 calls to US poison control centers concerning acute exposures in children are made each year, most of which involve temporary gastrointestinal effects, but others require medical treatment. The most common sources of acute overexposures today are dental products - particularly dentifrices because of their relatively high fluoride concentrations, pleasant flavors, and their presence in non-secure locations in most homes. For example, ingestion of only 1.8 ounces of a standard fluoridated dentifrice (900-1,100 mg/kg) by a 10-kg child delivers enough fluoride to reach the 'probably toxic dose' (5 mg/kg body weight). Factors that may influence the clinical course of an overexposure include the chemical compound (e.g. NaF, MFP, etc.), the age and acid-base status of the individual, and the elapsed time between exposure and the initiation of treatment. While fluoride has well-established beneficial dental effects and cases of serious toxicity are now rare, the potential for toxicity requires that fluoride-containing materials be handled and stored with the respect they deserve. Copyright © 2011 S. Karger AG, Basel.

  17. Topological and non-topological soliton solutions to some time

    Indian Academy of Sciences (India)

    Topological and non-topological soliton solutions to some time-fractional differential equations ... These equations have been widely applied in many branches of nonlinear ... Department of Engineering Sciences, Faculty of Technology and ...

  18. Arsenic removal in solution using non living bio masses of aquatic weed

    International Nuclear Information System (INIS)

    Marin A, M. J.

    2010-01-01

    Arsenic is a metalloid considered among the most dangerous to health. The As maximum level allowed of drinkable water is 0.01 mg/L established by the Who. Several techniques have been proposed to remove arsenic from water, among which are the sorption processes in economic biological materials, which has advantages for its high efficiency in dilute toxic removing from contaminated water, for these reason it is necessary to study new bio sorbents materials which are economic, simple and easy to apply in the treatment of contaminated areas. The aim of this project was evaluate the removal of As (V) in solution using two non living aquatic plants: water hyacinth (Eichhornia crassipes) and lesser duckweed (Lemna minor), characterize these materials and compare the efficiency between both; the parameters evaluated were the As (V) initial concentration in solution, contact time, ph value and the amount of biomass in contact with them. It describes the method to prepare the non living plants. The physicochemical characterization by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis was made. The results shown that cellulose is the main component confirmed by the techniques above mentioned. Surface characterization of Eichhornia crassipes and Lemna minor by specific surface area, shown 1.3521 m 2 /g and 0.6395 m 2 /g respectively, the hydration kinetic indicates that 24 h was the maximum hydration time for both plants; the point of zero charge determination by mass titration gives a ph=6.1 for the first plant and ph=7.1 for the second plant, finally the active site density obtained for the plants were of 8.57 sites/nm 2 and 12.47 sites/nm 2 . The point of zero charge was analyzed for know the ph from which the As (V) species are removal preferably. Tested contact processes between bio sorbent-As (V) were performed to assess the ability of bio masses to removal As (V) from aqueous solutions, investigated

  19. Non-infectious chemotherapy-associated acute toxicities during childhood acute lymphoblastic leukemia therapy [version 1; referees: 3 approved

    Directory of Open Access Journals (Sweden)

    Kjeld Schmiegelow

    2017-04-01

    Full Text Available During chemotherapy for childhood acute lymphoblastic leukemia, all organs can be affected by severe acute side effects, the most common being opportunistic infections, mucositis, central or peripheral neuropathy (or both, bone toxicities (including osteonecrosis, thromboembolism, sinusoidal obstruction syndrome, endocrinopathies (especially steroid-induced adrenal insufficiency and hyperglycemia, high-dose methotrexate-induced nephrotoxicity, asparaginase-associated hypersensitivity, pancreatitis, and hyperlipidemia. Few of the non-infectious acute toxicities are associated with clinically useful risk factors, and across study groups there has been wide diversity in toxicity definitions, capture strategies, and reporting, thus hampering meaningful comparisons of toxicity incidences for different leukemia protocols. Since treatment of acute lymphoblastic leukemia now yields 5-year overall survival rates above 90%, there is a need for strategies for assessing the burden of toxicities in the overall evaluation of anti-leukemic therapy programs.

  20. Oleuropein, a non-toxic olive iridoid, is an anti-tumor agent and cytoskeleton disruptor

    International Nuclear Information System (INIS)

    Hamdi, Hamdi K.; Castellon, Raquel

    2005-01-01

    Oleuropein, a non-toxic secoiridoid derived from the olive tree, is a powerful antioxidant and anti-angiogenic agent. Here, we show it to be a potent anti-cancer compound, directly disrupting actin filaments in cells and in a cell-free assay. Oleuropein inhibited the proliferation and migration of advanced-grade tumor cell lines in a dose-responsive manner. In a novel tube-disruption assay, Oleuropein irreversibly rounded cancer cells, preventing their replication, motility, and invasiveness; these effects were reversible in normal cells. When administered orally to mice that developed spontaneous tumors, Oleuropein completely regressed tumors in 9-12 days. When tumors were resected prior to complete regression, they lacked cohesiveness and had a crumbly consistency. No viable cells could be recovered from these tumors. These observations elevate Oleuropein from a non-toxic antioxidant into a potent anti-tumor agent with direct effects against tumor cells. Our data may also explain the cancer-protective effects of the olive-rich Mediterranean diet

  1. Solid-state, ambient-operation thermally activated delayed fluorescence from flexible, non-toxic gold-nanocluster thin films: towards the development of biocompatible light-emitting devices

    Science.gov (United States)

    Talite, M. J. A.; Lin, H. T.; Jiang, Z. C.; Lin, T. N.; Huang, H. Y.; Heredia, E.; Flores, A.; Chao, Y. C.; Shen, J. L.; Lin, C. A. J.; Yuan, C. T.

    2016-08-01

    Luminescent gold nanoclusters (AuNCs) with good biocompatibility have gained much attention in bio-photonics. In addition, they also exhibit a unique photo-physical property, namely thermally activated delayed fluorescence (TADF), by which both singlet and triplet excitons can be harvested. The combination of their non-toxic material property and unique TADF behavior makes AuNCs biocompatible nano-emitters for bio-related light-emitting devices. Unfortunately, the TADF emission is quenched when colloidal AuNCs are transferred to solid states under ambient environment. Here, a facile, low-cost and effective method was used to generate efficient and stable TADF emissions from solid AuNCs under ambient environment using polyvinyl alcohol as a solid matrix. To unravel the underlying mechanism, temperature-dependent static and transient photoluminescence measurements were performed and we found that two factors are crucial for solid TADF emission: small energy splitting between singlet and triplet states and the stabilization of the triplet states. Solid TADF films were also deposited on the flexible plastic substrate with patterned structures, thus mitigating the waveguide-mode losses. In addition, we also demonstrated that warm white light can be generated based on a co-doped single emissive layer, consisting of non-toxic, solution-processed TADF AuNCs and fluorescent carbon dots under UV excitation.

  2. OECD validation study to assess intra- and inter-laboratory reproducibility of the zebrafish embryo toxicity test for acute aquatic toxicity testing.

    Science.gov (United States)

    Busquet, François; Strecker, Ruben; Rawlings, Jane M; Belanger, Scott E; Braunbeck, Thomas; Carr, Gregory J; Cenijn, Peter; Fochtman, Przemyslaw; Gourmelon, Anne; Hübler, Nicole; Kleensang, André; Knöbel, Melanie; Kussatz, Carola; Legler, Juliette; Lillicrap, Adam; Martínez-Jerónimo, Fernando; Polleichtner, Christian; Rzodeczko, Helena; Salinas, Edward; Schneider, Katharina E; Scholz, Stefan; van den Brandhof, Evert-Jan; van der Ven, Leo T M; Walter-Rohde, Susanne; Weigt, Stefan; Witters, Hilda; Halder, Marlies

    2014-08-01

    The OECD validation study of the zebrafish embryo acute toxicity test (ZFET) for acute aquatic toxicity testing evaluated the ZFET reproducibility by testing 20 chemicals at 5 different concentrations in 3 independent runs in at least 3 laboratories. Stock solutions and test concentrations were analytically confirmed for 11 chemicals. Newly fertilised zebrafish eggs (20/concentration and control) were exposed for 96h to chemicals. Four apical endpoints were recorded daily as indicators of acute lethality: coagulation of the embryo, lack of somite formation, non-detachment of the tail bud from the yolk sac and lack of heartbeat. Results (LC50 values for 48/96h exposure) show that the ZFET is a robust method with a good intra- and inter-laboratory reproducibility (CV30%) for some very toxic or volatile chemicals, and chemicals tested close to their limit of solubility. The ZFET is now available as OECD Test Guideline 236. Considering the high predictive capacity of the ZFET demonstrated by Belanger et al. (2013) in their retrospective analysis of acute fish toxicity and fish embryo acute toxicity data, the ZFET is ready to be considered for acute fish toxicity for regulatory purposes. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  3. [Glyphosate--a non-toxic pesticide?].

    Science.gov (United States)

    Pieniazek, Danuta; Bukowska, Bozena; Duda, Wirgiliusz

    2003-01-01

    Glyphosate is currently the most commonly applied herbicide and its use is still growing. Nowadays, over 50 commercial preparations containing this compound are used, and these formulations are much more toxic than their active compound, glyphosate, owing to the presence of many surfactants and carrier compounds. Toxicological investigations provide evidence that glyphosate is an extremely "safe" herbicide for animals. This is why its use in agriculture is universal. In June 1991, the Environmental Protection Agency (EPA) categorized this compound into class E (according to EPA there are five categories of carcinogenicity), which means that it is probably not carcinogenic to humans. Unfortunately, the study carried out by Swedish oncologists in 2001 showed that glyphosate may induce cancer of the lymphatic system. The results of the Swedish study have changed our opinion about "safety" of this herbicide. Investigations concerning both its accumulation and toxic effect in animals and plants are now under way in many laboratories.

  4. Effect of malachite green toxicity on non target soil organisms.

    Science.gov (United States)

    Gopinathan, R; Kanhere, J; Banerjee, J

    2015-02-01

    Although malachite green (MG), is banned in Europe and US for its carcinogenic and teratogenic effect, the dye being cheap, is persistently used in various countries for fish farming, silk, dye, leather and textile industries. Current research, however, fails to elucidate adequate knowledge concerning the effects of MG in our ecosystem. In the present investigation, for the first time, an attempt has been made to study the effects of MG on soil biota by testing Bacillus subtilis, Azotobacter chroococcum, Saccharomyces cerevisiae, Penicillium roqueforti, Eisenia fetida and seeds of three crop plants of different families. Various tests were conducted for determining cytotoxicity, genotoxicity, acute toxicity, morphological and germination effect. Our data confirmed MG toxicity on fungi and bacteria (gram positive and gram negative organisms) showing elevated level of ROS. Genotoxicity caused in the microorganisms was detected by DNA polymorphism and fragmentation. Also, scanning electron microscopy data suggests that the inhibitory effect of MG to these beneficial microbes in the ecosystem might be due to pore formation in the cell and its eventual disruption. Filter paper and artificial soil test conducted on earthworms demonstrated a LC 50 of 2.6 mg cm(-2) and 1.45 mg kg(-1) respectively with severe morphological damage. However, seed germination of Mung bean, Wheat and Mustard was found to be unaffected in presence of MG up to 100 mL(-1) concentration. Thus, understanding MG toxicity in non target soil organisms and emphasis on its toxicological effects would potentially explicate its role as an environmental contaminant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Fabrication of FDTS-modified PDMS-ZnO nanocomposite hydrophobic coating with anti-fouling capability for corrosion protection of Q235 steel.

    Science.gov (United States)

    Arukalam, Innocent O; Oguzie, Emeka E; Li, Ying

    2016-12-15

    Perfluorodecyltrichlorosilane-based poly(dimethylsiloxane)-ZnO (FDTS-based PDMS-ZnO) nanocomposite coating with anti-corrosion and anti-fouling capabilities has been prepared using a one-step fabrication technique. XPS analysis and contact angle measurements showed the fluorine content to increase, while the hydrophobicity of the coatings decreased with addition of FDTS. XRD analysis revealed existence of ZnO nanoparticles of dimensions ranging from 11.45 to 93.01nm on the surface of coatings, with the mean particle size decreasing with FDTS addition, and was confirmed by SEM and TEM observations. Interestingly, the anti-corrosion performance and mechanical properties of the coatings increased remarkably on addition of FDTS. Indeed, the observed low adhesion strength, surface energies and the outstanding anti-corrosive properties imply that the obtained coating would be useful in anti-fouling applications. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Numerical solution of two-dimensional non-linear partial differential ...

    African Journals Online (AJOL)

    linear partial differential equations using a hybrid method. The solution technique involves discritizing the non-linear system of partial differential equations (PDEs) to obtain a corresponding nonlinear system of algebraic difference equations to be ...

  7. Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series

    Science.gov (United States)

    Gnoffo, Peter A.

    2015-01-01

    Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.

  8. Leaching of hydrophobic Cu and Zn from discarded marine antifouling paint residues: Evidence for transchelation of metal pyrithiones

    International Nuclear Information System (INIS)

    Holmes, Luke; Turner, Andrew

    2009-01-01

    Leaching of Cu and Zn from a composite of discarded antifouling paint residues ([Cu] = 288 mg g -1 ; [Zn] = 96 mg g -1 ) into natural sea water has been studied over a period of 75 h. Total Cu and Zn were released according to a pseudo first-order reaction, with rate constants on the order of 0.3 and 2.5 (mg L -1 ) -1 h -1 , respectively, and final concentrations equivalent to the dissolution of about 8 and 2% of respective concentrations in the composite. Time-distributions of hydrophobic metals, determined by solid phase extraction-methanol elution, were more complex. Net release of hydrophobic Cu was greater in the absence of light than under a sequence of light-dark cycles; however, hydrophobic Zn release was not detected under the former conditions but contributed up to 50% of total aqueous Zn when light was present. These observations are interpreted in terms of the relative thermodynamic and photolytic stabilities of biocidal pyrithione complexes. - Hydrophobic Cu and Zn leached from antifouling paint particles into sea water appear to be pyrithione complexes.

  9. Development of SCAR marker specific to non-toxic Jatropha curcas L. and designing a novel multiplexing PCR along with nrDNA ITS primers to circumvent the false negative detection

    KAUST Repository

    Mastan, Shaik G.

    2011-05-10

    Jatropha curcas L., a multipurpose shrub, has acquired significant economic importance for its seed oil which can be converted to biodiesel an emerging alternative to petro-diesel. In addition to the commercial value, it is also having medicinal and even high nutritional value to use as animal fodder which is limited due to the toxicity. Development of molecular marker will enable to differentiate non-toxic from toxic variety of J. curcas in a mixed population and also for quality control since the toxic components of J. curcas has deleterious effect on animals. In the present study, the efforts were made to generate the specific SCAR marker for toxic and/or non-toxic J. curcas from RAPD markers. Among the markers specific for toxic and non-toxic varieties, four were selected, purified, cloned, sequenced, and designed primers out of which one set of primers NT-JC/SCAR I/OPQ15-F and R could able to discriminate the non-toxic with toxic Jatropha by giving expected 430 bp size amplification in non-toxic variety. Furthermore, novel multiplex PCR was designed using the nrDNA ITS primers to overcome the false negatives. Present work also demonstrates utility of the conserved regions of nrDNA coding genes in ruling out the artifacts in PCR-like false negatives frequently occur in SCAR due to various reasons. The specific SCAR markers generated in the present investigation will help to distinguish non-toxic from toxic varieties of J. curcas or vice versa, and isolated marker along with designed multiplex protocol has applications in quality control for selective cultivation of non-toxic variety and will also assist in breeding and molecular mapping studies. © 2011 Springer Science+Business Media, LLC.

  10. Analytical solutions of time-fractional models for homogeneous Gardner equation and non-homogeneous differential equations

    Directory of Open Access Journals (Sweden)

    Olaniyi Samuel Iyiola

    2014-09-01

    Full Text Available In this paper, we obtain analytical solutions of homogeneous time-fractional Gardner equation and non-homogeneous time-fractional models (including Buck-master equation using q-Homotopy Analysis Method (q-HAM. Our work displays the elegant nature of the application of q-HAM not only to solve homogeneous non-linear fractional differential equations but also to solve the non-homogeneous fractional differential equations. The presence of the auxiliary parameter h helps in an effective way to obtain better approximation comparable to exact solutions. The fraction-factor in this method gives it an edge over other existing analytical methods for non-linear differential equations. Comparisons are made upon the existence of exact solutions to these models. The analysis shows that our analytical solutions converge very rapidly to the exact solutions.

  11. Applicability of the Pinus bark (Pinus elliottii for the adsorption of toxic heavy metals from aqueous solutions - doi: 10.4025/actascitechnol.v34i1.9585

    Directory of Open Access Journals (Sweden)

    Affonso Celso Gonçalves Junior

    2011-11-01

    Full Text Available  Current research evaluates the efficaciousness of pine (Pinus elliottii bark as adsorbent of the toxic heavy metals cadmium (Cd, lead (Pb and chromium (Cr from aqueous solutions, at two pH conditions: 5.0 and 7.0. Approximately 500 mg of adsorbent material and 50 mL of solution contaminated by Cd, Pb and Cr at different concentrations prepared from standard solutions of each metal were added in 125 mL Erlenmeyer flasks.  Flasks were stirred during 3h at 200 rpm at 25ºC. Further, 10 mL aliquots were then retrieved and concentration of metal Cd, Pb and Cr determined by AAS. Adsorption isotherms for each metal were consequently obtained and linearized according to Langmuir and Freundlich’s mathematical models. Results show that the Pinus bark was efficacious in the removal of toxic heavy metals Cd, Pb and Cr from contaminated solutions and that the bark’s adsorption capacity depended on pH solution.

  12. A novel non-toxic xylene substitute (SBO) for histology.

    Science.gov (United States)

    Kunhua, Wang; Chuming, Fan; Tao, Lai; Yanmei, Yang; Xin, Yang; Xiaoming, Zhang; Xuezhong, Guo; Xun, Lai

    2012-01-01

    Xylene has been generally used as a clearing and deparaffinizing agent in histology. Because of the potential toxic and flammable nature of xylene, its substitutes have been introduced into some laboratories. In this study, we introduced a novel, non-toxic xylene substitute (SBO), which was generated through a mixture of 86% of white oil No.2 and 14% of N-heptane. SBO had a high boiling point (188°C) and flash point (144°C) coupled with a scentless and decreased volatility. To compare the effectiveness of SBO and xylene in histology, a wide range of tissue samples from rats and human beings were processed in parallel in SBO and xylene, subjected to various staining procedures. Similar to the xylene-processed paraffin blocks, the SBO-processed counterparts were easy to section without any evidence of cell shrinkage. Assessment of the SBO-treated sections stained with hematoxylin-eosin revealed a good maintenance of cell morphology and structure, and a clear definition of the cytoplasm and the nucleus. Moreover, comparable good results were achieved between the SBO- and xylene-processed tissues in other histochemical and immunohistochemical stainings. Six-month clinical applications at one department of pathology supported the potentials of SBO as a xylene substitute. In conclusion, we suggest that SBO is a safe and efficient substitute of xylene and may probably replace xylene without losing valuable diagnostic information.

  13. Fabrication of Robust and Antifouling Superhydrophobic Surfaces via Surface-Initiated Atom Transfer Radical Polymerization.

    Science.gov (United States)

    Xue, Chao-Hua; Guo, Xiao-Jing; Ma, Jian-Zhong; Jia, Shun-Tian

    2015-04-22

    Superhydrophobic surfaces were fabricated via surface-initiated atom transfer radical polymerization of fluorinated methacrylates on poly(ethylene terephthalate) (PET) fabrics. The hydrophobicity of the PET fabric was systematically tunable by controlling the polymerization time. The obtained superhydrophobic fabrics showed excellent chemical robustness even after exposure to different chemicals, such as acid, base, salt, acetone, and toluene. Importantly, the fabrics maintained superhydrophobicity after 2500 abrasion cycles, 100 laundering cycles, and long time exposure to UV irradiation. Also, the surface of the superhydrophobic fabrics showed excellent antifouling properties.

  14. Highly antifouling and antibacterial performance of poly (vinylidene fluoride) ultrafiltration membranes blending with copper oxide and graphene oxide nanofillers for effective wastewater treatment.

    Science.gov (United States)

    Zhao, Chuanqi; Lv, Jinling; Xu, Xiaochen; Zhang, Guoquan; Yang, Yuesuo; Yang, Fenglin

    2017-11-01

    Innovation and effective wastewater treatment technology is still in great demand given the emerging contaminants frequently spotted from the aqueous environment. By blending with poly (vinylidene fluoride) (PVDF), the strong hydrophilic graphene oxide (GO) and antibacterial copper oxide (Cu x O) were used as nanofillers to develop the novel, highly antifouling composite membranes via phase inversion process in our latest work. The existence and dispersion of GO and Cu x O posed a significant role on morphologies, structures, surface composition and hydrophilicity of the developed composite membranes, confirmed by SEM, TEM, FTIR and XPS in depth characterization. The SEM images showed that the modified membranes presented a lower resistant structure with developed finger-like macrovoids and thin-walled even interconnected sponge-like pores after adding nanofillers, much encouraging membrane permeation. The XPS results revealed that Cu x O contained Cu 2 O and CuO in the developed membrane and the Cu 2 O nanoparticles were dominant accounting for about 79.3%; thus the modified membrane specifically exhibited an efficient antibacterial capacity. Due to the hydrophilic and bactericidal membrane surface, the composite membranes demonstrated an excellent antifouling performance, including higher flux recovery rate, more resistant against accumulated contaminants and lower filtration resistance, especially lower irreversible resistance. The antifouling property, especially anti-irreversible fouling, was significantly improved, showing a significant engineering potential. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Sign-changing solutions for non-local elliptic equations

    Directory of Open Access Journals (Sweden)

    Huxiao Luo

    2017-07-01

    Full Text Available This article concerns the existence of sign-changing solutions for equations driven by a non-local integrodifferential operator with homogeneous Dirichlet boundary conditions, $$\\displaylines{ -\\mathcal{L}_Ku=f(x,u,\\quad x\\in \\Omega, \\cr u=0,\\quad x\\in \\mathbb{R}^n\\setminus\\Omega, }$$ where $\\Omega\\subset\\mathbb{R}^n\\; (n\\geq2$ is a bounded, smooth domain and the nonlinear term f satisfies suitable growth assumptions. By using Brouwer's degree theory and Deformation Lemma and arguing as in [2], we prove that there exists a least energy sign-changing solution. Our results generalize and improve some results obtained in [27

  16. The role of bile salt toxicity in the pathogenesis of bile duct injury after non-heart-beating porcine liver transplantation

    NARCIS (Netherlands)

    Yska, Marit J.; Buis, Carlijn I.; Monbaliu, Diethard; Schuurs, Theo A.; Gouw, Annette S. H.; Kahmann, Olivier N. H.; Visser, Dorien S.; Pirenne, Jacques; Porte, Robert J.

    2008-01-01

    Background. Intrahepatic bile duct strictures are a serious complication after non-heart-beating (NHB) liver transplantation. Bile salt toxicity has been identified as an important factor in the pathogenesis of bile duct injury and cholangiopathies. The role of bile salt toxicity in the development

  17. Acute toxicity of chlorantraniliprole to non-target crayfish (Procambarus clarkii) associated with rice-crayfish cropping systems.

    Science.gov (United States)

    Barbee, Gary C; McClain, W Ray; Lanka, Srinivas K; Stout, Michael J

    2010-09-01

    Chlorantraniliprole, a novel anthranilic diamide insecticide, was recently introduced into the United States where rice-crayfish crop rotations are practiced to control rice water weevil (Lissorhoptrus oryzophilus Kuschel) infestations. Chlorantraniliprole has high margins of mammalian safety and excellent insecticidal efficacy, but its toxicity to non-target crayfish is uncertain. In this study, the acute toxicity of chlorantraniliprole to the red swamp crayfish Procambarus clarkii Girard was determined using aquatic and feeding assays. The aquatic 96 h median lethal toxicity (LC(50)) data indicate that technical-grade chlorantraniliprole is highly toxic (US EPA category) to crayfish with an LC(50) of 951 microg L(-1) (95% CL = 741-1118 microg L(-1)). A no observed effect concentration (NOEC) of 480 microg L(-1) was recorded. Neither the 36 day chronic feeding study, where crayfish fed on chlorantraniliprole-treated rice seed in aquaria, nor the 144 h acute feeding test, where crayfish fed on rice seeds treated with chlorantraniliprole, produced mortality or abnormal behavior. Chlorantraniliprole is three orders of magnitude less acutely toxic to P. clarkii than lambda-cyhalothrin and etofenprox, two pyrethroid insecticides also used in rice, and is less likely to cause acute crayfish toxicity in rice pond ecosystems. Based on acute toxicity data, the use of chlorantraniliprole should be more compatible with rice-crayfish crop rotations than pyrethroids. (c) 2010 Society of Chemical Industry.

  18. Algebraic Traveling Wave Solutions of a Non-local Hydrodynamic-type Model

    International Nuclear Information System (INIS)

    Chen, Aiyong; Zhu, Wenjing; Qiao, Zhijun; Huang, Wentao

    2014-01-01

    In this paper we consider the algebraic traveling wave solutions of a non-local hydrodynamic-type model. It is shown that algebraic traveling wave solutions exist if and only if an associated first order ordinary differential system has invariant algebraic curve. The dynamical behavior of the associated ordinary differential system is analyzed. Phase portraits of the associated ordinary differential system is provided under various parameter conditions. Moreover, we classify algebraic traveling wave solutions of the model. Some explicit formulas of smooth solitary wave and cuspon solutions are obtained

  19. Bioinspiration-the solution for biofouling control?

    International Nuclear Information System (INIS)

    Ralston, Emily; Swain, Geoffrey

    2009-01-01

    Most surfaces in the marine environment,