WorldWideScience

Sample records for non-thermal plasma reactor

  1. Evolution of the construction and performances in accordance to the applications of non-thermal plasma reactors

    Science.gov (United States)

    Hnatiuc, B.; Brisset, J. L.; Astanei, D.; Ursache, M.; Mares, M.; Hnatiuc, E.; Felea, C.

    2016-12-01

    This paper aims to present the evolution of the construction and performances of non-thermal plasma reactors, identifying specific requirements for various known applications, setting out quality indicators that would allow on the one hand comparing devices that use different kinds of electrical discharges but also their rigorous classification by identification of criteria in order to choose the correct cold plasma reactors for a specific application. It briefly comments the post-discharge effect but also the current dilemma on non-thermal plasma direct treatments versus indirect treatments, using plasma activated water (PAW) or plasma activated medium (PAM), promising in cancer treatment.

  2. Catalytic non-thermal plasma reactor for the decomposition of a mixture of volatile organic compounds

    Indian Academy of Sciences (India)

    B Rama Raju; E Linga Reddy; J Karuppiah; P Manoj Kumar Reddy; Ch Subrahmanyam

    2013-05-01

    The decomposition of mixture of selected volatile organic compounds (VOCs) has been studied in a catalytic non-thermal plasma dielectric barrier discharge reactor. The VOCs mixture consisting n-hexane, cyclo-hexane and -xylene was chosen for the present study. The decomposition characteristics of mixture of VOCs by the DBD reactor with inner electrode modified with metal oxides of Mn and Co was studied. The results indicated that the order of the removal efficiency of VOCs followed as -xylene > cyclo-hexane > -hexane. Among the catalytic study, MnOx/SMF (manganese oxide on sintered metal fibres electrode) shows better performance, probably due to the formation of active oxygen species by in situ decomposition of ozone on the catalyst surface. Water vapour further enhanced the performance due to the in situ formation of OH radicals.

  3. A new concept of high flow rate non-thermal plasma reactor for air treatment

    Energy Technology Data Exchange (ETDEWEB)

    Goujard, V.; Tatibouet, J.M. [Univ. de Poitiers, Poitiers (France). Centre national de la recherche scientifique, Laboratoire de Catalyse en Chimie Organique

    2010-07-01

    Although several non-thermal plasma reactors have been tested for air treatment at the laboratory scale, up-scaling to pilot or industrial scale remains a challenge because several parameters must be considered, such as hydrodynamic behaviour, maximum voltage in an industrial environment, and maintenance of the system. This paper presented a newly developed reactor which consists to a DBD plasma generated on individual supports that could be directly inserted in gas pipes where air flow must be treated. Elimination of 40 percent of 15 ppm of propene was obtained with a energy density as low as 10 J/L. The propene conversion increased when a manganese oxide based catalyst was used because the ozone produced by the plasma was used as an as an oxidant. A simple model of the plasma-catalyst reactor behaviour showed that more than 90 percent of propene conversion can be expected for an input energy density of 10 J/L and residual ozone concentration less than 100 ppb.

  4. Pyrite-enhanced methylene blue degradation in non-thermal plasma water treatment reactor

    Energy Technology Data Exchange (ETDEWEB)

    Benetoli, Luis Otavio de Brito, E-mail: luskywalcker@yahoo.com.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Cadorin, Bruno Mena; Baldissarelli, Vanessa Zanon [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Geremias, Reginaldo [Departamento de Ciencias Rurais, Universidade Federal de Santa Catarina (UFSC), Curitibanos, SC (Brazil); Goncalvez de Souza, Ivan [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Debacher, Nito Angelo, E-mail: debacher@qmc.ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer We use O{sub 2} as the feed gas and pyrite was added to the non-thermal plasma reactor. Black-Right-Pointing-Pointer The methylene blue removal by NTP increased in the presence of pyrite. Black-Right-Pointing-Pointer The total organic carbon content decreased substantially. Black-Right-Pointing-Pointer The acute toxicity test showed that the treated solution is not toxic. Black-Right-Pointing-Pointer The dye degradation occurs via electron impact as well as successive hydroxylation. - Abstract: In this study, methylene blue (MB) removal from an aqueous phase by electrical discharge non-thermal plasma (NTP) over water was investigated using three different feed gases: N{sub 2}, Ar, and O{sub 2}. The results showed that the dye removal rate was not strongly dependent on the feed gas when the electrical current was kept the same for all gases. The hydrogen peroxide generation in the water varied according to the feed gas (N{sub 2} < Ar < O{sub 2}). Using O{sub 2} as the feed gas, pyrite was added to the reactor in acid medium resulting in an accentuated increase in the dye removal, which suggests that pyrite acts as a Fenton-like catalyst. The total organic carbon (TOC) content of the dye solution decreased slightly as the plasma treatment time increased, but in the presence of the pyrite catalyst the TOC removal increased substantially. The acute toxicity test using Artemia sp. microcrustaceans showed that the treated solution is not toxic when Ar, O{sub 2} or O{sub 2}-pyrite is employed. Electrospray ionization mass spectrometry analysis (ESI-MS) of the treated samples indicated that the dye degradation occurs via high energy electron impact as well as successive hydroxylation in the benzene rings of the dye molecules.

  5. Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor

    Science.gov (United States)

    Talebizadeh, Pouyan; Rahimzadeh, Hassan; Babaie, Meisam; Javadi Anaghizi, Saeed; Ghomi, Hamidreza; Ahmadi, Goodarz; Brown, Richard

    2015-01-01

    Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode. PMID:26496630

  6. Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor.

    Directory of Open Access Journals (Sweden)

    Pouyan Talebizadeh

    Full Text Available Non-thermal plasma (NTP has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode.

  7. Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor.

    Science.gov (United States)

    Talebizadeh, Pouyan; Rahimzadeh, Hassan; Babaie, Meisam; Javadi Anaghizi, Saeed; Ghomi, Hamidreza; Ahmadi, Goodarz; Brown, Richard

    2015-01-01

    Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode.

  8. Application of non-thermal plasma reactor and Fenton reaction for degradation of ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Marković, Marijana [Center of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Jović, Milica; Stanković, Dalibor [Innovation Center, Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia); Kovačević, Vesna [Faculty of Physics, University of Belgrade, P.O. Box 44, 11000 Belgrade (Serbia); Roglić, Goran [Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia); Gojgić-Cvijović, Gordana [Center of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Manojlović, Dragan, E-mail: manojlo@chem.bg.ac.rs [Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia)

    2015-02-01

    Pharmaceutical compounds have been detected frequently in surface and ground water. Advanced Oxidation Processes (AOPs) were reported as very efficient for removal of various organic compounds. Nevertheless, due to incomplete degradation, toxic intermediates can induce more severe effects than the parent compound. Therefore, toxicity studies are necessary for the evaluation of possible uses of AOPs. In this study the effectiveness and capacity for environmental application of three different AOPs were estimated. They were applied and evaluated for removal of ibuprofen from water solutions. Therefore, two treatments were performed in a non-thermal plasma reactor with dielectric barrier discharge with and without a homogenous catalyst (Fe{sup 2+}). The third treatment was the Fenton reaction. The degradation rate of ibuprofen was measured by HPLC-DAD and the main degradation products were identified using LC–MS TOF. Twelve degradation products were identified, and there were differences according to the various treatments applied. Toxicity effects were determined with two bioassays: Vibrio fischeri and Artemia salina. The efficiency of AOPs was demonstrated for all treatments, where after 15 min degradation percentage was over 80% accompanied by opening of the aromatic ring. In the treatment with homogenous catalyst degradation reached 99%. V. fischeri toxicity test has shown greater sensitivity to ibuprofen solution after the Fenton treatment in comparison to A. salina. - Highlights: • Twelve ibuprofen degradation products were identified in total. • The degradation percentage differed between treatments (DBD/Fe{sup 2+} was 99%). • In DBD/Fe{sup 2+} only aliphatic degradation products were identified. • V. fischeri was sensitive to ibuprofen solution after the Fenton treatment. • A. salina showed no toxic effect when exposed to all post treatment solutions.

  9. Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor

    OpenAIRE

    2015-01-01

    Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine\\ud exhaust emissions treatment. In this paper, different electrode shapes are analysed and the ...

  10. Pyrite-enhanced methylene blue degradation in non-thermal plasma water treatment reactor.

    Science.gov (United States)

    Benetoli, Luís Otávio de Brito; Cadorin, Bruno Mena; Baldissarelli, Vanessa Zanon; Geremias, Reginaldo; de Souza, Ivan Gonçalvez; Debacher, Nito Angelo

    2012-10-30

    In this study, methylene blue (MB) removal from an aqueous phase by electrical discharge non-thermal plasma (NTP) over water was investigated using three different feed gases: N(2), Ar, and O(2). The results showed that the dye removal rate was not strongly dependent on the feed gas when the electrical current was kept the same for all gases. The hydrogen peroxide generation in the water varied according to the feed gas (N(2)degradation occurs via high energy electron impact as well as successive hydroxylation in the benzene rings of the dye molecules.

  11. Catalyst-Packed Non-Thermal Plasma Reactor for Removal of Nitrogen Oxides

    Science.gov (United States)

    Ravi, V.; Young, Sun Mok; Rajanikanth, B. S.; Kang, Ho-Chul

    2003-02-01

    A single-stage plasma-catalytic reactor in which catalytic materials were packed was used to remove nitrogen oxides. The packing material was scoria being made of various metal oxides including Al2O3, MgO, TiO2, etc. Scoria was able to act not only as dielectric pellets but also as a catalyst in the presence of reducing agent such as ethylene and ammonia. Without plasma discharge, scoria did not work well as a catalyst in the temperature range of 100 °C to 200 °C, showing less than 10% of NOx removal efficiency. When plasma is produced inside the reactor, the NOx removal efficiency could be increased to 60% in this temperature range.

  12. Simultaneous Oxidization of NOx and 802 by a New Non-thermal Plasma Reactor Enhanced by Catalyst and Additive

    Institute of Scientific and Technical Information of China (English)

    Heejoon KIM; HAN Jun; Yuhei SAKAGUCHI; Wataru MINAMI

    2008-01-01

    The non-thermal plasma as one of the most promising technologies for removing NOx and SO2 has attracted much attention. In this study, a new plasma reactor combined with catalyst and additive was developed to effectively oxidize and remove NOx and SO2 in the flue gas. The experimental results showed that TiO2 could improve the oxidation efficiency of SO2 in the case of applying plasma while having a negative effect on the oxidation process of NO and NOx. With the addition of NH3, the oxidation rates of NOx, NO and SO2 were slightly increased. However, the effect of adding NH3 on NOx oxidation was negative when the temperature was above 200℃.

  13. Catalyst-Packed Non-Thermal Plasma Reactor for Removal of Nitrogen Oxides

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A single-stage plasma-catalytic reactor in which catalytic materials were packedwas used to remove nitrogen oxides. The packing material was scoria being made of various metaloxides including A12O3, MgO, TiO2, etc. Scoria was able to act not only as dielectric pelletsbut also as a catalyst in the presence of reducing agent such as ethylene and ammonia. Withoutplasma discharge, scoria did not work well as a catalyst in the temperature range of 100 °Cto 200 °C, showing less than 10% of NOx removal efficiency. When plasma is produced inside thereactor, the NOx removal efficiency could be increased to 60% in this temperature range.

  14. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibing Zhao; Sanil John

    2006-09-30

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. Several pulsed corona discharge (PCD) reactors have been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. Visual observation shows that the corona is not uniform throughout the reactor. The corona is stronger near the top of the reactor in argon, while nitrogen and mixtures of argon or nitrogen with H{sub 2}S produce stronger coronas near the bottom of the reactor. Both of these effects appear to be explainable base on the different electron collision interactions with monatomic versus polyatomic gases. A series of experiments varying reactor operating parameters, including discharge capacitance, pulse frequency, and discharge voltage were performed while maintaining constant power input to the reactor. At constant reactor power input, low capacitance, high pulse frequency, and high voltage operation appear to provide the highest conversion and the highest energy efficiency for H{sub 2}S decomposition. Reaction rates and energy efficiency per H{sub 2}S molecule increase with increasing flow rate, although overall H{sub 2}S conversion decreases at constant power input. Voltage and current waveform analysis is ongoing to determine the fundamental operating characteristics of the reactors. A metal infiltrated porous ceramic membrane was prepared using vanadium as the metal and an alumina tube. Experiments with this type of membrane are continuing, but the results thus far have been consistent with those obtained in previous project years: plasma driven permeation or superpermeability

  15. NOVEL COMPOSITE HYDROGEN-PERMEABLE MEMBRANES FOR NON-THERMAL PLASMA REACTORS FOR THE DECOMPOSITION OF HYDROGEN SULFIDE

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Ji-Jun Zhang; Guibing Zhao; Robyn J. Alcanzare; Linna Wang; Ovid A. Plumb

    2004-07-01

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. Experiments involving methane conversion reactions were conducted with a preliminary pulsed corona discharge reactor design in order to test and improve the reactor and membrane designs using a non-toxic reactant. This report details the direct methane conversion experiments to produce hydrogen, acetylene, and higher hydrocarbons utilizing a co-axial cylinder (CAC) corona discharge reactor, pulsed with a thyratron switch. The reactor was designed to accommodate relatively high flow rates (655 x 10{sup -6} m{sup 3}/s) representing a pilot scale easily converted to commercial scale. Parameters expected to influence methane conversion including pulse frequency, charge voltage, capacitance, residence time, and electrode material were investigated. Conversion, selectivity and energy consumption were measured or estimated. C{sub 2} and C{sub 3} hydrocarbon products were analyzed with a residual gas analyzer (RGA). In order to obtain quantitative results, the complex sample spectra were de-convoluted via a linear least squares method. Methane conversion as high as 51% was achieved. The products are typically 50%-60% acetylene, 20% propane, 10% ethane and ethylene, and 5% propylene. First Law thermodynamic energy efficiencies for the system (electrical and reactor) were estimated to range from 38% to 6%, with the highest efficiencies occurring at short residence time and low power input (low specific energy) where conversion is the lowest (less than 5%). The highest methane conversion of 51% occurred at a

  16. NOVEL COMPOSITE HYDROGEN-PERMEABLE MEMBRANES FOR NON-THERMAL PLASMA REACTORS FOR THE DECOMPOSITION OF HYDROGEN SULFIDE

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Ji-Jun Zhang; Guibing Zhao; Robyn J. Alcanzare; Linna Wang; Ovid A. Plumb

    2004-07-01

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. Experiments involving methane conversion reactions were conducted with a preliminary pulsed corona discharge reactor design in order to test and improve the reactor and membrane designs using a non-toxic reactant. This report details the direct methane conversion experiments to produce hydrogen, acetylene, and higher hydrocarbons utilizing a co-axial cylinder (CAC) corona discharge reactor, pulsed with a thyratron switch. The reactor was designed to accommodate relatively high flow rates (655 x 10{sup -6} m{sup 3}/s) representing a pilot scale easily converted to commercial scale. Parameters expected to influence methane conversion including pulse frequency, charge voltage, capacitance, residence time, and electrode material were investigated. Conversion, selectivity and energy consumption were measured or estimated. C{sub 2} and C{sub 3} hydrocarbon products were analyzed with a residual gas analyzer (RGA). In order to obtain quantitative results, the complex sample spectra were de-convoluted via a linear least squares method. Methane conversion as high as 51% was achieved. The products are typically 50%-60% acetylene, 20% propane, 10% ethane and ethylene, and 5% propylene. First Law thermodynamic energy efficiencies for the system (electrical and reactor) were estimated to range from 38% to 6%, with the highest efficiencies occurring at short residence time and low power input (low specific energy) where conversion is the lowest (less than 5%). The highest methane conversion of 51% occurred at a

  17. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibling Zhao; Ji-Jun Zhang; Sanil John

    2005-10-01

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. A pulsed corona discharge (PCD) reactor has been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. A nonthermal plasma cannot be produced in pure H{sub 2}S with our reactor geometry, even at discharge voltages of up to 30 kV, because of the high dielectric strength of pure H{sub 2}S ({approx}2.9 times higher than air). Therefore, H{sub 2}S was diluted in another gas with lower breakdown voltage (or dielectric strength). Breakdown voltages of H{sub 2}S in four balance gases (Ar, He, N{sub 2} and H{sub 2}) have been measured at different H{sub 2}S concentrations and pressures. Breakdown voltages are proportional to the partial pressure of H{sub 2}S and the balance gas. H{sub 2}S conversion and the reaction energy efficiency depend on the balance gas and H{sub 2}S inlet concentrations. With increasing H{sub 2}S concentrations, H{sub 2}S conversion initially increases, reaches a maximum, and then decreases. H{sub 2}S conversion in atomic balance gases, such as Ar and He, is more efficient than that in diatomic balance gases, such as N{sub 2} and H{sub 2}. These observations can be explained by the proposed reaction mechanism of H{sub 2}S dissociation in different balance gases. The results show that nonthermal plasmas are effective for dissociating H{sub 2}S into hydrogen and sulfur.

  18. Novel Composite Hydrogen-Permeable Membranes for Non-Thermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris D. Argyle; John F. Ackerman; Suresh Muknahallipatna; Jerry C. Hamann; Stanislaw Legowski; Guibling Zhao; Ji-Jun Zhang; Sanil John

    2005-10-01

    The goal of this experimental project is to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a non-thermal plasma and recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), although it has yet to be confirmed in this study. A pulsed corona discharge (PCD) reactor has been fabricated and used to dissociate H{sub 2}S into hydrogen and sulfur. A nonthermal plasma cannot be produced in pure H{sub 2}S with our reactor geometry, even at discharge voltages of up to 30 kV, because of the high dielectric strength of pure H{sub 2}S ({approx}2.9 times higher than air). Therefore, H{sub 2}S was diluted in another gas with lower breakdown voltage (or dielectric strength). Breakdown voltages of H{sub 2}S in four balance gases (Ar, He, N{sub 2} and H{sub 2}) have been measured at different H{sub 2}S concentrations and pressures. Breakdown voltages are proportional to the partial pressure of H{sub 2}S and the balance gas. H{sub 2}S conversion and the reaction energy efficiency depend on the balance gas and H{sub 2}S inlet concentrations. With increasing H{sub 2}S concentrations, H{sub 2}S conversion initially increases, reaches a maximum, and then decreases. H{sub 2}S conversion in atomic balance gases, such as Ar and He, is more efficient than that in diatomic balance gases, such as N{sub 2} and H{sub 2}. These observations can be explained by the proposed reaction mechanism of H{sub 2}S dissociation in different balance gases. The results show that nonthermal plasmas are effective for dissociating H{sub 2}S into hydrogen and sulfur.

  19. Therapeutic Non Thermal Plasma, Significance and Challenges

    Directory of Open Access Journals (Sweden)

    Wameath Sh. Abdul-Majeed

    2014-06-01

    general consequences that could result from plasma treatment. Therefore, it becomes necessary to conduct efficacy and safety studies before inducing a new plasma device for human clinical applications. In this sense, our research team started an endeavour to treat cattle infected by coxiella burnetii, a zoonotic pathogens, in selected areas of south of Iraq by applying a custom-made dielectric barrier discharge plasma atomizer. Our preliminary experiments indicated some promising results compared with medical drugs. In line with our research plan and objectives, we proposed a hot topic theme entitled “Therapeutic non thermal plasma, significance and challenges” as a special issue of Letters in Applied NanoBioScience aimed to concise the up-to-date results and observations of recent researches undertaken in this field, which would represent a considerable add to the knowledge reported so far. It was our pleasure and appreciation to receive several submissions from respected researchers in the field and accordingly all received manuscripts were subjected to peer review process. Unfortunately, not all of the received manuscripts fulfilled the requirements and thereby excluded. Though, we were so delighted to discriminate and accept three fruitful researches for publication in the special issue, as in the following details: Haertel et al., Differential Effect of Non-Thermal Atmospheric Pressure Plasma on Angiogensis: This study focused on the effects of plasma on angiogenesis in the chick embryo chorioallantoic membrane (CAM assay and rat aortic ring (AOR test, in which plasma-treated PBS or medium was applied. Barni et al., Effects of a Pulsed Operation on Ozone Production in Dielectric Barrier Air Dischargees: An experimental investigation of ozone production in a pulsed dielectric barrier discharge (DBD reactor was performed, in which measurements of ozone in the gas-phase as a function of the power level was undertaken. Zhu et al., Review of Mercury Removal from Fue

  20. Application of non-thermal plasma reactor for degradation and detoxification of high concentrations of dye Reactive Black 5 in water

    Directory of Open Access Journals (Sweden)

    Dojčinović Biljana P.

    2016-01-01

    Full Text Available Degradation and detoxification efficiency of high concentrations of commercially available reactive textile dye Reactive Black 5 solution (40, 80, 200, 500, 1000 mg L-1, were studied. Advanced oxidation processes in water falling film based dielectric barrier discharge as a non-thermal plasma reactor were used. For the first time, this reactor was used for the treatment of high concentrations of organic pollutants such as reactive textile dye Reactive Black 5 in water. Solution of the dye is treated by plasma as thin water solution film that is constantly regenerated. Basically, the reactor works as a continuous flow reactor and the electrical discharge itself takes place at the gas-liquid interphase. The dye solution was recirculated through the reactor with an applied energy density of 0-374 kJ L-1. Decolorization efficiency (% was monitored by UV-VIS spectrophotometric technique. Samples were taken after every recirculation (~ 22 kJ L-1 and decolorization percent was measured after 5 min and 24 h of plasma treatment. The efficiency of degradation (i.e. mineralization and possible degradation products were also tracked by determination of the chemical oxygen demand (COD and by ion chromatography (IC. Initial toxicity and toxicity of solutions after the treatment were studied with Artemia salina test organisms. Efficiency of decolorization decreased with the increase of the dye concentration. Complete decolorization, high mineralization and non-toxicity of the solution (<10 % were acomplished after plasma treatment using energy density of 242 kJ L-1, while the initial concentrations of Reactive Black 5 were 40 and 80 mg L-1. [Projekat Ministarstva nauke Republike Srbije, br. 172030 i br. 171034

  1. Treatment of methyl orange by nitrogen non-thermal plasma in a corona reactor: The role of reactive nitrogen species

    Energy Technology Data Exchange (ETDEWEB)

    Cadorin, Bruno Mena, E-mail: brunomenacadorin@gmail.com [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Tralli, Vitor Douglas [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Ceriani, Elisa [Department of Chemical Sciences, Università di Padova (Italy); Benetoli, Luís Otávio de Brito [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Marotta, Ester, E-mail: ester.marotta@unipd.it [Department of Chemical Sciences, Università di Padova (Italy); Ceretta, Claudio [Department of Industrial Engineering, Università di Padova (Italy); Debacher, Nito Angelo [Department of Chemistry, Universidade Federal de Santa Catarina (Brazil); Paradisi, Cristina [Department of Chemical Sciences, Università di Padova (Italy)

    2015-12-30

    Highlights: • Nitration of methyl orange is one of the main processes in treatment with N{sub 2}-plasma. • MS/MS analysis shows preferred nitration of methyl orange in ortho position. • N{sub 2} plasma, N{sub 2}-PAW, reaction with NO{sub 2}{sup −} or NO{sub 2}{sup −}/H{sub 2}O{sub 2} at pH 2 give the same products. - Abstract: Methyl orange (MO) azo dye served as model organic pollutant to investigate the role of reactive nitrogen species (RNS) in non-thermal plasma (NTP) induced water treatments. The results of experiments in which MO aqueous solutions were directly exposed to N{sub 2}-NTP are compared with those of control experiments in which MO was allowed to react with nitrite, nitrate and hydrogen peroxide, which are species formed in water exposed to N{sub 2}-NTP. Treatment of MO was also performed in PAW, Plasma Activated Water, that is water previously exposed to N{sub 2}-NTP. Both direct N{sub 2}-NTP and N{sub 2}-PAW treatments induced the rapid decay of MO. No appreciable reaction was instead observed when MO was treated with NO{sub 3}{sup −} and H{sub 2}O{sub 2} either under acidic or neutral pH. In contrast, in acidic solutions MO decayed rapidly when treated with NO{sub 2}{sup −} and with a combination of NO{sub 2}{sup −} and H{sub 2}O{sub 2}. Thorough product analysis was carried out by HPLC coupled with UV–vis and ESI–MS/MS detectors. In all experiments in which MO reaction was observed, the major primary product was a derivative nitro-substituted at the ortho position with respect to the N,N-dimethylamino group of MO. The reactions of RNS are discussed and a mechanism for the observed nitration products is proposed.

  2. MERCURY OXIDIZATION IN NON-THERMAL PLASMA BARRIER DISCHARGE SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    V.K. Mathur

    2003-02-01

    In the past decade, the emission of toxic elements from human activities has become a matter of great public concern. Hg, As, Se and Cd typically volatilize during a combustion process and are not easily caught with conventional air pollution control techniques. In addition, there is no pollution prevention technique available now or likely be available in the foreseeable future that can prevent the emission of these trace elements. These trace elements pose additional scientific challenge as they are present at only ppb levels in large gas streams. Mercury, in particular, has attracted significant attention due to its high volatility, toxicity and potential threat to human health. In the present research work, a non-thermal plasma dielectric barrier discharge technique has been used to oxidize Hg{sup 0}(g) to HgO. The basic premise of this approach is that Hg{sup 0} in vapor form cannot be easily removed in an absorption tower whereas HgO as a particulate is amiable to water scrubbing. The work presented in this report consists of three steps: (1) setting-up of an experimental apparatus to generate mercury vapors at a constant rate and modifying the existing non-thermal plasma reactor system, (2) solving the analytical challenge for measuring mercury vapor concentration at ppb level, and (3) conducting experiments on mercury oxidation under plasma conditions to establish proof of concept.

  3. Nitrogen oxides and methane treatment by non-thermal plasma

    Science.gov (United States)

    Alva, E.; Pacheco, M.; Colín, A.; Sánchez, V.; Pacheco, J.; Valdivia, R.; Soria, G.

    2015-03-01

    Non thermal plasma was used to treat nitrogen oxides (NOx) and methane (CH4), since they are important constituents of hydrocarbon combustion emissions processes and, both gases, play a key role in the formation of tropospheric ozone. These gases are involved in environmental problems like acid rain and some diseases such as bronchitis and pneumonia. In the case of methane is widely known its importance in the global climate change, and currently accounts for 30% of global warming. There is a growing concern for methane leaks, associated with a rapid expansion of unconventional oil and gas extraction techniques as well as a large-scale methane release from Arctic because of ice melting and the subsequent methane production of decaying organic matter. Therefore, methane mitigation is a key to avoid dangerous levels of global warming. The research, here reported, deals about the generation of non-thermal plasma with a double dielectric barrier (2DBD) at atmospheric pressure with alternating current (AC) for NOx and CH4 treatment. The degradation efficiencies and their respective power consumption for different reactor configurations (cylindrical and planar) are also reported. Qualitative and quantitative analysis of gases degradation are reported before and after treatment with cold plasma. Experimental and theoretical results are compared obtaining good removal efficiencies, superior to 90% and to 20% respectively for NOx and CH4.

  4. 催化型低温等离子体反应器净化废气研究进展%Advances in catalysis non-thermal plasma reactor for air pollution control

    Institute of Scientific and Technical Information of China (English)

    刘跃旭; 王少波; 原培胜; 赵瀛

    2009-01-01

    催化型低温等离子体反应器可有效地提高废气治理的能量效率和净化效果.现有数据表明,在一定能量密度下,催化型低温等离子体反应器比传统低温等离子体反应器能量效率有1.1~12倍的提高,这和污染物种类,反应器构型及催化剂参数有关.本文介绍了反应机理、反应器构型及催化剂参数选择等对反应器性能的影响,并指出今后研究的发展方向.%Catalysis non-thermal plasma reactor has been demonstrated to be effective in improving the energy efficiency and purification for air pollution control. According to the available experimental data, for a given specific energy density, the energy efficiency for gaseous pollutant abatement obtained with catalysis non-thermal plasma reactor could be improved with 1.1-12 times as compared to that of conventional reactors depending on the type of pollutants, reactor geometry and catalyst used. The influences of reaction mechanism, reactor geometry and catalyst parameters on the performance for gaseous pollutant removal are comprehensively discussed, and the further development trend of this technology is proposed.

  5. 非热等离子体烃类燃料氧化重整反应器的研究进展%Progress of non-thermal plasma reactors for oxidative reforming of hydrocarbon fuel

    Institute of Scientific and Technical Information of China (English)

    丁天英; 刘景林; 赵天亮; 朱爱民

    2015-01-01

    Oxidative reforming (partial oxidation) of fuel is mildly exothermic and has the advantages of fast reaction and low energy cost, which is especially suitable for on-line production of H2 or H2-rich gas. Atmospheric-pressure non-thermal plasma provides a very promising new technology for oxidative reforming of fuel with significant advantages of feed flexibility, fast response, and compact, efficient reactor. The recent developments of atmospheric pressure non-thermal plasma reactors for oxidative reforming of hydrocarbon fuel are reviewed. The warm plasma generated by spark and gliding arc discharges and its fuel reforming reactors are presented. Compared with the reactors of cold plasma generated by corona and dielectric barrier discharges, the warm plasma reactor exhibits high fuel conversion as well as low energy cost.%燃料氧化重整(部分氧化)为温和的放热反应,其反应速率快、能耗低,特别适用于在线制取氢气或富氢气体。大气压非热等离子体为燃料氧化重整提供了一种应用前景广泛的新技术,展现了对燃料具有普适性、快速响应和反应器紧凑高效等优点。综述了大气压非热等离子体烃类燃料氧化重整反应器的研究进展,着重阐述了火花和滑动弧放电产生的暖等离子体及其烃类燃料重整反应器。与电晕和介质阻挡放电产生的冷等离子体反应器相比,暖等离子体反应器具有燃料转化率高和能耗低的优点。

  6. Non-Thermal Sanitation By Atmospheric Pressure Plasma Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC's Non-Thermal Sanitation by Atmospheric Pressure Plasma technology sanitizes fresh fruits and vegetables without the use of consumable chemicals and without...

  7. Non-Thermal Sanitation By Atmospheric Pressure Plasma Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a non-thermal technology based on atmospheric-pressure (AP) cold plasma to sanitize foods, food packaging materials, and other hardware...

  8. Development of Scaling Algorithms and Economic Evaluation for Non-Thermal Plasma Reactors - Adsorbant/Catalyzer Hybrid System for Control of NOx Released During Army and Related U.S. Department of Defense (DOD) Operations

    National Research Council Canada - National Science Library

    Urashima, K

    1998-01-01

    Computer code (SUENTP-J) to predict scale-up and economic evaluation of several eligible non-thermal plasma processes for air pollution control - electron beam process, pulsed corona process, and corona radical shower...

  9. Removal of Pollutants by Atmospheric Non Thermal Plasmas

    CERN Document Server

    Khacef, Ahmed; Pouvesle, Jean Michel; Van, Tiep Le

    2008-01-01

    Results on the application of non thermal plasmas in two environmentally important fields: oxidative removal of VOC and NOx in excess of oxygen were presented. The synergetic application of a plasma-catalytic treatment of NOx in excess of oxygen is also described.

  10. Removal NO with non-thermal plasma assisted catalyst modified activated carbon from coal

    Energy Technology Data Exchange (ETDEWEB)

    Chen, M.G. [Toyahashi Univ. of Technology, Toyohashi, Aichi (Japan). Dept. of Ecological Engineering; Anhui Univ. of Science and Technology, Huainan, Anhui (China). School of Chemical Engineering; Takashima, T.; Mizuno, A. [Toyahashi Univ. of Technology, Toyohashi, Aichi (Japan). Dept. of Ecological Engineering

    2010-07-01

    Non-thermal plasma can produce a significant number of free electrons, ions, reactive free radicals and a variety of free particles in excited states, containing a large number of active atomic oxygen (O) and higher activity energy so it can increase the chemical reaction rate. An effective way to generate the non-thermal plasma is through dielectric barrier discharge (DBD). There are three types of dielectric barrier discharge reactors: wire (or bar)-cylinder; wire-plate; and plate-plate structure. This paper examined the effect of gas concentration, space velocity, catalyst loading volume, and the input voltage on the removal ratio of nitric oxide (NO) in the process of non-thermal plasma assisted with modified activated carbon from coal. A form of bar-cylinder reactor was used and combined with a catalyst of modified activated carbon from coal. The catalyst was packed between the bar and the cylinder in the fixed bed reactor. It was concluded that a non-thermal plasma assisted catalyst which modifies activated carbon from coal is an effective way to remove NO, and the input voltage, gas concentration, gas space velocity and the catalyst packed weight has a certain degree of impact on the NO removal ratio. 17 refs., 7 figs.

  11. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    Energy Technology Data Exchange (ETDEWEB)

    Lunov, O., E-mail: lunov@fzu.cz; Churpita, O.; Zablotskii, V.; Jäger, A.; Dejneka, A. [Institute of Physics AS CR, Prague 18221 (Czech Republic); Deyneka, I. G.; Meshkovskii, I. K. [St. Petersburg State University of Information Technologies, Mechanics and Optics, St. Petersburg 197101 (Russian Federation); Syková, E. [Institute of Experimental Medicine AS CR, Prague 14220 (Czech Republic); Kubinová, Š. [Institute of Physics AS CR, Prague 18221 (Czech Republic); Institute of Experimental Medicine AS CR, Prague 14220 (Czech Republic)

    2015-02-02

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections from plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy.

  12. Non-thermal plasma treatment of hydrogen sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Frost, L.J.; Hartvigsen, J.; Elangovan, S. [Ceramatec Inc., Salt Lake City, UT (United States)

    2009-07-01

    This paper described a non-thermal plasma reforming process to treat hydrogen sulfide (H{sub 2}S) in heavy hydrocarbons. H{sub 2}S is present in natural gas, petroleum, and various process gases. It is an unwanted compound that is generally removed using an amine extraction process followed by a Claus process. Ceramatec Inc. has developed a GlidArc plasma reformer to recover some of the hydrogen from the H{sub 2}S. Non-thermal plasma reforming breaks hydrogen sulfide into hydrogen and elemental sulphur. Ceramatec has established the catalytic nature of the non-thermal plasma generated by its GlidArc plasma reformer. This treatment process is still in the laboratory stage, but it offers the possibility of a new method to treat acid gas that will provide an opportunity to recover hydrogen that is currently burned to water during the Claus sulphur removal process. Ceramatec, in conjunction with Albin Czernichowski of ECP in France, has demonstrated the ability to reform a variety of hydrocarbons using the non-thermal plasma catalyzed reaction. The plasma reaction can be initiated in either a partial oxidation or steam reforming mode. Multiple hydrocarbons can be processed by the same unit with only control parameters changing to meet the requirements of the individual hydrocarbons being processed. Although a tested unit did not accomplish complete conversion, some additional options will be tested that are expected to increase the conversion under an existing program operated by the United States Department of Energy. 4 refs., 9 figs.

  13. EDITORIAL: Non-thermal plasma-assisted fuel conversion for green chemistry Non-thermal plasma-assisted fuel conversion for green chemistry

    Science.gov (United States)

    Nozaki, Tomohiro; Gutsol, Alexander

    2011-07-01

    -generated reactive species are used to initiate chemical reactions at unexpectedly lower temperatures than conventional thermochemical reactions, leading to non-equilibrium product distribution or creating unconventional reaction pathways. When non-thermal plasma is combined with catalysts, a synergistic effect is frequently observed. Such unique properties of non-thermal plasma are expected to contribute excellent control over process parameters that meet the need for energy saving, environment protection, and material preservation. This special issue consists of eleven peer-reviewed papers including two invited publications. Professors Alexander Fridman and Alexander Rabinovich from Drexel University, and Dr Gutsol from the Chevron Energy Technology Company present a critical review of various industry-oriented practical plasma fuel conversion processes. Professor Richard Mallinson from University of Oklahoma describes his recent project on E85 (85%-ethanol/15%-gasoline) upgrading using non-thermal plasma and catalyst hybrid reactor, and highlights the synergistic effect on fuel conversion processes. Other papers focus on plasma/catalyst hybrid reactions for methane dry (CO2) reforming, plasma synthesis of carbon suboxide polymer from CO, the gas-to-liquid (GTL) process using a non-thermal plasma-combined micro-chemical reactor, and molecular beam characterization of plasma-generated reactive species. Much research regarding plasma catalysis is ongoing worldwide, but there is plenty of room for further development of plasma fuel processing, which could eventually provide a viable and flexible solution in future energy and material use. Finally, we would like to thank all symposium participants for their active discussion. We appreciate the sponsorship of the Division of Fuel Chemistry of the American Chemical Society. We express special thanks to the program chair of the Fuel Chemistry Division, Professor Chang-jun Liu at Tianjin University, for his dedication to the success of

  14. The degradation of oxadiazon by non-thermal plasma with a dielectric barrier configuration

    Science.gov (United States)

    Ying, ZHAO; Risheng, YAO; Yuedong, MENG; Jiaxing, LI; Yiman, JIANG; Longwei, CHEN

    2017-03-01

    To explore the feasibility of a degradation approach by non-thermal plasma and the corresponding degradation pathways, studies on the oxadiazon removal in synthetic wastewater by a dielectric barrier discharge plasma reactor were investigated. The loss of the nitro group, dechlorination and ring cleavage is mainly involved in the non-thermal plasma degradation pathways of oxadiazon in a solution based on the OES and LC-MS analysis. Detection of EC25 and the production of the chlorine ion and nitrate ion further demonstrate the feasibility and validity of the approach. The conditions with a proper applied voltage, solution flow rate, oxygen flow rate, and solution pH contribute to the plasma degradation processes with a degradation ratio of over 94%.

  15. Mechanism of NO reduction with non-thermal plasma

    Institute of Scientific and Technical Information of China (English)

    YU Gang; YU Qi; JIANG Yan-long; ZENG Ke-si; GU Fan

    2005-01-01

    Non-thermal plasma has been proved to be an effective and competitive technology for removing NO in flue gas since 1970. In this paper, the NO reduction mechanism of the non-thermal plasma reaction in NO/N2/O2 system was investigated using the method of spectral analysis and quantum chemistry. By the establishment of NO reduction and gas discharge plasma emission spectrum measuring system, the NO reduction results, gas discharge emission spectra of NO/N2O2 and pure N2 were obtained, and then the model of molecular orbit of N2 either in ground state or its excited state was worked out using the method of molecular orbit Ab initio in SelfConsistent Field(SCF). It was found that NO reduction in NO/N2 gas discharge plasma was achieved mainly through a series of fast elementary reactions and the N(E6) at excited state was the base for NO reduction.

  16. Review of mercury removal from flue gas using non-thermal plasma technology

    Directory of Open Access Journals (Sweden)

    Tao Zhu

    2014-06-01

    Full Text Available Mercury with various constituents in flue gas produced by burning coal could be an attractive alternative to non-thermal plasma process for mercury control. The mechanism of removal for pollutants using non-thermal plasma technology and the electric discharge form of non-thermal plasma are introduced. Then, we summary the research progress of mercury removal by non-thermal plasma in recent years, especially focus on how to oxide the elemental mercury from flue gas. We hope the non-thermal plasma technology can be improved to apply in the industry in the near future.

  17. Pre-treating water with non-thermal plasma

    Science.gov (United States)

    Cho, Young I.; Fridman, Alexander; Rabinovich, Alexander; Cho, Daniel J.

    2017-07-04

    The present invention consists of a method of pre-treatment of adulterated water for distillation, including adulterated water produced during hydraulic fracturing ("fracking") of shale rock during natural gas drilling. In particular, the invention is directed to a method of treating adulterated water, said adulterated water having an initial level of bicarbonate ion in a range of about 250 ppm to about 5000 ppm and an initial level of calcium ion in a range of about 500 ppm to about 50,000 ppm, said method comprising contacting the adulterated water with a non-thermal arc discharge plasma to produce plasma treated water having a level of bicarbonate ion of less than about 100 ppm. Optionally, the plasma treated water may be further distilled.

  18. Comparative analysis on characteristics in non-thermal plasma reactor with oxygen and air%氧气/空气源低温等离子体发生器的性能对比分析

    Institute of Scientific and Technical Information of China (English)

    李小华; 李伟俊; 蔡忆昔; 施蕴曦; 徐辉; 顾林波; 濮晓宇

    2016-01-01

    . As a solution, diesel particular filter (DPF) has become a mainstay in PM control. However, there are some problems with DPF regeneration technologies, such as thermal damage, sulfur poisoning of the catalyst and low regeneration efficiency. So it is meaningful to find out a new regeneration method. Recently, non-thermal plasma (NTP) has become a research focus in the field of diesel emission control with its high efficiency, safety, no secondary pollution and a wide range of application. The active materials, mainly including O3,NO2,OH and O, can start complex chemical reactions, which is impossible in a conventional condition. So, it can be used to remove PM deposits in DPF and realize DPF regeneration. In term of NTP reactor, dielectric barrier discharge is widely used in the laboratory and industry for its simple type, safety and reliability. There are many influence factors concerning discharge, such as discharge voltage and frequency, gas type and flow, materials of barrier and electrode type. In this paper, a coaxial type NTP reactor was designed. In order to have a detailed recognition of NTP reactor, comparative analysis on oxygen and air dielectric discharge were investigated, with the studies on the influence of discharge electrode area (SE), peak-peak voltage (Up-p) and volume flow rate (qv) on discharge power (P), charge flux (Q), ozone concentration, ozone output and ozone output efficiency.SEwas changed by the length of wire tightly wrapped around the barrier,Up-pwas adjusted by a plasma source andqv was controlled by gas valves and flow meters. The results indicated thatSEhad a similar effect both on oxygen and air dielectric discharge. With the increase ofSE,P andQhad a linear growth but there were lower values and growth rate in air discharge. Ozone concentration increased asSE increased while its output efficiency decreased both in oxygen and air discharge.Up-phad remarkably positive impacts onP and Q, both of which had a rising growth rate. Ozone

  19. Removal of Elemental Mercury from a Gas Stream Facilitated by a Non-Thermal Plasma Device

    Energy Technology Data Exchange (ETDEWEB)

    Charles Mones

    2006-12-01

    Mercury generated from anthropogenic sources presents a difficult environmental problem. In comparison to other toxic metals, mercury has a low vaporization temperature. Mercury and mercury compounds are highly toxic, and organic forms such as methyl mercury can be bio-accumulated. Exposure pathways include inhalation and transport to surface waters. Mercury poisoning can result in both acute and chronic effects. Most commonly, chronic exposure to mercury vapor affects the central nervous system and brain, resulting in neurological damage. The CRE technology employs a series of non-thermal, plasma-jet devices to provide a method for elemental mercury removal from a gas phase by targeting relevant chemical reactions. The technology couples the known chemistry of converting elemental mercury to ionic compounds by mercury-chlorine-oxygen reactions with the generation of highly reactive species in a non-thermal, atmospheric, plasma device. The generation of highly reactive metastable species in a non-thermal plasma device is well known. The introduction of plasma using a jet-injection device provides a means to contact highly reactive species with elemental mercury in a manner to overcome the kinetic and mass-transfer limitations encountered by previous researchers. To demonstrate this technology, WRI has constructed a plasma test facility that includes plasma reactors capable of using up to four plasma jets, flow control instrumentation, an integrated control panel to operate the facility, a mercury generation system that employs a temperature controlled oven and permeation tube, combustible and mercury gas analyzers, and a ductless fume hood designed to capture fugitive mercury emissions. Continental Research and Engineering (CR&E) and Western Research Institute (WRI) successfully demonstrated that non-thermal plasma containing oxygen and chlorine-oxygen reagents could completely convert elemental mercury to an ionic form. These results demonstrate potential the

  20. Electric field effects in combustion with non-thermal plasma

    Science.gov (United States)

    Casey, Tiernan Albert

    Chemically reacting zones such as flames act as sources of charged species and can thus be considered as weakly-ionized plasmas. As such, the action of an externally applied electric field has the potential to affect the dynamics of reaction zones by enhancing transport, altering the local chemical composition, activating reaction pathways, and by providing additional thermal energy through the interaction of electrons with neutral molecules. To investigate these effects, one-dimensional simulations of reacting flows are performed including the treatment of charged species transport and non-thermal electron chemistry using a modified reacting fluid solver. A particular area of interest is that of plasma assisted ignition, which is investigated in a canonical one-dimensional configuration. An incipient ignition kernel, formed by localized energy deposition into a lean mixture of methane and air at atmospheric pressure, is subjected to sub-breakdown electric fields by applied voltages across the domain, resulting in non-thermal behavior of the electron sub-fluid formed during the discharge. Strong electric fields cause charged species to be rapidly transported from the ignition zone across the domain in opposite directions as charge fronts, augmenting the magnitude of the electric field in the fresh gas during the pulse through a dynamic-electrode effect. This phenomenon results in an increase in the energy of the electrons in the fresh mixture with increasing time, accelerating electron impact dissociation processes. A semi-analytic model to represent this dynamic electrode effect is constructed to highlight the relative simplicity of the electrodynamic problem admitted by the far more detailed chemistry and transport. Enhanced fuel and oxidizer decomposition due to electron impact dissociation and interaction with excited neutrals generate a pool of radicals, mostly O and H, in the fresh gas ahead of the flame's preheat zone. The effect of nanosecond pulses are to

  1. Non-thermal Dupree diffusivity and shielding effects on atomic collisions in astrophysical turbulent plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-02-01

    The influence of non-thermal Dupree turbulence and the plasma shielding on the electron-ion collision is investigated in astrophysical non-thermal Lorentzian turbulent plasmas. The second-order eikonal analysis and the effective interaction potential including the Lorentzian far-field term are employed to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the diffusion coefficient, impact parameter, collision energy, Debye length and spectral index of the astrophysical Lorentzian plasma. It is shown that the non-thermal effect suppresses the eikonal scattering phase shift. However, it enhances the eikonal collision cross section in astrophysical non-thermal turbulent plasmas. The effect of non-thermal turbulence on the eikonal atomic collision cross section is weakened with increasing collision energy. The variation of the atomic cross section due to the non-thermal Dupree turbulence is also discussed.

  2. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiromasa [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Mizuno, Masaaki [Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Toyokuni, Shinya [Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Maruyama, Shoichi [Department of Nephrology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kodera, Yasuhiro [Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Terasaki, Hiroko [Department of Ophthalmology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Tetsuo [Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 501-1196 Gifu (Japan); Kato, Masashi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Hori, Masaru [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  3. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Science.gov (United States)

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-12-01

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  4. Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations

    Science.gov (United States)

    Lunov, Oleg; Zablotskii, Vitalii; Churpita, Olexander; Chánová, Eliška; Syková, Eva; Dejneka, Alexandr; Kubinová, Šárka

    2014-11-01

    Non-thermal plasma has been recognized as a promising tool across a vast variety of biomedical applications, with the potential to create novel therapeutic methods. However, the understanding of the molecular mechanisms behind non-thermal plasma cellular effects remains a significant challenge. In this study, we show how two types of different non-thermal plasmas induce cell death in mammalian cell cultures via the formation of multiple intracellular reactive oxygen/nitrogen species. Our results showed a discrepancy in the superoxide accumulation and lysosomal activity in response to air and helium plasma, suggesting that triggered signalling cascades might be grossly different between different plasmas. In addition, the effects of ozone, a considerable component of non-thermal plasma, have been simultaneously evaluated and have revealed much faster and higher cytotoxic effects. Our findings offer novel insight into plasma-induced cellular responses, and provide a basis for better controlled biomedical applications.

  5. Changing the surface properties on naval steel as result of non-thermal plasma treatment

    Science.gov (United States)

    Hnatiuc, B.; Sabău, A.; Dumitrache, C. L.; Hnatiuc, M.; Crețu, M.; Astanei, D.

    2016-08-01

    The problem of corrosion, related to Biofouling formation, is an issue with very high importance in the maritime domain. According to new rules, the paints and all the technologies for the conditioning of naval materials must fulfil more restrictive environmental conditions. In order to solve this issue, different new clean technologies have been proposed. Among them, the use of non-thermal plasmas produced at atmospheric pressure plays a very important role. This study concerns the opportunity of plasma treatment for preparation or conditioning of naval steel OL36 type. The plasma reactors chosen for the experiments can operate at atmospheric pressure and are easy to use in industrial conditions. They are based on electrical discharges GlidArc and Spark, which already proved their efficiency for the surface activation or even for coatings of the surface. The non-thermal character of the plasma is ensured by a gas flow blown through the electrical discharges. One power supply has been used for reactors that provide a 5 kV voltage and a maximum current of 100 mA. The modifications of the surface properties and composition have been studied by XPS technique (X-ray Photoelectron Spectroscopy). There were taken into consideration 5 samples: 4 of them undergoing a Mini-torch plasma, a Gliding Spark, a GlidArc with dry air and a GlidArc with CO2, respectively the fifth sample which is the untreated witness. Before the plasma treatment, samples of naval steel were processed in order to obtain mechanical gloss. The time of treatment was chosen to 12 minutes. In the spectroscopic analysis, done on a ULVAC-PHI, Inc. PHI 5000 Versa Probe scanning XPS microprobe, a monocromated Al Kα X-ray source with a spot size of 100 μm2 was used to scan each sample while the photoelectrons were collected at a 45-degree take-off angle. Differences were found between atomic concentrations in each individual case, which proves that the active species produced by each type of plasma affects

  6. Non-thermal atmospheric pressure plasma jet and its application for polymer treatment

    OpenAIRE

    Sarani, Abdollah

    2010-01-01

    Non-thermal atmospheric pressure plasma jet is a suitable source for polymer treatment. The main characteristic of this plasma jet is the remote operation and its scalable dimension, thus, allowing local treatment of 3D surfaces. In this work an atmospheric pressure DBD plasma jet has been constructed and the application of the plasma jet for polymer treatment is investigated.

  7. Sterilization effect of atmospheric pressure non-thermal air plasma on dental instruments

    National Research Council Canada - National Science Library

    Sung, Su-Jin; Huh, Jung-Bo; Yun, Mi-Jung; Chang, Brian Myung W; Jeong, Chang-Mo; Jeon, Young-Chan

    2013-01-01

    .... To develop a dental sterilizer which can sterilize most materials, such as metals, rubbers, and plastics, the sterilization effect of an atmospheric pressure non-thermal air plasma device was evaluated...

  8. Hemorheological alterations of red blood cells induced by non-thermal dielectric barrier discharge plasma

    Science.gov (United States)

    Kim, Jeongho; Kim, Jae Hyung; Chang, Boksoon; Choi, Eun Ha; Park, Hun-Kuk

    2016-11-01

    Atmospheric pressure non-thermal plasma has been introduced in various applications such as wound healing, sterilization of infected tissues, blood coagulation, delicate surgeries, and so on. The non-thermal plasma generates reactive oxygen species (ROS), including ozone. Various groups have reported that the produced ROS influence proliferation and differentiation of cells, as well as apoptosis and growth arrest of tumor cells. In this study, we investigated the effects of non-thermal plasma on rheological characteristics of red blood cells (RBC). We experimentally measured the extent of hemolysis, deformability, and aggregation of red blood cells (RBC) with respect to exposure times of non-thermal plasma. RBC morphology was also examined using field-emission scanning electron microscopy. The absorbance of hemoglobin released from the RBCs increased with increasing exposure time of the non-thermal plasma. Values of the elongation index and aggregation index were shown to decrease significantly with increasing plasma exposure times. Therefore, hemorheological properties of RBCs could be utilized to assess the performance of various non-thermal plasmas.

  9. Compressive and Rarefactive Waves in Dust Plasma with Non-thermal Ions

    Institute of Scientific and Technical Information of China (English)

    DUAN Wen-Shan; WANG Hong-Yan; John Parkes

    2006-01-01

    The governing equation of the dust fluid with non-thermal ions and variable dust charge on dust particles in hot dust plasmas is obtained. Both the compressive and rarefactive waves in this system are investigated. They can be determined by plasma parameters including the temperatures of dust fluid, ions and electrons, as well as the non-thermal parameter of ions, and the number densities of the dust particles, the ions and the electrons, etc.

  10. Evaluation of non-thermal plasma-induced anticancer effects on human colon cancer cells

    Science.gov (United States)

    Choi, Jae-Sun; Kim, Jeongho; Hong, Young-Jun; Bae, Woom-Yee; Choi, Eun Ha; Jeong, Joo-Won; Park, Hun-Kuk

    2017-01-01

    Non-thermal atmospheric-pressure plasma has been introduced in various applications such as sterilization, wound healing, blood coagulation, and other biomedical applications. The most attractive application of non-thermal atmospheric-pressure plasma is in cancer treatment, where the plasma is used to produce reactive oxygen species (ROS) to facilitate cell apoptosis. We investigate the effects of different durations of exposure to dielectric-barrier discharge (DBD) plasma on colon cancer cells using measurement of cell viability and ROS levels, western blot, immunocytochemistry, and Raman spectroscopy. Our results suggest that different kinds of plasma-treated cells can be differentiated from control cells using the Raman data. PMID:28663896

  11. Mitochondria-Mediated Anticancer Effects of Non-Thermal Atmospheric Plasma.

    Directory of Open Access Journals (Sweden)

    Aigul Zhunussova

    Full Text Available Non-thermal atmospheric pressure plasma has attracted great interest due to its multiple potential biomedical applications with cancer treatment being among the most urgent. To realize the clinical potential of non-thermal plasma, the exact cellular and molecular mechanisms of plasma effects must be understood. This work aimed at studying the prostate cancer specific mechanisms of non-thermal plasma effects on energy metabolism as a central regulator of cell homeostasis and proliferation. It was found that cancer cells with higher metabolic rate initially are more resistant to plasma treated phosphate-buffered saline (PBS since the respiratory and calcium sensitive signaling systems were not responsive to plasma exposure. However, dramatic decline of cancer oxidative phosphorylation developed over time resulted in significant progression of cell lethality. The normal prostate cells with low metabolic activity immediately responded to plasma treated PBS by suppression of respiratory functions and sustained elevation of cytosolic calcium. However, over time the normal cells start recovering their mitochondria functions, proliferate and restore the cell population. We found that the non-thermal plasma induced increase in intracellular ROS is of primarily non-mitochondrial origin. The discriminate non-thermal plasma effects hold a promise for clinical cancer intervention.

  12. Mitochondria-Mediated Anticancer Effects of Non-Thermal Atmospheric Plasma

    Science.gov (United States)

    Zhunussova, Aigul; Vitol, Elina A.; Polyak, Boris; Tuleukhanov, Sultan; Brooks, Ari D.; Sensenig, Richard; Friedman, Gary; Orynbayeva, Zulfiya

    2016-01-01

    Non-thermal atmospheric pressure plasma has attracted great interest due to its multiple potential biomedical applications with cancer treatment being among the most urgent. To realize the clinical potential of non-thermal plasma, the exact cellular and molecular mechanisms of plasma effects must be understood. This work aimed at studying the prostate cancer specific mechanisms of non-thermal plasma effects on energy metabolism as a central regulator of cell homeostasis and proliferation. It was found that cancer cells with higher metabolic rate initially are more resistant to plasma treated phosphate-buffered saline (PBS) since the respiratory and calcium sensitive signaling systems were not responsive to plasma exposure. However, dramatic decline of cancer oxidative phosphorylation developed over time resulted in significant progression of cell lethality. The normal prostate cells with low metabolic activity immediately responded to plasma treated PBS by suppression of respiratory functions and sustained elevation of cytosolic calcium. However, over time the normal cells start recovering their mitochondria functions, proliferate and restore the cell population. We found that the non-thermal plasma induced increase in intracellular ROS is of primarily non-mitochondrial origin. The discriminate non-thermal plasma effects hold a promise for clinical cancer intervention. PMID:27270230

  13. Non-thermal atmospheric pressure plasma activates lactate in Ringer's solution for anti-tumor effects.

    Science.gov (United States)

    Tanaka, Hiromasa; Nakamura, Kae; Mizuno, Masaaki; Ishikawa, Kenji; Takeda, Keigo; Kajiyama, Hiroaki; Utsumi, Fumi; Kikkawa, Fumitaka; Hori, Masaru

    2016-11-08

    Non-thermal atmospheric pressure plasma is a novel approach for wound healing, blood coagulation, and cancer therapy. A recent discovery in the field of plasma medicine is that non-thermal atmospheric pressure plasma not only directly but also indirectly affects cells via plasma-treated liquids. This discovery has led to the use of non-thermal atmospheric pressure plasma as a novel chemotherapy. We refer to these plasma-treated liquids as plasma-activated liquids. We chose Ringer's solutions to produce plasma-activated liquids for clinical applications. In vitro and in vivo experiments demonstrated that plasma-activated Ringer's lactate solution has anti-tumor effects, but of the four components in Ringer's lactate solution, only lactate exhibited anti-tumor effects through activation by non-thermal plasma. Nuclear magnetic resonance analyses indicate that plasma irradiation generates acetyl and pyruvic acid-like groups in Ringer's lactate solution. Overall, these results suggest that plasma-activated Ringer's lactate solution is promising for chemotherapy.

  14. Antitumor action of non thermal plasma sources, DBD and Plasma Gun, alone or in combined protocols

    Science.gov (United States)

    Robert, Eric; Brullé, Laura; Vandamme, Marc; Riès, Delphine; Le Pape, Alain; Pouvesle, Jean-Michel

    2012-10-01

    The presentation deals with the assessment on two non thermal plasma sources developed and optimized for oncology applications. The first plasma source is a floating-electrode dielectric barrier discharge powered at a few hundreds of Hz which deliver air-plasma directly on the surface of cell culture medium in dishes or on the skin or organs of mice bearing cancer tumors. The second plasma source, so called Plasma Gun, is a plasma jet source triggered in noble gas, transferred in high aspect ratio and flexible capillaries, on targeting cells or tumors after plasma transfer in air through the ``plasma plume'' generated at the capillary outlet. In vitro evidence for massive cancer cell destruction and in vivo tumor activity and growth rate reductions have been measured with both plasma sources. DNA damages, cell cycle arrests and apoptosis induction were also demonstrated following the application of any of the two plasma source both in vitro and in vivo. The comparison of plasma treatment with state of the art chemotherapeutic alternatives has been performed and last but not least the benefit of combined protocols involving plasma and chemotherapeutic treatments has been evidenced for mice bearing orthotopic pancreas cancer and is under evaluation for the colon tumors.

  15. Process scale-up considerations for non-thermal atmospheric-pressure plasma synthesis of nanoparticles by homogenous nucleation

    Science.gov (United States)

    Cole, Jonathan; Zhang, Yao; Liu, Tianqi; Liu, Chang-jun; Mohan Sankaran, R.

    2017-08-01

    Scale-up of non-thermal atmospheric-pressure plasma reactors for the synthesis of nanoparticles by homogeneous nucleation is challenging because the active volume is typically reduced to facilitate gas breakdown, enhance discharge stability, and limit particle size and agglomeration, but thus limits throughput. Here, we introduce a dielectric barrier discharge reactor consisting of a coaxial electrode geometry for nanoparticle production that enables a simple scale-up strategy whereby increasing the outer and inner electrode diameters, the plasma volume is increased approximately linearly, while maintaining a sufficiently small electrode gap to maintain the electric field strength. We show with two test reactors that for a given residence time, the nanoparticle production rate increases linearly with volume over a range of precursor concentrations, while having minimal effect on the shape of the particle size distribution. However, our study also reveals that increasing the total gas flow rate in a smaller volume reactor leads to an enhancement of precursor conversion and a comparable production rate to a larger volume reactor. These results suggest that scale-up requires better understanding of the influence of reactor geometry on particle growth dynamics and may not always be a simple function of reactor volume.

  16. Non-thermal Dupree diffusivity and shielding effects on atomic collisions in Lorentzian turbulent plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2016-05-01

    The influence of non-thermal Dupree turbulence and the plasma shielding on the electron-ion collision is investigated in Lorentzian turbulent plasmas. The second-order eikonal analysis and the effective interaction potential including the Lorentzian far-field term are employed to obtain the eikonal scattering phase shift and the eikonal collision cross section as functions of the diffusion coefficient, impact parameter, collision energy, Debye length and spectral index of the astrophysical Lorentzian plasma. It is shown that the non-thermal effect suppresses the eikonal scattering phase shift. However, it enhances the eikonal collision cross section in astrophysical non-thermal turbulent plasmas. The effect of non-thermal turbulence on the eikonal atomic collision cross section is weakened with increasing collision energy. The variation of the atomic cross section due to the non-thermal Dupree turbulence is also discussed. This research was supported by Nuclear Fusion Research Program through NRF funded by the Ministry of Science, ICT & Future Planning (Grant No. 2015M1A7A1A01002786).

  17. Non-thermal plasma discharge based NO{sub x} removal system for diesel engine exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Federle, S.P.; Littrell, D.M. [Armament Directorate, Eglin AFB, FL (United States). Wright Lab.; Wander, J. [Environics Directorate, Tyndall AFB, FL (United States). Armstrong Lab.; Rogers, J.W.; Nejezchleb, A.J.; Rolader, G.E. [Science Application International Corp., Shalimar, FL (United States); Canfield, A. [ARA, Tyndall AFB, FL (United States)

    1997-12-31

    Emission regulations are becoming increasingly stringent on Aerospace Ground Equipment (AGE) at several Air Force bases. The problems are particularly acute for Air Force bases in California, such as March, Vandenberg, and McClellan. The most pressing regulatory problem is the emissions of nitrogen oxides from the A/M32A-86 (-86) diesel-powered generator. In response to this problem, the Air Force started the Green AGE program for advanced technology demonstrations. As part of the Green AGE program, the Armstrong Laboratory, Environics Directorate at Tyndall AFB and the Wright Laboratory, Armament Directorate at Eglin AFB were selected to jointly demonstrate that a Non-Thermal Plasma Discharge (NTPD) based system could remove the NO{sub x} from the -86 exhaust. A -86 generator was installed at Site A-15 of Eglin AFB, and a portion of the exhaust diverted to flow through a complete NTPD system. The system is comprised of a particle filter, reactor tube, and conventional wet scrubber. The particle filter removes particulates. The reactor tube oxidizes the nitric oxide into nitrogen dioxide and acid compounds, which can be removed by a conventional wet scrubber. Many experiments were performed to optimize the system. It was found that the injection of ethanol upstream of the reactor tube drastically reduced the energy required for nitric oxide oxidation. In addition, using Teflon PFA dielectrics was found to be superior to glass. In this paper, the applicable regulations are summarized; and estimates on the size, weight, and cost of a fieldable system are presented. In addition, the design, construction, and testing of each component from the demonstration program is described and results from the many optimization experiments are reported.

  18. Ion streaming instabilities in pair ion plasma and localized structure with non-thermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, M. Nasir; Qamar, A., E-mail: mnnasirphysics@gmail.com [Department of Physics, University of Peshawar (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University Mardan, National Center for Physics, Mardan (Pakistan)

    2015-12-15

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A quasi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted. (author)

  19. Characteristics of NO reduction with non-thermal plasma

    Institute of Scientific and Technical Information of China (English)

    YU Gang; YU Qi; JIANG Yan-long; ZENG Ke-si

    2005-01-01

    As a new type of NO removal system, NO reduction in N2-NO plasma was applied to solve the difficulties in the traditional methods, such as higher energy-consumption, larger equipment size and high cost, and so on. Using the experimental NO reduction system with single-pair electrode tip discharge structure, the NO reduction characteristics of N2-NO system were revealed to guide the engineering practice; the results of NO reduction with single-pair electrode tip discharge plasma also have the same instructive meaning to the NO reduction with multi-pair electrode tip discharge plasma. The amount of both active N atom and NO removal rate increased with the distance /g increasing between the two electrode tips and then dropped when the distance exceeded a certain value. The NO removal rate increased while the voltage between two electrode tips or the resident time of gas flow increased. The distance is a key geometrical variable factor that can determine the intensity of electric field between two electrode tips and the resident time of gas. In this paper, the effects of the dielectric features on NO reduction using dielectric-barrier discharge plasma system were also studied. The results of NO removal rate with different dielectrics such as Al2 O3, CaO, MgO and glass showed that the electric field intensity is different with different dielectric, because it brings different energy to particles in discharge room and thus it causes different NO removal rate.

  20. Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices

    Science.gov (United States)

    Karki, Surya B.; Thapa Gupta, Tripti; Yildirim-Ayan, Eda; Eisenmann, Kathryn M.; Ayan, Halim

    2017-08-01

    Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells

  1. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence

    Science.gov (United States)

    Flynn, Padrig B.; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P.; Elliott, Christopher T.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; Gilmore, Brendan F.

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30–60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  2. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence.

    Science.gov (United States)

    Flynn, Padrig B; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P; Elliott, Christopher T; Laverty, Garry; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2016-05-31

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30-60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa.

  3. Carbon dioxide dissociation in non-thermal radiofrequency and microwave plasma

    Science.gov (United States)

    Huang, Qiang; Zhang, Diyu; Wang, Dongping; Liu, Kezhao; Kleyn, Aart W.

    2017-07-01

    We have studied carbon dioxide dissociation in inductively coupled radiofrequency plasma and microwave plasma at low gas pressure. Both systems exhibit features of non-thermal plasma. The highest energy efficiency observed is 59.3% (2.13 mmol kJ-1), exceeding the maximum value of about 45% in case of thermodynamic equilibrium, and a maximum conversion of 80.6% is achieved. Different discharge conditions, such as the source frequency, discharge gas pressure and the addition of argon, will affect the plasma parameters, especially the electron energy distribution. This plays a great role in the energy transfer from non-thermal plasma to the molecular dissociation reaction channel by enabling the ladder climbing of the carbon dioxide molecular vibration. The results indicate the importance of ladder climbing.

  4. Non-thermal atmospheric-pressure plasma possible application in wound healing.

    Science.gov (United States)

    Haertel, Beate; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Lindequist, Ulrike

    2014-11-01

    Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

  5. Gas-to-liquids process using multi-phase flow, non-thermal plasma microreactor

    NARCIS (Netherlands)

    Agiral, Anil; Nozaki, Tomohiro; Nakase, Masahiko; Yuzawa, Shuhei; Okazaki, Ken; Gardeniers, J.G.E. (Han)

    2011-01-01

    A multi-phase flow non-thermal plasma microreactor based on dielectric barrier discharge has been developed for partial oxidation of methane to liquid oxygenates at atmospheric pressure. A pulsed water injection method has been used to remove condensable liquid components from the active discharge r

  6. Polysilicon Prepared from SIC14 by Atmospheric-Pressure Non-Thermal Plasma%Polysilicon Prepared from SIC14 by Atmospheric-Pressure Non-Thermal Plasma

    Institute of Scientific and Technical Information of China (English)

    李小松; 王楠; 杨晋华; 王友年; 朱爱民

    2011-01-01

    Non-thermal plasma at atmospheric pressure was explored for the preparation of polysilicon from SiCl4. The power supply sources of positive pulse and alternating current (8 kHz and 100 kHz) were compared for polysilicon preparation. The samples prepared by using the 100 kHz power source were crystalline silicon. The effects of H2 and SiCl4 volume fractions were investigated. The optical emission spectra showed that silicon species played an important role in polysilicon deposition

  7. Conversion of carbon disulfide in air by non-thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Xiao; Sun, Yifei [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Zhu, Tianle, E-mail: zhutl@buaa.edu.cn [School of Chemistry and Environment, Beihang University, Beijing 100191 (China); Fan, Xing [College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124 (China)

    2013-10-15

    Highlights: • The behavior of NTP for CS{sub 2} conversion in air was investigated. • CS{sub 2} conversion increase with the increase of specific input energy. • Short-living species are more important in CS{sub 2} conversion than long-living species. • The main gaseous products of CS{sub 2} conversion are CO, CO{sub 2}, OCS, SO{sub 2}, SO{sub 3} and H{sub 2}SO{sub 4}. • Y{sub CO{sub 2}} and Y{sub CO} increase, Y{sub SO{sub 3+H{sub 2SO{sub 4}}}} remains constant, and Y{sub SO{sub 2}} and Y{sub OCS} follow bell curves as SIE increases. -- Abstract: Carbon disulfide (CS{sub 2}), a typical odorous organic sulfur compound, has adverse effects on human health and is a potential threat to the environment. In the present study, CS{sub 2} conversion in air by non-thermal plasma (NTP) was systematically investigated using a link tooth wheel-cylinder plasma reactor energized by a DC power supply. The results show that corona discharge is effective in removing CS{sub 2}. The CS{sub 2} conversion increases with the increase of specific input energy (SIE). Both short-living (e.g. ·O, ·OH radicals) and long-living species contribute to the CS{sub 2} conversion, but the short-living species play a more important role. Both gaseous and solid products are formed during the conversion of CS{sub 2}. Gaseous products mainly include CO, CO{sub 2}, OCS, SO{sub 2}, SO{sub 3} and H{sub 2}SO{sub 4}. The yields of CO and CO{sub 2} increase, the yields of OCS and SO{sub 2} follow bell curves while the sum yield of SO{sub 3} and H{sub 2}SO{sub 4} remains constant as SIE increases. The solid products, consisting of CO{sub 3}{sup 2−}, SO{sub 4}{sup 2−} and possible polymeric sulfur, deposit on the inner wall and electrodes of the plasma reactor.

  8. Electrostatic envelope modes in multi-component non-thermal plasmas

    Science.gov (United States)

    Saiful Islam, Md; Sultana, Sharmin; Mamun, A. A.

    2016-07-01

    A theoretical study of envelope type solitary structures and their modulational instability has been made in a multi-component unmagnetized non-thermal plasma (consisting of negatively charged immobile heavy ions, inertial light ions and non-thermal electrons of two distinct temperatures). The cubic nonlinear Schrödinger equation (which describes the evolution of a slowly varying wave envelope with space and time) is derived by adopting the multiple scale (in space and time) perturbation technique. It is found that the plasma system under consideration supports two types (bright and dark) envelope solitons. It is also seen that the dark (bright) envelope solitons are modulationally stable (unstable). The variation of the growth rate of the unstable bright envelope solitons with various plasma parameters (e.g. wave number, temperature of plasma non-thermality, etc.) are found to be significant. The modulational instability criterions of the envelope modes are also seen to be influenced due to the variation of the intrinsic plasma parameters. This theoretical study may be useful in understanding the basic features of localized electrostatic structures in some space plasma systems (viz. Saturn's magnetosphere) where high energetic particles are available.

  9. Degradation of volatile organic compounds in a non-thermal plasma air purifier.

    Science.gov (United States)

    Schmid, Stefan; Jecklin, Matthias C; Zenobi, Renato

    2010-03-01

    The degradation of volatile organic compounds in a commercially available non-thermal plasma based air purifying system was investigated. Several studies exist that interrogate the degradation of VOCs in closed air systems using a non-thermal plasma combined with a heterogeneous catalyst. For the first time, however, our study was performed under realistic conditions (normal indoor air, 297.5K and 12.5 g m(-3) water content) on an open system, in the absence of an auxiliary catalyst, and using standard operating air flow rates (up to 320 L min(-1)). Cyclohexene, benzene, toluene, ethylbenzene and the xylene isomers were nebulized and guided through the plasma air purifier. The degradation products were trapped by activated charcoal tubes or silica gel tubes, and analyzed using gas chromatography mass spectrometry. Degradation efficiencies of 11+/-1.6% for cyclohexene, air purifier.

  10. Development of non-thermal atmospheric pressure plasma system for surface modification of polymeric materials

    Science.gov (United States)

    Kasih, T. P.

    2017-04-01

    Non-thermal plasma has become one of the new technologies which are highly developed now days. This happens because the cold plasma using the principle of generated reactive gases that have the ability to modify the surface properties of a material or product without changing the original characteristics of the material. The purpose of this study is to develop a cold plasma system that operates at atmospheric pressure and investigates the effect of cold plasma treatment to change the surface characteristics of the polymer material polyethylene (PE) at various time conditions. We are successfully developing a non-thermal plasma system that can operate at atmospheric pressure and can be run with Helium or Argon gas. The characteristics of plasma will be discussed from the view of its electrical property, plasma discharge regime andoperation temperature. Experiment results on plasma treatment on PE material shows the changes of surface properties of originally hydrophobic material PE becomes hydrophilic by only few seconds of plasma treatment and level of hydrophilicity become greater with increasing duration of plasma treatment. Confirmation of this is shown by the measurement of contact angle of droplets of water on the surface of PE are getting smaller.

  11. Non-thermal atmospheric plasma brush induces HEMA grafting onto dentin collagen

    Science.gov (United States)

    Chen, Mingsheng; Zhang, Ying; Dusevich, Vladimir; Liu, Yi; Yu, Qingsong; Wang, Yong

    2014-01-01

    Objective Non-thermal atmospheric plasma (NTAP) brush has been regarded as a promising technique to enhance dental interfacial bonding. However, the principal enhancement mechanisms have not been well identified. In this study, the effect of non-thermal plasmas on grafting of HEMA, a typical dental monomer, onto dentin collagen thin films was investigated. Methods Human dentin was sectioned into 10-um-thick films. After total demineralization in 0.5 M EDTA solution for 30 min, the dentin collagen films were water-rinsed, air-dried, treated with 35 wt% HEMA aqueous solution. The films were then subject to plasma-exposure under a NTAP brush with different time (1–8 min) / input power (5–15 w). For comparison, the dentin collagen films were also treated with the above HEMA solution containing photo-initiators, then subject to light-curing. After plasma-exposure or light-curing, the HEMA-collagen films were rinsed in deionized water, and then examined by FTIR spectroscopy and TEM. Results The FITR results indicated that plasma-exposure could induce significant HEMA grafting onto dentin collagen thin films. In contrast, light-curing led to no detectable interaction of HEMA with dentin collagen. Quantitative IR spectral analysis (i.e., 1720/3075 or 749/3075, HEMA/collagen ratios) further suggested that the grafting efficacy of HEMA onto the plasma-exposed collagen thin films strongly depended on the treatment time and input power of plasmas. TEM results indicated that plasma treatment did not alter collagen’s banding structure. Significance The current study provides deeper insight into the mechanism of dental adhesion enhancement induced by non-thermal plasmas treatment. The NTAP brush could be a promising method to create chemical bond between resin monomers and dentin collagen. PMID:25458523

  12. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    Science.gov (United States)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  13. Surface modification of several dental substrates by non-thermal, atmospheric plasma brush

    Science.gov (United States)

    Chen, Mingsheng; Zhang, Ying; Driver, M. Sky; Caruso, Anthony N.; Yu, Qingsong; Wang, Yong

    2013-01-01

    Objective The purpose of this study was to reveal the effectiveness of non-thermal atmospheric plasma brush in surface wettability and modification of four dental substrates. Methods Specimens of dental substrates including dentin, enamel, and two composites Filtek Z250, Filtek LS Silorane were prepared (~2 mm thick, ~10 mm diameter). The prepared surfaces were treated for 5–45 s with a non-thermal atmospheric plasma brush working at temperatures from 36 to 38 °C. The plasma-treatment effects on these surfaces were studied with contact-angle measurement, X-ray photoemission spectroscopy (XPS) and scanning electron microscopy (SEM). Results The non-thermal atmospheric argon plasma brush was very efficient in improving the surface hydrophilicity of four substrates studied. The results indicated that water contact angle values decreased considerably after only 5 s plasma treatment of all these substrates. After 30 s treatment, the values were further reduced to <5°, which was close to a value for super hydrophilic surfaces. XPS analysis indicated that the percent of elements associated with mineral in dentin/enamel or fillers in the composites increased. In addition, the percent of carbon (%C) decreased while %O increased for all four substrates. As a result, the O/C ratio increased dramatically, suggesting that new oxygen-containing polar moieties were formed on the surfaces after plasma treatment. SEM surface images indicated that no significant morphology change was induced on these dental substrates after exposure to plasmas. Significance Without affecting the bulk properties, a super-hydrophilic surface could be easily achieved by the plasma brush treatment regardless of original hydrophilicity/hydrophobicity of dental substrates tested. PMID:23755823

  14. Non-Thermal Electron Energization from Magnetic Reconnection in Laser-Driven Plasmas

    CERN Document Server

    Totorica, Samuel; Fiuza, Frederico

    2016-01-01

    The possibility of studying non-thermal electron energization in laser-driven plasma experiments of magnetic reconnection is studied using two- and three-dimensional particle-in-cell simulations. It is demonstrated that non-thermal electrons with energies more than an order of magnitude larger than the initial thermal energy can be produced in plasma conditions currently accessible in the laboratory. Electrons are accelerated by the reconnection electric field, being injected at varied distances from the X-points, and in some cases trapped in plasmoids, before escaping the finite-sized system. Trapped electrons can be further energized by the electric field arising from the motion of the plasmoid. This acceleration gives rise to a non-thermal electron component that resembles a power-law spectrum, containing up to ~ 8% of the initial energy of the interacting electrons and ~ 24 % of the initial magnetic energy. Estimates of the maximum electron energy and of the plasma conditions required to observe suprather...

  15. Hollow silicon carbide nanoparticles from a non-thermal plasma process

    Science.gov (United States)

    Coleman, Devin; Lopez, Thomas; Yasar-Inceoglu, Ozgul; Mangolini, Lorenzo

    2015-05-01

    We demonstrate the synthesis of hollow silicon carbide nanoparticles via a two-step process involving the non-thermal plasma synthesis of silicon nanoparticles, followed by their in-flight carbonization, also initiated by a non-thermal plasma. Simple geometric considerations associated with the expansion of the silicon lattice upon carbonization, in combination of the spherical geometry of the system, explain the formation of hollow nanostructures. This is in contrast with previous reports that justify the formation of hollow particles by means of out-diffusion of the core element, i.e., by the Kirkendall nanoscale effect. A theoretical analysis of the diffusion kinetics indicates that interaction with the ionized gas induces significant nanoparticle heating, allowing for the fast transport of carbon into the silicon particle and for the subsequent nucleation of the beta-silicon carbide phase. This work confirms the potential of non-thermal plasma processes for the synthesis of nanostructures composed of high-melting point materials, and suggests that such processes can be tuned to achieve morphological control.

  16. Selective cytotoxic effect of non-thermal micro-DBD plasma

    Science.gov (United States)

    Kwon, Byung-Su; Choi, Eun Ha; Chang, Boksoon; Choi, Jeong-Hyun; Kim, Kyung Sook; Park, Hun-Kuk

    2016-10-01

    Non-thermal plasma has been extensively researched as a new cancer treatment technology. We investigated the selective cytotoxic effects of non-thermal micro-dielectric barrier discharge (micro-DBD) plasma in cervical cancer cells. Two human cervical cancer cell lines (HeLa and SiHa) and one human fibroblast (HFB) cell line were treated with micro-DBD plasma. All cells underwent apoptotic death induced by plasma in a dose-dependent manner. The plasma showed selective inhibition of cell proliferation in cervical cancer cells compared to HFBs. The selective effects of the plasma were also observed between the different cervical cancer cell lines. Plasma treatment significantly inhibited the proliferation of SiHa cells in comparison to HeLa cells. The changes in gene expression were significant in the cervical cancer cells in comparison to HFBs. Among the cancer cells, apoptosis-related genes were significantly enriched in SiHa cells. These changes were consistent with the differential cytotoxic effects observed in different cell lines.

  17. Disinfection of Staphylococcus Aureus by pulsed non-thermal atmospheric plasma jet

    Science.gov (United States)

    Mirpour, Shahriar; Ghoranneviss, Mahmood; Shahgoli, Farhad

    2011-10-01

    The aim of this paper was to study the effect of low-temperature atmospheric plasma jet on non-pathogenic bacteria's colonies. In this regard, Germicidal effect of time and distance of ICP He and He/N2 plasma jet on Staphylococcus Aureus were reported. The gas discharges were generated by a 40 KHz high voltage power supply which led to the inductively coupled plasma. The results showed that He/N2 enhance the sterilization time in comparison of He plasma. To the best of our knowledge this is the first study which has compared the effect of sterilization of ICP Helium and Helium-Nitrogen plasma in listed conditions. Also, the distance dependence showed that the germicidal effect was not linear the distance of electrode and sample. The protein leakage test and SEM of bacteria morphology confirmed the sterilization effect of non-thermal atmospheric pressure plasma jet.

  18. Sterilization of Staphylococcus Aureus by an Atmospheric Non-Thermal Plasma Jet

    Science.gov (United States)

    Liu, Xiaohu; Hong, Feng; Guo, Ying; Zhang, Jing; Shi, Jianjun

    2013-05-01

    An atmospheric non-thermal plasma jet was developed for sterilizing the Staphylococcus aureus (S. aureus). The plasma jet was generated by dielectric barrier discharge (DBD), which was characterized by electrical and optical diagnostics. The survival curves of the bacteria showed that the plasma jet could effectively inactivate 106 cells of S. aureus within 120 seconds and the sterilizing efficiency depended critically on the discharge parameter of the applied voltage. It was further confirmed by scanning electron microscopy (SEM) that the cell morphology was seriously damaged by the plasma treatment. The plasma sterilization mechanism of S. aureus was attributed to the active species of OH, N2+ and O, which were generated abundantly in the plasma jet and characterized by OES. Our findings suggest a convenient and low-cost way for sterilization and inactivation of bacteria.

  19. Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist

    Science.gov (United States)

    Xu, Di; Xiao, Zehua; Hao, Chunjing; Qiu, Jian; Liu, Kefu

    2017-06-01

    A dielectric barrier discharge (DBD) reactor is introduced to generate H2O2 by non-thermal plasma with a mixture of oxygen and water mist produced by an ultrasonic atomizer. The results of our experiment show that the energy yield and concentration of the generated H2O2 in the pulsed discharge are much higher than that in AC discharge, due to its high energy efficiency and low heating effect. Micron-sized liquid droplets produced by an ultrasonic atomizer in water mist have large specific surface area, which greatly reduces mass transfer resistance between hydroxyl radicals and water liquids, leading to higher energy yield and H2O2 concentration than in our previous research. The influence of applied voltage, discharge frequency, and environmental temperature on the generated H2O2 is discussed in detail from the viewpoint of the DBD mechanism. The H2O2 concentration of 30 mg l-1, with the energy yield of 2 g kW-1h-1 is obtained by pulsed discharge in our research.

  20. Optimization of working parameters for double-dielectric non-thermal plasma reactor and spectrography analysis of air discharge%双介质低温等离子体反应器工作参数优化及空气放电光谱分析

    Institute of Scientific and Technical Information of China (English)

    王军; 李超; 唐炜; 何涛; 王兴华

    2015-01-01

    The working principal of selective catalytic reduction (SCR) system is that urea solution, whose mass fraction is 32.5%, is injected into exhaust pipe. NH3 and HNCO are generated and mixed with NOx under the condition of high-temperature exhaust. Finally, N2 and H2O are generated in the catalytic reduction reaction of NH3 and NOx. In the case that NO accounts for 90% or even more in NOxof the diesel engine exhaust, the standard SCR reaction plays a dominant role when using SCR system to deal with NOx of the diesel engine exhaust. This reaction can provide high reduction efficiency when the exhaust temperature is between 300 and 450℃. However, the reduction efficiency of NOx will drop rapidly at lower exhaust temperature. So how to improve the reduction efficiency of NOx at lower exhaust temperature is an urgent problem to be solved. Non-thermal plasma (NTP) technology combined with SCR system is one of the most effective means to solve this problem. Active substances, generated in NTP reactor, can oxidize the part of NO from diesel exhaust to NO2 and improve the conversion efficiency of NOx at lower exhaust temperature. The ideal working parameters selected in experiment, can not only increase the concentration of active substances, but also avoid combining main gas components in exhaust such as N2 and O2. A test system of a double-dielectric non-thermal plasma reactor was established to conduct the air discharge test. To study the effect of working parameters on the performance of double-dielectric non-thermal plasma reactor, the changing rules of the volume fractions of NO and NO2 with several parameters such as discharge voltage peak-peak value, discharge frequency and air flow were researched. The results showed that, discharge frequency had great influence on the volume fractions of NO and NO2. Reaction mechanism of air discharge in the NTP reactor changed as discharge frequency changed. The volume fractions of NO and NO2 grew linearly as discharge voltage

  1. Simulations of planar non-thermal plasma assisted ignition at atmospheric pressure

    KAUST Repository

    Casey, Tiernan A.

    2016-10-21

    The opportunity for ignition assistance by a pulsed applied voltage is investigated in a canonical one-dimensional configuration. An incipient ignition kernel, formed by localized energy deposition into a lean mixture of methane and air at atmospheric pressure, is subjected to sub-breakdown electric fields (E/N ≈ 100 Td) by a DC potential applied across the domain, resulting in non-thermal behavior of the plasma formed during the discharge. A two-fluid approach is employed to couple thermal neutrals and ions to the non-thermal electrons. A two-temperature plasma mechanism describing gas phase combustion, excitation of neutral species, and high-energy electron kinetics is employed to account for non-thermal effects. Charged species transported from the ignition zone drift rapidly through the domain, augmenting the magnitude of the electric field in the fresh gas during the pulse through a dynamic-electrode effect, which results in an increase in the energy of the electrons in the fresh mixture with increasing time. Enhanced fuel and oxidizer decomposition due to electron impact dissociation and interaction with excited neutrals generate a pool of radicals, mostly O and H, in the fresh gas ahead of the flame\\'s preheat zone. In the configuration considered, the effect of the nanosecond pulse is to increase the mass of fuel burned at equivalent times relative to the unsupported ignition through enhanced radical generation, resulting in an increased heat release rate in the immediate aftermath of the pulse.

  2. Desorption of isopropyl alcohol from adsorbent with non-thermal plasma.

    Science.gov (United States)

    Shiau, Chen Han; Pan, Kuan Lun; Yu, Sheng Jen; Yan, Shaw Yi; Chang, Moo Been

    2016-11-24

    Effective desorption of isopropyl alcohol (IPA) from adsorbents with non-thermal plasma is developed. In this system, IPA is effectively adsorbed with activated carbon while dielectric barrier discharge is applied to replace the conventional thermal desorption process to achieve good desorption efficiency, making the treatment equipment smaller in size. Various adsorbents including molecular sieves and activated carbon are evaluated for IPA adsorption capacity. The results indicate that BAC has the highest IPA adsorption capacity (280.31 mg IPA/g) under the operating conditions of room temperature, IPA of 400 ppm, and residence time of 0.283 s among 5 adsorbents tested. For the plasma desorption process, the IPA selectivity of 89% is achieved with BAC as N2 is used as desorbing gas. In addition, as air or O2 is used as desorbing gas, the IPA desorption concentration is reduced, because air and O2 plasmas generate active species to oxidize IPA to form acetone, CO2, and even CO. Furthermore, the results of the durability test indicate that the amount of IPA desorbed increases with increasing desorption times and plasma desorption process has a higher energy efficiency if compared with thermal desorption. Overall, this study indicates that non-thermal plasma is a viable process for removing VOCs to regenerate adsorbent.

  3. Degradation of pharmaceutical compounds in water by non-thermal plasma treatment.

    Science.gov (United States)

    Magureanu, Monica; Mandache, Nicolae Bogdan; Parvulescu, Vasile I

    2015-09-15

    Pharmaceutical compounds became an important class of water pollutants due to their increasing consumption over the last years, as well as due to their persistence in the environment. Since conventional waste water treatment plants are unable to remove certain non-biodegradable pharmaceuticals, advanced oxidation processes was extensively studied for this purpose. Among them, non-thermal plasma was also recently investigated and promising results were obtained. This work reviews the recent research on the oxidative degradation of pharmaceuticals using non-thermal plasma in contact with liquid. As target compounds, several drugs belonging to different therapeutic groups were selected: antibiotics, anticonvulsants, anxiolytics, lipid regulators, vasodilatators, contrast media, antihypertensives and analgesics. It was found that these compounds were removed from water relatively fast, partly degraded, and partly even mineralized. In order to ensure the effluent is environmentally safe it is important to identify the degradation intermediates and to follow their evolution during treatment, which requires complex chemical analysis of the solutions. Based on this analysis, degradation pathways of the investigated pharmaceuticals under plasma conditions were suggested. After sufficient plasma treatment the final organic by-products present in the solutions were mainly small molecules in an advanced oxidation state. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Effective group index of refraction in non-thermal plasma photonic crystals

    Science.gov (United States)

    Mousavi, A.; Sadegzadeh, S.

    2015-11-01

    Plasma photonic crystals (PPCs) are periodic arrays that consist of alternate layers of micro-plasma and dielectric. These structures are used to control the propagation of electromagnetic waves. This paper presents a survey of research on the effect of non-thermal plasma with bi-Maxwellian distribution function on one dimensional PPC. A plasma with temperature anisotropy is not in thermodynamic equilibrium and can be described by the bi-Maxwellian distribution function. By using Kronig-Penny's model, the dispersion relation of electromagnetic modes in one dimensional non-thermal PPC (NPPC) is derived. The band structure, group velocity vg, and effective group index of refraction neff(g) of such NPPC structure with TeO2 as the material of dielectric layers have been studied. The concept of negative group velocity and negative neff(g), which indicates an anomalous behaviour of the PPCs, are also observed in the NPPC structures. Our numerical results provide confirmatory evidence that unlike PPCs there are finite group velocity and non-zero effective group indexes of refraction in photonic band gaps (PBGs) that lie in certain ranges of normalized frequency. In other words, inside the PBGs of NPPCs, neff(g) becomes non-zero and photons travel with a finite group velocity. In this special case, this velocity varies alternately between 20c and negative values of the order 103c (c is the speed of light in vacuum).

  5. Non-thermal atmospheric plasmas in dental restoration: improved resin adhesive penetration.

    Science.gov (United States)

    Zhang, Ying; Yu, Qingsong; Wang, Yong

    2014-08-01

    To investigate the influence of non-thermal plasma treatment on the penetration of a model dental adhesive into the demineralized dentine. Prepared dentine surfaces were conditioned with Scotchbond Universal etchant for 15s and sectioned equally perpendicular to the etched surfaces. The separated halves were randomly selected for treatment with an argon plasma brush (input current 6mA, treatment time 30s) or gentle argon air blowing (treatment time 30s, as control). The plasma-treated specimens and control specimens were applied with a model adhesive containing 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy) phenyl]-propane (BisGMA) and 2-hydroxyethyl methacrylate (HEMA) (mass ratio of 30/70), gently air-dried for 5s, and light-cured for 20s. Cross-sectional specimens were characterized using micro-Raman spectral mapping across the dentine, adhesive/dentine interface, and adhesive layer at 1-μm spatial resolution. SEM was also employed to examine the adhesive/dentine interfacial morphology. The micro-Raman result disclosed that plasma treatment significantly improved the penetration of the adhesive, evidenced by the apparently higher content of the adhesive at the adhesive/dentine interface as compared to the control. Specifically, the improvement of the adhesive penetration using plasma technique was achieved by dramatically enhancing the penetration of hydrophilic monomer (HEMA), while maintaining the penetration of hydrophobic monomer (BisGMA). Morphological observation at the adhesive/dentine interface using SEM also confirmed the improved adhesive penetration. The results further suggested that plasma treatment could benefit polymerization of the adhesive, especially in the interface region. The significant role of the non-thermal plasma brush in improving the adhesive penetration into demineralized dentine has been demonstrated. The results obtained may offer a better prospect of using plasma in dental restoration to optimize adhesion between tooth substrate and

  6. The Technology of Non-thermal Plasma Assisted NH3-SCR Reduce Marine Diesel Emission and Aldehydes Byproducts Formation

    Directory of Open Access Journals (Sweden)

    Lei Jiang

    2013-12-01

    Full Text Available This study describes briefly various after-treatment technologies in marine diesel engines and application difficulties of DPF and SCR are included. An experiment has been conducted using non-thermal plasma generated by Dielectric Barrier Discharge (DBD process assisted NH3-SCR catalyst to reduce the nitrogen oxides (NOx from diesel engine exhaust. The formation mechanism of byproducts-type such as HCHO and CH3CHO in the non-thermal plasma assisted NH3-SCR hybrid system.

  7. Modeling and experimental validation of TCE abatement and ozone formation with non thermal plasma

    OpenAIRE

    Vandenbroucke, Arne; Aerts, Robby; Morent, Rino; De Geyter, Nathalie; Bogaerts, Annemie; Leys, Christophe

    2012-01-01

    In this study, the formation of ozone and the abatement of trichloroethylene (TCE) with non thermal plasma was experimentally and theoretically investigated. The model predicts that the ozone formation increases with the energy deposition and decreases with the relative humidity (RH) of the air, which is qualitatively in agreement with experimental data. For an energy deposition of 0.136 J/cm³, the abatement of 1000 ppm TCE in air with 5 % RH is dominated by atomic oxygen and to a lesser exte...

  8. Modeling and experimental validation of TCE abatement and ozone formation with non thermal plasma

    OpenAIRE

    Vandenbroucke, Arne; Aerts, Robby; Morent, Rino; De Geyter, Nathalie; Bogaerts, Annemie; Leys, Christophe

    2012-01-01

    In this study, the formation of ozone and the abatement of trichloroethylene (TCE) with non thermal plasma was experimentally and theoretically investigated. The model predicts that the ozone formation increases with the energy deposition and decreases with the relative humidity (RH) of the air, which is qualitatively in agreement with experimental data. For an energy deposition of 0.136 J/cm³, the abatement of 1000 ppm TCE in air with 5 % RH is dominated by atomic oxygen and to a lesser exte...

  9. Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst.

    Science.gov (United States)

    Liang, Wen-Jun; Ma, Lin; Liu, Huan; Li, Jian

    2013-08-01

    Degradation of toluene in a gas by non-thermal plasma with a ferroelectric catalyst was studied at normal temperature and atmospheric pressure. Spontaneous polarization material (BaTiO3) and photocatalyst (TiO2) were added into plasma system simultively. Toluene degradation efficiency and specific energy density during the discharge process were investigated. Furthermore, byproducts and degradation mechanisms of toluene were also investigated. The toluene degradation efficiency increased when non-thermal plasma technology was combined with the catalyst. The toluene degradation efficiencies of the different catalysts tested were in the following order: BaTiO3/TiO2>BaTiO3>TiO2>no catalyst. A mass ratio of 2.38:1 was optimum for the BaTiO3 and TiO2 catalyst. The outlet gas was analyzed by gas chromatography and Fourier transform infrared spectroscopy, and the main compounds detected were CO2, H2O, O3 and benzene ring derivatives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Experimental studies on removal of airborne haloanisoles by non-thermal plasma air purifiers

    DEFF Research Database (Denmark)

    Fang, Lei; Hallam, David; Bermúdez, Raúl

    2016-01-01

    A laboratory study was conducted to test the performance of non-thermal plasma air purifiers on its removal effectiveness of two haloanisoles – 2,4,6-trichloroanisole (TCA) and 2,4,6-Tribromoanisole (TBA). TCA and TBA are the two major compounds found in wine cellars that can contaminate wine...... to produce unpalatable mouldy and musty tastes. The test was first conducted in a climate chamber. The plasma air purifier was installed in a test rig developed for the testing and challenged by airflow with certain concentrations of TCA and TBA. Air samples upstream and downstream of the air purifier...... was collected by Tenax tubes and the concentration of TCA and TBA were analyzed by thermal desorption GC–MS. The results showed that the plasma air purifier was effective on removing TCA and TBA with a single pass efficiency of better than 82%. The effect was further validated in a wine cellar under a realistic...

  11. Non-thermal plasma technology for the development of antimicrobial surfaces: a review

    Science.gov (United States)

    Nikiforov, Anton; Deng, Xiaolong; Xiong, Qing; Cvelbar, U.; DeGeyter, N.; Morent, R.; Leys, Christophe

    2016-05-01

    Antimicrobial coatings are in high demand in many fields including the biomaterials and healthcare sectors. Within recent progress in nanoscience and engineering at the nanoscale, preparation of nanocomposite films containing metal nanoparticles (such as silver nanoparticles, copper nanoparticles, zinc oxide nanoparticles) is becoming an important step in manufacturing biomaterials with high antimicrobial activity. Controlled release of antibiotic agents and eliminating free nanoparticles are of equal importance for engineering antimicrobial nanocomposite materials. Compared to traditional chemical ‘wet’ methods, plasma deposition and plasma polymerization are promising approaches for the fabrication of nanocomposite films with the advantages of gas phase dry processes, effective use of chemicals and applicability to various substrates. In this article, we present a short overview of state-of-the-art engineering of antimicrobial materials based on the use of non-thermal plasmas at low and atmospheric pressure.

  12. Nano-droplet ejection and nucleation of materials submitted to non-thermal plasma filaments

    Science.gov (United States)

    Borra, J.-P.; Jidenko, N.; Dutouquet, C.; Aguerre, O.; Hou, J.; Weber, A.

    2011-11-01

    Methods to induce non-thermal atmospheric pressure plasma filaments are presented with related properties for micro, streamer and prevented spark discharges, respectively, induced in planar Dielectric Barrier Discharges with one electrode covered by dielectric material (mono-DBD) or point-to-plane Corona. Two mechanisms of nano-particles formation are depicted from aerosol size distributions and TEM analysis. 0.1-10 mJ prevented spark discharges produce 10-100 nm droplets ejected from melted craters as well as nucleated primary particles and subsequent 10-100 nm agglomerates, by nucleation and coagulation in expanding vapor jets. With smaller energy per filament, 0.1-10 μJ micro-discharges and 0.1-100 μJ streamers, the initial local vapor fluxes emitted from spots of interaction between plasma filaments and electrodes are reduced. Subsequent smaller primary particle density limits the local coagulation in the vapor plume since 2-10 nm non-agglomerated crystalline metal nano-particles are produced in mono-DBD with Au, Ag and Cu electrode. Besides, the evolution of the aerosol size from primary nano-particles to agglomerates with transit time suggests slow coagulation of these primary metal particles in mono-DBD. Aerosol properties depend on the energy per filament and on the electrode. The final size is controlled by plasma parameters and transit time in and after the plasma. The aim is to underline emerging applications of atmospheric pressure plasmas for the production of tailored particles with tunable size, composition and structure with non-thermal plasma filaments to control the resulting properties of nano-powders and materials. Production rates and related energetic yields are compared.

  13. Killing of adherent oral microbes by a non-thermal atmospheric plasma jet.

    Science.gov (United States)

    Rupf, Stefan; Lehmann, Antje; Hannig, Matthias; Schäfer, Barbara; Schubert, Andreas; Feldmann, Uwe; Schindler, Axel

    2010-02-01

    Atmospheric plasma jets are being intensively studied with respect to potential applications in medicine. The aim of this in vitro study was to test a microwave-powered non-thermal atmospheric plasma jet for its antimicrobial efficacy against adherent oral micro-organisms. Agar plates and dentin slices were inoculated with 6 log(10) c.f.u. cm(-2) of Lactobacillus casei, Streptococcus mutans and Candida albicans, with Escherichia coli as a control. Areas of 1 cm(2) on the agar plates or the complete dentin slices were irradiated with a helium plasma jet for 0.3, 0.6 or 0.9 s mm(-2), respectively. The agar plates were incubated at 37 degrees C, and dentin slices were vortexed in liquid media and suspensions were placed on agar plates. The killing efficacy of the plasma jet was assessed by counting the number of c.f.u. on the irradiated areas of the agar plates, as well as by determination of the number of c.f.u. recovered from dentin slices. A microbe-killing effect was found on the irradiated parts of the agar plates for L. casei, S. mutans, C. albicans and E. coli. The plasma-jet treatment reduced the c.f.u. by 3-4 log(10) intervals on the dentin slices in comparison to recovery rates from untreated controls. The microbe-killing effect was correlated with increasing irradiation times. Thus, non-thermal atmospheric plasma jets could be used for the disinfection of dental surfaces.

  14. Eradication of Pseudomonas aeruginosa biofilms by atmospheric pressure non-thermal plasma.

    Directory of Open Access Journals (Sweden)

    Mahmoud Y Alkawareek

    Full Text Available Bacteria exist, in most environments, as complex, organised communities of sessile cells embedded within a matrix of self-produced, hydrated extracellular polymeric substances known as biofilms. Bacterial biofilms represent a ubiquitous and predominant cause of both chronic infections and infections associated with the use of indwelling medical devices such as catheters and prostheses. Such infections typically exhibit significantly enhanced tolerance to antimicrobial, biocidal and immunological challenge. This renders them difficult, sometimes impossible, to treat using conventional chemotherapeutic agents. Effective alternative approaches for prevention and eradication of biofilm associated chronic and device-associated infections are therefore urgently required. Atmospheric pressure non-thermal plasmas are gaining increasing attention as a potential approach for the eradication and control of bacterial infection and contamination. To date, however, the majority of studies have been conducted with reference to planktonic bacteria and rather less attention has been directed towards bacteria in the biofilm mode of growth. In this study, the activity of a kilohertz-driven atmospheric pressure non-thermal plasma jet, operated in a helium oxygen mixture, against Pseudomonas aeruginosa in vitro biofilms was evaluated. Pseudomonas aeruginosa biofilms exhibit marked susceptibility to exposure of the plasma jet effluent, following even relatively short (≈ 10's s exposure times. Manipulation of plasma operating conditions, for example, plasma operating frequency, had a significant effect on the bacterial inactivation rate. Survival curves exhibit a rapid decline in the number of surviving cells in the first 60 seconds followed by slower rate of cell number reduction. Excellent anti-biofilm activity of the plasma jet was also demonstrated by both confocal scanning laser microscopy and metabolism of the tetrazolium salt, XTT, a measure of bactericidal

  15. Shock tube experiments on nitromethane and Promotion of chemical reactions by non-thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Seljeskog, Morten

    2002-06-01

    -constant activation energy was found from the correlations, to be 64.574 kJ/mol and 113.544 kJ/mole, respectively. The correlations for the ignition delay for time signals with and without emission were deduced as {tau}{sub emission} 0.3669x10{sup -2}*[NM]{sup -1.02}[O{sub 2}]{sup -1.08}*[Ar]{sup 1.42}*exp(7767/T) and {tau}{sub n} 0.3005*10{sup -2}*[NM]{sup -0.28}[O{sub 2}]{sup 0.12}*[Ar]-{sup 0.59}*exp(13657/T), respective second approach to molecular decomposition concerned the application of non-thermal plasma to initiate reactions and decompose/oxidize selected hydrocarbons, methane and propane, in air. Experiments with a gliding arc discharge device were performed at the university of Orleans on the decomposition/reforming of low-to-stoichiometric concentration air/CH{sub 4} mixtures. The presented results show that complete reduction of methane could be obtained if the residence time in the reactor was sufficiently long. The products of the methane decomposition were mainly CO{sub 2}, CO and H{sub 2}O. The CH{sub 4} conversion rate showed to increase with increasing residence time, temperature of the operating gas, and initial concentration of methane. To achieve complete decomposition of CH{sub 4} in 1 m{sup 3} of a 2 vol% mixture, the energy cost was about 1.5 kWh. However, the formation of both CO and NO{sub x} in the present gliding discharge system was found to be significant. The produced amount of both Co (0.4-1 vol%) and NO{sub x} (2000-3500 ppm) were in such high quantities that they would constitute an important pollution threat if this process as of today was to be used in large scale CH{sub 4} decomposition. Further experimental investigations were performed on self-built laboratory scale, single- and double dielectric-barrier discharge devices as a means of removing CH{sub 4} and C{sub 3}H{sub 8} from simulated reactive inlet mixtures. The different discharge reactors were all powered by an arrangement of commercially available Tesla coil units capable of high

  16. Shock tube experiments on nitromethane and Promotion of chemical reactions by non-thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Seljeskog, Morten

    2002-06-01

    -constant activation energy was found from the correlations, to be 64.574 kJ/mol and 113.544 kJ/mole, respectively. The correlations for the ignition delay for time signals with and without emission were deduced as {tau}{sub emission} 0.3669x10{sup -2}*[NM]{sup -1.02}[O{sub 2}]{sup -1.08}*[Ar]{sup 1.42}*exp(7767/T) and {tau}{sub n} 0.3005*10{sup -2}*[NM]{sup -0.28}[O{sub 2}]{sup 0.12}*[Ar]-{sup 0.59}*exp(13657/T), respective second approach to molecular decomposition concerned the application of non-thermal plasma to initiate reactions and decompose/oxidize selected hydrocarbons, methane and propane, in air. Experiments with a gliding arc discharge device were performed at the university of Orleans on the decomposition/reforming of low-to-stoichiometric concentration air/CH{sub 4} mixtures. The presented results show that complete reduction of methane could be obtained if the residence time in the reactor was sufficiently long. The products of the methane decomposition were mainly CO{sub 2}, CO and H{sub 2}O. The CH{sub 4} conversion rate showed to increase with increasing residence time, temperature of the operating gas, and initial concentration of methane. To achieve complete decomposition of CH{sub 4} in 1 m{sup 3} of a 2 vol% mixture, the energy cost was about 1.5 kWh. However, the formation of both CO and NO{sub x} in the present gliding discharge system was found to be significant. The produced amount of both Co (0.4-1 vol%) and NO{sub x} (2000-3500 ppm) were in such high quantities that they would constitute an important pollution threat if this process as of today was to be used in large scale CH{sub 4} decomposition. Further experimental investigations were performed on self-built laboratory scale, single- and double dielectric-barrier discharge devices as a means of removing CH{sub 4} and C{sub 3}H{sub 8} from simulated reactive inlet mixtures. The different discharge reactors were all powered by an arrangement of commercially available Tesla coil units capable of high

  17. Non-thermal atmospheric pressure plasma activates lactate in Ringer’s solution for anti-tumor effects

    Science.gov (United States)

    Tanaka, Hiromasa; Nakamura, Kae; Mizuno, Masaaki; Ishikawa, Kenji; Takeda, Keigo; Kajiyama, Hiroaki; Utsumi, Fumi; Kikkawa, Fumitaka; Hori, Masaru

    2016-11-01

    Non-thermal atmospheric pressure plasma is a novel approach for wound healing, blood coagulation, and cancer therapy. A recent discovery in the field of plasma medicine is that non-thermal atmospheric pressure plasma not only directly but also indirectly affects cells via plasma-treated liquids. This discovery has led to the use of non-thermal atmospheric pressure plasma as a novel chemotherapy. We refer to these plasma-treated liquids as plasma-activated liquids. We chose Ringer’s solutions to produce plasma-activated liquids for clinical applications. In vitro and in vivo experiments demonstrated that plasma-activated Ringer’s lactate solution has anti-tumor effects, but of the four components in Ringer’s lactate solution, only lactate exhibited anti-tumor effects through activation by non-thermal plasma. Nuclear magnetic resonance analyses indicate that plasma irradiation generates acetyl and pyruvic acid-like groups in Ringer’s lactate solution. Overall, these results suggest that plasma-activated Ringer’s lactate solution is promising for chemotherapy.

  18. Non-thermal plasma as preparative technique to evaluate olive oil adulteration.

    Science.gov (United States)

    Van Durme, Jim; Vandamme, Jeroen

    2016-10-01

    In recent years adulteration of pure extra virgin olive oil (EVOO) with other types of vegetable oils has become an important issue. In this study, non-thermal plasma (NTP) is investigated as an innovative preparative analytical technique enabling classification of adulterated olive oil from an ascertained authentic batch of olive oil in a more sensitive manner. Non-thermal plasma discharges are a source of highly oxidative species such as singlet oxygen, and atomic oxygen. It was assumed that NTP-induced oxidation triggers unique lipid oxidation mechanisms depending on the specific composition of the oil matrix and minor constituents. In this work EVOO samples were adulterated with sunflower oil (1-3%) and submitted to NTP treatment. Results showed that while untreated samples could not be classified from the authentic olive oil reference, NTP treatments of 60min (Ar/O2 0.1%) on the oil batches resulted in the formation of a unique set of secondary volatile lipid oxidation products enabling classification of adulterated oil samples.

  19. Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

    2003-08-24

    The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

  20. Non-thermal plasma ethanol reforming in bubbles immersed in liquids

    Science.gov (United States)

    Levko, Dmitry; Sharma, Ashish; Raja, Laxminarayan L.

    2017-03-01

    Ethanol reforming in non-thermal plasma generated in atmospheric-pressure argon bubbles immersed in liquid ethanol/water solution is studied using a self-consistent multi-species fluid model. The influence of the dielectric constant of the liquid on the plasma dynamics and its effect on the generation of active species is analyzed. Several modes of discharge are obtained for large liquid dielectric constant. In these modes, we obtain either an axial streamer or a combination of two simultaneous streamers propagating along the bubble axis and near the liquid wall. The influence of these modes on the production of active species is also studied. The main reactions responsible for the generation of molecular hydrogen and light hydrocarbon species are analyzed. A possible mechanism of hydrogen generation in liquid phase is discussed.

  1. Treatment of gastric cancer cells with non-thermal atmospheric plasma generated in water

    CERN Document Server

    Chen, Zhitong; Cheng, Xiaoqian; Gjika, Eda; Keidar, Michael

    2016-01-01

    Non-thermal atmospheric plasma (NTAP) can be applied to living tissues and cells as a novel technology for cancer therapy. Even though studies report on the successful use of NTAP to directly irradiate cancer cells, this technology can cause cell death only in the upper 3-5 cell layers. We report on a NTAP argon solution generated in DI water for treating human gastric cancer cells (NCl-N87). Our findings showed that the plasma generated in DI water during a 30-minute treatment had the strongest affect in inducing apoptosis in cultured human gastric cancer cells. This result can be attributed to presence of reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced in water during treatment. Furthermore, the data showed that elevated levels of RNS may play an even more significant role than ROS in the rate of apoptosis in gastric cancer cells.

  2. Effects of non-thermal plasma on the electrical properties of an erythrocyte membrane

    Science.gov (United States)

    Lee, Jin Young; Baik, Ku Youn; Kim, Tae Soo; Lim, Jaekwan; Uhm, Han S.; Choi, Eun Ha

    2015-09-01

    Non-thermal plasma is used here for membrane oxidation and permeabilization in which the electrical properties of an erythrocyte membrane are investigated after treatments. The zeta potential as measured by electrophoresis shows the increased negativity of the membrane surface potential (Ψs). The secondary electron emission coefficient ( γ) measured by a focused ion beam shows a decrease in the dipole potential (Ψd) of lipid molecules. The voltage-sensitive fluorescent intensity as measured by flow cytometry shows a decrease in the trans-membrane potential (ΔΨ) through the lipid bilayer membrane. These results allow us to take a step forward to unveil the complex events occurring in plasma-treated cells.

  3. Effective group index of refraction in non-thermal plasma photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mousavi, A.; Sadegzadeh, S., E-mail: sadegzadeh@azaruniv.edu [Physics Department, Azarbaijan Shahid Madani University, Tabriz (Iran, Islamic Republic of)

    2015-11-15

    Plasma photonic crystals (PPCs) are periodic arrays that consist of alternate layers of micro-plasma and dielectric. These structures are used to control the propagation of electromagnetic waves. This paper presents a survey of research on the effect of non-thermal plasma with bi-Maxwellian distribution function on one dimensional PPC. A plasma with temperature anisotropy is not in thermodynamic equilibrium and can be described by the bi-Maxwellian distribution function. By using Kronig-Penny's model, the dispersion relation of electromagnetic modes in one dimensional non-thermal PPC (NPPC) is derived. The band structure, group velocity v{sub g}, and effective group index of refraction n{sub eff}(g) of such NPPC structure with TeO{sub 2} as the material of dielectric layers have been studied. The concept of negative group velocity and negative n{sub eff}(g), which indicates an anomalous behaviour of the PPCs, are also observed in the NPPC structures. Our numerical results provide confirmatory evidence that unlike PPCs there are finite group velocity and non-zero effective group indexes of refraction in photonic band gaps (PBGs) that lie in certain ranges of normalized frequency. In other words, inside the PBGs of NPPCs, n{sub eff}(g) becomes non-zero and photons travel with a finite group velocity. In this special case, this velocity varies alternately between 20c and negative values of the order 10{sup 3}c (c is the speed of light in vacuum)

  4. Analysis of the step responses of laminar premixed flames to forcing by non-thermal plasma

    KAUST Repository

    Lacoste, Deanna A.

    2016-07-16

    The step responses of lean methane-air flames to non-thermal plasma forcing is reported. The experimental setup consists of an axisymmetric burner, with a nozzle made of a quartz tube. The equivalence ratio is 0.95, allowing stabilization of the flame in a V-shape or an M-shape geometry, over a central stainless steel rod. The plasma is produced by short pulses of 10-ns duration, 8-kV maximum voltage amplitude, applied at 10 kHz. The central rod is used as a cathode, while the anode is a stainless steel ring, fixed on the outer surface of the quartz tube. Plasma forcing is produced by positive or negative steps of plasma. The step response of the flame is investigated through heat release rate (HRR) fluctuations, to facilitate comparisons with flame response to acoustic perturbations. The chemiluminescence of CH* between two consecutive pulses was recorded using an intensified camera equipped with an optical filter to estimate the HRR fluctuations. First, the results show that the flame does not respond to each single plasma pulse, but is affected only by the average plasma power, confirming the step nature of the forcing. The temporal evolutions of HRR are analyzed and the flame transfer functions are determined. A forcing mechanism, as a local increase in the reactivity of the fluid close to the rod, is proposed and compared with numerical simulations. Experiments and numerical simulations are in good qualitative agreement. © 2016.

  5. Power dissipated in a non-thermal atmospheric pressure plasma jet measured by miniaturized electrical probes

    Science.gov (United States)

    Golda, Judith; Schulz-von der Gathen, Volker

    2016-09-01

    Non-thermal atmospheric pressure plasma jets are used in bio-medicine, because they generate reactive species at a low gas temperature. Knowledge and control of plasma parameters is required for stable and reliable operation. Therefore, measuring dissipated power in these plasmas is necessary. However, this is challenging because the delivered sender power is often orders of magnitudes higher than the power dissipated in the discharge itself. To measure this dissipated power, we built miniaturized electrical probes directly attached to the jet device. We observed that the dissipated power is a more comprehensive parameter than the common parameter voltage: For example, gas temperature and emission line intensities rose exponentially with increasing voltage but linearly with increasing power. Our analyses further revealed that a substantial proportion of the dissipated power is transformed into heat. In conclusion, miniaturized electrical probes give a fundamental insight into the energy balance of atmospheric pressure plasmas. In the future, these probes can also be adapted to different types of atmospheric pressure plasmas. This work was supported by DFG within the frameworks of the Package Project PAK 816.

  6. Potential cellular targets and antibacterial efficacy of atmospheric pressure non-thermal plasma.

    Science.gov (United States)

    Alkawareek, Mahmoud Y; Gorman, Sean P; Graham, William G; Gilmore, Brendan F

    2014-02-01

    Atmospheric pressure non-thermal plasma (APNTP) has been gaining increasing interest as a new alternative antibacterial approach. Although this approach has demonstrated promising antibacterial activity, its exact mechanism of action remains unclear. Mechanistic elucidation of the antimicrobial activity will facilitate development and rational optimisation of this approach for potential medical applications. In this study, the antibacterial efficacy of an in-house-built APNTP jet was evaluated alongside an investigation of the interactions between APNTP and major cellular components in order to identify the potential cellular targets involved in plasma-mediated bacterial destruction mechanisms. The investigated plasma jet exhibited excellent, rapid antibacterial activity against a selected panel of clinically significant bacterial species including Bacillus cereus, meticillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Pseudomonas aeruginosa, all of which were completely inactivated within 2 min of plasma exposure. Plasma-mediated damaging effects were observed, to varying degrees, on all of the investigated cellular components including DNA, a model protein enzyme, and lipid membrane integrity and permeability. The antibacterial efficacy of APNTP appears to involve a multiple-target mechanism, which potentially reduces the likelihood of emergence of microbial resistance towards this promising antimicrobial approach. However, cellular membrane damage and resulting permeability perturbation was found to be the most likely rate-determining step in this mechanism.

  7. Production of stable, non-thermal atmospheric pressure rf capacitive plasmas using gases other than helium or neon

    Science.gov (United States)

    Park, Jaeyoung; Henins, Ivars

    2005-06-21

    The present invention enables the production of stable, steady state, non-thermal atmospheric pressure rf capacitive .alpha.-mode plasmas using gases other than helium and neon. In particular, the current invention generates and maintains stable, steady-state, non-thermal atmospheric pressure rf .alpha.-mode plasmas using pure argon or argon with reactive gas mixtures, pure oxygen or air. By replacing rare and expensive helium with more readily available gases, this invention makes it more economical to use atmospheric pressure rf .alpha.-mode plasmas for various materials processing applications.

  8. Atmospheric Pressure non-thermal plasmas for surface treatment of polymer films

    Science.gov (United States)

    Huang, Hsiao-Feng; Wen, Chun-Hsiang; Wei, Hsiao-Kuan; Kou, Chwung-Shan

    2006-10-01

    Interest has grown over the past few years in applying atmospheric pressure non-thermal plasmas to surface treatment. In this work, we used an asymmetric glow dielectric-barrier discharge (GDBD), at atmospheric pressure in nitrogen, to improve the surface hydrophilicity of three kinds of polymer films, biaxially oriented polypropylene (BOPP), polyimide (PI), and triacetyl cellulose (TAC). This set-up consists of two asymmetric electrodes covered by dielectrics. And to prevent the filamentary discharge occur, the frequency, gas flow rate and uniformity of gas flow distribution should be carefully controlled. The discharge performance is monitored through an oscilloscope, which is connected to a high voltage probe and a current monitor. The physical and chemical properties of polymer surfaces before and after GDBD treatment were analyzed via water contact angle (CA) measurements, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS) techniques.

  9. Kinetic turbulence in relativistic plasma: from thermal bath to non-thermal continuum

    CERN Document Server

    Zhdankin, Vladimir; Uzdensky, Dmitri A; Begelman, Mitchell C

    2016-01-01

    We present results from particle-in-cell simulations of driven turbulence in collisionless, relativistic pair plasma. We find that turbulent fluctuations are consistent with the classical $k_\\perp^{-5/3}$ magnetic energy spectrum at fluid scales and a steeper $k_\\perp^{-4}$ spectrum at sub-Larmor scales, where $k_\\perp$ is the wavevector perpendicular to the mean field. We demonstrate the development of a non-thermal, power-law particle energy distribution, $f(E) \\sim E^{-\\alpha}$, with index well fit by $\\alpha \\sim 1 + C_0 (\\sigma \\rho_e/L)^{-1/2}$, where $C_0$ is a constant, $\\sigma$ is magnetization, and $\\rho_e/L$ is the ratio of characteristic Larmor radius to system size. In the absence of asymptotic system-size independent scalings, our results challenge the viability of turbulent particle acceleration in high-energy astrophysical systems such as pulsar wind nebulae.

  10. Differential effect of non-thermal atmospheric-pressure plasma on angiogenesis

    Directory of Open Access Journals (Sweden)

    Beate Haertel

    2014-06-01

    Full Text Available Angiogenesis is a special feature in wound healing and carcinogenesis. For improving wound healing angiogenesis should be promoted, whereas in treating tumors it should be inhibited.Depending on several factors physical non-thermal plasmas can stimulate or inhibit cellular processes and can, thereby, influence angiogenesis. This study focused on effects of plasma on angiogenesis in the chick embryo chorioallantoic membrane (CAM assay and rat aortic ring (AOR test, in which plasma-treated PBS or medium was applied. ImageJ was used to analyze vessel area and branching of vessels of CAM’s. Aortic rings (LEW.1W, WOK.W rats embedded in Matrigel were analyzed by a newly-developed semi-quantitative method to quantify vessel sprouting from aortic rings. In both models spontaneous vessel formation was detected. Vessel area and branching in CAM’s were significantly enhanced by 120-s-plasma-treated PBS compared to untreated controls. This result was comparable with the effect of the growth factor VEGF. No effect of plasma on vessel sprouting from AOR prepared from LEW.1W rats was detected, while it was significantly inhibited in rings of WOK.W rats. Dexamethasone inhibited vessel sprouting from AOR of both rat strains. In conclusion, angiogenic response to plasma was found to be differentially influenced, depending on the models used and on the rat strain in the AOR test. It will now be of importance to learn how plasma has to be designed for either pro- or anti-angiogenic responses.

  11. Toluene Oxidation by Non-Thermal Plasma Combined with Palladium Catalysts

    Directory of Open Access Journals (Sweden)

    Monica eMagureanu

    2013-06-01

    Full Text Available The oxidation of toluene in air was investigated using a dielectric barrier discharge (DBD combined with a Pd/Al2O3 catalyst. When using only plasma, rather low selectivity towards CO2 was obtained: 32-35%. By filling the DBD reactor with Pd/Al2O3 catalyst the CO2 selectivity was significantly enhanced (80-90%, however, a large amount of toluene was desorbed from the catalyst when the discharge was operated. By filling a quarter of the discharge gap with catalyst and placing the rest of the catalyst downstream of the plasma reactor, an important increase of CO2 selectivity (~75% and a 15% increase in toluene conversion were achieved as compared to the results with plasma alone. The catalyst exhibited a very good stability in this reaction.

  12. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce.

    Science.gov (United States)

    Ma, Ruonan; Wang, Guomin; Tian, Ying; Wang, Kaile; Zhang, Jue; Fang, Jing

    2015-12-30

    Non-thermal plasma has been widely considered to be an effective method for decontamination of foods. Recently, numerous studies report that plasma-activated water (PAW) also has outstanding antibacterial ability. This study presents the first report on the potential of PAW for the inactivation of Staphylococcus aureus (S. aureus) inoculated on strawberries. PAW treatments achieved a reduction of S. aureus ranging from 1.6 to 2.3 log at day-0 storage, while 1.7 to 3.4 log at day-4 storage. The inactivation efficiency depended on the plasma-activated time for PAW generation and PAW-treated time of strawberries inoculated with S. aureus. LIVE/DEAD staining and scanning electron microscopy results confirm that PAW could damage the bacterial cell wall. Moreover, optical emission spectra and oxidation reduction potential results demonstrate the inactivation is mainly attributed to oxidative stress induced by reactive oxygen species in PAW. In addition, no significant change was found in color, firmness and pH of the PAW treated strawberries. Thus, PAW can be a promising alternative to traditional sanitizers applied in the fresh produce industry.

  13. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    Science.gov (United States)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-02-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250-1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  14. Silicon nanocrystal production through non-thermal plasma synthesis: a comparative study between silicon tetrachloride and silane precursors

    Science.gov (United States)

    Yasar-Inceoglu, Ozgul; Lopez, Thomas; Farshihagro, Ebrahim; Mangolini, Lorenzo

    2012-06-01

    Silicon nanocrystals with sizes between 5 and 10 nm have been produced in a non-thermal plasma reactor using silicon tetrachloride as precursor. We demonstrate that high-quality material can be produced with this method and that production rates as high as 140 mg h-1 can be obtained, with a maximum precursor utilization rate of roughly 50%. Compared to the case in which particles are produced using silane as the main precursor, the gas composition needs to be modified and hydrogen needs to be added to the mixture to enable the nucleation and growth of the powder. The presence of chlorine in the system leads to the production of nanoparticles with a chlorine terminated surface which is significantly less robust against oxidation in air compared to the case of a hydrogen terminated surface. We also observe that significantly higher power input is needed to guarantee the formation of crystalline particles, which is a consequence not only of the different gas-phase composition, but also of the influence of chlorine on the stability of the crystalline structure.

  15. Direct hydrocarbons formation from CH{sub 4} and CO{sub 2} by non-thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pham, M.H.; Tatibouet, J.M.; Batiot-Dupeyrat, C. [Univ. de Poitiers, Poitiers (France). Centre national de la recherche scientifique, Laboratoire de Catalyse en Chimie Organique

    2010-07-01

    Methane (CH{sub 4}) is typically burned to produce heat, the most degraded form of energy. This paper presented a possible way to conserve fossil carbon resources and limit carbon dioxide (CO{sub 2}) emissions by transforming methane into a chemical feedstock. The Fischer-Tropsch process is one of the possible ways of producing hydrocarbons by reforming CH{sub 4} by CO{sub 2} to obtain a mixture of carbon monoxide (CO) and hydrogen (H{sub 2}). However, previous studies have shown that hydrocarbons can by produced directly from a CH{sub 4} and CO{sub 2} mixture by non-thermal plasma, thereby avoiding the Fischer-Tropsch synthesis. This paper presented the results obtained in a coaxial dielectric discharge barrier (DBD) reactor for hydrocarbon formation by varying either the CH{sub 4}/CO{sub 2} ratio or the input energy. The main products were C{sub 2} to C{sub 4} alkanes. The increasing hydrocarbons to CO ratio with the CH{sub 4}/CO{sub 2} initial ratio suggests a radical type mechanism. It was concluded that a 15 percent hydrocarbon yield can be obtained in a single pass with only a short loss of initial carbon. 1 ref.

  16. Comparative study of non-thermal atmospheric pressure discharge plasmas for life science applications

    Science.gov (United States)

    Koga, Kazunori; Katayama, Ryu; Sarinont, Thapanut; Seo, Hyunwoong; Itagaki, Naho; Attri, Pankaj; Leal-Quiros, Edbertho; Tanaka, Akiyo; Shiratani, Masaharu

    2016-09-01

    We are comparing several non-thermal atmospheric pressure discharge plasmas for life science applications. Here we measured discharge period dependence of pH value and 750 nm absorbance of KI-starch solution of deionized water after plasma irradiation with two discharge devices; a dielectric barrier discharge (DBD) jet device and a scalable DBD device. The pH and the absorbance of KI-starch solution are useful indicator of their oxidizability. We have obtained a map of the absorbance and proton concentration [H+] which is deduced from pH value. For the scalable DBD, the range of the absorbance is between 0.7 and 1.3 and that of [H+] is between 10-7 and 10-5 mol/L. For the DBD jet, the range of the absorbance and [H+] are 2.0-3.2 and 10-4-10-3 mol/L, respectively. Measured data for both devices shows same tendency in the map, while the range of values for the scalable DBD is smaller than that for the DBD jet. The results indicate the oxidazability for the scalable DBD is much weaker than that for the DBD jet.

  17. Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet

    Science.gov (United States)

    Chang, Zhengshi; Yao, Congwei; Zhang, Guanjun

    2016-01-01

    Non-thermal equilibrium atmospheric pressure plasma jet (APPJ) is a cold plasma source that promises various innovative applications, and the uniform APPJ is more favored. Glow discharge is one of the most effective methods to obtain the uniform discharge. Compared with the glow dielectric barrier discharge (DBD) in atmospheric pressure, pure helium APPJ shows partial characteristics of both the glow discharge and the streamer. In this paper, considering the influence of the Penning effect, the electrical and optical properties of He APPJ and Ar/NH3 APPJ were researched. A word “Glow-like APPJ” is used to characterize the uniformity of APPJ, and it was obtained that the basic characteristics of the glow-like APPJ are driven by the kHz AC high voltage. The results can provide a support for generating uniform APPJ, and lay a foundation for its applications. supported by National Natural Science Foundation of China (Nos. 51307133, 51125029, 51221005) and the Fundamental Research Funds for the Central Universities of China (Nos. xjj2012132, xkjc2013004)

  18. Temperature diagnostics of a non-thermal plasma jet at atmospheric pressure

    Science.gov (United States)

    Schäfer, Jan

    2013-09-01

    The study reflects the concept of the temperature as a physical quantity resulting from the second thermodynamic law. The reliability of different approaches of the temperature diagnostics of open non-equilibrium systems is discussed using examples of low temperature atmospheric pressure discharges. The focus of this work is a miniaturized non-thermal atmospheric pressure plasma jet for local surface treatment at ambient atmosphere. The micro-discharge is driven with a capacitively coupled radio frequency electric field at 27.12 MHz and fed with argon at rates of about 1 slm through the capillary with an inner diameter of 4 mm. The discharge consists of several contracted filaments with diameter around 300 μm which are rotating azimuthally in the capillary in a self-organized manner. While the measured temperatures of the filament core exceed 700 K, the heat impact on a target below the plasma jet remains limited leading to target temperatures below 400 K. Different kinds of temperatures and energy transport processes are proposed and experimentally investigated. Nevertheless, a reliable and detailed temperature diagnostics is a challenge. We report on a novel diagnostics approach for the spatially and temporally resolved measurement of the gas temperature based on the optical properties of the plasma. Laser Schlieren Deflectometry is adapted to explore temperature profiles of filaments and their behaviour. In parallel, the method demonstrates a fundamental Fermat's principle of minimal energy. Information acquired with this method plays an important role for the optimization of local thin film deposition and surface functionalization by means of the atmospheric pressure plasma jet. The work was supported in part by the Deutsche Forschungsgemeinschaft within SFB-TR 24.

  19. EDITORIAL: Atmospheric pressure non-thermal plasmas for processing and other applications

    Science.gov (United States)

    Massines, Françoise

    2005-02-01

    Interest has grown over the past few years in applying atmospheric pressure plasmas to plasma processing for the benefits this can offer to existing and potential new processes, because they do not require expensive vacuum systems and batch processing. There have been considerable efforts to efficiently generate large volumes of homogeneous atmospheric pressure non-thermal plasmas to develop environmentally friendly alternatives for surface treatment, thin film coating, sterilization, decontamination, etc. Many interesting questions have arisen that are related to both fundamental and applied research in this field. Many concern the generation of a large volume discharge which remains stable and uniform at atmospheric pressure. At this pressure, depending on the experimental conditions, either streamer or Townsend breakdown may occur. They respectively lead to micro-discharges or to one large radius discharge, Townsend or glow. However, the complexity arises from the formation of large radius streamers due to avalanche coupling and from the constriction of the glow discharge due to too low a current. Another difficulty is to visually distinguish many micro-discharges from one large radius discharge. Other questions relate to key chemical reactions in the plasma and at the surface. Experimental characterization and modelling also need to be developed to answer these questions. This cluster collects up-to-date research results related to the understanding of different discharges working at atmospheric pressure and the application to polymer surface activation and thin film coating. It presents different solutions for generating and sustaining diffuse discharges at atmospheric pressure. DC, low-frequency and radio-frequency excitations are considered in noble gases, nitrogen or air. Two specific methods developed to understand the transition from Townsend to streamer breakdown are also presented. They are based on the cross-correlation spectroscopy and an electrical

  20. Application of a Non-thermal Atmospheric Pressure Plasma Jet to the Decomposition of Salicylic Acid to Inorganic Carbon

    OpenAIRE

    Kuroda, Kosuke; Ishijima, Tatsuo; Kaga, Toshiki; Shiomomura, Kai; Ninomiya, Kazuaki; Takahashi, Kenji

    2015-01-01

    A non-thermal atmospheric pressure plasma jet technique was applied to decompose salicylic acid to inorganic carbon. Excess hydroxyl radical, which has a high oxidation potential, decomposed salicylic acid within 10 min, and total organic carbon decreased to 20% after 30 min. © 2015 The Chemical Society of Japan.

  1. Performance evaluation of non-thermal plasma on particulate matter, ozone and CO2 correlation for diesel exhaust emission reduction

    DEFF Research Database (Denmark)

    Babaie, Meisam; Davari, Pooya; Talebizadeh, Poyan

    2015-01-01

    This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2...

  2. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruonan; Wang, Guomin; Tian, Ying; Wang, Kaile [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang, Jue, E-mail: zhangjue@pku.edu.cn [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China); Fang, Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China)

    2015-12-30

    Highlights: • We propose a new approach to treat S. aureus inoculated on strawberries by PAW. • PAW could inactivate S. aureus on strawberries via the Log Reduction results, further confirmed by CLSM and SEM. • The short-lived ROS in PAW are considered the most important agents in inactivation process. • No significant change was found in color, firmness and pH of the PAW treated strawberries. - Abstract: Non-thermal plasma has been widely considered to be an effective method for decontamination of foods. Recently, numerous studies report that plasma-activated water (PAW) also has outstanding antibacterial ability. This study presents the first report on the potential of PAW for the inactivation of Staphylococcus aureus (S. aureus) inoculated on strawberries. PAW treatments achieved a reduction of S. aureus ranging from 1.6 to 2.3 log at day-0 storage, while 1.7 to 3.4 log at day-4 storage. The inactivation efficiency depended on the plasma-activated time for PAW generation and PAW-treated time of strawberries inoculated with S. aureus. LIVE/DEAD staining and scanning electron microscopy results confirm that PAW could damage the bacterial cell wall. Moreover, optical emission spectra and oxidation reduction potential results demonstrate the inactivation is mainly attributed to oxidative stress induced by reactive oxygen species in PAW. In addition, no significant change was found in color, firmness and pH of the PAW treated strawberries. Thus, PAW can be a promising alternative to traditional sanitizers applied in the fresh produce industry.

  3. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yu-Ri [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Kwon, Jae-Sung [Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Song, Doo-Hoon [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Choi, Eun Ha [Plasma Bioscience Research Center Kwangwoon University, Seoul 139-701, 447-1 Wokgye-Dong, Nowon-Gu, Seoul (Korea, Republic of); Lee, Yong-Keun [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Kim, Kyoung-Nam [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of); Kim, Kwang-Mahn, E-mail: kmkim@yuhs.ac [Department and Research Institute of Dental Biomaterials and Bioengineering, College of Dentistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752 (Korea, Republic of); Research Center for Orofacial Hard Tissue Regeneration, College of Dentistry, Yonsei University, Seoul 120-752 (Korea, Republic of)

    2013-11-29

    Surface modifications induced by non-thermal plasma have been used extensively in biomedical applications. The attachment and proliferation of osteoblast cells are important in bone tissue engineering using scaffolds. Hence the effect of non-thermal plasma on hydroxyapatite/β-tri-calcium phosphate (HA/β-TCP) scaffolds in terms of improving osteoblast attachment and proliferation was investigated. Experimental groups were treated with non-thermal plasma for 10 min and 20 min and a control group was not treated with non-thermal plasma. For surface chemistry analysis, X-ray photoelectron spectroscopy (XPS) analysis was carried out. The hydrophilicity was determined from contact angle measurement on the surface. Atomic force microscopy analysis (AFM) was used to test the change in surface roughness and cell attachment and proliferation were evaluated using MC3T3-E1 osteoblast cells. XPS spectra revealed a decreased amount of carbon on the surface of the plasma-treated sample. The contact angle was also decreased following plasma treatment, indicating improved hydrophilicity of plasma-treated surfaces compared to the untreated disc. A significant increase in MC3T3E-1 cell attachment and proliferation was noted on plasma-treated samples as compared to untreated specimens. The results suggest that non-thermal atmospheric pressure nitrogen and air plasma treatments provide beneficial surface characteristics on HA/β-TCP scaffolds. - Highlights: ► Non-thermal plasma increased OH- and decreased C on biphasic scaffold. ► Non-thermal plasma had no effect on surface roughness. ► Non-thermal plasma resulted in hydrophilic surface. ► Non-thermal plasma resulted in better cell attachment and proliferation. ► Non-thermal plasma treatment on biphasic scaffold is useful for tissue engineering.

  4. Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas.

    Science.gov (United States)

    Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu

    2016-06-21

    The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.

  5. The effect of non-thermal electrons on obliquely propagating electron acoustic waves in a magnetized plasma

    Science.gov (United States)

    Singh, Satyavir; Bharuthram, Ramashwar

    2016-07-01

    Small amplitude electron acoustic solitary waves are studied in a magnetized plasma consisting of hot electrons following Cairn's type non-thermal distribution function and fluid cool electrons, cool ions and an electron beam. Using reductive perturbation technique, the Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) equation is derived to describe the nonlinear evolution of electron acoustic waves. It is observed that the presence of non-thermal electrons plays an important role in determining the existence region of solitary wave structures. Theoretical results of this work is used to model the electrostatic solitary structures observed by Viking satellite. Detailed investigation of physical parameters such as non-thermality of hot electrons, beam electron velocity and temperature, obliquity on the existence regime of solitons will be discussed.

  6. Damages of Biological Components in Bacteria and Bacteriophages Exposed to Atmospheric Non-thermal Plasma

    Science.gov (United States)

    Mizuno, Akira; Yasuda, Hachiro

    Mechanism of inactivation of bio-particles exposed to dielectric barrier discharge, DBD, has been studied using E. coli and bacteriophages. States of different biological components were monitored during the course of inactivation. Analysis of green fluorescent protein, GFP, introduced into E.coli cells proved that Non-thermal Plasma, NTP causes a prominent protein damages without cutting peptide bonds. We have developed a biological assay which evaluates in vitro DNA damage of the bacteriophages. Bacteriophage λ having double stranded DNA was exposed to DBD, then DNA was purified and subjected to in vitro DNA packaging reactions. The re-packaged phages consist of the DNA from discharged phages and brand-new coat proteins. Survival curves of the re-packaged phages showed extremely large D value (D = 25 s) compared to the previous D value (D = 3 s) from the discharged phages. The results indicate that DNA damage hardly contributed to the inactivation, and the damage in coat proteins is responsible for inactivation of the phages. M13 phages having single stranded DNA were also examined with the same manner. In this case, damage to DNA was as severe as that of the coat proteins.

  7. Disinfection effect of non-thermal atmospheric pressure plasma for foodborne bacteria

    Science.gov (United States)

    Pervez, Mohammad Rasel; Inomata, Takanori; Ishijima, Tatsuo; Kakikawa, Makiko; Uesugi, Yoshihiko; Tanaka, Yasunori; Yano, Toshihiro; Miwa, Shoji; Noguchi, Akinori

    2015-09-01

    Non-thermal atmospheric pressure plasma (NAPP) exposure can be a suitable alternative for bacteria inactivation in food processing industry. Specimen placed in the enclosure are exposed to various reactive radicals produced within the discharge chamber. It is also exposed to the periodic variation of the electric field strength in the chamber. Dielectric barrier discharge is produced by high voltage pulse (Vpp = 18 kV, pulse width 20 μs, repetition frequency 10 kHz) in a polypropylene box (volume = 350 cm3) using helium as main feed gas. Inactivation efficiency of NAPP depends on the duration of NAPP exposure, applied voltage pulse strength and type, pulse duration, electrode separation and feed gas composition. In this study we have investigated inactivation of Bacillus lichenformis spore as an example of food borne bacteria. Keeping applied voltage, electrode configuration and total gas flow rate constant, spores are exposed to direct NAPP for different time duration while O2 concentration in the feed gas composition is varied. 10 minutes NAPP exposure resulted in ~ 3 log reduction of Bacillus lichenformis spores for 1% O2concentration (initial concentration ~ 106 / specimen). This work is supported by research and development promotion grant provided by the Hokuriku Industrial Advancement Center.

  8. Plasma Reforming of Liquid Hydrocarbon Fuels in Non-Thermal Plasma-Liquid Systems

    Science.gov (United States)

    2010-04-30

    channel with liquid wall in the microporous media under the ultrasound cavitations has shown the following: · The action of the ultrasound field in the...microporous liquid which has a very large ratio of the plasma-liquid contact surface to the plasma volume. As is known the ultrasonic (US) cavitation is a very...2) and it ran over a flat dielectric surface of the magnetostrictive transmitter (5) which produced ultrasonic (US) cavitations , so the discharge

  9. Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma

    Science.gov (United States)

    Schäfer, J.; Foest, R.; Reuter, S.; Kewitz, T.; Šperka, J.; Weltmann, K.-D.

    2012-10-01

    The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 ± 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 ± 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable

  10. Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J.; Foest, R.; Reuter, S.; Weltmann, K.-D. [INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Kewitz, T. [Institute of Experimental and Applied Physics, University Kiel, 24098 Kiel (Germany); Sperka, J. [Department of Physical Electronics, Masaryk University, 61137 Brno (Czech Republic)

    2012-10-15

    The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 {+-} 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 {+-} 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable

  11. Mechanism and Kinetics Analysis of NO/SO2/N2/O2 Dissociation Reactions in Non-Thermal Plasma

    Institute of Scientific and Technical Information of China (English)

    WANG Xinliang; LI Tingting; WEI Dongxiang; WEI Yanli; GU Fan

    2008-01-01

    The kinetics mechanism of the dissociation reactions in a NO/SO2/N2/O2 system was investigated in consideration of energetic electrons' impacts on a non-thermal plasma. A model was derived from the Boltzmann equation and molecule collision theory to predict the dissociation reaction rate coefficients. Upon comparison with available literature, the model was confirmed to be acceptably accurate in general. Several reaction rate coefficients of the NO/SO2/N2/O2 dissociation system were derived according to the Arrhenius formula. The activation energies of each plasma reaction were calculated by quantum chemistry methods. The relation between the dissociation reaction rate coefficient and electron temperature was established to describe the importance of each reaction and to predict relevant processes of gaseous chemical reactions. The sensitivity of the mechanism of NO/SO2/N2/O2 dissociation reaction in a non-thermal plasma was also analysed.

  12. Non-thermal plasma exhaust aftertreatment: Are all plasmas the same?

    Energy Technology Data Exchange (ETDEWEB)

    Whealton, J.H.; Hanson, G.R.; Storey, J.M.; Raridon, R.J.; Armfield, J.S.; Bigelow, T.S.; Graves, R.L. [Oak Ridge National Lab., TN (United States)

    1997-12-31

    The authors describe initial experiments employing 5.5 GHz pulsed microwave power, which should result in enhanced chemistry compared to present state-of-the-art plasma aftertreatments by; reducing plasma electric field shielding, increasing availability of atomic nitrogen, exploiting surface charging of dielectrics, avoiding (low field) threshold initiated discharges, and achieving a higher high energy tail on the electron distribution function. As an example, the authors decided to test for NO reduction in N{sub 2}. While this reaction is not a complete description of the exhaust issues by any means, they thought it would demonstrate the technology proposed.

  13. Utilizing the micron sized non-thermal atmospheric pressure plasma inside the animal body for the tumor treatment application.

    Science.gov (United States)

    Mirpour, Shahriar; Piroozmand, Somayeh; Soleimani, Neda; Jalali Faharani, Neda; Ghomi, Hamidreza; Fotovat Eskandari, Hoda; Sharifi, Ali Mohammad; Mirpour, Sahar; Eftekhari, Mohammad; Nikkhah, Maryam

    2016-07-07

    This study aimed to evaluate the effects of micron sized non-thermal atmospheric pressure plasma inside the animal body on breast cancer tumor. The μ-plasma jet consists of micron sized hollow tube in which pure helium gas is ionized by high voltage (4 kV) and high frequency (6 kHz). The efficiency of the plasma treatment in killing cancer cells was first investigated by cell viability measurements of treated 4T1 cells using flow cytometry and cell cycle analysis. For exploration of the in vivo effects of the plasma treatment, the BALB/c mice inoculated by 4T1 cell lines were exposed subcutaneously to plasma for 3 minutes. In addition, H&E staining, TUNEL and Western blotting assays were performed in order to observed the effects of the non-thermal plasma on the tumor cells. The results showed that the efficiency of the plasma in suppression of the tumor growth is comparable to that of a typical chemotherapy drug. Moreover, the results indicated that the plasma induces apoptosis in the tumor tissue and increases the ratio of the apoptotic to anti-apoptotic protein expression. We believe that these findings presented herein may extend our knowledge of the mechanisms by which the plasma exerts its promising anti-cancer effects.

  14. Non-thermal atmospheric pressure plasma functionalized dental implant for enhancement of bacterial resistance and osseointegration.

    Science.gov (United States)

    Lee, Jung-Hwan; Jeong, Won-Seok; Seo, Seog-Jin; Kim, Hae-Won; Kim, Kyoung-Nam; Choi, Eun-Ha; Kim, Kwang-Mahn

    2017-03-01

    Even though roughened titanium (Ti) and Ti alloys have been clinically used as dental implant, they encourage bacterial adhesion, leading to failure of the initial stability. Here, the non-thermal atmospheric pressure plasma jet (NTAPPJ) functionalized Ti and Ti alloy were investigated to promote cellular activities but inhibit the initial attachment of the adherent pioneer bacterium, Streptococcus sanguinis, without topographical changes. After the produced radicals from NTAPPJ were characterized, bacterial adhesion to specimens was assessed by PrestoBlue assay and live-dead staining with or without the NTAPPJ functionalizing. After the surface was characterized using optical profilometry, X-ray photoelectron spectroscopy and contact angle analysis, the ions released from the specimens were investigated. In vitro initial cell attachment (4h or 24h) with adhesion images and alkaline phosphatase activity (ALP, 14 days) measurements were performed using rat bone marrow-derived mesenchymal stem cells. The initial bacterial adhesion to the Ti and Ti alloy was significantly inhibited after NTAPPJ functionalizing (padhesion-resistance effect was induced by carbon cleaning, which was dependent on the working gas used on the Ti specimens (nitrogen>ammonia and air, padhesion with well-developed vinculin localization and consequent ALP activity at 14days to the NTAPPJ-functionalized specimens were superior to the non-treated specimens. For the promising success of dental implants, NTAPPJ functionalizing is suggested as a novel surface modification technique; this technique can help ensure the success of integration between the dental implants and bone tissues with less concern of inflammation. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  15. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration

    Science.gov (United States)

    Ritts, Andy Charles; Li, Hao; Yu, Qingsong; Xu, Changqi; Yao, Xiaomei; Hong, Liang; Wang, Yong

    2010-01-01

    The objective of this study is to investigate the treatment effects of non-thermal atmospheric gas plasmas on dentin surfaces for composite restoration. Extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. The dentin surfaces were treated by using a non-thermal atmospheric argon plasma brush for various durations. The molecular changes of the dentin surfaces were analyzed using FTIR/ATR and an increase in carbonyl groups on dentin surfaces was detected with plasma treated dentin. Adper Single Bond Plus adhesive and Filtek Z250 dental composite were applied as directed. To evaluate the dentin/composite interfacial bonding, the teeth thus prepared were sectioned into micro-bars as the specimens for tensile test. Student Newman Keuls tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment. However, the bonding strength to plasma treated inner dentin did not show any improvement. It was found that plasma treatment of peripheral dentin surface up to 100 s gave an increase in interfacial bonding strength, while a prolong plasma treatment of dentin surfaces, e.g., 5 min treatments, showed a decrease in interfacial bonding strength. PMID:20831586

  16. Effects of the electrical excitation signal parameters on the geometry of an argon-based non-thermal atmospheric pressure plasma jet.

    Science.gov (United States)

    Benabbas, Mohamed Tahar; Sahli, Salah; Benhamouda, Abdallah; Rebiai, Saida

    2014-12-01

    A non-thermal atmospheric pressure argon plasma jet for medical applications has been generated using a high-voltage pulse generator and a homemade dielectric barrier discharge (DBD) reactor with a cylindrical configuration. A plasma jet of about 6 cm of length has been created in argon gas at atmospheric pressure with an applied peak to peak voltage and a frequency of 10 kV and 50 kHz, respectively. The length and the shape of the created plasma jet were found to be strongly dependent on the electrode setup and the applied voltage and the signal frequency values. The length of the plasma jet increases when the applied voltage and/or its frequency increase, while the diameter at its end is significantly reduced when the applied signal frequency increases. For an applied voltage of 10 kV, the plasma jet diameter decreases from near 5 mm for a frequency of 10 kHz to less than 1 mm at a frequency of 50 kHz. This obtained size of the plasma jet diameter is very useful when the medical treatment must be processed in a reduced space. PACS 2008: 52.50.Dg; 52.70.-m; 52.80.-s.

  17. Non-thermal Atmospheric Plasma Treatment for Deactivation of Oral Bacteria and Improvement of Dental Composite Restoration

    Science.gov (United States)

    Yu, Qing Song; Li, H.; Ritts, A. C.; Yang, B.; Chen, M.; Hong, L.; Xu, C.; Yao, X.; Wang, Y.

    This paper reviews our recent research results of using non-thermal ­atmospheric plasmas for oral bacterial deactivation and for composite restoration improvement. Oral bacteria of Streptococcus mutans (S. mutans) and Lactobacillus acidophilus (L. acidophilus) with an initial bacterial population density between 1.0 × 108 and 5.0 × 108 cfu/ml were seeded on various media and their survivability with plasma exposure was examined. The plasma exposure time for a 99.9999% cell reduction was less than 15 s for S. mutans and within 5 min for L. acidophilus. To evaluate the dentin/composite interfacial bonding, extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. After dental composite application and light curing, the teeth were then sectioned into micro-bars as the specimens for microtensile test. Student Newman Keuls (SNK) tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment of the dentin surfaces. These findings indicated that non-thermal atmospheric plasma technology is very promising for dental clinical applications.

  18. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Young-Hyo Ryu

    Full Text Available Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH· produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media.

  19. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma.

    Science.gov (United States)

    Ryu, Young-Hyo; Kim, Yong-Hee; Lee, Jin-Young; Shim, Gun-Bo; Uhm, Han-Sup; Park, Gyungsoon; Choi, Eun Ha

    2013-01-01

    Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media) on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose) were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH·) produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment) can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media.

  20. Plasma reactor waste management systems

    Science.gov (United States)

    Ness, Robert O., Jr.; Rindt, John R.; Ness, Sumitra R.

    1992-01-01

    The University of North Dakota is developing a plasma reactor system for use in closed-loop processing that includes biological, materials, manufacturing, and waste processing. Direct-current, high-frequency, or microwave discharges will be used to produce plasmas for the treatment of materials. The plasma reactors offer several advantages over other systems, including low operating temperatures, low operating pressures, mechanical simplicity, and relatively safe operation. Human fecal material, sunflowers, oats, soybeans, and plastic were oxidized in a batch plasma reactor. Over 98 percent of the organic material was converted to gaseous products. The solids were then analyzed and a large amount of water and acid-soluble materials were detected. These materials could possibly be used as nutrients for biological systems.

  1. Cell death induced on cell cultures and nude mouse skin by non-thermal, nanosecond-pulsed generated plasma.

    Directory of Open Access Journals (Sweden)

    Arnaud Duval

    Full Text Available Non-thermal plasmas are gaseous mixtures of molecules, radicals, and excited species with a small proportion of ions and energetic electrons. Non-thermal plasmas can be generated with any high electro-magnetic field. We studied here the pathological effects, and in particular cell death, induced by nanosecond-pulsed high voltage generated plasmas homogeneously applied on cell cultures and nude mouse skin. In vitro, Jurkat cells and HMEC exhibited apoptosis and necrosis, in dose-dependent manner. In vivo, on nude mouse skin, cell death occurred for doses above 113 J/cm(2 for the epidermis, 281 J/cm(2 for the dermis, and 394 J/cm(2 for the hypodermis. Using electron microscopy, we characterized apoptosis for low doses and necrosis for high doses. We demonstrated that these effects were not related to thermal, photonic or pH variations, and were due to the production of free radicals. The ability of cold plasmas to generate apoptosis on cells in suspension and, without any sensitizer, on precise skin areas, opens new fields of application in dermatology for extracorporeal blood cell treatment and the eradication of superficial skin lesions.

  2. Linear and nonlinear obliquely propagating ion-acoustic waves in magnetized negative ion plasma with non-thermal electrons

    Science.gov (United States)

    Mishra, M. K.; Jain, S. K.; Jain

    2013-10-01

    Ion-acoustic solitons in magnetized low-β plasma consisting of warm adiabatic positive and negative ions and non-thermal electrons have been studied. The reductive perturbation method is used to derive the Korteweg-de Vries (KdV) equation for the system, which admits an obliquely propagating soliton solution. It is found that due to the presence of finite ion temperature there exist two modes of propagation, namely fast and slow ion-acoustic modes. In the case of slow-mode if the ratio of temperature to mass of positive ion species is lower (higher) than the negative ion species, then there exist compressive (rarefactive) ion-acoustic solitons. It is also found that in the case of slow mode, on increasing the non-thermal parameter (γ) the amplitude of the compressive (rarefactive) soliton decreases (increases). In fast ion-acoustic mode the nature and characteristics of solitons depend on negative ion concentration. Numerical investigation in case of fast mode reveals that on increasing γ, the amplitude of compressive (rarefactive) soliton increases (decreases). The width of solitons increases with an increase in non-thermal parameters in both the modes for compressive as well as rarefactive solitons. There exists a value of critical negative ion concentration (α c ), at which both compressive and rarefactive ion-acoustic solitons appear as described by modified KdV soliton. The value of α c decreases with increase in γ.

  3. Effects of non-thermal atmospheric pressure pulsed plasma on the adhesion and durability of resin composite to dentin.

    Science.gov (United States)

    Han, Geum-Jun; Kim, Jae-Hoon; Chung, Sung-No; Chun, Bae-Hyeock; Kim, Chang-Keun; Seo, Deog-Gyu; Son, Ho-Hyun; Cho, Byeong-Hoon

    2014-12-01

    This study investigated the effect of low-power, non-thermal atmospheric pressure plasma (NT-APP) treatments, in pulsed and conventional modes, on the adhesion of resin composite to dentin and on the durability of the bond between resin composite and dentin. A pencil-type NT-APP jet was applied in pulsed and conventional modes to acid-etched dentin. The microtensile bond strength (MTBS) of resin composite to dentin was evaluated at 24 h and after thermocycling in one control group (no plasma) and in two experimental groups (pulsed plasma and conventional plasma groups) using the Scotchbond Multi-Purpose Plus Adhesive System. Data were analyzed using two-factor repeated-measures anova and Weibull statistics. Fractured surfaces and the bonded interfaces were evaluated using a field-emission scanning electron microscope. Although there were no significant differences between the plasma treatment groups, the plasma treatment improved the MTBS compared with the control group. After thermocycling, the MTBS did not decrease in the control or conventional plasma group but increased in the pulsed plasma group. Thermocycling increased the Weibull moduli of plasma-treated groups. In conclusion, plasma treatment using NT-APP improved the adhesion of resin composite to dentin. Using a pulsed energy source, the energy delivered to the dentin was effectively reduced without any reduction in bond strength or durability.

  4. Effect of photodynamic therapy and non-thermal plasma on root canal filling: analysis of adhesion and sealer penetration

    OpenAIRE

    MENEZES,Marilia; PRADO,Maíra; Gomes,Brenda; Gusman, Heloisa; SIMÃO,Renata

    2017-01-01

    Abstract Objective The aim of this study was to evaluate the effect of photodynamic therapy (PDT) and non-thermal plasma (NTP) on adhesion and sealer penetration in root canals. Material and Methods Sixty single-rooted premolars were used. The teeth were prepared using a crown-down technique. NaOCl and EDTA were used for irrigation and smear layer removal, respectively. The root canals were divided into three groups: control, PDT, and NTP. After treatments, the roots were filled using gut...

  5. Investigation the Influence of Different Salts on the Degradation of Organic Dyes Using Non-Thermal Plasma

    Directory of Open Access Journals (Sweden)

    Ahmed El-Tayeb

    2016-10-01

    Full Text Available In dye decolorization tests a non-thermal plasma (NTP corona discharge generated by a high voltage pin-to-ground plate displayed 82% color removal within 11 min. Total color removal was accomplished after 28 min. Different salts such as KCl, NaCl, CaCl2 and AlCl3 were utilized to check the influence of conductivity changes on the dye decolorization process. Higher dye solution conductivity improved the color removal efficiency. The discharge energy and degradation efficiency were computed for diverse concentrations for NaCl, KCl, CaCl2 and AlCl3, whereby it was noticed that the salts generally have a small impact on the level of dye decolorization using corona discharge. In addition, the essential reactive species involved in the oxidation of organic dye compounds such as ozone (O3 generated in treated water and hydrogen peroxide (H2O2 were investigated and the energetic species that produced the non-thermal plasma at the optimum operation time were determined. Energy yields for decolorization and Electrical Energy per Order (EE/O were calculated for different concentrations of NaCl, KCl, CaCl2 and AlCl3. This work may help in designing plasma systems appropriate for treatment of industrial wastewaters polluted by dyes.

  6. Polarization of the Sunyaev-Zel'dovich effect: relativistic imprint of thermal and non-thermal plasma

    CERN Document Server

    Emritte, M S; Marchegiani, P

    2016-01-01

    [Abridged] Inverse Compton scattering of CMB fluctuations off cosmic electron plasma generates a polarization of the associated Sunyaev-Zel'dovich (SZ) effect. This signal has been studied so far mostly in the non-relativistic regime and for a thermal electron population and, as such, has limited astrophysical applications. Partial attempts to extend this calculation for a thermal electron plasma in the relativistic regime have been done but cannot be applied to a general relativistic electron distribution. Here we derive a general form of the SZ effect polarization valid in the full relativistic approach for both thermal and non-thermal electron plasmas, as well as for a generic combination of various electron population co-spatially distributed in the environments of galaxy clusters or radiogalaxy lobes. We derive the spectral shape of the Stokes parameters induced by the IC scattering of every CMB multipole, focusing on the CMB quadrupole and octupole that provide the largest detectable signals in galaxy c...

  7. Gas temperature determination in an argon non-thermal plasma at atmospheric pressure from broadenings of atomic emission lines

    Science.gov (United States)

    Yubero, C.; Rodero, A.; Dimitrijevic, M. S.; Gamero, A.; García, M. C.

    2017-03-01

    In this work a new spectroscopic method, allowing gas temperature determination in argon non-thermal plasmas sustained at atmospheric pressure, is presented. The method is based on the measurements of selected pairs of argon atomic lines (Ar I 603.2 nm/Ar I 549.6 nm, Ar I 603.2 nm/Ar I 522.1 nm, Ar I 549.6 nm/Ar I 522.1 nm). For gas temperature determination using the proposed method, there is no need of knowing the electron density, neither making assumptions on the degree of thermodynamic equilibrium existing in the plasma. The values of the temperatures obtained using this method, have been compared with the rotational temperatures derived from the OH ro-vibrational bands, using both, the well-known Boltzmann-plot technique and the best fitting to simulated ro-vibrational bands. A very good agreement has been found.

  8. Functionalization of nanomaterials by non-thermal large area atmospheric pressure plasmas: application to flexible dye-sensitized solar cells

    Science.gov (United States)

    Jung, Heesoo; Park, Jaeyoung; Yoo, Eun Sang; Han, Gill-Sang; Jung, Hyun Suk; Ko, Min Jae; Park, Sanghoo; Choe, Wonho

    2013-08-01

    A key challenge to the industrial application of nanotechnology is the development of fabrication processes for functional devices based on nanomaterials which can be scaled up for mass production. In this report, we disclose the results of non-thermal radio-frequency (rf) atmospheric pressure plasma (APP) based deposition of TiO2 nanoparticles on a flexible substrate for the fabrication of dye-sensitized solar cells (DSSCs). Operating at 190 °C without a vacuum enclosure, the APP method can avoid thermal damage and vacuum compatibility restrictions and utilize roll-to-roll processing over a large area. The various analyses of the TiO2 films demonstrate that superior film properties can be obtained by the non-thermal APP method when compared with the thermal sintering process operating at 450 °C. The crystallinity of the anatase TiO2 nanoparticles is significantly improved without thermal agglomeration, while the surface defects such as Ti3+ ions are eliminated, thus providing efficient charge collecting properties for solar cells. Finally, we successfully fabricated a flexible DSSC with an energy conversion efficiency of 4.2% using a transparent plastic substrate. This work demonstrates the potential of non-thermal APP technology in the area of device-level, nano-enabled material manufacturing.A key challenge to the industrial application of nanotechnology is the development of fabrication processes for functional devices based on nanomaterials which can be scaled up for mass production. In this report, we disclose the results of non-thermal radio-frequency (rf) atmospheric pressure plasma (APP) based deposition of TiO2 nanoparticles on a flexible substrate for the fabrication of dye-sensitized solar cells (DSSCs). Operating at 190 °C without a vacuum enclosure, the APP method can avoid thermal damage and vacuum compatibility restrictions and utilize roll-to-roll processing over a large area. The various analyses of the TiO2 films demonstrate that superior film

  9. Experimental investigation of a non-thermal atmospheric pressure plasma jet

    Science.gov (United States)

    Begum, Asma

    The main objective of this dissertation is to understand the formation of the plasma jet from the plasma pencil, and the propagation of the plasma jet in the ambient atmosphere where the effect of the external electric field is almost zero. Before investigating the formation and propagation phenomenon of the plasma jet, common physical properties of plasma jets are determined by using the imaging technique and optical emission spectroscopy. The first goal of this dissertation is to establish the laminar helium gas flow channel through a plasma pencil. The formation position, formation time, and the criterion of the plasma jet formation from the discharge chamber of a plasma pencil are investigated by imaging technique, optical emission spectroscopy, and electrical measurement technique. It shows that the plasma jet forms at the surface of the grounded dielectric as a positive plasma front. The formation time of the plasma jet decreases with applied voltage. The maximum power, total power, and average energy to the system and to the discharge are calculated from the total current, discharge current, input potential, and gap potential of the plasma pencil. The calculated average input power with applied voltage to the discharge shows that 56% of the input power is used in the discharge. The total charge in the discharge chamber is calculated by integrating the discharge current waveform. The critical charge in the discharge chamber required to generate a plasma jet is also determined. The propagation phenomenon of the plasma bullet in the ambient atmosphere has been investigated from the velocity curves of the plasma bullet along the jet axis for different applied voltages, pulse widths, and feed gas flow rates. The plasma bullet's velocity is measured by using two different techniques: (i) imaging technique and (ii) electrical technique. In imaging technique, ultra-fast ICCD images of the plasma jet have been taken at different times and positions, and from the

  10. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air%Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    Institute of Scientific and Technical Information of China (English)

    杨国清; 张冠军; 张文元

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  11. Enhancement of Limb Growth by Non-Thermal Plasma Generated Reactive Species

    Science.gov (United States)

    Shainsky, N.; Steinbeck, M.; Fridman, G.; Fridman, A.; Friedman, G.; Freeman, T.

    2013-09-01

    Introduction: The goal of this investigation was to examine the effect of Dielectric Barrier Discharge plasma on mouse autopod differentiation and growth. In this study we hypothesized that NT-plasma can be used to promote redox dependent changes in differentiation pathways and enhance developmental signaling? Methods: Approximately 1 hour after isolation, NT-plasma or sham plasma treatment was applied to the right or left limb, respectively. The medium was changed daily thereafter for the 4-6 days of culture. NT-plasma treatment: pulsed (1000 Hz) voltage of 17 - 25 kV magnitude (peak to peak), a 1 μs pulse width and a rise time of 5 V/ns between the quartz-insulated high voltage electrode and the sample undergoing treatment. Results: A single 10 second NT-plasma treatment promoted development of mouse autopods as compared to the sham control contralateral limb. NT-plasma accelerated digit growth in both E14.5 and E12.5 autopods. Inhibitors were used to determine the role of ROS and RNS in mediating NT-plasma accelerated autopod development. Treatment with these agents stunted autopod morphogenesis NT-plasma treatment partially rescued development. Discussion: Our findings highlight the capability of NT-plasma to activate ROS-dependent cell signaling cascades within developing autopod tissue. In fact, the effect of NT-plasma may indeed extend beyond ROS sensitive signaling as NT-plasma exposure seems to stimulate some growth even in the presence of antioxidant induced stunting. This work was supported by NIH Grants 1 R01 EB 013011 - 01 (Freeman and G. Fridman).

  12. Effects of Surface Treatments on Nylon 6,6 via Non-thermal Atmospheric Plasma for Thermoplastic Adhesives

    Science.gov (United States)

    Wu, Chi-Chin; Bujanda, Andres; Demaree, John; Robinette, Jason; Weerasooriya, Amanda; Flanagan, David; ARL Plasma Group, CCEP, WMRD Team

    2015-03-01

    This work aims to modify the properties of Nylon 6,6 surfaces for attaining improved interfacial adhesion to thermoplastic composites utilizing atmospheric non-thermal plasma treatments followed by silane treatments using 3-aminopropyltriethoxysilane (APS) in some cases. An L-shaped dielectric barrier discharge configuration was employed to expose nylon substrates to oxygen-containing gas plasmas such as He/O2 and He/H2O, respectively, at room temperature. The chemically-modified surface of the substrate after plasma exposure was immediately examined by static water contact angle wettability measurements and X-ray photoelectron spectroscopy. It was found that the surface hydrophilicity was substantially enhanced and the amount of surface oxygen was significantly increased after a three-minute plasma exposure due to the increased surface energy and additional O-H bonds. The enhancements on interfacial adhesion were evaluated with lap shear tests using three types of adhesives: EPON 825/D230, EPON 825/D2000 and sikaflex252, respectively. The results of tensile tests on the adhesive joints showed an almost ~ 300% increase in interfacial adhesive strength for EPON 825/D230 bonds after plasma treatments. Finite element modeling of adhesive joints for bond strength is underway to compare with experimental results and study the quantitative relations between the mechanical properties within the bond and at interfaces.

  13. A novel approach to the pacemaker infection with non-thermal atmospheric pressure plasma

    Science.gov (United States)

    Zhang, Yuchen; Li, Yu; Li, Yinglong; Yu, Shuang; Li, Haiyan; Zhang, Jue

    2017-08-01

    Although the pacemaker (PM) is a key cardiac implantable electrical device for life-threatening arrhythmias treatment, the related infection is a challenge. Thus, the aim of this study is to validate cold plasma as a potential technology for the disinfection of infected pacemakers. Fifty donated PMs were cleaned and sterilized before use and then infected with Staphylococcus aureus ( S. aureus). Then, each experimental group was treated with cold plasma treatment for 1 min, 3 min, 5 min and 7 min, while the control group was immersed with sterilized water. Effectiveness of disinfection was evaluated by using CFU counting method and confocal laser scanning microscopy (CLSM). The physicochemical properties of water treated with cold plasma at different time were evaluated, including water temperature change and oxidation reduction potential (ORP). The major reactive species generated by the cold plasma equipment during cold plasma were analyzed with optical emission spectroscopy (OES). No live bacteria were detected with CFU counting method after 7 min of cold plasma treatment, which matches with the CLSM results. The ORP value of water and H2O2 concentration changed significantly after treating with cold plasma. Furthermore, reactive oxygen species (ROS) and reactive nitrogen species (RNS), especially NO, O (777 nm) and O (844 nm) were probably key inactivation agents in cold plasma treatment. These results indicate that cold plasma could be an effective technology for the disinfection of implantable devices.

  14. Disinfection of Streptococcus mutans biofilm by a non-thermal atmospheric plasma brush

    Science.gov (United States)

    Hong, Qing; Dong, Xiaoqing; Chen, Meng; Xu, Yuanxi; Sun, Hongmin; Hong, Liang; Wang, Yong; Yu, Qingsong

    2016-07-01

    This study investigated the argon plasma treatment effect on disinfecting dental biofilm by using an atmospheric pressure plasma brush. Streptococcus mutans biofilms were developed for 3 days on the surfaces of hydroxyapatite (HA) discs, which were used to simulate human tooth enamel. After plasma treatment, cell viability in the S. mutans biofilms was characterized by using 3-(4,5-dimethylazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and confocal laser scanning microscopy (CLSM). Compared with the untreated control group, about 90% bacterial reduction in the biofilms was observed after 1 min plasma treatment. Scanning electron microscopy (SEM) examination indicated severe cell damages occurred on the top surface of the plasma treated biofilms. Confocal laser scanning microscopy (CLSM) showed that plasma treatment was effective as deep as 20 µm into the biofilms. When combined with antibiotic treatment using 0.2% chlorhexidine digluconate solution, the plasma treatment became more effective and over 96% bacterial reduction was observed with 1 min plasma treatment.

  15. DNA strand scission induced by a non-thermal atmospheric pressure plasma jet.

    Science.gov (United States)

    Ptasińska, Sylwia; Bahnev, Blagovest; Stypczyńska, Agnieszka; Bowden, Mark; Mason, Nigel J; Braithwaite, Nicholas St J

    2010-07-28

    The DNA molecule is observed to be very susceptible to short-term exposures to an atmospheric pressure plasma jet. The DNA damage induced by plasma-generated species, i.e. excited atoms, charged particles, electrons and UV light is determined.

  16. Non-thermal dielectric-barrier discharge plasma damages human keratinocytes by inducing oxidative stress

    Science.gov (United States)

    KIM, KI CHEON; PIAO, MEI JING; HEWAGE, SUSARA RUWAN KUMARA MADDUMA; HAN, XIA; KANG, KYOUNG AH; JO, JIN OH; MOK, YOUNG SUN; SHIN, JENNIFER H.; PARK, YEUNSOO; YOO, SUK JAE; HYUN, JIN WON

    2016-01-01

    The aim of this study was to identify the mechanisms through which dielectric-barrier discharge plasma damages human keratinocytes (HaCaT cells) through the induction of oxidative stress. For this purpose, the cells were exposed to surface dielectric-barrier discharge plasma in 70% oxygen and 30% argon. We noted that cell viability was decreased following exposure of the cells to plasma in a time-dependent manner, as shown by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The levels of intracellular reactive oxygen species (ROS) were determined using 2′,7′-dichlorodihydro-fluorescein diacetate and dihydroethidium was used to monitor superoxide anion production. Plasma induced the generation of ROS, including superoxide anions, hydrogen peroxide and hydroxyl radicals. N-acetyl cysteine, which is an antioxidant, prevented the decrease in cell viability caused by exposure to plasma. ROS generated by exposure to plasma resulted in damage to various cellular components, including lipid membrane peroxidation, DNA breaks and protein carbonylation, which was detected by measuring the levels of 8-isoprostane and diphenyl-1-pyrenylphosphine assay, comet assay and protein carbonyl formation. These results suggest that plasma exerts cytotoxic effects by causing oxidative stress-induced damage to cellular components. PMID:26573561

  17. Bactericial effect of a non-thermal plasma needle against Enterococcus faecalis biofilms

    Science.gov (United States)

    Jiang, Chunqi; Schaudinn, C.; Jaramillo, D. E.; Sedghizadeh, P. P.; Webster, P.; Costerton, J. W.

    2011-10-01

    Up to 3 cm long submillimeter-in-scale plasma needle was generated in ambient atmosphere for root canal disinfection. Powered with 1-2 kHz, multi-kilovolt nanosecond electric pulses, this He/(1%)O2 plasma jet consists of ionization fronts propagating at speeds of the order of 107 cm/s. Plasma treatment of Enterococcus faecalis biofilms on hydroxyapatite (HA) discs for 5 min resulted in severe damage of the bacterial cells and sterilized HA surfaces of more than 3 mm in diameter, observed by the scanning electron microscopy. With a curing dielectric microtube placed 1 cm or less below the nozzle, the plasma jet entered even at a sharp angle and followed the curvature of the tube, and reached the bottom of the tube. The bactericidal effect of the plasma needle against E. faecalis biofilm grown on the inner surfaces of the tube was demonstrated. However, the bactericidal effect weakens or diminishes for the bacteria grown deeper in the tube, indicating improvement of the plasma treatment scheme is needed. Mechanisms of the plasma bactericidal effects are discussed. Supported by the National Institute of Dental and Craniofacial Research and the Air Force Office of Scientific Research.

  18. Eradication of Bacterial Biofilms Using Atmospheric Pressure Non-Thermal Plasmas

    Science.gov (United States)

    Alkawareek, Mahmoud; Gilmore, Brendan; Gorman, Sean; Algwari, Qais; Graham, William; O'Connell, Deborah

    2011-10-01

    Bacterial biofilms are ubiquitous in natural and clinical settings and form a major health risk. Biofilms are recognised to be the predominant mode of bacterial growth, and are an immunological challenge compared to planktonic bacteria of the same species. Eradication of biofilms with atmospheric pressure plasma jets is investigated. Cold non-equilibrium plasmas, operated at ambient atmospheric pressure and temperature, are efficient sources for controlled energy transport through highly reactive neutrals (e.g. ROS, RNS), charged particles (ions and electrons), UV radiation, and electro-magnetic fields. A focused panel of clinically significant biofilms, including Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Bacillus cereus, are exposed to various plasma jet configurations operated in helium and oxygen mixtures. Viability of surviving cells was determined using both standard plate counting method and XTT viability assay. These are correlated with measurements and simulations of relevant reactive plasma species.

  19. Neutron Signatures of Non-Thermal Ion Distributions in Z-Pinch Driven ICF Plasmas

    Science.gov (United States)

    Knapp, Patrick; Jennings, Christopher; Sinars, Daniel

    2012-10-01

    In preparation for upcoming ICF experiments on the 26 MA Z machine (e.g., D2 gas puff, MagLIF [1]), we are studying the neutron energy spectra produced by magnetically-driven loads beyond the archetypal single temperature, uniform plasma. Z-pinch sources frequently exhibit evidence of unusual neutron spectra [2], which can be attributed to three-dimensional turbulent motion, high-energy beams, and other phenomena leading to non-Maxwellian ion distributions. Understanding the nature of our plasma neutron sources is critical for understanding how they scale with increasing current. We will show Monte Carlo and analytic calculations for plausible scenarios and discuss the corresponding signatures for the existing set of time-of-flight diagnostics on Z.[4pt] [1] S. A. Slutz et al. Phys. Plasmas 17, 056303 (2010)[0pt] [2] V.V. Vikhrev and V.D. Korolev, Plasma Dynamics, Vol. 33, No. 5 (2007)

  20. Non-thermal electron populations in microwave heated plasmas investigated with X-ray detectors

    Energy Technology Data Exchange (ETDEWEB)

    Belapure, Jaydeep Sanjay

    2013-04-15

    An investigation of the generation and dynamics of superthermal electrons in fusion plasma is carried out. A SDD+CsI(Tl) based X-ray diagnostic is constructed, characterized and installed at ASDEX Upgrade. In various plasma heating power and densities, the fraction and the energy distribution of the superthermal electrons is obtained by a bi-Maxwellian model and compared with Fokker-Planck simulations.

  1. Effective degradation of organic water pollutants by atmospheric non-thermal plasma torch and analysis of degradation process.

    Science.gov (United States)

    Bansode, Avinash S; More, Supriya E; Siddiqui, Ejaz Ahmad; Satpute, Shruti; Ahmad, Absar; Bhoraskar, Sudha V; Mathe, Vikas L

    2017-01-01

    The paper reports the use of atmospheric non-thermal plasma torch as a catalyst for degradation of various organic pollutants dissolved in water. A flow of He mixed with air was used to produce the dielectric barrier discharge (DBD), at the tip of the torch, using pulsed electric excitation at 12 kV. The torch, operated at a power of 750 mW/mm(2), was seen to completely degrade the aqueous solutions of the pollutants namely methylene blue (MB), methyl orange (MO) and rhodamine-B (RB), at around 10(-4) M concentrations, the concentration of polluants is one order higher than of routinely used heterogeneous photocatalytic reactions, within 10 min of irradiation time at room temperature. UV Visible spectra of the organic dye molecules, monitored after different intervals of plasma-irradiation, ranging between 1 and 10 min, have been used as tools to quantify their sequential degradation. Further, instead of using He, only air was used to form plasma plume and used for degradation of organic dye which follow similar trend as that of He plasma. Further, Liquid Chromatography Mass Spectroscopy (LCMS) technique has been used to understand degradation pathway of methylene blue (MB) as a representative case. Total organic carbon (TOC) measurements indicates significant decrease in its content as a function of duration of plasma exposure onto methylene blue as a representative case. Toxicity studies were carried out onto Gram negative Escherichia coli. This indicated that methylene blue, without plasma treatment, shows growth inhibition, whereas with plasma treatment no inhibition was observed.

  2. Application of Non-Thermal Plasma to the Treatment of Effluent Discharged Into River Choumlou in Bafoussam, West Cameroon

    Directory of Open Access Journals (Sweden)

    Estella T. Njoyim

    2016-07-01

    Full Text Available Most rivers in urban areas of developing countries are the of effluents discharged from industries. This is the case of River Choumlou (in Bafoussam-West Region, Cameroon which receives all discharges from “Brasseries du Cameroun”, Bafoussam branch. The objective of this work was to determine the level of organic contaminants in water samples and to treat the polluted samples using the non-thermal gliding arc plasma. Nonthermal plasma consists of charged particles, radicals and excited molecules. The aim was to show the interest of such a process for cleaning up of surface waters (real effluent and to cope with the protection of our environment. Due to the fact that pollution of streams and rivers from the discharge of sewage and industrial wastes poses a major problem to the environment, the researchers were particularly interested in investigating the oxidizing and acidifying properties of non-thermal plasma on polluted surface water. Samples were collected upstream and downstream from the brewery’s effluent outlet. Samples taken at the point R1 (downstream were first analyzed by volumetric and instrumental methods in order to determine the organoleptic, physico-chemical and organic parameters. These samples were then exposed to the gliding discharge in humid air for a time period of between 3-30 minutes. After 30 minutes of exposure, a decrease in turbidity (24.09%, BOD5 (44.93% and COD (48.92% were observed resulting in transparency apparition; with a decrease in pH (7.9 to 3 due to the formation of acidifying species in solution. These results reflect a considerable reduction in the pollution load of the water collected at R1. This work shows that the effectiveness of the Gliding Arc in wastewater treatment is attributed to the oxidizing power of the hydroxyl radical and acidifying power of the nitrogen monoxide radical formed in the plasma. Despite the low rate of reduction of COD and BOD5 in 30 min, it can be said that the plasma

  3. Dimensionless factors for an alternating-current non-thermal arc plasma

    Science.gov (United States)

    Zhang, Si-Yuan; Li, Xiao-Song; Liu, Jin-Bao; Liu, Jing-Lin; Li, He-Ping; Zhu, Ai-Min

    2016-12-01

    A gliding arc discharge, as a source of warm plasma combining advantages of both thermal and cold plasmas, would have promising application prospects in the fields of fuel conversion, combustion enhancement, material synthesis, surface modifications, pollution control, etc. In order to gain insight into the features of an alternating-current gliding arc discharge plasma, three dimensionless factors, i.e., the extinction span (ψ), current lag (δ), and heating lag (χ) factors are proposed in this letter based on the measured waveforms of the discharge voltage and current in an AC gliding arc discharge plasma. The influences of the driving frequency of the power supply (f) on these three dimensionless parameters are investigated experimentally with the explanations on the physical meanings of these factors. The experimental results show that a higher value of f would lead to the lower values of ψ and δ, as well as a higher value of χ. These experimental phenomena indicate a lower threshold ignition voltage of the discharges, a lower current-growth inertia of the gliding arcs and a larger relative thermal inertia of the plasmas with increase the driving frequency of the power supply in the operating parameter range studied in this letter.

  4. Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Trunec, D; Bonaventura, Z; Necas, D [Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)

    2006-06-21

    The time development of the electron distribution function and electron macroscopic parameters was studied by solving the time-dependent Boltzmann equation for low temperature plasma. A new technique for solving the time-dependent Boltzmann equation was developed. This technique is based on a multi-term approximation of the electron distribution function expansion in Legendre polynomials. The results for electron relaxation in Reid's ramp model and argon plasma are presented. The effect of negative mobility was studied and is discussed for argon plasma. Finally, the time-dependent Boltzmann equation was solved for pulsed microwave discharge in nitrogen. The accuracy of all results was confirmed by the Monte Carlo simulation.

  5. Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes

    OpenAIRE

    Pankaj Attri; Maksudbek Yusupov; Ji Hoon Park; Lakshmi Prasanna Lingamdinne; Janardhan Reddy Koduru; Masaharu Shiratani; Eun Ha Choi; Annemie Bogaerts

    2016-01-01

    Purified water supply for human use, agriculture and industry is the major global priority nowadays. The advanced oxidation process based on atmospheric pressure non-thermal plasma (NTP) has been used for purification of wastewater, although the underlying mechanisms of degradation of organic pollutants are still unknown. In this study we employ two needle-type atmospheric pressure non-thermal plasma jets, i.e., indirect (ID-APPJ) and direct (D-APPJ) jets operating at Ar feed gas, for the tre...

  6. Solar Radio Astronomy and Plasma Non-thermal Proccsscs in Solar Atmosphere

    Institute of Scientific and Technical Information of China (English)

    YAN Yihua; TAN Baolin

    2011-01-01

    1. Introduction Solar radio astronomy is an important branch of solar physics, which deals with the radio emission from the solar atmosphere. In solar physics, one of the greatest challenges is to understand the energy storing in the hot atmospheric plasma above sunspots and its sudden releasing in eruptive processes, such as solar flares, eruptive filaments, and coronal mass ejections (CME). Intrinsically,

  7. The energy partitioning of non-thermal particles in a plasma: or the Coulomb logarithm revisited

    CERN Document Server

    Singleton, Robert L

    2008-01-01

    The charged particle stopping power in a highly ionized and weakly to moderately coupled plasma has been calculated to leading and next-to-leading order by Brown, Preston, and Singleton (BPS). After reviewing the main ideas behind this calculation, we use a Fokker-Planck equation derived by BPS to compute the electron-ion energy partitioning of a charged particle traversing a plasma. The motivation for this application is ignition for inertial confinement fusion -- more energy delivered to the ions means a better chance of ignition, and conversely. It is therefore important to calculate the fractional energy loss to electrons and ions as accurately as possible, as this could have implications for the Laser Megajoule (LMJ) facility in France and the National Ignition Facility (NIF) in the United States. The traditional method by which one calculates the electron-ion energy splitting of a charged particle traversing a plasma involves integrating the stopping power dE/dx. However, as the charged particle slows d...

  8. Observations of long-lived H-2 and D-2 ions from non-thermal plasmas

    Science.gov (United States)

    Wang, Wei-Guo; Xu, Yong; Zhu, Ai-Min; Liu, Zhong-Wei; Liu, Xin; Yang, Xue-Feng

    2007-03-01

    Strong mass signals of H-2 and D-2 ions have been observed from low-pressure dielectric barrier discharge hydrogen and deuterium plasmas via molecular beam mass spectrometry. The observed H-2/H- and D-2/D- ratios (~0.35-0.4) are over five orders of magnitude higher than those observed by other techniques. The kinetic energy of H-2 and D-2 ions sampled from the plasmas was determined to be widely distributed, from a few eV to >100 eV, giving lifetimes greater than ~40 µs for H-2 and ~55 µs for D-2. The highest vib-rotational excitation of neutral H2 species in the plasma was determined to be about J = 0, v = 5 or J = 19, v = 0 via threshold ionization mass spectrometry. The possible pumping mechanisms for generating H-2 with further high J, required by the current high-rotation model, have been proposed. Similar to the lifetime of D-2 determined recently by another group, the H-2 lifetime observed in this work is about two orders of magnitude longer than that predicted by the current theoretical model. To explain these experimental observations regarding the meta-stability of long-lived H-2 and D-2 ions, the improved current high-rotation model or other new models, including the possible existence of some long-lived electronically excited states of H-2/D-2, need to be developed.

  9. Room-temperature cataluminescence from CO oxidation in a non-thermal plasma-assisted catalysis system.

    Science.gov (United States)

    Han, Feifei; Yang, Yuhan; Han, Jiaying; Ouyang, Jin; Na, Na

    2015-08-15

    Cataluminescence (CTL) is a kind of chemiluminescence during catalytic reaction on surface of catalysts under a heated condition. Due to the low catalytic reactivity of CO, normally low intensity of CTL is obtained during heterogeneously catalytic oxidation of CO under heated conditions (normally higher than 150°C), even catalyzed by precious-metal-based catalysts. Therefore, seeking enhanced CTL of CO at room temperature and using low-cost catalysts becomes significant. Here, CTL generated from CO oxidation was firstly reported at room temperature, which was carried out in a non-thermal plasma-assisted (NTPA) catalysis system. With air acting as discharge gas, carrier gas as well as oxidant, a Mn/SiO2 nanomaterials-based NTPA catalysis system was fabricated for CO catalytic oxidation at room temperature, whose temperature was much lower than previous CTL methods. Relatively high and selective CTL responses were acquired during CO oxidation on surface of Mn/SiO2 nanomaterials, whereas no significant CTL signal was recorded without plasma assistance or on other metals-doped SiO2 catalysts. Without any excitation light source or heating element, a low cost and simple CO sensor was fabricated by using common and easily synthesized catalysts. The present work has greatly simplified the constructions, and enlarged CTL applications.

  10. Non-Thermal Atmospheric Plasma: Can it Be Taken as a Common Solution for the Surface Treatment of Dental Materials?

    Science.gov (United States)

    Emre, Seker; Mehmet, Ali Kilicarslan; Serdar, Polat; Emre, Ozkir; Suat, Pat

    2016-04-01

    This study aimed to evaluate the surface roughness and wetting properties of various dental prosthetic materials after different durations of non-thermal atmospheric plasma (NTAP) treatment. One hundred and sixty discs of titanium (Ti) (n:40), cobalt chromium (Co-Cr) (n:40), yttrium stabilized tetragonal zirconia polycrystals (Y-TZP) (n:40) and polymethylmethacrylate (PMMA) (n:40) materials were machined and smoothed with silicon carbide papers. The surface roughness was evaluated in a control group and in groups with different plasma exposure times [1-3-5 s]. The average surface roughness (Ra) and contact angle (CA) measurements were recorded via an atomic force microscope (AFM) and tensiometer, respectively. Surface changes were examined with a scanning electron microscope (SEM). Data were analyzed with two-way analysis of variance (ANOVA) and the Tukey HSD test α=0.05). According to the results, the NTAP surface treatment significantly affected the roughness and wettability properties (P dental materials. supported by the Department of Scientific Research, Eskisehir Osmangazi University, Turkey (No. 201441045)

  11. Non-thermal atmospheric pressure plasma etching of F:SnO2 for thin film photovoltaics.

    Science.gov (United States)

    Hodgkinson, J L; Thomson, M; Cook, I; Sheel, D W

    2011-09-01

    Thin film based photovoltaic systems offer significant advantage over wafer based technologies enabling the use of low cost, large area substrates such as glass, greatly facilitating the construction and integration of large modules. The viability of such systems has advanced in recent years, with researchers striving to optimise performance through the development of materials and cell design. One way to improve efficiency is to texture the interface between the TCO and the absorber layer to maximise scattering over the appropriate wavelength range, with nanometre scale features such as pyramids being reported as giving high scatter. These textures may be achieved by advanced growth processes, such as CVD, post growth etching or a combination of both. In this work, textured F:SnO2 films produced by APCVD were favourably modified using a remote, non thermal, atmospheric plasma to activate a selective dry etch process resulting in significantly enhanced topography. Uniform treatment of the samples was achieved by translation of the samples below the plasma head. Advantages of this approach, compared to competitive technologies such as wet chemical processes, are the relatively low power consumption and ease of scalability and retroprocess integration. The modified structures were studied using AFM, SEM and EDAX, with the observed topography controlled by process variables. Optical properties were assessed along with Hall measurements.

  12. Effects of non-thermal plasmas and electric field on hydrocarbon/air flames

    Science.gov (United States)

    Ganguly, Biswa

    2009-10-01

    Need to improve fuel efficiency, and reduce emission from hydrocarbon combustor in automotive and gas turbine engines have reinvigorated interest in reducing combustion instability of a lean flame. The heat generation rate in a binary reaction is HQ =N^2 c1c2 Q exp(-E/RT), where N is the density, c1 and c2 are mol fractions of the reactants, Q is the reaction heat release, E is the activation energy, R is the gas constant and T is the average temperature. For hydrocarbon-air reactions, the typical value of E/R ˜20, so most heat release reactions are confined to a thin reaction sheet at T >=1400 K. The lean flame burning condition is susceptible to combustion instability due to a critical balance between heat generation and heat loss rates, especially at high gas flow rate. Radical injection can increase flame speed by reducing the hydrocarbon oxidation reaction activation barrier and it can improve flame stability. Advances in nonequilibrium plasma generation at high pressure have prompted its application for energy efficient radical production to enhance hydrocarbon-air combustion. Dielectric barrier discharges and short pulse excited corona discharges have been used to enhance combustion stability. Direct electron impact dissociation of hydrocarbon and O2 produces radicals with lower fuel oxidation reaction activation barriers, initiating heat release reaction CnHm+O CnHm-1+ OH (and other similar sets of reactions with partially dissociated fuel) below the typical cross-over temperature. Also, N2 (A) produced in air discharge at a moderate E/n can dissociate O2 leading to oxidation of fuel at lower gas temperature. Low activation energy reactions are also possible by dissociation of hydrocarbon CnHm+e -> CnHm-2+H2+e, where a chain propagation reaction H2+ O OH+H can be initiated at lower gas temperature than possible under thermal equilibrium kinetics. Most of heat release comes from the reaction CO+OH-> CO2 +H, nonthermal OH production seem to improve

  13. Chlorobenzene degeradation by non-thermal plasma combined with EG-TiO{sub 2}/ZnO as a photocatalyst: Effect of photocatalyst on CO{sub 2} selectivity and byproducts reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ghorbani Shahna, Farshid; Bahrami, Abdulrahman [Center of Excellence for Occupational Health and Research Center for Health Science, School of Public Health, Hamadan University of Medical Sciences, Hamadan (Iran, Islamic Republic of); Alimohammadi, Iraj; Yarahmadi, Rassuol [Department of Occupational Health, School of Public Health, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Jaleh, Babak; Gandomi, Mastaneh [Faculty of Science, Physics Department, Bu-Ali Sina University, Hamedan (Iran, Islamic Republic of); Ebrahimi, Hossein, E-mail: hossein.ebrahimi@yahoo.com [Department of Occupational Health, School of Public Health, Iran University of Medical Sciences, Tehran (Iran, Islamic Republic of); Ad-Din Abedi, Kamal [Department of Occupational Health Engineering, Faculty of Health, Kurdistan University of Medical sciences, Sanandaj (Iran, Islamic Republic of)

    2017-02-15

    Highlights: • TiO{sub 2} and ZnO Nano particles were coated on the surface of expanded graphite. • Expanded graphite-TiO{sub 2}/ZnO nano composite under UV light was placed downstream non-thermal plasma reactor. • Chlorobenzene removal and selectivity of CO{sub 2} were enhanced in combined system. • Produced harmful byproducts from plasma reactor were reduced dramatically in combined system. - Abstract: The non-thermal plasma (NTP) technique, which suffers from low selectivity in complete oxidation of volatile organic compounds to CO{sub 2} and H{sub 2}O, creates unwanted and harmful byproducts. NTP in concert with photocatalyst can resolve this limitation due to additional oxidation. TiO{sub 2} and ZnO nanoparticles were coated on the surface of the expanded graphite and placed downstream of the NTP reactor under UV light. In this study, to compare the performance of NTP and the combined system, chlorobenzene removal, selectivity of CO{sub 2} and byproducts formation were investigated. The results showed that the combined system enhanced both the removal efficiency and CO{sub 2} selectivity. The output gas of the NTP reactor contained chlorobenzene, phosgene, O{sub 3}, NO, NO{sub 2}, CO, CO{sub 2}, HCL and CL. The bulk of these byproducts was oxidized on the surface of the nanocomposite; as a result, the content of the byproducts in the output gas of the combined system decreased dramatically. The removal efficiency and CO{sub 2} selectivity increased by rising the applied voltage and residence time because the collision between active species and pollutant molecules increases. Based on these results, the combined system is preferred due to a higher performance and lower formation of harmful byproducts.

  14. Plasma spark discharge reactor and durable electrode

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Young I.; Cho, Daniel J.; Fridman, Alexander; Kim, Hyoungsup

    2017-01-10

    A plasma spark discharge reactor for treating water. The plasma spark discharge reactor comprises a HV electrode with a head and ground electrode that surrounds at least a portion of the HV electrode. A passage for gas may pass through the reactor to a location proximate to the head to provide controlled formation of gas bubbles in order to facilitate the plasma spark discharge in a liquid environment.

  15. Development of hydrophilic dental wax without surfactant using a non-thermal air atmospheric pressure plasma jet

    Science.gov (United States)

    Lee, Jung-Hwan; Kim, Yong-Hee; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2014-06-01

    Dental wax (DW), a low-melting and high-molecular-weight organic mixture, is widely used in dentistry for forming moulds of teeth. Hydrophilicity is an important property for DW, as a wet dental investment is used to surround the wax before wax burnout is performed. However, recent attempts to improve the hydrophilicity of DW using a surfactant have resulted in the reduced mechanical properties of the dental investment, leading to the failure of the dental restoration. This study applied a non-thermal air atmospheric pressure plasma jet (AAPPJ) for DW surface treatment and investigated its effect on both DW hydrophilicity and the dental investment's mechanical properties. The results showed that the application of the AAPPJ significantly improved the hydrophilicity of the DW, and that the results were similar to that of cleaner-treated DW using commercially available products with surfactant. A surface chemical analysis indicated that the improvement of hydrophilicity was related to an increase in the number of oxygen-related bonds on the DW surface following the removal of carbon hydrate in both AAPPJ and cleaner-treated DW. However, cleaner treatment compromised the mechanical property of the dental investment when the dental investment was in contact with the treated DW, while the AAPPJ treatment did not. Therefore, the use of AAPPJ to treat DW is a promising method for accurate dental restoration, as it induces an improvement in hydrophilicity without harming the dental investment.

  16. Traces of isotopic reactive species produced from a non-thermal plasma jet in bio-molecules

    Science.gov (United States)

    Lee, C. B.; Kwak, H. S.; Choi, E. H.; Hong, T. E.; Yoon, H.; Lee, Y.; Baik, K. Y.; Uhm, H. S.

    2015-11-01

    Heavy water (D2O) is introduced into a non-thermal plasma jet (NTPJ) device to generate deuterium monoxide (OD) radicals instead of hydroxyl (OH) radicals. An NTPJ generated from a vapor mixture of N2/H2O and N2/D2O is applied to a cell membrane component and its effects are analyzed by means of 1H NMR, GC-FID and TOF-SIMS spectroscopies. The results show that OH and OD radical species induce similar levels of oxidative breakage of lipid molecules. In addition, the 2H NMR spectra show that deuteriums are incorporated into the lipid oxidative products. In order to trace these effects in vivo, E. coli bacteria are treated with an NTPJ and analyzed using NanoSIMS. Deuterium is observed in both the cytoplasm and membrane, which are colocalized well with nitrogen and phosphorus atoms. The high colocalization of D atoms inside E. coli provides the first direct and visual evidence of the role of OD radicals, which may be utilized to visualize OH radical interactions inside cells.

  17. Effect of a non-thermal, atmospheric-pressure, plasma brush on conversion of model self-etch adhesive formulations compared to conventional photo-polymerization

    Science.gov (United States)

    Chen, Mingsheng; Zhang, Ying; Yao, Xiaomei; Li, Hao; Yu, Qingsong; Wang, Yong

    2012-01-01

    Objective To determine the effectiveness and efficiency of non-thermal, atmospheric plasmas for inducing polymerization of model dental self-etch adhesives. Methods The monomer mixtures used were bis-[2-(methacryloyloxy)ethyl] phosphate (2MP) and 2-hydroxyethyl methacrylate (HEMA), with mass ratios of 70/30, 50/50 and 30/70. Water was added to the above formulations: 10–30 wt%. These monomer/water mixtures were treated steadily for 40 s under a non-thermal atmospheric plasma brush working at temperatures from 32° to 35°C. For comparison, photo-initiators were added to the above formulations for photo-polymerization studies, which were light-cured for 40 s. The degree of conversion (DC) of both the plasma- and light-cured samples was measured using FTIR spectroscopy with an attenuated total reflectance attachment. Results The non-thermal plasma brush was effective in inducing polymerization of the model self-etch adhesives. The presence of water did not negatively affect the DC of plasma-cured samples. Indeed, DC values slightly increased, with increasing water content in adhesives: from 58.3% to 68.7% when the water content increased from 10% to 30% in the adhesives with a 50/50 (2MP/HEMA) mass ratio. Conversion values of the plasma-cured groups were higher than those of light-cured samples with the same mass ratio and water content. Spectral differences between the plasma- and light-cured groups indicate subtle structural distinctions in the resultant polymer networks. Significance This research if the first to demonstrate that the non-thermal plasma brush induces polymerization of model adhesives under clinical settings by direct/indirect energy transfer. This device shows promise for polymerization of dental composite restorations having enhanced properties and performance. PMID:23018084

  18. Effects of atmospheric-pressure non-thermal bio-compatible plasma and plasma activated nitric oxide water on cervical cancer cells.

    Science.gov (United States)

    Li, Ying; Ho Kang, Min; Sup Uhm, Han; Joon Lee, Geon; Ha Choi, Eun; Han, Ihn

    2017-03-31

    Atmospheric-pressure non-thermal bio-compatible plasma is a partially ionized gas with electrically charged particles. Previous studies demonstrated that dielectric barrier discharge (DBD) plasma could induce apoptosis of various cancer cells, in particular demonstrating the selective cytotoxicity of cancer cells over normal cells. Therefore, DBD plasma can be considered as a potential cancer treatment method for clinical applications. We previously developed a microwave jet plasma system, producing nitric oxide called nitric oxide-plasma activated water (NO-PAW). In this study, we explored the effects of NO-PAW on a cervical cancer cell line, in comparison with DBD plasma. The cytotoxicity results showed that the treatment of HeLa cell with DBD for 4 minutes and 7 μM concentration of NO-PAW could reach almost IC60. For the apoptosis assay, 4 minutes treatment of DBD could induce 7% apoptotic effect, whereas 7 μM NO-PAW could induce 18% apoptotic effect. In addition, we assumed that both DBD plasma and NO-PAW could induce HeLa cell apoptosis by facilitating an accumulation of intracellular reactive oxygen and nitrogen species (RONS). Although further detail on the molecular signal pathway is still needed, DBD and NO-PAW could become promising applications for effective and safe clinical trials for cancer therapy.

  19. Effects of atmospheric-pressure non-thermal bio-compatible plasma and plasma activated nitric oxide water on cervical cancer cells

    Science.gov (United States)

    Li, Ying; Ho Kang, Min; Sup Uhm, Han; Joon Lee, Geon; Ha Choi, Eun; Han, Ihn

    2017-01-01

    Atmospheric-pressure non-thermal bio-compatible plasma is a partially ionized gas with electrically charged particles. Previous studies demonstrated that dielectric barrier discharge (DBD) plasma could induce apoptosis of various cancer cells, in particular demonstrating the selective cytotoxicity of cancer cells over normal cells. Therefore, DBD plasma can be considered as a potential cancer treatment method for clinical applications. We previously developed a microwave jet plasma system, producing nitric oxide called nitric oxide-plasma activated water (NO-PAW). In this study, we explored the effects of NO-PAW on a cervical cancer cell line, in comparison with DBD plasma. The cytotoxicity results showed that the treatment of HeLa cell with DBD for 4 minutes and 7 μM concentration of NO-PAW could reach almost IC60. For the apoptosis assay, 4 minutes treatment of DBD could induce 7% apoptotic effect, whereas 7 μM NO-PAW could induce 18% apoptotic effect. In addition, we assumed that both DBD plasma and NO-PAW could induce HeLa cell apoptosis by facilitating an accumulation of intracellular reactive oxygen and nitrogen species (RONS). Although further detail on the molecular signal pathway is still needed, DBD and NO-PAW could become promising applications for effective and safe clinical trials for cancer therapy. PMID:28361987

  20. Development of a low-cost atmospheric non-thermal plasma jet and its characteristics in air and nitrogen

    Science.gov (United States)

    Allam, Tarek M.; Ahmed, Kamal M.; Abouelatta, Mohamed A.; Ward, Sayed A.; Lashin, Ahmed A.; Soliman, Hanaa M.

    2016-10-01

    This paper deals with the development of a low-cost atmospheric non-thermal plasma jet (ANPJ) which was designed and operated previously in our laboratory. The purpose of the developed design with a small size less than 4% of the previous volume is to obtain a more portable device which holds promise for various fields of applications. The discharge is operated separately with compressed air and nitrogen gas with flow rates varied within the range of 3-18 L/min. The plasma plume length and thickness are measured as a function of the gas flow rate and input voltage Vinput within the range of 3-18 L/min and 2-6 kV respectively. The results showed that for nitrogen gas, the maximum values of the plume length and thickness are 20 mm and 1.3 mm respectively at a flow rate of 12 L/min and Vinput = 6 kV. Results of electrical characterization at Vinput = 6 kV such as discharge voltage, discharge current, the mean consumed power and energy showed that the maximum values of these parameters are obtained at a flow rate of 12 L/min. The developed design is found to be saving up to 65.47% and 68.54% of the consumed power compared to the previous design in the case of air and N2 respectively. The new proposed configuration for the developed ANPJ offers more suitable characteristics than the earlier designs, especially for nitrogen gas.

  1. NO{sub x} removal in jet-engine exhaust: Proposed non-thermal plasma systems and economic considerations

    Energy Technology Data Exchange (ETDEWEB)

    Rosocha, L.A.; Chang, J.S.; Urashima, K.; Kim, S.J.; Miziolek, A.W.; Nusca, M.J.; Daniel, R.G.; Huie, R.F.; Herron, J.T.

    1999-07-01

    Incentives for implementing new pollution-control technologies are both regulatory and economic. Given considerable regulatory pressure, e.g., the promulgation of a NESHAPS (National Emissions Standard for hazardous Air Pollutants ) for NO{sub x} emissions in CY 2000, new de-NO{sub x} technologies are being explored. One major reason for this is that conventional de-NO{sub x} methods (like wet scrubbers plus Selective Catalytic Reduction - SCR) will not work effectively for the low NO concentrations (e.g., <50 ppm), high exhaust-gas flow rates ({approximately} 10{sup 6}Nm{sup 3}/h), and low gas temperatures (near ambient) characteristic of Jet Engine Test Cells (JETCs). The project is currently evaluating nonthermal plasma (NTP) technologies for treating jet-engine exhaust and other hazardous air pollutants. In this paper, the authors will present the initial design options for NTP reactor systems for a field-pilot demonstration on small jet engines (e.g., F107 or F112; flow rates {approximately} 10{sup 4} Nm{sup 3}/h). The field-pilot demonstration is necessary to provide further data and operating experience to more fully evaluate economic and performance projections for NTP de-NO{sub x} technology and to design larger systems with confidence. They are presently considering five candidate NTP reactor systems: pulsed corona, dielectric barrier (silent discharge), hybrid NTP reactor-adsorber, plasma-catalytic hybrid, and corona radical shower. Because of the cost and logistics of using an electron-beam NTP reactor (for which some economic data will be given), they have limited the candidate systems to those based on electric-discharge-driven NTP reactors. This paper will discuss the exhaust stream to be addressed, the test setup, candidate reactor systems, and projected operating parameters and specifications for the field-pilot units--as well as initial cost comparisons of three NTP-based de-NO{sub x} systems with two SCR-based systems based on published small

  2. Research on plasma core reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, G.A.; Barton, D.M.; Helmick, H.H.; Bernard, W.; White, R.H.

    1977-01-01

    Experiments and theoretical studies are being conducted for NASA on critical assemblies with 1-m-diam by 1-m-long low-density cores surrounded by a thick beryllium reflector. These assemblies make extensive use of existing nuclear propulsion reactor components, facilities, and instrumentation. Due to excessive porosity in the reflector, the initial critical mass was 19 kg U(93.2). Addition of a 17-cm-thick by 89-cm-diam beryllium flux trap in the cavity reduced the critical mass to 7 kg when all the uranium was in the zone just outside the flux trap. A mockup aluminum UF/sub 6/ container was placed inside the flux trap and fueled with uranium-graphite elements. Fission distributions and reactivity worths of fuel and structural materials were measured. Finally, an 85,000-cm/sup 3/ aluminum canister in the central region was fueled with UF/sub 6/ gas and fission density distributions determined. These results will be used to guide the design of a prototype plasma core reactor which will test energy removal by optical radiation.

  3. Biphasic effects of l-ascorbate on the tumoricidal activity of non-thermal plasma against malignant mesothelioma cells.

    Science.gov (United States)

    Shi, Lei; Wang, Yue; Ito, Fumiya; Okazaki, Yasumasa; Tanaka, Hiromasa; Mizuno, Masaaki; Hori, Masaru; Richardson, Des R; Toyokuni, Shinya

    2016-09-01

    Non-thermal plasma (NTP) is a recently developed technology that elicits a variety of biological effects. This includes cancer cell-specific cytotoxicity, which is mainly attributed to the regional generation of reactive oxygen species (ROS). We studied the effects of NTP on malignant mesothelioma (MM) and its modulation by l-ascorbate. l-ascorbate is a major water-soluble anti-oxidant in vivo, but its pro-oxidant activity in vitro has been well recognized. Thus, the effects of ascorbate on the efficacy of NTP is important to examine. NTP exposure dose-dependently killed MM cells, whereas MM cells tolerated 1 mM l-ascorbate. However, brief pre-treatment with a pharmacological dose (250-750 μM) of l-ascorbate immediately prior to NTP exposure significantly increased its cytotoxicity in a dose-dependent manner, which was inhibited by the iron chelator, deferoxamine. However, paradoxically, this potentiating effect of l-ascorbate was completely abolished by a prolonged 4 h pre-incubation with l-ascorbate (500 μM). MM cytotoxicity induced by NTP was associated with immediate oxidative stress evaluated by 2',7'-dichlorodihydrofluorecein diacetate, which was followed by an increase in the expression of the autophagosome marker, LC3B-II. In conclusion, MM can be a target for NTP treatment and l-ascorbate can increase or decrease its efficacy depending on the length of the pre-incubation period.

  4. Cellular attachment and differentiation on titania nanotubes exposed to air- or nitrogen-based non-thermal atmospheric pressure plasma.

    Science.gov (United States)

    Seo, Hye Yeon; Kwon, Jae-Sung; Choi, Yu-Ri; Kim, Kwang-Mahn; Choi, Eun Ha; Kim, Kyoung-Nam

    2014-01-01

    The surface topography and chemistry of titanium implants are important factors for successful osseointegration. However, chemical modification of an implant surface using currently available methods often results in the disruption of topographical features and the loss of beneficial effects during the shelf life of the implant. Therefore, the aim of this study was to apply the recently highlighted portable non-thermal atmospheric pressure plasma jet (NTAPPJ), elicited from one of two different gas sources (nitrogen and air), to TiO2 nanotube surfaces to further improve their osteogenic properties while preserving the topographical morphology. The surface treatment was performed before implantation to avoid age-related decay. The surface chemistry and morphology of the TiO2 nanotube surfaces before and after the NTAPPJ treatment were determined using a field-emission scanning electron microscope, a surface profiler, a contact angle goniometer, and an X-ray photoelectron spectroscope. The MC3T3-E1 cell viability, attachment and morphology were confirmed using calcein AM and ethidium homodimer-1 staining, and analysis of gene expression using rat mesenchymal stem cells was performed using a real-time reverse-transcription polymerase chain reaction. The results indicated that both portable nitrogen- and air-based NTAPPJ could be used on TiO2 nanotube surfaces easily and without topographical disruption. NTAPPJ resulted in a significant increase in the hydrophilicity of the surfaces as well as changes in the surface chemistry, which consequently increased the cell viability, attachment and differentiation compared with the control samples. The nitrogen-based NTAPPJ treatment group exhibited a higher osteogenic gene expression level than the air-based NTAPPJ treatment group due to the lower atomic percentage of carbon on the surface that resulted from treatment. It was concluded that NTAPPJ treatment of TiO2 nanotube surfaces results in an increase in cellular activity

  5. Cellular attachment and differentiation on titania nanotubes exposed to air- or nitrogen-based non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Hye Yeon Seo

    Full Text Available The surface topography and chemistry of titanium implants are important factors for successful osseointegration. However, chemical modification of an implant surface using currently available methods often results in the disruption of topographical features and the loss of beneficial effects during the shelf life of the implant. Therefore, the aim of this study was to apply the recently highlighted portable non-thermal atmospheric pressure plasma jet (NTAPPJ, elicited from one of two different gas sources (nitrogen and air, to TiO2 nanotube surfaces to further improve their osteogenic properties while preserving the topographical morphology. The surface treatment was performed before implantation to avoid age-related decay. The surface chemistry and morphology of the TiO2 nanotube surfaces before and after the NTAPPJ treatment were determined using a field-emission scanning electron microscope, a surface profiler, a contact angle goniometer, and an X-ray photoelectron spectroscope. The MC3T3-E1 cell viability, attachment and morphology were confirmed using calcein AM and ethidium homodimer-1 staining, and analysis of gene expression using rat mesenchymal stem cells was performed using a real-time reverse-transcription polymerase chain reaction. The results indicated that both portable nitrogen- and air-based NTAPPJ could be used on TiO2 nanotube surfaces easily and without topographical disruption. NTAPPJ resulted in a significant increase in the hydrophilicity of the surfaces as well as changes in the surface chemistry, which consequently increased the cell viability, attachment and differentiation compared with the control samples. The nitrogen-based NTAPPJ treatment group exhibited a higher osteogenic gene expression level than the air-based NTAPPJ treatment group due to the lower atomic percentage of carbon on the surface that resulted from treatment. It was concluded that NTAPPJ treatment of TiO2 nanotube surfaces results in an increase in

  6. Efficiency of Removing Sulfur Dioxide in the Air by Non-Thermal Plasma Along with the Application of the Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The non-thermal plasma created by high voltage pulsed power supply can be used to remove sulfur dioxide in the air, but how to increase the removing efficiency is not clear. It is novel to apply the magnetic field in removing SO2 as discussed in this paper. The mechanisms of removing sulfur dioxide by non-thermal plasma along with the application of the magnetic field are analyzed, and the related factors affecting the removal efficiency, such as the magnitude of pulsed voltage, the polarity of the pulse, the layout of the discharge electrode, especially the magnetic field are experimentally investigated. It can be concluded that the purification efficiency is improved significantly by applying the magnetic field.

  7. Interactions of Pellet with Reactor Relevant Plasma

    Institute of Scientific and Technical Information of China (English)

    PENGLilin; DENGBaiquan; YANJiancheng

    2003-01-01

    Extended algorithm has been developed for ablation rate calculations of Li, Be, B impurity pellets and five combinations of solid isotopic hydrogenic H2, HD, D2, DT, T2 pellets. Numerical calculations have been performed for reactor relevant plasma.

  8. Non-thermal plasma with 2-deoxy-D-glucose synergistically induces cell death by targeting glycolysis in blood cancer cells

    Science.gov (United States)

    Kaushik, Neha; Lee, Su Jae; Choi, Tae Gyu; Baik, Ku Youn; Uhm, Han Sup; Kim, Chung Hyeok; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-03-01

    In this study, we show the selective and efficient anti-cancer effects of plasma (at a low dose) when cell metabolic modifiers are also included. 2-deoxy-D-glucose (2-DG), a glycolytic inhibitor, was used with effective doses of non-thermal plasma, synergistically attenuating cell metabolic viability and inducing caspase-dependent and independent cell death. The combination treatment decreased the intracellular ATP and lactate production in various types of blood cancer cells in vitro. Taken together, our findings suggest that 2-DG enhances the efficacy and selectivity of plasma and induces the synergistic inhibition of cancer cell growth by targeting glycolysis and apoptosis. Specifically, this treatment strategy demonstrated an enhanced growth inhibitory effect of plasma in the presence of a metabolic modifier that was selective against cancer cells, not non-malignant cells. This is the first study to report the advantage of combining plasma with 2-DG to eradicate blood cancer cells. Finally, we conclude that 2-DG with non-thermal plasma may be used as a combination treatment against blood cancer cells.

  9. Non Thermal Plasma Assisted Catalytic Reactor for CO2 Methanation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In situ production of methane as propellant by methanation of CO2, also called Sabatier reaction, is a key enabling technology required for sustainable and...

  10. Non Thermal Plasma Assisted Catalytic Reactor for CO2 Methanation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In situ production of methane as propellant and oxygen as life support consumables from the atmospheric CO2 and water on Mars is a key enabling technology required...

  11. Removal of gas phase low-concentration toluene over Mn, Ag and Ce modified HZSM-5 catalysts by periodical operation of adsorption and non-thermal plasma regeneration.

    Science.gov (United States)

    Wang, Wenzheng; Wang, Honglei; Zhu, Tianle; Fan, Xing

    2015-07-15

    Ag/HZSM-5, Mn/HZSM-5, Ce/HZSM-5, Ag-Mn/HZSM-5 and Ce-Mn/HZSM-5 were prepared by impregnation method. Both their adsorption capacity and catalytic activity were investigated for the removal of gas phase low-concentration toluene by periodical operation of adsorption and non-thermal plasma regeneration. Results show that catalysts loaded with Ag (Ag/HZSM-5 and Ag-Mn/HZSM-5) had larger adsorption capacity for toluene than the other catalysts. And Ag-Mn/HZSM-5 displayed the best catalytic performance for both toluene oxidation by non-thermal plasma and byproducts suppression. On the other hand, the deactivated catalyst can be fully regenerated by calcining in air stream when its adsorption capacity and catalytic activity of the Ag-Mn/HZSM-5 catalyst was found to be decreased after 10 cycles of periodical adsorption and non-thermal regeneration. Copyright © 2015. Published by Elsevier B.V.

  12. AURORA: A FORTRAN program for modeling well stirred plasma and thermal reactors with gas and surface reactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, E.; Grcar, J.F.; Kee, R.J. [Sandia National Labs., Livermore, CA (United States). Thermal and Plasma Processes Dept.; Moffat, H.K. [Sandia National Labs., Albuquerque, NM (United States). Surface Processing Sciences Dept.

    1996-02-01

    The AURORA Software is a FORTRAN computer program that predicts the steady-state or time-averaged properties of a well mixed or perfectly stirred reactor for plasma or thermal chemistry systems. The software was based on the previously released software, SURFACE PSR which was written for application to thermal CVD reactor systems. AURORA allows modeling of non-thermal, plasma reactors with the determination of ion and electron concentrations and the electron temperature, in addition to the neutral radical species concentrations. Well stirred reactors are characterized by a reactor volume, residence time or mass flow rate, heat loss or gas temperature, surface area, surface temperature, the incoming temperature and mixture composition, as well as the power deposited into the plasma for non-thermal systems. The model described here accounts for finite-rate elementary chemical reactions both in the gas phase and on the surface. The governing equations are a system of nonlinear algebraic relations. The program solves these equations using a hybrid Newton/time-integration method embodied by the software package TWOPNT. The program runs in conjunction with the new CHEMKIN-III and SURFACE CHEMKIN-III packages, which handle the chemical reaction mechanisms for thermal and non-thermal systems. CHEMKIN-III allows for specification of electron-impact reactions, excitation losses, and elastic-collision losses for electrons.

  13. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    Science.gov (United States)

    Yang, Wei; Zhou, Qianhong; Dong, Zhiwei

    2016-08-01

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N2, O2, and air, as well as femtosecond laser filament discharge in dry and humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.

  14. Modified Korteweg–de Vries equation in a negative ion rich hot adiabatic dusty plasma with non-thermal ion and trapped electron

    Energy Technology Data Exchange (ETDEWEB)

    Adhikary, N. C., E-mail: nirab-iasst@yahoo.co.in [Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam (India); Deka, M. K. [Centre of Plasma Physics, Tepesia, Sonapur, Assam (India); Dev, A. N. [Department of Science and Humanities, College of Science and Technology, Rinchending, Phuentsholing (Bhutan); Department of Mathematics, R. G. Baruah College, Guwahati 781025, Assam (India); Sarmah, J. [Department of Mathematics, R. G. Baruah College, Guwahati 781025, Assam (India)

    2014-08-15

    In this report, the investigation of the properties of dust acoustic (DA) solitary wave propagation in an adiabatic dusty plasma including the effect of the non-thermal ions and trapped electrons is presented. The reductive perturbation method has been employed to derive the modified Korteweg–de Vries (mK-dV) equation for dust acoustic solitary waves in a homogeneous, unmagnetized, and collisionless plasma whose constituents are electrons, singly charged positive ions, singly charged negative ions, and massive charged dust particles. The stationary analytical solution of the mK-dV equation is numerically analyzed and where the effect of various dusty plasma constituents DA solitary wave propagation is taken into account. It is observed that both the ions in dusty plasma play as a key role for the formation of both rarefactive as well as the compressive DA solitary waves and also the ion concentration controls the transformation of negative to positive potentials of the waves.

  15. Particle- and gas-phase PAHs toxicity equivalency quantity emitted by a non-road diesel engine with non-thermal plasma technology.

    Science.gov (United States)

    Gao, Jianbing; Ma, Chaochen; Xing, Shikai; Zhang, Yajie; Liu, Jiangquan; Feng, Hao

    2016-10-01

    Polycyclic aromatic hydrocarbon (PAH) toxicity equivalency quantity (TEQ, denoted by benzo(a)pyrene equivalent (BaPeq) concentration) is more meaningful when evaluating the influence of non-road diesel engines PAH toxicity on environment. Particle- and gas-phase PAH BaPeq concentrations were calculated based on gas chromatography-mass spectrometer (GC-MS) results and toxic equivalency factors. A non-thermal plasma (NTP) reactor was applied to a non-road diesel engine to decrease PAH TEQ content. Only the gas-phase Nap BaPeq concentration increased slightly with the action of NTP at three different generator power outputs. BaP dominated the BaPeq concentration for 15 samples with, and without NTP except in the gas-phase at 4 kW. Almost all medium molecular weight (MMW) and high molecular weight (HMW) PAH TEQs increased for particle- and gas-phases at 3 kW power output compared to 2 kW without the use of NTP. Particle-phase Nap, Acp, and AcPy (low molecular weight, LMW) TEQ were under detection at 3 and 4 kW, while gas-phase BkF, IND, DBA, and BghiP (HMW) concentrations were below the limits of detection. The most abundant PAH TEQ compounds were MMW and HMW PAHs for gas- and particle-phase while they were BaA, CHR, BbF, BaP, and IND for PM aggregation. The total BaPeq emission factors were 15.1, 141.4, and 46.5 μg m(-3) at three engine loads, respectively. Significant BaPeq concentration percentage reduction was obtained (more than 80 and 60 %) with the use of NTP for particle- and gas-phases. A high TEQ content was observed for PM aggregation (38.8, 98.4, and 50.0 μg kg(-1)) which may have caused secondary PAH toxicity emissions. With the action of NTP, the breakup of MMW and HMW into LMW PAHs led to reduction of some PAH concentrations.

  16. Enhancement of glucose uptake in skeletal muscle L6 cells and insulin secretion in pancreatic hamster-insulinoma-transfected cells by application of non-thermal plasma jet

    Science.gov (United States)

    Kumar, Naresh; Kaushik, Nagendra K.; Park, Gyungsoon; Choi, Eun H.; Uhm, Han S.

    2013-11-01

    Type-II diabetes Mellitus is characterized by defects in insulin action on peripheral tissues, such as skeletal muscle, adipose tissue, and liver and pancreatic beta cells. Since the skeletal muscle accounts for approximately 75% of insulin-stimulated glucose-uptake in our body, impaired insulin secretion from defected beta cell plays a major role in the afflicted glucose homoeostasis. It was shown that the intracellular reactive oxygen species and nitric oxide level was increased by non-thermal-plasma treatment in ambient air. These increased intracellular reactive species may enhance glucose uptake and insulin secretion through the activation of intracellular calcium (Ca+) and cAMP production.

  17. Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes

    Science.gov (United States)

    Attri, Pankaj; Yusupov, Maksudbek; Park, Ji Hoon; Lingamdinne, Lakshmi Prasanna; Koduru, Janardhan Reddy; Shiratani, Masaharu; Choi, Eun Ha; Bogaerts, Annemie

    2016-01-01

    Purified water supply for human use, agriculture and industry is the major global priority nowadays. The advanced oxidation process based on atmospheric pressure non-thermal plasma (NTP) has been used for purification of wastewater, although the underlying mechanisms of degradation of organic pollutants are still unknown. In this study we employ two needle-type atmospheric pressure non-thermal plasma jets, i.e., indirect (ID-APPJ) and direct (D-APPJ) jets operating at Ar feed gas, for the treatment of methylene blue, methyl orange and congo red dyes, for two different times (i.e., 20 min and 30 min). Specifically, we study the decolorization/degradation of all three dyes using the above mentioned plasma sources, by means of UV-Vis spectroscopy, HPLC and a density meter. We also employ mass spectroscopy to verify whether only decolorization or also degradation takes place after treatment of the dyes by the NTP jets. Additionally, we analyze the interaction of OH radicals with all three dyes using reactive molecular dynamics simulations, based on the density functional-tight binding method. This investigation represents the first report on the degradation of these three different dyes by two types of NTP setups, analyzed by various methods, and based on both experimental and computational studies. PMID:27708352

  18. Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes

    Science.gov (United States)

    Attri, Pankaj; Yusupov, Maksudbek; Park, Ji Hoon; Lingamdinne, Lakshmi Prasanna; Koduru, Janardhan Reddy; Shiratani, Masaharu; Choi, Eun Ha; Bogaerts, Annemie

    2016-10-01

    Purified water supply for human use, agriculture and industry is the major global priority nowadays. The advanced oxidation process based on atmospheric pressure non-thermal plasma (NTP) has been used for purification of wastewater, although the underlying mechanisms of degradation of organic pollutants are still unknown. In this study we employ two needle-type atmospheric pressure non-thermal plasma jets, i.e., indirect (ID-APPJ) and direct (D-APPJ) jets operating at Ar feed gas, for the treatment of methylene blue, methyl orange and congo red dyes, for two different times (i.e., 20 min and 30 min). Specifically, we study the decolorization/degradation of all three dyes using the above mentioned plasma sources, by means of UV-Vis spectroscopy, HPLC and a density meter. We also employ mass spectroscopy to verify whether only decolorization or also degradation takes place after treatment of the dyes by the NTP jets. Additionally, we analyze the interaction of OH radicals with all three dyes using reactive molecular dynamics simulations, based on the density functional-tight binding method. This investigation represents the first report on the degradation of these three different dyes by two types of NTP setups, analyzed by various methods, and based on both experimental and computational studies.

  19. Morphological study of polymer surfaces exposed to non-thermal plasma based on contact angle and the use of scaling laws

    Science.gov (United States)

    Felix, T.; Cassini, F. A.; Benetoli, L. O. B.; Dotto, M. E. R.; Debacher, N. A.

    2017-05-01

    The experiments presented in this communication have the purpose to elaborate an explanation for the morphological evolution of the growth of polymeric surfaces provided by the treatment of non-thermal plasma. According to the roughness analysis and the model proposed by scaling laws it is possible relate to a predictable or merely random effect. Polyethylene terephthalate (PET) and poly(etherether)ketone (PEEK) samples were exposed to a non-thermal plasma discharge and the resulting surfaces roughness were analyzed based on the measurements from contact angle, scanning electron microscopy and atomic force microscopy coupled with scaling laws analysis which can help to describe and understand the dynamic of formation of a wide variety of rough surfaces. The roughness, RRMS (RMS- Root Mean Square) values for polymer surface range between 19.8 nm and 110.9 nm. The contact angle and the AFM (Atomic Force Microscopy) measurements as a function of the plasma exposure time were in agreement with both polar and dispersive components according to the surface roughness and also with the morphology evaluated described by Wolf-Villain model, with proximate values of α between 0.91(PET) and 0.88(PEEK), β = 0.25(PET) and z = 3,64(PET).

  20. Effect of plasma processing reactor circuitry on plasma characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, S.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1997-12-31

    It is well known that external circuitry greatly influences the performance of plasma processing reactors. Simulation of external circuits difficult since the time in which the external circuit attains the steady-state is several orders of magnitude longer than typical plasma simulation time scales. In this paper, the authors present a technique to simulate the external circuit concurrently with the plasma, and implement it into the Hybrid Plasma Equipment Model (HPEM). The resulting model is used to investigate the influence of external circuitry on plasma behavior.

  1. Suppression of scar formation in a murine burn wound model by the application of non-thermal plasma

    Science.gov (United States)

    Hoon Lee, Dae; Lee, Jae-Ok; Jeon, Wonju; Choi, Ihn-Geun; Kim, Jun-Sub; Hoon Jeong, Je; Kang, Tae-Cheon; Hoon Seo, Cheong

    2011-11-01

    Suppression of hypertrophic scar generation in an animal model by treatment with plasma is reported. Contact burn following mechanical stretching was used to induce scar formation in mice. Exposure to the plasma tended to reduce the scar area more rapidly without affecting vitality. The treatment resulted in decreased vascularization in the scar tissue. Plasma-treated scars showed mild decrease in the thickness of hypertrophic tissues as shown by histological assessment. Finally, we showed that plasma treatment induced cell death and reactive oxygen species generation in hypertrophic scar fibroblast. All of the results support that plasma treatment can control scar generation.

  2. Non-thermal atmospheric pressure HF plasma source: generation of nitric oxide and ozone for bio-medical applications

    Science.gov (United States)

    Kühn, S.; Bibinov, N.; Gesche, R.; Awakowicz, P.

    2010-01-01

    A new miniature high-frequency (HF) plasma source intended for bio-medical applications is studied using nitrogen/oxygen mixture at atmospheric pressure. This plasma source can be used as an element of a plasma source array for applications in dermatology and surgery. Nitric oxide and ozone which are produced in this plasma source are well-known agents for proliferation of the cells, inhalation therapy for newborn infants, disinfection of wounds and blood ozonation. Using optical emission spectroscopy, microphotography and numerical simulation, the gas temperature in the active plasma region and plasma parameters (electron density and electron distribution function) are determined for varied nitrogen/oxygen flows. The influence of the gas flows on the plasma conditions is studied. Ozone and nitric oxide concentrations in the effluent of the plasma source are measured using absorption spectroscopy and electro-chemical NO-detector at variable gas flows. Correlations between plasma parameters and concentrations of the particles in the effluent of the plasma source are discussed. By varying the gas flows, the HF plasma source can be optimized for nitric oxide or ozone production. Maximum concentrations of 2750 ppm and 400 ppm of NO and O3, correspondingly, are generated.

  3. Non-thermal plasma modified growth and differentiation process of Capsicum annuum PP805 Godiva in in vitro conditions

    Science.gov (United States)

    Safari, Nasrin; Iranbakhsh, Alireza; Ardebili, Zahra Oraghi

    2017-05-01

    With the aim of evaluating the possible impacts of cold plasma on the structure and growth pattern of Capsicum annuum, the current study was carried out. The seeds were exposed to an argon-derived plasma (0.84 W cm-2 surface power densities) for 0, 1 or 2 minutes. Plasma-treated seeds were grown in the Murashige and Skoog (MS) medium or MS medium supplemented with BA and IAA. The presence of purple stems was recorded in plasma-treated plants grown in the medium supplemented with hormones. The recorded morphological differences were dependent on the exposure time of plasma treatments and/or the presence of hormones in the culture media. Plasma treatment of 1 minute had an improving effect on the shoot and root lengths as well as total leaf area, whereas plasma treatment of 2 minutes had an adverse effect. In contrast to the 1 minute treatment, plasma treatment of 2 minutes significantly impaired growth and hence reduced the total biomass. Alterations in stem diameter and differences in tissue patterns (especially in the vascular system) occurred, and were mainly dependent on the plasma exposure time and/or the presence of hormones. This is a first report on the effects of cold plasma on plant growth in in vitro conditions.

  4. The Role of Higher-Order Modes on the Electromagnetic Whistler-Cyclotron Wave Fluctuations of Thermal and Non-Thermal Plasmas

    Science.gov (United States)

    Vinas, Adolfo F.; Moya, Pablo S.; Navarro, Roberto; Araneda, Jamie A.

    2014-01-01

    Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the beta(sub e) increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron-proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

  5. Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model.

    Science.gov (United States)

    Brullé, Laura; Vandamme, Marc; Riès, Delphine; Martel, Eric; Robert, Eric; Lerondel, Stéphanie; Trichet, Valérie; Richard, Serge; Pouvesle, Jean-Michel; Le Pape, Alain

    2012-01-01

    Pancreatic tumors are the gastrointestinal cancer with the worst prognosis in humans and with a survival rate of 5% at 5 years. Nowadays, no chemotherapy has demonstrated efficacy in terms of survival for this cancer. Previous study focused on the development of a new therapy by non thermal plasma showed significant effects on tumor growth for colorectal carcinoma and glioblastoma. To allow targeted treatment, a fibered plasma (Plasma Gun) was developed and its evaluation was performed on an orthotopic mouse model of human pancreatic carcinoma using a MIA PaCa2-luc bioluminescent cell line. The aim of this study was to characterize this pancreatic carcinoma model and to determine the effects of Plasma Gun alone or in combination with gemcitabine. During a 36 days period, quantitative BLI could be used to follow the tumor progression and we demonstrated that plasma gun induced an inhibition of MIA PaCa2-luc cells proliferation in vitro and in vivo and that this effect could be improved by association with gemcitabine possibly thanks to its radiosensitizing properties.

  6. Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model.

    Directory of Open Access Journals (Sweden)

    Laura Brullé

    Full Text Available Pancreatic tumors are the gastrointestinal cancer with the worst prognosis in humans and with a survival rate of 5% at 5 years. Nowadays, no chemotherapy has demonstrated efficacy in terms of survival for this cancer. Previous study focused on the development of a new therapy by non thermal plasma showed significant effects on tumor growth for colorectal carcinoma and glioblastoma. To allow targeted treatment, a fibered plasma (Plasma Gun was developed and its evaluation was performed on an orthotopic mouse model of human pancreatic carcinoma using a MIA PaCa2-luc bioluminescent cell line. The aim of this study was to characterize this pancreatic carcinoma model and to determine the effects of Plasma Gun alone or in combination with gemcitabine. During a 36 days period, quantitative BLI could be used to follow the tumor progression and we demonstrated that plasma gun induced an inhibition of MIA PaCa2-luc cells proliferation in vitro and in vivo and that this effect could be improved by association with gemcitabine possibly thanks to its radiosensitizing properties.

  7. SUENTP code simulations of scale-up and economic evaluation of non-thermal plasma technology for exhaust gas emission control of coal fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.J.; Chang, J.-S. [McMaster University, Hamilton, ON (Canada). Dept. of Engineering Physics

    1998-07-01

    Computer code (SUENTP) to predict scale up and economic evaluation of several eligible non-thermal plasma processes for air pollution control - electron beam process, pulsed corona process, and corona radical shower process - was developed for a commercialized power plant. This code was written by spread sheet type MS Excel with visual basic for application and comprise data input procedure, scale-up (design) procedure, economic calculation procedure, and output procedure. Data obtained from pilot plant tests are input with general data so that they might be led to the conceptual design data of commercial plants by scale-up procedure. In the next economic evaluation procedure, the total capital investment and the total annual cost. The total capital investment comes into the indirect annual cost as the item of capital recovery. The levelized cost and the levelized busbar cost could be shown in the output table. An example calculation was presented to evaluate the cost of three non-thermal systems and the results were compared with a conventional wet-scrubber/selective catalytic reduction combined system. 13 refs., 3 figs., 3 tabs.

  8. Evaluation of mechanism of non-thermal plasma effect on the surface of polypropylene films for enhancement of adhesive and hemo compatible properties

    Science.gov (United States)

    Navaneetha Pandiyaraj, K.; Deshmukh, R. R.; Arunkumar, A.; Ramkumar, M. C.; Ruzybayev, I.; Ismat Shah, S.; Su, Pi-Guey; Periayah, Mercy Halleluyah; Halim, A. S.

    2015-08-01

    The hydro-carbon based polymers have attracted attention of scientists for its use in bio-medical field as various implants due to inherent flexibility. However, they have poor surface properties; particularly they have low surface energy (SE). Hence, blood components (platelets, blood proteins, etc.)-polymer surface interaction is the major concern when it comes in contact with blood. Thus, surface modification is required to develop the perfect antithrombogenic property without affecting the materials bulk. The present study describes the improvement in adhesive and blood compatible properties of polypropylene (PP) by low temperature (non-thermal) plasma of various gases such as Ar, O2, air and Ar + O2 for biomedical applications. The changes in surface morphological, chemical and hydrophilic modification induced by the gaseous plasma treatment were analyzed by atomic force microscopy (AFM), X-ray photo electron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy and contact angle measurements, respectively. Moreover, the stability of plasma effect was also studied for the different storage conditions. Variation in adhesive strength of the plasma treated PP film was studied by T-Peel and Lap-Shear strength tests. The blood compatibility of the surface modified PP films was investigated by in vitro analysis. It was found that gaseous plasma treatment improved the blood compatibility as well as adhesive strength of the PP films without affecting materials bulk which may be due to the significant morphological and chemical changes induced by the gaseous plasma treatment. Among the various gaseous plasma treatments, Ar + O2 mixture has provided remarkable physico-chemical changes compared with other plasma treatments studied.

  9. Induced apoptosis in melanocytes cancer cell and oxidation in biomolecules through deuterium oxide generated from atmospheric pressure non-thermal plasma jet

    Science.gov (United States)

    Kumar, Naresh; Attri, Pankaj; Yadav, Dharmendra Kumar; Choi, Jinsung; Choi, Eun Ha; Uhm, Han Sup

    2014-12-01

    Recently, atmospheric-pressure non-thermal plasma-jets (APPJ) are being for the cancer treatment. However, APPJ still has drawbacks such as efficiency and rise in temperature after treatment. So, in this work, a synergetic agent D2O vapour is attached to APPJ which not only increase the efficiency of plasma source against cancer treatment, but also controlled the temperature during the treatment. OD generated by the combination of D2O + N2 plasma helped in enhancing the efficiency of APPJ. We observed OD induced apoptosis on melanocytes G361 cancer cells through DNA damage signalling cascade. Additionally, we observed that plasma induces ROS, which activated MAPK p38 and inhibits p42/p44 MAPK, leading to cancer cell death. We have also studied DNA oxidation by extracting DNA from treated cancer cell and then analysed the effects of OD/OH/D2O2/H2O2 on protein modification and oxidation. Additionally, we attempted molecular docking approaches to check the action of D2O2 on the apoptosis related genes. Further, we confirmed the formation of OD/OH simultaneously in the solution using optical emission spectroscopy. Moreover, the simultaneous generation of D2O2/H2O2 was detected by the use of confocal Raman spectroscopy and density measurements.

  10. Induced apoptosis in melanocytes cancer cell and oxidation in biomolecules through deuterium oxide generated from atmospheric pressure non-thermal plasma jet.

    Science.gov (United States)

    Kumar, Naresh; Attri, Pankaj; Yadav, Dharmendra Kumar; Choi, Jinsung; Choi, Eun Ha; Uhm, Han Sup

    2014-12-23

    Recently, atmospheric-pressure non-thermal plasma-jets (APPJ) are being for the cancer treatment. However, APPJ still has drawbacks such as efficiency and rise in temperature after treatment. So, in this work, a synergetic agent D2O vapour is attached to APPJ which not only increase the efficiency of plasma source against cancer treatment, but also controlled the temperature during the treatment. OD generated by the combination of D2O + N2 plasma helped in enhancing the efficiency of APPJ. We observed OD induced apoptosis on melanocytes G361 cancer cells through DNA damage signalling cascade. Additionally, we observed that plasma induces ROS, which activated MAPK p38 and inhibits p42/p44 MAPK, leading to cancer cell death. We have also studied DNA oxidation by extracting DNA from treated cancer cell and then analysed the effects of OD/OH/D2O2/H2O2 on protein modification and oxidation. Additionally, we attempted molecular docking approaches to check the action of D2O2 on the apoptosis related genes. Further, we confirmed the formation of OD/OH simultaneously in the solution using optical emission spectroscopy. Moreover, the simultaneous generation of D2O2/H2O2 was detected by the use of confocal Raman spectroscopy and density measurements.

  11. Economic assessment of proposed electric-discharge non-thermal plasma field-pilot demonstration units for NO{sub x} removal in jet-engine exhaust: White paper for SERDP Project CP-1038

    Energy Technology Data Exchange (ETDEWEB)

    Rosocha, L.A. [Los Alamos National Lab., NM (United States); Chang, J.S.; Urashima, Kuniko; Kim, S.J. [McMaster Univ. (Canada); Miziolek, A.W. [Army Research Lab. (United States)

    1999-01-05

    This project is currently evaluating non-thermal plasma (NTP) technologies for treating jet-engine exhaust arising from DoD test facilities. In the past, some economic analyses for NTP de-NO{sub x} have shown that it is not economical, compared to other techniques. The main reasons for this conclusion was that the previous analyses examined stand-alone, or less mature electrical-discharge reactors, or electron-beam based systems that incorporated both chemical additives and quite expensive electron accelerators. Also, in contrast to more recent developments, both the discharge and electron-beam techniques of the past did not extensively incorporate methods to increase the yields of active NO{sub x}-decomposing species. In an earlier White paper and a Project Report, the authors have analyzed the costs of more mature NTP systems incorporating chemical additives and new-concept NTP technologies for jet-engine emissions control and have shown lower exhaust-gas treatment costs for NTP systems compared to baseline standard de-NO{sub x} technologies like Selective Catalytic Reduction (SCR) combined with a wet scrubber or SCR combined with an electrostatic precipitator (ESP). In this paper, the authors will examine their most-promising candidate NTP reactor systems for a field-pilot demonstration on jet-engine exhaust and discuss the economic analyses for these hybrid units, which show that the economics of the proposed candidate systems are more favorable than earlier NTP reactor economic-assessment conclusions for NO{sub x} removal.

  12. Influence of non-thermal plasma forming gases on improvement of surface properties of low density polyethylene (LDPE)

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyaraj, K. Navaneetha, E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L and T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Ruzybayev, Inci; Shah, S. Ismat [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark, NJ (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Halleluyah, Jr. mercy; Halim, Ahmad Sukari [School of Medical Sciences, Health Campus Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2014-07-01

    Owing to the superior physico-chemical properties, the low density polyethylene (LDPE) has been widely used in the various industrial applications; especially in biomedical field for artificial organs, medical devices and disposable clinical apparatus. However, the poor anticoagulation property is one of the main drawbacks of the LDPE due to its poor surface properties. Therefore, in this paper we present the effect of plasma forming gases such as argon (Ar), oxygen (O{sub 2}), air and argon-oxygen (Ar + O{sub 2}) mixture on improvement of the surfaces properties of LDPE film using direct current (dc) excited glow discharge plasma. Contact angle with evaluation of surface energy, X-ray photo electron spectroscopy (XPS), atomic force microscopy (AFM) techniques were used to examine the change in surface properties such as hydrophilicity, chemical composition and surface topography, respectively. Furthermore, the hydrophobic recovery of the plasma treated LDPE was analyzed using ageing effect under different storage condition i.e. in air and water. The adhesive strength of the LDPE films was determined using T-peel test. In vitro tests were used to examine the blood compatibility of the surface modified LDPE films. It has been found that the hydrophilicity of the various plasma treated LDPE films was improved significantly due to the formation of oxygen containing polar groups such as OH, COO, C-O, C=O as confirmed by contact angle and XPS analysis. AFM revealed the changes in surface topography of plasma processed films. The gas mixture Ar + O{sub 2} plasma influenced the remarkable improvement on the surface properties of a LDPE film compared with other gaseous plasmas. These physiochemical changes induced by the plasma on the surface facilitate to improve the adhesive strength and blood compatibility.

  13. EPOCH code simulation of a non-thermal distribution driven by neutral beam injection in a high-beta plasma

    Science.gov (United States)

    Necas, A.; Tajima, T.; Nicks, S.; Magee, R.; Clary, R.; Roche, T.; Tri Alpha Energy Team

    2016-10-01

    In Tri Alpha Energy's C-2U experiment, advanced beam-driven field-reversed configuration (FRC) plasmas were sustained via tangential neutral beam injection. The dominant fast ion population made a dramatic impact on the overall plasma performance. To explain an experimentally observed anomalous neutron signal (100x thermonuclear), we use EPOCH PIC code to simulate possible beam driven non-destructive instabilities that transfer energy from fast ions to the plasma, causing phase space bunching. We propose that the hydrogen beam ion population drives collective modes in the deuterium target plasma, giving rise to the instability and increased fusion rate. The instability changes character from electrostatic in the low beta edge to fully electromagnetic in the core, with an associated reduction in growth rates. The DD reactivity enhancement is calculated using a two-body correlation function and compared to the experimentally observed neutron yield. The high-energy tails in the distributions of the plasma deuterons and beam protons are observed via a mass-resolving Neutral Particle Analyzer (NPA) diagnostic. This observation is qualitatively consistent with EPOCH simulation of the beam-plasma instability.

  14. Diagnostics of an AC driven atmospheric pressure non-thermal plasma jet and its use for radially directed jet array

    Science.gov (United States)

    Zhu, W.; Wang, R.

    2017-08-01

    An alternating current atmospheric pressure plasma jet is generated with noble gas or noble gas/oxygen admixture as working gas. A "core plasma filament" is observed at the center of the dielectric tube and extends to the plasma jet at higher peak-to-peak voltages. This type of plasma jet is believed to be of the same nature with the reported plasma bullet driven by pulsed DC power sources. Double current probes are used to assess the speed of the plasma bullet and show that the speed is around 104-105 m/s. The time dependence of the downstream bullet speed is attributed to the gas heating and in turn the increase of the reduced electric field E/N. Optical emission spectra show the dependence of helium and oxygen emission intensities on the concentration of oxygen additive in the carrier gas, with peak values found at 0.5% O2. Multiple radial jets are realized on dielectric tubes of different sizes. As a case study, one of these multi-jet devices is used to treat B. aureus on the inner surface of a plastic beaker and is shown to be more effective than a single jet.

  15. Dissociation against oxidation kinetics for the conversion of VOCs in non-thermal plasmas of atmospheric gases

    Science.gov (United States)

    Pasquiers, Stéphane; Blin-Simiand, Nicole; Magne, Lionel

    2016-08-01

    The kinetics of four volatile organic compounds (VOCs) (propene, propane, acetaldehyde, acetone) were studied in plasmas of atmospheric gases using a photo-triggered discharge (homogeneous plasma) or a dielectric barrier discharge (filamentary plasma). It was shown for the homogeneous plasma that quenchings of nitrogen metastable states, A3Ʃ+u and the group of singlets a' 1Ʃ-u, a 1Πg and w 1∆u, are important processes for the decomposition of such molecules. Recent measurements of the H2 concentration produced in the N2/C3H6 mixture emphasize that the hydrogen molecule can be an exit route for propene dissociation. It is also found that H2 and CO molecules are efficiently produced following the dissociation of CH3COCH3 and the subsequent chemical reactivity induced by radicals coming from acetone. Addition of oxygen to a N2/VOC mixture can change drastically the kinetics. However, the quenching processes of N2 metastables by the VOC are always present and compete with oxidation reactions for the conversion of the pollutant. At low temperature, oxidations by O or by OH are not always sufficiently effective to induce an increase of the molecule decomposition when oxygen is added to the mixture. In particular, the presence of O2 has a detrimental effect on the acetone removal. Also, as evidenced for acetaldehyde and propane, some kinetic analogies appear between filamentary and homogeneous plasmas. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  16. Manganese-cerium oxide catalysts prepared by non-thermal plasma for NO oxidation: Effect of O2 in discharge atmosphere

    Science.gov (United States)

    Liu, Lu; Zheng, Chenghang; Wu, Shenghao; Gao, Xiang; Ni, Mingjiang; Cen, Kefa

    2017-09-01

    Non-thermal plasma with different O2 concentration in discharge atmosphere was applied to synthesize manganese and cerium mixed-oxides catalysts, which were compared in NO oxidation activity. Discharge atmosphere displayed a crucial influence on the performance of the catalysts prepared by plasma. Relatively low O2 concentration in discharge atmosphere allows synthesizing manganese-cerium oxides catalysts in a moderate environment and therefore is favorable for better physicochemical properties which lead to superior catalytic behavior. The best catalyst was obtained by treatment with 10% O2/N2 plasma and presented over 80% NO conversion in the temperature range of 275-325 °C, whereas catalyst prepared in pure O2 discharge atmosphere had the same activity with a catalyst prepared by calcinations. A correlation between the surface properties of the plasma prepared catalysts and its catalytic activity in NO oxidation is proposed. The amount of the surface adsorbed oxygen has an obvious linear correlation with the amount of Ce3+, the H2 consumption at low temperatures and the catalytic performance. The superior catalytic performance is mainly attributed to the stronger interaction between manganese oxides and ceria, and the formation of poorly crystallized Mn-O-Ce phase in the catalyst which resulted from the slow decomposition of nitrates and organics during plasma treatment. Catalysts prepared in relatively low O2 concentration have large specific surface area and is abundant in Ce3+ species and active oxygen species. The study suggests that plasma treatment with proper discharge gas components is a promising method to prepare effective manganese- cerium oxides catalyst for NO oxidation.

  17. Evaluation of mechanism of non-thermal plasma effect on the surface of polypropylene films for enhancement of adhesive and hemo compatible properties

    Energy Technology Data Exchange (ETDEWEB)

    Navaneetha Pandiyaraj, K., E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore-641062 (India); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai-400 019 (India); Arunkumar, A.; Ramkumar, M.C. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore-641062 (India); Ruzybayev, I.; Ismat Shah, S. [Department of Physics and Astronomy, Department of Materials Science and Engineering, University of Delaware, 208 Dupont Hall, Newark (United States); Su, Pi-Guey [Department of Chemistry, Chinese Culture University, Taipei 111, Taiwan (China); Periayah, Mercy Halleluyah; Halim, A.S. [School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan (Malaysia)

    2015-08-30

    Highlights: • Investigated the mechanism of effect of various gaseous plasma treatments on the surface properties of Polypropylene (PP) films. • The improvement in surface energy is basically due to the incorporation of polar functional groups onto the PP films. • The extent of surface modification and hydrophobic recovery depends upon the type of plasma forming gas. • Due to the significant morphological and chemical changes induced by the gaseous plasma treatment, improved the blood compatibility as well as adhesive strength of the PP films. - Abstract: The hydro-carbon based polymers have attracted attention of scientists for its use in bio-medical field as various implants due to inherent flexibility. However, they have poor surface properties; particularly they have low surface energy (SE). Hence, blood components (platelets, blood proteins, etc.)-polymer surface interaction is the major concern when it comes in contact with blood. Thus, surface modification is required to develop the perfect antithrombogenic property without affecting the materials bulk. The present study describes the improvement in adhesive and blood compatible properties of polypropylene (PP) by low temperature (non-thermal) plasma of various gases such as Ar, O{sub 2}, air and Ar + O{sub 2} for biomedical applications. The changes in surface morphological, chemical and hydrophilic modification induced by the gaseous plasma treatment were analyzed by atomic force microscopy (AFM), X-ray photo electron spectroscopy (XPS), electron spin resonance (ESR) spectroscopy and contact angle measurements, respectively. Moreover, the stability of plasma effect was also studied for the different storage conditions. Variation in adhesive strength of the plasma treated PP film was studied by T-Peel and Lap-Shear strength tests. The blood compatibility of the surface modified PP films was investigated by in vitro analysis. It was found that gaseous plasma treatment improved the blood compatibility

  18. Hydrogen Production from Ammonia Using a Plasma Membrane Reactor

    Directory of Open Access Journals (Sweden)

    Shinji Kambara

    2016-06-01

    Full Text Available In this study, an efficient method for using pulsed plasma to produce hydrogen from ammonia was developed. An original pulsed plasma reactor with a hydrogen separation membrane was developed for efficient hydrogen production, and its hydrogen production performance was investigated. Hydrogen production in the plasma was affected by the applied voltage and flow rate of ammonia gas. The maximum hydrogen production flow rate of a typical plasma reactor was 8.7 L/h, whereas that of the plasma membrane reactor was 21.0 L/h. We found that ammonia recombination reactions in the plasma controlled hydrogen production in the plasma reactor. In the plasma membrane reactor, a significant increase in hydrogen production was obtained because ammonia recombination reactions were inhibited by the permeation of hydrogen radicals generated in the plasma through a palladium alloy membrane. The energy efficiency was 4.42 mol-H2/kWh depending on the discharge power.

  19. Involvement of multiple stressors induced by non-thermal plasma-charged aerosols during inactivation of airborne bacteria

    Science.gov (United States)

    Vaze, Nachiket D.; Park, Sin; Brooks, Ari D.; Fridman, Alexander; Joshi, Suresh G.

    2017-01-01

    A lab-scale, tunable, single-filament, point-to-point nonthermal dieletric-barrier discharge (DBD) plasma device was built to study the mechanisms of inactivation of aerosolized bacterial pathogens. The system inactivates airborne antibiotic-resistant pathogens efficiently. Nebulization mediated pre-optimized (4 log and 7 log) bacterial loads were challenged to plasma-charged aerosols, and lethal and sublethal doses determined using colony assay, and cell viability assay; and the loss of membrane potential and cellular respiration were determined using cell membrane potential assay and XTT assay. Using the strategies of Escherichia coli wildtype, over-expression mutant, deletion mutants, and peroxide and heat stress scavenging, we analyzed activation of intracellular reactive oxygen species (ROS) and heat shock protein (hsp) chaperons. Superoxide dismutase deletion mutants (ΔsodA, ΔsodB, ΔsodAΔsodB) and catalase mutants ΔkatG and ΔkatEΔkatG did not show significant difference from wildtype strain, and ΔkatE and ΔahpC was found significantly more susceptible to cell death than wildtype. The oxyR regulon was found to mediate plasma-charged aerosol-induced oxidative stress in bacteria. Hsp deficient E. coli (ΔhtpG, ΔgroEL, ΔclpX, ΔgrpE) showed complete inactivation of cells at ambient temperature, and the treatment at cold temperature (4°C) significantly protected hsp deletion mutants and wildtype cells, and indicate a direct involvement of hsp in plasma-charged aerosol mediated E. coli cell death. PMID:28166240

  20. The Experimental Studies of Non-thermal Atmospheric Pressure Plasma Sterilization%常压低温等离子体灭菌实验研究

    Institute of Scientific and Technical Information of China (English)

    朱亮; 张梅; 杨雪霞; 钟方川

    2009-01-01

    The experimental study of non-thermal atmospheric pressure plasma sterilization by using dielectric barrier discharge (DBD) has been conducted. The influences on sterilization effect such as the type of bacterial agents, bacteria carrier, and the discharge gas have been discussed. It is showed that the DBD plasma can destroy bacteria quickly, and more effectively than these conventional sterilization technologies. In addition, the O_2 plasma can kill all the E. Coli spores within 12 s, that is much more quickly than the N_2 plasma or the Ar plasma do. It is indicated that the inactivation process is dominantly controlled by radical O_2, rather than UV irradiation.%利用介质阻挡放电(DBD)开展了常压低温等离于体灭菌的实验研究.探讨了细菌种类、细菌裁片和放电气体对灭菌效果的影响.实验结果显示,DBD等离子体能在短时间内杀灭细菌,具有比常规灭菌技术更高的灭菌效率.另外,O_2等离子体能在12 s内杀死所有大肠杆菌,远快于N_2和Ar等离子体.表明在灭菌过程中占据主导地位的是活性物质O_2,而不是紫外辐射.

  1. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, S., E-mail: hamann@inp-greifswald.de; Röpcke, J. [INP-Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Börner, K.; Burlacov, I.; Spies, H.-J. [TU Bergakademie Freiberg, Institute of Materials Engineering, Gustav-Zeuner-Str. 5, 09599 Freiberg (Germany); Strämke, M.; Strämke, S. [ELTRO GmbH, Arnold-Sommerfeld-Ring 3, 52499 Baesweiler (Germany)

    2015-12-15

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH{sub 4}, C{sub 2}H{sub 2}, HCN, and NH{sub 3}). With the help of OES, the rotational temperature of the screen plasma could be determined.

  2. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen

    Science.gov (United States)

    Hamann, S.; Börner, K.; Burlacov, I.; Spies, H.-J.; Strämke, M.; Strämke, S.; Röpcke, J.

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  3. Plasma nitriding monitoring reactor: A model reactor for studying plasma nitriding processes using an active screen.

    Science.gov (United States)

    Hamann, S; Börner, K; Burlacov, I; Spies, H-J; Strämke, M; Strämke, S; Röpcke, J

    2015-12-01

    A laboratory scale plasma nitriding monitoring reactor (PLANIMOR) has been designed to study the basics of active screen plasma nitriding (ASPN) processes. PLANIMOR consists of a tube reactor vessel, made of borosilicate glass, enabling optical emission spectroscopy (OES) and infrared absorption spectroscopy. The linear setup of the electrode system of the reactor has the advantages to apply the diagnostic approaches on each part of the plasma process, separately. Furthermore, possible changes of the electrical field and of the heat generation, as they could appear in down-scaled cylindrical ASPN reactors, are avoided. PLANIMOR has been used for the nitriding of steel samples, achieving similar results as in an industrial scale ASPN reactor. A compact spectrometer using an external cavity quantum cascade laser combined with an optical multi-pass cell has been applied for the detection of molecular reaction products. This allowed the determination of the concentrations of four stable molecular species (CH4, C2H2, HCN, and NH3). With the help of OES, the rotational temperature of the screen plasma could be determined.

  4. Cylindrical and spherical Gardner solitons and double layers in a dusty electronegative non-thermal plasma with two-temperature electrons

    Institute of Scientific and Technical Information of China (English)

    T.Akhter; M.M.Hossain; A.A.Mamun

    2013-01-01

    A precise theoretical investigation has been made on the cylindrical and spherical (nonplanar) Gardner solitons (GSs)and double layers (DLs) in a dusty electronegative plasma (composed of inertial positive and negative ions,Maxwellian cold electrons,non-thermal hot electrons,and negatively charged static dust).The reductive perturbation method has been used in derivation of the modified Gardner (MG) equation describing the nonlinear propagation of the dust ion-acoustic (DIA) waves.The MG equation admits solitary waves (SWs) and DLs solutions for σ around its critical value σc (where σc is the value of σ corresponding to the vanishing of the nonlinear coefficient of the Korteweg de-Vries (K-dV) equation).The nonplanar SWs and DLs solutions are numerically analyzed and the parametric regimes for the existence of the positive as well as negative SWs and negative DLs are obtained.The basic features of nonplanar DIA SWs and DLs,which are found to be different from planar ones,are also identified.The implications of our results to different space and laboratory dusty plasma situations,are discussed.

  5. Liquid-phase non-thermal plasma-prepared N-doped TiO(2) for azo dye degradation with the catalyst separation system by ceramic membranes.

    Science.gov (United States)

    Cheng, Hsu-Hui; Chen, Shiao-Shing; Cheng, Yi-Wen; Tseng, Wei-Lun; Wang, Yi-Hui

    2010-01-01

    This study strived to improve the photocatalytic activity by using liquid-phase non-thermal plasma (LPNTP) technology for preparing N-doping TiO(2) as well as to separate/recover the N-dope TiO(2) particles by using ceramic ultrafiltration membrane process. The yellow color N-doped TiO(2) photocatalysts, obtained through the LPNTP process, were characterized with UV-Vis spectroscopy, X-ray diffraction (XRD), and electron spectroscopy for chemical analysis (ESCA). The UV-Vis spectrum of N-doped TiO(2) showed that the absorption band was shifted to 439 nm and the band gap was reduced to 2.82 eV. The structure analysis of XRD spectra showed that the peak positions and the crystal structure remained unchanged as anatase after plasma-treating at 13.5 W for 40 min. The photocatalytic activity of N-doped TiO(2) was evaluated by azo dyes under visible light, and 63% of them was degraded after 16 hours in a continuous-flow photocatalytic system. For membrane separation/recover system, the recovery efficiency reached 99.5% after the ultrafiltration had been carried out for 90 min, and the result indicated that the photocatalyst was able to be separated/recovered completely.

  6. Non-thermal atmospheric pressure plasma inhibits thyroid papillary cancer cell invasion via cytoskeletal modulation, altered MMP-2/-9/uPA activity.

    Directory of Open Access Journals (Sweden)

    Jae Won Chang

    Full Text Available Plasma, the fourth state of matter, is defined as a partially or completely ionized gas that includes a mixture of electrons and ions. Advances in plasma physics have made it possible to use non-thermal atmospheric pressure plasma (NTP in cancer research. However, previous studies have focused mainly on apoptotic cancer cell death mediated by NTP as a potential cancer therapy. In this study, we investigated the effect of NTP on invasion or metastasis, as well as the mechanism by which plasma induces anti-migration and anti-invasion properties in human thyroid papillary cancer cell lines (BHP10-3 and TPC1. Wound healing, pull-down, and Transwell assays demonstrated that NTP reduced cell migration and invasion. In addition, NTP induced morphological changes and cytoskeletal rearrangements, as detected by scanning electron microscopy and immunocytochemistry. We also examined matrix metalloproteinase (MMP-2/-9 and urokinase-type plasminogen activator (uPA activity using gelatin zymography, uPA assays and RT-PCR. FAK, Src, and paxillin expression was detected using Western blot analyses and immunocytochemistry. NTP decreased FAK, Src, and paxillin expression as well as MMP/uPA activity. In conclusion, NTP inhibited the invasion and metastasis of BHP10-3 and TPC1 cells by decreasing MMP-2/-9 and uPA activities and rearranging the cytoskeleton, which is regulated by the FAK/Src complex. These findings suggest novel actions for NTP and may aid in the development of new therapeutic strategies for locally invasive and metastatic cancers.

  7. CO2 reforming of CH4 over CeO2-doped Ni/Al2O3 nanocatalyst treated by non-thermal plasma.

    Science.gov (United States)

    Rahemi, Nader; Haghighi, Mohammad; Babaluo, Ali Akbar; Jafari, Mahdi Fallah; Estifaee, Pooya

    2013-07-01

    Ni/Al2O3 and Ni/Al2O3-CeO2 nanocatalysts have been prepared with impregnation method, treated with non-thermal plasma, characterized and tested for dry reforming of methane. For catalyst characterization, the following techniques have been used: XRD, FESEM, TEM, EDX dot mapping, BET, FTIR, TG-DTG, and XPS techniques. According to XRD and XPS, Ni in all catalysts exists as NiO and NiAl2O4 that existence of NiAl2O4 reveals strong interaction between active phase and support. Catalyst particles had smaller average particle size in plasma treated Ni/Al2O3-CeO2 nanocatalyst with less agglomeration. Homogenous dispersion of active phase, narrower particle size distribution, and uniform morphology has been observed in ceria containing plasma treated catalyst. The plasma treated Ni/Al2O3-CeO2 nanocatalyst showed bigger NiAl2O4/NiO ratio in XPS analysis that is indicative of stronger interaction between Ni and Al2O3 in the presence of CeO2. The dry reforming of methane was carried out at 550-850 degrees C using a mixture of CH4:CO2 (0.5:2). Improved morphology of the plasma treated Ni/Al2O3-CeO2 nanocatalyst, resulted from both CeO2 and plasma treatment, caused higher ability of catalyst in H2 and CO production. Product yield decreased at higher GHSVs, due to the fact that mass transport limitations will be more severe at low residence time, but this reduction would be less noticeable in the plasma treated Ni/Al2O3-CeO2 nanocatalyst. In addition, the plasma treated Ni/Al2O3-CeO2 nanocatalyst can keep the reactivity without deactivation for either CH4 or CO2 conversion better than other investigated catalysts.

  8. High field side measurements of non-thermal electron cyclotron emission on TCV plasmas with ECH and ECCD

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, P.; Alberti, S.; Coda, S.; Weisen, H.; Nikkola, P.; Klimanov, I

    2002-07-01

    Measurements of electron cyclotron emission from the high field side of the TCV tokamak have been made on plasmas heated by second and third harmonic X-mode Electron Cyclotron Heating (ECH) and Electron Cyclotron Current Drive (ECCD). Suprathermal Electron Cyclotron Emission (ECE), up to a factor of 6 in excess of thermal emission, is detected in the presence of second harmonic X-mode (X2) ECCD and of third harmonic X-mode (X3) ECH. The measured ECE spectra are modelled using a bi-Maxwellian describing the bulk and the suprathermal electron populations. Suprathermal temperatures between 10-50keV and densities in the range 1. 10{sup 1}7 -6. 10{sup 1}8m{sup -3} are obtained, and correspond to 3 -15 bulk temperatures and 1% -20% bulk densities. Good agreement between ECE suprathermal temperatures and energetic photon temperatures, measured by a hard X-ray camera, is found. For optically thin X3 Low Field Side (LFS) injection in presence of X2 CO-ECCD, the suprathermal population partly explains the discrepancy between global and first pass absorption measurements. (author)

  9. Flow Simulation and Optimization of Plasma Reactors for Coal Gasification

    Institute of Scientific and Technical Information of China (English)

    冀春俊; 张英姿; 马腾才

    2003-01-01

    This paper reports a 3-d numerical simulation system to analyze the complicatedflow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phaseflow and plasma effect. On the basis of analytic results, the distribution of the density, tempera-ture and components' concentration are obtained and a different plasma reactor configuration isproposed to optimize the flow parameters. The numerical simulation results show an improvedconversion ratio of the coal gasification. Different kinds of chemical reaction models are used tosimulate the complex flow inside the reactor. It can be concluded that the numerical simulationsystem can be very useful for the design and optimization of the plasma reactor.

  10. Flow Simulation and Optimization of Plasma Reactors for Coal Gasification

    Science.gov (United States)

    Ji, Chunjun; Zhang, Yingzi; Ma, Tengcai

    2003-10-01

    This paper reports a 3-d numerical simulation system to analyze the complicated flow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phase flow and plasma effect. On the basis of analytic results, the distribution of the density, temperature and components' concentration are obtained and a different plasma reactor configuration is proposed to optimize the flow parameters. The numerical simulation results show an improved conversion ratio of the coal gasification. Different kinds of chemical reaction models are used to simulate the complex flow inside the reactor. It can be concluded that the numerical simulation system can be very useful for the design and optimization of the plasma reactor.

  11. Oxidation efficiency of elemental mercury in two DBD plasma reactors

    Science.gov (United States)

    Jiang, Yuze; An, Jiutao; Shang, Kefeng; Jiang, Diwen; Li, Jie; Lu, Na; Wu, Yan

    2013-03-01

    Configuration of plasma reactors influences the generation of active species including the energized electrons, active radicals and the distribution of active species in reactor, and thus influences the removal efficiency of pollutants. Oxidation efficiency of elemental mercury (Hg0) in two different DBD plasma reactors was studied in this paper. One plasma reactor is a surface discharge reactor (SDR) with a spiral stainless steel thread as the high voltage electrode, and the other plasma reactor is a concentric cylinder type DBD reactor (CCDR) with a copper screw rod as the high voltage electrode. The oxidation efficiencies of Hg0 under different specific energy density (SED), oxygen content, flue gas residence time and the temperature of flue gas indicate that SDR had a better performance than CCDR in oxidation of Hg0, which can be attributed to the higher generation efficiency of ozone in SDR than in CCDR.

  12. Non-thermal plasma inhibits human cervical cancer HeLa cells invasiveness by suppressing the MAPK pathway and decreasing matrix metalloproteinase-9 expression

    Science.gov (United States)

    Li, Wei; Yu, K. N.; Bao, Lingzhi; Shen, Jie; Cheng, Cheng; Han, Wei

    2016-01-01

    Non-thermal plasma (NTP) has been proposed as a novel therapeutic method for anticancer treatment. However, the mechanism underlying its biological effects remains unclear. In this study, we investigated the inhibitory effect of NTP on the invasion of HeLa cells, and explored the possible mechanism. Our results showed that NTP exposure for 20 or 40 s significantly suppressed the migration and invasion of HeLa cells on the basis of matrigel invasion assay and wound healing assay, respectively. Moreover, NTP reduced the activity and protein expression of the matrix metalloproteinase (MMP)-9 enzyme. Western blot analysis indicated that NTP exposure effectively decreased phosphorylation level of both ERK1/2 and JNK, but not p38 MAPK. Furthermore, treatment with MAPK signal pathway inhibitors or NTP all exhibited significant depression of HeLa cells migration and MMP-9 expression. The result showed that NTP synergistically suppressed migration and MMP-9 expression in the presence of ERK1/2 inhibitor and JNK inhibitor, but not p38 MAPK inhibitor. Taken together, these findings suggested that NTP exposure inhibited the migration and invasion of HeLa cells via down-regulating MMP-9 expression in ERK1/2 and JNK signaling pathways dependent manner. These findings provide hints to the potential clinical research and therapy of NTP on cervical cancer metastasis.

  13. Inhibition of inflammatory reactions in 2,4-Dinitrochlorobenzene induced Nc/Nga atopic dermatitis mice by non-thermal plasma

    Science.gov (United States)

    Choi, Jeong-Hae; Song, Yeon-Suk; Lee, Hae-June; Hong, Jin-Woo; Kim, Gyoo-Cheon

    2016-06-01

    Non-thermal plasma (NTP) has recently been introduced and reported as a novel tool with a range of medicinal and biological roles. Although many studies using NTP have been performed, none has investigated the direct relationship between NTP and immune responses yet. Especially, the effects of NTP on atopic dermatitis (AD) were not been explored. Here, NTP was tested whether it controls immune reactions of AD. NTP treatment was administered to pro-inflammatory cytokine-stimulated keratinocytes and DNCB (2,4-Dinitrochlorobenzene)-induced atopic dermatitis mice, then the immune reactions of cells and skin tissues were monitored. Cells treated with NTP showed decreased expression levels of CCL11, CCL13, and CCL17 along with down-regulation of NF-κB activity. Repeated administration of NTP to AD-induced mice reduced the numbers of mast cells and eosinophils, IgE, CCL17, IFNγ levels, and inhibited NF-κB activity in the skin lesion. Furthermore, combined treatment with NTP and 1% hydrocortisone cream significantly decreased the immune responses of AD than that with either of these two treatments individually. Overall, this study revealed that NTP significantly inhibits several immune reactions of AD by regulating NF-κB activity. Therefore, NTP could be useful to suppress the exaggerated immune reactions in severe skin inflammatory diseases such as AD.

  14. The Study on Inhibition of Planktonic Bacterial Growth by Non-Thermal Atmospheric Pressure Plasma Jet Treated Surfaces for Dental Application.

    Science.gov (United States)

    Yoo, Eun-Mi; Uhm, Soo-Hyuk; Kwon, Jae-Sung; Choi, Hye-Sook; Choi, Eun Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2015-02-01

    Investigation of the effects by non-thermal atmospheric pressure plasma jet (NTAPPJ) treatment on the titanium dental implant surfaces for the inhibition of two common pathogens related with dental infections, Streptococcus mutans and Staphylococcus aureus, was carried out in this study. The commercially pure titanium was used as specimen, which were irradiated by NTAPPJ for 30, 60 and 120 seconds. Specimen without being treated with NTAPPJ was assigned as the control group. The X-ray photoelectron spectroscope and surface contact angle goniometer were used to analyze the effects of NTAPPJ treatment on surface chemistry and hydrophilicity of the specimen. The effects of the NTAPPJ treatment on surfaces, in terms of bacterial attachment, growth, morphology and structural changes were evaluated by the number of colony forming units (CFU) and scanning electron microscopy (SEM) observations. The results showed that there was a reduction of CFUs and the significant change in morphology of bacteria as they were cultured on the titanium surfaces treated with NTAPPJ. These results were related to surface chemical changes and hydrophilicity changes by NTAPPJ. The NTAPPJ treatment is very effective on the dental implant titanium surface treatment that resulted in the inhibition of bacteria and has a great potential to be a promising technique in various clinical dental applications.

  15. Studies on Nitrogen Oxides Removal Using Plasma Assisted Catalytic Reactor

    Institute of Scientific and Technical Information of China (English)

    V. Ravi; Young Sun Mok; B. S. Rajanikanth; Ho-Chul Kang

    2003-01-01

    An electric discharge plasma reactor combined with a catalytic reactor was studied for removing nitrogen oxides. To understand the combined process thoroughly, discharge plasma and catalytic process were separately studied first, and then the two processes were combined for the study. The plasma reactor was able to oxidize NO to NO2 well although the oxidation rate decreased with temperature. The plasma reactor alone did not reduce the NOx (NO+NO2)level effectively, but the increase in the ratio of NO2 to NO as a result of plasma discharge led to the enhancement of NOx removal efficiency even at lower temperatures over the catalyst surface (V2O5-WOa/TiO2). At a gas temperature of 100℃, the NOx removal efficiency obtained using the combined plasma catalytic process was 88% for an energy input of 36 eV/molecule or 30 J/1.

  16. CO2 conversion by plasma technology: insights from modeling the plasma chemistry and plasma reactor design

    Science.gov (United States)

    Bogaerts, A.; Berthelot, A.; Heijkers, S.; Kolev, St.; Snoeckx, R.; Sun, S.; Trenchev, G.; Van Laer, K.; Wang, W.

    2017-06-01

    In recent years there has been growing interest in the use of plasma technology for CO2 conversion. To improve this application, a good insight into the underlying mechanisms is of great importance. This can be obtained from modeling the detailed plasma chemistry in order to understand the chemical reaction pathways leading to CO2 conversion (either in pure form or mixed with another gas). Moreover, in practice, several plasma reactor types are being investigated for CO2 conversion, so in addition it is essential to be able to model these reactor geometries so that their design can be improved, and the most energy efficient CO2 conversion can be achieved. Modeling the detailed plasma chemistry of CO2 conversion in complex reactors is, however, very time-consuming. This problem can be overcome by using a combination of two different types of model: 0D chemical reaction kinetics models are very suitable for describing the detailed plasma chemistry, while the characteristic features of different reactor geometries can be studied by 2D or 3D fluid models. In the first instance the latter can be developed in argon or helium with a simple chemistry to limit the calculation time; however, the ultimate aim is to implement the more complex CO2 chemistry in these models. In the present paper, examples will be given of both the 0D plasma chemistry models and the 2D and 3D fluid models for the most common plasma reactors used for CO2 conversion in order to emphasize the complementarity of both approaches. Furthermore, based on the modeling insights, the paper discusses the possibilities and limitations of plasma-based CO2 conversion in different types of plasma reactors, as well as what is needed to make further progress in this field.

  17. Non-thermal Aftertreatment of Particulates

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S.E.

    2000-08-20

    Modern diesel passenger vehicles employing common rail, high speed direct injection engines are capable of matching the drivability of gasoline powered vehicles with the additional benefit of providing high torque at low engine speed [1]. The diesel engine also offers considerable fuel economy and CO2 emissions advantages. However, future emissions standards [2,3] present a significant challenge for the diesel engine, as its lean exhaust precludes the use of aftertreatment strategies employing 3- way catalytic converters, which operate under stoichiometric conditions. In recent years significant developments by diesel engine manufacturers have greatly reduced emissions of both particulates (PM) and oxides of nitrogen (NOx) [4,5]. However to achieve compliance with future legislative limits it has been suggested that an integrated approach involving a combination of engine modifications and aftertreatment technology [1] will be required. A relatively new approach to exhaust aftertreatment is the application of non-thermal plasma (NTP) or plasma catalyst hybrid systems. These have the potential for treatment of both NOx and PM emissions [6- 8]. The primary focus of recent plasma aftertreatment studies [9-12] has concentrated on the removal of NOx. It has been shown that by combining plasmas with catalysts it is possible to chemically reduce NOx. The most common approach is to use a 2- stage system relying upon the plasma oxidation of hydrocarbons to promote NO to NO2 conversion as a precursor to NO2 reduction over a catalyst. However, relatively little work has yet been published on the oxidation of PM by plasma [ 8,13]. Previous investigations [8] have reported that a suitably designed NTP reactor containing a packing material designed to filter and retain PM can effect the oxidation of PM in diesel exhausts at low temperatures. It has been suggested that the retained PM competes with hydrocarbons for O, and possibly OH, radicals. This is an important consideration

  18. Study on dynamics of the influence exerted by plasma on gas flow field in non-thermal atmospheric pressure plasma jet

    Science.gov (United States)

    Qaisrani, M. Hasnain; Xian, Yubin; Li, Congyun; Pei, Xuekai; Ghasemi, Maede; Lu, Xinpei

    2016-06-01

    In this paper, first, steady state of the plasma jet at different operating conditions is investigated through Schlieren photography with and without applying shielding gas. Second, the dynamic process for the plasma impacting on the gas flow field is studied. When the discharge is ignited, reduction in laminar flow occurs. However, when the gas flow rate is too low or too high, this phenomenon is not obvious. What is more, both frequency and voltage have significant impact on the effect of plasma on the gas flow, but the former is more significant. Shielding gas provides a curtain for plasma to propagate further. High speed camera along with Schlieren photography is utilized to study the impact of plasma on the gas flow when plasma is switched on and off. The transition of the gas flow from laminar to turbulent or vice versa happens right after the turbulent front. It is concluded that appearance and propagation of turbulence front is responsible for the transition of the flow state.

  19. Reactions of nitroxide radicals in aqueous solutions exposed to non-thermal plasma: limitations of spin trapping of the plasma induced species

    Science.gov (United States)

    Gorbanev, Yury; Stehling, Nicola; O'Connell, Deborah; Chechik, Victor

    2016-10-01

    Low temperature (‘cold’) atmospheric pressure plasmas have gained much attention in recent years due to their biomedical effects achieved through the interactions of plasma-induced species with the biological substrate. Monitoring of the radical species in an aqueous biological milieu is usually performed via electron paramagnetic resonance (EPR) spectroscopy using various nitrone spin traps, which form persistent radical adducts with the short-lived radicals. However, the stability of these nitroxide radical adducts in the plasma-specific environment is not well known. In this work, chemical transformations of nitroxide radicals in aqueous solutions using a model nitroxide 4-oxo-TEMPO were studied using EPR and LC-MS. The kinetics of the nitroxide decay when the solution was exposed to plasma were assessed, and the reactive pathways proposed. The use of different scavengers enabled identification of the types of reactive species which cause the decay, indicating the predominant nitroxide group reduction in oxygen-free plasmas. The 2H adduct of the PBN spin trap (PBN-D) was shown to decay similarly to the model molecule 4-oxo-TEMPO. The decay of the spin adducts in plasma-treated solutions must be considered to avoid rendering the spin trapping results unreliable. In particular, the selectivity of the decay indicated the limitations of the PTIO/PTI nitroxide system in the detection of nitric oxide.

  20. Advance on non-thermal plasma-photocatalysis technology for air polullant control%低温等离子体-光催化联合技术处理空气污染物的研究进展

    Institute of Scientific and Technical Information of China (English)

    梁文俊; 马琳; 李坚

    2011-01-01

    Non-thermal plasma-photocatalysis technology is a new technology in recent years,which effectively make up for the defects of non-thermal plasma and photocatalysis. The recent research results indicated that the technology was effective for the removal of air pollutants. The basic principles of and advance on non-thermal plasma-photocatalysis technology were introduced and its application prospects were also outlined.%低温等离子体-光催化联合技术是近年来兴起的一项新型技术,它有效弥补了低温等离子体和光催化的缺陷,该技术对空气污染物有较好的去除效果.介绍了低温等离子体-光催化联合技术的基本原理和国内外研究进展,并对该技术的应用前景进行了展望.

  1. Flow simulation and optimization of plasma reactors for coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Ji, C.J.; Zhang, Y.Z.; Ma, T.C. [Dalian University of Technology, Dalian (China). Power Engineering Dept.

    2003-10-01

    This paper reports a 3-D numerical simulation system to analyze the complicated flow in plasma reactors for coal gasification, which involve complex chemical reaction, two-phase flow and plasma effect. On the basis of analytic results, the distribution of the density, temperature and components' concentration are obtained and a different plasma reactor configuration is proposed to optimize the flow parameters. The numerical simulation results show an improved conversion ratio of the coal gasification. Different kinds of chemical reaction models are used to simulate the complex flow inside the reactor. It can be concluded that the numerical simulation system can be very useful for the design and optimization of the plasma reactor.

  2. Analytical model of plasma-chemical etching in planar reactor

    Science.gov (United States)

    Veselov, D. S.; Bakun, A. D.; Voronov, Yu A.; Kireev, V. Yu; Vasileva, O. V.

    2016-09-01

    The paper discusses an analytical model of plasma-chemical etching in planar diode- type reactor. Analytical expressions of etch rate and etch anisotropy were obtained. It is shown that etch anisotropy increases with increasing the ion current and ion energy. At the same time, etch selectivity of processed material decreases as compared with the mask. Etch rate decreases with the distance from the centre axis of the reactor. To decrease the loading effect, it is necessary to reduce the wafer temperature and pressure in the reactor, as well as increase the gas flow rate through the reactor.

  3. Current drive for stability of thermonuclear plasma reactor

    Science.gov (United States)

    Amicucci, L.; Cardinali, A.; Castaldo, C.; Cesario, R.; Galli, A.; Panaccione, L.; Paoletti, F.; Schettini, G.; Spigler, R.; Tuccillo, A.

    2016-01-01

    To produce in a thermonuclear fusion reactor based on the tokamak concept a sufficiently high fusion gain together stability necessary for operations represent a major challenge, which depends on the capability of driving non-inductive current in the hydrogen plasma. This request should be satisfied by radio-frequency (RF) power suitable for producing the lower hybrid current drive (LHCD) effect, recently demonstrated successfully occurring also at reactor-graded high plasma densities. An LHCD-based tool should be in principle capable of tailoring the plasma current density in the outer radial half of plasma column, where other methods are much less effective, in order to ensure operations in the presence of unpredictably changes of the plasma pressure profiles. In the presence of too high electron temperatures even at the periphery of the plasma column, as envisaged in DEMO reactor, the penetration of the coupled RF power into the plasma core was believed for long time problematic and, only recently, numerical modelling results based on standard plasma wave theory, have shown that this problem should be solved by using suitable parameter of the antenna power spectrum. We show here further information on the new understanding of the RF power deposition profile dependence on antenna parameters, which supports the conclusion that current can be actively driven over a broad layer of the outer radial half of plasma column, thus enabling current profile control necessary for the stability of a reactor.

  4. Advanced Plasma Pyrolysis Assembly (PPA) Reactor and Process Development

    Science.gov (United States)

    Wheeler, Richard R., Jr.; Hadley, Neal M.; Dahl, Roger W.; Abney, Morgan B.; Greenwood, Zachary; Miller, Lee; Medlen, Amber

    2012-01-01

    Design and development of a second generation Plasma Pyrolysis Assembly (PPA) reactor is currently underway as part of NASA's Atmosphere Revitalization Resource Recovery effort. By recovering up to 75% of the hydrogen currently lost as methane in the Sabatier reactor effluent, the PPA helps to minimize life support resupply costs for extended duration missions. To date, second generation PPA development has demonstrated significant technology advancements over the first generation device by doubling the methane processing rate while, at the same time, more than halving the required power. One development area of particular interest to NASA system engineers is fouling of the PPA reactor with carbonaceous products. As a mitigation plan, NASA MSFC has explored the feasibility of using an oxidative plasma based upon metabolic CO2 to regenerate the reactor window and gas inlet ports. The results and implications of this testing are addressed along with the advanced PPA reactor development.

  5. Air trichloroethylene oxidation in a corona plasma-catalytic reactor

    Science.gov (United States)

    Masoomi-Godarzi, S.; Ranji-Burachaloo, H.; Khodadadi, A. A.; Vesali-Naseh, M.; Mortazavi, Y.

    2014-08-01

    The oxidative decomposition of trichloroethylene (TCE; 300 ppm) by non-thermal corona plasma was investigated in dry air at atmospheric pressure and room temperature, both in the absence and presence of catalysts including MnOx, CoOx. The catalysts were synthesized by a co-precipitation method. The morphology and structure of the catalysts were characterized by BET surface area measurement and Fourier Transform Infrared (FTIR) methods. Decomposition of TCE and distribution of products were evaluated by a gas chromatograph (GC) and an FTIR. In the absence of the catalyst, TCE removal is increased with increases in the applied voltage and current intensity. Higher TCE removal and CO2 selectivity is observed in presence of the corona and catalysts, as compared to those with the plasma alone. The results show that MnOx and CoOx catalysts can dissociate the in-plasma produced ozone to oxygen radicals, which enhances the TCE decomposition.

  6. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  7. Current drive at plasma densities required for thermonuclear reactors.

    Science.gov (United States)

    Cesario, R; Amicucci, L; Cardinali, A; Castaldo, C; Marinucci, M; Panaccione, L; Santini, F; Tudisco, O; Apicella, M L; Calabrò, G; Cianfarani, C; Frigione, D; Galli, A; Mazzitelli, G; Mazzotta, C; Pericoli, V; Schettini, G; Tuccillo, A A

    2010-08-10

    Progress in thermonuclear fusion energy research based on deuterium plasmas magnetically confined in toroidal tokamak devices requires the development of efficient current drive methods. Previous experiments have shown that plasma current can be driven effectively by externally launched radio frequency power coupled to lower hybrid plasma waves. However, at the high plasma densities required for fusion power plants, the coupled radio frequency power does not penetrate into the plasma core, possibly because of strong wave interactions with the plasma edge. Here we show experiments performed on FTU (Frascati Tokamak Upgrade) based on theoretical predictions that nonlinear interactions diminish when the peripheral plasma electron temperature is high, allowing significant wave penetration at high density. The results show that the coupled radio frequency power can penetrate into high-density plasmas due to weaker plasma edge effects, thus extending the effective range of lower hybrid current drive towards the domain relevant for fusion reactors.

  8. Plasma engineering analysis of a small torsatron reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lacatski, J.T.; Houlberg, W.A.; Uckan, N.A.

    1985-10-01

    This study examines the plasma physics and reactor engineering feasibility of a small, medium aspect ratio, high-beta, l = 2, D-T torsatron power reactor, based on the magnetic configuration of the Advanced Toroidal Facility, Oak Ridge National Laboratory. Plasma analyses are performed to assess whether confinement in a small, average radius plasma is sufficient to yield an ignited or high-Q driven device. Much of the physics assessment focuses on an evaluation of the radial electric field created by the nonambipolar particle flux. Detailed transport simulations are done with both fixed and self-consistent evolution of the radial electric field. Basic reactor engineering considerations taken into account are neutron wall loading, maximum magnetic field at the helical coils, coil shield thickness, and tritium breeding blanket-shield thickness.

  9. Study of Purification Effects of Air Cleaners with Non-thermal Plasma on Indoor Particular Matter%含NTP技术净化器对室内颗粒物的净化效果

    Institute of Scientific and Technical Information of China (English)

    陆海全; 丁志威; 颜凯; 梅敏花; 郭婷; 钟依均; 谢云龙

    2015-01-01

    选择几款国内含有低温等离子体( Non-thermal plasma, NTP)技术的空气净化器( air cleaner)样机,以香烟烟雾为净化对象,研究其对室内空气中颗粒物的净化效果。结果表明,所选用空气净化器对100 nm以上颗粒物有一定的去除效果,对100 nm以下的颗粒物几乎没有净化效果;单一采用低温等离子体净化技术对颗粒物的去除不理想;高效粒子过滤器( HEPA, High efficiency particulate air Filter)对颗粒物的净化起着关键作用。%Using cigarette smoke as the purification target, the purification effects of several residential air cleaners containing non-thermal plasma ( NTP) technology on indoor particulate matter in air were studied. The results showed that the selected air cleaners had a certain effect on removal of particles above 100 nm while had few effects for particles below 100 nm. Single use of NTP purification technology was not effective to remove particulate matter. HEPA technology played a key role in eliminating the particulate matter.

  10. Research advance in non-thermal plasma induced selective catalytic reduction NOx with low hydrocarbon compounds%低温等离子体诱导低碳烃选择性催化还原NOx研究进展

    Institute of Scientific and Technical Information of China (English)

    苏清发; 刘亚敏; 陈杰; 潘华; 施耀

    2009-01-01

    The emission of nitrogen oxides (NOx) from stationary sources, primarily from power stations, industrial heaters and cogeneration plants, represents a major environmental problem. This paper intends to give a general review over the advances in non-thermal plasma assisted selective catalytic reduction (SCR) of NOx with lower hydrocarbon compounds. In the last decade, the non-thermal plasma induced SCR of nitrogen oxide with low hydrocarbon compounds has received much attention. The different hydrocarbons (≤C3) used in the research are discussed. As we know,methane is more difficultly activated than non-methane hydrocarbons, such as ethylene and propylene etc. The reduction mechanism is also discussed. In addition, aiming at the difficulties existed, the direction for future research is prospected.%综述了近年来低温等离子体诱导低碳烃选择性催化还原NOx的研究进展,详细介绍了难活化的甲烷及较易活化的非甲烷低碳烃气体如乙烯、丙烯及丙烷等的研究现状,探讨了低温等离子体诱导低碳烃选择性催化还原NOx的反应机理,并展望了低温等离子体诱导低碳烃选择性催化还原NOx今后研究方向.

  11. Plasma Reactors and Plasma Thrusters Modeling by Ar Complete Global Models

    Directory of Open Access Journals (Sweden)

    Chloe Berenguer

    2012-01-01

    Full Text Available A complete global model for argon was developed and adapted to plasma reactor and plasma thruster modeling. It takes into consideration ground level and excited Ar and Ar+ species and the reactor and thruster form factors. The electronic temperature, the species densities, and the ionization percentage, depending mainly on the pressure and the absorbed power, have been obtained and commented for various physical conditions.

  12. Recycling of the Electronic Waste Applying the Plasma Reactor Technology

    Science.gov (United States)

    Lázár, Marián; Jasminská, Natália; Čarnogurská, Mária; Dobáková, Romana

    2016-12-01

    The following paper discusses a high-temperature gasification process and melting of electronic components and computer equipment using plasma reactor technology. It analyses the marginal conditions of batch processing, as well as the formation of solid products which result from the procedure of waste processing. Attention is also paid to the impact of the emerging products on the environment.

  13. Recycling of the Electronic Waste Applying the Plasma Reactor Technology

    Directory of Open Access Journals (Sweden)

    Lázár Marián

    2016-12-01

    Full Text Available The following paper discusses a high-temperature gasification process and melting of electronic components and computer equipment using plasma reactor technology. It analyses the marginal conditions of batch processing, as well as the formation of solid products which result from the procedure of waste processing. Attention is also paid to the impact of the emerging products on the environment.

  14. Plasma reactor for deposition of carbon nanowalls at atmospheric pressure

    Science.gov (United States)

    Dimitrov, Zh; Mitev, D.; Kiss'ovski, Zh

    2016-10-01

    In this study a novel plasma reactor for deposition of carbon nanowalls at atmospheric pressure is constructed and characterized. A low power microwave discharge is used as a plasma source and working gas of Ar/H2/CH4 gas mixture. The substrate is heated by plasma flame and its temperature is in the range 600-700 C. The chemical composition of the plasma and the gas mixture effect on the concentration of the various particles in the plasma is investigated by optical emission spectroscopy. The emission spectrum of the plasma jet in Ar/H2/CH4 mixture shows the presence of carbon (Swan band) and an intensive line of CH (388 nm), which are necessary species for deposition of carbon nanostructures. Additional voltage in the range from -20 V to -100 V is applied in order to ensure the vertical growth of graphene walls. Results of deposited carbon nanostructures on metal substrate are shown.

  15. High-Density Plasma Reactors: Simulations for Design

    Science.gov (United States)

    Hash, David B.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1998-01-01

    The development of improved and more efficient plasma reactors is a costly process for the semiconductor industry. Until five years ago, the Industry made most of its advancements through a trial and error approach. More recently, the role of computational modeling in the design process has increased. Both conventional computational fluid dynamics (CFD) techniques like Navier-Stokes solvers as well as particle simulation methods are used to model plasma reactor flowfields. However, since high-density plasma reactors generally operate at low gas pressures on the order of 1 to 10 mTorr, a particle simulation may be necessary because of the failure of CFD techniques to model rarefaction effects. The direct simulation Monte Carlo method is the most widely accepted and employed particle simulation tool and has previously been used to investigate plasma reactor flowfields. A plasma DSMC code is currently under development at NASA Ames Research Center with its foundation as the object-oriented parallel Cornell DSMC code, MONACO. The present investigation is a follow up of a neutral flow investigation of the effects of process parameters as well as reactor design on etch rate and etch rate uniformity. The previous work concentrated on silicon etch of a chlorine flow in a configuration typical of electron cyclotron resonance (ECR) or helical resonator type reactors. The effects of the plasma on the dissociation chemistry were modeled by making assumptions about the electron temperature and number density. The electrons or ions themselves were not simulated.The present work extends these results by simulating the charged species.The electromagnetic fields are calculated such that power deposition is modeled self-consistently. Electron impact reactions are modeled along with mechanisms for charge exchange. An bipolar diffusion assumption is made whereby electrons remain tied to the ions. However, the velocities of tile electrons are allowed to be modified during collisions

  16. Enhancement of Wound Healing by Non-Thermal N2/Ar Micro-Plasma Exposure in Mice with Fractional-CO2-Laser-Induced Wounds.

    Directory of Open Access Journals (Sweden)

    Pei-Lin Shao

    Full Text Available Micro-plasma is a possible alternative treatment for wound management. The effect of micro-plasma on wound healing depends on its composition and temperature. The authors previously developed a capillary-tube-based micro-plasma system that can generate micro-plasma with a high nitric oxide-containing species composition and mild working temperature. Here, the efficacy of micro-plasma treatment on wound healing in a laser-induced skin wound mouse model was investigated. A partial thickness wound was created in the back skin of each mouse and then treated with micro-plasma. Non-invasive methods, namely wound closure kinetics, optical coherence tomography (OCT, and laser Doppler scanning, were used to measure the healing efficiency in the wound area. Neo-tissue growth and the expressions of matrix metallopeptidase-3 (MMP-3 and laminin in the wound area were assessed using histological and immunohistochemistry (IHC analysis. The results show that micro-plasma treatment promoted wound healing. Micro-plasma treatment significantly reduced the wound bed region. The OCT images and histological analysis indicates more pronounced tissue regrowth in the wound bed region after micro-plasma treatment. The laser Doppler images shows that micro-plasma treatment promoted blood flow in the wound bed region. The IHC results show that the level of laminin increased in the wound bed region after micro-plasma treatment, whereas the level of MMP-3 decreased. Based on these results, micro-plasma has potential to be used to promote the healing of skin wounds clinically.

  17. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    Science.gov (United States)

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-02-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2-), hydroxyl radical (HO.), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO. (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma.

  18. Spectroscopic studies of non-thermal plasma jet at atmospheric pressure formed in low-current nonsteady-state plasmatron for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Demkin, V. P.; Melnichuk, S. V.; Demkin, O. V. [National Research Tomsk State University, Lenin 36, 634050 Tomsk, The Russian Federation (Russian Federation); Kingma, H.; Van de Berg, R. [National Research Tomsk State University, Lenin 36, 634050 Tomsk, The Russian Federation (Russian Federation); Department of Otolaryngology, Head and Neck Surgery, Maastricht University Medical Centre, Minderbroedersberg 4-6, 6211 LK Maastricht (Netherlands)

    2016-04-15

    The optical and electrophysical characteristics of the nonequilibrium low-temperature plasma formed by a low-current nonsteady-state plasmatron are experimentally investigated in the present work. It is demonstrated that experimental data on the optical diagnostics of the plasma jet can provide a basis for the construction of a self-consistent physical and mathematical plasma model and for the creation of plasma sources with controllable electrophysical parameters intended for the generation of the required concentration of active particles. Results of spectroscopic diagnostics of plasma of the low-current nonsteady-state plasmatron confirm that the given source is efficient for the generation of charged particles and short-wavelength radiation—important plasma components for biomedical problems of an increase in the efficiency of treatment of biological tissues by charged particles. Measurement of the spatial distribution of the plasma jet potential by the probe method has demonstrated that a negative space charge is formed in the plasma jet possibly due to the formation of electronegative oxygen ions.

  19. Deterioration to extinction of wastewater bacteria by non-thermal atmospheric pressure air plasma as assessed by 16S rDNA-DGGE fingerprinting.

    Science.gov (United States)

    El-Sayed, Wael S; Ouf, Salama A; Mohamed, Abdel-Aleam H

    2015-01-01

    The use of cold plasma jets for inactivation of a variety of microorganisms has recently been evaluated via culture-based methods. Accordingly, elucidation of the role of cold plasma in decontamination would be inaccurate because most microbial populations within a system remain unexplored owing to the high amount of yet uncultured bacteria. The impact of cold atmospheric plasma on the bacterial community structure of wastewater from two different industries was investigated by metagenomic-based polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) utilizing 16S rRNA genes. Three doses of atmospheric pressure dielectric barrier discharge plasma were applied to wastewater samples on different time scales. DGGE revealed that the bacterial community gradually changed and overall abundance decreased to extinction upon plasma treatment. The bacterial community in food processing wastewater contained 11 key operational taxonomic units that remained almost completely unchanged when exposed to plasma irradiation at 75.5 mA for 30 or 60 s. However, when exposure time was extended to 90 s, only Escherichia coli, Coliforms, Aeromonas sp., Vibrio sp., and Pseudomonas putida survived. Only E. coli, Aeromonas sp., Vibrio sp., and P. putida survived treatment at 81.94 mA for 90 s. Conversely, all bacterial groups were completely eliminated by treatment at 85.34 mA for either 60 or 90 s. Dominant bacterial groups in leather processing wastewater also changed greatly upon exposure to plasma at 75.5 mA for 30 or 60 s, with Enterobacter aerogenes, Klebsiella sp., Pseudomonas stutzeri, and Acidithiobacillus ferrooxidans being sensitive to and eliminated from the community. At 90 s of exposure, all groups were affected except for Pseudomonas sp. and Citrobacter freundii. The same trend was observed for treatment at 81.94 mA. The variability in bacterial community response to different plasma treatment protocols revealed that plasma had a selective impact on bacterial

  20. Study on non-thermal plasma technology combined with transnatured ACF for formaldehyde removal%低温等离子体协同改性ACF净化甲醛的实验研究

    Institute of Scientific and Technical Information of China (English)

    季银炼; 顾中铸

    2009-01-01

    实验采用浸渍法研制了负载纳米TiO2及Cu/Pd金属离子的改性活性炭纤维(ACF)功能材料.利用扫描电子显微镜(SEM)、x射线光电子能谱(XPS)和表面孔隙度分析仪对材料的微观结构进行了表征.在自制的实验台上进行低温等离子体协同改性ACF净化甲醛的实验研究.研究结果表明:改性ACF有利于甲醛净化,其中负载纳米TiO2改性方案最佳;低温等离子协同TiO2/ACF净化效果最好,其效率高达94%.%Activated carbon fiber(ACF)was transnatured with nano-TiO2 and Cu/Pd ion via dipping method.The microstructure of the prepared materials was characterized by SEM,XPS and specific area/porosity analyzer.The experiments for formaldehyde removal by the non-thermal plasma combined with prepared materials were carried out on self-designed test-bed.The results indicated that the transnatured ACF avail formaldehyde reduction,especially for the ACF transnatured with nano-TiO2.The non-thermal plasma combined with TiO2/ACFcan reduce formaldehyde significantly with the removal efficiency of 94%.

  1. Simulating industrial plasma reactors - A fresh perspective

    Science.gov (United States)

    Mohr, Sebastian; Rahimi, Sara; Tennyson, Jonathan; Ansell, Oliver; Patel, Jash

    2016-09-01

    A key goal of the presented research project PowerBase is to produce new integration schemes which enable the manufacturability of 3D integrated power smart systems with high precision TSV etched features. The necessary high aspect ratio etch is performed via the BOSCH process. Investigations in industrial research are often use trial and improvement experimental methods. Simulations provide an alternative way to study the influence of external parameters on the final product, whilst also giving insights into the physical processes. This presentation investigates the process of simulating an industrial ICP reactor used over high power (up to 2x5 kW) and pressure (up to 200 mTorr) ranges, analysing the specific procedures to achieve a compromise between physical correctness and computational speed, while testing commonly made assumptions. This includes, for example, the effect of different physical models and the inclusion of different gas phase and surface reactions with the aim of accurately predicting the dependence of surface rates and profiles on external parameters in SF6 and C4F8 discharges. This project has received funding from the Electronic Component Systems for European Leadership Joint Undertaking under Grant Agreement No. 662133 PowerBase.

  2. Plasma spheroidization of nickel powders in a plasma reactor

    Indian Academy of Sciences (India)

    G Shanmugavelayutham; V Selvarajan

    2004-10-01

    Thermal spray coatings of surfaces with metal, alloy and ceramic materials for protection against corrosion, erosion and wear is an intense field of research. The technique involves injection of the powder into a plasma flame, melting, acceleration of the powder particles, impact and bonding with the substrate. Feedstock powders of metals, alloys and ceramics for thermal spray applications have to meet several requirements. Particle shape, size and its distribution, powder flow characteristics and density are the important factors to be considered in order to ensure high spray efficiency and better coating properties. For smooth and uniform feeding of powders into plasma jet, the powder particles have to be spherical in shape. High temperatures and steep temperatures present in thermal plasma is exploited to spheroidize particles in the present investigation. Nickel powder particles in the size range from 40–100 m were spheroidized using plasma processing. SEM and optical micrographs showed spherical shape of processed particles.

  3. STUDY ON VIRUS INACTIVATION EFFICACY OF NON -THERMAL ATMOSPHERIC -PRESSURE PLASMA DISINFECTOR%常温常压下等离子体灭活病毒效果的研究

    Institute of Scientific and Technical Information of China (English)

    朱兆奎; 张曦; 王嘉瑜; 滕峥; 俞雪莲; 高烨; 匡小舟

    2011-01-01

    Objective To observe the inactivation efficiency on influenza and poliomyelitis virus by non - thermal atmospheric - pressure plasma disinfector. Methods Cell cultural and real - time PCR techniques were used to detect the inactivation efficiency of non - thermal atmospheric - pressure plasma disinfector. Results The titer of influenza virus H3 N2 decreased of 2.71 in plasma boxes with running for 4 hours. Poliomyelitis virus type I titer dropped about 1. 20 in similar conditions. The nucleic acid load of both viruses did not change in plasma boxes for 4 hours. Conclusion The plasma device can inactivate influenza and poliomyelitis viruses, but can not damage the virus nucleic acid.%目的 观察常温常压下等离子体对流感病毒和脊髓灰质炎病毒的灭活效果.方法采用细胞培养法和基因扩增法,对常温常压下等离子体灭活悬液内病毒的效果进行了检测.结果该等离子体发生器置于本试验柜内启动运行4h,对悬液内H3 N2流感病毒灭活对数值为2.71;对悬液内脊髓灰质炎病毒Ⅰ型疫苗株灭活对数值为1.2.流感病毒和脊髓灰质炎病毒经等离子体作用至最长时间为4h后,其核酸浓度均无明显变化.结论常温常压下等离子体对流感病毒和脊髓灰质炎病毒具不同程度的灭活效果,但其对两种病毒的核酸无破坏作用.

  4. Deterioration to extinction of wastewater bacteria by non-thermal atmospheric pressure air plasma as assessed by 16S rDNA-DGGE fingerprinting

    Directory of Open Access Journals (Sweden)

    Wael Samir El-Sayed

    2015-10-01

    Full Text Available The impact of cold atmospheric plasma on the bacterial community structure of wastewater from two different industries was investigated by metagenomic-based PCR-DGGE utilizing 16S rRNA genes. Three doses of atmospheric pressure dielectric barrier discharge plasma were applied to wastewater samples on different time scales. DGGE revealed that the bacterial community gradually changed and overall abundance decreased to extinction upon plasma treatment. The bacterial community in food processing wastewater contained 11 key operational taxonomic units that remained almost completely unchanged when exposed to plasma irradiation at 75.5 mA for 30 or 60s. However, when exposure time was extended to 90s, only Escherichia coli, Coliforms, Aeromonas sp., Vibrio sp., and Pseudomonas putida survived. Only E. coli, Aeromonas sp., Vibrio sp. and P. putida survived treatment at 81.94 mA for 90s. Conversely, all bacterial groups were completely eliminated by treatment at 85.34 mA for either 60 or 90s. Dominant bacterial groups in leather processing wastewater also changed greatly upon exposure to plasma at 75.5 mA for 30 or 60s, with Enterobacter aerogenes, Klebsiella sp., Pseudomonas stutzeri and Acidithiobacillus ferrooxidans being sensitive to and eliminated from the community. At 90s of exposure, all groups were affected except for Pseudomonas sp. and Citrobacter freundii.

  5. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    Science.gov (United States)

    2011-03-01

    None From the ion chromatography results we can calculate the concentration of HNO3 in the gas leaving the plasma reactor. The small NO3- detected...resistant to decomposition by O3. Carbon and polymeric adsorbents were not considered because they would react with O3 and decompose . Potential...nor any ability to decompose ozone. A SAC-13 catalyst was obtained from Engelhard for testing also. This material is an H- Nafion Ion Exchange

  6. Decomposition of toluene in a gliding arc discharge plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Du Changming [School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Yan Jianhua [Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027 (China); Cheron, Bruno [UMR 6614 (CORIA), University of Rouen, 76821 Mont Saint Aignan (France)

    2007-11-15

    The decomposition of toluene in a gliding arc discharge (glidarc) was performed and studied. Experimental results indicate that the glidarc technology can effectively decompose toluene molecules and has bright prospects of being applied as an alternative tool to decompose volatile organic compounds. It is found that a change in the electrode material had an insignificant effect on the toluene removal efficiency. The toluene removal efficiency increases with increasing inlet gas temperature. The water vapor present in the gas mixture has a favorable effect on the toluene decomposition in the plasma. The energy efficiency is 29.46 g (kWh{sup -1}) at a relative humidity of 50% and a specific energy input of 0.26 kWh m{sup -3}, which is higher than other types of non-thermal plasmas. Too much or too little oxygen content does not favor toluene decomposition. The major gas phase products detected by FT-IR from the decomposition of toluene with air participation were CO, CO{sub 2}, H{sub 2}O and NO{sub 2}. Some brown depositions were found on the surface of the electrodes, which were polar oxygenous and nitrogenous compounds determined by the GC-MS analysis, such as benzaldehyde, benzoic acid, quinine and nitrophenol from the reaction of toluene with radicals. A possible mechanism for toluene destruction via glidarc technology is proposed and summarized.

  7. Combustion Enhancement Using a Silent Discharge Plasma Reactor

    Science.gov (United States)

    Rosocha, Louis; Platts, David; Coates, Don; Stange, Sy

    2003-10-01

    Electric fields affect flame propagation speed, stability, and combustion chemistry. External electrodes, arc discharges, and plasma jets have been used to combust gas mixtures outside their flammability limits. Experiments with silent electrical discharges (SEDs) and propagating flames have shown that flame propagation velocity is actually decreased (combustion retarded) when an SED is applied directly to the flame region, but velocity is increased (combustion promoted) when applied to the unburned gas mixture upstream of a flame. More recent work has proposed electric arc/microwave-driven plasma-generating fuel nozzles to produce dissociated fuel or ionized fuel for aircraft gas turbine engine combustor mixers. In contrast to prior works, we have used a silent discharge plasma (SDP) reactor to break up large fuel molecules into smaller molecules and create free radicals/active species in a gas stream before the fuel is mixed with an oxidizer and combusted. A cylindrical SDP reactor was used to 'activate' propane before mixing it with air and igniting the combustible gas mixture. With the plasma, the physical appearance of the flame changes and substantial changes in mass spectrometer fragmentation peaks for fuel and combustion products are observed (i.e., combustion is enhanced). Results of changes in the degree of combustion will be discussed in terms of variations in the plasma specific energy.

  8. Development of a new plasma reactor for propene removal

    Science.gov (United States)

    Oukacine, Linda; Tatibouët, Jean-Michel

    2008-10-01

    The purpose of the study is to develop a new plasma reactor being applied to gas phase pollution abatement, involving a surface dielectric barrier discharge (SDBD) at atmospheric pressure. Propene was chosen as a model pollutant. The system can associate a SDBD with a volume dielectric barrier discharge (VDBD). A specific catalyst can be placed in post-plasma site in order to destroy the residual ozone after use it as a strong oxidant for total oxidation of propene and by-products formed by the plasma reactor. A comparative study has been established between the propene removal efficiency of these two plasma geometries. The results demonstrate that SDBD is a promising system for gas cleaning. The experiments show that ozone production depends on plasma system configuration and indicate the effectiveness of combining SDBD and VDBD. The NOx formation remains very low, whereas ozone formation is the highest for the SDBD. The influence of some materials on the propene removal and the ozone production were studied.

  9. NATO Advanced Research Workshop on Non-Thermal Plasma Techniques for Pollution Control Held in England on September 21 - 25, 1992. Program and Abstracts

    Science.gov (United States)

    1992-09-25

    Depart- instead of in the atmosphere. The radicals diffuse ment of Energy. In Germany, pilot- plant studies have through the gas and preferentially oxidize...spray dryer, electron beam, fabric filter system was operated at the TVA Shawnee Steam Plant in Paducah , KY. The pilot scale system processed a 4000...DISCHARGE PROCESSING CONTROL OF GASEOUS POLLUTANTS AND AIR TOXICS BY SURFACE DISCHARGE INDUCED PLASMA CHEMICAL PROCESS (SPCP) AND PULSE CORONA INDUCED

  10. Coupling of a RF generator to a plasma reactor; Acoplamiento de un generador RF a un reactor de plasma

    Energy Technology Data Exchange (ETDEWEB)

    Salazar T, J.A

    2003-07-01

    The following thesis presents the development of the generation from a capacitive plasma through of radiofrequency discharges, for their realization it was needed of a series of elements capable of development such task, as they are it: the RF generator, the couple circuit of impedances and a plasma reactor. The main characteristics of each part is also described that composes the one system, as well as the results obtained experimentally, calculations and the devices used and designed to generate the capacitive thermal plasma. Moreover, is sought that this joining system is the base for later developments in those that intervene the generation of a capacitive plasma and one can to consider for practical and theoretical developments in the improvement of other processes as they are it: the generation of particles of carbon with different gases and hydrocarbons, the polymerization of metals, to synthesize pure molecules, for illumination purposes, etc. (Author)

  11. On the non-thermal energy content of cosmic structures

    CERN Document Server

    Vazza, Franco; Brüggen, Marcus; Gheller, Claudio

    2016-01-01

    1) Background: the budget of non-thermal energy in galaxy clusters is not well constrained, owing to the observational and theoretical difficulties in studying these diluted plasmas on large scales. 2) Method: we use recent cosmological simulations with complex physics in order to connect the emergence of non-thermal energy to the underlying evolution of gas and dark matter. 3) Results: the impact of non-thermal energy (e.g. cosmic rays, magnetic fields and turbulent motions) is found to increase in the outer region of galaxy clusters. Within numerical and theoretical uncertainties, turbulent motions dominate the budget of non-thermal energy in most of the cosmic volume. 4) Conclusion: assessing the distribution non-thermal energy in galaxy clusters is crucial to perform high-precision cosmology in the future. Constraining the level of non-thermal energy in cluster outskirts will improve our understanding of the acceleration of relativistic particles by cosmic shocks and of the origin of extragalactic magneti...

  12. Dense Medium Plasma Water Purification Reactor (DMP WaPR) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Dense Medium Plasma Water Purification Reactor offers significant improvements over existing water purification technologies used in Advanced Life Support...

  13. State-of-the-art non-thermal plasma disinfection and medicine%低温等离子体灭菌及生物医药技术研究进展

    Institute of Scientific and Technical Information of China (English)

    郑超; 徐羽贞; 黄逸凡; 刘振; 闫克平

    2013-01-01

    低温等离子体的生物学效应包括对微生物的致死作用和对动物细胞的刺激作用,分别造就了一批灭菌技术和临床医药技术。本文介绍了等离子体灭菌技术在医疗器械、水和空气净化、食品和包装材料处理等方面的应用。其中已商业化的医疗器械灭菌器主要分低气压和常压两种,低气压等离子体灭菌器的灭菌体积较大,常压等离子体灭菌器的优点则是结构简单和便于操作。等离子体灭菌技术用于水、空气、食品等领域由于能耗、效率、化学残留等问题尚未商业化。在医药技术方面,近十年来开发的等离子体技术和装备成功运用于龋齿、皮肤、伤口、癌症等的处理,部分已进入临床应用。将来的研究重点在于明确等离子体与细胞之间的相互作用机理,并开发出更高效、实用的用于各相关行业的等离子体技术和装备。%Bio-effects of non-thermal plasma include lethality of microorganisms and stimulation of mammalian cells,which brings up a series of techniques in disinfection and clinical medicine. In this paper,the applications of non-thermal plasma in medical device sterilization,water and air cleaning, as well as food and package treatment are reviewed. Commercialized plasma sterilizer for medical devices can be classified into vacuum and atmospheric pressure,the volume of the former is much larger while the latter is more simple and easy to operate. For disinfection of water,air and food,it is not yet commercialized due to its energy consumption,efficiency or chemical residues. In the last decade , the developed plasma sources and techniques for medicine are successfully applied to treatment of decayed tooth,skin,wound,and cancer,with some of them approved for clinical practice. In the future,the research focus will be identifying the interactions between plasmas and cells,and developing more effective and practical equipment for different

  14. Electro-Catalysis System for Biodiesel Synthesis from Palm Oil over Dielectric-Barrier Discharge Plasma Reactor

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2014-07-01

    Full Text Available Biodiesel synthesis reaction routes from palm oil using plasma electro-catalysis process over Dielectric-Barrier Discharge (DBD plasma reactor were studied. The study was focused on finding possible reaction mechanism route during plasma electro-catalysis process. The prediction was performed based on the changes of Gas Chromatography Mass Spectrometer (GC-MS and Fourier Transform Infra Red (FT-IR analyses to the biodiesel products with respect to time length of plasma treatment. It was found that main reaction mechanism occurred in the plasma electro-catalysis system was non-thermal pyrolysis rather than transesterification. The main reactions within the plasma treatment were due to collision between high energetic electrons (supplied from high voltage power supply through high voltage electrode and the reaction mixtures. The high energetic electrons affected the electrons pair of covalent bonding to be excited or dissociated even ionized at higher energy. Therefore, this plasma electro-catalysis system was promising for biodiesel synthesis from vegetable oils due to only very short time reaction was needed, even no need a catalyst, no soap formation, and no glycerol by-product. This system could produce fatty acid methyl ester yield of 75.65% at 120 seconds and other possible chemicals, such as alkynes, alkanes, esters, carboxylic acid, and aldehydes. However, during the plasma process, the reaction mechanisms were still difficult to be controlled due the action of available high energetic electrons. The advanced studies on how to control the reaction mechanism selectively in the plasma electro-catalysis will be published elsewhere. © 2014 BCREC UNDIP. All rights reservedReceived: 23rd January 2014; Revised: 20th March 2014; Accepted: 23rd March 2014[How to Cite: Istadi, I., Yudhistira, A.D., Anggoro, D.D., Buchori, L. (2014. Electro-Catalysis System for Biodiesel Synthesis from Palm Oil over Dielectric-Barrier Discharge Plasma Reactor

  15. Plasma engineering studies for Tennessee Tokamak (TENTOK) fusion power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, K.E.; Lacatski, J.T.; Miller, J.B.; Bryan, W.E.; King, P.W.; Santoro, R.T.; Uckan, N.A.; Shannon, T.E.

    1984-02-01

    This paper summarizes the results of the plasma engineering and systems analysis studies for the Tennessee Tokamak (TENTOK) fusion power reactor. TENTOK is a 3000-MW(t) central station power plant that uses deuterium-tritium fuel in a D-shaped tokamak plasma configuration with a double-null poloidal divertor. The major parameters are R/sub 0/ = 6.4 m, a = 1.6 m, sigma (elongation) = 1.65, (n) = 1.5 x 10/sup 20/ m/sup -3/, (T) = 15 keV, (..beta..) = 6%, B/sub T/ (on-axis) = 5.6 T, I/sub p/ = 8.5 MA, and wall loading = 3 MW/m/sup 2/. Detailed analyses are performed in the areas of (1) transport simulation using the one-and-one-half-dimensional (1-1/2-D) WHIST transport code, (2) equilibrium/poloidal field coil systems, (3) neutral beam and radiofrequency (rf) heating, and (4) pellet fueling. In addition, impurity control systems, diagnostics and controls, and possible microwave plasma preheating and steady-state current drive options are also considered. Some of the major features of TENTOK include rf heating in the ion cyclotron range of frequencies, superconducting equilibrium field coils outside the superconducting toroidal field coils, a double-null poloidal divertor for impurity control and alpha ash removal, and rf-assisted plasma preheating and current startup.

  16. A 3-dimensional model for inductively coupled plasma etching reactors: Coil generated plasma asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Kushner, M.J.; Collison, W.Z.; Grapperhaus, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering

    1996-12-31

    Inductively Coupled Plasma (ICP) reactors are being developed as high plasma density, low gas pressure sources for etching and deposition of semiconductor materials. In this paper, the authors describe a 3-dimensional, time dependent model for ICP reactors whose intent is to provide an infrastructure to investigate asymmetries in plasma etching and deposition tools. The model is a 3-dimensional extension of a previously described 2-dimensional simulation called the Hybrid Plasma Equipment Model (HPEM). HPEM-3D consists of an electromagnetics module (EMM), a Boltzmann-electron energy module (BEM) and a fluid-chemical kinetics simulation (FKS). The inductively coupled electromagnetic fields are produced by the EMM. Results from HPEM-3D will be discussed for reactors using etching (Cl{sub 2}, BCl{sub 3}) and non-etching (Ar, Ar/N{sub 2}) gas mixtures, and which have geometrical asymmetries such as wafer clamps and load-lock bays. The authors show how details in the design of the coil, such as the value of the termination capacitance or number of turns, lead to azimuthal variations in the inductive electric field.

  17. High temperature UF6 RF plasma experiments applicable to uranium plasma core reactors

    Science.gov (United States)

    Roman, W. C.

    1979-01-01

    An investigation was conducted using a 1.2 MW RF induction heater facility to aid in developing the technology necessary for designing a self critical fissioning uranium plasma core reactor. Pure, high temperature uranium hexafluoride (UF6) was injected into an argon fluid mechanically confined, steady state, RF heated plasma while employing different exhaust systems and diagnostic techniques to simulate and investigate some potential characteristics of uranium plasma core nuclear reactors. The development of techniques and equipment for fluid mechanical confinement of RF heated uranium plasmas with a high density of uranium vapor within the plasma, while simultaneously minimizing deposition of uranium and uranium compounds on the test chamber peripheral wall, endwall surfaces, and primary exhaust ducts, is discussed. The material tests and handling techniques suitable for use with high temperature, high pressure, gaseous UF6 are described and the development of complementary diagnostic instrumentation and measurement techniques to characterize the uranium plasma, effluent exhaust gases, and residue deposited on the test chamber and exhaust system components is reported.

  18. Non-thermal AGN models

    Energy Technology Data Exchange (ETDEWEB)

    Band, D.L.

    1986-12-01

    The infrared, optical and x-ray continua from radio quiet active galactic nuclei (AGN) are explained by a compact non-thermal source surrounding a thermal ultraviolet emitter, presumably the accretion disk around a supermassive black hole. The ultraviolet source is observed as the ''big blue bump.'' The flat (..cap alpha.. approx. = .7) hard x-ray spectrum results from the scattering of thermal ultraviolet photons by the flat, low energy end of an electron distribution ''broken'' by Compton losses; the infrared through soft x-ray continuum is the synchrotron radiation of the steep, high energy end of the electron distribution. Quantitative fits to specific AGN result in models which satisfy the variability constraints but require electron (re)acceleration throughout the source. 11 refs., 1 fig.

  19. Plasma enhanced C1 chemistry for green technology

    Science.gov (United States)

    Nozaki, Tomohiro

    2013-09-01

    Plasma catalysis is one of the innovative next generation green technologies that meet the needs for energy and materials conservation as well as environmental protection. Non-thermal plasma uniquely generates reactive species independently of reaction temperature, and these species are used to initiate chemical reactions at unexpectedly lower temperatures than normal thermochemical reactions. Non-thermal plasma thus broadens the operation window of existing chemical conversion processes, and ultimately allows modification of the process parameters to minimize energy and material consumption. We have been specifically focusing on dielectric barrier discharge (DBD) as one of the viable non-thermal plasma sources for practical fuel reforming. In the presentation, room temperature one-step conversion of methane to methanol and hydrogen using a miniaturized DBD reactor (microplasma reactor) is highlighted. The practical impact of plasma technology on existing C1-chemistry is introduced, and then unique characteristics of plasma fuel reforming such as non-equilibrium product distribution is discussed.

  20. Novel plasma arc reactor with molted metal electrodes for coal gasification technology

    Energy Technology Data Exchange (ETDEWEB)

    Predtechensky, M.R.; Kuropyatnik, I.N.; Tukhto, O.M. [International Scientific Center on Thermophysics and Energetics, Novosibirsk, Russia Institute of Thermophysics SB RAS, Novosibirsk (Russian Federation)

    2001-07-01

    The process of steam gasification of coal has been studied using the new type of plasma chemical reactor with molten metal electrodes. Using of molten metal electrodes allows to increase significantly the continuous operation of the plasma arc reactor and to realize some additional advantages. (authors)

  1. Reactors

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1988-01-01

    This standard applies to the following types of reactors: shunt reactors, current-limiting reactors including neutral-earthing reactors, damping reactors, tuning (filter) reactors, earthing transformers (neutral couplers), arc-suppression reactors, smoothing reactors, with the exception of the following reactors: small reactors with a rating generally less than 2 kvar single-phase and 10 kvar three-phase, reactors for special purposes such as high-frequency line traps or reactors mounted on rolling stock.

  2. Multi-dimensional instability of dust-ion-acoustic solitary structure with opposite polarity ions and non-thermal electrons

    Science.gov (United States)

    Haider, M. M.; Rahman, O.

    2016-12-01

    An attempt has been made to study the multi-dimensional instability of dust-ion-acoustic (DIA) solitary waves (SWs) in magnetized multi-ion plasmas containing opposite polarity ions, opposite polarity dusts and non-thermal electrons. First of all, we have derived Zakharov-Kuznetsov (ZK) equation to study the DIA SWs in this case using reductive perturbation method as well as its solution. Small- k perturbation technique was employed to find out the instability criterion and growth rate of such a wave which can give a guideline in understanding the space and laboratory plasmas, situated in the D-region of the Earth's ionosphere, mesosphere, and solar photosphere, as well as the microelectronics plasma processing reactors.

  3. The effects of plasma inhomogeneity on the nanoparticle coating in a low pressure plasma reactor

    Science.gov (United States)

    Pourali, N.; Foroutan, G.

    2015-10-01

    A self-consistent model is used to study the surface coating of a collection of charged nanoparticles trapped in the sheath region of a low pressure plasma reactor. The model consists of multi-fluid plasma sheath module, including nanoparticle dynamics, as well as the surface deposition and particle heating modules. The simulation results show that the mean particle radius increases with time and the nanoparticle size distribution is broadened. The mean radius is a linear function of time, while the variance exhibits a quadratic dependence. The broadening in size distribution is attributed to the spatial inhomogeneity of the deposition rate which in turn depends on the plasma inhomogeneity. The spatial inhomogeneity of the ions has strong impact on the broadening of the size distribution, as the ions contribute both in the nanoparticle charging and in direct film deposition. The distribution width also increases with increasing of the pressure, gas temperature, and the ambient temperature gradient.

  4. CFD Simulation of a Hydrogen/Argon Plasma Jet Reactor for Coal Pyrolysis

    Institute of Scientific and Technical Information of China (English)

    CHEN H. G.; XIE K. C.

    2004-01-01

    A Computational Fluid Dynamics (CFD) model was formulated for DC arc hydrogen/argon plasma jet reactors used in the process of the thermal H2/Ar plasma pyrolysis of coal to acetylene. In this model, fluid flow, convective heat transfer and conjugate heat conductivity are considered simultaneously. The error caused by estimating the inner-wall temperature of a reactor is avoided. The thermodynamic and transport properties of the hydrogen/argon mixture plasma system, which are usually expressed by a set of discrete dats, are fitted into expressions that can be easily implemented in the program. The effects of the turbulence are modeled by two standard k-s equations. The temperature field and velocity field in the plasma jet reactor were calculated by employing SIMPLEST algorithm. The knowledge and insight obtained are useful for the design improvement and scale-up of plasma reactors.

  5. Matching a (sub)nanosecond pulse source to a corona plasma reactor

    Science.gov (United States)

    Huiskamp, T.; Beckers, F. J. C. M.; Hoeben, W. F. L. M.; van Heesch, E. J. M.; Pemen, A. J. M.

    2016-10-01

    In this paper we investigate the energy transfer from the pulses of a (sub)nanosecond pulse source to the plasma in a corona-plasma reactor. This energy transfer (or ‘matching’) should be as high as possible. We studied the effect of multiple parameters on matching, such as the reactor configuration, the pulse duration and amplitude and the energy density. The pulse reflection on the reactor interface has a significant influence on matching, and should be as low as possible to transfer the most energy into the reactor. We developed a multiple-wire inner conductor for the reactor which decreases the vacuum impedance of the reactor to decrease the pulse reflection on the reactor interface while maintaining a high electric field on the wire. The results were very encouraging and showed an energy transfer efficiency of over 90 percent. The matching results further show that there is only a small effect on the matching between different wire diameters. In addition, a long reactor and a long pulse result in the best matching due to the more intense plasma that is generated in these conditions. Finally, even without the multiple-wire reactor, we are able to achieve a very good matching (over 80 percent) between our pulse source and the reactor.

  6. Optimization simulation of thermal plasma reactor for acetylene production from coal

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.; Yang, Y.; Bao, W.; Zhang, Y.; Kie, K. [Taiyuan University of Technology, Taiyuan (China)

    2007-07-01

    A heat-flow field mathematical model based on the computational; fluid dynamics (CFD) technique was developed for a thermal plasma reactor in order to optimize the reactor structure and operation conditions for the direct production of acetylene from coal. The simulation of the thermal plasma reactor with single inlet, double inlet and double inlet with protective gas was given; simulations of the heat-flow coupling field were carried out by using the method of Incomplete Cholesky Conjugate Gradient (ICCG). The optimization simulation results show that the load of the thermal plasma reactor with double inlet is increased, and the reactor wall surface coke is depressed. The anticoking effect is best under the gas flow rate of 50 m/s. 4 refs., 4 figs.

  7. Spatial and frequency dependence of plasma currents in a 300 mm capacitively coupled plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Paul A [Sandia National Laboratories, MS 1423, PO Box 5800, Albuquerque, NM 87185-1423 (United States); Barnat, Edward V [Sandia National Laboratories, MS 1423, PO Box 5800, Albuquerque, NM 87185-1423 (United States); Hebner, Gregory A [Sandia National Laboratories, MS 1423, PO Box 5800, Albuquerque, NM 87185-1423 (United States); Paterson, Alex M [Applied Materials, Inc., 974 Arques Avenue, Sunnyvale, CA 94086 (United States); Holland, John P [Applied Materials, Inc., 974 Arques Avenue, Sunnyvale, CA 94086 (United States)

    2006-11-01

    There is much interest in scaling rf-excited capacitively coupled plasma reactors to larger sizes and to higher frequencies. As the size approaches operating wavelength, concerns arise about non-uniformity across the work piece, particularly in light of the well-documented slow-surface-wave phenomenon. We present measurements and calculations of spatial and frequency dependence of rf magnetic fields inside argon plasma in an industrially relevant, 300 mm plasma-processing chamber. The results show distinct differences in the spatial distributions and harmonic content of rf fields in the plasma at the three frequencies studied (13.56, 60 and 176 MHz). Evidence of a slow-wave structure was not apparent. The results suggest that interaction between the plasma and the rf excitation circuit may strongly influence the structures of these magnetic fields and that this interaction is frequency dependent. At the higher frequencies, wave propagation becomes extremely complex; it is controlled by the strong electrical nonlinearity of the sheath and is not explained simply by previous models.

  8. Properties Influencing Plasma Discharges in Packed Bed Reactors

    Science.gov (United States)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for CO2 removal and conversion of waste gases into higher value compounds. We report on results of a computational investigation of PBR-DBD properties using the plasma hydrodynamics simulator nonPDPSIM with a comparison to experiments. Dielectric beads (rods in 2D) were inserted between two coplanar electrodes, 1 cm apart filled by humid air. A step-pulse of -30 kV was applied to the top electrode. Material properties of the beads (dielectric constant, secondary emission coefficient) and gas properties (photoionization and photo-absorption cross-sections, temperature) were varied. We found that photoionization plays a critical role in the propagation of the discharge through the PBR, as it serves to seed charges in regions of high electric field. Increasing rates of photo-ionization enable increases in the discharge propagation velocity, ionization rates and production of radicals. A transition between DBD-like and arc-like discharges occurs as the radiation mean free path decreases. Increasing the dielectric constant of the beads increased electric fields in the gas, which translated to increased discharge propagation velocity and charge density until ɛ/ɛ0 100. Secondary electron emission coefficient and gas temperature have minimal impacts on the discharge propagation though the latter did affect the production of reactive species. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  9. Kinetics of decolorization of azo dye by bipolar pulsed barrier discharge in a three-phase discharge plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ruobing [Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)]. E-mail: zrbingdut@163.com; Zhang Chi [Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Cheng Xingxin [Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Wang Liming [Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China); Wu Yan [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Guan Zhicheng [Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055 (China)

    2007-04-02

    Removal of amaranth, a commercial synthetic azo dye widely used in the dye and food industry, was examined as a possible remediation technology for treating dye-contaminated water. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetition frequency, etc., on decolorization kinetics were investigated. Experimental results show that an aqueous solution of 24 mg/l dye is 81.24% decolorized following 30 min plasma treatment for a 50 kV voltage and 0.75 m{sup 3}/h gas flow rate. Decolorization reaction of amaranth in the plasma reactor is a pseudo first order reaction. Rate constant (k) of decolorization increases quickly with increasing the applied voltage, pulse repetition frequency and the gas flow rate. However, when the applied voltage is beyond 50 kV and increases further, increase rate of k decreases. In addition, k decreases quickly when the solution conductivity increases from 200 to 1481 {mu}S/cm. The decolorization reaction has a high rate constant (k = 0.0269 min{sup -1}) when the solution pH is beyond 10. Rate constant k decreases with the decrease of pH and reaches minimum at a pH of about 5 (k {sub min} = 0.01603 min{sup -1}), then increases to 0.02105 min{sup -1} when pH decreases to 3.07. About 15% of the initial TOC can be degraded only in about 120 min non-thermal plasma treatment.

  10. Site selection for installing plasma incinerator reactor using the GIS in Rudsar county, Iran.

    Science.gov (United States)

    Abedi-Varaki, Mehdi; Davtalab, Mehri

    2016-06-01

    Nowadays, the urban waste disposal and the proper location for doing so is considered as one of the most important urban service issues, which has the potential of causing environmental hazards for the citizens, if not done properly. One of the newest methods of waste burial is using plasma incinerator reactors. Using the advanced technology of plasma reactors in waste disposal has been the subject of study for a considerable number of researchers in the last few years. Moreover, insignificant emissions of environmental pollutants and high efficiency in these reactors have led to a high incentive for using them in the area of urban services. Therefore, finding the proper location for the plasma incinerator reactor in order to minimize environmental hazards is considered as a very important issue. In the present study, different parts of this reactor and its working procedure are presented at first. Then, quantitative and qualitative criteria effective on locating plasma incinerator reactor are presented, and these criteria are given proper weights using analytic hierarchy process (AHP) multi-criteria decision making method. Next, the data were collected for the studying area, and then, weighting, analysis, and presentation of geospatial data were performed using the geographic information system (GIS). Finally, the output map for installing location of the plasma incinerator reactor was developed in three classes of good, average, and bad.

  11. Plasma-chemical reactor based on a low-pressure pulsed arc discharge for synthesis of nanopowders

    Science.gov (United States)

    Karpov, I. V.; Ushakov, A. V.; Lepeshev, A. A.; Fedorov, L. Yu.

    2017-01-01

    A reactor for producing nanopowders in the plasma of a low-pressure arc discharge has been developed. As a plasma source, a pulsed cold-cathode arc evaporator has been applied. The design and operating principle of the reactor have been described. Experimental data on how the movement of a gaseous mixture in the reactor influences the properties of nanopowders have been presented.

  12. A linear radio frequency plasma reactor for potential and current mapping in a magnetized plasma.

    Science.gov (United States)

    Faudot, E; Devaux, S; Moritz, J; Heuraux, S; Molina Cabrera, P; Brochard, F

    2015-06-01

    Langmuir probe measurements in front of high power ion cyclotron resonant frequency antennas are not possible or simply too noisy to be analyzed properly. A linear experiment is a radio frequency (RF) magnetized plasma discharge reactor designed to probe the rectified potential in front of such antennas but at low power level (1 kW) to next improve antenna design and mitigate sheath effects. The maximum magnetic field is 0.1 T, and the RF amplifier can work between 10 kHz and 250 MHz allowing ion cyclotron resonances for argon or helium. The first measurements with no magnetic field are presented here, especially 2D potential maps extracted from the RF compensated probe measurements yield ni ≈ 10(15) m(-3) and Te ≈ 2 eV for RF power lower than 100 W. Series resonances in the chamber are highlighted and allow to deduce the plasma parameters from a simple equivalent impedance model of the plasma in helium gas. Next studies will be focused on magnetized plasmas and especially magnetized RF sheaths.

  13. Non-Thermal Soot Denuder Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a non-thermal soot denuder for measuring chemical components of the nucleation mode particulate matter emissions from gas turbine engines, in...

  14. Combustion flame-plasma hybrid reactor systems, and chemical reactant sources

    Science.gov (United States)

    Kong, Peter C

    2013-11-26

    Combustion flame-plasma hybrid reactor systems, chemical reactant sources, and related methods are disclosed. In one embodiment, a combustion flame-plasma hybrid reactor system comprising a reaction chamber, a combustion torch positioned to direct a flame into the reaction chamber, and one or more reactant feed assemblies configured to electrically energize at least one electrically conductive solid reactant structure to form a plasma and feed each electrically conductive solid reactant structure into the plasma to form at least one product is disclosed. In an additional embodiment, a chemical reactant source for a combustion flame-plasma hybrid reactor comprising an elongated electrically conductive reactant structure consisting essentially of at least one chemical reactant is disclosed. In further embodiments, methods of forming a chemical reactant source and methods of chemically converting at least one reactant into at least one product are disclosed.

  15. Influence of the gap size and dielectric constant of the packing on the plasma discharge in a packed bed dielectric barrier discharge reactor: a fluid modeling study

    Science.gov (United States)

    van Laer, Koen; Bogaerts, Annemie

    2016-09-01

    Packed bed dielectric barrier discharge (DBD) reactors have proven to be very useful sources of non-thermal plasma for a wide range of applications, of which the environmental applications have received most attention in recent years. Compared to an empty DBD reactor, a packing was introduced to either enhance the energy efficiency of the process, or, if the packing is catalytically active, steer the process towards a preferred end product. A wide range of geometries, bead sizes and bead materials have been tested experimentally in the past. However, since experimental diagnostics become more difficult with a packing present, a computational study is proposed to gain more insight. Using COMSOL's built in plasma module, a 2D axisymmetric fluid model is developed to study the influence of the gap size and the dielectric constant (ɛ) of the packing. Helium is used as discharge gas, at atmospheric pressure and room temperature. By decreasing the gas gap, the electric field strength is enhanced, resulting in a higher number of current peaks per half cycle of applied rf potential. Increasing ɛ also enhances the electric field strength. However, after a certain ɛ, its influence saturates. The electric field strength will no longer increase, leaving the discharge behavior unchanged.

  16. Non-thermal emission from Massive Young Stellar Objects

    CERN Document Server

    Parkin, E R; Hoare, M G

    2009-01-01

    In the young stellar object (YSO) phase of their lives, massive stars drive bi-polar molecular outflows. These outflows produce beautiful, often hourglass shaped, cavities. The central star possesses a powerful stellar wind (v ~ 2000 km s^-1), and possibly a dense equatorial disk wind (v ~ 400 km s^-1), which collide with the inner surface of the bi-polar cavity and produces hot (T ~ 10^5 - 10^8 K) shocked plasma. A reverse shock is formed at the point where the ram pressure between the preshock flow balances the thermal pressure of the postshock flow and provides a site for the acceleration of non-thermal particles to relativistic energies. Hydrodynamical models of the wind interaction, coupled with calculations of the non-thermal energy spectrum, are used to explore the observable synchrotron and gamma-ray emission from these objects.

  17. Degradation of Acid Orange 7 Dye in Two Hybrid Plasma Discharge Reactors

    Institute of Scientific and Technical Information of China (English)

    SHEN Yongjun; LEI Lecheng; ZHANG Xingwang; DING Jiandong

    2014-01-01

    To get an optimized pulsed electrical plasma discharge reactor and to increase the energy utilization efficiency in the removal of pollutants,two hybrid plasma discharge reactors were designed and optimized.The reactors were compared via the discharge characteristics,energy transfer efficiency,the yields of the active species and the energy utilization in dye wastewater degradation.The results showed that under the same AC input power,the characteristics of the discharge waveform of the point-to-plate reactor were better.Under the same AC input power,the two reactors both had almost the same peak voltage of 22 kV.The peak current of the point-to-plate reactor was 146 A,while that of the wire-to-cylinder reactor was only 48.8 A.The peak powers of the point-to-plate reactor and the wire-to-cylinder reactor were 1.38 MW and 1.01 MW,respectively.The energy per pulse of the point-to-plate reactor was 0.2221 J,which was about 29.4% higher than that of the wire-to-cylinder reactor (0.1716 J).To remove 50% Acid Orange 7 (AO7),the energy utilizations of the point-to-plate reactor and the wireto-cylinder reactor were 1.02×10-9 mol/L and 0.61×10-9 mol/L,respectively.In the point-to-plate reactor,the concentration of hydrogen peroxide in pure water was 3.6 mmol/L after 40 min of discharge,which was higher than that of the wire-to-cylinder reactor (2.5 mmol/L).The concentration of liquid phase ozone in the point-to-plate reactor (5.7×10-2 mmol/L) was about 26.7% higher than that in the wire-to-cylinder reactor (4.5× 10-2 mmol/L).The analysis results of the variance showed that the type of reactor and reaction time had significant impacts on the yields of the hydrogen peroxide and ozone.The main degradation intermediates of AO7 identified by gas chromatography and mass spectrometry (GCMS) were acetic acid,maleic anhydride,pbenzoquinone,phenol,benzoic acid,phthalic anhydride,coumarin and 2-naphthol.Proposed degradation pathways were elucidated in light of the analyzed

  18. Plasma engineering design of a Compact Reversed-Field Pinch Reactor (CRFPR)

    Science.gov (United States)

    Bathke, C. G.; Embrechts, M. J.; Hagenson, R. L.; Krakowski, R. A.; Miller, R. L.

    1983-11-01

    The rationale for and the characteristics of the high-power-density Compact Reversed-Field Pinch Reactor (CRFPR) are discussed. Particular emphasis is given to key plasma engineering aspects of the conceptual design, including plasma operations, current drive, and impurity/ash control by means of pumped limiters or magnetic divertors. A brief description of the Fusion-Power-Core integration is given.

  19. Catalytic-Dielectric Barrier Discharge Plasma Reactor For Methane and Carbon Dioxide Conversion

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2007-10-01

    Full Text Available A catalytic - DBD plasma reactor was designed and developed for co-generation of synthesis gas and C2+ hydrocarbons from methane. A hybrid Artificial Neural Network - Genetic Algorithm (ANN-GA was developed to model, simulate and optimize the reactor. Effects of CH4/CO2 feed ratio, total feed flow rate, discharge voltage and reactor wall temperature on the performance of catalytic DBD plasma reactor was explored. The Pareto optimal solutions and corresponding optimal operating parameters ranges based on multi-objectives can be suggested for catalytic DBD plasma reactor owing to two cases, i.e. simultaneous maximization of CH4 conversion and C2+ selectivity, and H2 selectivity and H2/CO ratio. It can be concluded that the hybrid catalytic DBD plasma reactor is potential for co-generation of synthesis gas and higher hydrocarbons from methane and carbon dioxide and showed better than the conventional fixed bed reactor with respect to CH4 conversion, C2+ yield and H2 selectivity for CO2 OCM process. © 2007 BCREC UNDIP. All rights reserved.[Presented at Symposium and Congress of MKICS 2007, 18-19 April 2007, Semarang, Indonesia][How to Cite: I. Istadi, N.A.S. Amin. (2007. Catalytic-Dielectric Barrier Discharge Plasma Reactor For Methane and Carbon Dioxide Conversion. Bulletin of Chemical Reaction Engineering and Catalysis, 2 (2-3: 37-44.  doi:10.9767/bcrec.2.2-3.8.37-44][How to Link/DOI: http://dx.doi.org/10.9767/bcrec.2.2-3.8.37-44 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/8][Cited by: Scopus 1 |

  20. Abatement of fluorinated compounds using a 2.45 GHz microwave plasma torch with a reverse vortex plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.H.; Cho, C.H.; Shin, D.H. [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); Hong, Y.C., E-mail: ychong@nfri.re.kr [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); Shin, Y.W. [Plasma Technology Research Center, National Fusion Research Institute, 814-2 Oxikdo-dong, Gunsan-city, Jeollabuk-do (Korea, Republic of); School of Advanced Green Energy and Environments, Handong Global University, Heunghae-eup, Buk-gu, Pohang-city, Gyeongbuk (Korea, Republic of)

    2015-08-30

    Highlights: • We developed a microwave plasma torch with reverse vortex reactor (RVR). • We calculated a volume fraction and temperature distribution of discharge gas and waste. • The performance of reverse vortex reactor increased from 29% to 43% than conventional vortex reactor. - Abstract: Abatement of fluorinated compounds (FCs) used in semiconductor and display industries has received an attention due to the increasingly stricter regulation on their emission. We have developed a 2.45 GHz microwave plasma torch with reverse vortex reactor (RVR). In order to design a reverse vortex plasma reactor, we calculated a volume fraction and temperature distribution of discharge gas and waste gas in RVR by ANSYS CFX of computational fluid dynamics (CFD) simulation code. Abatement experiments have been performed with respect to SF{sub 6}, NF{sub 3} by varying plasma power and N{sub 2} flow rates, and FCs concentration. Detailed experiments were conducted on the abatement of NF{sub 3} and SF{sub 6} in terms of destruction and removal efficiency (DRE) using Fourier transform infrared (FTIR). The DRE of 99.9% for NF{sub 3} was achieved without an additive gas at the N{sub 2} flow rate of 150 liter per minute (L/min) by applying a microwave power of 6 kW with RVR. Also, a DRE of SF{sub 6} was 99.99% at the N{sub 2} flow rate of 60 L/min using an applied microwave power of 6 kW. The performance of reverse vortex reactor increased about 43% of NF{sub 3} and 29% of SF{sub 6} abatements results definition by decomposition energy per liter more than conventional vortex reactor.

  1. Thermionic plasma injection for the Lockheed Martin T4 Compact Fusion Reactor experiment

    Science.gov (United States)

    Heinrich, Jonathon

    2015-11-01

    Lockheed Martin's Compact Fusion Reactor (CFR) concept relies on diamagnetic confinement in a magnetically encapsulated linear ring cusp geometry. Plasma injection into cusp field configurations requires careful deliberation. Previous work has shown that axial injection via a plasma gun is capable of achieving high-beta conditions in cusp configurations. We present a pulsed, high power thermionic plasma source and the associated magnetic field topology for plasma injection into the caulked-cusp magnetic field. The resulting plasma fueling and cross-field diffusion is discussed.

  2. A Non-thermal WIMP Miracle

    CERN Document Server

    Acharya, Bobby Samir; Kane, Gordon; Watson, Scott

    2009-01-01

    Light scalar fields with only gravitational strength couplings are typically present in UV complete theories of physics beyond the Standard Model. In the early universe it is natural for these fields to dominate the energy density, and their subsequent decay, if prior to BBN, will typically yield some dark matter particles in their decay products. In this paper we make the observation that a Non-thermal WIMP `Miracle' may result: that is, in the simplest solution to the cosmological moduli problem, non-thermally produced WIMPs can naturally account for the observed dark matter relic density. Such a solution may be generic in string theory compactifications.

  3. Treatment of gaseous effluents by using surface discharge plasma in continuous reactors: Process modelling and simulation

    OpenAIRE

    Assadi, Aymen,; Bouzaza, Abdelkrim; Wolbert, Dominique

    2015-01-01

    International audience; In the present work, the oxidation of isovaleraldehyde, a typical pollutant of indoor air, is investigated by using two different plasma DBD reactors: cylindrical and planar reactor. The study of the influence of the specific energy shows that its increment is accompanied by an increase of the removal efficiency. In fact, when specific energy extends three times, the removal efficiency is increased from 5 to 40%. Moreover an increase of the specific energy induces a hi...

  4. Treatment of gaseous effluents by using surface discharge plasma in continuous reactors: Process modelling and simulation

    OpenAIRE

    Assadi, Aymen; Bouzaza, Abdelkrim; Wolbert, Dominique

    2015-01-01

    International audience; In the present work, the oxidation of isovaleraldehyde, a typical pollutant of indoor air, is investigated by using two different plasma DBD reactors: cylindrical and planar reactor. The study of the influence of the specific energy shows that its increment is accompanied by an increase of the removal efficiency. In fact, when specific energy extends three times, the removal efficiency is increased from 5 to 40%. Moreover an increase of the specific energy induces a hi...

  5. Numerical modeling of disperse material evaporation in axisymmetric thermal plasma reactor

    Directory of Open Access Journals (Sweden)

    Stefanović Predrag Lj.

    2003-01-01

    Full Text Available A numerical 3D Euler-Lagrangian stochastic-deterministic (LSD model of two-phase flow laden with solid particles was developed. The model includes the relevant physical effects, namely phase interaction, panicle dispersion by turbulence, lift forces, particle-particle collisions, particle-wall collisions, heat and mass transfer between phases, melting and evaporation of particles, vapour diffusion in the gas flow. It was applied to simulate the processes in thermal plasma reactors, designed for the production of the ceramic powders. Paper presents results of extensive numerical simulation provided (a to determine critical mechanism of interphase heat and mass transfer in plasma flows, (b to show relative influence of some plasma reactor parameters on solid precursor evaporation efficiency: 1 - inlet plasma temperature, 2 - inlet plasma velocity, 3 - particle initial diameter, 4 - particle injection angle a, and 5 - reactor wall temperature, (c to analyze the possibilities for high evaporation efficiency of different starting solid precursors (Si, Al, Ti, and B2O3 powder, and (d to compare different plasma reactor configurations in conjunction with disperse material evaporation efficiency.

  6. Plasma Flow and Temperature in a Gliding Reactor with Different Electrode Configurations

    Directory of Open Access Journals (Sweden)

    J. Sláma

    2012-01-01

    Full Text Available This paper deals with the plasma flow shape depending on the electrode form of a gliding discharge plasma-chemical reactor, and with the temperature distribution along the direction of the plasma flow in one specific electrode form. The shape of the electrodes and their mutual position has a significant influence on the design of a gliding discharge reactor and its applications. It is crucial to know the temperature distribution in the reactor’s chamber design and discharge application. Three configurations with model shapes of wire electrodes were therefore tested (low-divergent, circular, high-divergent and the plasma flow was described. The experiments were performed in air at atmospheric pressure and at room temperature. In order to map the reactive plasma region of the flow we investigated the visible spectral lines that were emitted. The gas temperature was measured using an infrared camera.

  7. Plasma flow reactor for steady state monitoring of physical and chemical processes at high temperatures

    Science.gov (United States)

    Koroglu, Batikan; Mehl, Marco; Armstrong, Michael R.; Crowhurst, Jonathan C.; Weisz, David G.; Zaug, Joseph M.; Dai, Zurong; Radousky, Harry B.; Chernov, Alex; Ramon, Erick; Stavrou, Elissaios; Knight, Kim; Fabris, Andrea L.; Cappelli, Mark A.; Rose, Timothy P.

    2017-09-01

    We present the development of a steady state plasma flow reactor to investigate gas phase physical and chemical processes that occur at high temperature (1000 reactor consists of a glass tube that is attached to an inductively coupled argon plasma generator via an adaptor (ring flow injector). We have modeled the system using computational fluid dynamics simulations that are bounded by measured temperatures. In situ line-of-sight optical emission and absorption spectroscopy have been used to determine the structures and concentrations of molecules formed during rapid cooling of reactants after they pass through the plasma. Emission spectroscopy also enables us to determine the temperatures at which these dynamic processes occur. A sample collection probe inserted from the open end of the reactor is used to collect condensed materials and analyze them ex situ using electron microscopy. The preliminary results of two separate investigations involving the condensation of metal oxides and chemical kinetics of high-temperature gas reactions are discussed.

  8. Study of carbon dioxide gas treatment based on equations of kinetics in plasma discharge reactor

    Science.gov (United States)

    Abedi-Varaki, Mehdi

    2017-08-01

    Carbon dioxide (CO2) as the primary greenhouse gas, is the main pollutant that is warming earth. CO2 is widely emitted through the cars, planes, power plants and other human activities that involve the burning of fossil fuels (coal, natural gas and oil). Thus, there is a need to develop some method to reduce CO2 emission. To this end, this study investigates the behavior of CO2 in dielectric barrier discharge (DBD) plasma reactor. The behavior of different species and their reaction rates are studied using a zero-dimensional model based on equations of kinetics inside plasma reactor. The results show that the plasma reactor has an effective reduction on the CO2 density inside the reactor. As a result of reduction in the temporal variations of reaction rate, the speed of chemical reactions for CO2 decreases and very low concentration of CO2 molecules inside the plasma reactor is generated. The obtained results are compared with the existing experimental and simulation findings in the literature.

  9. Numerical Simulations of Low Pressure Inductively Coupled Plasmas in Geometrically Complex Reactors

    Science.gov (United States)

    Yu, Ben; Wu, Hanming; Krishnan, Anantha

    1996-10-01

    A two-dimensional fluid model has been developed for simulation of low pressure inductively coupled plasma (ICP) reactors. The model obtains solutions for the plasma density, electron temperature, and electric field for the given operating conditions. The physical phenomena and processes such as ambipolar diffusion, thermal diffusion, quasi-neutrality, ionization, inductive Joule heating, and excitations are considered in the model. A significant feature of the model is its capability of handling complex geometries that are often encountered in industrial reactors. Complex reactor geometries are modeled by a body-fitted-coordinate (BFC) formulation. A series of numerical experiments have been conducted using the model to study effects of various parameters such as chamber pressure, size of the wafer, position of the inductive coil, and the power input into the plasma. Different reactor geometries such as the GEC ICP reference cell and the belljar reactor have been simulated. The results of the parametric experiments are presented to show certain systematic trends in performance parameters such as uniformity and processing rates. The ICP model has been coupled to a computational fluid dynamics (CFD) code (capable of 3D simulations) that obtains the flow and pressure distribution inside the chamber. The ICP model will use pressure predictions (from the CFD model) to compute the local ionization rates. Chemical source/sink terms from the plasma dissociation model will be used by the CFD code to account for local reactant depletion effects.

  10. Development, diagnostic and applications of radio-frequency plasma reactor

    Science.gov (United States)

    Puac, N.

    2008-07-01

    In many areas of the industry, plasma processing of materials is a vital technology. Nonequilibrium plasmas proved to be able to produce chemically reactive species at a low gas temperature while maintaining highly uniform reaction rates over relatively large areas (Makabe and Petrovic 2006). At the same time nonequilibrium plasmas provide means for good and precise control of the properties of active particles that determine the surface modification. Plasma needle is one of the atmospheric pressure sources that can be used for treatment of the living matter which is highly sensitive when it comes to low pressure or high temperatures (above 40 C). Dependent on plasma conditions, several refined cell responses are induced in mammalian cells (Sladek et al. 2005). It appears that plasma treatment may find many biomedical applications. However, there are few data in the literature about plasma effects on plant cells and tissues. So far, only the effect of low pressure plasmas on seeds was investigated. It was shown that short duration pretreatments by non equilibrium low temperature air plasma were stimulative in light induced germination of Paulownia tomentosa seeds (Puac et al. 2005). As membranes of plants have different properties to those of animals and as they show a wide range of properties we have tried to survey some of the effects of typical plasma which is envisaged to be used in biotechnological applications on plant cells. In this paper we will make a comparison between two configurations of plasma needle that we have used in treatment of biological samples (Puac et al. 2006). Difference between these two configurations is in the additional copper ring that we have placed around glass tube at the tip of the needle. We will show some of the electrical characteristics of the plasma needle (with and without additional copper ring) and, also, plasma emission intensity obtained by using fast ICCD camera.

  11. Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Raymond W.

    2012-07-30

    This project, Development and Testing of a High Capacity Plasma Chemical Reactor in the Ukraine was established at the Kharkiv Institute of Physics and Technology (KIPT). The associated CRADA was established with Campbell Applied Physics (CAP) located in El Dorado Hills, California. This project extends an earlier project involving both CAP and KIPT conducted under a separate CRADA. The initial project developed the basic Plasma Chemical Reactor (PCR) for generation of ozone gas. This project built upon the technology developed in the first project, greatly enhancing the output of the PCR while also improving reliability and system control.

  12. Titanium nitride plasma-chemical synthesis with titanium tetrachloride raw material in the DC plasma-arc reactor

    Science.gov (United States)

    Kirpichev, D. E.; Sinaiskiy, M. A.; Samokhin, A. V.; Alexeev, N. V.

    2017-04-01

    The possibility of plasmochemical synthesis of titanium nitride is demonstrated in the paper. Results of the thermodynamic analysis of TiCl4 - H2 - N2 system are presented; key parameters of TiN synthesis process are calculated. The influence of parameters of plasma-chemical titanium nitride synthesis process in the reactor with an arc plasmatron on characteristics on the produced powders is experimentally investigated. Structure, chemical composition and morphology dependencies on plasma jet enthalpy, stoichiometric excess of hydrogen and nitrogen in a plasma jet are determined.

  13. Non-thermal x-ray emission from wire array z-pinches

    Energy Technology Data Exchange (ETDEWEB)

    Ampleford, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hansen, Stephanie B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jennings, Christopher Ashley [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Webb, Timothy Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harper-Slaboszewicz, V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Loisel, Guillaume Pascal [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flanagan, Timothy McGuire [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bell, Kate Suzanne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Brent M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McPherson, Leroy A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Rochau, Gregory A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Chittenden, Jeremy P. [Imperial College, London (United Kingdom); Sherlock, Mark [Imperial College, London (United Kingdom); Appelbe, Brian [Imperial College, London (United Kingdom); Giuliani, John [Naval Research Lab. (NRL), Washington, DC (United States); Ouart, Nicholas [Naval Research Lab. (NRL), Washington, DC (United States); Seely, John [Artep Inc., Ellicott City, MD (United States)

    2015-12-01

    We report on experiments demonstrating the transition from thermally-dominated K-shell line emission to non-thermal, hot-electron-driven inner-shell emission for z pinch plasmas on the Z machine. While x-ray yields from thermal K-shell emission decrease rapidly with increasing atomic number Z, we find that non-thermal emission persists with favorable Z scaling, dominating over thermal emission for Z=42 and higher (hn ≥ 17keV). Initial experiments with Mo (Z=42) and Ag (Z=47) have produced kJ-level emission in the 17-keV and 22-keV Kα lines respectively. We will discuss the electron beam properties that could excite these non - thermal lines. We also report on experiments that have attempted to control non - thermal K - shell line emission by modifying the wire array or load hardware setup.

  14. Comparative study of NO removal in surface-plasma and volume-plasma reactors based on pulsed corona discharges.

    Science.gov (United States)

    Malik, Muhammad Arif; Kolb, Juergen F; Sun, Yaohong; Schoenbach, Karl H

    2011-12-15

    Nitric oxide (NO) conversion has been studied for two different types of atmospheric-pressure pulsed-corona discharges, one generates a surface-plasma and the other provides a volume-plasma. For both types of discharges the energy cost for NO removal increases with decreasing oxygen concentration and initial concentration of NO. However, the energy cost for volume plasmas for 50% NO removal, EC(50), from air was found to be 120 eV/molecule, whereas for the surface plasma, it was only 70 eV/molecule. A smaller difference in energy cost, but a higher efficiency for removal of NO was obtained in a pure nitrogen atmosphere, where NO formation is restricted due to the lack of oxygen. For the volume plasma, EC(50) in this case was measured at 50 eV/molecule, and for the surface plasma it was 40 eV/molecule. Besides the higher NO removal efficiency of surface plasmas compared to volume plasmas, the energy efficiency of surface-plasmas was found to be almost independent of the amount of electrical energy deposited in the discharge, whereas the efficiency for volume plasmas decreases considerably with increasing energy. This indicates the possibility of operating surface plasma discharges at high energy densities and in more compact reactors than conventional volume discharges.

  15. Comparative study of NO removal in surface-plasma and volume-plasma reactors based on pulsed corona discharges

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Muhammad Arif, E-mail: MArifMalik@gmail.com [Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA 23508 (United States); Kolb, Juergen F.; Sun, Yaohong; Schoenbach, Karl H. [Frank Reidy Research Center for Bioelectrics, Old Dominion University, 4211 Monarch Way, Suite 300, Norfolk, VA 23508 (United States)

    2011-12-15

    Nitric oxide (NO) conversion has been studied for two different types of atmospheric-pressure pulsed-corona discharges, one generates a surface-plasma and the other provides a volume-plasma. For both types of discharges the energy cost for NO removal increases with decreasing oxygen concentration and initial concentration of NO. However, the energy cost for volume plasmas for 50% NO removal, EC{sub 50}, from air was found to be 120 eV/molecule, whereas for the surface plasma, it was only 70 eV/molecule. A smaller difference in energy cost, but a higher efficiency for removal of NO was obtained in a pure nitrogen atmosphere, where NO formation is restricted due to the lack of oxygen. For the volume plasma, EC{sub 50} in this case was measured at 50 eV/molecule, and for the surface plasma it was 40 eV/molecule. Besides the higher NO removal efficiency of surface plasmas compared to volume plasmas, the energy efficiency of surface-plasmas was found to be almost independent of the amount of electrical energy deposited in the discharge, whereas the efficiency for volume plasmas decreases considerably with increasing energy. This indicates the possibility of operating surface plasma discharges at high energy densities and in more compact reactors than conventional volume discharges.

  16. Design and operation of a rotating drum radio frequency plasma reactor for the modification of free nanoparticles.

    Science.gov (United States)

    Shearer, Jeffrey C; Fisher, Ellen R

    2013-06-01

    A rotating drum rf plasma reactor was designed to functionalize the surface of nanoparticles and other unusually shaped substrates through plasma polymerization and surface modification. This proof-of-concept reactor design utilizes plasma polymerized allyl alcohol to add OH functionality to Fe2O3 nanoparticles. The reactor design is adaptable to current plasma hardware, eliminating the need for an independent reactor setup. Plasma polymerization performed on Si wafers, Fe2O3 nanoparticles supported on Si wafers, and freely rotating Fe2O3 nanoparticles demonstrated the utility of the reactor for a multitude of processes. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to characterize the surface of the substrates prior to and after plasma deposition, and scanning electron microscopy was used to verify that no extensive change in the size or shape of the nanoparticles occurred because of the rotating motion of the reactor. The reactor design was also extended to a non-depositing NH3 plasma modification system to demonstrate the reactor design is effective for multiple plasma processes.

  17. Modeling of discharges in a capacitively coupled dual frequency plasma reactor

    Directory of Open Access Journals (Sweden)

    Bojarov Aleksandar

    2009-01-01

    Full Text Available In this paper we have modeled a dual frequency coupled plasma reactor (DF-CCP by using a 1d3v PIC/MCC code. The obtained results apart from their theoretical relevance have practical applications especially for development of plasma reactors and for nanoelectronics. Dual frequency plasmas are used for etching of dielectric interconnect layers with high aspect ratios (contact holes. In the DF-CCP, the density of the plasma is controlled by the high frequency, while the ion energy depends mainly on the potential drop in the sheath, which is controlled by the low frequency. The results of our simulations show the dependence of the energy of the ions arriving at the inner electrode on the voltage of the low frequency generator and how the voltage of the high frequency generator affects the ion flux on the electrode.

  18. Simulation of low-temperature, atmospheric-pressure plasma enhanced chemical vapor deposition reactors

    OpenAIRE

    Lorant, Christophe; Descamps, Pierre; De Wilde, Juray; 1st BeLux workshop on “Coating, Materials, surfaces and Interfaces

    2014-01-01

    The simulation of low-temperature, atmospheric-pressure plasma enhanced chemical vapor deposition reactors is challenging due to the coupling of the fluid dynamics, the chemical reactions and the electric field and the stiffness of the resulting mathematical system. The model equations and the rigorous model reduction to reduce the stiffness are addressed in this paper. Considering pure nitrogen plasma, simulations with two configurations are discussed.

  19. Simulations of energy and angular distributions in plasma processing reactors using CFD-ACE +

    Science.gov (United States)

    Bhoj, Ananth; Jain, Kunal; Megahed, Mustafa

    2013-09-01

    Several plasma processing reactors employ energetic ion bombardment at the substrate to enable surface reactions such as plasma etching, deposition or sputtering. The knowledge and control of the energy and angular distributions is an important requirement and can be used to suppress or enhance reaction rates. The CFD-ACE + platform is used for reactor scale modeling of generic inductively coupled and capacitively coupled rf plasma reactors. CFD-ACE + has a coupled solver approach that includes modules to address in a sequential and iterative manner, fluid flow, heat transfer, the Poisson equation for electric fields, charged species transport equations for species fluxes, surface charge on dielectrics and chemical kinetics in the gas and on all plasma-bounding surfaces. The Monte Carlo transport module of CFD-ACE + is based on the work of Kushner and co-workers and tracks pseudo-particles representing actual species based on source functions in the reactor. Model outputs for visualization include species densities and energy and angular distribution functions. Results discussed will include the effect of process variables such as pressure, power and frequency on the energy and angular distributions. R. J. Hoekstra and M.J. Kushner, Journal of Applied Physics, 79, 2275 (1996).

  20. Simulation of polyatomic discharges for thin film deposition processes in low-pressure plasma reactors

    Science.gov (United States)

    Bera, Kallol

    Comprehensive multi-dimensional self-consistent numerical fluid models for radio-frequency capacitively and inductively coupled methane discharges were developed to predict diamond-like-carbon thin film deposition/etching rate on the wafer. A numerical model of glow discharge provides insight on the physical phenomena in the discharge leading to better understanding and design of the reactor. The developed discharge models included detailed discharge physics, gas-phase chemistry and surface chemistry modeling. To understand the basic discharge phenomena, one- dimensional radio frequency capacitively coupled Ar plasma was simulated using a fluid model. The model was modified for methane plasma to predict the profiles of the plasma variables. The model was then extended to two- dimensional cylindrical coordinates to capture the effects of asymmetry of the reactor on the plasma variables. The necessary dc bias for the discharge was predicted such that the cycle-averaged current to the powered electrode was zero. A discharge chemistry model was also developed to predict various radical and neutral densities in the plasma, and their fluxes to the cathode. The species fluxes are used to predict film deposition rate and the properties of the deposited film. The model predictions of plasma density, self-generated de bias, cathode current and plasma potential compared well with the experimental results. A high density plasma with inductive coupling at low pressure was also considered. Separate rf bias and dc bias are applied to the substrate holder to modulate the ion energy. The present model simulates electron, ion and neutral transport, including detailed discharge and surface chemistry. The model has been implemented for methane discharge to obtain deposition/etching of thin carbon film on the wafer. To the author's knowledge, this is the first attempt to simulate capacitively and inductively coupled plasmas self-consistently for a depositing gas under the operating

  1. A Non-thermal WIMP Miracle

    OpenAIRE

    Acharya, Bobby Samir; Kumar, Piyush; Kane, Gordon; Watson, Scott

    2009-01-01

    Light scalar fields with only gravitational strength couplings are typically present in UV complete theories of physics beyond the Standard Model. In the early universe it is natural for these fields to dominate the energy density, and their subsequent decay, if prior to BBN, will typically yield some dark matter particles in their decay products. In this paper we make the observation that a Non-thermal WIMP `Miracle' may result: that is, in the simplest solution to the cosmological moduli pr...

  2. Surface Modification of Fine Particle by Plasma Grafting in a Circulating Fluidized Bed Reactor under Reduced Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sounghee [Woosuk University, Jinchon (Korea, Republic of)

    2015-10-15

    A plasma surface modification of powders has been carried out in a circulating fluidized bed reactor under reduced pressure. Polystyrene (PS) particles treated by plasma are grafted with polyethylene glycol (PEG) on the surface. The virgin, plasma-treated and grafted powders were characterized by DPPH method, FTIR, SEM and contact angle meter. The plasma-treated PS powders have well formed peroxide on the surface, By PEG grafting polymerization, PEG is well grafted and dispersed on the surface of the plasma-treated PS powders. The PEG-g-PS particle was successfully synthesized using the plasma circulating fluidized bed reactor under reduced pressure.

  3. Non-thermal Emission in Sagittarius B?

    CERN Document Server

    Lang, Cornelia C; Goss, W M

    2008-01-01

    In this paper, we summarize three recent papers which point out possible non-thermal radio emission arising from the Sgr B region in the Galactic Center. We also present a high-resolution and sensitive image of the Sgr B region at 1.4 GHz made with the VLA. Using this image and a matched-array 327 MHz VLA image, we derive a thermal spectrum for the Sgr B complex and suggest that the radio emission is a mixture of optically thin and optically thick emission over the frequency range discussed here (255 MHz to 1.4 GHz). In addition, we show that the the apparent non-thermal power law slope for the Sgr B2 continuum temperature observed by the GBT is likely determined by source structure and provides limited information about the physical processes in the Sgr B region. While the structure Sgr B region is complex and furthermore confused by the Galactic background, there does not appear to be substantial evidence for a non-thermal component in Sgr B.

  4. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C. [and others

    2001-01-10

    The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.

  5. Experimental and numerical studies of microwave-plasma interaction in a MWPECVD reactor

    OpenAIRE

    A. Massaro; L. Velardi; Taccogna, F.; Cicala, G.

    2016-01-01

    This work deals with and proposes a simple and compact diagnostic method able to characterize the interaction between microwave and plasma without the necessity of using an external diagnostic tool. The interaction between 2.45 GHz microwave and plasma, in a typical ASTeX-type reactor, is investigated from experimental and numerical view points. The experiments are performed by considering plasmas of three different gas mixtures: H2, CH4-H2 and CH4-H2-N2. The two latter are used to deposit sy...

  6. Integrated physics analysis of plasma start-up scenario of helical reactor FFHR-d1

    Science.gov (United States)

    Goto, T.; Miyazawa, J.; Sakamoto, R.; Seki, R.; Suzuki, C.; Yokoyama, M.; Satake, S.; Sagara, A.; The FFHR Design Group

    2015-06-01

    1D physics analysis of the plasma start-up scenario of the large helical device (LHD)-type helical reactor FFHR-d1 was conducted. The time evolution of the plasma profile is calculated using a simple model based on the LHD experimental observations. A detailed assessment of the magnetohydrodynamic equilibrium and neo-classical energy loss was conducted using the integrated transport analysis code TASK3D. The robust controllability of the fusion power was confirmed by feedback control of the pellet fuelling and a simple staged variation of the external heating power with a small number of simple diagnostics (line-averaged electron density, edge electron density and fusion power). A baseline operation control scenario (plasma start-up and steady-state sustainment) of the FFHR-d1 reactor for both self-ignition and sub-ignition operation modes was demonstrated.

  7. Analysis of a gas-liquid film plasma reactor for organic compound oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Kevin [Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310 (United States); Wang, Huijuan [School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang 212013 (China); Locke, Bruce R., E-mail: blocke@fsu.edu [Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310 (United States)

    2016-11-05

    Highlights: • Non-homogeneous filamentary plasma discharge formed along gas-liquid interface. • Hydrogen peroxide formed near interface favored over organic oxidation from liquid. • Post-plasma Fenton reactions lead to complete utilization of hydrogen peroxide. - Abstract: A pulsed electrical discharge plasma formed in a tubular reactor with flowing argon carrier gas and a liquid water film was analyzed using methylene blue as a liquid phase hydroxyl radical scavenger and simultaneous measurements of hydrogen peroxide formation. The effects of liquid flow rate, liquid conductivity, concentration of dye, and the addition of ferrous ion on dye decoloration and degradation were determined. Higher liquid flow rates and concentrations of dye resulted in less decoloration percentages and hydrogen peroxide formation due to initial liquid conductivity effects and lower residence times in the reactor. The highest decoloration energy yield of dye found in these studies was 5.2 g/kWh when using the higher liquid flow rate and adding the catalyst. The non-homogeneous nature of the plasma discharge favors the production of hydrogen peroxide in the plasma-liquid interface over the chemical oxidation of the organic in the bulk liquid phase and post-plasma reactions with the Fenton catalyst lead to complete utilization of the plasma-formed hydrogen peroxide.

  8. Investigation of the Millimeter-Wave Plasma Assisted CVD Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vikharev, A; Gorbachev, A; Kozlov, A; Litvak, A; Bykov, Y; Caplan, M

    2005-07-21

    A polycrystalline diamond grown by the chemical vapor deposition (CVD) technique is recognized as a unique material for high power electronic devices owing to unrivaled combination of properties such as ultra-low microwave absorption, high thermal conductivity, high mechanical strength and chemical stability. Microwave vacuum windows for modern high power sources and transmission lines operating at the megawatt power level require high quality diamond disks with a diameter of several centimeters and a thickness of a few millimeters. The microwave plasma-assisted CVD technique exploited today to produce such disks has low deposition rate, which limits the availability of large size diamond disk windows. High-electron-density plasma generated by the millimeter-wave power was suggested for enhanced-growth-rate CVD. In this paper a general description of the 30 GHz gyrotron-based facility is presented. The output radiation of the gyrotron is converted into four wave-beams. Free localized plasma in the shape of a disk with diameter much larger than the wavelength of the radiation is formed in the intersection area of the wave-beams. The results of investigation of the plasma parameters, as well as the first results of diamond film deposition are presented. The prospects for commercially producing vacuum window diamond disks for high power microwave devices at much lower costs and processing times than currently available are outlined.

  9. Nonthermal plasma reactors for the production of light hydrocarbon olefins from heavy oil

    Directory of Open Access Journals (Sweden)

    Prieto G.

    2003-01-01

    Full Text Available During the last decade, nonthermal plasma technology was applied in many different fields, focusing attention on the destruction of harmful compounds in the air. This paper deals with nonthermal plasma reactors for the conversion of heavy oil into light hydrocarbon olefins, to be employed as gasoline components or to be added in small amounts for the catalytic reduction of nitrogen oxide compounds in the treatment of exhaust gas at power plants. For the process, the plate-plate nonthermal plasma reactor driven by AC high voltage was selected. The reactor was modeled as a function of parameter characteristics, using the methodology provided by the statistical experimental design. The parameters studied were gap distance between electrodes, carrier gas flow and applied power. Results indicate that the reactions occurring in the process of heavy oil conversion have an important selective behavior. The products obtained were C1-C4 hydrocarbons with ethylene as the main compound. Operating the parameters of the reactor within the established operative window of the system and close to the optimum conditions, efficiencies as high as 70 (mul/joule were obtained. These values validate the process as an in-situ method to produce light olefins for the treatment of nitrogen oxides in the exhaust gas from diesel engines.

  10. Photochemical/Microchannel Plasma Reactors Driven By High Power Vacuum Ultraviolet Lamps

    Science.gov (United States)

    Shin, Chul; Park, Sung-Jin; Eden, Gary

    2016-09-01

    Experiments are being conducted in which molecular dissociation or other chemical reactions in microchannel plasmas are accelerated by the introduction of vacuum ultraviolet photons. Initial emphasis is being placed on recently-developed Xe2 lamps that are efficient sources of 172 nm (h ν 7.2 eV) photons. Thin, flat lamps, fabricated from fused silica and having microcavity arrays internal to the lamp, have been developed by the University of Illinois and Eden Park Illumination and produce intensities above 200 mW/cm2. Integrating such lamps into a microcavity plasma reactor yields a hybrid photochemical/plasma system in which product yield and power consumption can be optimized. The selectivity of photodissociation in generating radicals and atomic fragments offers new synergies in plasma processing. Data concerning CO2 dissociation in arrays of microchannel plasmas, and the modification of this process by external 172 nm radiation, will be presented.

  11. Carbon Dioxide reduction by non-equilibrium electrocatalysis plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Amouroux, J; Cavadias, S [LGPPTS- ENSCP/UPMC 11 rue P. t M. Curie 75231 Paris cedex 05 (France); Doubla, A, E-mail: simeon-cavadias@chimie-paristech.fr [Laboratoire de Chimie Minerale, Universite de Yaounde I, BP 812 (Cameroon)

    2011-03-15

    A possible strategy to increase the added value from CCS, is to consider it as a raw material for the production of liquid fuels, or chemical products. The most studied ways related to CO{sub 2} reduction, with formation of molecules such as CH{sub 3}OH or syngas, is the reaction with H{sub 2} (exothermic reaction needing catalytic activation), or CH{sub 4} (endothermic reaction taking place at high temperature) with the use of a catalyst. The synthesis of CH{sub 3}OH is performed on Lewis acid type sites (default of electrons) Cu/Zn/Al{sub 2}O{sub 3}. However the products of the reaction i.e. the water and methanol molecules, are very polar, resulting in a very low desorption rate. So in this reaction the key step is water desorption (Lewis basis). The increase of temperature in order to increase this desorption rate, leads to a cracking and the deposition of carbon in the catalyst, limiting its lifetime. Plasma driven catalysis allows firstly, a vibrational activation of CO{sub 2}, H{sub 2} or CH{sub 4} through electron-molecule collisions, making easier their dissociation at low temperature and secondly expels water from the catalyst sites by supplying electrons (electropolarisation). The results show an increase of the yield in CH{sub 3}OH with plasma and catalyst, confirming the action of the plasma. However energy consumption remains relatively high.

  12. Thermal and Non-thermal X-Rays from the LMC Super Bubble 30 Dor C

    CERN Document Server

    Bamba, A; Nakajima, H; Koyama, K; Bamba, Aya; Ueno, Masaru; Nakajima, Hiroshi; Koyama, Katsuji

    2004-01-01

    We report on the discovery of thermal and non-thermal X-rays from the shells of the super bubble (SB) 30 Dor C in the Large Magellanic Cloud (LMC). The X-ray morphology is a nearly circular shell with a radius of about 40 pc, which is bright on the northern and western sides. The spectra of the shells are different from region to region. The southern shell shows clear emission lines, and is well fitted with a model of a thin-thermal plasma (kT = 0.21keV) in non-equilibrium ionization (NEI) plus a power-law component. This thermal plasma is located inside of the H alpha emission, which is the outer edge of the shell of the SB. The northern and western sides of the SB are dim in H alpha emission, but are bright in non-thermal (power-law) X-rays with a photon index of 2.1-2.9. The non-thermal X-ray shell traces the outer boundary of the radio shell. These features of thin-thermal and non-thermal X-rays are similar to those of SN 1006, a prototype of synchrotron X-ray shell, but the non-thermal component of 30 Do...

  13. Non-thermal WIMPs as dark radiation

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, Farinaldo S. [Department of Physics and Santa Cruz Institute for Particle Physics University of California, Santa Cruz, CA 95064 (United States)

    2014-06-24

    It has been thought that only light species could behave as radiation and account for the dark radiation observed recently by Planck, WMAP9, South Pole and ATACAMA telescopes. In this work we will show GeV scale WIMPs can plausibly account for the dark radiation as well. Heavy WIMPs might mimic the effect of a half neutrino species if some fraction of them are produced non-thermally after their thermal freeze-out. In addition, we will show how BBN, CMB and Structure Formation bounds might be circumvented.

  14. Modeling of 2-dimensional and 3-dimensional etch profiles in high density plasma reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoekstra, R.J.; Kushner, M.J. [Univ. of Illinois, Urbana, IL (United States). Dept. of Electrical and Computer Engineering; Sukharev, V. [LSI Logic Corp., Santa Clara, CA (United States)

    1997-12-31

    In order to model the plasma etching process from plasma generation to etch profile evolution, processes from the macroscopic reactor scale to the microscopic feature scale must be simulated. An integrated monte Carlo feature Profile Model (MCFPM) has been developed to examine the time evolution of etch profiles in high density plasma systems. By integrating the MCFPM with the Hybrid Plasma Equipment Model (HPEM), the authors are able to self-consistently determine the etch profiles for specific regions on the wafer in specific reactor geometry with specified parameters for power, chemistry, gas flow, etc. The latest improvements of the model include the effects of incoming particle angle and energy on reaction and reflection based on the results of molecular dynamics simulations. Increase the specular reflection of high energy particles leads to more vertical sidewalls and corner clearing but can also cause deformation of the bottom of the profile surface. For Chlorine etching of 2D and 3D profiles in polysilicon, the model results will be compared to experimental results in an inductively couple etching reactor. The changes due to radial location as well as sub wafer and superwafer topography be examined.

  15. Toxic waste treatment with sliding centrifugal plasma reactor; Tratamiento de residuos toxicos con reactores de plasma centrifugo deslizante (PCD)

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, J.; Pacheco, M.; Valdivia, R.; Ramos, F.; Duran, M.; Hidalgo, M.; Cruz, A.; Martinez, J. C.; Martinez, R.; De la Cruz, S.; Flores, T.; Vidal, E.; Escobar, S. [ININ, Carretera Mexico-Toluca s/n, Ocoyoacac 52750, Estado de Mexico (Mexico); Garduno, M.; Garcia, M.; Portillo, J.; Torres, C.; Estrada, N.; Velazquez, S.; Vasquez, C. [Instituto Tecnologico de Toluca, Av. Instituto Tecnologico s/n, Ex-Rancho la Virgen, Metepec 52140, Estado de Mexico (Mexico)

    2008-07-01

    The aim is to develop technology for hazardous waste treatment, including the building and putting into operation of a prototype based on a sliding centrifugal plasma technology to demonstrate its ability to degradation taking in account the existing environmental standards. (Author)

  16. Simulation of plasma-surface interactions in a fusion reactor by means of QSPA plasma streams: recent results and prospects

    Science.gov (United States)

    Garkusha, I. E.; Aksenov, N. N.; Byrka, O. V.; Makhlaj, V. A.; Herashchenko, S. S.; Malykhin, S. V.; Petrov, Yu V.; Staltsov, V. V.; Surovitskiy, S. V.; Wirtz, M.; Linke, J.; Sadowski, M. J.; Skladnik-Sadowska, E.

    2016-09-01

    This paper is devoted to plasma-surface interaction issues at high heat-loads which are typical for fusion reactors. For the International Thermonuclear Experimental Reactor (ITER), which is now under construction, the knowledge of erosion processes and the behaviour of various constructional materials under extreme conditions is a very critical issue, which will determine a successful realization of the project. The most important plasma-surface interaction (PSI) effects in 3D geometry have been studied using a QSPA Kh-50 powerful quasi-stationary plasma accelerator. Mechanisms of the droplet and dust generation have been investigated in detail. It was found that the droplets emission from castellated surfaces has a threshold character and a cyclic nature. It begins only after a certain number of the irradiating plasma pulses when molten and shifted material is accumulated at the edges of the castellated structure. This new erosion mechanism, connected with the edge effects, results in an increase in the size of the emitted droplets (as compared with those emitted from a flat surface). This mechanism can even induce the ejection of sub-mm particles. A concept of a new-generation QSPA facility, the current status of this device maintenance, and prospects for further experiments are also presented.

  17. Spark Plasma Sintering of Fuel Cermets for Nuclear Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhong; Robert C. O' Brien; Steven D. Howe; Nathan D. Jerred; Kristopher Schwinn; Laura Sudderth; Joshua Hundley

    2011-11-01

    The feasibility of the fabrication of tungsten based nuclear fuel cermets via Spark Plasma Sintering (SPS) is investigated in this work. CeO2 is used to simulate fuel loadings of UO2 or Mixed-Oxide (MOX) fuels within tungsten-based cermets due to the similar properties of these materials. This study shows that after a short time sintering, greater than 90 % density can be achieved, which is suitable to possess good strength as well as the ability to contain fission products. The mechanical properties and the densities of the samples are also investigated as functions of the applied pressures during the sintering.

  18. Relativistic Reconnection: an Efficient Source of Non-Thermal Particles

    CERN Document Server

    Sironi, Lorenzo

    2014-01-01

    In magnetized astrophysical outflows, the dissipation of field energy into particle energy via magnetic reconnection is often invoked to explain the observed non-thermal signatures. By means of two- and three-dimensional particle-in-cell simulations, we investigate anti-parallel reconnection in magnetically-dominated electron-positron plasmas. Our simulations extend to unprecedentedly long temporal and spatial scales, so we can capture the asymptotic state of the system beyond the initial transients, and without any artificial limitation by the boundary conditions. At late times, the reconnection layer is organized into a chain of large magnetic islands connected by thin X-lines. The plasmoid instability further fragments each X-line into a series of smaller islands, separated by X-points. At the X-points, the particles become unmagnetized and they get accelerated along the reconnection electric field. We provide definitive evidence that the late-time particle spectrum integrated over the whole reconnection r...

  19. Plasma Heating and Current Drive for Fusion Reactors

    Science.gov (United States)

    Holtkamp, Norbert

    2010-02-01

    ITER (in Latin ``the way'') is designed to demonstrate the scientific and technological feasibility of fusion energy. Fusion is the process by which two light atomic nuclei combine to form a heavier one and thus release energy. In the fusion process two isotopes of hydrogen - deuterium and tritium - fuse together to form a helium atom and a neutron. Thus fusion could provide large scale energy production without greenhouse effects; essentially limitless fuel would be available all over the world. The principal goals of ITER are to generate 500 megawatts of fusion power for periods of 300 to 500 seconds with a fusion power multiplication factor, Q, of at least 10. Q >= 10 (input power 50 MW / output power 500 MW). In a Tokamak the definition of the functionalities and requirements for the Plasma Heating and Current Drive are relevant in the determination of the overall plant efficiency, the operation cost of the plant and the plant availability. This paper summarise these functionalities and requirements in perspective of the systems under construction in ITER. It discusses the further steps necessary to meet those requirements. Approximately one half of the total heating will be provided by two Neutral Beam injection systems at with energy of 1 MeV and a beam power of 16 MW into the plasma. For ITER specific test facility is being build in order to develop and test the Neutral Beam injectors. Remote handling maintenance scheme for the NB systems, critical during the nuclear phase of the project, will be developed. In addition the paper will give an overview over the general status of ITER. )

  20. Modeling of the Flow, Temperature and Concentration Fields in an Arc Plasma Reactor with Argon-Nitrogen Atmosphere

    National Research Council Canada - National Science Library

    Fudolig, Agustin M; Nogami, Hiroshi; Yagi, Jun-ichiro

    1996-01-01

    A mathematical formulation was developed for describing the flow behavior, temperature profile and concentration fields in pure or mixed argon and nitrogen arc plasmas impinging on a metal target inside a reactor...

  1. Cross-field transport of electrons at the magnetic throat in an annular plasma reactor

    Science.gov (United States)

    Zhang, Yunchao; Charles, Christine; Boswell, Rod

    2017-01-01

    Cross-field transport of electrons has been studied at the magnetic throat of the annular Chi-Kung reactor. This annular configuration allows the creation of a low pressure argon plasma with two distinct electron heating locations by independently operating a radio-frequency antenna surrounding the outer source tube, or an antenna housed inside the inner source tube. The two antenna cases show opposite variation trends in radial profiles of electron energy probability function, electron density, plasma potential and electron temperature. The momentum and energy transport coefficients are obtained from the electron energy probability functions, and the related electron fluxes follow the path of electron cooling across the magnetic throat.

  2. Analysis of a gas-liquid film plasma reactor for organic compound oxidation.

    Science.gov (United States)

    Hsieh, Kevin; Wang, Huijuan; Locke, Bruce R

    2016-11-01

    A pulsed electrical discharge plasma formed in a tubular reactor with flowing argon carrier gas and a liquid water film was analyzed using methylene blue as a liquid phase hydroxyl radical scavenger and simultaneous measurements of hydrogen peroxide formation. The effects of liquid flow rate, liquid conductivity, concentration of dye, and the addition of ferrous ion on dye decoloration and degradation were determined. Higher liquid flow rates and concentrations of dye resulted in less decoloration percentages and hydrogen peroxide formation due to initial liquid conductivity effects and lower residence times in the reactor. The highest decoloration energy yield of dye found in these studies was 5.2g/kWh when using the higher liquid flow rate and adding the catalyst. The non-homogeneous nature of the plasma discharge favors the production of hydrogen peroxide in the plasma-liquid interface over the chemical oxidation of the organic in the bulk liquid phase and post-plasma reactions with the Fenton catalyst lead to complete utilization of the plasma-formed hydrogen peroxide.

  3. Experimental and numerical studies of microwave-plasma interaction in a MWPECVD reactor

    Science.gov (United States)

    Massaro, A.; Velardi, L.; Taccogna, F.; Cicala, G.

    2016-12-01

    This work deals with and proposes a simple and compact diagnostic method able to characterize the interaction between microwave and plasma without the necessity of using an external diagnostic tool. The interaction between 2.45 GHz microwave and plasma, in a typical ASTeX-type reactor, is investigated from experimental and numerical view points. The experiments are performed by considering plasmas of three different gas mixtures: H2, CH4-H2 and CH4-H2-N2. The two latter are used to deposit synthetic undoped and n-doped diamond films. The experimental setup equipped with a matching network enables the measurements of very low reflected power. The reflected powers show ripples due to the mismatching between wave and plasma impedance. Specifically, the three types of plasma exhibit reflected power values related to the variation of electron-neutral collision frequency among the species by changing the gas mixture. The different gas mixtures studied are also useful to test the sensitivity of the reflected power measurements to the change of plasma composition. By means of a numerical model, only the interaction of microwave and H2 plasma is examined allowing the estimation of plasma and matching network impedances and of reflected power that is found about eighteen times higher than that measured.

  4. Experimental and numerical studies of microwave-plasma interaction in a MWPECVD reactor

    Directory of Open Access Journals (Sweden)

    A. Massaro

    2016-12-01

    Full Text Available This work deals with and proposes a simple and compact diagnostic method able to characterize the interaction between microwave and plasma without the necessity of using an external diagnostic tool. The interaction between 2.45 GHz microwave and plasma, in a typical ASTeX-type reactor, is investigated from experimental and numerical view points. The experiments are performed by considering plasmas of three different gas mixtures: H2, CH4-H2 and CH4-H2-N2. The two latter are used to deposit synthetic undoped and n-doped diamond films. The experimental setup equipped with a matching network enables the measurements of very low reflected power. The reflected powers show ripples due to the mismatching between wave and plasma impedance. Specifically, the three types of plasma exhibit reflected power values related to the variation of electron-neutral collision frequency among the species by changing the gas mixture. The different gas mixtures studied are also useful to test the sensitivity of the reflected power measurements to the change of plasma composition. By means of a numerical model, only the interaction of microwave and H2 plasma is examined allowing the estimation of plasma and matching network impedances and of reflected power that is found about eighteen times higher than that measured.

  5. Deuterium--tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bell, M.G.; Batha, S.; Beer, M.; Bell, R.E.; Belov, A.; Berk, H.; Bernabei, S.; Bitter, M.; Breizman, B.; Bretz, N.L.; Budny, R.; Bush, C.E.; Callen, J.; Cauffman, S.; Chang, C.S.; Chang, Z.; Cheng, C.Z.; Darrow, D.S.; Dendy, R.O.; Dorland, W.; Duong, H.; Efthimion, P.C.; Ernst, D.; Evenson, H.; Fisch, N.J.; Fisher, R.; Fonck, R.J.; Fredrickson, E.D.; Fu, G.Y.; Furth, H.P.; Gorelenkov, N.N.; Goloborodko, V.Y.; Grek, B.; Grisham, L.R.; Hammett, G.W.; Hawryluk, R.J.; Heidbrink, W.; Herrmann, H.W.; Herrmann, M.C.; Hill, K.W.; Hogan, J.; Hooper, B.; Hosea, J.C.; Houlberg, W.A.; Hughes, M.; Jassby, D.L.; Jobes, F.C.; Johnson, D.W.; Kaita, R.; Kaye, S.; Kesner, J.; Kim, J.S.; Kissick, M.; Krasilnikov, A.V.; Kugel, H.; Kumar, A.; Lam, N.T.; Lamarche, P.; LeBlanc, B.; Levinton, F.M.; Ludescher, C.; Machuzak, J.; Majeski, R.P.; Manickam, J.; Mansfield, D.K.; Mauel, M.; Mazzucato, E.; McChesney, J.; McCune, D.C.; McKee, G.; McGuire, K.M.; Meade, D.M.; Medley, S.S.; Mikkelsen, D.R.; Mirnov, S.V.; Mueller, D.; Nagayama, Y.; Navratil, G.A.; Nazikian, R.; Okabayashi, M.; Osakabe, M.; Owens, D.K.; Park, H.K.; Park, W.; Paul, S.F.; Petrov, M.P.; Phillips, C.K.; Phillips, M.; Phillips, P.; Ramsey, A.T.; Rice, B.; Redi, M.H.; Rewoldt, G.; Reznik, S.; Roquemore, A.L.; Rogers, J.; Ruskov, E.; Sabbagh, S.A.; Sasao, M.; Schilling, G.; Schmidt, G.L.; Scott, S.D.; Semenov, I.; Senko, T.; Skinner, C.H.; Stevenson, T.; Strait, E.J.; Stratton, B.C.; Strachan, J.D.; Stodiek, W.; Synakowski, E.; Takahashi, H.; Tang, W.; Taylor, G.; Thompson, M.E.; von Goeler, S.; Von Halle, A.; Walters, R.T.; Wang, S.; White, R.; Wieland, R.M.; Williams, M.; Wilson, J.R.; Wong, K.L.; Wurden, G.A.; Yamada, M.; Yavorski, V.; Young, K.M.; Zakharov, L.; Zarnstorff, M.C.; Zweben, S.J. [Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    1997-05-01

    Experiments in the Tokamak Fusion Test Reactor (TFTR) [Phys. Plasmas {bold 2}, 2176 (1995)] have explored several novel regimes of improved tokamak confinement in deuterium{endash}tritium (D--T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high l{sub i}). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through {ital in situ} deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q{sub a}{approx}4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l{sub i} plasmas produced by rapid expansion of the minor cross section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D--T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D--T plasmas with q{sub 0}{gt}1 and weak magnetic shear in the central region, a toroidal Alfvn eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions. {copyright} {ital 1997 American Institute of Physics.}

  6. A Cascaded Discharge Plasma-Adsorbent Technique for Engine Exhaust Treatment

    Science.gov (United States)

    Rajanikanth, B. S.; Srinivasan, A. D.; Arya, Nandiny B.

    2003-06-01

    A cascaded system of electrical discharges (non-thermal plasma) and adsorption process was investigated for the removal of oxides of Nitrogen (NOx) and total hydrocarbons (THC) from an actual diesel engine exhaust. The non-thermal plasma and adsorption processes were separately studied first and then the cascaded process was studied. In this study, different types of adsorbents were used. The NOx removal efficiency was higher with plasma-associated adsorption (cascaded) process compared to the individual processes and the removal efficiency was found almost invariant in time. When associated by plasma, among the adsorbents studied, activated charcoal and MS-13X were more effective for NOx and THC removal respectively. The experiments were conducted at no load and at 50% load conditions. The plasma reactor was kept at room temperature throughout the experiment, while the temperature of the adsorbent reactor was varied. A relative comparison of adsorbents was discussed at the end.

  7. Plasma nitridation of silicon by N2 and NH3 in PECVD reactor

    Science.gov (United States)

    Bakardjieva, V. S.; Alexieva, Z. I.; Beshkov, G. D.; Mateev, E. S.

    2010-04-01

    The effect was investigated of nitrogen and ammonia plasma treatment of monocrystalline Si wafers. The experiments were carried out in a plasma-enhanced chemical vapor deposition reactor. The wafers were subjected to N2 and NH3 plasma treatment for varying times at temperature of 380 °C. The plasma treated surfaces were studied by transmission electron microscopy with C-Pt replicas, reflection high-energy electron diffraction and Auger electron spectroscopy. The results point to the growth of an amorphous layer on the surface. The Auger electron spectroscopy depth profiles obtained by sputtering show the presence of an oxynitride layer with varying composition depending on the time of plasma treatment. The Auger electron spectroscopy analysis shows that after 60 s of treatment in N2 plasma, the nitrogen content is 8 at.%, while after 300 s it is 22 at.%, the thickness of the oxynitride nanolayer being 2.5-7.2 nm. In the case of NH3 plasma the thickness calculated from the sputtering time (from 50 s to 15 min) varies between 2 and 12 nm, and the nitrogen content, between 5 and 35 at.%.

  8. Hydrogen production by plasma electrolysis reactor of KOH-ethanol solution

    Science.gov (United States)

    Saksono, N.; Batubara, T.; Bismo, S.

    2016-11-01

    Plasma electrolysis has great potential in industrial hydrogen production, chlor-alkali production, and waste water treatment. Plasma electrolysis produces more hydrogen with less energy consumption than hydrocarbon or Faraday electrolysis. This paper investigated the hydrogen production by plasma electrolysis of KOH-ethanol solution at 80 °C and 1 atm. The effects of voltage, KOH solution, ethanol addition, and cathode deep on plasma electrolysis performance were studied. The hydrogen production was analyzed using bubble flow meter and hydrogen analyzer. The electrical energy consumption was measured by a digital multimeter. The effectiveness of plasma electrolysis in terms of hydrogen production was evaluated by comparing it with Faraday Electrolysis. The results showed that hydrogen produced by plasma electrolysis is 149 times higher than the hydrogen produced by Faraday electrolysis. The optimum hydrogen production was 50.71 mmol/min, obtained at 700 V with 0.03 M KOH, 10% vol ethanol and 6.6 cm cathode deep, with energy consumption 1.49 kJ/mmol. The result demonstrates a promising path for hydrogen production by utilizing plasma electrolysis reactor.

  9. Short-time plasma surface modification of HDPE powder in a Plasma Downer Reactor - process, wettability improvement and ageing effects

    Energy Technology Data Exchange (ETDEWEB)

    Arpagaus, C. [ETH Swiss Federal Institute of Technology Zurich, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zentrum, Sonneggstrasse 3, CH-8092 Zurich (Switzerland); Rossi, A. [ETH Swiss Federal Institute of Technology Zurich, Laboratory for Surface Science and Technology, Department of Materials, ETH Hoenggerberg, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich (Switzerland); Universita degli Studi di Cagliari, Dipartimento di Chimica Inorganica ed Analitica, UdR INSTM I-09100 Cagliari (Italy); Rudolf von Rohr, Ph. [ETH Swiss Federal Institute of Technology Zurich, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zentrum, Sonneggstrasse 3, CH-8092 Zurich (Switzerland)]. E-mail: vonrohr@ipe.mavt.ethz.ch

    2005-12-15

    The effectiveness of improving the wettability of HDPE powders within less than 0.1 s by plasma surface modification in a Plasma Downer Reactor is investigated. A correlation is revealed between the XPS results (O/C-ratio) and the wettability (contact angle, polar surface tension by capillary rise method). The O{sub 2}-content in the plasma feed gas has been adjusted for best wettability properties. XPS results indicate the formation of C=O and COOH functional groups on the powder surface. The O/C-ratio increased from 0.0 (no oxygen on the non-treated powder) up to 0.15 for the plasma treated HDPE powder surface. With pure O{sub 2}-plasma treatment, a water contact angle reduction from >90{sup o} (no water penetration into the untreated PE powder) down to 65{sup o} was achieved. The total surface free energy increased from 31.2 to 45 mN/m. Ageing of treated powders occurs and proceeds mostly within the first 7 days of storage. Contact angle measurements and O1s/O2s intensity ratio data support that ageing is mainly a diffusion-controlled process. Nevertheless, XPS results show the presence of oxygen functional groups even after 40 days, which explains why the powder is still dispersible in water without any addition of surfactants.

  10. Surface modifications of fusion reactor relevant materials on exposure to fusion grade plasma in plasma focus device

    Energy Technology Data Exchange (ETDEWEB)

    Niranjan, Ram, E-mail: niranjan@barc.gov.in [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Rout, R.K.; Srivastava, R. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Chakravarthy, Y. [Laser and Plasma Technology Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Mishra, P. [Materials Processing Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Kaushik, T.C.; Gupta, Satish C. [Applied Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2015-11-15

    Graphical abstract: - Highlights: • Exposure of materials (W, Ni, SS, Mo and Cu) to fusion plasma in a plasma focus device. • The erosion and the formations of blisters, pores, craters, micro-cracks after irradiation. • The structural phase transformation in the SS sample after irradiation. • The surface layer alloying of the samples with the plasma focus anode material. - Abstract: An 11.5 kJ plasma focus (PF) device was used here to irradiate materials with fusion grade plasma. The surface modifications of different materials (W, Ni, stainless steel, Mo and Cu) were investigated using various available techniques. The prominent features observed through the scanning electron microscope on the sample surfaces were erosions, cracks, blisters and craters after irradiations. The surface roughness of the samples increased multifold after exposure as measured by the surface profilometer. The X-ray diffraction analysis indicated the changes in the microstructures and the structural phase transformation in surface layers of the samples. We observed change in volumes of austenite and ferrite phases in the stainless steel sample. The energy dispersive X-ray spectroscopic analysis suggested alloying of the surface layer of the samples with elements of the PF anode. We report here the comparative analysis of the surface damages of materials with different physical, thermal and mechanical properties. The investigations will be useful to understand the behavior of the perspective materials for future fusion reactors (either in pure form or in alloy) over the long operations.

  11. A model based on equations of kinetics to study nitrogen dioxide behavior within a plasma discharge reactor.

    Science.gov (United States)

    Abedi-Varaki, Mehdi; Ganjovi, Alireza; Shojaei, Fahimeh; Hassani, Zahra

    2015-01-01

    In this work, a zero-dimensional kinetics model is used to study the temporal behavior of different species such as charged particles, radicals and excited states inside a Dielectric Barrier Discharge plasma reactor. It is shown that, the reactor significantly reduces the concentration of nitrogen monoxide as an environmental pollutant. After a drastic increase, a decrease in the concentration of the NO2 molecules inside the reactor is seen. Nitrogen monoxide molecules with a very low concentration are produced inside the reactor and its quick conversion to other products is proved. The obtained results are compared with the existing experimental and simulation findings, whenever possible.

  12. Effects of a liquid lithium curtain as the first wall in a fusion reactor plasma

    Institute of Scientific and Technical Information of China (English)

    Li Cheng-Yue; J.P. Allain; Deng Bai-Quan

    2007-01-01

    This paper explores the effect of a liquid lithium curtain on fusion reactor plasma, such curtain is utilized as the first wall for the engineering outline design of the Fusion Experimental Breeder (FEB-E). The relationships between the surface temperature of a liquid lithium curtain and the effective plasma charge, fuel dilution and fusion power production have been derived. Results indicate that under normal operation, the evaporation of liquid lithium does not seriously affect the effective plasma charge, but effects on fuel dilution and fusion power are more sensitive. As an example, it has investigated the relationships between the liquid lithium curtain flow velocity and the rise of surface temperature based on operation scenario Ⅱ of the FEB-E design with reversed shear configuration and high power density. Results show that even if the liquid lithium curtain flow velocity is as low as 0.5 m/s, the effects of evaporation from the liquid lithium curtain on plasma are negligible. In the present design, the sputtering of liquid lithium curtain and the particle removal effects of the divertor are not yet considered in detail. Further studies are in progress, and in this work implication of lithium erosion and divertor physics on fusion reactor operation are discussed.

  13. Deuterium-tritium plasmas in novel regimes in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bell, M.G.; Beer, M. [Princeton Univ., NJ (United States). Princeton Plasma Physics Lab.; Batha, S. [Fusion Physics and Technology, Torrance, CA (United States)] [and others

    1997-02-01

    Experiments in the Tokamak Fusion Test Reactor (TFTR) have explored several novel regimes of improved tokamak confinement in deuterium-tritium (D-T) plasmas, including plasmas with reduced or reversed magnetic shear in the core and high-current plasmas with increased shear in the outer region (high-l{sub i}). New techniques have also been developed to enhance the confinement in these regimes by modifying the plasma-limiter interaction through in-situ deposition of lithium. In reversed-shear plasmas, transitions to enhanced confinement have been observed at plasma currents up to 2.2 MA (q{sub a} {approx} 4.3), accompanied by the formation of internal transport barriers, where large radial gradients develop in the temperature and density profiles. Experiments have been performed to elucidate the mechanism of the barrier formation and its relationship with the magnetic configuration and with the heating characteristics. The increased stability of high-current, high-l{sub i} plasmas produced by rapid expansion of the minor cross-section, coupled with improvement in the confinement by lithium deposition has enabled the achievement of high fusion power, up to 8.7 MW, with D-T neutral beam heating. The physics of fusion alpha-particle confinement has been investigated in these regimes, including the interactions of the alphas with endogenous plasma instabilities and externally applied waves in the ion cyclotron range of frequencies. In D-T plasmas with q{sub 0} > 1 and weak magnetic shear in the central region, a toroidal Alfven eigenmode instability driven purely by the alpha particles has been observed for the first time. The interactions of energetic ions with ion Bernstein waves produced by mode-conversion from fast waves in mixed-species plasmas have been studied as a possible mechanism for transferring the energy of the alphas to fuel ions.

  14. Hydrogen Spectral Line Shape Formation in the SOL of Fusion Reactor Plasmas

    Directory of Open Access Journals (Sweden)

    Valery S. Lisitsa

    2014-05-01

    Full Text Available The problems related to the spectral line-shape formation in the scrape of layer (SOL in fusion reactor plasma for typical observation chords are considered. The SOL plasma is characterized by the relatively low electron density (1012–1013 cm−3 and high temperature (from 10 eV up to 1 keV. The main effects responsible for the line-shape formation in the SOL are Doppler and Zeeman effects. The main problem is a correct modeling of the neutral atom velocity distribution function (VDF. The VDF is determined by a number of atomic processes, namely: molecular dissociation, ionization and charge exchange of neutral atoms on plasma ions, electron excitation accompanied by the charge exchange from atomic excited states, and atom reflection from the wall. All the processes take place step by step during atom motion from the wall to the plasma core. In practice, the largest contribution to the neutral atom radiation emission comes from a thin layer near the wall with typical size 10–20 cm, which is small as compared with the minor radius of modern devices including international test experimental reactor ITER (radius 2 m. The important problem is a strongly non-uniform distribution of plasma parameters (electron and ion densities and temperatures. The distributions vary for different observation chords and ITER operation regimes. In the present report, most attention is paid to the problem of the VDF calculations. The most correct method for solving the problem is an application of the Monte Carlo method for atom motion near the wall. However, the method is sometimes too complicated to be combined with other numerical codes for plasma modeling for various regimes of fusion reactor operation. Thus, it is important to develop simpler methods for neutral atom VDF in space coordinates and velocities. The efficiency of such methods has to be tested via a comparison with the Monte Carlo codes for particular plasma conditions. Here a new simplified method

  15. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor

    Directory of Open Access Journals (Sweden)

    Jakub Szałatkiewicz

    2016-08-01

    Full Text Available This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass.

  16. Three-dimensional discharge simulation of inductively coupled plasma (ICP) etching reactor

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    More and more importance has been attached to inductively coupled plasma (ICP) in semiconductor manufacture. For a deep understanding of the plasma discharge process in the etching reactor, this study made a three-dimensional simulation on the Ar plasma discharge process with the commercial software CFD-ACE, which is according to the real experiment conditions and data supplied by North Microelec-tronic Corporation. The error of the simulation results is in the range of ±20% with credibility. The numerical results show that the three-dimentional spatial distribu-tion of electron density is reduced from the chamber center to the wall. The distri-bution of electron density, electron temperature and power deposition is related to the shape and placement of the coil.

  17. Metals Recovery from Artificial Ore in Case of Printed Circuit Boards, Using Plasmatron Plasma Reactor.

    Science.gov (United States)

    Szałatkiewicz, Jakub

    2016-08-10

    This paper presents the investigation of metals production form artificial ore, which consists of printed circuit board (PCB) waste, processed in plasmatron plasma reactor. A test setup was designed and built that enabled research of plasma processing of PCB waste of more than 700 kg/day scale. The designed plasma process is presented and discussed. The process in tests consumed 2 kWh/kg of processed waste. Investigation of the process products is presented with their elemental analyses of metals and slag. The average recovery of metals in presented experiments is 76%. Metals recovered include: Ag, Au, Pd, Cu, Sn, Pb, and others. The chosen process parameters are presented: energy consumption, throughput, process temperatures, and air consumption. Presented technology allows processing of variable and hard-to-process printed circuit board waste that can reach up to 100% of the input mass.

  18. Back corona enhanced organic film deposition inside an Atmospheric Pressure Weakly Ionized Plasma reactor

    Science.gov (United States)

    Islam, Rokibul; Xie, Shuzheng; Englund, Karl; Pedrow, Patrick

    2014-10-01

    A grounded screen with short needle-like protrusions has been designed to generate back corona in an Atmospheric Pressure Weakly Ionized Plasma (APWIP) reactor. The grounded screen with protrusions is placed downstream at a variable gap length from an array of needles that is energized with 60 Hz high voltage. The excitation voltage is in the range 0--10 kV RMS and the feed gas mixture consists of argon and acetylene. A Lecroy 9350AL 500 MHz digital oscilloscope is used to monitor the reactor voltage and current using a resistive voltage divider and a current viewing resistor, respectively. The current signal contains many positive and negative current pulses associated with corona discharge. Analysis of the current signal shows asymmetry between positive and negative corona discharge currents. Photographs show substantial back corona generated near the tips of the protrusions situated at the grounded screen. The back corona activates via bond scission acetylene radicals that are transported downstream to form a plasma-polymerized film on a substrate positioned downstream from the grounded screen. The oscillograms will be used to generate corona mode maps that show the nature of the corona discharge as a function of gap spacing, applied voltage and many other reactor parameters.

  19. Degradation of Benzene by Using a Silent-Packed Bed Hybrid Discharge Plasma Reactor

    Science.gov (United States)

    Jiang, Nan; Lu, Na; Li, Jie; Wu, Yan

    2012-02-01

    In this work, a novel gas phase silent-packed bed hybrid discharge plasma reactor has been proposed, and its ability to control a simulative gas stream containing 240 ppm benzene is experimentally investigated. In order to optimize the geometry of the reactor, the benzene conversion rate and energy yield (EY) were compared for various inner electrode diameters and quartz tube shapes and sizes. In addition, benzene removal efficiency in different discharge regions was qualitatively analyzed and the gas parameter (space velocity) was systematically studied. It has been found that silent-packed bed hybrid discharge plasma reactor can effectively decompose benzene. Benzene removal proved to achieve an optimum value of 60% with a characteristic energy density of 255 J/L in this paper with a 6 mm bolt high-voltage electrode and a 13 mm quartz tube. The optimal space velocity was 188.1 h-1, which resulted in moderate energy yield and removal efficiency. Reaction by-products such as hydroquinone, heptanoic acid, 4-nitrocatechol, phenol and 4-phenoxy-phenol were identified by mean of GC-MS. In addition, based on these organic by-products, a benzene destruction pathway was proposed.

  20. Core Physics and Kinetics Calculations for the Fissioning Plasma Core Reactor

    Science.gov (United States)

    Butler, C.; Albright, D.

    2007-01-01

    Highly efficient, compact nuclear reactors would provide high specific impulse spacecraft propulsion. This analysis and numerical simulation effort has focused on the technical feasibility issues related to the nuclear design characteristics of a novel reactor design. The Fissioning Plasma Core Reactor (FPCR) is a shockwave-driven gaseous-core nuclear reactor, which uses Magneto Hydrodynamic effects to generate electric power to be used for propulsion. The nuclear design of the system depends on two major calculations: core physics calculations and kinetics calculations. Presently, core physics calculations have concentrated on the use of the MCNP4C code. However, initial results from other codes such as COMBINE/VENTURE and SCALE4a. are also shown. Several significant modifications were made to the ISR-developed QCALC1 kinetics analysis code. These modifications include testing the state of the core materials, an improvement to the calculation of the material properties of the core, the addition of an adiabatic core temperature model and improvement of the first order reactivity correction model. The accuracy of these modifications has been verified, and the accuracy of the point-core kinetics model used by the QCALC1 code has also been validated. Previously calculated kinetics results for the FPCR were described in the ISR report, "QCALC1: A code for FPCR Kinetics Model Feasibility Analysis" dated June 1, 2002.

  1. Inlet effect on the coal pyrolysis to acetylene in a hydrogen plasma downer reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Y.; Chen, J.Q.; Ding, Y.L.; Jin, Y. [Tsinghua Univ., Beijing (China). Dept. of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology; Xiong, X.Y. [Xinjiang Tianye Corp., Shihezi (China)

    2008-06-15

    In this study a gas-solid downer reactor was used to characterize high temperature reactions of coal pyrolysis. The aim of the study was to examine the influence of the coal injection design on reactor performance in a 2 MW plasma reactor. Computational fluid dynamics (CFD) simulations were used to model complex reacting flows in the coal pyrolysis process in order to examine the effects of nozzle design on the initial distribution of the coal particles. A 2-fluid model was used to calculate solids viscosity and pressure from the kinetic theory of granular flow as well as to solve partial differential equations for granular temperatures. Results of the simulations showed that gas flow and particle jets through the nozzles played a significant role in the distribution of the coal particles. Coal dispersion at the inlet was dependent on flow conditions. Flat-shaped nozzles provided flexible control on gas-particle contacts during the initial stages. When the layout of the nozzles was tuned, solids flow formed either swirling or non-swirling actions in the reactor. It was concluded that the volume fraction of the acetylene in the product gas was increased by more than 20 per cent when the nozzles were optimally arranged. 9 refs., 1 tab., 8 figs.

  2. Influence of non-thermal TiCl{sub 4}/Ar + O{sub 2} plasma-assisted TiOx based coatings on the surface of polypropylene (PP) films for the tailoring of surface properties and cytocompatibility

    Energy Technology Data Exchange (ETDEWEB)

    Pandiyaraj, K.N., E-mail: dr.knpr@gmail.com [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Kumar, A. Arun; Ramkumar, M.C. [Surface Engineering Laboratory, Department of Physics, Sri Shakthi Institute of Engineering and Technology, L& T by pass, Chinniyam Palayam (post), Coimbatore 641062 (India); Sachdev, A.; Gopinath, P. [Nanobiotechnology Laboratory, Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667 (India); Cools, Pieter; De Geyter, N.; Morent, R. [Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Jozef Plateaustraat 22, 9000 Gent (Belgium); Deshmukh, R.R. [Department of Physics, Institute of Chemical Technology, Matunga, Mumbai 400 019 (India); Hegde, P. [William Mason High School, Mason 45040 (United States); Han, C. [Department of Biomedical, Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221-0012 (United States); Nadagouda, M.N. [Center for Nanoscale Multifunctional Materials, Wright State University, Dayton, OH 45435 (United States)

    2016-05-01

    The superior bulk properties (corrosion resistance, high strength to weight ratio, relatively low cost and easy processing) of hydrocarbon based polymers such as polypropylene (PP) have contributed significantly to the development of new biomedical applications such as artificial organs and cell scaffolds. However, low cell affinity is one of the main draw backs for PP due to its poor surface properties. In tissue engineering, physico-chemical surface properties such as hydrophilicity, polar functional groups, surface charge and morphology play a crucial role to enrich the cell proliferation and adhesion. In this present investigation TiOx based biocompatible coatings were developed on the surface of PP films via DC excited glow discharge plasma, using TiCl{sub 4}/Ar + O{sub 2} gas mixture as a precursor. Various TiOx-based coatings are deposited on the surface of PP films as a function of discharge power. The changes in hydrophilicity of the TiO{sub x}/PP film surfaces were studied using contact angle analysis and surface energy calculations by Fowke's approximation. X-ray photo-electron spectroscopy (XPS) was used to investigate the surface chemical composition of TiOx/PP films. The surface morphology of the obtained TiO{sub x}/PP films was investigated by scanning electron and transmission electron microscopy (SEM &TEM). Moreover, the surface topography of the material was analyzed by atomic force microscopy (AFM). The cytocompatibility of the TiO{sub x}/PP films was investigated via in vitro analysis (cell viability, adhesion and cytotoxicity) using NIH3T3 (mouse embryonic fibroblast) cells. Furthermore the antibacterial activities of TiO{sub x}/PP films were also evaluated against two distinct bacterial models namely Gram positive Staphylococcus aureus (S.aureus) and Gram negative Escherichia coli DH5α. (E.coli) bacteria. XPS results clearly indicate the successful incorporation of TiO{sub x} and oxygen containing polar functional groups on the surface

  3. Influence of non-thermal TiCl4/Ar+O2 plasma-assisted TiOx based coatings on the surface of polypropylene (PP) films for the tailoring of surface properties and cytocompatibility.

    Science.gov (United States)

    Pandiyaraj, K N; Kumar, A Arun; Ramkumar, M C; Sachdev, A; Gopinath, P; Cools, Pieter; De Geyter, N; Morent, R; Deshmukh, R R; Hegde, P; Han, C; Nadagouda, M N

    2016-05-01

    The superior bulk properties (corrosion resistance, high strength to weight ratio, relatively low cost and easy processing) of hydrocarbon based polymers such as polypropylene (PP) have contributed significantly to the development of new biomedical applications such as artificial organs and cell scaffolds. However, low cell affinity is one of the main draw backs for PP due to its poor surface properties. In tissue engineering, physico-chemical surface properties such as hydrophilicity, polar functional groups, surface charge and morphology play a crucial role to enrich the cell proliferation and adhesion. In this present investigation TiOx based biocompatible coatings were developed on the surface of PP films via DC excited glow discharge plasma, using TiCl4/Ar+O2 gas mixture as a precursor. Various TiOx-based coatings are deposited on the surface of PP films as a function of discharge power. The changes in hydrophilicity of the TiOx/PP film surfaces were studied using contact angle analysis and surface energy calculations by Fowke's approximation. X-ray photo-electron spectroscopy (XPS) was used to investigate the surface chemical composition of TiOx/PP films. The surface morphology of the obtained TiOx/PP films was investigated by scanning electron and transmission electron microscopy (SEM &TEM). Moreover, the surface topography of the material was analyzed by atomic force microscopy (AFM). The cytocompatibility of the TiOx/PP films was investigated via in vitro analysis (cell viability, adhesion and cytotoxicity) using NIH3T3 (mouse embryonic fibroblast) cells. Furthermore the antibacterial activities of TiOx/PP films were also evaluated against two distinct bacterial models namely Gram positive Staphylococcus aureus (S.aureus) and Gram negative Escherichia coli DH5α. (E.coli) bacteria. XPS results clearly indicate the successful incorporation of TiOx and oxygen containing polar functional groups on the surface of plasma treated PP films. Moreover the surface

  4. CHARACTERISTICS OF A FAST RISE TIME POWER SUPPLY FOR A PULSED PLASMA REACTOR FOR CHEMICAL VAPOR DESTRUCTION

    Science.gov (United States)

    Rotating spark gap devices for switching high-voltage direct current (dc) into a corona plasma reactor can achieve pulse rise times in the range of tens of nanoseconds. The fast rise times lead to vigorous plasma generation without sparking at instantaneous applied voltages highe...

  5. An experimental burn wound-healing study of non-thermal atmospheric pressure microplasma jet arrays.

    Science.gov (United States)

    Lee, Ok Joo; Ju, Hyung Woo; Khang, Gilson; Sun, Peter P; Rivera, Jose; Cho, Jin Hoon; Park, Sung-Jin; Eden, J Gary; Park, Chan Hum

    2016-04-01

    In contrast with a thermal plasma surgical instrument based on coagulative and ablative properties, low-temperature (non-thermal) non-equilibrium plasmas are known for novel medicinal effects on exposed tissue while minimizing undesirable tissue damage. In this study we demonstrated that arrays of non-thermal microplasma jet devices fabricated from a transparent polymer can efficiently inactivate fungi (Candida albicans) as well as bacteria (Escherichia coli), both in vitro and in vivo, and that this leads to a significant wound-healing effect. Microplasma jet arrays offer several advantages over conventional single-jet devices, including superior packing density, inherent scalability for larger treatment areas, unprecedented material flexibility in a plasma jet device, and the selective generation of medically relevant reactive species at higher plasma densities. The therapeutic effects of our multi-jet device were verified on second-degree burns in animal rat models. Reduction of the wound area and the histology of the wound after treatment have been investigated, and expression of interleukin (IL)-1α, -6 and -10 was verified to evaluate the healing effects. The consistent effectiveness of non-thermal plasma treatment has been observed especially in decreasing wound size and promoting re-epithelialization through collagen arrangement and the regulation of expression of inflammatory genes.

  6. Novel Composite Hydrogen-Permeable Membranes for Nonthermal Plasma Reactors for the Decomposition of Hydrogen Sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Morris Argyle; John Ackerman; Suresh Muknahallipatna; Jerry Hamann; Stanislaw Legowski; Gui-Bing Zhao; Sanil John; Ji-Jun Zhang; Linna Wang

    2007-09-30

    The goal of this experimental project was to design and fabricate a reactor and membrane test cell to dissociate hydrogen sulfide (H{sub 2}S) in a nonthermal plasma and to recover hydrogen (H{sub 2}) through a superpermeable multi-layer membrane. Superpermeability of hydrogen atoms (H) has been reported by some researchers using membranes made of Group V transition metals (niobium, tantalum, vanadium, and their alloys), but it was not achieved at the moderate pressure conditions used in this study. However, H{sub 2}S was successfully decomposed at energy efficiencies higher than any other reports for the high H{sub 2}S concentration and moderate pressures (corresponding to high reactor throughputs) used in this study.

  7. Scaling of surface-plasma reactors with a significantly increased energy density for NO conversion.

    Science.gov (United States)

    Malik, Muhammad Arif; Xiao, Shu; Schoenbach, Karl H

    2012-03-30

    Comparative studies revealed that surface plasmas developing along a solid-gas interface are significantly more effective and energy efficient for remediation of toxic pollutants in air than conventional plasmas propagating in air. Scaling of the surface plasma reactors to large volumes by operating them in parallel suffers from a serious problem of adverse effects of the space charges generated at the dielectric surfaces of the neighboring discharge chambers. This study revealed that a conductive foil on the cathode potential placed between the dielectric plates as a shield not only decoupled the discharges, but also increased the electrical power deposited in the reactor by a factor of about forty over the electrical power level obtained without shielding and without loss of efficiency for NO removal. The shield had no negative effect on efficiency, which is verified by the fact that the energy costs for 50% NO removal were about 60 eV/molecule and the energy constant, k(E), was about 0.02 L/J in both the shielded and unshielded cases.

  8. Reactor plasma facing component designs based on liquid metal concepts supported in porous systems

    Science.gov (United States)

    Tabarés, F. L.; Oyarzabal, E.; Martin-Rojo, A. B.; Tafalla, D.; de Castro, A.; Soleto, A.

    2017-01-01

    The use of liquid metals (LMs) as plasma facing components in fusion devices was proposed as early as 1970 for a field reversed concept and inertial fusion reactors. The idea was extensively developed during the APEX Project, at the turn of the century, and it is the subject at present of the biennial International Symposium on Lithium Applications (ISLA), whose fourth meeting took place in Granada, Spain at the end of September 2015. While liquid metal flowing concepts were specially addressed in USA research projects, the idea of embedding the metal in a capillary porous system (CPS) was put forwards by Russian teams in the 1990s, thus opening the possibility of static concepts. Since then, many ideas and accompanying experimental tests in fusion devices and laboratories have been produced, involving a large fraction of countries within the international fusion community. Within the EUROFusion Roadmap, these activities are encompassed into the working programs of the plasma facing components (PFC) and divertor tokamak test (DTT) packages. In this paper, a review of the state of the art in concepts based on the CPS set-up for a fusion reactor divertor target, aimed at preventing the ejection of the liquid metal by electro-magnetic (EM) forces generated under plasma operation, is described and required R+D activities on the topic, including ongoing work at CIEMAT specifically oriented to filling the remaining gaps, are stressed.

  9. Spectroscopic diagnostics of superthermal electrons with high-number harmonic EC radiation in tokamak reactor plasmas

    Directory of Open Access Journals (Sweden)

    Minashin P.V.

    2015-01-01

    Full Text Available A method of spectroscopic diagnostics of the average perpendicular-to-magnetic-field momentum of the superthermal component of the electron velocity distribution (EVD, based on the high-number-harmonic electron cyclotron (EC radiation, is suggested for nuclear fusion-reactor plasmas under condition of a strong auxiliary heating (e.g. in tokamak DEMO, a next step after tokamak ITER. The method is based on solving an inverse problem for reconstruction of the EVD in parallel and perpendicular-to-magnetic-field components of electron momentum at high and moderate energies responsible for the emission of the high-number-harmonic EC radiation.

  10. Enhanced Fullerene Yield in Plasma-Aerosol Reactor at Cryogenic Boundary Temperature

    CERN Document Server

    Jouravlev, Mikhail

    2011-01-01

    We demonstrate remarkably enhanced yield of C60 fullerenes in an aerosol discharge chamber due to the additional presence of a strong spatial temperature gradient. The role of the temperature gradients in the increased yield of C60 and fullerene-like structures is discussed. The reaction is not fully reversible and carbon soot matter is formed as a secondary product in the form of carbon aerosol particles. The increasing concentration of C60 was easily recognized from the characteristic UV-spectra. The result of this paper will be useful for improvement of fullerene synthesis technology and for application to constructing new types of aerosol-plasma reactors.

  11. Composition Analysis of Non-thermal Atmospheric Pressure Plasma Micro Jet and a Study of Its Sterilization Effects%大气压低温等离子体的活性氧成分分析及其杀菌效应研究

    Institute of Scientific and Technical Information of China (English)

    国晋菘; 潘洁; 张茜; 吴杉; 梁永栋; 王静

    2012-01-01

    The authors carried out the reactive species and sterilization efficacy of a direct current atmospheric pressure Ar+O2 (2%) cold plasma micro jet. Electron spin resonance (ESR) spectroscopy and other methods were employed to investigate the reactive species of the plasma. The plasma micro jet was submerged in Staphyloccocus aureus suspensions for the study of its sterilization effects. Two types of reactive species produced in the solution were monitored by ESR spectroscopy directivity, namely hydroxyl radical (OH.) and singlet oxygen (1^O2). Superoxide anion radical (O2-.) was also proved in the system directly. O3 and H2O2 in the system were also analysed quantitatively. With 10 min Ar+O2 (2%) cold plasma micro jet treatment, a quick increase of the percent inactivation from 0 to 99.9% was achieved. Non-thermal atmospheric pressure microplasma micro jet can generate enormous reactive species and can efficiently inactivate S. aureus in water. The possible mechanism is that the reactive species induced the cell generate superoxide membrane lipid, protein and DNA through various oxidation progress. Non-thermal atmospheric pressure plasma micro jet has enormous potential clinical application.%系统分析了以Ar+O2(2%)为气源,以直流辉光放电方式激发的大气压低温等离子体中的活性氧(ROS)成分及其杀菌的生物学效应。采用电子自旋共振(ESR)等技术方法,对等离子体的ROS成分进行了检测分析,同时采用低温等离子体在水下作用的方式探究了其对金黄色葡萄球菌的杀灭作用。通过电子自旋共振分析,直接检测出两种活性氧自由基,分别是羟自由基(OH·)和单线态氧(^1O2),间接证明了超氧阴离子(O2-2·)的存在。同时用臭氧检测仪等对O3和H2O2等进行了定量分析。等离子体能有效杀灭金黄色葡萄球菌,10分钟杀菌率能达到99.9%。低温等离子体中含有大量的ROS成分,并能有

  12. Repetitive tabletop plasma focus to produce a tunable damage factor on materials for fusion reactors

    Science.gov (United States)

    Soto, Leopoldo; Pavez, Cristian; Inestrosa-Izurieta, Maria Jose; Moreno, Jose; Davis, Sergio; Bora, Biswajit; Avaria, Gonzalo; Jain, Jalaj; Altamirano, Luis; Panizo, Miguel; Gonzalez, Raquel; Rivera, Antonio

    2016-10-01

    Future thermonuclear reactors, both magnetic and inertial confinement approaches, need materials capable of withstanding the extreme radiation and heat loads expected from high repetition rate plasma. A damage factor (F = qτ1/2) in the order of 104 (W/cm2) s1/2 is expected. The axial plasma dynamics after the pinch in a tabletop plasma focus of hundred joules, PF-400J, was characterized by means of pulsed optical refractive diagnostics. The energy, interaction time and power flux of the plasma burst interacting with targets was obtained. Results show a high dependence of the damage factor with the distance from the anode top where the sample is located. A tunable damage factor in the range 10- 105(W/cm2) s1/2 can be obtained. At present the PF-400J operating at 0.077 Hz is being used to study the effects of fusion-relevant pulses on material target, including nanostructured materials. A new tabletop device to be operated up to 1Hz including tunable damage factor has been designed and is being constructed, thus thousand cumulative shots on materials could be obtained in few minutes. The scaling of the damage factor for plasma foci operating at different energies is discussed. Supported by CONICYT: PIA ACT-1115, PAI 79130026.

  13. Characterization of transmission line effects and ion-ion plasma formation in an inductively coupled plasma etch reactor

    Science.gov (United States)

    Khater, Marwan H.

    2000-10-01

    The plasma and processing uniformity are greatly affected by the gas flow distribution and the source geometry in inductively coupled plasma (ICP) etch reactors. However, a reasonably uniform source design, along with uniform gas distribution, does not always guarantee uniform plasma, because transmission line (i.e. standing wave) effects also impact its performance. In this work, we demonstrate that the gas flow distribution can have a major impact on both the plasma density profiles and etch rate uniformity at low pressures where one might expect diffusion to make gas flow distribution less important. We also present an ICP source design with a geometry that enables better control over the field profiles azimuthal symmetry despite transmission line effects. B-dot probe measurements of the free space electromagnetic fields for the new source and a comparably dimensioned standard planar coil showed improved azimuthal symmetry for the new source. We have also developed a three-dimensional electromagnetic model for ICP sources that accounts for current variations along the source length due to standing wave effects. The electromagnetic field profiles obtained from the model showed good agreement with the measured field profiles. Langmuir probe measurements showed that the new ICP source generated high density (1011--1012 cm-3) plasmas at low pressures with significantly improved azimuthal symmetry of power deposition and plasma generation. In addition, polysilicon etch rate profiles on 150 mm wafers also showed improved azimuthal symmetry and uniformity with the new ICP source. The new source was then used to investigate chlorine discharge properties and their spatial profiles in continuous wave (CW) and pulsed operation. Time-resolved Langmuir probe measurements showed that electron-free or "ion-ion" chlorine plasma forms during the afterglow (i.e. power-off) due to electron attachment. Such electron-free plasma can provide both positive and negative ion fluxes to a

  14. Fusion Reactor and Break-Even Experiment Based on Stabilized Liner Compression of Plasma

    Science.gov (United States)

    Turchi, Peter; Frese, Sherry; Frese, Michael

    2016-10-01

    An optimum regime, known as magnetized-target or magneto-inertial fusion (MTF/MIF), requires magnetic fields at megagauss levels, which are attainable by use of dynamic conductors called liners. The stabilized liner compressor (SLC) provides the basis for controlled implosion and re-capture of the liner for reversible energy exchange between liner kinetic energy and the internal energy of a magnetized-plasma target. This exchange requires rotational stabilization of Rayleigh-Taylor modes on the inner surface of the liner and pneumatically driven free-pistons that eliminate such modes at the outer surface. We discuss the implications of the SLC approach for the power reactor, a breakeven experiment, and intermediate experiments to develop the plasma target. Features include the importance of pneumatic drive and the liner-blanket for economic feasibility of MTF/MIF. Supported by ARPA-E ALPHA Program.

  15. Non-thermal radiation from a pulsar wind interacting with an inhomogeneous stellar wind

    Science.gov (United States)

    de la Cita, V. M.; Bosch-Ramon, V.; Paredes-Fortuny, X.; Khangulyan, D.; Perucho, M.

    2017-02-01

    Context. Binaries hosting a massive star and a non-accreting pulsar are powerful non-thermal emitters owing to the interaction of the pulsar and the stellar wind. The winds of massive stars are thought to be inhomogeneous, which could have an impact on the non-thermal emission. Aims: We study numerically the impact of the presence of inhomogeneities or clumps in the stellar wind on the high-energy non-thermal radiation of high-mass binaries hosting a non-accreting pulsar. Methods: We compute the trajectories and physical properties of the streamlines in the shocked pulsar wind without clumps, with a small clump, and with a large clump. This information is used to characterize the injection and the steady state distribution of non-thermal particles accelerated at shocks formed in the pulsar wind. The synchrotron and inverse Compton emission from these non-thermal particles is calculated, accounting also for the effect of gamma-ray absorption through pair creation. A specific study is done for PSR B1259-63/LS2883. Results: When stellar wind clumps perturb the two-wind interaction region, the associated non-thermal radiation in the X-ray band, of synchrotron origin, and in the GeV-TeV band, of inverse Compton origin, is affected by several equally important effects: (i) strong changes in the plasma velocity direction that result in Doppler boosting factor variations; (ii) strengthening of the magnetic field that mainly enhances the synchrotron radiation; (iii) strengthening of the pulsar wind kinetic energy dissipation at the shock, potentially available for particle acceleration; and (iv) changes in the rate of adiabatic losses that affect the lower energy part of the non-thermal particle population. The radiation above 100 GeV detected, presumably, during the post-periastron crossing of the Be star disc in PSR B1259-63/LS2883, can be roughly reproduced assuming that the crossing of the disc is modelled as the encounter with a large inhomogeneity. Conclusions

  16. Thermodynamic analysis of coal pyrolysis to acetylene in hydrogen plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Changning; Chen, Jiaqi; Cheng, Yi [Department of Chemical Engineering, Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    A systematic re-examination of the thermodynamic study on the process of coal pyrolysis to acetylene in a hydrogen plasma reactor was performed with referenced pilot-plant data at the scale of 2-MW plasma. At the ultra-high temperature conditions, the gas phase composition may reach thermodynamic equilibrium immediately no matter whether the solid carbon exists or not. The mass ratio of C/H in the gaseous phase plays a significant role in the acetylene concentration at the thermodynamic equilibrium states. It is demonstrated either in thermodynamics calculation or in hot tests that a mass ratio of C/H near or above 2 is essential to gain an acceptable concentration of acetylene in the mixed gases, which indicates that the mixing efficiency between gas and coal particles near the coal injection point becomes pivotal to the yield of acetylene for its direct influence on the devolatilization of coal, i.e., the gaseous C/H ratio. Being consistent with the hot test experience, the extra amount of water added into the system may inhibit the production of acetylene. However, the addition of methane might impose a positive effect on the yield of acetylene and therefore on the overall reactor performance. (author)

  17. D-T burning plasma characteristics in an A=2 tokamak reactor

    Institute of Scientific and Technical Information of China (English)

    石秉仁

    2005-01-01

    The deuterium-tritium (D-T) burning plasma characteristic in an aspect ratio A=2 tokamak reactor is studied based on a simple equilibrium configuration, the Soloviev-type configuration. Operation limits for the Troyon beta value and for the Greenwald density value as well as for the ITER H-mode confinement scaling are used as the benchmark.It is found that in addition to suitable elongation, large triangularity has advantage for arriving at high beta value and obtaining high fusion power output. Compared to the present ITER design, the A=2 system can have very good merit for the avoidance of disruptions by setting rather high edge q value while keeping relatively large total toroidal current.The main disadvantage of decreasing the aspect ratio is due to the loss of more useful space in the inward region that leads to the decrease of toroidal magnetic field in the plasma region, then worsening the fusion merit. Our analysis and calculation also present a trade-off in this respect. Due to simple equilibrium configuration assumed, some other important issues such as the bootstrap current alignment cannot be optimized. However, the present analysis can offer an insight into the advantages of the medium aspect ratio reactor system that is a blank in present-day tokamak study.

  18. Synthesis of silicon carbide from rice husk in a dc arc plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, B.B.; Mohanty, B.C.; Singh, S.K. [Regional Research Lab., Bhubaneswar (India)

    1996-05-01

    SiC particles have been synthesized in the {alpha}-phase from a mixture of boiler-burnt rice husk and graphite powder in a dc extended arc plasma reactor on a 200--250 g scale. A SiC yield as high as 72% was achieved at a 3.03:1 carbon-to-silica ratio. 21R polytypism, which is rare to grow, was observed in the SiC. About 90% of the SiC particles produced were found to lie under 163 {micro}m, 50% under 90 {micro}m, and 10% under 28 {micro}m size. Very fine particles under 10 {micro}m size occurred to the extent of 3%. XRD and SEM characterizations were carried out to study the phase and morphology of the particles. Heterogeneous gas-phase reactions seem to be responsible for intermediate-size SiC particle growth in the multitemperature zone dc extended arc plasma reactor.

  19. Determination of the neutral oxygen atom density in a plasma reactor loaded with metal samples

    Energy Technology Data Exchange (ETDEWEB)

    Mozetic, Miran; Cvelbar, Uros [Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana (Slovenia)], E-mail: miran.mozetic@ijs.si

    2009-08-15

    The density of neutral oxygen atoms was determined during processing of metal samples in a plasma reactor. The reactor was a Pyrex tube with an inner diameter of 11 cm and a length of 30 cm. Plasma was created by an inductively coupled radiofrequency generator operating at a frequency of 27.12 MHz and output power up to 500 W. The O density was measured at the edge of the glass tube with a copper fiber optics catalytic probe. The O atom density in the empty tube depended on pressure and was between 4 and 7 x 10{sup 21} m{sup -3}. The maximum O density was at a pressure of about 150 Pa, while the dissociation fraction of O{sub 2} molecules was maximal at the lowest pressure and decreased with increasing pressure. At about 300 Pa it dropped below 10%. The measurements were repeated in the chamber loaded with different metallic samples. In these cases, the density of oxygen atoms was lower than that in the empty chamber. The results were explained by a drain of O atoms caused by heterogeneous recombination on the samples.

  20. Preparation of magnetized nanodusty plasmas in a radio frequency-driven parallel-plate reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tadsen, Benjamin, E-mail: tadsen@physik.uni-kiel.de; Greiner, Franko; Piel, Alexander [IEAP, Christian-Albrechts-Universität, D-24098 Kiel (Germany)

    2014-10-15

    Nanodust is produced in an rf-driven push-pull parallel-plate reactor using argon with an acetylene admixture at 5–30 Pa. A scheme for the preparation of nanodust clouds with particle radii up to 400 nm for investigations in magnetized plasmas is proposed. The confinement that keeps the nanodust of different radii inside a moderately magnetized discharge (B ≤ 500 mT) is investigated by a comparison of 2d-Langmuir probe measurements in the dust-free plasma without and with a magnetic field and by the analysis of scattered light of nanodust clouds. It is shown that the dust cloud changes its shape when the dust density changes. This results in a reversed α-γ{sup ′} transition from a dense dust cloud with a central disk-like void to a dilute dust cloud with a toroidal void. When the dust density is further reduced, filaments are observed in the central part of the cloud, which were absent in the high-density phase. It is concluded that the dense nanodust cloud is able to suppress plasma filamentation in magnetized plasmas.

  1. Engineering solutions for components facing the plasma in experimental fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Casini, G.; Farfaletti-Casali, F.

    1986-07-01

    An analysis is made of the engineering problems related to the structures facing the plasma in experimental tokamak-type reactors. Attention is focused on the so-called ''current first wall'', i.e. the wall side of the blanket segments facing the plasma, and on the collector plates of the impurity control system. The design of a first wall, developed at the JRC-Ispra for INTOR/NET and based on the idea of conceiving it as one of the sides, of a box which envelopes a blanket segment, is described. The progress in the structural analysis of the first wall box under operating and abnormal (plasma disruption) conditions is presented and discussed. The design of the collector plates of the single-null divertor of INTOR/NET, as developed at the JRC-Ispra, is described. This design is based on a W-Re protective layer and a water-cooled heat sink, including cooling channels iun Cu-alloys and a Cu-matrix for bonding. The results of the elastic and elasto-plastic evaluations are discussed, together with a layout of the experimental activity in progress. It is concluded that, even if the uncertainties related to the plasma-wall interaction are still relevant, the engineering solutions identified look manageable, although they require a large research and development effort.

  2. Development and evaluation of plasma facing materials for future thermonuclear fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Linke, J.; Pintsuk, G.; Roedig, M.; Schmidt, A.; Thomser, C. [Forschungszentrum Juelich GmbH, EURATOM Association, Juelich (Germany)

    2010-07-01

    More and more attention is directed towards thermonuclear fusion as a possible future energy source. Major advantages of this energy conversion technology are the almost inexhaustible resources and the option to produce energy without CO{sub 2}-emissions. However, in the most advanced field of magnetic plasma confinement a number of technological challenges have to be met. In particular high-temperature resistant and plasma compatible meterials have to be developed and qualified which are able to withstand the extreme environments in a commercial thermonuclear power reactor. The plasma facing materials (PEMs) and components (PFCs) in such fusion devices, i.e. the first wall (FW), the limiters and the divertor, are strongly affected by the plasma wall interaction processes and the applied intense thermal loads during plasma operation. On the one hand, these mechanisms have a strong influence on the plasma performance; on the other hand, they have major impact on the lifetime of the plasma facing armour. Materials for plasma facing components have to fulfill a number of requirements. First of all the materials have to be plasma compatible, i.e. they should exhibit a low atomic number to avoid radiative losses whenever atoms from the wall material will be ionized in the plasma. In addition, the materials must have a high melting point, a high thermal conductivity, and adequate mechanical properties. To select the most suitable material candidates, a comprehensive data base is required which includes all thermo-physical and mechanical properties. In present-day and next step devices the resulting thermal steady state heat loads to the first wall remain below 1 MWm{sup -2}, meanwhile the limiters and the divertor are expected to be exposed to power densities being at least one order of magnitude above the FW-level, i.e. up to 20 MWm{sup -2} for next step tokamaks such as ITER or DEMO. These requirements are responsible for high demands on the selection of qualified PFMs

  3. Analytical model for non-thermal pressure in galaxy clusters

    Science.gov (United States)

    Shi, Xun; Komatsu, Eiichiro

    2014-07-01

    Non-thermal pressure in the intracluster gas has been found ubiquitously in numerical simulations, and observed indirectly. In this paper we develop an analytical model for intracluster non-thermal pressure in the virial region of relaxed clusters. We write down and solve a first-order differential equation describing the evolution of non-thermal velocity dispersion. This equation is based on insights gained from observations, numerical simulations, and theory of turbulence. The non-thermal energy is sourced, in a self-similar fashion, by the mass growth of clusters via mergers and accretion, and dissipates with a time-scale determined by the turnover time of the largest turbulence eddies. Our model predicts a radial profile of non-thermal pressure for relaxed clusters. The non-thermal fraction increases with radius, redshift, and cluster mass, in agreement with numerical simulations. The radial dependence is due to a rapid increase of the dissipation time-scale with radii, and the mass and redshift dependence comes from the mass growth history. Combing our model for the non-thermal fraction with the Komatsu-Seljak model for the total pressure, we obtain thermal pressure profiles, and compute the hydrostatic mass bias. We find typically 10 per cent bias for the hydrostatic mass enclosed within r500.

  4. The effect of dielectric top lids on materials processing in a low frequency inductively coupled plasma (LF-ICP) reactor

    Science.gov (United States)

    Lim, J. W. M.; Chan, C. S.; Xu, L.; Xu, S.

    2014-08-01

    The advent of the plasma revolution began in the 1970's with the exploitation of plasma sources for anisotropic etching and processing of materials. In recent years, plasma processing has gained popularity, with research institutions adopting projects in the field and industries implementing dry processing in their production lines. The advantages of utilizing plasma sources would be uniform processing over a large exposed surface area, and the reduction of toxic emissions. This leads to reduced costs borne by manufacturers which could be passed down as consumer savings, and a reduction in negative environmental impacts. Yet, one constraint that plagues the industry would be the control of contaminants in a plasma reactor which becomes evident when reactions are conducted in a clean vacuum environment. In this work, amorphous silicon (a-Si) thin films were grown on glass substrates in a low frequency inductively coupled plasma (LF-ICP) reactor with a top lid made of quartz. Even though the chamber was kept at high vacuum ( 10-4 Pa), it was evident through secondary ion mass spectroscopy (SIMS) and Fourier-transform infra-red spectroscopy (FTIR) that oxygen contaminants were present. With the aid of optical emission spectroscopy (OES) the contaminant species were identified. The design of the LF-ICP reactor was then modified to incorporate an Alumina (Al2O3) lid. Results indicate that there were reduced amounts of contaminants present in the reactor, and that an added benefit of increased power transfer to the plasma, improving deposition rate of thin films was realized. The results of this study is conclusive in showing that Al2O3 is a good alternative as a top-lid of an LF-ICP reactor, and offers industries a solution in improving quality and rate of growth of thin films.

  5. Reactor

    Science.gov (United States)

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  6. A comparative study of ideal kink stability in two reactor-relevant tokamak plasma configurations with negative and positive triangularity

    Science.gov (United States)

    Ren, Jing; Liu, Yueqiang; Liu, Yue; Medvedev, S. Yu; Wang, Zhirui; Xia, Guoliang

    2016-11-01

    The effects of an ideal/resistive conducting wall, the drift kinetic resonances, as well as the toroidal plasma flow, on the stability of the ideal external kink mode are numerically investigated for a reactor-relevant tokamak plasma with strongly negative triangularity (NTR) shaping. Comparison is made for a similar plasma equilibrium, but with positive triangularity (PTR). It is found that the ideal wall stabilization is less efficient for the kink stabilization in the NTR plasma due to a less ‘external’ eigenmode structure compared to the PTR plasma. The associated plasma displacement in the NTR plasma does not ‘balloon’ near the outboard mid-plane, as is normally the case for the pressure-driven kink-ballooning instability in PTR plasmas, but being more pronounced near the X-points. The toroidal flow plays a similar role for the kink stability for both NTR and PTR plasmas. The drift kinetic damping is less efficient for the ideal external kink mode in the NTR plasma, despite a somewhat larger fraction of the particle trapping near the plasma edge compared to the PTR equilibrium. However, the drift kinetic damping of the resistive wall mode (RWM) in the NTR plasma is generally as efficient as that of the PTR plasma, although the RWM window, in terms of the normalized pressure, is narrower for the NTR plasma.

  7. Bulk-bronzied graphites for plasma-facing components in ITER (International Thermonuclear Experimental Reactor)

    Energy Technology Data Exchange (ETDEWEB)

    Hirooka, Y.; Conn, R.W.; Doerner, R.; Khandagle, M. (California Univ., Los Angeles, CA (USA). Inst. of Plasma and Fusion Research); Causey, R.; Wilson, K. (Sandia National Labs., Livermore, CA (USA)); Croessmann, D.; Whitley, J. (Sandia National Labs., Albuquerque, NM (USA)); Holland, D.; Smolik, G. (Idaho National Engineering Lab., Idaho Falls, ID (USA)); Matsuda, T.; Sogabe, T. (Toyo Tanso Co. Ltd., O

    1990-06-01

    Newly developed bulk-boronized graphites and boronized C-C composites with a total boron concentration ranging from 1 wt % to 30 wt % have been evaluated as plasma-facing component materials for the International Thermonuclear Experimental Reactor (ITER). Bulk-boronized graphites have been bombarded with high-flux deuterium plasmas at temperatures between 200 and 1600{degree}C. Plasma interaction induced erosion of bulk-boronized graphites is observed to be a factor of 2--3 smaller than that of pyrolytic graphite, in regimes of physical sputtering, chemical sputtering and radiation enhanced sublimation. Postbombardment thermal desorption spectroscopy indicates that bulk-boronized graphites enhance recombinative desorption of deuterium, which leads to a suppression of the formation of deuterocarbon due to chemical sputtering. The tritium inventory in graphite has been found to decrease by an order of magnitude due to 10 wt % bulk-boronization at temperatures above 1000{degree}C. The critical heat flux to induce cracking for bulk-boronized graphites has been found to be essentially the same as that for non-boronized graphites. Also, 10 wt % bulk-boronization of graphite hinders air oxidation nearly completely at 800{degree}C and reduces the steam oxidation rate by a factor of 2--3 at around 1100 and 1350{degree}C. 38 refs., 5 figs.

  8. Non-Thermal Removal of Gaseous Pollutants

    Science.gov (United States)

    Srivastava, S.; McGowan, J. William; Chiu, K. C. Ray

    1995-01-01

    The removal of fluorine based exhaust gases such as CFC's, PFC's, NF3, and SF6 used for plasma etching of and deposition on semi-conductors is a subject of increasing interest because of safety, air pollution, and global warming issues. Conventional treatment methods for removing exhaust gas pollutants are wet scrubbing, carbon and resin adsorption, catalytic oxidation, and thermal incineration. However, there are drawbacks associated with each of these methods which include difficulties in implementation, problems with the disposal of solid and liquid pollutant waste, large water and fuel consumption, and additional pollutants such as NOx emissions which are generated in thermal incineration processes.

  9. Enzyme hydrolysis of plasma proteins in a CSTR ultrafiltration reactor: Performances and modeling.

    Science.gov (United States)

    Bressollier, P; Petit, J M; Julien, R

    1988-05-01

    By investigating the effects of four operating variables-volume (V), Ultrafiltration flux (J), enzyme concentration (E), and substrate concentration (S)-on capacity (K) and conversion rate (epsilon) of a hollow fiber CSTR, the performances of the CSTR and the kinetic constants of the reaction were determined. A model which takes into account the course of fractional conversion (X) according to the modified space-time parameter, tau (integrated form of V, J, S, and E), was devised by employing the relationship to integrate the equation for the reaction rate of the CSTR and the expression of the modified space time. Correlation of this model and the experimentally obtained results demonstrates that the characteristics for an ultrafiltration membrane reactor for enzymatic hydrolysis by alcalase of plasma proteins are close to those of an ideal CSTR. Optimal scaling up, however, remains dependent on the compromise which may be obtained between capacity and the conversion rate.

  10. Fuel gas and char from pyrolysis of waste paper in a microwave plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Khongkrapan, Parin; Thanompongchart, Patipat; Tippayawong, Nakorn; Kiatsiriroat, Tanongkiat [Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2013-07-01

    In this study, a microwave plasma reactor was used for pyrolysis of waste papers. The effects of different argon flow rates on char and gas generation were investigated. Changes in carbon and oxygen contents from those in paper to char were significant. Char yield of over 25 % was obtained with the heating value of about 38 MJ/kg. Average gas yield and total content of combustible fraction (CO, CH4 and H2) in the gas product were 2.56 m3/kg and 36 %, respectively. The heating value of gas product and carbon conversion efficiency of the process were maximum at 6.0 MJ/m3 and 73 %, respectively.

  11. Particulate Filtration from Emissions of a Plasma Pyrolysis Assembly Reactor Using Regenerable Porous Metal Filters

    Science.gov (United States)

    Agui, Juan H.; Abney, Morgan; Greenwood, Zachary; West, Philip; Mitchell, Karen; Vijayakumar, R.; Berger, Gordon M.

    2017-01-01

    Microwave-based plasma pyrolysis technology is being studied as a means of supporting oxygen recovery in future spacecraft life support systems. The process involves the conversion of methane produced from a Sabatier reactor to acetylene and hydrogen, with a small amount of solid carbon particulates generated as a side product. The particles must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on porous metal media filters for removing the carbon particulate emissions from the PPA exit gas stream and to provide in situ media regeneration capability. Because of the high temperatures involved in oxidizing the deposited carbon during regeneration, there was particular focus in this development on the materials that could be used, the housing design, and heating methods. This paper describes the design and operation of the filter and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC.

  12. Fuel gas and char from pyrolysis of waste paper in a microwave plasma reactor

    Directory of Open Access Journals (Sweden)

    Parin Khongkrapan, Patipat Thanompongchart, Nakorn Tippayawong, Tanongkiat Kiatsiriroat

    2013-01-01

    Full Text Available In this study, a microwave plasma reactor was used for pyrolysis of waste papers. The effects of different argon flow rates on char and gas generation were investigated. Changes in carbon and oxygen contents from those in paper to char were significant. Char yield of over 25 % was obtained with the heating value of about 38 MJ/kg. Average gas yield and total content of combustible fraction (CO, CH4 and H2 in the gas product were 2.56 m3/kg and 36 %, respectively. The heating value of gas product and carbon conversion efficiency of the process were maximum at 6.0 MJ/m3 and 73 %, respectively.

  13. Removal of NO and SO2 in Corona Discharge Plasma Reactor with Water Film

    Institute of Scientific and Technical Information of China (English)

    贺元吉; 董丽敏; 杨嘉祥

    2004-01-01

    In this paper, a novel type of a corona discharge plasma reactor was designed, which consists of needle-plate-combined electrodes, in which a series of needle electrodes are placed in a glass container filled with flue gas, and a plate electrode is immersed in the water. Based on this model, the removal of NO and SO2 was tested experimentally. In addition, the effect of streamer polarity on the reduction of SO2 and NO was investigated in detail. The experimental results show that the corona wind formed between the high-voltage needle electrode and the water by corona discharge enhances the cleaning efficiency of the flue gas because of the presence of water,and the cleaning efficiency will increase with the increase of applied dc voltage within a definite range. The removal efficiency of SO2 up to 98%, and about 85% of NOx removal under suitable conditions is obtained in our experiments.

  14. Particulate filtration from emissions of a plasma pyrolysis assembly reactor using regenerable porous metal filters

    Science.gov (United States)

    Berger, Gordon M.; Agui, Juan H.; Vijayakumar, R.; Abney, Morgan B.; Greenwood, Zachary W.; West, Philip J.; Mitchell, Karen O.

    2017-01-01

    Microwave-based plasma pyrolysis technology is being studied as a means of supporting oxygen recovery in future spacecraft life support systems. The process involves the conversion of methane produced from a Sabatier reactor to acetylene and hydrogen, with a small amount of solid carbon particulates generated as a side product. The particles must be filtered before the acetylene is removed and the hydrogen-rich gas stream is recycled back to the CRA. We discuss developmental work on porous metal media filters for removing the carbon particulate emissions from the PPA exit gas stream and to provide in situ media regeneration capability. Because of the high temperatures involved in oxidizing the deposited carbon during regeneration, there was particular focus in this development on the materials that could be used, the housing design, and heating methods. This paper describes the design and operation of the filter and characterizes their performance from integrated testing at the Environmental Chamber (E-Chamber) at MSFC.

  15. Analytical estimation of particle shape formation parameters in a plasma-chemical reactor

    Directory of Open Access Journals (Sweden)

    Zhukov Ilya A.

    2017-01-01

    Full Text Available Analytical estimation of particle shape formation parameters in a plasma-chemical reactor implementing the process of thermochemical decomposition of liquid droplet agents (precursors in the flow of a high-temperature gaseous heat-transfer medium was obtained. The basic factor which determines the process is the increase of concentration of a dissolved salt precursor component at the surface of a liquid particle due to solvent evaporation. According to the physical concept of the method of integral balance the diffusion process of concentration change is divided into two stages: the first stage is when the size of gradient layer does not reach the center of a spherical droplet and the second stage when the concentration at the center of a liquid droplet begins to change. The solutions for concentration fields were found for each stage using the method of integral balance taking into account the formation of salt precipitate when the concentration at the surface of the droplet reaches certain equilibrium value. The results of estimation of the influence of various reactor operation parameters and characteristics of initial solution (precursor on the morphology of particles formed – mass fraction and localization of salt precipitate for various levels of evaporation.

  16. Characteristics of gas-liquid pulsed discharge plasma reactor and dye decoloration efficiency

    Institute of Scientific and Technical Information of China (English)

    Bing Sun; Nyein Nyein Aye; Zhiying Gao; Dan Lv; Xiaomei Zhu; Masayuki Sato

    2012-01-01

    The pulsed high-voltage discharge is a new advanced oxidation technology for water treatment.Methyl Orange (MO) dye wastewater was chosen as the target object.Some investigations were conducted on MO decoloration including the discharge characteristics of the multi-needle reactor,parameter optimization,and the degradation mechanism.The following results were obtained.The color group of the azo dye MO was effectively decomposed by water surface plasma.The decoloration rate was promoted with the increase of treatment time,peak voltage,and pulse frequency.When the initial conductivity was 1700 tS/cm,the decoloration rate was the highest.The optimum distahce between the needle electrodes and the water surface was 1 mm,the distance between the grounding electrode and the water surface was 28 mm,and the number of needle electrodes and spacing between needles were 24 and 7.5 mm,respectively.The decoloration rate of MO was affected by the gas in the reactor and varied in the order oxygen > air> argon > nitrogen,and the energy yield obtained in this investigation was 0.45 g/kWh.

  17. Analytical model for non-thermal pressure in galaxy clusters

    CERN Document Server

    Shi, Xun

    2014-01-01

    Non-thermal pressure in the intracluster gas has been found ubiquitously in numerical simulations, and observed indirectly. In this paper we develop, for the first time, an analytical model for intracluster non-thermal pressure. We write down and solve a first-order differential equation describing the evolution of non-thermal velocity dispersion. This equation is based on insights gained from observations, numerical simulations, and theory of turbulence. The non-thermal energy is sourced, in a self-similar fashion, by the mass growth of clusters via mergers and accretion, and dissipates with a time scale determined by the turnover time of the largest turbulence eddies. Our model predicts a radial profile of non-thermal pressure for relaxed clusters. The non-thermal fraction increases with radius, redshift, and cluster mass, in agreement with numerical simulations. The radial dependence is due to a rapid increase of the dissipation time scale with radii, and the mass and redshift dependence comes from the mas...

  18. The role of the boundary plasma in defining the viability of a magnetic fusion reactor: A review

    Science.gov (United States)

    Whyte, Dennis

    2012-10-01

    The boundary of magnetic confinement devices, from the pedestal through to the surrounding surfaces, encompasses an enormous range of plasma and material physics, and their integrated coupling. It is becoming clear that due to fundamental limits of plasma stability and material response the boundary will largely define the viability of an MFE reactor. However we face an enormous knowledge deficit in stepping from present devices and ITER towards a demonstration power plant. We review the boundary and plasma-material interaction (PMI) research required to address this deficit as well as related theoretical/scaling methods for extending present results to future devices. The research activities and gaps are reviewed and organized to three major axes of challenges: power density, plasma duration, and material temperature. The boundary can also be considered a multi-scale system of coupled plasma and material science regulated through the non-linear interface of the sheath. Measurement, theory and modeling across these scales are reviewed. Dimensionless parameters, often used to organized core plasma transport on similarity arguments, can be extended to the boundary plasma, plasma-surface interactions and material response. The scaling methodology suggests intriguing ways forward to prescribe and understand the boundary issues of an eventual reactor in intermediate size devices. Finally, proposed technology and science innovations towards solving the extreme PMI/boundary challenges of magnetic fusion energy will be reviewed.

  19. Advanced Fuels Reactor using Aneutronic Rodless Ultra Low Aspect Ratio Tokamak Hydrogenic Plasmas

    Science.gov (United States)

    Ribeiro, Celso

    2015-11-01

    The use of advanced fuels for fusion reactor is conventionally envisaged for field reversed configuration (FRC) devices. It is proposed here a preliminary study about the use of these fuels but on an aneutronic Rodless Ultra Low Aspect Ratio (RULART) hydrogenic plasmas. The idea is to inject micro-size boron pellets vertically at the inboard side (HFS, where TF is very high and the tokamak electron temperature is relatively low because of profile), synchronised with a proton NBI pointed to this region. Therefore, p-B reactions should occur and alpha particles produced. These pellets will act as an edge-like disturbance only (cp. killer pellet, although the vertical HFS should make this less critical, since the unablated part should appear in the bottom of the device). The boron cloud will appear at midplance, possibly as a MARFE-look like. Scaling of the p-B reactions by varying the NBI energy should be compared with the predictions of nuclear physics. This could be an alternative to the FRC approach, without the difficulties of the optimization of the FRC low confinement time. Instead, a robust good tokamak confinement with high local HFS TF (enhanced due to the ultra low aspect ratio and low pitch angle) is used. The plasma central post makes the RULART concept attractive because of the proximity of NBI path and also because a fraction of born alphas will cross the plasma post and dragged into it in the direction of the central plasma post current, escaping vertically into a hole in the bias plate and reaching the direct electricity converter, such as in the FRC concept.

  20. A Cascaded Discharge Plasma-Adsorbent Technique for Engine Exhaust Treatment

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A cascaded system of electrical discharges (non-thermal plasma) and adsorptionprocess was investigated for the removal of oxides of Nitrogen (NOx) and total hydrocarbons(THC) from an actual diesel engine exhaust. The non-thermal plasma and adsorption processeswere separately studied first and then the cascaded process was studied. In this study, differenttypes of adsorbents were used. The NOx removal efficiency was higher with plasma-associatedadsorption (cascaded) process compared to the individual processes and the removal efficiencywas found almost invariant in time. When associated by plasma, among the adsorbents studied,activated charcoal and MS-13X were more effective for NOx and THC removal respectively. Theexperiments were conducted at no load and at 50 % load conditions. The plasma reactor was keptat room temperature throughout the experiment, while the temperature of the adsorbent reactorwas varied. A relative comparison of adsorbents was discussed at the end.

  1. Final Report: Safety of Plasma Components and Aerosol Transport During Hard Disruptions and Accidental Energy Release in Fusion Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bourham, Mohamed A.; Gilligan, John G.

    1999-08-14

    Safety considerations in large future fusion reactors like ITER are important before licensing the reactor. Several scenarios are considered hazardous, which include safety of plasma-facing components during hard disruptions, high heat fluxes and thermal stresses during normal operation, accidental energy release, and aerosol formation and transport. Disruption events, in large tokamaks like ITER, are expected to produce local heat fluxes on plasma-facing components, which may exceed 100 GW/m{sup 2} over a period of about 0.1 ms. As a result, the surface temperature dramatically increases, which results in surface melting and vaporization, and produces thermal stresses and surface erosion. Plasma-facing components safety issues extends to cover a wide range of possible scenarios, including disruption severity and the impact of plasma-facing components on disruption parameters, accidental energy release and short/long term LOCA's, and formation of airborne particles by convective current transport during a LOVA (water/air ingress disruption) accident scenario. Study, and evaluation of, disruption-induced aerosol generation and mobilization is essential to characterize database on particulate formation and distribution for large future fusion tokamak reactor like ITER. In order to provide database relevant to ITER, the SIRENS electrothermal plasma facility at NCSU has been modified to closely simulate heat fluxes expected in ITER.

  2. Preparation of thin Si:H films in an inductively coupled plasma reactor and analysis of their surface roughness

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Wenfeng [School of Physics and Telecommunication Engineering, Laboratory of Quantum Information Technology, South China Normal University, Guangzhou 510006 (China); College of Engineering, South China Agricultural University, Guangzhou 510642 (China); Chen Junfang, E-mail: chenjf@scnu.edu.cn [School of Physics and Telecommunication Engineering, Laboratory of Quantum Information Technology, South China Normal University, Guangzhou 510006 (China); Meng Ran; Wang Yang; Wang Hui; Guo Chaofeng; Xue Yongqi [School of Physics and Telecommunication Engineering, Laboratory of Quantum Information Technology, South China Normal University, Guangzhou 510006 (China)

    2010-01-15

    An important concern in the deposition of Si:H films is to obtain smooth surfaces. Herein, we deposit the thin Si:H films using Ar-diluted SiH{sub 4} as feedstock gas in an inductively coupled plasma reactor. And we carry a real-time monitor on the deposition process by using optical emission spectrum technology in the vicinity of substrate and diagnose the Ar plasma radial distribution by Langmuir probe. Surface detecting by AFM and surface profilometry in large scale shows that the thin Si:H films have small surface roughness. Distributions of both the ion density and the electron temperature are homogeneous at h = 0.5 cm. Based on these experimental results, it can be proposed inductively coupled plasma reactor is fit to deposit the thin film in large scale. Also, Ar can affect the reaction process and improve the thin Si:H films characteristics.

  3. Manufacturing and testing in reactor relevant conditions of brazed plasma facing components of the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Bisio, M. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Branca, V. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Marco, M. Di [FN s.p.a., ss 35 bis dei Giovi km 15, I-15062 Bosco Marengo (Albania) (Italy); Federici, A. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Grattarola, M. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy)]. E-mail: grattarola@ansaldo.it; Gualco, G. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Guarnone, P. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Luconi, U. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Merola, M. [EFDA, Boltzmanstr. 2, D-85748 Garching (Germany); Ozzano, C. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Pasquale, G. [FN s.p.a., ss 35 bis dei Giovi km 15, I-15062 Bosco Marengo (AL) (Italy); Poggi, P. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Rizzo, S. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy); Varone, F. [Ansaldo Ricerche s.p.a., C.so Perrone 25, I-16152 Genova (Italy)

    2005-11-15

    A fabrication route based on brazing technology has been developed for the realization of the high heat flux components for the ITER vertical target and Dome-Liner. The divertor vertical target is armoured with carbon fiber reinforced carbon and tungsten in the lower straight part and in the upper curved part, respectively. The armour material is joined to heat sinks made of precipitation hardened copper-chromium-zirconium alloy. The plasma facing units of the dome component are based on a tungsten flat tile design with hypervapotron cooling. An innovative brazing technique based on the addition of carbon fibers to the active brazing alloy, developed by Ansaldo Ricerche for applications in the field of the energy production, has been used for the carbon fiber composite to copper joint to reduce residual stresses. The tungsten-copper joint has been realized by direct casting. A proper brazing thermal cycle has been studied to guarantee the required mechanical properties of the precipitation hardened alloy after brazing. The fabrication route of plasma facing components for the ITER vertical target and dome based on the brazing technology has been proved by means of thermal fatigue tests performed on mock-ups in reactor relevant conditions.

  4. Non-thermal emission processes in massive binaries

    CERN Document Server

    De Becker, M

    2007-01-01

    In this paper, I present a general discussion of several astrophysical processes likely to play a role in the production of non-thermal emission in massive stars, with emphasis on massive binaries. Even though the discussion will start in the radio domain where the non-thermal emission was first detected, the census of physical processes involved in the non-thermal emission from massive stars shows that many spectral domains are concerned, from the radio to the very high energies. First, the theoretical aspects of the non-thermal emission from early-type stars will be addressed. The main topics that will be discussed are respectively the physics of individual stellar winds and their interaction in binary systems, the acceleration of relativistic electrons, the magnetic field of massive stars, and finally the non-thermal emission processes relevant to the case of massive stars. Second, this general qualitative discussion will be followed by a more quantitative one, devoted to the most probable scenario where n...

  5. Computational studies on ECE spectrum for ITER, in the presence of a small fraction of non-thermals and radial resolution evolution for oblique view

    Directory of Open Access Journals (Sweden)

    Subhash P.V.

    2015-01-01

    Full Text Available In tokamaks, the temperature measurement using different techniques like Electron Cyclotron Emission (ECE, Thomson scattering etc. shows differences because of various phenomena. The physical reasons for this are not entirely understood. Thus to have comprehensive understanding of these difference, the contribution from each phenomenon needs to be individually understood. The phenomenon affecting radial temperature profile measurement includes harmonics overlap, relativistic down shifting, presence of non-thermals etc. For ITER like plasma, radial temperature profiles can be obtained from the first harmonics ordinary (O mode or second harmonic extra-ordinary(X mode of ECE spectrum. It is possible that, higher harmonics produced from the non-thermals can be relativistically downshifted to second harmonics and results a deviation in the measured temperature profile. We performed a parametric study on the effect of non-thermal electrons on measured ECE temperature for ITER scenario-2. All the numerical calculations reported in this paper are performed using NOTEC computer code which is capable of handling non-thermal populations. After proper validation of numerical methods using normal electron population (without non-thermals a parametric study with non-thermals is performed. In the parametric study radial locations of non-thermals, energy of non-thermals and fraction of non-thermals are considered. This study is initially performed for normal view and later extended in to oblique views. The range of deviation of temperature over the examined parametric regime as well as the possible physical reasons will be presented. The effect of parallel component of non-thermal energy is also examined. Finally results of one set of study for oblique view (where the detector is not exactly normal to the magnetic field with non-thermal electrons are also presented. In ITER apart from an Electron Cyclotron Emission (ECE detector placed normal to magnetic field

  6. Unintentional consequences of dual mode plasma reactors: Implications for upscaling lab-record silicon surface passivation by silicon nitride

    Science.gov (United States)

    Tong, Jingnan; To, Alexander; Lennon, Alison; Hoex, Bram

    2017-08-01

    Silicon nitride (SiN x ) synthesised by low-temperature plasma enhanced chemical vapour deposition (PECVD) is the most extensively used antireflection coating for crystalline silicon solar cells because of its tunable refractive index in combination with excellent levels of surface and bulk passivation. This has attracted a significant amount of research on developing SiN x films towards an optimal electrical and optical performance. Typically, recipes are first optimised in lab-scale reactors and subsequently, the best settings are transferred to high-throughput reactors. In this paper, we show that for one particular, but widely used, PECVD reactor configuration this upscaling is severely hampered by an important experimental artefact. Specifically, we report on the unintentional deposition of a dual layer structure in a dual mode AK 400 plasma reactor from Roth & Rau which has a significant impact on its surface passivation performance. It is found that the radio frequency (RF) substrate bias ignites an unintentional depositing plasma before the ignition of the main microwave (MW) plasma. This RF plasma deposits a Si-rich intervening SiN x layer (refractive index = 2.4) while using a recipe for stoichiometric SiN x . This layer was found to be 18 nm thick in our case and had an extraordinary impact on the Si surface passivation, witnessed by a reduction in effective surface recombination velocity from 22.5 to 6.2 cm/s. This experimental result may explain some “out of the ordinary” excellent surface passivation results reported recently for nearly stoichiometric SiN x films and has significant consequences when transferring these results to high-throughput deposition systems.

  7. Unfiltered Diesel Engine Exhaust Treatment by Discharge Plasma:Effect of Soot Oxidation

    Institute of Scientific and Technical Information of China (English)

    B. S. Rajanikanth; Subhankar Das; A. D. Srinivasan

    2004-01-01

    A cascaded system of electrical discharges (Non-thermal plasma), catalyst and adsorption process was investigated for the removal of oxides of nitrogen (NO x) and carbon monoxide (CO) from a Diesel engine raw exhaust. The three processes were separately studied first, and then the cascaded processes, namely plasma-catalyst and plasma-adsorbent, were investigated. In this paper main emphasis was laid on the effect of carbonaceous soot oxidation on the plasma treatment process. While the cascaded plasma-catalyst process exhibits a higher CO removal, the cascaded plasma-adsorbent process exhibits a higher NO x removal. The experiments were conducted under no-load. The plasma and adsorbent reactors were kept at room temperature throughout the experiment while the catalyst reactor was kept at 200oC / 300oC.

  8. Silicon drift detector based X-ray spectroscopy diagnostic system for the study of non-thermal electrons at Aditya tokamak.

    Science.gov (United States)

    Purohit, S; Joisa, Y S; Raval, J V; Ghosh, J; Tanna, R; Shukla, B K; Bhatt, S B

    2014-11-01

    Silicon drift detector based X-ray spectrometer diagnostic was developed to study the non-thermal electron for Aditya tokamak plasma. The diagnostic was mounted on a radial mid plane port at the Aditya. The objective of diagnostic includes the estimation of the non-thermal electron temperature for the ohmically heated plasma. Bi-Maxwellian plasma model was adopted for the temperature estimation. Along with that the study of high Z impurity line radiation from the ECR pre-ionization experiments was also aimed. The performance and first experimental results from the new X-ray spectrometer system are presented.

  9. Accuracy and convergence of coupled finite-volume/Monte Carlo codes for plasma edge simulations of nuclear fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ghoos, K., E-mail: kristel.ghoos@kuleuven.be [KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300A, 3001 Leuven (Belgium); Dekeyser, W. [KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300A, 3001 Leuven (Belgium); Samaey, G. [KU Leuven, Department of Computer Science, Celestijnenlaan 200A, 3001 Leuven (Belgium); Börner, P. [Institute of Energy and Climate Research (IEK-4), FZ Jülich GmbH, D-52425 Jülich (Germany); Baelmans, M. [KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300A, 3001 Leuven (Belgium)

    2016-10-01

    The plasma and neutral transport in the plasma edge of a nuclear fusion reactor is usually simulated using coupled finite volume (FV)/Monte Carlo (MC) codes. However, under conditions of future reactors like ITER and DEMO, convergence issues become apparent. This paper examines the convergence behaviour and the numerical error contributions with a simplified FV/MC model for three coupling techniques: Correlated Sampling, Random Noise and Robbins Monro. Also, practical procedures to estimate the errors in complex codes are proposed. Moreover, first results with more complex models show that an order of magnitude speedup can be achieved without any loss in accuracy by making use of averaging in the Random Noise coupling technique.

  10. Origin of Thermal and Non-Thermal Hard X-ray Emission from the Galactic Center

    CERN Document Server

    Dogiel, Vladimir; Yuasa, Takayuki; Prokhorov, Dmitrii; Cheng, Kwong-Sang; Bamba, Aya; Inoue, Hajime; Ko, Chung-Ming; Kokubun, Motohide; Maeda, Yoshitomo; Mitsuda, Kazuhisa; Nakazawa, Kazuhiro; Yamasaki, Noriko Y

    2009-01-01

    We analyse new results of Chandra and Suzaku which found a flux of hard X-ray emission from the compact region around Sgr A$^\\ast$ (r ~ 100 pc). We suppose that this emission is generated by accretion processes onto the central supermassive blackhole when an unbounded part of captured stars obtains an additional momentum. As a result a flux of subrelativistic protons is generated near the Galactic center which heats the background plasma up to temperatures about 6-10 keV and produces by inverse bremsstrahlung a flux of non-thermal X-ray emission in the energy range above 10 keV.

  11. Free fall plasma-arc reactor for synthesis of carbon nanotubes in microgravity

    Science.gov (United States)

    Alford, J. M.; Mason, G. R.; Feikema, D. A.

    2006-07-01

    High temperatures inside the plasma of a carbon arc generate strong buoyancy driven convection which has an effect on the growth and morphology of the single-walled carbon nanotubes (SWNTs). To study the effect of buoyancy on the arc process, a miniature carbon arc apparatus was designed and developed to synthesize SWNTs in a microgravity environment substantially free from buoyant convective flows. An arc reactor was operated in the 2.2 and 5.18s drop towers at the NASA Glenn Research Center. The apparatus employed a 4mm diameter anode and was powered by a portable battery pack capable of providing in excess of 300A at 30V to the arc for the duration of a 5s drop. However, the principal result is that no dramatic difference in sample yield or composition was noted between normal gravity and 2.2 and 5s long microgravity runs. Much longer duration microgravity time is required for SWNT's growth such as the zero-G aircraft, but more likely will need to be performed on the international space station or an orbiting spacecraft.

  12. Packed-bed reactor/silent-discharge plasma design data report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    In 1992, Congress passed the Federal Facility Compliance Act requiring the U.S. Department of Energy (DOE) to treat and dispose of its mixed waste in accordance with Resource Conservation and Recovery Act (RCRA) land disposal restrictions (LDRs). The DOE Albuquerque Operations Office (AL) currently does not have adequate systems to treat the mixed wastes generated and stored at the nine DOE-AL sites. In response to the need for mixed-waste treatment capacity, DOE-AL organized a Treatment Selection Team under the Mixed-Waste Treatment Program (MWTP) to match mixed wastes with treatment options and develop a strategy for treatment of its mixed waste. The strategy developed by the Treatment Selection Team, as described in the AL Mixed-Waste Treatment Plan (DOE 1994), is to use available off-site commercial treatment facilities for all wastes that can be successfully and cost-effectively treated by such facilities. Where no appropriate commercial treatment facilities exist, mobile treatment units (MTUs) would be developed to treat wastes at the sites where the wastes are generated. Treatment processes used for mixed waste must not only address the hazardous component (i.e., meet LDRs) but also must contain the radioactive component in a form that allows final disposal while protecting workers, the public, and the environment. The packed-bed reactor/silent discharge plasma was chosen as a potential candidate for the treatment of the mixed wastes. The process is described.

  13. Valorization of biogas into liquid hydrocarbons in plasma-catalyst reactor

    Science.gov (United States)

    Nikravech, Mehrdad; Rahmani, Abdelkader; Labidi, Sana; Saintini, Noiric

    2016-09-01

    Biogas represents an important source of renewable energy issued from biological degradation of biomass. It is planned to produce in Europe the amount of biogas equivalent to 6400 kWh electricity and 4500 kteo (kilo tons equivalent oil) in 2020. Currently the biogas is used in cogeneration engines to produce heat and electricity directly in farms or it is injected in gas networks after purification and odorisation. The aim of this work is to propose a third option that consists of valorization of biogas by transformation into liquid hydrocarbons like acetone, methanol, ethanol, acetic acid etc. These chemicals, among the most important feed materials for chemical industries, retain CO2 molecules participating to reduce the greenhouse gas emissions and have high storage energy capacity. We developed a low temperature atmospheric plasma-catalyst reactor (surface dielectric barrier discharge) to transform biogas into chemicals. The conversion rates of CH4 and CO2 are respectively about 50% and 30% depending on operational conditions. The energetic cost is 25 eV/molecule. The yields of liquid hydrocarbon reaches currently 10% wt. More the 11 liquid chemicals are observed in the liquid fraction. Acknowledgements are due to SPC Programme Energie de demain.

  14. Study of Raw Materials Treatment by Melting and Gasification Process in Plasma Arc Reactor

    Directory of Open Access Journals (Sweden)

    Peter KURILLA

    2010-12-01

    Full Text Available The world consumption of metals and energy has increased in last few decades and it is still increasing. Total volume production results to higher waste production. Raw material basis of majority metals and fossil fuels for energy production is more complex and current waste treatment has long term tendency. Spent power cells of different types have been unneeded and usually they are classified as dangerous waste. This important issue is the main topic of the thesis, in which author describes pyrometallurgical method for storage batteries – power cells and catalysts treatment. During the process there were tested a trial of spent NiMH, Li – ion power cells and spent copper catalysts with metal content treatment by melting and gasification process in plasma arc reactor. The synthetic gas produced from gasification process has been treated by cogenerations micro turbines units for energy recovery. The metal and slag from treatment process are produced into two separately phases and they were analyzing continually.

  15. Annual Report for Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems—Phase 1B

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Tonkyn, Russell G.; Rappe, Kenneth G.; Frye, John G.

    2009-06-01

    Annual report covering the development of a hybrid nonthermal plasma single-pass filtration system for collective protection. This report covers NTP destruction testing on a high priority Toxic Industrial Material and an surrogate for a sulfur containing chemical agent (e.g. mustard), Effects of catalysts in the nonthermal plasma and catalyst poisoning by the sulfur are presented. Also presented are proof-of-principle data for utilizing ozone created in the NTP as a beneficial reactant to destroy adsorbed contaminants in-situ. Catalysts to decompose the ozone within the adsorbent bed are necessary to convert the adsorber into an ozone reactor.

  16. Functionalization of polymers using an atmospheric plasma jet in a fluidized bed reactor and the impact on SLM-processes

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, M., E-mail: karl-ernst.wirth@fau.de; Schmitt, A., E-mail: karl-ernst.wirth@fau.de; Schmidt, J., E-mail: karl-ernst.wirth@fau.de; Peukert, W., E-mail: karl-ernst.wirth@fau.de; Wirth, K-E, E-mail: karl-ernst.wirth@fau.de [Institute of Particle Technology, University of Erlangen-Nuremberg (Germany)

    2014-05-15

    In order to improve thermoplastics (e.g. Polyamide, Polypropylene and Polyethylene) for Selective Laser Beam Melting (SLM) processes a new approach to functionalize temperature sensitive polymer powders in a large scale is investigated. This is achieved by combining an atmospheric pressure plasma jet and a fluidized bed reactor. Using pressurized air as the plasma gas, radicals like OH* are created. The functionalization leads to an increase of the hydrophilicity of the treated polymer powder without changing the bulk properties. Using the polymers in a SLM process to build single layers of melted material leads to an improvement of the melted layers.

  17. Syngas production by plasma treatments of alcohols, bio-oils and wood

    OpenAIRE

    Arabi, Khadija; Aubry, Olivier; Khacef, Ahmed; Cormier, Jean Marie

    2012-01-01

    International audience; Exploitation of forest resources for energy production includes various methods of biomass processing. Gasification is one of the ways to recover energy from biomass. The Syngas produced from biomass can be used to power internal combustion engines, or, after purification, to supply fuel cells. The paper is summarizing results obtained through a non thermal arc plasma reactor at laboratory scale. A stationary discharge (I = 150mA) is used to perform physical diagnostic...

  18. Local Physics Basis of Confinement Degradation in JET ELMy H-Mode Plasmas and Implications for Tokamak Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R.V.; Alper, B.; Borba, D.; Cordey, J.G.; Ernst, D.R.; Gowers, C. [and others

    2001-02-02

    First results of gyrokinetic analysis of JET [Joint European Torus] ELMy [Edge Localized Modes] H-mode [high-confinement modes] plasmas are presented. ELMy H-mode plasmas form the basis of conservative performance predictions for tokamak reactors of the size of ITER [International Thermonuclear Experimental Reactor]. Relatively high performance for long duration has been achieved and the scaling appears to be favorable. It will be necessary to sustain low Z(subscript eff) and high density for high fusion yield. This paper studies the degradation in confinement and increase in the anomalous heat transport observed in two JET plasmas: one with an intense gas puff and the other with a spontaneous transition between Type I to III ELMs at the heating power threshold. Linear gyrokinetic analysis gives the growth rate, gamma(subscript lin) of the fastest growing modes. The flow-shearing rate omega(subscript ExB) and gamma(subscript lin) are large near the top of the pedestal. Their ratio decreases approximately when the confinement degrades and the transport increases. This suggests that tokamak reactors may require intense toroidal or poloidal torque input to maintain sufficiently high |gamma(subscript ExB)|/gamma(subscript lin) near the top of the pedestal for high confinement.

  19. A Plasma Reactor for the Synthesis of High-Temperature Materials: Electro Thermal, Processing and Service Life Characteristics

    Science.gov (United States)

    Galevskiy, G. V.; Rudneva, V. V.; Galevskiy, S. G.; Tomas, K. I.; Zubkov, M. S.

    2016-08-01

    The three-jet direct-flow plasma reactor with a channel diameter of 0.054 m was studied in terms of service life, thermal, technical, and functional capabilities. It was established that the near-optimal combination of thermal efficiency, required specific enthalpy of the plasma-forming gas and its mass flow rate is achieved at a reactor power of 150 kW. The bulk temperature of plasma flow over the rector of 12 gauges long varies within 5500÷3200 K and the wall temperature within 1900÷850 K, when a cylinder from zirconium dioxide of 0.005 m thick is used to thermally insulate the reactor. The specific electric power reaches a high of 1214 MW/m3. The rated service life of electrodes is 4700 hours for a copper anode and 111 hours for a tungsten cathode. The projected contamination of carbides and borides with elec-trode-erosion products doesn't exceed 0.0001% of copper and 0.00002% of tungsten.

  20. Non-thermal production of pure hydrogen from biomass : HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    HYVOLUTION is the acronym of an Integrated Project ¿Non-thermal production of pure hydrogen from biomass¿ which has been granted in the Sixth EU Framework Programme on Research, Technological Development and Demonstration, Priority 6.1.ii, Sustainable Energy Systems. The aim of HYVOLUTION: ¿Developm

  1. Non-thermal production of pure hydrogen from biomass : HYVOLUTION

    NARCIS (Netherlands)

    Claassen, P.A.M.; Vrije, de G.J.

    2006-01-01

    HYVOLUTION is the acronym of an Integrated Project ¿Non-thermal production of pure hydrogen from biomass¿ which has been granted in the Sixth EU Framework Programme on Research, Technological Development and Demonstration, Priority 6.1.ii, Sustainable Energy Systems. The aim of HYVOLUTION:

  2. Ultrafast Non-Thermal Electron Dynamics in Single Layer Graphene

    Directory of Open Access Journals (Sweden)

    Novoselov K.S.

    2013-03-01

    Full Text Available We study the ultrafast dynamics of non-thermal electron relaxation in graphene upon impulsive excitation. The 10-fs resolution two color pump-probe allows us to unveil the non-equilibrium electron gas decay at early times.

  3. Electromagnetic field occupational exposure: non-thermal vs. thermal effects.

    Science.gov (United States)

    Israel, M; Zaryabova, V; Ivanova, M

    2013-06-01

    There are a variety of definitions for "non-thermal effects" included in different international standards. They start by the simple description that they are "effects of electromagnetic energy on a body that are not heat-related effects", passing through the very general definition related to low-level effects: "biological effects ascribed to exposure to low-level electric, magnetic and electromagnetic fields, i.e. at or below the corresponding dosimetric reference levels in the frequency range covered in this standard (0 Hz-300 GHz)", and going to the concrete definition of "the stimulation of muscles, nerves, or sensory organs, vertigo or phosfenes". Here, we discuss what kind of effect does the non-thermal one has on human body and give data of measurements in different occupations with low-frequency sources of electromagnetic field such as electric power distribution systems, transformers, MRI systems and : video display units (VDUs), whereas thermal effects should not be expected. In some of these workplaces, values above the exposure limits could be found, nevertheless that they are in the term "non-thermal effects" on human body. Examples are workplaces in MRI, also in some power plants. Here, we will not comment on non-thermal effects as a result of RF or microwave exposure because there are not proven evidence about the existance of such effects and mechanisms for them are not clear.

  4. Core Plasma Characteristics of a Spherical Tokamak D-3He Fusion Reactor

    Institute of Scientific and Technical Information of China (English)

    Shi Bingren

    2005-01-01

    The magnetic fusion reactor using the advanced D-3He fuels has the advantage of much less-neutron productions so that the consequent damages to the first wall are less serious. If the establishment of this kind of reactor becomes realistic, the exploration of 3He on the moon will be largely motivated. Based on recent progresses in the spherical torus (ST) research, we have physically designed a D-3He fusion reactor using the extrapolated results from the ST experiments and also the present-day tokamak scaling. It is found that the reactor size significantly depends on the wall reflection coefficient of the synchrotron radiation and of the impurity contaminations.The secondary reaction between D-D that promptly leads to the D-T reaction producing 14 MeV neutrons is also estimated. Comparison of this D-3He ST reactor with the D-T reactor is made.

  5. High-frequency irreversible electroporation (H-FIRE for non-thermal ablation without muscle contraction

    Directory of Open Access Journals (Sweden)

    Arena Christopher B

    2011-11-01

    Full Text Available Abstract Background Therapeutic irreversible electroporation (IRE is an emerging technology for the non-thermal ablation of tumors. The technique involves delivering a series of unipolar electric pulses to permanently destabilize the plasma membrane of cancer cells through an increase in transmembrane potential, which leads to the development of a tissue lesion. Clinically, IRE requires the administration of paralytic agents to prevent muscle contractions during treatment that are associated with the delivery of electric pulses. This study shows that by applying high-frequency, bipolar bursts, muscle contractions can be eliminated during IRE without compromising the non-thermal mechanism of cell death. Methods A combination of analytical, numerical, and experimental techniques were performed to investigate high-frequency irreversible electroporation (H-FIRE. A theoretical model for determining transmembrane potential in response to arbitrary electric fields was used to identify optimal burst frequencies and amplitudes for in vivo treatments. A finite element model for predicting thermal damage based on the electric field distribution was used to design non-thermal protocols for in vivo experiments. H-FIRE was applied to the brain of rats, and muscle contractions were quantified via accelerometers placed at the cervicothoracic junction. MRI and histological evaluation was performed post-operatively to assess ablation. Results No visual or tactile evidence of muscle contraction was seen during H-FIRE at 250 kHz or 500 kHz, while all IRE protocols resulted in detectable muscle contractions at the cervicothoracic junction. H-FIRE produced ablative lesions in brain tissue that were characteristic in cellular morphology of non-thermal IRE treatments. Specifically, there was complete uniformity of tissue death within targeted areas, and a sharp transition zone was present between lesioned and normal brain. Conclusions H-FIRE is a feasible technique for

  6. Plasma nitridation of silicon by N{sub 2} and NH{sub 3} in PECVD reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bakardjieva, V S; Alexieva, Z I [Central Laboratory of Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Beshkov, G D [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, Sofia 1784 (Bulgaria); Mateev, E S, E-mail: vlabakar@phys.bas.b [Emil Djakov Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, Sofia 1784 (Bulgaria)

    2010-04-01

    The effect was investigated of nitrogen and ammonia plasma treatment of monocrystalline Si wafers. The experiments were carried out in a plasma-enhanced chemical vapor deposition reactor. The wafers were subjected to N{sub 2} and NH{sub 3} plasma treatment for varying times at temperature of 380 {sup 0}C. The plasma treated surfaces were studied by transmission electron microscopy with C-Pt replicas, reflection high-energy electron diffraction and Auger electron spectroscopy. The results point to the growth of an amorphous layer on the surface. The Auger electron spectroscopy depth profiles obtained by sputtering show the presence of an oxynitride layer with varying composition depending on the time of plasma treatment. The Auger electron spectroscopy analysis shows that after 60 s of treatment in N{sub 2} plasma, the nitrogen content is 8 at.%, while after 300 s it is 22 at.%, the thickness of the oxynitride nanolayer being 2.5-7.2 nm. In the case of NH{sub 3} plasma the thickness calculated from the sputtering time (from 50 s to 15 min) varies between 2 and 12 nm, and the nitrogen content, between 5 and 35 at.%.

  7. 2D fluid model analysis for the effect of 3D gas flow on a capacitively coupled plasma deposition reactor

    Science.gov (United States)

    Kim, Ho Jun; Lee, Hae June

    2016-06-01

    The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.

  8. Fabrication of Tungsten-Rhenium Cladding materials via Spark Plasma Sintering for Ultra High Temperature Reactor Applications

    Energy Technology Data Exchange (ETDEWEB)

    Charit, Indrajit; Butt, Darryl; Frary, Megan; Carroll, Mark

    2012-11-05

    This research will develop an optimized, cost-effective method for producing high-purity tungsten-rhenium alloyed fuel clad forms that are crucial for the development of a very high-temperature nuclear reactor. The study will provide critical insight into the fundamental behavior (processing-microstructure- property correlations) of W-Re alloys made using this new fabrication process comprising high-energy ball milling (HEBM) and spark plasma sintering (SPS). A broader goal is to re-establish the U.S. lead in the research field of refractory alloys, such as W-Re systems, with potential applications in very high-temperature nuclear reactors. An essential long-term goal for nuclear power is to develop the capability of operating nuclear reactors at temperatures in excess of 1,000K. This capability has applications in space exploration and some special terrestrial uses where high temperatures are needed in certain chemical or reforming processes. Refractory alloys have been identified as being capable of withstanding temperatures in excess of 1,000K and are considered critical for the development of ultra hightemperature reactors. Tungsten alloys are known to possess extraordinary properties, such as excellent high-temperature capability, including the ability to resist leakage of fissile materials when used as a fuel clad. However, there are difficulties with the development of refractory alloys: 1) lack of basic experimental data on thermodynamics and mechanical and physical properties, and 2) challenges associated with processing these alloys.

  9. A map of the non-thermal WIMP

    CERN Document Server

    Kim, Hyungjin; Shin, Chang Sub

    2016-01-01

    We study the effect of the elastic scattering on the non-thermally produced WIMP dark matter and its phenomenological consequences. The non-thermal WIMP becomes important when the reheating temperature is well below the freeze-out temperature. In the usual paradigm, the produced high energetic dark matter particles are quickly thermalized due to the elastic scattering with background radiations. The relic abundance is determined by the thermally averaged annihilation cross-section times velocity at the reheating temperature. In the opposite limit, the initial abundance is too small for the dark matter to annihilate so that the relic density is determined by the branching fraction of the heavy particle. We study the regions between these two limits, and show that the relic density depends not only on the annihilation rate, but also on the elastic scattering rate. Especially, the relic abundance of the p-wave annihilating dark matter crucially relies on the elastic scattering rate because the annihilation cross...

  10. Non-thermal Dark Matter in String Compactifications

    CERN Document Server

    Allahverdi, Rouzbeh; Dutta, Bhaskar; Sinha, Kuver

    2013-01-01

    Non-thermal cosmological histories are capable of greatly increasing the available parameter space of different particle physics dark matter (DM) models and are well-motivated by the ubiquity of late-decaying gravitationally coupled scalars in UV theories like string theory. A non-thermal DM model is presented in the context of LARGE Volume Scenarios in type IIB string theory. The model is capable of addressing both the moduli-induced gravitino problem as well as the problem of overproduction of axionic dark radiation and/or DM. We show that the right abundance of neutralino DM can be obtained in both thermal under and overproduction cases for DM masses between O(GeV) to O(TeV). In the latter case the contribution of the QCD axion to the relic density is totally negligible, while in the former case it can be comparable to that of the neutralino thus resulting in a multi-component DM scenario.

  11. Non-thermal Hawking radiation from the Kerr black hole

    Institute of Scientific and Technical Information of China (English)

    HAN Yi-Wen; HAO Jia-Bo

    2009-01-01

    We present a short and direct derivation of Hawking radiation by using the Damour-Ruffini method, as taking into account the self-gravitational interaction from the Kerr black hole. It is found that the radiation is not exactly thermal, and because the derivation obeys conservation laws, the non-thermal Hawking radiation can carry information from the black hole. So it can be used to explain the black hole information paradox, and the process satisfies unitary.

  12. Non-Thermal Effects Mobile Phones at Biological Objects

    OpenAIRE

    Ladislav Balogh

    2003-01-01

    The article deals with non-thermal effects of mobile phones on biological objects. Even though these effects are observed for longer period, there are not so far unequivocal results on obtained biological and biophysical results in this field. Biologicaleffects of electromagnetic field (EMF) depend on its character, its duration as well as on features of organism. As the receptors offield are not known (e.g. inputs of EMF into organism), its effects are judged only by non-specific reaction of...

  13. Constraining Non-thermal and Thermal properties of Dark Matter

    Directory of Open Access Journals (Sweden)

    Bhupal eDev

    2014-05-01

    Full Text Available We describe the evolution of Dark Matter (DM abundance from the very onset of its creation from inflaton decay under the assumption of an instantaneous reheating. Based on the initial conditions such as the inflaton mass and its decay branching ratio to the DM species, the reheating temperature, and the mass and interaction rate of the DM with the thermal bath, the DM particles can either thermalize (fully/partially with the primordial bath or remain non-thermal throughout their evolution history. In the thermal case, the final abundance is set by the standard freeze-out mechanism for large annihilation rates, irrespective of the initial conditions. For smaller annihilation rates, it can be set by the freeze-in mechanism which also does not depend on the initial abundance, provided it is small to begin with. For even smaller interaction rates, the DM decouples while being non-thermal, and the relic abundance will be essentially set by the initial conditions. We put model-independent constraints on the DM mass and annihilation rate from over-abundance by exactly solving the relevant Boltzmann equations, and identify the thermal freeze-out, freeze-in and non-thermal regions of the allowed parameter space. We highlight a generic fact that inflaton decay to DM inevitably leads to an overclosure of the Universe for a large range of DM parameter space, and thus poses a stringent constraint that must be taken into account while constructing models of DM. For the thermal DM region, we also show the complementary constraints from indirect DM search experiments, Big Bang Nucleosynthesis, Cosmic Microwave Background, Planck measurements, and theoretical limits due to the unitarity of S-matrix. For the non-thermal DM scenario, we show the allowed parameter space in terms of the inflaton and DM masses for a given reheating temperature, and compute the comoving free-streaming length to identify the hot, warm and cold DM regimes.

  14. Analysis of the high resolution Mg XI X-ray spectra. Pt. 3. Non-thermal interpretation of some spectra

    Energy Technology Data Exchange (ETDEWEB)

    Siarkowski, M.; Sylwester, J. (Polska Akademia Nauk, Wroclaw. Centrum Badan Kosmicznych); Bromboszcs, G. (Wroclaw Univ. (Poland). Obserwatorium Astronomiczne); Korneev, V.V.; Mandelshtam, S.L.; Oparin, S.N.; Urnov, A.M.; Zhitnik, I.A. (AN SSSR, Moscow. Fizicheskij Inst.)

    1982-11-01

    In part III of the paper containing the analysis of the INTERCOSMOS 16 ADP spectra, it is shown that by assuming the existence of a small admixture (1%) of non-thermal electrons in the active-region plasma it is possible to improve the agreement between measured and calculated fluxes for some spectra. The analysis follows the suggestion contained in the paper by Karev et al. (1980).

  15. Non-thermal WIMPs and Primordial Black Holes

    CERN Document Server

    Georg, Julian; Watson, Scott

    2016-01-01

    Non-thermal histories for the early universe have received notable attention as they are a rich source of phenomenology, while also being well motivated by top-down approaches to beyond the Standard Model physics. The early (pre-BBN) matter phase in these models leads to enhanced growth of density perturbations on sub-Hubble scales. Here we consider whether primordial black hole formation associated with the enhanced growth is in conflict with existing observations. Such constraints depend on the tilt of the primordial power spectrum, and we find that non-thermal histories are tightly constrained in the case of a significantly blue spectrum. Alternatively, if dark matter is taken to be of non-thermal origin we can restrict the primordial power spectrum on scales inaccessible to CMB and LSS observations. We establish constraints for a wide range of scalar masses (reheat temperatures) with the most stringent bounds resulting from the formation of $10^{15}$ g black holes. These black holes would be evaporating t...

  16. Light higgsino dark matter from non-thermal cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Aparicio, Luis [ICTP,Strada Costiera 11, Trieste 34014 (Italy); Cicoli, Michele [ICTP,Strada Costiera 11, Trieste 34014 (Italy); Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, 40126 Bologna (Italy); Dutta, Bhaskar [Department of Physics and Astronomy,Mitchell Institute for Fundamental Physics and Astronomy,TAMU, College Station, TX 77843-4242 (United States); Muia, Francesco [Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN, Sezione di Bologna,via Irnerio 46, 40126 Bologna (Italy); Quevedo, Fernando [ICTP,Strada Costiera 11, Trieste 34014 (Italy); DAMTP, Centre for Mathematical Sciences,Wilberforce Road, Cambridge, CB3 0WA (United Kingdom)

    2016-11-08

    We study the scenario of higgsino dark matter in the context of a non-standard cosmology with a period of matter domination prior to Big Bang nucleosynthesis. Matter domination changes the dark matter relic abundance if it ends via reheating to a temperature below the higgsino thermal freeze-out temperature. We perform a model independent analysis of the higgsino dark matter production in such scenario. We show that light higgsino-type dark matter is possible for reheating temperatures close to 1 GeV. We study the impact of dark matter indirect detection and collider physics in this context. We show that Fermi-LAT data rule out non-thermal higgsinos with masses below 300 GeV. Future indirect dark matter searches from Fermi-LAT and CTA will be able to cover essentially the full parameter space. Contrary to the thermal case, collider signals from a 100 TeV collider could fully test the non-thermal higgsino scenario. In the second part of the paper we discuss the motivation of such non-thermal cosmology from the perspective of string theory with late-time decaying moduli for both KKLT and LVS moduli stabilisation mechanisms. We finally describe the impact of embedding higgsino dark matter in these scenarios.

  17. Light Higgsino Dark Matter from Non-thermal Cosmology

    CERN Document Server

    Aparicio, Luis; Cicoli, Michele; Muia, Francesco; Quevedo, Fernando

    2016-01-01

    We study the scenario of higgsino dark matter in the context of a non-standard cosmology with a period of matter-domination prior to Big-Bang nucleosynthesis. Matter-domination changes the dark matter relic abundance if it ends via reheating to a temperature below the higgsino thermal freeze-out temperature. We perform a model independent analysis of the higgsino dark matter production in such scenario. We show that light higgsino-type dark matter is possible for reheating temperatures close to 1 GeV. We study the impact of dark matter indirect detection and collider physics in this context. We show that Fermi-LAT data rules out non-thermal higgsinos with masses below 300 GeV. Future indirect dark matter searches from Fermi-LAT and CTA would be able to cover essentially the full parameter space. Contrary to the thermal case, collider signals from a 100 TeV collider could fully test the non-thermal higgsino. In the second part of the paper we discuss the motivation of such non-thermal cosmology from the perspe...

  18. Solitary, explosive and rational solutions for nonlinear electron-acoustic waves with non-thermal electrons

    CERN Document Server

    El-Wakil, S A; Abd-El-Hamid, H M; Abulwafa, E M

    2010-01-01

    A rigorous theoretical investigation has been made on electron acoustic wave propagating in unmagnetized collisionless plasma consisting of a cold electron fluid, non-thermal hot electrons and stationary ions. Based on the pseudo-potential approach, large amplitude potential structures and the existence of solitary waves are discussed. The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV) equation for small but finite amplitude electrostatic waves. An algebraic method with computerized symbolic computation, which greatly exceeds the applicability of the existing tanh, extended tanh methods in obtaining a series of exact solutions of the KdV equation. Numerical studies have been made using plasma parameters close to those values corresponding to the dayside auroral zone reveals different solutions i.e., bell-shaped solitary pulses, rational pulses and solutions with singularity at a finite points which called blowup solutions in addition to the propagation of an explosive pu...

  19. Experimental setup for temporally and spatially resolved ICCD imaging of (sub)nanosecond streamer plasma

    Science.gov (United States)

    Huiskamp, T.; Sengers, W.; Pemen, A. J. M.

    2016-12-01

    Streamer discharges are efficient non-thermal plasmas for air purification and can be generated in wire-cylinder electrode structures (the plasma reactor). When (sub)nanosecond high-voltage pulses are used to generate the plasma, components like a plasma reactor behave as transmission lines, where transmission times and reflections become important. We want to visually study the influence of these transmission-line effects on the streamer development in the reactor. Therefore, we need a unique experimental setup, which allows us to image the streamers with nanosecond time resolution over the entire length of the plasma reactor. This paper describes the setup we developed for this purpose. The setup consists of a large frame in which a specially designed plasma reactor can be mounted and imaged from below by an intensified charge-coupled device (ICCD) camera. This camera is mounted on a platform which can be moved by a stepper motor. A computer automates all the experiments and controls the camera movement, camera settings, and the nanosecond high-voltage pulse source we use for the experiments. With the automated setup, we can make ICCD images of the entire plasma reactor at different instances of time with nanosecond resolution (with a jitter of less than several hundreds of picoseconds). Consequently, parameters such as the streamer length and width can be calculated automatically.

  20. Low-temperature deposition of transparent diamond films with a microwave cavity plasma reactor

    Science.gov (United States)

    Ulczynski, Michael J.

    1998-10-01

    Low-temperature diamond deposition with Microwave Cavity Plasma Reactor (MCPR) technology was investigated for application to temperature sensitive substrates. The substrate temperature during most CVD diamond deposition processes is typically greater then 600 C; however, there are some applications where temperature sensitive materials are used and the deposition temperature must be maintained below 550 C. These applications include materials like boro-silicate glass, which has a relatively low strain-point temperature, and integrated circuits that contain low melting point components. Experiments were conducted in three areas. The first area was MCPR development, the second was benchmark deposition and characterization of diamond films on silicon substrates and the third was deposition and characterization of diamond films on boro-silicate glass substrates. MCPR development included an investigation of various MCPR configurations that were designed and adapted for uniform, low-temperature diamond deposition over areas as large as 80-cm2. Reactors were investigated with end-feed microwave excitation and side-feed microwave excitation for maximum deposition area and uniformity. Various substrate receptor configurations were also investigated including a substrate heater and cooler. From these investigations, deposition parameters such as substrate temperature, deposition rate, deposition area and deposition uniformity were characterized. The benchmark silicon diamond deposition experiments were conducted for comparison to previous high temperature, >550 C, MCPR research and growth models. Here deposition results such as deposition rate and film quality were compared with applications of diamond growth models by Harris-Goodwin and Bachmann. Additionally, characterization experiments were conducted to investigate film attributes that are critical to optical applications, such as film surface roughness and deposition uniformity. Included as variables in these

  1. Galaxy Cluster Outskirts from the Thermal SZ and Non-Thermal Synchrotron Link

    Directory of Open Access Journals (Sweden)

    Kaustuv Basu

    2016-11-01

    Full Text Available Galaxy cluster merger shocks are the main agent for the thermalization of the intracluster medium and the energization of cosmic ray particles in it. Shock propagation changes the state of the tenuous intracluster plasma, and the corresponding signal variations are measurable with the current generation of X-ray and Sunyaev–Zel’dovich (SZ effect instruments. Additionally, non-thermal electrons (re-energized by the shocks sometimes give rise to extended and luminous synchrotron sources known as radio relics, which are prominent indicators of shocks propagating roughly in the plane of the sky. In this short review, we discuss how the joint modeling of the non-thermal and thermal signal variations across radio relic shock fronts is helping to advance our knowledge of the gas thermodynamical properties and magnetic field strengths in the cluster outskirts. We describe the first use of the SZ effect to measure the Mach numbers of relic shocks, for both the nearest (Coma and the farthest (El Gordo clusters with known radio relics.

  2. Galaxy cluster outskirts from the thermal SZ and non-thermal synchrotron link

    CERN Document Server

    Basu, Kaustuv; Sommer, Martin; Vazza, Franco; Eckert, Dominique

    2016-01-01

    Galaxy cluster merger shocks are the main agent for the thermalization of the intracluster medium and the energization of cosmic ray particles in it. Shock propagation changes the state of the tenuous intracluster plasma, and the corresponding signal variations are measurable with the current generation of X-ray and Sunyaev-Zel'dovich (SZ) effect instruments. Additionally, non-thermal electrons (re-)energized by the shocks sometimes give rise to extended and luminous synchrotron sources known as radio relics, which are prominent indicators of shocks propagating roughly in the plane of the sky. In this short review, we discuss how the joint modeling of the non-thermal and thermal signal variations across radio relic shock fronts is helping to advance our knowledge of the gas thermodynamical properties and magnetic field strengths in the cluster outskirts. We describe the first use of the SZ effect to measure the Mach numbers of relic shocks, for both the nearest (Coma) and the farthest (El Gordo) clusters with...

  3. Thermal and Non-Thermal Emission in Two-Ribbon Flares

    Science.gov (United States)

    Warren, H.

    2004-05-01

    The observation that in many flares there is a good correlation between the soft X-ray emission and the time-integrated non-thermal emission --- the Neupert effect --- indicates a strong link between magnetic reconnection and particle acceleration. We present hydrodynamic simulations of flare loops heated by precipitating energetic electrons. Instead of representing a flare as a single loop, we model it as a succession of independently heated, small-scale filaments. We find that to reproduce the observed thermal emission the energy in the injected electrons must be proportional to the soft X-ray flux, not the derivative of the soft X-ray flux as suggested by the Neupert effect. Comparisons between the simulations and GOES and RHESSI observations indicates that there is not sufficient energy in the non-thermal electrons to account for the thermal emission observed in a large, long duration flare. This suggests that there must be in situ heating of coronal plasma as well as particle acceleration during magnetic reconnection.

  4. Functionalization of polymer powders for SLS-processes using an atmospheric plasma jet in a fluidized bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, Marius; Schmitt, Adeliene; Schmidt, Jochen; Peukert, Wolfgang; Wirth, Karl-Ernst [Institute of Particle Technology, Friedrich-Alexander-University Erlangen-Nuremberg (Germany)

    2015-05-22

    Recently additive manufacturing processes such as selective laser sintering (SLS) of polymers have gained more importance for industrial applications [1]. Tailor-made modification of polymers is essential in order to make these processes more efficient and to cover the industrial demands. The so far used polymer materials show weak performance regarding the mechanical stability of processed parts. To overcome this limitation, a new route to functionalize the surface of commercially available polymer particles (PA12; PE-HD; PP) using an atmospheric plasma jet in combination with a fluidized bed reactor has been investigated. Consequently, an improvement of adhesion and wettability [2] of the polymer surface without restraining the bulk properties of the powder is achieved. The atmospheric plasma jet process can provide reactive species at moderate temperatures which are suitable for polymer material. The functionalization of the polymer powders improves the quality of the devices build in a SLS-process.

  5. Non-thermal emission from early-type stars

    CERN Document Server

    Benaglia, P

    2006-01-01

    Massive, early-type stars deposit energy and momentum in the interstellar medium through dense, supersonic winds. These objects are one of the most important sources of ionising radiation and chemical enrichment in the Galaxy. The physical conditions in the winds give rise to thermal and non-thermal emission, detectable from radio to gamma rays. In this report the relevant radiation processes will be described and studies on particular systems will be presented, discussing the information provided by multifrequency observations. Future steps aiming at understanding the stellar wind phenomenon as a whole will be outlined.

  6. Non-Thermal Electromagnetic Radiation Damage to Lens Epithelium

    OpenAIRE

    Bormusov, Elvira; P.Andley, Usha; Sharon, Naomi; Schächter, Levi; Lahav, Assaf; Dovrat, Ahuva

    2008-01-01

    High frequency microwave electromagnetic radiation from mobile phones and other modern devices has the potential to damage eye tissues, but its effect on the lens epithelium is unknown at present. The objective of this study was to investigate the non-thermal effects of high frequency microwave electromagnetic radiation (1.1GHz, 2.22 mW) on the eye lens epithelium in situ. Bovine lenses were incubated in organ culture at 35°C for 10-15 days. A novel computer-controlled microwave source was us...

  7. Methane conversion into higher hydrocarbons with dielectric barrier discharge micro-plasma reactor

    Institute of Scientific and Technical Information of China (English)

    Baowei; Wang; Wenjuan; Yan; Wenjie; Ge; Xiaofei; Duan

    2013-01-01

    We reported a coaxial,micro-dielectric barrier discharge(micro-DBD)reactor and a conventional DBD reactor for the direct conversion of methane into higher hydrocarbons at atmospheric pressure.The effects of input power,residence time,discharge gap and external electrode length were investigated for methane conversion and product selectivity.We found the conversion of methane in a micro-DBD reactor was higher than that in a conventional DBD reactor.And at an input power of 25.0 W,the conversion of methane and the total C2+C3 selectivity reached 25.10% and 80.27%,respectively,with a micro-DBD reactor of 0.4 mm discharge gap.Finally,a nonlinear multiple regression model was used to study the correlations between both methane conversion and product selectivity and various system variables.The calculated data were obtained using SPSS 12.0 software.The regression analysis illustrated the correlations between system variables and both methane conversion and product selectivity.

  8. Influence of bowl shaped substrate holder on growth of polymeric DLC film in a microwave plasma CVD reactor

    Indian Academy of Sciences (India)

    Sambita Sahoo; S K Pradhan; Venkateswarlu Bhavanasi; Swati S Pradhan; S N Sarangi; P K Barhai

    2012-12-01

    The properties of diamond like carbon (DLC) films grown in modified microwave plasma CVD reactor is presented in this paper. By using bowl shaped steel substrate holder in a MW plasma CVD reactor (without ECR), films have been grown at relatively high pressure (20Torr) and at low temperature (without heating). The input microwave power was about 300W. Earlier, under the same growth conditions, no deposition was achieved when flat molybdenum/steel substrate holders were used. In this study, two different designs of bowl shaped steel substrate holder at different bias have been experimented. Raman spectra confirm the DLC characteristics of the films. FTIR results indicate that the carbon is bonded in the 3 form with hydrogen, and this characteristic is more pronounced when smaller holder is used. UV-visible spectra show high visible transmittance (∼85%) for films grown in both the holders. The nanoindentation hardness of the films have a wide range, about 4–16GPa. Field emission scanning electron microscope (FESEM) images reveal that the films have featureless and smooth surface morphology. These films are polymeric in nature with moderately high hardness, which may be useful as anti-scratch and anti-corrosive coatings.

  9. Ammonia plasma passivation of GaAs in downstream microwave and radio-frequency parallel plate plasma reactors

    OpenAIRE

    Aydil, Eray S.; Giapis, Konstantinos P.; Gottscho, Richard A.; Donnelly, Vincent M.; Yoon, Euijoon

    1993-01-01

    The poor electronic properties of the GaAs surface and GaAs–insulator interfaces, generally resulting from large density of surface/interface states, have limited GaAs device technology. Room-temperature ammonia plasma (dry) passivation of GaAs surfaces, which reduces the surface state density, is investigated as an alternative to wet passivation techniques. Plasma passivation is more compatible with clustered-dry processing which provides better control of the processing environment, and thu...

  10. Numerical analysis of the effect of electrode spacing on deposition rate profiles in a capacitively coupled plasma reactor

    Science.gov (United States)

    Kim, Ho Jun; Lee, Hae June

    2016-12-01

    The effect of reactor dimension on deposition rate profiles is analyzed with a two-dimensional (2D) fluid simulation of a capacitively coupled plasma (CCP) reactor to deposit a hydrogenated silicon nitride (SiN x H y ) film with a SiH4/NH3/N2/He gas mixture. We focus on the complex function of electrode spacing to reveal the physical relation between reactor geometry and deposition rate profiles. The simulation demonstrates that the localization of electron density is concentrated close to the powered electrode periphery for electrode spacing of 9 mm. However, the plasma distribution becomes bulk dominated with electrode spacing of 15 mm by relaxing the localization. As a result, the increase in the electrode spacing creates a more uniform electron power density profile, and the deposition rate profile of SiN x H y film changes from convex to concave in a radial direction. The change in the deposition rate profile is validated through comparison with the experimental observation, which agrees well with the simulation results with errors of less than 5%. The deposition rate profile with electrode spacing of 9 mm is very sensitive to the non-uniform gas density condition applied to the showerhead inlet. However, the deposition rate profile with electrode spacing of 15 mm is not sensitive to the inlet gas profile because of the increasing residence time. The increase of the electrode spacing promotes molecule-molecule gas phase reactions and consequently weakens the effect of the inlet boundary condition.

  11. New linear plasma devices in the trilateral euregio cluster for an integrated approach to plasma surface interactions in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Unterberg, B., E-mail: b.unterberg@fz-juelich.de [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM- Forschungszentrum Juelich, D-52425 Juelich (Germany); Jaspers, R. [Science and Technology of Nuclear Fusion, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Koch, R. [Laboratoire de Physique des Plasmas/Laboratorium voor Plasmafysica, ERM/KMS, EURATOM-Association, B-1000 Brussels (Belgium); Massaut, V. [SCK-CEN, Belgian Nuclear Research Centre, EURATOM-Association, Boeretang 200, 2400 Mol (Belgium); Rapp, J. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands); Reiter, D.; Kraus, S.; Kreter, A.; Philipps, V.; Reimer, H.; Samm, U.; Scheibl, L.; Schweer, B. [Institut fuer Energieforschung - Plasmaphysik, Forschungszentrum Juelich GmbH, Association EURATOM- Forschungszentrum Juelich, D-52425 Juelich (Germany); Schuurmans, J.; Uytdenhouwen, I. [SCK-CEN, Belgian Nuclear Research Centre, EURATOM-Association, Boeretang 200, 2400 Mol (Belgium); Al, R.; Berg, M.A. van den; Brons, S.; Eck, H.J.N. van; Goedheer, W.J. [FOM-Institute for Plasma Physics Rijnhuizen, Association EURATOM-FOM, PO Box 1207, 3430 BE Nieuwegein (Netherlands)

    2011-10-15

    New linear plasma devices are currently being constructed or planned in the Trilateral Euregio Cluster (TEC) to meet the challenges with respect to plasma surface interactions in DEMO and ITER: i) MAGNUM-PSI (FOM), a high particle and power flux device with super-conducting magnetic field coils which will reach ITER-like divertor conditions at high magnetic field, ii) the newly proposed linear plasma device JULE-PSI (FZJ), which will allow to expose toxic and neutron activated target samples to ITER-like fluences and ion energies including in vacuo analysis of neutron activated samples, and iii) the plasmatron VISION I, a compact plasma device which will be operated inside the tritium lab at SCK-CEN Mol, capable to investigate tritium plasmas and moderately activated wall materials. This contribution shows the capabilities of the new devices and their forerunner experiments (Pilot-PSI at FOM and PSI-2 Juelich at FZJ) in view of the main objectives of the new TEC program on plasma surface interactions.

  12. Natural gas pyrolysis in double-walled reactor tubes using thermal plasma or concentrated solar radiation as external heating source

    Institute of Scientific and Technical Information of China (English)

    Stèphane Abanades; Stefania Tescari; Sylvain Rodat; Gilles Flamant

    2009-01-01

    The thermal pyrolysis of natural gas as a clean hydrogen production route is examined.The concept of a double-walled reactor tube is proposed and implemented.Preliminary experiments using an external plasma heating source are carded out to validate this concept.The results point out the efficient CH4 dissociation above 1850 K (CH4 conversion over 90%) and the key influence of the gas residence time.Simulations are performed to predict the conversion rate of CH4 at the reactor outlet,and are consistent with experimental tendencies.A solar reactor prototype featuring four independent double-walled tubes is then developed.The heat in high temperature process required for the endothermic reaction of natural gas pyrolysis is supplied by concentrated solar energy.The tubes are heated uniformly by radiation using the blackbody effect of a cavity-receiver absorbing the concentrated solar irradiation through a quartz window.The gas composition at the reactor outlet,the chemical conversion of CH4,and the yield to H2 are determined with respect to reaction temperature,inlet gas flow-rates,and feed gas composition.The longer the gas residence time,the higher the CH4 conversion and H2 yield,whereas the lower the amount of acetylene.A CH4 conversion of 99% and H2 yield of about 85% are measured at 1880 K with 30% CH4 in the feed gas (6 L/min injected and residence time of 18 ms).A temperature increase from 1870 K to 1970 K does not improve the H2 yield.

  13. Numerical investigation of the film uniformity during the surface coating of charged nanoparticles in a low pressure plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Pourali, N.; Foroutan, G., E-mail: foroutan@sut.ac.ir

    2016-07-15

    The uniformity of film deposition on charged nanoparticles, trapped near the sheath of a capacitively coupled plasma reactor, is studied by numerical simulation of the multi-fluid plasma equations, surface deposition processes, and nanoparticle heating effects. It is found that the anisotropy in the ion flux onto the powered electrode may be hold responsible for the film nonuniformity. The nonuniformity increases with increasing of the particle radius, although small particles lose sphericity faster than the large particles. Because of the electron temperature dependence of the deposition rate and the incident ion flux, higher electron temperatures lead to more nonuniform film deposition. However, the uniformity is improved and the sphericity is restored by the increase in the background gas pressure and/or temperature. - Highlights: • The surface coating of charged nanoparticles in a low pressure plasma is investigated by numerical simulation of the multi-fluid plasma equations. • The deposition rate on the particle surface is not spatially uniform. • The nonuniformity in the film deposition is attributed to the anisotropy of the ion flux. • The nonuniformity increases with distance from the sheath edge.

  14. The component content of active particles in a plasma-chemical reactor based on volume barrier discharge

    Science.gov (United States)

    Soloshenko, I. A.; Tsiolko, V. V.; Pogulay, S. S.; Terent'yeva, A. G.; Bazhenov, V. Yu; Shchedrin, A. I.; Ryabtsev, A. V.; Kuzmichev, A. I.

    2007-02-01

    In this paper the results of theoretical and experimental studies of the component content of active particles formed in a plasma-chemical reactor composed of a multiple-cell generator of active particles, based on volume barrier discharge, and a working chamber are presented. For calculation of the content of uncharged plasma components an approach is proposed which is based on averaging of the power introduced over the entire volume. Advantages of such an approach lie in an absence of fitting parameters, such as the dimensions of microdischarges, their surface density and rate of breakdown. The calculation and the experiment were accomplished with the use of dry air (20% relative humidity) as the plasma generating medium. Concentrations of O3, HNO3, HNO2, N2 O5 and NO3 were measured experimentally in the discharge volume and working chamber for the residence time of particles on a discharge of 0.3 s and more and discharge specific power of 1.5 W cm-3. It has been determined that the best agreement between the calculation and the experiment occurs at calculated gas medium temperatures in the discharge plasma of about 400-425 K, which correspond to the experimentally measured rotational temperature of nitrogen. In most cases the calculated concentrations of O3, HNO3, HNO2, N2O5 and NO3 for the barrier discharge and the working chamber are in fairly good agreement with the respective measured values.

  15. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions.

    Science.gov (United States)

    Nad, Shreya; Gu, Yajun; Asmussen, Jes

    2015-07-01

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100-260 Torr pressure range and 1.5-2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficiencies (η(coup)) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.

  16. Non-thermal line-broadening in solar prominence

    CERN Document Server

    Stellmacher, Goetz

    2016-01-01

    We show that the line broadening in quiescent solar prominences is mainly due to non-thermal velocities. We have simultaneously observed a wide range of optically thin lines in quiescent prominences, selected for bright and narrow Mg\\,b emission without line satellites from macro-shifts. We find a ratio of reduced widths of H-gamma and H-delta of 1.05 +-0.03 which can hardly be attributed to saturation, since both are optically thin for the prominences observed: tau(gamma)<0.3 ; tau(delta)<0.15. We confirm the ratio of reduced widths of He4772(triplet) and He5015(singlet of 1.1 +-0.05 at higher significance and detect a width ratio of Mgb2 and Mg4571 (both from the triplet system) of 1.3 +-0.1. The discrepant widths of lines from different atoms, and even from the same atom, cannot be represented by a unique pair [T_kin ; V_nth]. Values of T_kin deduced from observed line radiance using models, indicate low temperatures down to T_kin~5000K. Non-thermal velocities, related to different physical states of...

  17. Tracing star formation with non-thermal radio emission

    CERN Document Server

    Schober, Jennifer; Klessen, Ralf S

    2016-01-01

    Understanding the evolution of galaxies and in particular their star formation history is a central challenge of modern cosmology. Theoretical scenarios will be constrained by future ultra deep radio surveys. In this paper we present an analytical tool for analyzing radio data. Our physical model, based on an analytical description of the steady-state cosmic ray spectrum, explains the correlation between the non-thermal radio flux and the star formation rate (SFR). As cosmic rays are produced in supernova remnants, their injection rate is proportional to the supernova rate and thus also to the SFR. When these highly energetic charged particles travel in the magnetized interstellar medium they emit synchrotron radiation. As a result there is a relation between the SFR and the non-thermal radio emission. A crucial point is that synchrotron emission can be absorbed again by the free-free mechanism. This suppression becomes stronger with increasing number density of the gas, more precisely of the free electrons, ...

  18. Non-thermal transient sources from rotating black holes

    CERN Document Server

    van Putten, Maurice H P M

    2009-01-01

    Rotating black holes can power the most extreme non-thermal transient sources. They have a long-duration viscous time-scale of spin-down and produce non-thermal emissions along their spin-axis, powered by a relativistic capillary effect. We report on the discovery of exponential decay in BATSE light curves of long GRBs by matched filtering, consistent with a viscous time-scale, and identify UHECRs energies about the GZK threshold in linear acceleration of ion contaminants along the black hole spin-axis, consistent with black hole masses and lifetimes of FR II AGN. We explain the absence of UHECRs from BL Lac objects due to UHECR emissions preferably at appreciable angles away from the black hole spin-axis. Black hole spin may be key to unification of GRBs and their host environments, and to AGN and their host galaxies. Our model points to long duration bursts in radio from long GRBs without supernovae and gravitational-waves from all long GRBs.

  19. Modelling of a large scale reactor for plasma deposition of silicon

    NARCIS (Netherlands)

    Nienhuis, G. J.; W. Goedheer,

    1999-01-01

    A 2D fluid model for RF discharges in a mixture of silane and hydrogen is applied to a cylindrically symmetric reactor with an electrode radius large compared to the electrode separation. In the model the electron kinetics are included by solving the two-term Boltzmann equation to obtain the electro

  20. Study of positive and negative plasma catalytic oxidation of ethylene.

    Science.gov (United States)

    Van Wesenbeeck, K; Hauchecorne, B; Lenaerts, S

    2017-06-01

    The effect of introducing a photocatalytically active coating inside a plasma unit is investigated. This technique combines the advantages of high product selectivity from catalysis and the fast start-up from plasma technology. In this study, a preselected TiO2 coating is applied on the collector electrode of a DC corona discharge unit as non-thermal plasma reactor, in order to study the oxidation of ethylene. For both positive and negative polarities an enhanced mineralization is observed while the formation of by-products drastically decreases. The plasma catalytic unit gave the best results when using negative polarity at a voltage of 15 kV. This shows the potential of plasma catalysis as indoor air purification technology.

  1. Plasma-Facing Materials Research For Fusion Reactors At FOM Rijnhuizen

    NARCIS (Netherlands)

    Rapp, J.; De Temmerman, G.; van Rooij, G. J.; van Emmichoven, P. A. Zeijlma; Kleyn, A. W.

    2011-01-01

    In next generation magnetic fusion devices such as ITER, plasma-facing materials are exposed to unprecedented high ion, power and neutron fluxes. Those extreme conditions cannot be recreated in current fusion devices from the tokamak type. The plasma-surface interaction is still an area of great unc

  2. Plasma-facing materials research for fusion reactors at Fom Rijnhuizen

    NARCIS (Netherlands)

    Rapp, J.; De Temmerman, G.; van Rooij, G.J.; Zeijlmans van Emmichoven, P.A.; Kleijn, A.W.

    2011-01-01

    In next generation magnetic fusion devices such as ITER, plasma-facing materials are exposed to unprecedented high ion, power and neutron fluxes. Those extreme conditions cannot be recreated in current fusion devices from the tokamak type. The plasma-surface interaction is still an area of great unc

  3. TRANSFERABLE CLASTOGENIC ACTIVITY IN PLASMA FROM PERSONS EXPOSED AS SALVAGE PERSONNEL OF THE CHERNOBYL REACTOR

    NARCIS (Netherlands)

    EMERIT, [No Value; LEVY, A; CERNJAVSKI, L; ARUTYUNYAN, R; OGANESYAN, N; POGOSIAN, A; MEJLUMIAN, H; SARKISIAN, T; GULKANDANIAN, M; QUASTEL, M; GOLDSMITH, J; RIKLIS, E; KORDYSH, E; POLIAK, S; MERKLIN, L

    Clastogenic factors were first described in the plasma of people who had been accidentally or therapeutically irradiated. They were found also in A-bomb survivors, where they persisted for many years after the irradiation. The present study searched for these factors in the plasma of 32 civil

  4. Plasma-Facing Materials Research For Fusion Reactors At FOM Rijnhuizen

    NARCIS (Netherlands)

    Rapp, J.; De Temmerman, G.; van Rooij, G. J.; van Emmichoven, P. A. Zeijlma; Kleyn, A. W.

    2011-01-01

    In next generation magnetic fusion devices such as ITER, plasma-facing materials are exposed to unprecedented high ion, power and neutron fluxes. Those extreme conditions cannot be recreated in current fusion devices from the tokamak type. The plasma-surface interaction is still an area of great unc

  5. Plasma-facing materials research for fusion reactors at Fom Rijnhuizen

    NARCIS (Netherlands)

    Rapp, J.; De Temmerman, G.; van Rooij, G.J.; Zeijlmans van Emmichoven, P.A.; Kleijn, A.W.

    2011-01-01

    In next generation magnetic fusion devices such as ITER, plasma-facing materials are exposed to unprecedented high ion, power and neutron fluxes. Those extreme conditions cannot be recreated in current fusion devices from the tokamak type. The plasma-surface interaction is still an area of great unc

  6. Plasma Kinetics in the Ethanol/Water/Air Mixture in "Tornado" Type Electrical Discharge

    CERN Document Server

    Levko, D; Chernyak, V; Olszewski, S; Nedybaliuk, O

    2011-01-01

    This paper presents the results of a theoretical and experimental study of plasma-assisted reforming of ethanol into molecular hydrogen in a new modification of the "tornado" type electrical discharge. Numerical modeling clarifies the nature of the non-thermal conversion and explains the kinetic mechanism of nonequilibrium plasma-chemical transformations in the gas-liquid system and the evolution of hydrogen during the reforming as a function of discharge parameters and ethanol-to-water ratio in the mixture. We also propose a scheme of chemical reactions for plasma kinetics description. It is shown that some characteristics of the investigated reactor are at least not inferior to characteristics of other plasma chemical reactors.

  7. Interaction of Impurity (Li, Be, B and C)and Hydrogen Isotope Pellet Injection with Reactor-relevant Plasmas

    Institute of Scientific and Technical Information of China (English)

    Deng Baiquan(邓柏权); J.P.Allain; Peng Lilin(彭利林); Wang Xiaoyu(王晓宇); Chen Zhi(陈志); Yan Jiancheng(严建成)

    2005-01-01

    Based on the two-dimensional kinetic ablation theory of the hydrogen pellet ablation developed by Kuteev [B.V. Kuteev, Nuclear Fusion, 35 (1995) 431], an algorithm of erosion speed and ablation rate calculations for Li, Be, and B impurity pellets in reactor-relevant plasma has been derived. Results show compatibilities of lithium pellet injection used in α-particle diagnostics are positive in comparison with other solid impurity pellets (e.g. Be, B and C). Using the 2-D Kuteev lentil model, including kinetic effects, we find that currently existing pellet injection techniques will not meet core-fueling requirements for ITER-FEAT. A pressure as high as 254 MPa must be applied to a pellet accelerator with a 200 cm-long single-stage pneumatic gun, in order to accelerate a pellet with a radius rp0 =0.5 cm to a velocity of Vp0, 24×105 cm/s penetrating 100 cm into the ITER plasma core. Comparisons of pellet velocity- and radius-dependent penetration depth between the Neutral Gas Shielding and the Kuteev's models are made. However, we find that the isotopic effects can lead to a 33% lower pellet speed for solid DT, compared to an identical H2 pellet penetrating the same length in ITER-FEAT plasma, and our calculations show that HFS injection will much improve core fueling efficiency.

  8. Non-thermal leptogenesis with almost degenerate superheavy neutrinos

    CERN Document Server

    Allahverdi, R; Allahverdi, Rouzbeh; Mazumdar, Anupam

    2003-01-01

    We present a model with minimal assumptions for non-thermal leptogenesis with almost degenerate superheavy right-handed neutrinos in a supersymmetric set up. In this scenario a gauge singlet inflaton is directly coupled to the right-handed (s)neutrinos with a mass heavier than the inflaton mass. This helps avoiding potential problems which can naturally arise otherwise. The inflaton decay to the Standard Model leptons and Higgs, via off-shell right-handed (s)neutrinos, reheats the Universe. The same channel is also responsible for generating the lepton asymmetry, thus requiring no stage of preheating in order to excite superheavy right-handed (s)neutrinos. The suppressed decay rate of the inflaton naturally leads to a sufficiently low reheat temperature, which in addition, prevents any wash out of the yielded asymmetry. Finally, a successful leptogenesis can be accommodated for a variety of inflationary models with a rather wide ranging inflationary scale.

  9. Non Thermal Support for the Outer Intracluster Medium

    CERN Document Server

    Cavaliere, A; Fusco-Femiano, R

    2010-01-01

    We submit that non thermalized support for the outer intracluster medium in relaxed galaxy clusters is provided by turbulence, driven by inflows of intergalactic gas across the virial accretion shocks. We expect this component to increase briskly during the cluster development for z<1/2, due to three factors. First, the accretion rates of gas and dark matter subside, when they feed on the outer wings of the initial perturbations in the accelerating Universe. Second, the infall speeds decrease across the progressively shallower gravitational potential at the shock position. Third, the shocks eventually weaken, and leave less thermal energy to feed the intracluster entropy, but relatively more bulk energy to drive turbulence into the outskirts. The overall outcome from these factors is physically modeled and analytically computed; thus we ascertain how these concur in setting the equilibrium of the outer intracluster medium, and predict how the observables in X rays and microwaves are affected, so as to prob...

  10. Non-thermal hydrogen atoms in the terrestrial upper thermosphere.

    Science.gov (United States)

    Qin, Jianqi; Waldrop, Lara

    2016-12-06

    Model predictions of the distribution and dynamical transport of hydrogen atoms in the terrestrial atmosphere have long-standing discrepancies with ultraviolet remote sensing measurements, indicating likely deficiencies in conventional theories regarding this crucial atmospheric constituent. Here we report the existence of non-thermal hydrogen atoms that are much hotter than the ambient oxygen atoms in the upper thermosphere. Analysis of satellite measurements indicates that the upper thermospheric hydrogen temperature, more precisely the mean kinetic energy of the atomic hydrogen population, increases significantly with declining solar activity, contrary to contemporary understanding of thermospheric behaviour. The existence of hot hydrogen atoms in the upper thermosphere, which is the key to reconciling model predictions and observations, is likely a consequence of low atomic oxygen density leading to incomplete collisional thermalization of the hydrogen population following its kinetic energization through interactions with hot atomic or ionized constituents in the ionosphere, plasmasphere or magnetosphere.

  11. Influence of microwave driver coupling design on plasma density at Testbench for Ion sources Plasma Studies, a 2.45 GHz Electron Cyclotron Resonance Plasma Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Megía-Macías, A.; Vizcaíno-de-Julián, A. [E.S.S. Bilbao, Edificio Cosimet, Landabarri 2, 48940-Leioa, Vizcaya (Spain); Cortázar, O. D., E-mail: dcortazar@essbilbao.org [E.S.S. Bilbao, Edificio Cosimet, Landabarri 2, 48940-Leioa, Vizcaya (Spain); Universidad de Castilla-La Mancha, ETSII, C.J. Cela s/n, 13170 Ciudad Real (Spain)

    2014-03-15

    A comparative study of two microwave driver systems (preliminary and optimized) for a 2.45 GHz hydrogen Electron Cyclotron Resonance plasma generator has been conducted. The influence on plasma behavior and parameters of stationary electric field distribution in vacuum, i.e., just before breakdown, along all the microwave excitation system is analyzed. 3D simulations of resonant stationary electric field distributions, 2D simulations of external magnetic field mapping, experimental measurements of incoming and reflected power, and electron temperature and density along the plasma chamber axis have been carried out. By using these tools, an optimized set of plasma chamber and microwave coupler has been designed paying special attention to the optimization of stationary electric field value in the center of the plasma chamber. This system shows a strong stability on plasma behavior allowing a wider range of operational parameters and even sustaining low density plasma formation without external magnetic field. In addition, the optimized system shows the capability to produce values of plasma density four times higher than the preliminary as a consequence of a deeper penetration of the magnetic resonance surface in relative high electric field zone by keeping plasma stability. The increment of the amount of resonance surface embedded in the plasma under high electric field is suggested as a key factor.

  12. Research on High Pressure Gas Injection As a Method of Fueling, Disruption Mitigation and Plasma Termination for Future Tokamak Reactors

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    High-pressure gas injection has proved to be an effective disruption mitigation technique in DⅢ-D tokamak experiments. If the method can be applied in future tokamak reactors not only for disruption mitigation but also for plasma termination and fueling, it will have an attractive advantage over the pellet and liquid injection from the viewpoint of economy and engineering design. In order to investigate the feasibility of this option, a study has been carried out with relevant parameters for conveying tubes of different geometrical sizes and for different gases.These parameters include pressure drop, lagger time after the valve's opening, gas diffusion in an ultra-high vacuum condition, and particle number contour.

  13. Synthesis of nanocrystalline Y2O3 in a specially designed atmospheric pressure radio frequency thermal plasma reactor

    Science.gov (United States)

    Dhamale, G. D.; Mathe, V. L.; Bhoraskar, S. V.; Sahasrabudhe, S. N.; Ghorui, S.

    2015-10-01

    Synthesis of yttrium oxide nanoparticles in a specially designed radio frequency thermal plasma reactor is reported. Good crystallinity, narrow size distribution, low defect state concentration, high purity, good production rate, single-step synthesis, and simultaneous formation of nanocrystalline monoclinic and cubic phases are some of the interesting features observed. Synthesized particles are characterized through X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, thermo-luminescence (TL), and Brunauer-Emmett-Teller surface area analysis. Polymorphism of the nanocrystalline yttria is addressed in detail. Synthesis mechanism is explored through in-situ emission spectroscopy. Post-synthesis environmental effects and possible methods to eliminate the undesired phases are probed. Defect states are investigated through the study of TL spectra.

  14. Hybrid C-nanotubes/Si 3D nanostructures by one-step growth in a dual-plasma reactor

    Science.gov (United States)

    Toschi, Francesco; Orlanducci, Silvia; Guglielmotti, Valeria; Cianchetta, Ilaria; Magni, Corrado; Terranova, Maria Letizia; Pasquali, Matteo; Tamburri, Emanuela; Matassa, Roberto; Rossi, Marco

    2012-06-01

    Hybrid nanostructures consisting of Si polycrystalline nanocones, with an anemone-like termination coated with C-nanotubes bundles, have been generated on a (1 0 0) Si substrate in a dual mode microwave/radio-frequency plasma reactor. The substrate is both heated and bombarded by energetic H ions during the synthesis process. The nanocones growth is explained considering pull of the growing Si nanocrystalline phase along the lines of the electrical field, likely via a molten/recrystallization mechanism. The one-step building of the achieved complex 3D architectures is described in terms of dynamic competition between Si and C nanotubes growth under the peculiar conditions of kinetically driven processes.

  15. dc glow discharge modeling applied to diamond film growth plasma reactors

    Science.gov (United States)

    Surendra, M.; Graves, David B.; Plano, Linda S.

    Low power dc plasmas have been successfully used to grow diamond films. An unusual aspect of these systems is that diamond will only grow at the anode, although most of the plasma-generated species are formed near the cathode. To understand the mechanisms responsible for this phenomenon, and to enhance dc deposition, a model used to describe processes in low neutral gas density dc plasmas has been adapted to diamond-producing dc plasmas. In situ diagnostics were used to supply necessary data for the adaptation and for testing the resulting model. A mechanism for hydrogen dissociation near the anode has been developed. Near the cathode, the most common inelastic process was shown in the model to be ionization. Positive ions are driven by local fields to the cathode and away from the anode. As a result, the cathode is bombarded by ions, which may be responsible for the disruption of diamond growth on this electrode.

  16. Influences of Excess Oscillation of Voltage Pulse and Discharge Mode on NO Removal Using Barrier-Type Plasma Reactor

    Science.gov (United States)

    Kadowaki, Kazunori; Suzuki, Yoshiaki; Ihori, Haruo; Kitani, Isamu

    This paper presents experimental results of NO removal from a simulated exhausted-gas using a barrier type reactor with screw electrodes subjected to polarity-reversed voltage pulses. The polarity-reversed pulse was produced by direct grounding of a charged coaxial cable because a traveling wave voltage was negatively reflected at the grounding end with a change in its polarity and then it propagated to the plasma reactor at the opposite end. Influence of cable length on NO removal was studied for two kinds of cable connection, single-connected cable and parallel-connected cables. NO removal ratio for a 50m-long cable was lower than that for much shorter cables in both single and parallel connections when the applied voltage became high. Energy efficiency for NO removal also increased with decreasing the cable length. This was because excess discharges during the voltage oscillation caused by the large stored energy in the long cable resulted in reproduction of NO molecules. Energy efficiency was further improved by changing the discharge mode from dielectric barrier discharge (DBD) to surface discharge (SD). Energy efficiency was up to 110g/kWh with 55% NO removal ratio and 34g/kWh with 100% NO removal ratio by using a single 10m-long cable in SD mode.

  17. Divertor conditions relevant for fusion reactors achieved with linear plasma generator

    NARCIS (Netherlands)

    van Eck, H. J. N.; Kleyn, A. W.; Lof, A.; van der Meiden, H. J.; van Rooij, G. J.; Scholten, J.; van Emmichoven, P. A. Zeijlma

    2012-01-01

    Intense magnetized hydrogen and deuterium plasmas have been produced with electron densities up to 3.6 × 1020 m−3 and electron temperatures up to 3.7 eV with a linear plasma generator. Exposure of a W target has led to average heat and particle flux densities well in excess of 4 MW m−2 and 1024 m−2

  18. Divertor conditions relevant for fusion reactors achieved with linear plasma generator

    NARCIS (Netherlands)

    H.J.N. van Eck; A.W. Kleijn; A. Lof; H.J. van der Meiden; G.J. van Rooij; J. Scholten; P.A. Zeijlmans van Emmichoven

    2012-01-01

    Intense magnetized hydrogen and deuterium plasmas have been produced with electron densities up to 3.6 × 10 20 m−3 and electron temperatures up to 3.7 eV with a linear plasma generator. Exposure of a W target has led to average heat and particle flux densities well in excess of 4 MW m−2 and 10 24 m−

  19. Experimental and density functional theoretical study of the effects of Fenton’s reaction on the degradation of Bisphenol A in a high voltage plasma reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Fei, E-mail: daif@clarkson.edu [Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY (United States); Fan, Xiangru, E-mail: fanx@clarkson.edu [Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY (United States); Stratton, Gunnar R., E-mail: strattgr@clarkson.edu [Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY (United States); Bellona, Christopher L., E-mail: cbellona@clarkson.edu [Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY (United States); Department of Civil and Environmental Engineering, 1500 Illinois St., Colorado School of Mines, Golden, 80401 CO (United States); Holsen, Thomas M., E-mail: tholsen@clarkson.edu [Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY (United States); Crimmins, Bernard S., E-mail: bcrimmin@clarkson.edu [Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY (United States); Xia, Xiaoyan, E-mail: xiax@clarkson.edu [Department of Civil and Environmental Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY (United States); Mededovic Thagard, Selma, E-mail: smededov@clarkson.edu [Department of Chemical and Biomolecular Engineering, 8 Clarkson Avenue, Clarkson University, Potsdam, 13699 NY (United States)

    2016-05-05

    Highlights: • Combining the Fenton reaction with the plasma treatment reduces Bisphenol A concentration below the detection limit within 30 min. • Carbon steel electrode in the plasma reactor can be used as a source of iron ions. • OH radical attack on Bisphenol A is the primary pathway for byproduct formation. - Abstract: A novel electrical discharge plasma reactor configuration with and without iron ions was evaluated for the degradation of 0.02 mM Bisphenol A (BPA). The pseudo-first-order reaction rate constant calculated for the plasma treatment of BPA with a stainless steel electrode in the presence of dissolved ferrous ion (Fe{sup 2+}) salts (termed plasma/Fenton treatment) was higher than in the plasma treatment in the absence of iron salts. At the optimal ferrous ion concentration, longer plasma treatment times resulted in higher BPA degradation rates, likely due to increased hydroxyl (OH) radical concentration formed through the decomposition of H{sub 2}O{sub 2}. Replacing the stainless steel with a carbon steel grounded electrode resulted in the release of iron ions from the carbon steel thereby increasing the rate of BPA removal and eliminating the need for iron salts. After the plasma/Fenton treatment, >97% of the residual iron salts were removed by coagulation/flocculation/sedimentation. Byproduct identification coupled with density functional theory (DFT) calculations confirmed that OH radical attack on BPA’s hydroxyl group is the primary pathway for byproduct formation.

  20. Scientific report. Plasma-wall interaction studies related to fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    Temmerman, G. De

    2006-07-01

    This scientific report summarises research done on erosion and deposition mechanisms affecting the optical reflectivity of potential materials for use in the mirrors used in fusion reactors. Work done in Juelich, Germany, at the Federal Institute of Technology in Lausanne, Switzerland, the JET laboratory in England and in Basle is discussed. Various tests made with the mirrors are described. Results obtained are presented in graphical and tabular form and commented on. The influence of various material choices on erosion and deposition mechanisms is discussed.

  1. Synthesis of Silicon Nanocrystals in Microplasma Reactor

    Science.gov (United States)

    Nozaki, Tomohiro; Sasaki, Kenji; Ogino, Tomohisa; Asahi, Daisuke; Okazaki, Ken

    Nanocrystalline silicon particles with a grain size of at least less than 10 nm are widely recognized as one of the key materials in optoelectronic devices, electrodes of lithium battery, bio-medical labels. There is also important character that silicon is safe material to the environment and easily gets involved in existing silicon technologies. To date, several synthesis methods such as sputtering, laser ablation, and plasma enhanced chemical vapor deposition (PECVD) based on low-pressure silane chemistry (SiH4) have been developed for precise control of size and density distributions of silicon nanocrystals. We explore the possibility of microplasma technologies for the efficient production of mono-dispersed nanocrystalline silicon particles in a micrometer-scale, continuous-flow plasma reactor operated at atmospheric pressure. Mixtures of argon, hydrogen, and silicon tetrachloride were activated using very high frequency (VHF = 144 MHz) power source in a capillary glass tube with a volume of less than 1 μ-liter. Fundamental plasma parameters of VHF capacitively coupled microplasma were characterized by optical emission spectroscopy, showing electron density of approximately 1015 cm-3 and rotational temperature of 1500 K, respectively. Such high-density non-thermal reactive plasma has a capability of decomposing silicon tetrachloride into atomic silicon to produce supersaturated atomic silicon vapor, followed by gas phase nucleation v