WorldWideScience

Sample records for non-thermal plasma barrier

  1. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species.

    Science.gov (United States)

    Arjunan, Krishna Priya; Friedman, Gary; Fridman, Alexander; Clyne, Alisa Morss

    2012-01-07

    Vascularization plays a key role in processes such as wound healing and tissue engineering. Non-thermal plasma, which primarily produces reactive oxygen species (ROS), has recently emerged as an efficient tool in medical applications including blood coagulation, sterilization and malignant cell apoptosis. Liquids and porcine aortic endothelial cells were treated with a non-thermal dielectric barrier discharge plasma in vitro. Plasma treatment of phosphate-buffered saline (PBS) and serum-free medium increased ROS concentration in a dose-dependent manner, with a higher concentration observed in serum-free medium compared with PBS. Species concentration inside cells peaked 1 h after treatment, followed by a decrease 3 h post treatment. Endothelial cells treated with a plasma dose of 4.2 J cm(-2) had 1.7 times more cells than untreated samples 5 days after plasma treatment. The 4.2 J cm(-2) plasma dose increased two-dimensional migration distance by 40 per cent compared with untreated control, while the number of cells that migrated through a three-dimensional collagen gel increased by 15 per cent. Tube formation was also enhanced by plasma treatment, with tube lengths in plasma-treated samples measuring 2.6 times longer than control samples. A fibroblast growth factor-2 (FGF-2) neutralizing antibody and ROS scavengers abrogated these angiogenic effects. These data indicate that plasma enhanced proliferation, migration and tube formation is due to FGF-2 release induced by plasma-produced ROS. Non-thermal plasma may be used as a potential tool for applying ROS in precise doses to enhance vascularization.

  2. Saturated Resin Ectopic Regeneration by Non-Thermal Dielectric Barrier Discharge Plasma

    Directory of Open Access Journals (Sweden)

    Chunjing Hao

    2017-11-01

    Full Text Available Textile dyes are some of the most refractory organic compounds in the environment due to their complex and various structure. An integrated resin adsorption/Dielectric Barrier Discharge (DBD plasma regeneration was proposed to treat the indigo carmine solution. It is the first time to report ectopic regeneration of the saturated resins by non-thermal Dielectric Barrier Discharge. The adsorption/desorption efficiency, surface functional groups, structural properties, regeneration efficiency, and the intermediate products between gas and liquid phase before and after treatment were investigated. The results showed that DBD plasma could maintain the efficient adsorption performance of resins while degrading the indigo carmine adsorbed by resins. The degradation rate of indigo carmine reached 88% and the regeneration efficiency (RE can be maintained above 85% after multi-successive regeneration cycles. The indigo carmine contaminants were decomposed by a variety of reactive radicals leading to fracture of exocyclic C=C bond, which could cause decoloration of dye solution. Based on above results, a possible degradation pathway for the indigo carmine by resin adsorption/DBD plasma treatment was proposed.

  3. Growth and male reproduction improvement of non-thermal dielectric barrier discharge plasma treatment on chickens

    Science.gov (United States)

    Jiao Zhang, Jiao; Luong Huynh, Do; Chandimali, Nisansala; Kang, Tae Yoon; Kim, Nameun; Mok, Young Sun; Kwon, Taeho; Jeong, Dong Kee

    2018-05-01

    This study investigated whether plasma treatment of fertilized eggs before hatching could affect the growth and reproduction of chickens. Three point five-day-incubated fertilized eggs exposed to non-thermal dielectric barrier discharge plasma at 2.81 W of power for 2 min resulted in the highest growth in chickens. Plasma growth-promoting effect was regulated by the reactive oxygen species homeostasis and the improvement of energy metabolism via increasing serum hormones and adenosine triphosphate levels which were resulted from the regulation of genes involved in antioxidant defense, hormone biosynthesis and energetic metabolism. Interestingly, plasma-treated male chickens conspicuously grew faster than females. Further, aspects of male reproductive system (testosterone level and sperm quality) were improved by the plasma treatment but female reproduction (estradiol and progesterone levels, egg-laying rate and egg weight) had no significant changes. Unfortunately, offspring whose parents were the optimal plasma-treated chickens did not show any difference on growth characteristics and failed to inherit excellent growth features from their parents. Our results suggest a new method to improve the growth rate and male reproductive capacity in poultry but it is only effective in the plasma direct-treated generation.

  4. Plasma diagnostic techniques in thermal-barrier tandem-mirror fusion experiments

    International Nuclear Information System (INIS)

    Silver, E.H.; Clauser, J.F.; Carter, M.R.; Failor, B.H.; Foote, J.H.; Hornady, R.S.; James, R.A.; Lasnier, C.J.; Perkins, D.E.

    1986-01-01

    We review two classes of plasma diagnostic techniques used in thermal-barrier tandem-mirror fusion experiments. The emphasis of the first class is to study mirror-trapped electrons at the thermal-barrier location. The focus of the second class is to measure the spatial and temporal behavior of the plasma space potential at various axial locations. The design and operation of the instruments in these two categories are discussed and data that are representative of their performance is presented

  5. Advanced oxidation technology for H2S odor gas using non-thermal plasma

    Science.gov (United States)

    Tao, ZHU; Ruonan, WANG; Wenjing, BIAN; Yang, CHEN; Weidong, JING

    2018-05-01

    Non-thermal plasma technology is a new type of odor treatment processing. We deal with H2S from waste gas emission using non-thermal plasma generated by dielectric barrier discharge. On the basis of two criteria, removal efficiency and absolute removal amount, we deeply investigate the changes in electrical parameters and process parameters, and the reaction process of the influence of ozone on H2S gas removal. The experimental results show that H2S removal efficiency is proportional to the voltage, frequency, power, residence time and energy efficiency, while it is inversely proportional to the initial concentration of H2S gas, and ozone concentration. This study lays the foundations of non-thermal plasma technology for further commercial application.

  6. Non-thermal Plasma and Oxidative Stress

    Science.gov (United States)

    Toyokuni, Shinya

    2015-09-01

    Thermal plasmas and lasers have been used in medicine to cut and ablate tissues and for coagulation. Non-equilibrium atmospheric pressure plasma (NEAPP; non-thermal plasma) is a recently developed, non-thermal technique with possible biomedical applications. Although NEAPP reportedly generates reactive oxygen/nitrogen species, electrons, positive ions, and ultraviolet radiation, few research projects have been conducted to merge this technique with conventional free radical biology. Recently, Prof. Masaru Hori's group (Plasma Nanotechnology Research Center, Nagoya University) developed a NEAPP device with high electron density. Here electron spin resonance revealed hydroxyl radicals as a major product. To merge non-thermal plasma biology with the preexisting free radical biology, we evaluated lipid peroxidation and DNA modifications in various in vitro and ex vivo experiments. Conjugated dienes increased after exposure to linoleic and alfa-linolenic acids. An increase in 2-thiobarbituric acid-reactive substances was also increased after exposure to phosphatidylcholine, liposomes or liver homogenate. Direct exposure to rat liver in medium produced immunohistochemical evidence of 4-hydroxy-2-nonenal- and acrolein-modified proteins. Exposure to plasmid DNA induced dose-dependent single/double strand breaks and increased the amounts of 8-hydroxy-2'-deoxyguanosine and cyclobutane pyrimidine dimers. These results indicate that oxidative biomolecular damage by NEAPP is dose-dependent and thus can be controlled in a site-specific manner. Simultaneous oxidative and UV-specific DNA damage may be useful in cancer treatment. Other recent advancements in the related studies of non-thermal plasma in Nagoya University Graduate School of Medicine will also be discussed.

  7. Thermal Conductivity Analysis and Lifetime Testing of Suspension Plasma-Sprayed Thermal Barrier Coatings

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2014-08-01

    Full Text Available Suspension plasma spraying (SPS has become an interesting method for the production of thermal barrier coatings for gas turbine components. The development of the SPS process has led to structures with segmented vertical cracks or column-like structures that can imitate strain-tolerant air plasma spraying (APS or electron beam physical vapor deposition (EB-PVD coatings. Additionally, SPS coatings can have lower thermal conductivity than EB-PVD coatings, while also being easier to produce. The combination of similar or improved properties with a potential for lower production costs makes SPS of great interest to the gas turbine industry. This study compares a number of SPS thermal barrier coatings (TBCs with vertical cracks or column-like structures with the reference of segmented APS coatings. The primary focus has been on lifetime testing of these new coating systems. Samples were tested in thermo-cyclic fatigue at temperatures of 1100 °C for 1 h cycles. Additional testing was performed to assess thermal shock performance and erosion resistance. Thermal conductivity was also assessed for samples in their as-sprayed state, and the microstructures were investigated using SEM.

  8. Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices

    Science.gov (United States)

    Karki, Surya B.; Thapa Gupta, Tripti; Yildirim-Ayan, Eda; Eisenmann, Kathryn M.; Ayan, Halim

    2017-08-01

    Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells

  9. Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices

    International Nuclear Information System (INIS)

    Karki, Surya B; Gupta, Tripti Thapa; Yildirim-Ayan, Eda; Ayan, Halim; Eisenmann, Kathryn M

    2017-01-01

    Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells

  10. Monitoring non-thermal plasma processes for nanoparticle synthesis

    Science.gov (United States)

    Mangolini, Lorenzo

    2017-09-01

    Process characterization tools have played a crucial role in the investigation of dusty plasmas. The presence of dust in certain non-thermal plasma processes was first detected by laser light scattering measurements. Techniques like laser induced particle explosive evaporation and ion mass spectrometry have provided the experimental evidence necessary for the development of the theory of particle nucleation in silane-containing non-thermal plasmas. This review provides first a summary of these early efforts, and then discusses recent investigations using in situ characterization techniques to understand the interaction between nanoparticles and plasmas. The advancement of such monitoring techniques is necessary to fully develop the potential of non-thermal plasmas as unique materials synthesis and processing platforms. At the same time, the strong coupling between materials and plasma properties suggest that it is also necessary to advance techniques for the measurement of plasma properties while in presence of dust. Recent progress in this area will be discussed.

  11. Paracetamol degradation in aqueous solution by non-thermal plasma

    Science.gov (United States)

    Baloul, Yasmine; Aubry, Olivier; Rabat, Hervé; Colas, Cyril; Maunit, Benoît; Hong, Dunpin

    2017-08-01

    This study deals with paracetamol degradation in water using a non-thermal plasma (NTP) created by a dielectric barrier discharge (DBD). The effects of the NTP operating conditions on the degradation were studied, showing that the treatment efficiency of the process was highly dependent on the electrical parameters and working gas composition in the reactor containing the aqueous solution. A conversion rate higher than 99% was reached with an energy yield of 12 g/kWh. High resolution mass spectrometry (HRMS) measurements showed that the main species produced in water during the process were nitrogen compounds, carboxylic acids and aromatic compounds. Contribution to the topical issue "The 15th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XV)", edited by Nicolas Gherardi and Tomáš Hoder

  12. Non-thermal plasma mills bacteria: Scanning electron microscopy observations

    International Nuclear Information System (INIS)

    Lunov, O.; Churpita, O.; Zablotskii, V.; Jäger, A.; Dejneka, A.; Deyneka, I. G.; Meshkovskii, I. K.; Syková, E.; Kubinová, Š.

    2015-01-01

    Non-thermal plasmas hold great promise for a variety of biomedical applications. To ensure safe clinical application of plasma, a rigorous analysis of plasma-induced effects on cell functions is required. Yet mechanisms of bacteria deactivation by non-thermal plasma remain largely unknown. We therefore analyzed the influence of low-temperature atmospheric plasma on Gram-positive and Gram-negative bacteria. Using scanning electron microscopy, we demonstrate that both Gram-positive and Gram-negative bacteria strains in a minute were completely destroyed by helium plasma. In contrast, mesenchymal stem cells (MSCs) were not affected by the same treatment. Furthermore, histopathological analysis of hematoxylin and eosin–stained rat skin sections from plasma–treated animals did not reveal any abnormalities in comparison to control ones. We discuss possible physical mechanisms leading to the shred of bacteria under non-thermal plasma irradiation. Our findings disclose how helium plasma destroys bacteria and demonstrates the safe use of plasma treatment for MSCs and skin cells, highlighting the favorability of plasma applications for chronic wound therapy

  13. Applying chemical engineering concepts to non-thermal plasma reactors

    Science.gov (United States)

    Pedro AFFONSO, NOBREGA; Alain, GAUNAND; Vandad, ROHANI; François, CAUNEAU; Laurent, FULCHERI

    2018-06-01

    Process scale-up remains a considerable challenge for environmental applications of non-thermal plasmas. Undersanding the impact of reactor hydrodynamics in the performance of the process is a key step to overcome this challenge. In this work, we apply chemical engineering concepts to analyse the impact that different non-thermal plasma reactor configurations and regimes, such as laminar or plug flow, may have on the reactor performance. We do this in the particular context of the removal of pollutants by non-thermal plasmas, for which a simplified model is available. We generalise this model to different reactor configurations and, under certain hypotheses, we show that a reactor in the laminar regime may have a behaviour significantly different from one in the plug flow regime, often assumed in the non-thermal plasma literature. On the other hand, we show that a packed-bed reactor behaves very similarly to one in the plug flow regime. Beyond those results, the reader will find in this work a quick introduction to chemical reaction engineering concepts.

  14. Formation of hydrophobic coating on glass surface using atmospheric pressure non-thermal plasma in ambient air

    International Nuclear Information System (INIS)

    Fang, Z; Qiu, Y; Kuffel, E

    2004-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in material surface processing because of their convenience, effectiveness and low cost. In this paper, the treatment of a glass surface for improving hydrophobicity using a non-thermal plasma generated by a dielectric barrier corona discharge (DBCD) with a needle array-to-plane electrode arrangement in atmospheric air is conducted, and the surface properties of the glass before and after the DBCD treatment are studied using contact angle measurement, surface resistance measurement and the wet flashover voltage test. The effects of the plasma dose (the product of average discharge power and treatment time) of DBCD on the surface modification are studied, and the mechanism of interaction between the plasma and glass surface is discussed. It is found that a layer of hydrophobic coating is formed on the glass surface through DBCD treatment, and the improvement of hydrophobicity depends on the plasma dose of the DBCD. It seems that there is an optimum plasma dose for the surface treatment. The test results of thermal ageing and chemical ageing show that the hydrophobic layer has quite stable characteristics

  15. Thermal fatigue behavior of thermal barrier coatings by air plasma spray

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Sang; Kim, Eui Hyun [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Lee, Jung Hyuk [Korea Plant Service and Engineering Co. Ltd., Incheon (Korea, Republic of)

    2008-06-15

    Effects of top coat morphology and thickness on thermal fatigue behavior of Thermal Barrier Coatings (TBC) were investigated in this study. Thermal fatigue tests were conducted on three coating specimens with different top coat morphology and thickness, and then the test data were compared via microstructures, cycles to failure, and fracture surfaces. In the air plasma spray specimens (APS1, APS2), top coat were 200 and 300 {mu}m respectively. The thickness of top coat was about 700 {mu}m in the Perpendicular Cracked Specimen (PCS). Under thermal fatigue condition at 1,100 .deg. C, the cycles to top coat failure of APS1, APS2, and PCS were 350, 560 and 480 cycles, respectively. The cracks were initiated at the interface of top coat and Thermally Grown Oxide (TGO) and propagated into TGO or top coat as the number of thermal fatigue cycles increased. For the PCS specimen, additive cracks were initiated and propagated at the starting points of perpendicular cracks in the top coat. Also, the thickness of TGO and the decrease of aluminium concentration in bond coat do not affect the cycles to failure.

  16. Optimization of Non-Thermal Plasma Treatment in an In Vivo Model Organism.

    Directory of Open Access Journals (Sweden)

    Amanda Lee

    Full Text Available Non-thermal plasma is increasingly being recognized for a wide range of medical and biological applications. However, the effect of non-thermal plasma on physiological functions is not well characterized in in vivo model systems. Here we use a genetically amenable, widely used model system, Drosophila melanogaster, to develop an in vivo system, and investigate the role of non-thermal plasma in blood cell differentiation. Although the blood system in Drosophila is primitive, it is an efficient system with three types of hemocytes, functioning during different developmental stages and environmental stimuli. Blood cell differentiation in Drosophila plays an essential role in tissue modeling during embryogenesis, morphogenesis and also in innate immunity. In this study, we optimized distance and frequency for a direct non-thermal plasma application, and standardized doses to treat larvae and adult flies so that there is no effect on the viability, fertility or locomotion of the organism. We discovered that at optimal distance, time and frequency, application of plasma induced blood cell differentiation in the Drosophila larval lymph gland. We articulate that the augmented differentiation could be due to an increase in the levels of reactive oxygen species (ROS upon non-thermal plasma application. Our studies open avenues to use Drosophila as a model system in plasma medicine to study various genetic disorders and biological processes where non-thermal plasma has a possible therapeutic application.

  17. Non-thermal atmospheric-pressure plasma possible application in wound healing.

    Science.gov (United States)

    Haertel, Beate; von Woedtke, Thomas; Weltmann, Klaus-Dieter; Lindequist, Ulrike

    2014-11-01

    Non-thermal atmospheric-pressure plasma, also named cold plasma, is defined as a partly ionized gas. Therefore, it cannot be equated with plasma from blood; it is not biological in nature. Non-thermal atmospheric-pressure plasma is a new innovative approach in medicine not only for the treatment of wounds, but with a wide-range of other applications, as e.g. topical treatment of other skin diseases with microbial involvement or treatment of cancer diseases. This review emphasizes plasma effects on wound healing. Non-thermal atmospheric-pressure plasma can support wound healing by its antiseptic effects, by stimulation of proliferation and migration of wound relating skin cells, by activation or inhibition of integrin receptors on the cell surface or by its pro-angiogenic effect. We summarize the effects of plasma on eukaryotic cells, especially on keratinocytes in terms of viability, proliferation, DNA, adhesion molecules and angiogenesis together with the role of reactive oxygen species and other components of plasma. The outcome of first clinical trials regarding wound healing is pointed out.

  18. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    International Nuclear Information System (INIS)

    Tanaka, Hiromasa; Mizuno, Masaaki; Toyokuni, Shinya; Maruyama, Shoichi; Kodera, Yasuhiro; Terasaki, Hiroko; Adachi, Tetsuo; Kato, Masashi; Kikkawa, Fumitaka; Hori, Masaru

    2015-01-01

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established

  19. Cancer therapy using non-thermal atmospheric pressure plasma with ultra-high electron density

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hiromasa [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Mizuno, Masaaki [Center for Advanced Medicine and Clinical Research, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Toyokuni, Shinya [Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Maruyama, Shoichi [Department of Nephrology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kodera, Yasuhiro [Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Terasaki, Hiroko [Department of Ophthalmology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Adachi, Tetsuo [Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 501-1196 Gifu (Japan); Kato, Masashi [Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Kikkawa, Fumitaka [Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Tsurumai-cho 65, Showa-ku, Nagoya 466-8550 (Japan); Hori, Masaru [Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-12-15

    Cancer therapy using non-thermal atmospheric pressure plasma is a big challenge in plasma medicine. Reactive species generated from plasma are key factors for treating cancer cells, and thus, non-thermal atmospheric pressure plasma with high electron density has been developed and applied for cancer treatment. Various cancer cell lines have been treated with plasma, and non-thermal atmospheric plasma clearly has anti-tumor effects. Recent innovative studies suggest that plasma can both directly and indirectly affect cells and tissues, and this observation has widened the range of applications. Thus, cancer therapy using non-thermal atmospheric pressure plasma is promising. Animal experiments and understanding the mode of action are essential for clinical application in the future. A new academic field that combines plasma science, the biology of free radicals, and systems biology will be established.

  20. Transport barriers in plasmas

    International Nuclear Information System (INIS)

    Caldas, I L; Szezech, J D Jr; Kroetz, T; Marcus, F A; Roberto, M; Viana, R L; Lopes, S R

    2012-01-01

    We discuss the creation of transport barriers in magnetically confined plasmas with non monotonic equilibrium radial profiles. These barriers reduce the transport in the shearless region (i.e., where the twist condition does not hold). For the chaotic motion of particles in an equilibrium electric field with a nonmonotonic radial profile, perturbed by electrostatic waves, we show that a nontwist transport barrier can be created in the plasma by modifying the electric field radial profile. We also show non twist barriers in chaotic magnetic field line transport in the plasma near to the tokamak wall with resonant modes due to electric currents in external coils.

  1. Performance Testing of Suspension Plasma Sprayed Thermal Barrier Coatings Produced with Varied Suspension Parameters

    Directory of Open Access Journals (Sweden)

    Nicholas Curry

    2015-07-01

    Full Text Available Suspension plasma spraying has become an emerging technology for the production of thermal barrier coatings for the gas turbine industry. Presently, though commercial systems for coating production are available, coatings remain in the development stage. Suitable suspension parameters for coating production remain an outstanding question and the influence of suspension properties on the final coatings is not well known. For this study, a number of suspensions were produced with varied solid loadings, powder size distributions and solvents. Suspensions were sprayed onto superalloy substrates coated with high velocity air fuel (HVAF -sprayed bond coats. Plasma spray parameters were selected to generate columnar structures based on previous experiments and were maintained at constant to discover the influence of the suspension behavior on coating microstructures. Testing of the produced thermal barrier coating (TBC systems has included thermal cyclic fatigue testing and thermal conductivity analysis. Pore size distribution has been characterized by mercury infiltration porosimetry. Results show a strong influence of suspension viscosity and surface tension on the microstructure of the produced coatings.

  2. Analysis of the biological effects of a non-thermal plasma on saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Park, Gyung S.; Baik, Ku Y.; Kim, Jung G.; Kim, Yun J.; Lee, Kyung A.; Jung, Ran J.; Cho, Guang S.

    2012-01-01

    The cellular and the molecular responses of eukaryotic yeast (Saccharomyces cerevisiae) to a non-thermal plasma at atmospheric pressure are analyzed. A plasma device with a dielectric barrier discharge is used in order to understand the mechanisms of the plasma action on eukaryotic microbes. When the yeast cells are exposed to a plasma (at a 2-mm distance) and then cultured on a YPD (yeast extract, peptone, and dextrose) - agar plate, the number of surviving cells is reduced over exposure time. More than a 50% reduction in number is observed after two exposures of 5 minutes' duration. In addition, very small whitish colonies appear after the two exposures. The microscopic analysis indicates that the yeast cells treated with this plasma exposure have rough and shrunken shapes in comparison to the oval shapes with smooth surfaces of the control cells. The profile of proteins analyzed by using 2-dimentional electrophoresis demonstrates that the level of proteins with high molecular weights is increased in plasma-treated cells.

  3. Application of non-thermal plasmas to pollution control

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Vogtlin, G.E.; Bardsley, J.N.; Vitello, P.A.; Wallman, P.H.

    1993-06-01

    Non-thermal plasma techniques can be used to destroy many types of hazardous molecules. They are particularly efficient when the toxic materials are present in very small concentrations. This paper discusses three particular applications of non-thermal plasmas: (1) decomposition of hydrogen sulfide (H 2 S), (2) removal of trichloroethylene (TCE), and (3) removal of nitrogen oxides (NO x ). Emphasis is placed on the energy cost for implementing the decomposition or removal of these pollutants. Some of the factors affecting the energy cost are discussed. The authors discuss in detail their work at LLNL on pulsed plasma processing for the treatment of NO x in diesel engine exhaust. The results suggest that their plasma reactor can remove up to 70% of NO with relatively high initial concentrations (up to 500 ppM) at a power consumption cost of 2.5% for an engine with an output of 14 kW and an exhaust gas flow rate of 1,200 liters per minute

  4. Application of non-thermal plasmas to pollution control

    International Nuclear Information System (INIS)

    Penetrante, B.M.; Vogtlin, G.E.; Bardsley, J.N.; Vitello, P.A.; Wallman, P.H.

    1993-01-01

    Non-thermal plasma techniques can be used to destroy many types of hazardous molecules. They are particularly efficient when the toxic materials are present in very small concentrations. This paper discusses three particular applications of non-thermal plasmas: (1) decomposition of hydrogen sulfide (H 2 S), (2) removal of trichloroethylene (TCE), and (3) removal of nitric oxides (NO x ) Emphasis is placed on the energy cost for implementing the decomposition or removal of these pollutants. Some of the factors affecting the energy cost are discussed. We discuss in detail our work at LLNL on pulsed plasma processing for the treatment of NO x in diesel engine exhaust. Our results suggest that our plasma reactor can remove up to 70% of NO x with relatively high initial concentrations (up to 500 ppM) at a power consumption cost of 2.5% for an engine with an output of 14 kill and an exhaust gas flow rate of 1200 liters per minute

  5. Thermal Fatigue Behavior of Air-Plasma Sprayed Thermal Barrier Coating with Bond Coat Species in Cyclic Thermal Exposure

    Directory of Open Access Journals (Sweden)

    Ungyu Paik

    2013-08-01

    Full Text Available The effects of the bond coat species on the delamination or fracture behavior in thermal barrier coatings (TBCs was investigated using the yclic thermal fatigue and thermal-shock tests. The interface microstructures of each TBC showed a good condition without cracking or delamination after flame thermal fatigue (FTF for 1429 cycles. The TBC with the bond coat prepared by the air-plasma spray (APS method showed a good condition at the interface between the top and bond coats after cyclic furnace thermal fatigue (CFTF for 1429 cycles, whereas the TBCs with the bond coats prepared by the high-velocity oxygen fuel (HVOF and low-pressure plasma spray (LPPS methods showed a partial cracking (and/or delamination and a delamination after 780 cycles, respectively. The TBCs with the bond coats prepared by the APS, HVOF and LPPS methods were fully delaminated (>50% after 159, 36, and 46 cycles, respectively, during the thermal-shock tests. The TGO thickness in the TBCs was strongly dependent on the both exposure time and temperature difference tested. The hardness values were found to be increased only after the CFTF, and the TBC with the bond coat prepared by the APS showed the highest adhesive strength before and after the FTF.

  6. Effect of Dielectric Barrier Discharge Plasma Actuators on Non-equilibrium Hypersonic Flows

    Science.gov (United States)

    2014-10-28

    results for MIG with the US3D code devel- oped at the University of Minnesota.61 US3D is an unstruc- tured CFD code for hypersonic flow solution used...Effect of dielectric barrier discharge plasma actuators on non-equilibrium hypersonic flows Ankush Bhatia,1 Subrata Roy,1 and Ryan Gosse2 1Applied...a cylindrical body in Mach 17 hypersonic flow is presented. This application focuses on using sinusoidal dielectric barrier discharge plasma actuators

  7. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  8. Non-thermal plasmas for non-catalytic and catalytic VOC abatement

    International Nuclear Information System (INIS)

    Vandenbroucke, Arne M.; Morent, Rino; De Geyter, Nathalie; Leys, Christophe

    2011-01-01

    Highlights: → We review the current status of catalytic and non-catalytic VOC abatement based on a vast number of research papers. → The underlying mechanisms of plasma-catalysis for VOC abatement are discussed. → Critical process parameters that determine the influent are discussed and compared. - Abstract: This paper reviews recent achievements and the current status of non-thermal plasma (NTP) technology for the abatement of volatile organic compounds (VOCs). Many reactor configurations have been developed to generate a NTP at atmospheric pressure. Therefore in this review article, the principles of generating NTPs are outlined. Further on, this paper is divided in two equally important parts: plasma-alone and plasma-catalytic systems. Combination of NTP with heterogeneous catalysis has attracted increased attention in order to overcome the weaknesses of plasma-alone systems. An overview is given of the present understanding of the mechanisms involved in plasma-catalytic processes. In both parts (plasma-alone systems and plasma-catalysis), literature on the abatement of VOCs is reviewed in close detail. Special attention is given to the influence of critical process parameters on the removal process.

  9. Simulations of planar non-thermal plasma assisted ignition at atmospheric pressure

    KAUST Repository

    Casey, Tiernan A.; Han, Jie; Belhi, Memdouh; Arias, Paul G.; Bisetti, Fabrizio; Im, Hong G.; Chen, Jyh Yuan

    2016-01-01

    neutrals and ions to the non-thermal electrons. A two-temperature plasma mechanism describing gas phase combustion, excitation of neutral species, and high-energy electron kinetics is employed to account for non-thermal effects. Charged species transported

  10. A dc non-thermal atmospheric-pressure plasma microjet

    Science.gov (United States)

    Zhu, WeiDong; Lopez, Jose L.

    2012-06-01

    A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ˜120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas.

  11. A dc non-thermal atmospheric-pressure plasma microjet

    International Nuclear Information System (INIS)

    Zhu Weidong; Lopez, Jose L

    2012-01-01

    A direct current (dc), non-thermal, atmospheric-pressure plasma microjet is generated with helium/oxygen gas mixture as working gas. The electrical property is characterized as a function of the oxygen concentration and show distinctive regions of operation. Side-on images of the jet were taken to analyze the mode of operation as well as the jet length. A self-pulsed mode is observed before the transition of the discharge to normal glow mode. Optical emission spectroscopy is employed from both end-on and side-on along the jet to analyze the reactive species generated in the plasma. Line emissions from atomic oxygen (at 777.4 nm) and helium (at 706.5 nm) were studied with respect to the oxygen volume percentage in the working gas, flow rate and discharge current. Optical emission intensities of Cu and OH are found to depend heavily on the oxygen concentration in the working gas. Ozone concentration measured in a semi-confined zone in front of the plasma jet is found to be from tens to ∼120 ppm. The results presented here demonstrate potential pathways for the adjustment and tuning of various plasma parameters such as reactive species selectivity and quantities or even ultraviolet emission intensities manipulation in an atmospheric-pressure non-thermal plasma source. The possibilities of fine tuning these plasma species allows for enhanced applications in health and medical related areas. (paper)

  12. Functionalization of polymer surfaces by medium frequency non-thermal plasma

    Science.gov (United States)

    Felix, T.; Trigueiro, J. S.; Bundaleski, N.; Teodoro, O. M. N. D.; Sério, S.; Debacher, N. A.

    2018-01-01

    This work addresses the surface modification of different polymers by argon dielectric barrier discharge, using bromoform vapours. Atomic Force Microscopy and Scanning Electron Microscopy showed that plasma etching occurs in stages and may be related to the reach of the species generated and obviously the gap between the electrodes. In addition, the stages of flatten surface or homogeneity may be the result of the transient crosslinking promoted by the intense UV radiation generated by the non- thermal plasma. X-ray Photoelectron Spectroscopy analysis showed that bromine was inserted on the polymer surface as Csbnd Br bonds and as adsorbed HBr. The obtained results demonstrate that the highest degree of bromofunctionalization was achieved on polypropylene surface, which contains about 8,5% of Br. After its derivatization in ammonia, Br disappeared and about 6% of nitrogen in the form of amine group was incorporated at the surface. This result can be considered as a clear fingerprint of the Br substitution by the amine group, thus illustrating the efficiency of the proposed method for functionalization of polymer surfaces.

  13. Erosion and foreign object damage of thermal barrier coatings

    International Nuclear Information System (INIS)

    Nicholls, J.R.; Jaslier, Y.; Rickerby, D.S.

    1997-01-01

    Thermal barrier coating technology is used in the hot sections of gas turbines to extend component life. To maximise these benefits, the thermal barrier coating has to remain intact throughout the life of the turbine. High velocity ballistic damage can lead to total thermal barrier removal, while erosion may lead to progressive loss of thickness during operation. This paper particularly addresses the erosion resistance and resistance to foreign object damage of thermal barrier coatings. It was found that EB-PVD thermal barriers are significantly more erosion resistant when impacted with alumina or silica, than the equivalent plasma spray coating, both at room temperature and 910 C. Examination of tested hardware, reveals that cracking occurs within the near surface region of the columns for EB-PVD ceramic and that erosion occurs by removal of these small blocks of material. In stark contrast, removal of material for plasma sprayed ceramic occurs through poorly bonded splat boundaries. Large particle impact results in severe damage to the EB-PVD thermal barrier, with cracks penetrating through the ceramic coating to the ceramic/bond coat interface. Material removal, per particle impact, increases with increased particle size. (orig.)

  14. Non-Thermal Sanitation By Atmospheric Pressure Plasma, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC proposes to develop a non-thermal technology based on atmospheric-pressure (AP) cold plasma to sanitize foods, food packaging materials, and other hardware...

  15. A Brief Study on the Ignition of the Non-Thermal Atmospheric Pressure Plasma Jet from a Double Dielectric Barrier Configured Plasma Pencil

    International Nuclear Information System (INIS)

    Begum, Asma; Laroussi, Mounir; Pervez, M. R.

    2013-01-01

    To understand the self sustained propagation of the plasma jet/bullet in air under atmospheric pressure, the ignition of the plasma jet/bullet, the plasma jet/bullet ignition point in the plasma pencil, the formation time and the formation criteria from a dielectric barrier configured plasma pencil were investigated in this study. The results were confirmed by comparing these results with the plasma jet ignition process in the plasma pencil without a dielectric barrier. Electrical, optical, and imaging techniques were used to study the formation of the plasma jet from the ignition of discharge in a double dielectric barrier configured plasma pencil. The investigation results show that the plasma jet forms at the outlet of the plasma pencil as a donut shaped discharge front because of the electric field line along the outlet's surface. It is shown that the required time for the formation of the plasma jet changes with the input voltage of the discharge. The input power calculation for the gap discharge and for the whole system shows that 56% of the average input power is used by the first gap discharge. The estimated electron density inside the gap discharge is in the order of 10 11 cm −3 . If helium is used as a feeding gas, a minimum 1.48×10 −8 C charge is required per pulse in the gap discharge to generate a plasma jet

  16. Studying the non-thermal plasma jet characteristics and application on bacterial decontamination

    Science.gov (United States)

    Al-rawaf, Ali F.; Fuliful, Fadhil Khaddam; Khalaf, Mohammed K.; Oudah, Husham. K.

    2018-04-01

    Non-thermal atmospheric-pressure plasma jet represents an excellent approach for the decontamination of bacteria. In this paper, we want to improve and characterize a non-thermal plasma jet to employ it in processes of sterilization. The electrical characteristics was studied to describe the discharge of the plasma jet and the development of plasma plume has been characterized as a function of helium flow rate. Optical emission spectroscopy was employed to detect the active species inside the plasma plume. The inactivation efficiency of non-thermal plasma jet was evaluated against Staphylococcus aureus bacteria by measuring the diameter of inhibition zone and the number of surviving cells. The results presented that the plasma plume temperature was lower than 34° C at a flow rate of 4 slm, which will not cause damage to living tissues. The diameter of inhibition zone is directly extended with increased exposure time. We confirmed that the inactivation mechanism was unaffected by UV irradiation. In addition, we concluded that the major reasons for the inactivation process of bacteria is because of the action of the reactive oxygen and nitrogen species which formed from ambient air, while the charged particles played a minor role in the inactivation process.

  17. Mueller matrix polarimetry on plasma sprayed thermal barrier coatings for porosity measurement.

    Science.gov (United States)

    Luo, David A; Barraza, Enrique T; Kudenov, Michael W

    2017-12-10

    Yttria-stabilized zirconia (YSZ) is the most widely used material for thermal plasma sprayed thermal barrier coatings (TBCs) used to protect gas turbine engine parts in demanding operation environments. The superior material properties of YSZ coatings are related to their internal porosity level. By quantifying the porosity level, tighter control on the spraying process can be achieved to produce reliable coatings. Currently, destructive measurement methods are widely used to measure the porosity level. In this paper, we describe a novel nondestructive approach that is applicable to classify the porosity level of plasma sprayed YSZ TBCs via Mueller matrix polarimetry. A rotating retarder Mueller matrix polarimeter was used to measure the polarization properties of the plasma sprayed YSZ coatings with different porosity levels. From these measurements, it was determined that a sample's measured depolarization ratio is dependent on the sample's surface roughness and porosity level. To this end, we correlate the depolarization ratio with the samples' surface roughness, as measured by a contact profilometer, as well as the total porosity level, in percentage measured using a micrograph and stereological analysis. With the use of this technique, a full-field and rapid measurement of porosity level can be achieved.

  18. Atmospheric non-thermal argon-oxygen plasma for sunflower seedling growth improvement

    Science.gov (United States)

    Matra, Khanit

    2018-01-01

    Seedling growth enhancement of sunflower seeds by DC atmospheric non-thermal Ar-O2 plasma has been proposed. The plasma reactor was simply designed by the composition of multi-pin electrodes bonded on a solderable printed circuit board (PCB) anode. A stable plasma was exhibited in the non-periodical self-pulsing discharge mode during the seed treatment. The experimental results showed that non-thermal plasma treatment had a significant positive effect on the sunflower seeds. Ar-O2 mixed gas ratio, treatment time and power source voltage are the important parameters affecting growth stimulation of sunflower sprouts. In this research, the sunflower seeds treated with 3:3 liters per minute (LPM) of Ar-O2 plasma at a source voltage of 8 kV for 1 min showed the best results in stimulating the seedling growth. The results in this case showed that the dry weight and average shoot length of the sunflower sprouts were 1.79 and 2.69 times higher and heavier than those of the untreated seeds, respectively.

  19. State of the art in medical applications using non-thermal atmospheric pressure plasma

    Science.gov (United States)

    Tanaka, Hiromasa; Ishikawa, Kenji; Mizuno, Masaaki; Toyokuni, Shinya; Kajiyama, Hiroaki; Kikkawa, Fumitaka; Metelmann, Hans-Robert; Hori, Masaru

    2017-12-01

    Plasma medical science is a novel interdisciplinary field that combines studies on plasma science and medical science, with the anticipation that understanding the scientific principles governing plasma medical science will lead to innovations in the field. Non-thermal atmospheric pressure plasma has been used for medical treatments, such as for cancer, blood coagulation, and wound healing. The interactions that occur between plasma and cells/tissues have been analyzed extensively. Direct and indirect treatment of cells with plasma has broadened the applications of non-thermal atmospheric pressure plasma in medicine. Examples of indirect treatment include plasma-assisted immune-therapy and plasma-activated medium. Controlling intracellular redox balance may be key in plasma cancer treatment. Animal studies are required to test the effectiveness and safety of these treatments for future clinical applications.

  20. Pre-treating water with non-thermal plasma

    Science.gov (United States)

    Cho, Young I.; Fridman, Alexander; Rabinovich, Alexander; Cho, Daniel J.

    2017-07-04

    The present invention consists of a method of pre-treatment of adulterated water for distillation, including adulterated water produced during hydraulic fracturing ("fracking") of shale rock during natural gas drilling. In particular, the invention is directed to a method of treating adulterated water, said adulterated water having an initial level of bicarbonate ion in a range of about 250 ppm to about 5000 ppm and an initial level of calcium ion in a range of about 500 ppm to about 50,000 ppm, said method comprising contacting the adulterated water with a non-thermal arc discharge plasma to produce plasma treated water having a level of bicarbonate ion of less than about 100 ppm. Optionally, the plasma treated water may be further distilled.

  1. Composition and partition functions of partially ionized hydrogen plasma in Non-Local Thermal Equilibrium (Non-LThE) and Non-Local Chemical Equilibrium (Non-LChE)

    International Nuclear Information System (INIS)

    Chen Kuan; Eddy, T.L.

    1993-01-01

    A GTME (Generalized MultiThermodynamic Equilibrium) plasma model is developed for plasmas in both Non-LThE (Non-Local Thermal Equilibrium) and Non-LChE (Non-Local Chemical Equilibrium). The model uses multitemperatures for thermal nonequilibrium and non-zero chemical affinities as a measure of the deviation from chemical equilibrium. The plasma is treated as an ideal gas with the Debye-Hueckel approximation employed for pressure correction. The proration method is used when the cutoff energy level is between two discrete levels. The composition and internal partition functions of a hydrogen plasma are presented for electron temperatures ranging from 5000 to 35000 K and pressures from 0.1 to 1000 kPa. Number densities of 7 different species of hydrogen plasma and internal partition functions of different energy modes (rotational, vibrational, and electronic excitation) are computed for three affinity values. The results differ from other plasma properties in that they 1) are not based on equilibrium properties; and 2) are expressed as a function of different energy distribution parameters (temperatures) within each energy mode of each species as appropriate. The computed number densities and partition functions are applicable to calculating the thermodynamic, transport, and radiation properties of a hydrogen plasma not in thermal and chemical equilibria. The nonequilibrium plasma model and plasma compositions presented in this paper are very useful to the diagnosis of high-speed and/or low-pressure plasma flows in which the assumptions of local thermal and chemical equilibrium are invalid. (orig.)

  2. Failure analysis of thermally cycled columnar thermal barrier coatings produced by high-velocity-air fuel and axial-suspension-plasma spraying: A design perspective

    Czech Academy of Sciences Publication Activity Database

    Ganvir, A.; Vaidhyanathan, V.; Markocsan, N.; Gupta, M.; Pala, Zdeněk; Lukáč, František

    2018-01-01

    Roč. 44, č. 3 (2018), s. 3161-3172 ISSN 0272-8842 Institutional support: RVO:61389021 Keywords : Columnar Thermal Barrier Coatings * Axial Suspension Plasma spraying * Thermal Cyclic Fatigue * High Velocity Air Fuel Spraying Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 2.986, year: 2016 https://www.sciencedirect.com/science/article/pii/S0272884217325403

  3. Foundations of High-Pressure Thermal Plasmas

    Science.gov (United States)

    Murphy, Anthony B.; Uhrlandt, Dirk

    2018-06-01

    An introduction to the main methods used to produce, model and measure thermal plasmas is provided, with emphasis on the differences between thermal plasmas and other types of processing plasmas. The critical properties of thermal plasmas are explained in physical terms and their importance in different applications is considered. The characteristics, and advantages and disadvantages, of the different main types of thermal plasmas (transferred and non-transferred arcs, radio-frequency inductively-coupled plasmas and microwave plasmas) are discussed. The methods by which flow is stabilized in arc plasmas are considered. The important concept of local thermodynamic equilibrium (LTE) is explained, leading into a discussion of the importance of thermophysical properties, and their calculation in LTE and two-temperature plasmas. The standard equations for modelling thermal plasmas are presented and contrasted with those used for non-equilibrium plasmas. Treatments of mixed-gas and non-LTE plasmas are considered, as well as the sheath regions adjacent to electrodes. Finally, the main methods used for electrical, optical, spectroscopic and laser diagnostics of thermal plasmas are briefly introduced, with an emphasis on the required assumptions for their reliable implementation, and the specific requirements of thermal plasmas.

  4. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence

    Science.gov (United States)

    Flynn, Padrig B.; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P.; Elliott, Christopher T.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; Gilmore, Brendan F.

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30–60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  5. Non-thermal plasma mills bacteria: scanning electron microscopy observations

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Churpita, Olexandr; Zablotskyy, Vitaliy A.; Deyneka, I.G.; Meshkovskii, I.K.; Jäger, Aleš; Syková, Eva; Kubinová, Šárka; Dejneka, Alexandr

    2015-01-01

    Roč. 106, č. 5 (2015), "053703-1"-"053703-5" ISSN 0003-6951 R&D Projects: GA MŠk(CZ) LM2011029; GA MŠk(CZ) LM2011026; GA MŠk LO1309 Grant - others:AV ČR(CZ) M100101219; SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 ; RVO:68378041 Keywords : non-thermal plasma * plasma medicine * bacteria * cells Subject RIV: BO - Biophysics Impact factor: 3.142, year: 2015

  6. Application of pulsed power and power modulation to the non-thermal plasma treatment of hazardous gaseous wastes

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1992-10-01

    Acid rain, global warming, ozone depletion, and smog are preeminent environmental problems facing the world today. Non-thermal plasma techniques offer an innovative approach to the cost-effective solution of these problems. Many potential applications of non-thermal plasmas to air pollution control have already been demonstrated. The use of pulsed power and power modulation is essential to the successful implementation of non-thermal plasma techniques. This paper provides an overview of the most recent developments in non-thermal plasma systems that have been applied to gaseous waste treatment. In the non-thermal plasma approach, the nonequilibrium properties of the plasma are fully exploited. These plasmas are characterized by high electron temperatures, while the gas remains at near ambient temperature and pressure. The energy is directed preferentially to the undesirable components, which are often present in very small concentrations. These techniques utilize the dissociation and ionization of the background gas to produce radicals which, in turn, decompose the toxic compounds. The key to success in the non-thermal plasma approach is to produce a discharge in which the majority of the electrical energy goes into the production of energetic electrons, rather than into gas heating. For example, in a typical application to flue gas cleanup, these electrons produce radicals, such as O and OH, through the dissociation or ionization of molecules such as H 2 O or O 2 . The radicals diffuse through the gas and preferentially oxidize the nitrogen oxides and sulfur oxides to form acids that can then be easily neutralized to form non-toxic, easily-collectible (and commercially salable) compounds. Non-thermal plasmas can be created in essentially two different ways: by electron-beam irradiation, and by electrical discharges

  7. Non-thermal Plasma Activates Human Keratinocytes by Stimulation of Antioxidant and Phase II Pathways

    Science.gov (United States)

    Schmidt, Anke; Dietrich, Stephan; Steuer, Anna; Weltmann, Klaus-Dieter; von Woedtke, Thomas; Masur, Kai; Wende, Kristian

    2015-01-01

    Non-thermal atmospheric pressure plasma provides a novel therapeutic opportunity to control redox-based processes, e.g. wound healing, cancer, and inflammatory diseases. By spatial and time-resolved delivery of reactive oxygen and nitrogen species, it allows stimulation or inhibition of cellular processes in biological systems. Our data show that both gene and protein expression is highly affected by non-thermal plasma. Nuclear factor erythroid-related factor 2 (NRF2) and phase II enzyme pathway components were found to act as key controllers orchestrating the cellular response in keratinocytes. Additionally, glutathione metabolism, which is a marker for NRF2-related signaling events, was affected. Among the most robustly increased genes and proteins, heme oxygenase 1, NADPH-quinone oxidoreductase 1, and growth factors were found. The roles of NRF2 targets, investigated by siRNA silencing, revealed that NRF2 acts as an important switch for sensing oxidative stress events. Moreover, the influence of non-thermal plasma on the NRF2 pathway prepares cells against exogenic noxae and increases their resilience against oxidative species. Via paracrine mechanisms, distant cells benefit from cell-cell communication. The finding that non-thermal plasma triggers hormesis-like processes in keratinocytes facilitates the understanding of plasma-tissue interaction and its clinical application. PMID:25589789

  8. Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons

    Science.gov (United States)

    Nasir Khattak, M.; Mushtaq, A.; Qamar, A.

    2015-12-01

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.

  9. Ion streaming instabilities in pair ion plasma and localized structure with non-thermal electrons

    Energy Technology Data Exchange (ETDEWEB)

    Khattak, M. Nasir; Qamar, A., E-mail: mnnasirphysics@gmail.com [Department of Physics, University of Peshawar (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University Mardan, National Center for Physics, Mardan (Pakistan)

    2015-12-15

    Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A quasi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted. (author)

  10. Recent results from TMX-U thermal barrier experiments

    International Nuclear Information System (INIS)

    Molvik, A.W.; Allen, S.; Barter, J.

    1984-01-01

    The Tandem Mirror Experiment-Upgrade (TMX-U) device was designed to study plasma confinement in a tandem mirror with thermal barriers. Previously the author reported improved axial confinement with high end-plug potentials, consistent with thermal barrier operation. Now, the existence of thermal barriers in TMX-U confirmed by measuring the axial potential profile. Specifically, measured the change in energy of a 5-keV deuterium neutral beam that is injected nearly parallel to the axis and is ionized between the barrier and the central cell. The authors found that the barrier potential is lower than the central cell potential, as required for a thermal barrier. The peak potential is at least 2.4 keV, as determined from the minimum energy of end loss ions. In addition, radial transport is reduced by the use of floating and electrodes that map to concentric cylinders in the central cell. Sloshing ions continue to be microstable

  11. Thermal plasma treatment of stormwater sediments: comparison between DC non-transferred and partially transferred arc plasma.

    Science.gov (United States)

    Li, O L; Guo, Y; Chang, J S; Saito, N

    2015-01-01

    The disposal of enormous amount of stormwater sediments becomes an emerging worldwide problem. Stormwater sediments are contaminated by heavy metals, phosphorus, trace organic and hydrocarbons, and cannot be disposed without treatment. Thermal plasma decontamination technology offers a high decomposition rate in a wide range of toxic organic compound and immobilization of heavy metal. In this study, we compared the treatment results between two different modes of thermal plasma: (1) a non-transferred direct current (DC) mode and (2) a partial DC-transferred mode. The reductions of total organic carbon (TOC) were, respectively, 25% and 80% for non-transferred and partially transferred plasma, respectively. Most of the toxic organic compounds were converted majorly to CxHy. In the gaseous emission, the accumulated CxHy, CO, NO and H2S were significantly higher in partially transferred mode than in non-transferred mode. The solid analysis demonstrated that the concentrations of Ca and Fe were enriched by 500% and 40%, respectively. New chemical compositions such as KAlSi3O8, Fe3O4, NaCl and CaSO4 were formed after treatment in partially DC-transferred mode. The power inputs were 1 and 10 kW, respectively, for non-transferred DC mode and a partially DC-transferred mode. With a lower energy input, non-transferred plasma treatment can be used for decontamination of sediments with low TOC and metal concentration. Meanwhile, partially transferred thermal plasma with higher energy input is suitable for treating sediments with high TOC percentage and volatile metal concentration. The organic compounds are converted into valuable gaseous products which can be recycled as an energy source.

  12. Failure Analysis of Multilayered Suspension Plasma-Sprayed Thermal Barrier Coatings for Gas Turbine Applications

    Science.gov (United States)

    Gupta, M.; Markocsan, N.; Rocchio-Heller, R.; Liu, J.; Li, X.-H.; Östergren, L.

    2018-02-01

    Improvement in the performance of thermal barrier coatings (TBCs) is one of the key objectives for further development of gas turbine applications. The material most commonly used as TBC topcoat is yttria-stabilized zirconia (YSZ). However, the usage of YSZ is limited by the operating temperature range which in turn restricts the engine efficiency. Materials such as pyrochlores, perovskites, rare earth garnets are suitable candidates which could replace YSZ as they exhibit lower thermal conductivity and higher phase stability at elevated temperatures. The objective of this work was to investigate different multilayered TBCs consisting of advanced topcoat materials fabricated by suspension plasma spraying (SPS). The investigated topcoat materials were YSZ, dysprosia-stabilized zirconia, gadolinium zirconate, and ceria-yttria-stabilized zirconia. All topcoats were deposited by TriplexPro-210TM plasma spray gun and radial injection of suspension. Lifetime of these samples was examined by thermal cyclic fatigue and thermal shock testing. Microstructure analysis of as-sprayed and failed specimens was performed with scanning electron microscope. The failure mechanisms in each case have been discussed in this article. The results show that SPS could be a promising route to produce multilayered TBCs for high-temperature applications.

  13. Anisotropic Thermal Diffusivities of Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Akoshima, Megumi; Takahashi, Satoru

    2017-09-01

    Thermal barrier coatings (TBCs) are used to shield the blades of gas turbines from heat and wear. There is a pressing need to evaluate the thermal conductivity of TBCs in the thermal design of advanced gas turbines with high energy efficiency. These TBCs consist of a ceramic-based top coat and a bond coat on a superalloy substrate. Usually, the focus is on the thermal conductivity in the thickness direction of the TBC because heat tends to diffuse from the surface of the top coat to the substrate. However, the in-plane thermal conductivity is also important in the thermal design of gas turbines because the temperature distribution within the turbine cannot be ignored. Accordingly, a method is developed in this study for measuring the in-plane thermal diffusivity of the top coat. Yttria-stabilized zirconia top coats are prepared by thermal spraying under different conditions. The in-plane and cross-plane thermal diffusivities of the top coats are measured by the flash method to investigate the anisotropy of thermal conduction in a TBC. It is found that the in-plane thermal diffusivity is higher than the cross-plane one for each top coat and that the top coats have significantly anisotropic thermal diffusivity. The cross-sectional and in-plane microstructures of the top coats are observed, from which their porosities are evaluated. The thermal diffusivity and its anisotropy are discussed in detail in relation to microstructure and porosity.

  14. Microtexture of the thermally grown alumina in commercial thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Karadge, M. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Zhao, X. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Preuss, M. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom); Xiao, P. [School of Materials, University of Manchester, Grosvenor St., Manchester M1 7HS (United Kingdom)]. E-mail: Ping.Xiao@manchester.ac.uk

    2006-02-15

    otextures of the thermally grown {alpha}-alumina (TGO) in isothermally treated and thermal cycled electron beam physical vapor deposited thermal barrier coatings (EB-PVD-TBC) and isothermally treated air plasma sprayed (APS-TBC) specimens were studied by high resolution electron back-scattered diffraction. The TGO in EB-PVD specimens exhibited a basal microtexture. The TGO in APS specimens, however, did not show any significant microtexture development.

  15. A non-equilibrium simulation of thermal constriction in a cascaded arc hydrogen plasma

    International Nuclear Information System (INIS)

    Peerenboom, K S C; Goedheer, W J; Van Dijk, J; Kroesen, G M W

    2014-01-01

    The cascaded arc hydrogen plasma of Pilot-PSI is studied in a non-LTE model. We demonstrate that the effect of vibrationally excited molecules on the heavy-particle-assisted dissociation is crucial for obtaining thermal constriction. To the best of our knowledge, thermal constriction has not been obtained before in a non-LTE simulation. Probably, realistic numerical studies of this type of plasma were hindered by numerical problems, preventing the non-LTE simulations to show characteristic physical mechanisms such as thermal constriction. In this paper we show that with the help of appropriate numerical strategies thermal constriction can be obtained in a non-LTE simulation. To this end, a new source term linearization technique is developed, which ensures physical solutions even near chemical equilibrium where the composition is dominated by chemical source terms. Results of the model are compared with experiments on Pilot-PSI and show good agreement with pressure and voltage measurements in the source. (paper)

  16. Interlamellar cracking of thermal barrier coatings with TGOs by non-standard four-point bending tests

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P.F. [State Key Laboratory for Strength and Vibration, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an (China); Li, X.D. [State Key Laboratory for Strength and Vibration, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an (China); Aircraft Strength Research Institute of China, Xi' an, 710065 (China); Shang, F.L., E-mail: shangfl@mail.xjtu.edu.cn [State Key Laboratory for Strength and Vibration, Department of Engineering Mechanics, Xi' an Jiaotong University, Xi' an (China); Li, C.J. [State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi' an Jiaotong University, Xi' an (China)

    2011-09-25

    Highlights: {yields} A non-standard modified four-point bending specimen is adopted for delamination test. {yields} Typical failure mode of the TBC system with TGO layer is demonstrated. {yields} Fracture toughness of 8YSZ on a cold-sprayed MCrAlY coating is evaluated theoretically. - Abstract: This work concerns the failure mode and fracture toughness of plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) deposited on a cold-sprayed MCrAlY bond coat (BC) after thermal oxidation. Upon high-temperature exposure, a thermally grown oxide (TGO) layer was formed along the interface between the BC layer and YSZ ceramic coating layer through oxidation of the bond coat. By utilizing a non-standard modified four-point bending specimen, in conjunction with fractured surface examinations by scanning electron microscope and energy disperse spectroscope, the failure mode of this thermal barrier coating (TBC) system has been checked experimentally. It is shown that delamination cracks firstly initiate at the YSZ/BC interface edge, and then propagate along a wavy path near the interface, not only through the TBC but also within the TGO and along the interlamellar interfaces. Through a theoretical analysis of the bending specimen, the fracture toughness of this TBC system, in terms of strain energy release rate, has been determined from the load-displacement curves which were recorded during the tests.

  17. Non-destructive evaluation of degradation in EB-PVD thermal barrier coatings by infrared reflectance spectroscopy

    International Nuclear Information System (INIS)

    Flattum, Richard Y.; Cooney, Adam T.

    2013-01-01

    At room temperature and atmospheric conditions infrared reflectance spectroscopy and X-ray diffraction were employed for the detection of the phase transformation and residual stress within thermal barrier coatings (TBC). The TBC's samples initially consisted of the porous ceramic topcoat deposited by electron beam plasma vapor deposition, a bond coat and a superalloy substrate. Reflectance spectroscopy scans were performed from 7497 cm −1 to 68 cm −1 to analysis the fingerprint region as well as the chemical bonding region. These regions should indicate if a detectable change within the TBC response is a result of thermal degradation of the microstructure and the changes in yttrium dispersion throughout the yttrium stabilized zirconium. The thermal degradation was induced by thermal cycling the samples to 1100° C and then cooling them in an atmospheric environment. X-ray diffraction was also used to detect the phase composition within the TBC samples and see if either would clearly identify failure prior to actual spallation. The eventual measurability and quantify-ability of the phase changes within the TBC's may be used as an effective non-destructive evaluation (NDE) technique that would allow personnel in the field to know when servicing of the turbine blade was necessary.

  18. Toluene degradation by non-thermal plasma combined with a ferroelectric catalyst.

    Science.gov (United States)

    Liang, Wen-Jun; Ma, Lin; Liu, Huan; Li, Jian

    2013-08-01

    Degradation of toluene in a gas by non-thermal plasma with a ferroelectric catalyst was studied at normal temperature and atmospheric pressure. Spontaneous polarization material (BaTiO3) and photocatalyst (TiO2) were added into plasma system simultively. Toluene degradation efficiency and specific energy density during the discharge process were investigated. Furthermore, byproducts and degradation mechanisms of toluene were also investigated. The toluene degradation efficiency increased when non-thermal plasma technology was combined with the catalyst. The toluene degradation efficiencies of the different catalysts tested were in the following order: BaTiO3/TiO2>BaTiO3>TiO2>no catalyst. A mass ratio of 2.38:1 was optimum for the BaTiO3 and TiO2 catalyst. The outlet gas was analyzed by gas chromatography and Fourier transform infrared spectroscopy, and the main compounds detected were CO2, H2O, O3 and benzene ring derivatives. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. SiC fiber and yttria-stabilized zirconia composite thick thermal barrier coatings fabricated by plasma spray

    Science.gov (United States)

    Ma, Rongbin; Cheng, Xudong; Ye, Weiping

    2015-12-01

    Approximately 4 mm-thick SiC fiber/yttria-stabilized zirconia (YSZ) composite thermal barrier coatings (TBCs) were prepared by atmospheric plasma spray (APS). The composite coatings have a 'reinforced concrete frame structure', which can protect the coating from failure caused by increasing thickness of coating. The SiC fiber plays an important role in reducing the residual stress level of the composite coatings. The thermal conductivity (TC) value of the composite coatings is 0.632 W/m K, which is about 50% reduction compared to that of typical APS YSZ TBCs. And the composite coatings have higher fracture toughness and better thermal shock resistance than the YSZ TBCs.

  20. Novel Prospects for Plasma Spray-Physical Vapor Deposition of Columnar Thermal Barrier Coatings

    Science.gov (United States)

    Anwaar, Aleem; Wei, Lianglinag; Guo, Qian; Zhang, Baopeng; Guo, Hongbo

    2017-12-01

    Plasma spray-physical vapor deposition (PS-PVD) is an emerging coating technique that can produce columnar thermal barrier coatings from vapor phase. Feedstock treatment at the start of its trajectory in the plasma torch nozzle is important for such vapor-phase deposition. This study describes the effects of the plasma composition (Ar/He) on the plasma characteristics, plasma-particle interaction, and particle dynamics at different points spatially distributed inside the plasma torch nozzle. The results of calculations show that increasing the fraction of argon in the plasma gas mixture enhances the momentum and heat flow between the plasma and injected feedstock. For the plasma gas combination of 45Ar/45He, the total enthalpy transferred to a representative powder particle inside the plasma torch nozzle is highest ( 9828 kJ/kg). Moreover, due to the properties of the plasma, the contribution of the cylindrical throat, i.e., from the feed injection point (FIP) to the start of divergence (SOD), to the total transferred energy is 69%. The carrier gas flow for different plasma gas mixtures was also investigated by optical emission spectroscopy (OES) measurements of zirconium emissions. Yttria-stabilized zirconia (YSZ) coating microstructures were produced when using selected plasma gas compositions and corresponding carrier gas flows; structural morphologies were found to be in good agreement with OES and theoretical predictions. Quasicolumnar microstructure was obtained with porosity of 15% when applying the plasma composition of 45Ar/45He.

  1. Non-thermal plasma instabilities induced by deformation of the electron energy distribution function

    Science.gov (United States)

    Dyatko, N. A.; Kochetov, I. V.; Napartovich, A. P.

    2014-08-01

    Non-thermal plasma is a key component in gas lasers, microelectronics, medical applications, waste gas cleaners, ozone generators, plasma igniters, flame holders, flow control in high-speed aerodynamics and others. A specific feature of non-thermal plasma is its high sensitivity to variations in governing parameters (gas composition, pressure, pulse duration, E/N parameter). This sensitivity is due to complex deformations of the electron energy distribution function (EEDF) shape induced by variations in electric field strength, electron and ion number densities and gas excitation degree. Particular attention in this article is paid to mechanisms of instabilities based on non-linearity of plasma properties for specific conditions: gas composition, steady-state and decaying plasma produced by the electron beam, or by an electric current pulse. The following effects are analyzed: the negative differential electron conductivity; the absolute negative electron mobility; the stepwise changes of plasma properties induced by the EEDF bi-stability; thermo-current instability and the constriction of the glow discharge column in rare gases. Some of these effects were observed experimentally and some of them were theoretically predicted and still wait for experimental confirmation.

  2. Performance of Cobalt-Based Fischer-Tropsch Synthesis Catalysts Using Dielectric-Barrier Discharge Plasma as an Alternative to Thermal Calcination

    International Nuclear Information System (INIS)

    Bai Suli; Huang Chengdu; Lv Jing; Li Zhenhua

    2012-01-01

    Co-based catalysts were prepared by using dielectric-barrier discharge (DBD) plasma as an alternative method to conventional thermal calcination. The characterization results of N 2 -physisorption, temperature programmed reduction (TPR), transmission electron microscope (TEM), and X-ray diffraction (XRD) indicated that the catalysts prepared by DBD plasma had a higher specific surface area, lower reduction temperature, smaller particle size and higher cobalt dispersion as compared to calcined catalysts. The DBD plasma method can prevent the sintering and aggregation of active particles on the support due to the decreased treatment time (0.5 h) at lower temperature compared to the longer thermal calcination at higher temperature (at 500° C for 5 h). As a result, the catalytic performance of the Fischer-Tropsch synthesis on DBD plasma treated Co/SiO 2 catalyst showed an enhanced activity, C 5+ selectivity and catalytic stability as compared to the conventional thermal calcined Co/SiO 2 catalyst.

  3. Coherent gradient sensing method for measuring thermal stress field of thermal barrier coating structures

    Directory of Open Access Journals (Sweden)

    Kang Ma

    2017-01-01

    Full Text Available Coherent gradient sensing (CGS method can be used to measure the slope of a reflective surface, and has the merits of full-field, non-contact, and real-time measurement. In this study, the thermal stress field of thermal barrier coating (TBC structures is measured by CGS method. Two kinds of powders were sprayed onto Ni-based alloy using a plasma spraying method to obtain two groups of film–substrate specimens. The specimens were then heated with an oxy-acetylene flame. The resulting thermal mismatch between the film and substrate led to out-of-plane deformation of the specimen. The deformation was measured by the reflective CGS method and the thermal stress field of the structure was obtained through calibration with the help of finite element analysis. Both the experiment and numerical results showed that the thermal stress field of TBC structures can be successfully measured by CGS method.

  4. Surface modification of biphasic calcium phosphate scaffolds by non-thermal atmospheric pressure nitrogen and air plasma treatment for improving osteoblast attachment and proliferation

    International Nuclear Information System (INIS)

    Choi, Yu-Ri; Kwon, Jae-Sung; Song, Doo-Hoon; Choi, Eun Ha; Lee, Yong-Keun; Kim, Kyoung-Nam; Kim, Kwang-Mahn

    2013-01-01

    Surface modifications induced by non-thermal plasma have been used extensively in biomedical applications. The attachment and proliferation of osteoblast cells are important in bone tissue engineering using scaffolds. Hence the effect of non-thermal plasma on hydroxyapatite/β-tri-calcium phosphate (HA/β-TCP) scaffolds in terms of improving osteoblast attachment and proliferation was investigated. Experimental groups were treated with non-thermal plasma for 10 min and 20 min and a control group was not treated with non-thermal plasma. For surface chemistry analysis, X-ray photoelectron spectroscopy (XPS) analysis was carried out. The hydrophilicity was determined from contact angle measurement on the surface. Atomic force microscopy analysis (AFM) was used to test the change in surface roughness and cell attachment and proliferation were evaluated using MC3T3-E1 osteoblast cells. XPS spectra revealed a decreased amount of carbon on the surface of the plasma-treated sample. The contact angle was also decreased following plasma treatment, indicating improved hydrophilicity of plasma-treated surfaces compared to the untreated disc. A significant increase in MC3T3E-1 cell attachment and proliferation was noted on plasma-treated samples as compared to untreated specimens. The results suggest that non-thermal atmospheric pressure nitrogen and air plasma treatments provide beneficial surface characteristics on HA/β-TCP scaffolds. - Highlights: ► Non-thermal plasma increased OH- and decreased C on biphasic scaffold. ► Non-thermal plasma had no effect on surface roughness. ► Non-thermal plasma resulted in hydrophilic surface. ► Non-thermal plasma resulted in better cell attachment and proliferation. ► Non-thermal plasma treatment on biphasic scaffold is useful for tissue engineering

  5. Chemically different non-thermal plasmas target distinct cell death pathways

    Czech Academy of Sciences Publication Activity Database

    Lunov, O.; Zablotskyy, V.; Chrupina, O.; Lunova, M.; Jirsa, M.; Dejneka, A.; Kubinová, Šárka

    2017-01-01

    Roč. 7, apr (2017), s. 600 ISSN 2045-2322 R&D Projects: GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : chemically different * non-thermal plasmas * target distinct cell death pathways Subject RIV: FP - Other Medical Disciplines OBOR OECD: Biophysics Impact factor: 4.259, year: 2016

  6. Abatement of global warming gas emissions from semiconductor manufacturing processes by non-thermal plasma-catalyst systems

    International Nuclear Information System (INIS)

    Chang, J-S.; Urashima, K.

    2009-01-01

    Emission of various hazardous air pollutants (HAPs) and greenhouse gases including perfluoro-compounds (PFCs) from semiconductor industries may cause significant impact on human health and the global environment, has attracted much public attention. In this paper, an application of nonthermal plasma-adsorbent system for a removal of PFCs emission from semiconductor process flue gases is experimentally investigated. The non-thermal plasma reactor used is the ferro-electric packed-bed type barrier discharge plasma and adsorbent reactor used is Zeolite bed reactor. The results show that for a simulated semiconductor process flue gas with C 2 F 6 (2000ppm)/ CF 4 (1000ppm)/ N 2 O(1000ppm)/ N 2 / Air mixture, 54% of C 2 F 6 and 32% of CF 4 were decomposed by the plasma reactor and 100% of C 2 F 6 and 98% of CF 4 were removed by plasma reactor/Zeolite adsorbent hybrid system. For a simulated semiconductor process flue gas with NF 3 (2000ppm)/ SiF 4 (1000ppm)/ N 2 O(200ppm)/ N 2 / Air mixture, 92% of NF 3 and 32% of SiF 4 were decomposed by the plasma reactor and total (100%) removal of the pollutant gases was achieved by plasma reactor/Zeolite adsorbent hybrid system. (author)

  7. Constrained sintering of an air-plasma-sprayed thermal barrier coating

    International Nuclear Information System (INIS)

    Cocks, A.C.F.; Fleck, N.A.

    2010-01-01

    A micromechanical model is presented for the constrained sintering of an air-plasma-sprayed, thermal barrier coating upon a thick superalloy substrate. The coating comprises random splats with intervening penny-shaped cracks. The crack faces make contact at asperities, which progressively sinter in-service by interfacial diffusion, accommodated by bulk creep. Diffusion is driven by the reduction in interfacial energy at the developing contacts and by the local asperity contact stress. At elevated operating temperature, both sintering and creep strains accumulate within the plane of the coating. The sensitivities of sintering rate and microstructure evolution rate to the kinetic parameters and thermodynamic driving forces are explored. It is demonstrated that the sintering response is governed by three independent timescales, as dictated by the material and geometric properties of the coating. Finally, the role of substrate constraint is assessed by comparing the rate of constrained sintering with that for free sintering.

  8. Design of tandem mirror reactors with thermal barriers

    International Nuclear Information System (INIS)

    Carlson, G.A.

    1980-01-01

    End-plug technologies for tandem mirror reactors include high-field superconducting magnets, neutral beam injectors, and gyrotrons for electron cyclotron resonant heating (ECRH). In addition to their normal use for sustenance of the end-plug plasmas, neutral beam injectors are used for ''pumping'' trapped ions from the thermal barrier regions by charge exchange. An extra function of the axially directed pump beams is the removal of thermalized alpha particles from the reactor. The principles of tandem mirror operation with thermal barriers will be demonstrated in the upgrade of the Tandem Mirror Experiment (TMX-U) in 1981 and the tandem configuration of the Mirror fusion Test Facility (MFTF-B) in 1984

  9. Improved Metallography Of Thermal-Barrier Coatings

    Science.gov (United States)

    Brindley, William J.; Leonhardt, Todd A.

    1991-01-01

    New technique for preparation of metallographic samples makes interpretation of images of pores and microcracks more reliable. Involves use of vacuum epoxy infiltration and interference-film coating to reduce uncertainty. Developed for inspection of plasma-sprayed ceramic thermal-barrier coatings on metals but applicable to other porous, translucent materials, including many important ceramics.

  10. Simulation of thermo-Elastics Properties of Thermal Barrier Coatings ...

    African Journals Online (AJOL)

    Thermal barrier coatings are used to protect different parts in compressors and turbines from heat. They are generally composed of two layers, one metallic layer providing resistance to heat corrosion and oxidation, and one thermally insulating ceramic layer. Two different techniques are industrially used. Plasma spray ...

  11. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    Science.gov (United States)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  12. Simulations of planar non-thermal plasma assisted ignition at atmospheric pressure

    KAUST Repository

    Casey, Tiernan A.

    2016-10-21

    The opportunity for ignition assistance by a pulsed applied voltage is investigated in a canonical one-dimensional configuration. An incipient ignition kernel, formed by localized energy deposition into a lean mixture of methane and air at atmospheric pressure, is subjected to sub-breakdown electric fields (E/N ≈ 100 Td) by a DC potential applied across the domain, resulting in non-thermal behavior of the plasma formed during the discharge. A two-fluid approach is employed to couple thermal neutrals and ions to the non-thermal electrons. A two-temperature plasma mechanism describing gas phase combustion, excitation of neutral species, and high-energy electron kinetics is employed to account for non-thermal effects. Charged species transported from the ignition zone drift rapidly through the domain, augmenting the magnitude of the electric field in the fresh gas during the pulse through a dynamic-electrode effect, which results in an increase in the energy of the electrons in the fresh mixture with increasing time. Enhanced fuel and oxidizer decomposition due to electron impact dissociation and interaction with excited neutrals generate a pool of radicals, mostly O and H, in the fresh gas ahead of the flame\\'s preheat zone. In the configuration considered, the effect of the nanosecond pulse is to increase the mass of fuel burned at equivalent times relative to the unsupported ignition through enhanced radical generation, resulting in an increased heat release rate in the immediate aftermath of the pulse.

  13. Chemically different non-thermal plasmas target distinct cell death pathways

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Lunova, M.; Jirsa, M.; Dejneka, Alexandr; Kubinová, Šárka

    2017-01-01

    Roč. 7, č. 1 (2017), s. 1-17, č. článku 600. ISSN 2045-2322 Grant - others:AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 Keywords : chemically different * non-thermal plasmas * target distinct cell death pathways Subject RIV: BO - Biophysics OBOR OECD: Biophysics Impact factor: 4.259, year: 2016

  14. Development and evaluation of suspension plasma sprayed yttria stabilized zirconia coatings as thermal barriers

    Science.gov (United States)

    van Every, Kent J.

    The insulating effects from thermal barrier coatings (TBCs) in gas turbine engines allow for increased operational efficiencies and longer service lifetimes. Consequently, improving TBCs can lead to enhanced gas turbine engine performance. This study was conducted to investigate if yttria-stabilized zirconia (YSZ) coatings, the standard industrial choice for TBCs, produced from nano-sized powder could provide better thermal insulation than current commericial YSZ coatings generated using micron-sized powders. The coatings for this research were made via the recently developed suspension plasma spraying (SPS) process. With SPS, powders are suspended in a solvent containing dispersing agents; the suspension is then injected directly into a plasma flow that evaporates the solvent and melts the powder while transporting it to the substrate. Although related to the industrial TBC production method of air plasma spraying (APS), SPS has two important differences---the ability to spray sub-micron diameter ceramic particles, and the ability to alloy the particles with chemicals dissolved in the solvent. These aspects of SPS were employed to generate a series of coatings from suspensions containing ˜100 nm diameter YSZ powder particles, some of which were alloyed with neodymium and ytterbium ions from the solvent. The SPS coatings contained columnar structures not observed in APS TBCs; thus, a theory was developed to explain the formation of these features. The thermal conductivity of the coatings was tested to evaluate the effects of these unique microstructures and the effects of the alloying process. The results for samples in the as-sprayed and heat-treated conditions were compared to conventional YSZ TBCs. This comparison showed that, relative to APS YSZ coatings, the unalloyed SPS samples typically exhibited higher as-sprayed and lower heat-treated thermal conductivities. All thermal conductivity values for the alloyed samples were lower than conventional YSZ TBCs

  15. Abatement of global warming gas emissions from semiconductor manufacturing processes by non-thermal plasma-catalyst systems

    Energy Technology Data Exchange (ETDEWEB)

    Chang, J-S.; Urashima, K. [McMaster Univ., McIARS and Dept. Eng. Phys., Hamilton, Ontario (Canada)

    2009-07-01

    Emission of various hazardous air pollutants (HAPs) and greenhouse gases including perfluoro-compounds (PFCs) from semiconductor industries may cause significant impact on human health and the global environment, has attracted much public attention. In this paper, an application of nonthermal plasma-adsorbent system for a removal of PFCs emission from semiconductor process flue gases is experimentally investigated. The non-thermal plasma reactor used is the ferro-electric packed-bed type barrier discharge plasma and adsorbent reactor used is Zeolite bed reactor. The results show that for a simulated semiconductor process flue gas with C{sub 2}F{sub 6} (2000ppm)/ CF{sub 4}(1000ppm)/ N{sub 2}O(1000ppm)/ N{sub 2}/ Air mixture, 54% of C{sub 2}F{sub 6} and 32% of CF{sub 4} were decomposed by the plasma reactor and 100% of C{sub 2}F{sub 6} and 98% of CF{sub 4} were removed by plasma reactor/Zeolite adsorbent hybrid system. For a simulated semiconductor process flue gas with NF{sub 3} (2000ppm)/ SiF{sub 4}(1000ppm)/ N{sub 2}O(200ppm)/ N{sub 2}/ Air mixture, 92% of NF{sub 3} and 32% of SiF{sub 4} were decomposed by the plasma reactor and total (100%) removal of the pollutant gases was achieved by plasma reactor/Zeolite adsorbent hybrid system. (author)

  16. Nonlinear electron-acoustic rogue waves in electron-beam plasma system with non-thermal hot electrons

    Science.gov (United States)

    Elwakil, S. A.; El-hanbaly, A. M.; Elgarayh, A.; El-Shewy, E. K.; Kassem, A. I.

    2014-11-01

    The properties of nonlinear electron-acoustic rogue waves have been investigated in an unmagnetized collisionless four-component plasma system consisting of a cold electron fluid, non-thermal hot electrons obeying a non-thermal distribution, an electron beam and stationary ions. It is found that the basic set of fluid equations is reduced to a nonlinear Schrodinger equation. The dependence of rogue wave profiles on the electron beam and energetic population parameter are discussed. The results of the present investigation may be applicable in auroral zone plasma.

  17. Deposition and characterization of plasma sprayed Ni-5A1/ magnesia stabilized zirconia based functionally graded thermal barrier coating

    International Nuclear Information System (INIS)

    Baig, M N; Khalid, F A

    2014-01-01

    Thermal barrier coatings (TBCs) are employed to protect hot section components in industrial and aerospace gas turbine engines. Conventional TBCs frequently fail due to high residual stresses and difference between coefficient of thermal expansion (CTE) of the substrate and coatings. Functionally graded thermal barrier coatings (FG-TBCs) with gradual variation in composition have been proposed to minimize the problem. In this work, a five layered functionally graded thermal barrier coating system was deposited by atmospheric plasma spray (APS) technique on Nimonic 90 substrates using Ni-5Al as bond coat (BC) and magnesia stabilized zirconia as top coat (TC). The coatings were characterized by SEM, EDS, XRD and optical profilometer. Microhardness and coefficient of thermal expansion of the five layers deposited as individual coatings were also measured. The deposited coating system was oxidized at 800°C. SEM analysis showed that five layers were successfully deposited by APS to produce a FG-TBC. The results also showed that roughness (Ra) of the individual layers decreased with an increase in TC content in the coatings. It was found that microhardness and CTE values gradually changed from bond coat to cermet layers to top coat. The oxidized coated sample revealed parabolic behavior and changes in the surface morphology and composition of coating

  18. Evaluation of Defects of Thermal Barrier Coatings by Thermal Shock Test Using Eddy Current Testing

    Energy Technology Data Exchange (ETDEWEB)

    Heo, Tae Hoon; Cho, Youn Ho; Lee, Joon Hyun [Pusan National University, Busan (Korea, Republic of); Oh, Jeong Seok; Lee, Koo Hyun [KIMM, Daejeon (Korea, Republic of)

    2009-10-15

    Periodical thermal shock can introduce defects in thermal barrier coating made by layers of CoNiCrAlY bond coating(BC) and ZrO{sub 2}-8wt%Y{sub 2}O{sub 3} ceramic top coating(TC) on Inconel-738 substrate using plasma spraying. Thermal shock test is performed by severe condition that is to heat until 1000 .deg. C and cool until 20 .deg. C. As the number of cycle is increased, the fatigue by thermal shock is also increased. After test, the micro-structures and mechanical characteristics of thermal barrier coating were investigated by SEM, XRD. The TGO layer of is Al{sub 2}O{sub 3} formed between BC and TC by periodical thermal shock test, and its change in thickness is inspected by eddy current test(ECT). By ECT test, it is shown that TGO and micro-crack can be detected and it is possible to predict the life of thermal barrier coating

  19. The Lattice and Thermal Radiation Conductivity of Thermal Barrier Coatings: Models and Experiments

    Science.gov (United States)

    Zhu, Dongming; Spuckler, Charles M.

    2010-01-01

    The lattice and radiation conductivity of ZrO2-Y2O3 thermal barrier coatings was evaluated using a laser heat flux approach. A diffusion model has been established to correlate the coating apparent thermal conductivity to the lattice and radiation conductivity. The radiation conductivity component can be expressed as a function of temperature, coating material scattering, and absorption properties. High temperature scattering and absorption of the coating systems can be also derived based on the testing results using the modeling approach. A comparison has been made for the gray and nongray coating models in the plasma-sprayed thermal barrier coatings. The model prediction is found to have a good agreement with experimental observations.

  20. TMX-U thermal-barrier experiments

    International Nuclear Information System (INIS)

    Simonen, T.C.; Allen, S.L.; Barter, J.D.

    1988-01-01

    This review of thermal-barrier experiments in the Tandem Mirror Experiment Upgrade (TMX-U) describes our progress at Lawrence Livermore National Laboratory in plasma confinement and central-cell heating. Thermal barriers in TMX-U improved axial confinement by two orders of magnitude over a limited range of densities, compared with confinement in single-cell mirrors at the same ion temperature. Our study shows that central-cell radial nonambipolar confinement scales as neoclassical theory and can be eliminated by floating the end walls. Radial ambipolar losses can also be measured and reduced. The electron energy balance is improved in tandem mirrors to near classical, resulting in T/sub e/ up to 0.28 keV. Electron cyclotron heating (ECH) efficiencies up to 42 percent, with low levels of electron microinstability, were achieved when hot electrons in the thermal barrier were heated to average betas as large as 15 percent. The hot-electron distribution is measured from X rays and is modeled by a Fokker-Planck code that includes heating from cavity radio-frequency (RF) fields. Neutral-beam injection in the central cell created average ion betas up to 5 percent with radial profiles of hot ions that are modeled accurately by a radial Fokker-Planck code. Gas fueling between two fundamental ion cyclotron heating (ICH) resonances resulted in symmetrical heating of passing ions toward both ends

  1. Monitoring system for thermal plasma

    International Nuclear Information System (INIS)

    Romero G, M.; Vilchis P, A.E.

    1999-01-01

    In the Thermal plasma applications laboratory it has been the degradation project of oils for isolation in transformers. These are a very hazardous residues and at this time in the country they are stored in metal barrels. It has been the intention to undergo the oils to plasma for degradate them to non-hazardous residues. The system behavior must be monitored to establish the thermal plasma behavior. (Author)

  2. Physics and applications of micro-plasmas in dielectric barrier and hollow cathode configurations

    International Nuclear Information System (INIS)

    Boeuf, J. P.; Pitchford, L. C.

    2005-01-01

    Non-equilibrium or non-thermal plasmas operate at low gas temperatures and this property make these plasmas very attractive in a number of applications, from etching and deposition in the microelectronics industry to plasma displays and pollution control. However, although it is quite easy to generate a large volume non-equilibrium plasma at pressure on the order or below 100 Pa, this is more of a challenge around atmospheric pressure. Large area plasma sources operating at atmospheric pressure represent a very cost-effective solution for material processing, light sources and other applications, and a large research effort has been devoted to the development of such sources in the last ten years. Dielectric Barrier Discharges (DBDs), where one or both electrodes are covered with a dielectric layer are good candidates for atmospheric non-equilibrium plasma generation because of their ability to limit the current and power deposition. It is also much easier to control an atmospheric discharge in a small volume. Therefore an atmospheric plasma source often consists of a number of micro-discharges arranged in a way that depends on the application. Even in DBDs with large electrode areas, the plasma is generally not uniform and consists in a large number of micro-discharges or filaments. In this lecture we present a discussion of the physical properties of non-equilibrium plasmas generated in different configurations and operating at atmospheric pressure. This discussion is based on results from numerical models and simulations of Dielectric Barrier Discharges to Micro-Hollow Cathode Discharges. We then focus on specific applications such as surface DBDs for flow control. These discharges (which have some similarities with the surface micro-discharges used in Plasma Display Panels) are being studied for their ability to modify the properties of the boundary layer along airfoils and hence to control the transition between laminar and turbulent regimes. We will show how

  3. The Role of Higher-Order Modes on the Electromagnetic Whistler-Cyclotron Wave Fluctuations of Thermal and Non-Thermal Plasmas

    Science.gov (United States)

    Vinas, Adolfo F.; Moya, Pablo S.; Navarro, Roberto; Araneda, Jamie A.

    2014-01-01

    Two fundamental challenging problems of laboratory and astrophysical plasmas are the understanding of the relaxation of a collisionless plasmas with nearly isotropic velocity distribution functions and the resultant state of nearly equipartition energy density with electromagnetic plasma turbulence. Here, we present the results of a study which shows the role that higher-order-modes play in limiting the electromagnetic whistler-like fluctuations in a thermal and non-thermal plasma. Our main results show that for a thermal plasma the magnetic fluctuations are confined by regions that are bounded by the least-damped higher order modes. We further show that the zone where the whistler-cyclotron normal modes merges the electromagnetic fluctuations shifts to longer wavelengths as the beta(sub e) increases. This merging zone has been interpreted as the beginning of the region where the whistler-cyclotron waves losses their identity and become heavily damped while merging with the fluctuations. Our results further indicate that in the case of nonthermal plasmas, the higher-order modes do not confine the fluctuations due to the effective higher-temperature effects and the excess of suprathermal plasma particles. The analysis presented here considers the second-order theory of fluctuations and the dispersion relation of weakly transverse fluctuations, with wave vectors parallel to the uniform background magnetic field, in a finite temperature isotropic bi-Maxwellian and Tsallis-kappa-like magnetized electron-proton plasma. Our results indicate that the spontaneously emitted electromagnetic fluctuations are in fact enhanced over these quasi modes suggesting that such modes play an important role in the emission and absorption of electromagnetic fluctuations in thermal or quasi-thermal plasmas.

  4. Influence of Bondcoat Spray Process on Lifetime of Suspension Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Gupta, M.; Markocsan, N.; Li, X.-H.; Östergren, L.

    2018-01-01

    Development of thermal barrier coatings (TBCs) manufactured by suspension plasma spraying (SPS) is of high commercial interest as SPS has been shown capable of producing highly porous columnar microstructures similar to the conventionally used electron beam-physical vapor deposition. However, lifetime of SPS coatings needs to be improved further to be used in commercial applications. The bondcoat microstructure as well as topcoat-bondcoat interface topography affects the TBC lifetime significantly. The objective of this work was to investigate the influence of different bondcoat deposition processes for SPS topcoats. In this work, a NiCoCrAlY bondcoat deposited by high velocity air fuel (HVAF) was compared to commercial vacuum plasma-sprayed NiCoCrAlY and PtAl diffusion bondcoats. All bondcoat variations were prepared with and without grit blasting the bondcoat surface. SPS was used to deposit the topcoats on all samples using the same spray parameters. Lifetime of these samples was examined by thermal cyclic fatigue testing. Isothermal heat treatment was performed to study bondcoat oxidation over time. The effect of bondcoat deposition process and interface topography on lifetime in each case has been discussed. The results show that HVAF could be a suitable process for bondcoat deposition in SPS TBCs.

  5. Evaluation of bond strength of isothermally aged plasma sprayed thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Jin; Lee, Dong Hoon; Koo, Jae Mean; Song, Sung Jin; Seok, Chang Sung [Sungkyunkwan University, Suwon (Korea, Republic of); Kim, Mun Young [Korea Plant Service and Engineering Co., Ltd., Seongnam (Korea, Republic of)

    2008-07-15

    In this study, disk type of thermal barrier coating system for gas turbine blade was isothermally aged in the furnace changing exposure time and temperature. For each aging condition, bond tests for three samples were conducted for evaluating degradation of adhesive or cohesive strength of thermal barrier coating system. For as-sprayed condition, the location of fracture in the bond test was in the middle of epoxy which have bond strength of 57 MPa. As specimens are degraded by thermal aging, bond strength gradually decreased and the location of failure was also changed from within top coat at the earlier stage of thermal aging to the interface between top coat and TGO at the later stage due to the delamination in the coating.

  6. The use of internal transport barriers in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Challis, C D [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxon, OX14 3DB (United Kingdom)

    2004-12-01

    Internal transport barriers (ITBs) can provide high tokamak confinement at modest plasma current. This is desirable for operation with most of the current driven non-inductively by the bootstrap mechanism, as currently envisaged for steady-state power plants. Maintaining such plasmas in steady conditions with high plasma purity is challenging, however, due to MHD instabilities and impurity transport effects. Significant progress has been made in the control of ITB plasmas: the pressure profile has been varied using the barrier location; q-profile modification has been achieved with non-inductive current drive, and means have been found to affect density peaking and impurity accumulation. All these features are, to some extent, interdependent and must be integrated self-consistently to demonstrate a sound basis for extrapolation to future devices.

  7. Thermal plasmas: fundamental aspects

    International Nuclear Information System (INIS)

    Fauchais, P.

    2005-01-01

    This article treats of thermal plasmas, i.e. mainly produced by electric arcs and RF discharges. Their main characteristic is that they are generated at a pressure close to the atmospheric pressure (between 10 4 and 10 6 Pa) and refer to the classical kinetics of the Boltzmann equation. Because of the pressure, the collisions between particles are numerous and ionization is mainly due to a thermal effect. They correspond to electron densities between 10 20 and 10 24 m -3 and temperatures between 6000 and 25000 K. In these plasmas, the electric fields and the average free trajectories are too weak to generate a ionization state by direct inelastic collision. Ionization is thus essentially a thermal phenomenon due to elastic collisions. This article presents: 1 - the particles present in a plasma: definition, energy states; 2 - characteristic data: collisions, average free path and collision cross-section, distribution function, ionization types, charged particles mobility inside an electric field, scattering, Debye length; 3 - plasmas at the thermodynamical equilibrium: conditions of equilibrium, calculation of composition, thermodynamic properties, transport properties, radiation; 4 - thermal plasmas away from equilibrium: conditions of non-equilibrium, calculation of plasma composition, calculation of transport properties, quenching phenomenon. (J.S.)

  8. Fundamental limitations of non-thermal plasma processing for internal combustion engine NOx control

    International Nuclear Information System (INIS)

    Penetrante, B.M.

    1993-01-01

    This paper discusses the physics and chemistry of non-thermal plasma processing for post-combustion NO x control in internal combustion engines. A comparison of electron beam and electrical discharge processing is made regarding their power consumption, radical production, NO x removal mechanisms, and by product formation. Can non-thermal deNO x operate efficiently without additives or catalysts? How much electrical power does it cost to operate? What are the by-products of the process? This paper addresses these fundamental issues based on an analysis of the electron-molecule processes and chemical kinetics

  9. Non-monotonic probability of thermal reversal in thin-film biaxial nanomagnets with small energy barriers

    Directory of Open Access Journals (Sweden)

    N. Kani

    2017-05-01

    Full Text Available The goal of this paper is to investigate the short time-scale, thermally-induced probability of magnetization reversal for an biaxial nanomagnet that is characterized with a biaxial magnetic anisotropy. For the first time, we clearly show that for a given energy barrier of the nanomagnet, the magnetization reversal probability of an biaxial nanomagnet exhibits a non-monotonic dependence on its saturation magnetization. Specifically, there are two reasons for this non-monotonic behavior in rectangular thin-film nanomagnets that have a large perpendicular magnetic anisotropy. First, a large perpendicular anisotropy lowers the precessional period of the magnetization making it more likely to precess across the x^=0 plane if the magnetization energy exceeds the energy barrier. Second, the thermal-field torque at a particular energy increases as the magnitude of the perpendicular anisotropy increases during the magnetization precession. This non-monotonic behavior is most noticeable when analyzing the magnetization reversals on time-scales up to several tens of ns. In light of the several proposals of spintronic devices that require data retention on time-scales up to 10’s of ns, understanding the probability of magnetization reversal on the short time-scales is important. As such, the results presented in this paper will be helpful in quantifying the reliability and noise sensitivity of spintronic devices in which thermal noise is inevitably present.

  10. Effects and Mechanism of Atmospheric-Pressure Dielectric Barrier Discharge Cold Plasma on Lactate Dehydrogenase (LDH) Enzyme

    Science.gov (United States)

    Zhang, Hao; Xu, Zimu; Shen, Jie; Li, Xu; Ding, Lili; Ma, Jie; Lan, Yan; Xia, Weidong; Cheng, Cheng; Sun, Qiang; Zhang, Zelong; Chu, Paul K.

    2015-05-01

    Proteins are carriers of biological functions and the effects of atmospheric-pressure non-thermal plasmas on proteins are important to applications such as sterilization and plasma-induced apoptosis of cancer cells. Herein, we report our detailed investigation of the effects of helium-oxygen non-thermal dielectric barrier discharge (DBD) plasmas on the inactivation of lactate dehydrogenase (LDH) enzyme solutions. Circular dichroism (CD) and dynamic light scattering (DLS) indicate that the loss of activity stems from plasma-induced modification of the secondary molecular structure as well as polymerization of the peptide chains. Raising the treatment intensity leads to a reduced alpha-helix content, increase in the percentage of the beta-sheet regions and random sequence, as well as gradually decreasing LDH activity. However, the structure of the LDH plasma-treated for 300 seconds exhibits a recovery trend after storage for 24 h and its activity also increases slightly. By comparing direct and indirect plasma treatments, plasma-induced LDH inactivation can be attributed to reactive species (RS) in the plasma, especially ones with a long lifetime including hydrogen peroxide, ozone, and nitrate ion which play the major role in the alteration of the macromolecular structure and molecular diameter in lieu of heat, UV radiation, and charged particles.

  11. Thermal stability of the tokamak plasma edge

    International Nuclear Information System (INIS)

    Stacey, W.M.

    1997-01-01

    The general linear, fluid, thermal instability theory for the plasma edge has been extended. An analysis of a two-dimensional fluid model of the plasma edge has identified the importance of many previously unappreciated phenomena associated with parallel and gyroviscous forces in the presence of large radial gradients, with large radial or parallel flows, with the temperature dependence of transport coefficients, and with the coupling of temperature, flow and density perturbations. The radiative condensation effect is generalized to include a further destabilizing condensation effect associated with radial heat conduction. Representative plasma edge neutral and impurity densities are found to be capable of driving thermal instabilities in the edge transport barrier and radiative mantle, respectively. (author)

  12. Thermal Shock Property of Al/Ni-ZrO2 Gradient Thermal Barrier Coatings

    Institute of Scientific and Technical Information of China (English)

    FANJin-juan; WANGQuan-sheng; ZHANGWei-fang

    2004-01-01

    Al/Ni-ZrO2 gradient thermal barrier coatings are made on aluminum substrate using plasma spraying method and one direction thermal shock properties of the coatings are studied in this paper. The results show that pores in coatings link to form cracks vertical to coating surface. They go through the whole ZrO2 coating once vertical cracks form. When thermal shock cycles increase, horizontal cracks that result in coatings failure forms in the coatings and interface. And vertical cracks delay appearance of horizontal cracks and enhance thermal shock property of coatings. Failure mechanisms of coating thermal shock are discussed using experiments and finite element method.

  13. Method and Process Development of Advanced Atmospheric Plasma Spraying for Thermal Barrier Coatings

    Science.gov (United States)

    Mihm, Sebastian; Duda, Thomas; Gruner, Heiko; Thomas, Georg; Dzur, Birger

    2012-06-01

    Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.

  14. Thermal barrier coatings - Technology for diesel engines

    International Nuclear Information System (INIS)

    Harris, D.H.; Lutz, J.

    1988-01-01

    Thermal Barrier Coatings (TBC) are a development of the aerospace industry primarily aimed at hot gas flow paths in turbine engines. TBC consists of zirconia ceramic coatings applied over (M)CrAlY. These coatings can provide three benefits: (1) a reduction of metal surface operating temperatures, (2) a deterrent to hot gas corrosion, and (3) improved thermal efficiencies. TBC brings these same benefits to reciprocal diesel engines but coating longevity must be demonstrated. Diesels require thicker deposits and have challenging geometries for the arc-plasma spray (APS) deposition process. Different approaches to plasma spraying TBC are required for diesels, especially where peripheral edge effects play a major role. Bondcoats and ceramic top coats are modified to provide extended life as determined by burner rig tests, using ferrous and aluminum substrates

  15. Thermal Conductivity and Erosion Durability of Composite Two-Phase Air Plasma Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Schmitt, Michael P.; Rai, Amarendra K.; Zhu, Dongming; Dorfman, Mitchell R.; Wolfe, Douglas E.

    2015-01-01

    To enhance efficiency of gas turbines, new thermal barrier coatings (TBCs) must be designed which improve upon the thermal stability limit of 7 wt% yttria stabilized zirconia (7YSZ), approximately 1200 C. This tenant has led to the development of new TBC materials and microstructures capable of improved high temperature performance. This study focused on increasing the erosion durability of cubic zirconia based TBCs, traditionally less durable than the metastable t' zirconia based TBCs. Composite TBC microstructures composed of a low thermal conductivity/high temperature stable cubic Low-k matrix phase and a durable t' Low-k secondary phase were deposited via APS. Monolithic coatings composed of cubic Low-k and t' Low-k were also deposited, in addition to a 7YSZ benchmark. The thermal conductivity and erosion durability were then measured and it was found that both of the Low-k materials have significantly reduced thermal conductivities, with monolithic t' Low-k and cubic Low-k improving upon 7YSZ by approximately 13 and approximately 25%, respectively. The 40 wt% t' Low-k composite (40 wt% t' Low-k - 60 wt% cubic Low-k) showed a approximately 22% reduction in thermal conductivity over 7YSZ, indicating even at high levels, the t' Low-k secondary phase had a minimal impact on thermal in the composite coating. It was observed that a mere 20 wt% t' Low-k phase addition can reduce the erosion of a cubic Low-k matrix phase composite coating by over 37%. Various mixing rules were then investigated to assess this non-linear composite behavior and suggestions were made to further improve erosion durability.

  16. Magnet system for a thermal barrier Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Kim, N.S.; Conn, R.W.

    1981-01-01

    The magnet system for a thermal barrier D-D tandem mirror reactor has been studied as part of the UCLA tandem mirror reactor design study SATYR. Three main considerations in designing the SATYR magnet system are to obtain the desired field strength variation throughout the system, to have proper space for plasma and neutron shielding, and to satisfy the MHD stability to achieve maximum central cell /beta/. Due to the importance and the complexity, the 'internal' field reversal magnet is the main concern in the entire magnet system for SATYR. Two different magnet designs, a non-uniform current density solenoid and a higher-order solenoid, are discussed. Coil levitation for the internal field reversal magnet has been analyzed

  17. Disinfection effect of non-thermal atmospheric pressure plasma for foodborne bacteria

    Science.gov (United States)

    Pervez, Mohammad Rasel; Inomata, Takanori; Ishijima, Tatsuo; Kakikawa, Makiko; Uesugi, Yoshihiko; Tanaka, Yasunori; Yano, Toshihiro; Miwa, Shoji; Noguchi, Akinori

    2015-09-01

    Non-thermal atmospheric pressure plasma (NAPP) exposure can be a suitable alternative for bacteria inactivation in food processing industry. Specimen placed in the enclosure are exposed to various reactive radicals produced within the discharge chamber. It is also exposed to the periodic variation of the electric field strength in the chamber. Dielectric barrier discharge is produced by high voltage pulse (Vpp = 18 kV, pulse width 20 μs, repetition frequency 10 kHz) in a polypropylene box (volume = 350 cm3) using helium as main feed gas. Inactivation efficiency of NAPP depends on the duration of NAPP exposure, applied voltage pulse strength and type, pulse duration, electrode separation and feed gas composition. In this study we have investigated inactivation of Bacillus lichenformis spore as an example of food borne bacteria. Keeping applied voltage, electrode configuration and total gas flow rate constant, spores are exposed to direct NAPP for different time duration while O2 concentration in the feed gas composition is varied. 10 minutes NAPP exposure resulted in ~ 3 log reduction of Bacillus lichenformis spores for 1% O2concentration (initial concentration ~ 106 / specimen). This work is supported by research and development promotion grant provided by the Hokuriku Industrial Advancement Center.

  18. Investigation of non thermal effects from the Dα line wings in edge plasmas

    International Nuclear Information System (INIS)

    Marandet, Y.; Godbert-Mouret, L.; Koubiti, M.; Stamm, R.; Capes, H.; Guirlet, R.

    2002-01-01

    The far wings of intense Dα lines measured at the edge of the Tore Supra Tokamak are found to exhibit a power-law behavior. The characteristic exponent is not far from two. Since the low density rules out thermal Stark broadening, we discuss non thermal effects which may arise from the edge plasma drift-wave turbulence. We suggest that both the Stark and the Doppler profile could be affected by the turbulence

  19. Characteristics and Thermal Efficiency of a Non-transferred DC Plasma Spraying Torch Under Low Pressure

    International Nuclear Information System (INIS)

    Bao Shicong; Ye Minyou; Zhang Xiaodong; Guo Wenkang; Xu Ping

    2008-01-01

    Current-voltage (I-V) characteristics of a non-transferred DC arc plasma spray torch operated in argon at vacuum are reported. The arc voltage is of negative characteristics for a current below 200 A, flat for a current between 200 A to 250 A and positive for a current beyond 250 A. The voltage increases slowly with the increase in carrier gas of arc. The rate of change in voltage with currents is about 3∼4 V/100 A at a gas flow rate of about 1∼1.5 V/10 standard liter per minute (slpm). The I-V characteristics of the DC plasma torch are of a shape of hyperbola. Arc power increases with the argon flow rate, and the thermal efficiency of the torch acts in a similar way. The thermal efficiency of the non-transferred DC plasmatron is about 65∼78%. (low temperature plasma)

  20. Overview on Recent Developments of Bondcoats for Plasma-Sprayed Thermal Barrier Coatings

    Science.gov (United States)

    Naumenko, D.; Pillai, R.; Chyrkin, A.; Quadakkers, W. J.

    2017-12-01

    The performance of MCrAlY (M = Ni, Co) bondcoats for atmospheric plasma-sprayed thermal barrier coatings (APS-TBCs) is substantially affected by the contents of Co, Ni, Cr, and Al as well as minor additions of Y, Hf, Zr, etc., but also by manufacturing-related properties such as coating thickness, porosity, surface roughness, and oxygen content. The latter properties depend in turn on the exact technology and set of parameters used for bondcoat deposition. The well-established LPPS process competes nowadays with alternative technologies such as HVOF and APS. In addition, new technologies have been developed for bondcoats manufacturing such as high-velocity APS or a combination of HVOF and APS for application of a flashcoat. Future developments of the bondcoat systems will likely include optimization of thermal spraying methods for obtaining complex bondcoat roughness profiles required for extended APS-TBC lifetimes. Introduction of the newest generation single-crystal superalloys possessing low Cr and high Al and refractory metals (Re, Ru) contents will require definition of new bondcoat compositions and/or multilayered bondcoats to minimize interdiffusion issues. The developments of new bondcoat compositions may be substantially facilitated using thermodynamic-kinetic modeling, the vast potential of which has been demonstrated in recent years.

  1. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    International Nuclear Information System (INIS)

    Sharma, Rohit; Singh, Kuldip

    2014-01-01

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T e /T h ) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter

  2. Monitoring system for thermal plasma; Sistema de monitoreo para plasma termico

    Energy Technology Data Exchange (ETDEWEB)

    Romero G, M.; Vilchis P, A.E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1999-07-01

    In the Thermal plasma applications laboratory it has been the degradation project of oils for isolation in transformers. These are a very hazardous residues and at this time in the country they are stored in metal barrels. It has been the intention to undergo the oils to plasma for degradate them to non-hazardous residues. The system behavior must be monitored to establish the thermal plasma behavior. (Author)

  3. An investigation of non-equilibrium effects in thermal argon plasmas

    International Nuclear Information System (INIS)

    Rosado, R.J.

    1981-01-01

    This thesis deals with the study of the validity of the assumption of Local Thermal Equilibrium (LTE) in the description of the parameters of a thermal argon plasma. The aim is twofold. As the studied plasma is close to, but not completely in equilibrium, the author first attempts to obtain a simple description of the plasma in terms of an LTE model in which suitable corrections for the deviations of the plasma parameters from their LTE values is introduced. To this end the plasma parameters are studied by means of a diagnostic method in which the assumption of LTE is not made. The evaluation of the usefulness of this method is the second aim of this thesis. (Auth.)

  4. Optimizing Compliance and Thermal Conductivity of Plasma Sprayed Thermal Barrier Coatings via Controlled Powders and Processing Strategies

    Science.gov (United States)

    Tan, Yang; Srinivasan, Vasudevan; Nakamura, Toshio; Sampath, Sanjay; Bertrand, Pierre; Bertrand, Ghislaine

    2012-09-01

    The properties and performance of plasma-sprayed thermal barrier coatings (TBCs) are strongly dependent on the microstructural defects, which are affected by starting powder morphology and processing conditions. Of particular interest is the use of hollow powders which not only allow for efficient melting of zirconia ceramics but also produce lower conductivity and more compliant coatings. Typical industrial hollow spray powders have an assortment of densities resulting in masking potential advantages of the hollow morphology. In this study, we have conducted process mapping strategies using a novel uniform shell thickness hollow powder to control the defect microstructure and properties. Correlations among coating properties, microstructure, and processing reveal feasibility to produce highly compliant and low conductivity TBC through a combination of optimized feedstock and processing conditions. The results are presented through the framework of process maps establishing correlations among process, microstructure, and properties and providing opportunities for optimization of TBCs.

  5. Experimental studies on removal of airborne haloanisoles by non-thermal plasma air purifiers

    DEFF Research Database (Denmark)

    Fang, Lei; Hallam, David; Bermúdez, Raúl

    2016-01-01

    A laboratory study was conducted to test the performance of non-thermal plasma air purifiers on its removal effectiveness of two haloanisoles – 2,4,6-trichloroanisole (TCA) and 2,4,6-Tribromoanisole (TBA). TCA and TBA are the two major compounds found in wine cellars that can contaminate wine to ...

  6. Non-thermal plasma ethanol reforming in bubbles immersed in liquids

    International Nuclear Information System (INIS)

    Levko, Dmitry; Sharma, Ashish; Raja, Laxminarayan L

    2017-01-01

    Ethanol reforming in non-thermal plasma generated in atmospheric-pressure argon bubbles immersed in liquid ethanol/water solution is studied using a self-consistent multi-species fluid model. The influence of the dielectric constant of the liquid on the plasma dynamics and its effect on the generation of active species is analyzed. Several modes of discharge are obtained for large liquid dielectric constant. In these modes, we obtain either an axial streamer or a combination of two simultaneous streamers propagating along the bubble axis and near the liquid wall. The influence of these modes on the production of active species is also studied. The main reactions responsible for the generation of molecular hydrogen and light hydrocarbon species are analyzed. A possible mechanism of hydrogen generation in liquid phase is discussed. (paper)

  7. Thermal efficiency of a non-transferred thermal plasma cannon

    International Nuclear Information System (INIS)

    Mercado, A.; Cota, G.; Merlo, L.; Pacheco, J.; Pena, R.; Cruz, A.

    1997-01-01

    This work shows a thermal efficiency research (ν) for a plasma torch in d.c. which was carried out through the realization of an energy balance around the system under consideration. The plasma torch is manufactured in copper with a tungsten incrustations in cathode. The gas used was argon and the gas fluxes were at the rank of 10 and 40 lt/min to the total pressure of 1.2 bar (1.1 atm). With these conditions it was worked with electric currents at the rank of 40 and 180 A. The data were collected through a data acquisition card which was programmed in Windows environment. (Author)

  8. Ignition phase and steady-state structures of a non-thermal air plasma

    CERN Document Server

    Lu Xin Pei

    2003-01-01

    An AC-driven, non-thermal, atmospheric pressure air plasma is generated within the gap separating a disc-shaped metal electrode and a water electrode. The ignition phase and the steady-state are studied by a high-speed CCD camera. It is found that the plasma always initiates at the surface of the water electrode. The plasma exhibits different structures depending on the polarity of the water electrode: when the water electrode plays the role of cathode, a relatively wide but visibly dim plasma column is generated. At the maximum driving voltage, the gas temperature is between 800 and 900 K, and the peak current is 67 mA; when the water electrode is anode, the plasma column narrows but increases its light emission. The gas temperature in this case is measured to be in the 1400-1500 K range, and the peak current is 81 mA.

  9. Application of Response Surface Methodology for characterization of ozone production from Multi-Cylinder Reactor in non-thermal plasma device

    Science.gov (United States)

    Lian See, Tan; Zulazlan Shah Zulkifli, Ahmad; Mook Tzeng, Lim

    2018-04-01

    Ozone is a reactant which can be applied for various environmental treatment processes. It can be generated via atmospheric air non-thermal plasmas when sufficient voltages are applied through a combination of electrodes and dielectric materials. In this study, the concentration of ozone generated via two different configurations of multi-cylinder dielectric barrier discharge (DBD) reactor (3 x 40 mm and 10 x 10 mm) was investigated. The influence of the voltage and the duty cycle to the concentration of ozone generated by each configuration was analysed using response surface methodology. Voltage was identified as significant factor to the ozone production process. However, the regressed model was biased towards one of the configuration, leaving the predicted results of another configuration to be out of range.

  10. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    Science.gov (United States)

    DeVisscher, A.; Dewulf, J.; Van Durme, J.; Leys, C.; Morent, R.; Van Langenhove, H.

    2008-02-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation.

  11. Non-thermal plasma destruction of allyl alcohol in waste gas: kinetics and modelling

    International Nuclear Information System (INIS)

    Visscher, A de; Dewulf, J; Durme, J van; Leys, C; Morent, R; Langenhove, H Van

    2008-01-01

    Non-thermal plasma treatment is a promising technique for the destruction of volatile organic compounds in waste gas. A relatively unexplored technique is the atmospheric negative dc multi-pin-to-plate glow discharge. This paper reports experimental results of allyl alcohol degradation and ozone production in this type of plasma. A new model was developed to describe these processes quantitatively. The model contains a detailed chemical degradation scheme, and describes the physics of the plasma by assuming that the fraction of electrons that takes part in chemical reactions is an exponential function of the reduced field. The model captured the experimental kinetic data to less than 2 ppm standard deviation

  12. Non-thermal Power-Law Distributions in Solar and Space Plasmas

    Science.gov (United States)

    Oka, M.; Battaglia, M.; Birn, J.; Chaston, C. C.; Effenberger, F.; Eriksson, E.; Fletcher, L.; Hatch, S.; Imada, S.; Khotyaintsev, Y. V.; Kuhar, M.; Livadiotis, G.; Miyoshi, Y.; Retino, A.

    2017-12-01

    Particles are accelerated to very high, non-thermal energies in solar and space plasma environments. While energy spectra of accelerated particles often exhibit a power-law and are characterized by the power-law index δ, it remains unclear how particles are accelerated to high energies and how δ is determined. Here, we review previous observations of the power-law index δ in a variety of different plasma environments with a particular focus on sub-relativistic electrons. It appears that in regions more closely related to magnetic reconnection (such as the "above-the-looptop" solar hard X-ray source and the plasma sheet in Earth's magnetotail), the spectra are typically soft (δ> 4). This is in contrast to the typically hard spectra (δuniform in the plasma sheet, while power-law distributions still exist even in quiet times. The role of magnetotail reconnection in the electron power-law formation could therefore be confounded with these background conditions. Because different regions have been studied with different instrumentations and methodologies, we point out a need for more systematic and coordinated studies of power-law distributions for a better understanding of possible scaling laws in particle acceleration as well as their universality.

  13. Phosphor-Doped Thermal Barrier Coatings Deposited by Air Plasma Spray for In-Depth Temperature Sensing

    Directory of Open Access Journals (Sweden)

    Di Peng

    2016-09-01

    Full Text Available Yttria-stabilized zirconia (YSZ-based thermal barrier coating (TBC has been integrated with thermographic phosphors through air plasma spray (APS for in-depth; non-contact temperature sensing. This coating consisted of a thin layer of Dy-doped YSZ (about 40 µm on the bottom and a regular YSZ layer with a thickness up to 300 µm on top. A measurement system has been established; which included a portable; low-cost diode laser (405 nm; a photo-multiplier tube (PMT and the related optics. Coating samples with different topcoat thickness were calibrated in a high-temperature furnace from room temperature to around 900 °C. The results convincingly showed that the current sensor and the measurement system was capable of in-depth temperature sensing over 800 °C with a YSZ top layer up to 300 µm. The topcoat thickness was found to have a strong effect on the luminescent signal level. Therefore; the measurement accuracy at high temperatures was reduced for samples with thick topcoats due to strong light attenuation. However; it seemed that the light transmissivity of YSZ topcoat increased with temperature; which would improve the sensor’s performance at high temperatures. The current sensor and the measurement technology have shown great potential in on-line monitoring of TBC interface temperature.

  14. Artificial vesicles as an animal cell model for the study of biological application of non-thermal plasma

    International Nuclear Information System (INIS)

    Ki, S H; Park, J K; Sung, C; Lee, C B; Uhm, H; Choi, E H; Baik, K Y

    2016-01-01

    Artificial cell-like model systems can provide information which is hard to obtain with real biological cells. Giant unilamellar vesicles (GUV) containing intra-membrane DNA or OH radical-binding molecules are used to visualize the cytolytic activity of OH radicals. Changes in the GUV membrane are observed by microscopy or flow cytometry as performed for animal cells after non-thermal plasma treatment. The experimental data shows that OH radicals can be detected inside the membrane, although the biological effects are not as significant as for H 2 O 2 . This artificial model system can provide a systemic means to elucidate the complex interactions between biological materials and non-thermal plasma. (paper)

  15. Cell death induced on cell cultures and nude mouse skin by non-thermal, nanosecond-pulsed generated plasma.

    Directory of Open Access Journals (Sweden)

    Arnaud Duval

    Full Text Available Non-thermal plasmas are gaseous mixtures of molecules, radicals, and excited species with a small proportion of ions and energetic electrons. Non-thermal plasmas can be generated with any high electro-magnetic field. We studied here the pathological effects, and in particular cell death, induced by nanosecond-pulsed high voltage generated plasmas homogeneously applied on cell cultures and nude mouse skin. In vitro, Jurkat cells and HMEC exhibited apoptosis and necrosis, in dose-dependent manner. In vivo, on nude mouse skin, cell death occurred for doses above 113 J/cm(2 for the epidermis, 281 J/cm(2 for the dermis, and 394 J/cm(2 for the hypodermis. Using electron microscopy, we characterized apoptosis for low doses and necrosis for high doses. We demonstrated that these effects were not related to thermal, photonic or pH variations, and were due to the production of free radicals. The ability of cold plasmas to generate apoptosis on cells in suspension and, without any sensitizer, on precise skin areas, opens new fields of application in dermatology for extracorporeal blood cell treatment and the eradication of superficial skin lesions.

  16. Influence of Microstructure on Thermal Properties of Axial Suspension Plasma-Sprayed YSZ Thermal Barrier Coatings

    Czech Academy of Sciences Publication Activity Database

    Ganvir, A.; Curry, N.; Markocsan, N.; Nylen, P.; Joshi, S.; Vilémová, Monika; Pala, Zdeněk

    2016-01-01

    Roč. 25, 1-2 (2016), s. 202-212 ISSN 1059-9630. [ITSC 2015: International Thermal Spray Conference and Exposition. Long Beach, California, 11.05.2015-14.05.2015] Institutional support: RVO:61389021 Keywords : axial injection * column ar microstructure * porosity * suspension plasma spraying * thermal conductivity * thermal diffusivity Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.488, year: 2016 http://link.springer.com/article/10.1007%2Fs11666-015-0355-7

  17. Modeling of thermalization phenomena in coaxial plasma accelerators

    Science.gov (United States)

    Subramaniam, Vivek; Panneerchelvam, Premkumar; Raja, Laxminarayan L.

    2018-05-01

    Coaxial plasma accelerators are electromagnetic acceleration devices that employ a self-induced Lorentz force to produce collimated plasma jets with velocities ~50 km s‑1. The accelerator operation is characterized by the formation of an ionization/thermalization zone near gas inlet of the device that continually processes the incoming neutral gas into a highly ionized thermal plasma. In this paper, we present a 1D non-equilibrium plasma model to resolve the plasma formation and the electron-heavy species thermalization phenomena that take place in the thermalization zone. The non-equilibrium model is based on a self-consistent multi-species continuum description of the plasma with finite-rate chemistry. The thermalization zone is modelled by tracking a 1D gas-bit as it convects down the device with an initial gas pressure of 1 atm. The thermalization process occurs in two stages. The first is a plasma production stage, associated with a rapid increase in the charged species number densities facilitated by cathode surface electron emission and volumetric production processes. The production stage results in the formation of a two-temperature plasma with electron energies of ~2.5 eV in a low temperature background gas of ~300 K. The second, a temperature equilibration stage, is characterized by the energy transfer between the electrons and heavy species. The characteristic length scale for thermalization is found to be comparable to axial length of the accelerator thus putting into question the equilibrium magnetohydrodynamics assumption used in modeling coaxial accelerators.

  18. Analysis of the step responses of laminar premixed flames to forcing by non-thermal plasma

    KAUST Repository

    Lacoste, Deanna; Moeck, Jonas P.; Roberts, William L.; Chung, Suk-Ho; Cha, Min

    2016-01-01

    The step responses of lean methane-air flames to non-thermal plasma forcing is reported. The experimental setup consists of an axisymmetric burner, with a nozzle made of a quartz tube. The equivalence ratio is 0.95, allowing stabilization

  19. Microstructural evolution and growth kinetics of thermally grown oxides in plasma sprayed thermal barrier coatings

    Directory of Open Access Journals (Sweden)

    Xiaoju Liu

    2016-02-01

    Full Text Available The formation of thermally grown oxide (TGO during high temperature is a key factor to the degradation of thermal barrier coatings (TBCs applied on hot section components. In the present study both the CoNiCrAlY bond coat and ZrO2-8 wt.% Y2O3 (8YSZ ceramic coat of TBCs were prepared by air plasma spraying (APS. The composition and microstructure of TGO in TBCs were investigated using scanning electron microscopy (SEM, energy dispersive spectroscopy (EDS and X-ray diffraction (XRD analysis. The growth rate of TGO for TBC and pure BC were gained after isothermal oxidation at 1100 °C for various times. The results showed that as-sprayed bond coat consisted of β and γ/γ′phases, β phase reducesd as the oxidation time increased. The TGO comprised α-Al2O3 formed in the first 2 h. CoO, NiO, Cr2O3 and spinel oxides appeared after 20 h of oxidation. Contents of CoO and NiO reduced while that of Cr2O3 and spinel oxides increased in the later oxidation stage. The TGO eventually consisted of a sub-Al2O3 layer with columnar microstructure and the upper porous CS clusters. The TGO growth kinetics for two kinds of samples followed parabolic laws, with oxidation rate constant of 0.344 μm/h0.5 for TBCs and 0.354 μm/h0.5 for pure BCs.

  20. Practical Aspects of Suspension Plasma Spray for Thermal Barrier Coatings on Potential Gas Turbine Components

    Science.gov (United States)

    Ma, X.; Ruggiero, P.

    2018-04-01

    Suspension plasma spray (SPS) process has attracted extensive efforts and interests to produce fine-structured and functional coatings. In particular, thermal barrier coatings (TBCs) applied by SPS process gain increasing interest due to its potential for superior thermal protection of gas turbine hot sections as compared to conventional TBCs. Unique columnar architectures and nano- and submicrometric grains in the SPS-TBC demonstrated some advantages of thermal shock durability, low thermal conductivity, erosion resistance and strain-tolerant microstructure. This work aimed to look into some practical aspects of SPS processing for TBC applications before it becomes a reliable industry method. The spray capability and applicability of SPS process to achieve uniformity thickness and microstructure on curved substrates were emphasized in designed spray trials to simulate the coating fabrication onto industrial turbine parts with complex configurations. The performances of the SPS-TBCs were tested in erosion, falling ballistic impact and indentational loading tests as to evaluate SPS-TBC performances in simulated turbine service conditions. Finally, a turbine blade was coated and sectioned to verify SPS sprayability in multiple critical sections. The SPS trials and test results demonstrated that SPS process is promising for innovative TBCs, but some challenges need to be addressed and resolved before it becomes an economic and capable industrial process, especially for complex turbine components.

  1. Influence of non-thermal plasma on structural and electrical properties of globular and nanostructured conductive polymer polypyrrole in water suspension.

    Science.gov (United States)

    Galář, Pavel; Khun, Josef; Kopecký, Dušan; Scholtz, Vladimír; Trchová, Miroslava; Fučíková, Anna; Jirešová, Jana; Fišer, Ladislav

    2017-11-08

    Non-thermal plasma has proved its benefits in medicine, plasma assisted polymerization, food industry and many other fields. Even though, the ability of non-thermal plasma to modify surface properties of various materials is generally known, only limited attention has been given to exploitations of this treatment on conductive polymers. Here, we show study of non-thermal plasma treatment on properties of globular and nanostructured polypyrrole in the distilled water. We observe that plasma presence over the suspension level doesn't change morphology of the polymer (shape), but significantly influences its elemental composition and physical properties. After 60 min of treatment, the relative concentration of chloride counter ions decreased approximately 3 and 4 times for nanostructured and globular form, respectively and concentration of oxygen increased approximately 3 times for both forms. Simultaneously, conductivity decrease (14 times for globular and 2 times for nanostructured one) and changes in zeta potential characteristics of both samples were observed. The modification evolution was dominated by multi-exponential function with time constants having values approximately 1 and 10 min for both samples. It is expected that these time constants are related to two modification processes connected to direct presence of the spark and to long-lived species generated by the plasma.

  2. Optimization of a tunneling barrier in magnetic tunneling junction by tilted-plasma oxidation

    International Nuclear Information System (INIS)

    Nam, C.H.; Shim, Heejae; Kim, K.S.; Cho, B.K.

    2004-01-01

    Oxidation of an AlO x insulating barrier in a magnetic tunneling junction (MTJ) was carried out by a tilted-plasma oxidation method. It was found that the tilted-plasma oxidation induced a gradual change in the extent of oxidation of an insulating layer, which consequently led to a gradual change in the tunneling magnetoresistance (TMR) and specific junction resistance (RA) of the MTJ. We found a linear relation in the TMR versus RA curve with positive and negative slopes for less- and overoxidized junctions, respectively, and a parabolic relation for optimally oxidized junctions. The crossover in the TMR versus RA curves provides an effective and useful way to optimize (and monitor) the oxidation condition of a tunneling barrier in MTJs especially of a tunneling barrier less than 10 A thick. The tunneling junctions were also investigated after thermal annealing at various temperatures. The observations after thermal annealing were found to be consistent with transmission electrons microscopy images and a scenario of the partial formation of an additional ultrathin tunneling barrier at the top surface of the bottom magnetic layer

  3. Non-thermally activated chemistry

    International Nuclear Information System (INIS)

    Stiller, W.

    1987-01-01

    The subject is covered under the following headings: state-of-the art of non-thermally activated chemical processes; basic phenomena in non-thermal chemistry including mechanochemistry, photochemistry, laser chemistry, electrochemistry, photo-electro chemistry, high-field chemistry, magneto chemistry, plasma chemistry, radiation chemistry, hot-atom chemistry, and positronium and muonium chemistry; elementary processes in non-thermal chemistry including nuclear chemistry, interactions of electromagnetic radiations, electrons and heavy particles with matter, ionic elementary processes, elementary processes with excited species, radicalic elementary processes, and energy-induced elementary processes on surfaces and interfaces; and comparative considerations. An appendix with historical data and a subject index is given. 44 figs., 41 tabs., and 544 refs

  4. The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma

    Czech Academy of Sciences Publication Activity Database

    Lunov, O.; Zablotskyy, V.; Churpita, O.; Jäger, A.; Polívka, L.; Syková, Eva; Dejneka, A.; Kubinová, Šárka

    2016-01-01

    Roč. 82, mar. (2016), s. 71-83 ISSN 0142-9612 R&D Projects: GA MŠk(CZ) LO1309 Institutional support: RVO:68378041 Keywords : non-thermal plasma * bacteria * cytotoxicity Subject RIV: FP - Other Medical Disciplines Impact factor: 8.402, year: 2016

  5. Deposition stress effects on thermal barrier coating burner rig life

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  6. Improved oxidation of air pollutants in a non-thermal plasma

    International Nuclear Information System (INIS)

    Roland, U.; Holzer, F.; Kopinke, F.-D.

    2002-01-01

    The performance of non-thermal plasma (NTP) for the removal of organic air pollutants (especially in low concentrations) is improved by the introduction of ferroelectric and catalytically active materials into the discharge zone of an NTP reactor. Experiments with model systems (various contaminants and packed-bed materials) have shown that such a modification of a homogeneous gas-phase plasma can overcome the most serious restrictions of the NTP technique at its present state of the art: the incomplete total oxidation (i.e. the low selectivity to CO 2 ) and the energetic inefficiency. Placing a ferroelectric packed-bed material in the discharge zone was shown to result in a lowering of the energy input required. The main effects of plasma catalysis enabled by the introduction of a catalytically active material were an enhanced conversion of pollutants and a higher CO 2 selectivity. These improvements are based on the presence of short-lived oxidising species in the inner volume of porous catalysts. Additionally, the formation of a reservoir of adsorbed oxidants in the NTP zone could be shown. The combination of both modifications (ferroelectric packed-bed materials and plasma catalysis) is a promising method to support the NTP-initiated oxidation of air pollutants

  7. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration

    Science.gov (United States)

    Ritts, Andy Charles; Li, Hao; Yu, Qingsong; Xu, Changqi; Yao, Xiaomei; Hong, Liang; Wang, Yong

    2010-01-01

    The objective of this study is to investigate the treatment effects of non-thermal atmospheric gas plasmas on dentin surfaces for composite restoration. Extracted unerupted human third molars were used by removing the crowns and etching the exposed dentin surfaces with 35% phosphoric acid gel. The dentin surfaces were treated by using a non-thermal atmospheric argon plasma brush for various durations. The molecular changes of the dentin surfaces were analyzed using FTIR/ATR and an increase in carbonyl groups on dentin surfaces was detected with plasma treated dentin. Adper Single Bond Plus adhesive and Filtek Z250 dental composite were applied as directed. To evaluate the dentin/composite interfacial bonding, the teeth thus prepared were sectioned into micro-bars as the specimens for tensile test. Student Newman Keuls tests showed that the bonding strength of the composite restoration to peripheral dentin was significantly increased (by 64%) after 30 s plasma treatment. However, the bonding strength to plasma treated inner dentin did not show any improvement. It was found that plasma treatment of peripheral dentin surface up to 100 s gave an increase in interfacial bonding strength, while a prolong plasma treatment of dentin surfaces, e.g., 5 min treatments, showed a decrease in interfacial bonding strength. PMID:20831586

  8. Thermal Gradient Cyclic Behavior of a Thermal/Environmental Barrier Coating System on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Lee, Kang N.; Miller, Robert A.

    2002-01-01

    Thermal barrier and environmental barrier coatings (TBCs and EBCs) will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability of the ceramic matrix composite (CMC) engine components in harsh combustion environments. In order to develop high performance, robust coating systems for effective thermal and environmental protection of the engine components, appropriate test approaches for evaluating the critical coating properties must be established. In this paper, a laser high-heat-flux, thermal gradient approach for testing the coatings will be described. Thermal cyclic behavior of plasma-sprayed coating systems, consisting of ZrO2-8wt%Y2O3 thermal barrier and NASA Enabling Propulsion Materials (EPM) Program developed mullite+BSAS/Si type environmental barrier coatings on SiC/SiC ceramic matrix composites, was investigated under thermal gradients using the laser heat-flux rig in conjunction with the furnace thermal cyclic tests in water-vapor environments. The coating sintering and interface damage were assessed by monitoring the real-time thermal conductivity changes during the laser heat-flux tests and by examining the microstructural changes after the tests. The coating failure mechanisms are discussed based on the cyclic test results and are correlated to the sintering, creep, and thermal stress behavior under simulated engine temperature and heat flux conditions.

  9. Observation of non-chemical equilibrium effect on Ar-CO2-H2 thermal plasma model by changing pressure

    International Nuclear Information System (INIS)

    Al-Mamun, Sharif Abdullah; Tanaka, Yasunori; Uesugi, Yoshihiko

    2009-01-01

    The authors developed a two-dimensional one-temperature chemical non-equilibrium (1T-NCE) model of Ar-CO 2 -H 2 inductively coupled thermal plasmas (ICTP) to investigate the effect of pressure variation. The basic concept of one-temperature model is the assumption and treatment of the same energy conservation equation for electrons and heavy particles. The energy conservation equations consider reaction heat effects and energy transfer among the species produced as well as enthalpy flow resulting from diffusion. Assuming twenty two (22) different particles in this model and by solving mass conservation equations for each particle, considering diffusion, convection and net production terms resulting from hundred and ninety eight (198) chemical reactions, chemical non-equilibrium effects were taken into account. Transport and thermodynamic properties of Ar-CO 2 -H 2 thermal plasmas were self-consistently calculated using the first-order approximation of the Chapman-Enskog method. Finally results obtained at atmospheric pressure (760 Torr) and at reduced pressure (500, 300 Torr) were compared with results from one-temperature chemical equilibrium (1T-CE) model. And of course, this comparison supported discussion of chemical non-equilibrium effects in the inductively coupled thermal plasmas (ICTP).

  10. Measurement of the non-thermal properties in a low-pressure spraying plasma

    International Nuclear Information System (INIS)

    Jung, Yong Ho; Chung, Kyu Sun

    2002-01-01

    The non-thermal properties of a low-pressure spraying plasma have been characterized by using optical emission spectroscopy and single probes installed in a fast scanning probe system. A two-temperature model of the electrons is introduced to explain their non-isothermal properties, which are measured using single probes. The excitation temperatures of the atomic and the ionic lines are calculated from measurements of the emission intensities of Ar (I) and Ar (II), and those temperatures can be explained by using a local thermodynamic equilibrium (LTE) or a non-local thermodynamic equilibrium (non-LTE) model. In order to deduce more reasonable values (excitation temperatures), we introduce a multi-thermodynamic equilibrium (MTE) model, which gives different temperatures, depending upon the atomic excitation states

  11. Thermal structure of atmospheric pressure non-equilibrium plasmas

    International Nuclear Information System (INIS)

    Nozaki, Tomohiro; Unno, Yasuko; Okazaki, Ken

    2002-01-01

    The thermal structure of a methane-fed dielectric barrier discharge (DBD) and a atmospheric pressure glow-discharge (APG) has been extensively investigated in terms of time-averaged gas temperature profile between two parallel-plate electrodes separated by 1.0 mm. Emission spectroscopy of the rotational band of CH ((0, 0) A 2 Δ→X 2 Π:431 nm) was performed for this purpose. In order to minimize average temperature increase in the reaction field, DBD and APG were activated by 10 kHz with 2% duty cycle pulsed voltage (2 μs pulse width/100 μs interval). In DBD, temperature increase of a single microdischarge, on a time average, reached 200 K. It suddenly decreased below 100 K associated with the dark space formation near the dielectric barrier. Also, gas temperature in the surface discharge was fairly low because emission in these regions was limited within the initial stages of propagation (∼5 ns), whereas energy deposition would continue until microdischarge extinction; these facts implied that rotational temperature seemed to be far below the actual gas temperature in these regions. In APG, gas temperature was uniformly increased by positive column formation. In addition, a remarkable temperature increase due to negative glow formation was obtained only near the metallic electrode. For practical interest, we also investigated the net temperature increase with high frequency operations (AC-80 kHz), which depends not only on plasma properties, but also various engineering factors such as flow field, external cooling conditions, and total input power. In DBD, gas temperature in the middle of gas gap was significantly increased with increasing input power because of poor cooling conditions. In APG, in contrast, gas temperature near the electrodes was significantly increased associated with negative glow formation

  12. Effect of thermal barrier coating with various blends of pumpkin seed oil methyl ester in DI diesel engine

    Science.gov (United States)

    Karthickeyan, V.; Balamurugan, P.

    2017-10-01

    The rise in oil prices, dependency on fossil fuels, degradation of non-renewable energy resources and global warming strives to find a low-carbon content alternative fuel to the conventional fuel. In the present work, Partially Stabilized Zirconia (PSZ) was used as a thermal barrier coating in piston head, cylinder head and intake and exhaust valves using plasma spray technique, which provided a rise in combustion chamber temperature. With the present study, the effects of thermal barrier coating on the blends of Pumpkin Seed Oil Methyl Ester (PSOME) were observed in both the coated and uncoated engine. Performance and emission characteristics of the PSOME in coated and uncoated engines were observed and compared. Increased thermal efficiency and reduced fuel consumption were observed for B25 and diesel in coated and uncoated engine. On comparing with the other biodiesel samples, B25 exhibited lower HC, NOx and smoke emissions in thermally coated engine than uncoated engine. After 100 h of operation, no anamolies were found in the thermally coated components except minor cracks were identified in the edges of the piston head.

  13. Non-thermal plasma technology for the development of antimicrobial surfaces: a review

    Science.gov (United States)

    Nikiforov, Anton; Deng, Xiaolong; Xiong, Qing; Cvelbar, U.; DeGeyter, N.; Morent, R.; Leys, Christophe

    2016-05-01

    Antimicrobial coatings are in high demand in many fields including the biomaterials and healthcare sectors. Within recent progress in nanoscience and engineering at the nanoscale, preparation of nanocomposite films containing metal nanoparticles (such as silver nanoparticles, copper nanoparticles, zinc oxide nanoparticles) is becoming an important step in manufacturing biomaterials with high antimicrobial activity. Controlled release of antibiotic agents and eliminating free nanoparticles are of equal importance for engineering antimicrobial nanocomposite materials. Compared to traditional chemical ‘wet’ methods, plasma deposition and plasma polymerization are promising approaches for the fabrication of nanocomposite films with the advantages of gas phase dry processes, effective use of chemicals and applicability to various substrates. In this article, we present a short overview of state-of-the-art engineering of antimicrobial materials based on the use of non-thermal plasmas at low and atmospheric pressure.

  14. Oxidation and thermal shock behavior of thermal barrier coated 18/10CrNi alloy with coating modifications

    Energy Technology Data Exchange (ETDEWEB)

    Guergen, Selim [Vocational School of Transportation, Anadolu University, Eskisehir (Turkmenistan); Diltemiz, Seyid Fehmi [Turkish Air Force1st Air Supply and Maintenance Center Command, Eskisehir (Turkmenistan); Kushan, Melih Cemal [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2017-01-15

    In this study, substrates of 18/10CrNi alloy plates were initially sprayed with a Ni-21Cr-10Al-1Y bond coat and then with an yttria stabilized zirconia top coat by plasma spraying. Subsequently, plasma-sprayed Thermal barrier coatings (TBCs) were treated with two different modification methods, namely, vacuum heat treatment and laser glazing. The effects of modifications on the oxidation and thermal shock behavior of the coatings were evaluated. The effect of coat thickness on the bond strength of the coats was also investigated. Results showed enhancement of the oxidation resistance and thermal shock resistance of TBCs following modifications. Although vacuum heat treatment and laser glazing exhibited comparable results as per oxidation resistance, the former generated the best improvement in the thermal shock resistance of the TBCs. Bond strength also decreased as coat thickness increased.

  15. Next Generation Thermal Barrier Coatings for the Gas Turbine Industry

    Science.gov (United States)

    Curry, Nicholas; Markocsan, Nicolaie; Li, Xin-Hai; Tricoire, Aurélien; Dorfman, Mitch

    2011-01-01

    The aim of this study is to develop the next generation of production ready air plasma sprayed thermal barrier coating with a low conductivity and long lifetime. A number of coating architectures were produced using commercially available plasma spray guns. Modifications were made to powder chemistry, including high purity powders, dysprosia stabilized zirconia powders, and powders containing porosity formers. Agglomerated & sintered and homogenized oven spheroidized powder morphologies were used to attain beneficial microstructures. Dual layer coatings were produced using the two powders. Laser flash technique was used to evaluate the thermal conductivity of the coating systems from room temperature to 1200 °C. Tests were performed on as-sprayed samples and samples were heat treated for 100 h at 1150 °C. Thermal conductivity results were correlated to the coating microstructure using image analysis of porosity and cracks. The results show the influence of beneficial porosity on reducing the thermal conductivity of the produced coatings.

  16. Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process

    Science.gov (United States)

    Gell, Maurice; Wang, Jiwen; Kumar, Rishi; Roth, Jeffery; Jiang, Chen; Jordan, Eric H.

    2018-04-01

    Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.

  17. Higher Temperature Thermal Barrier Coatings with the Combined Use of Yttrium Aluminum Garnet and the Solution Precursor Plasma Spray Process

    Science.gov (United States)

    Gell, Maurice; Wang, Jiwen; Kumar, Rishi; Roth, Jeffery; Jiang, Chen; Jordan, Eric H.

    2018-02-01

    Gas-turbine engines are widely used in transportation, energy and defense industries. The increasing demand for more efficient gas turbines requires higher turbine operating temperatures. For more than 40 years, yttria-stabilized zirconia (YSZ) has been the dominant thermal barrier coating (TBC) due to its outstanding material properties. However, the practical use of YSZ-based TBCs is limited to approximately 1200 °C. Developing new, higher temperature TBCs has proven challenging to satisfy the multiple property requirements of a durable TBC. In this study, an advanced TBC has been developed by using the solution precursor plasma spray (SPPS) process that generates unique engineered microstructures with the higher temperature yttrium aluminum garnet (YAG) to produce a TBC that can meet and exceed the major performance standards of state-of-the-art air plasma sprayed YSZ, including: phase stability, sintering resistance, CMAS resistance, thermal cycle durability, thermal conductivity and erosion resistance. The temperature improvement for hot section gas turbine materials (superalloys & TBCs) has been at the rate of about 50 °C per decade over the last 50 years. In contrast, SPPS YAG TBCs offer the near-term potential of a > 200 °C improvement in temperature capability.

  18. Formation conditions for electron internal transport barriers in JT-60U plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Fujita, T [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Fukuda, T [Osaka University, Suita, Osaka 565-0871 (Japan); Sakamoto, Y [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Ide, S [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Suzuki, T [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Takenaga, H [Japan Atomic Energy Research Institute, Naka Fusion Research Establishment, Naka-machi, Naka-gun, Ibaraki 311-0193 (Japan); Ida, K [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Idei, H [Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Shimozuma, T [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Fujisawa, A [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Ohdachi, S [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Toi, K [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2004-05-01

    The formation of electron internal transport barriers (ITBs) was studied using electron cyclotron (EC) heating in JT-60U positive shear (PS) and reversed shear (RS) plasmas with scan of neutral beam (NB) power. With no or low values of NB power and with a small radial electric field (E{sub r}) gradient, a strong, box-type electron ITB was formed in RS plasmas while a peaked profile with no strong electron ITBs was observed in PS plasmas within the available EC power. When the NB power and the E{sub r} gradient were increased, the electron transport in strong electron ITBs with EC heating in RS plasmas was not affected, while electron thermal diffusivity was reduced in conjunction with the reduction of ion thermal diffusivity, and strong electron and ion ITBs were formed in PS plasmas.

  19. TECHNOLOGICAL PECULIARITIES OF THERMAL BARRIER COATINGS BASED ON ZIRCONIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    V. V. Okovity

    2016-01-01

    Full Text Available A technology for formation of thermal barrier coatings (TBC based on zirconium dioxide has been developed in the paper. The paper investigates structures of phase composition and thermal stability of such developed coatings. Investigation results pertaining to formation of an oxide system ZrO2 – Y2O3, while using plasma spraying and subsequent high-energy processing, which allows to increase resistance of a thermal barrier coating to thermal cycling heat resistance of the coating at temperature of 1100 °C. This leads to longer protection of bottom layer against high-temperature exposure. The methodology is based on complex metallographic, X-ray diffraction and electron microscopy investigations of structural elements in composite plasma coatings of the ZrO2 – Y2O system. Resistance of plasma coatings (Мe – Cr – Al – Y/ZrO2 – Y2O3-type, used as TBC to protect gas turbine engine blades under conditions of frequent thermal cyclings is limited by cleavage of an outer ceramic layer. Structural and electron microprobe investigations have shown that as a result of thermal cycling an outer atmosphere due to porous structure of the ceramic coating layer, migrates to the surface of lower metal coating, causing its oxidation. As a result, the metal-ceramic Al2O3 layer is formed at a metal-ceramic interface and it changes a stress state of the coating that causes a reduction of protective properties. Thus, a high heat resistance of thermal barrier coatings depends on processes occurring at the interface between metal and ceramic coating layers. A laser impact on samples with TBC leads to changes in the structure of the oxide layer of ZrO2 – Y2O3. In this case its initial surface characterized by considerable relief is significantly flattened due to processing and the coating is fractured and it is separated in fragments. As the oxide coating has low thermal conductivity, and the time of laser exposure is about 10–3 sec, a heat flux

  20. High density internal transport barriers for burning plasma operation

    International Nuclear Information System (INIS)

    Pericoli Ridolfini, V.

    2005-01-01

    One of the proposed ITER scenarios foresees the creation and sustainment of an internal transport barrier (ITB) in order to improve the confinement properties of the hot core plasma. The more stringent requests are: the ITB must be sustained with electron heating only with no or very small external momentum source, the strong collisional coupling at the envisaged density (line average >1.0 1020 m-3) must not prevent the barrier existence, the bootstrap current created by the large induced gradients must have a radial profile consistent with that requested by the barrier creation and sustainment. To all these items the studies carried out in FTU in the same density range (ne0 ?1.5 1020 m-3) provide encouraging prospects. With pure electron heating and current drive (LH+ECH) steady electron barrier are generated and maintained with central e- temperature >5.0 keV. Almost full CD conditions are established with a bootstrap current close to 25% of the total and well aligned with that driven by the LH waves and responsible for the barrier building. The clear change in the density fluctuations close to the ITB radius, observed by reflectometry, indicates stabilization of turbulence that is consistent with the drop of the thermal electron diffusivity inside the ITB to very low values, ?e<0.5 m2/s estimated by the transport analysis. The 10 fold neutron rate increase testifies a significant collisional ion heating, even though usually ?Ti0/Ti0 does not exceed 40%, because the e--i + equipartition time, always 4-5 times longer than the energy confinement time, does not allow thermal equilibrium with electrons to be attained. The ion thermal diffusivity inside the barrier must be lowered to the neoclassical level to account for the observed Ti(r) profiles, clearly indicating at least a non-degraded ion transport. The global confinement in turn improves by 1.6 times above the FTU L-scaling. The ITB radius can be controlled by varying the LH power deposition profile that is

  1. On thermalization of electron-positron-photon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Siutsou, I. A., E-mail: siutsou@icranet.org [CAPES–ICRANet program, ICRANet–Rio, CBPF 22290-180, Rua Dr. Xavier Sigaud, 150, Urca, Rio de Janeiro, RJ (Brazil); Aksenov, A. G. [Institute for Computer-Aided Design, Russian Academy of Sciences 123056, 2nd Brestskaya st., 19/18, Moscow (Russian Federation); Vereshchagin, G. V. [ICRANet 65122, p.le della Republica, 10, Pescara (Italy)

    2015-12-17

    Recently a progress has been made in understanding thermalization mechanism of relativistic plasma starting from a non-equilibrium state. Relativistic Boltzmann equations were solved numerically for homogeneous isotropic plasma with collision integrals for two- and three-particle interactions calculated from the first principles by means of QED matrix elements. All particles were assumed to fulfill Boltzmann statistics. In this work we follow plasma thermalization by accounting for Bose enhancement and Pauli blocking in particle interactions. Our results show that particle in equilibrium reach Bose-Einstein distribution for photons, and Fermi-Dirac one for electrons, respectively.

  2. On thermalization of electron-positron-photon plasma

    Science.gov (United States)

    Siutsou, I. A.; Aksenov, A. G.; Vereshchagin, G. V.

    2015-12-01

    Recently a progress has been made in understanding thermalization mechanism of relativistic plasma starting from a non-equilibrium state. Relativistic Boltzmann equations were solved numerically for homogeneous isotropic plasma with collision integrals for two- and three-particle interactions calculated from the first principles by means of QED matrix elements. All particles were assumed to fulfill Boltzmann statistics. In this work we follow plasma thermalization by accounting for Bose enhancement and Pauli blocking in particle interactions. Our results show that particle in equilibrium reach Bose-Einstein distribution for photons, and Fermi-Dirac one for electrons, respectively.

  3. Yttria-stabilized zirkonia / gadolinium zirconate double-layer plasma-sprayed thermal barrier coating systems (TBCs)

    International Nuclear Information System (INIS)

    Bakan, Emine

    2015-01-01

    Thermal barrier coating (TBC) research and development is driven by the desirability of further increasing the maximum inlet temperature in a gas turbine engine. A number of new top coat ceramic materials have been proposed during the last decades due to limited temperature capability (1200 C) of the state-of-the-art yttria-stabilized zirconia (7 wt. % Y 2 O 3 -ZrO 2 , YSZ) at long term operation. Zirconate pyrochlores of the large lanthanides((Gd → La) 2 Zr 2 O 7 ) have been particularly attractive due to their higher temperature phase stability than that of the YSZ. Nonetheless, the issues related with the implementation of pyrochlores such as low fracture toughness and formation of deleterious interphases with thermally grown oxide (TGO, Al 2 O 3 ) were reported. The implication was the requirement of an interlayer between the pyrochlores and TGO, which introduced double-layer systems to the TBC literature. Furthermore, processability issues of pyrochlores associated with the different evaporation rates of lanthanide oxides and zirconia resulting in unfavorable composition variations in the coatings were addressed in different studies. After all, although the material properties are available, there is a paucity of data in the literature concerning the properties of the coatings made of pyrochlores. From the processability point of view the most reported pyrochlore is La 2 Zr 2 O 7 . Hence, the goal of this research was to investigate plasma-sprayed Gd 2 Zr 2 O 7 (GZO) coatings and YSZ/GZO double-layer TBC systems. Three main topics were examined based on processing, performance and properties: (i) the plasma spray processing of the GZO and its impact on the microstructural and compositional properties of the GZO coatings; (ii) the cycling lifetime of the YSZ/GZO double-layer systems under thermal gradient at a surface temperature of 1400 C; (iii) the properties of the GZO and YSZ coatings such as thermal conductivity, coefficient of thermal expansion as well

  4. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    Science.gov (United States)

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.

  5. Low temperature synthesis of silicon quantum dots with plasma chemistry control in dual frequency non-thermal plasmas.

    Science.gov (United States)

    Sahu, Bibhuti Bhusan; Yin, Yongyi; Han, Jeon Geon; Shiratani, Masaharu

    2016-06-21

    The advanced materials process by non-thermal plasmas with a high plasma density allows the synthesis of small-to-big sized Si quantum dots by combining low-temperature deposition with superior crystalline quality in the background of an amorphous hydrogenated silicon nitride matrix. Here, we make quantum dot thin films in a reactive mixture of ammonia/silane/hydrogen utilizing dual-frequency capacitively coupled plasmas with high atomic hydrogen and nitrogen radical densities. Systematic data analysis using different film and plasma characterization tools reveals that the quantum dots with different sizes exhibit size dependent film properties, which are sensitively dependent on plasma characteristics. These films exhibit intense photoluminescence in the visible range with violet to orange colors and with narrow to broad widths (∼0.3-0.9 eV). The observed luminescence behavior can come from the quantum confinement effect, quasi-direct band-to-band recombination, and variation of atomic hydrogen and nitrogen radicals in the film growth network. The high luminescence yields in the visible range of the spectrum and size-tunable low-temperature synthesis with plasma and radical control make these quantum dot films good candidates for light emitting applications.

  6. Commercial tandem mirror reactor design with thermal barriers: WITAMIR-I

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Emmert, G.A.; Maynard, C.W.

    1980-10-01

    A conceptual design of a near term commercial tandem mirror power reactor is presented. The basic configuration utilizes yin-yang minimum-B plugs with inboard thermal barriers. The maximum magnetic fields are 6.1 T, 8.1 T, and 15 T in the central cell, yin-yang, and thermal barrier magnets, respectively. The blanket utilizes Pb 83 Li 17 as the coolant and HT-9 as the structural material. This yields a high energy multiplication (1.37), a sufficient tritium breeding ratio (1.07) and has a major advantage with respect to maintenance. The plasma Q is 28 at a fusion power level of 3000 MW(t); the net electrical output is 1530 MW(e); and the overall efficiency is 39%. Cost estimates indicate that WITAMIR-I is competitive with recent tokamak power reactor designs

  7. Cell death induced by ozone and various non-thermal plasmas: therapeutic perspectives and limitations

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Chánová, Eliška; Syková, Eva; Dejneka, Alexandr; Kubinová, Šárka

    2014-01-01

    Roč. 4, NOV (2014), "7129-1"-"7129-11" ISSN 2045-2322 R&D Projects: GA MŠk LO1309 Grant - others:AV ČR(CZ) M100101219 Institutional support: RVO:68378271 ; RVO:61389013 ; RVO:68378041 Keywords : cell death * non-thermal plasma * therapeutic perspectives Subject RIV: BO - Biophysics; FH - Neurology (UEM-P); CD - Macromolecular Chemistry (UMCH-V) Impact factor: 5.578, year: 2014

  8. Deviations from thermal equilibrium in plasmas

    International Nuclear Information System (INIS)

    Burm, K.T.A.L.

    2004-01-01

    A plasma system in local thermal equilibrium can usually be described with only two parameters. To describe deviations from equilibrium two extra parameters are needed. However, it will be shown that deviations from temperature equilibrium and deviations from Saha equilibrium depend on one another. As a result, non-equilibrium plasmas can be described with three parameters. This reduction in parameter space will ease the plasma describing effort enormously

  9. Induction of Immunogenic Cell Death with Non-Thermal Plasma for Cancer Immunotherapy

    Science.gov (United States)

    Lin, Abraham G.

    Even with the recent advancements in cancer immunotherapy, treatments are still associated with debilitating side effects and unacceptable fail rates. Induction of immunogenic cell death (ICD) in tumors is a promising approach to cancer treatment that may overcome these deficiencies. Cells undergoing ICD pathways enhance the interactions between cancerous cells and immune cells of the patient, resulting in the generation of anti-cancer immunity. The goal of this therapy relies on the engagement and reestablishment of the patient's natural immune processes to target and eliminate cancerous cells systemically. The main objective of this research was to determine if non-thermal plasma could be used to elicit immunogenic cancer cell death for cancer immunotherapy. My hypothesis was that plasma induces immunogenic cancer cell death through oxidative stress pathways, followed by development of a specific anti-tumor immune response. This was tested by investigating the interactions between plasma and multiple cancerous cells in vitro and validating anti-tumor immune responses in vivo. Following plasma treatment, two surrogate ICD markers, secreted adenosine triphosphate (ATP) and surface exposed calreticulin (ecto-CRT), were emitted from all three cancerous cell lines tested: A549 lung carcinoma cell line, CNE-1 radiation-resistant nasopharyngeal cell line and CT26 colorectal cancer cell line. When these cells were co-cultured with macrophages, cells of the innate immune system, the tumoricidal activity of macrophages was enhanced, thus demonstrating the immunostimulatory activity of cells undergoing ICD. The underlying mechanisms of plasma-induced ICD were also evaluated. When plasma is generated, four major components are produced: electromagnetic fields, ultraviolet radiation, and charged and neutral reactive species. Of these, we determined that plasma-generated charged and short-lived reactive oxygen species (ROS) were the major effectors of ICD. Following plasma

  10. Optimization of High Porosity Thermal Barrier Coatings Generated with a Porosity Former

    Science.gov (United States)

    Medřický, Jan; Curry, Nicholas; Pala, Zdenek; Vilemova, Monika; Chraska, Tomas; Johansson, Jimmy; Markocsan, Nicolaie

    2015-04-01

    Yttria-stabilized zirconia thermal barrier coatings are extensively used in turbine industry; however, increasing performance requirements have begun to make conventional air plasma sprayed coatings insufficient for future needs. Since the thermal conductivity of bulk material cannot be lowered easily; the design of highly porous coatings may be the most efficient way to achieve coatings with low thermal conductivity. Thus the approach of fabrication of coatings with a high porosity level based on plasma spraying of ceramic particles of dysprosia-stabilized zirconia mixed with polymer particles, has been tested. Both polymer and ceramic particles melt in plasma and after impact onto a substrate they form a coating. When the coating is subjected to heat treatment, polymer burns out and a complex structure of pores and cracks is formed. In order to obtain desired porosity level and microstructural features in coatings; a design of experiments, based on changes in spray distance, powder feeding rate, and plasma-forming atmosphere, was performed. Acquired coatings were evaluated for thermal conductivity and thermo-cyclic fatigue, and their morphology was assessed using scanning electron microscopy. It was shown that porosity level can be controlled by appropriate changes in spraying parameters.

  11. Thermal instability in a stratified plasma

    International Nuclear Information System (INIS)

    Hermanns, D.F.M.; Priest, E.R.

    1989-01-01

    The thermal instability mechansism has been studied in connection to observed coronal features, like, e.g. prominences or cool cores in loops. Although these features show a lot of structure, most studies concern the thermal instability in an uniform medium. In this paper, we investigate the thermal instability and the interaction between thermal modes and the slow magneto-acoustic subspectrum for a stratified plasma slab. We fomulate the relevant system of equations and give some straightforward properties of the linear spectrum of a non-uniform plasma slab, i.e. the existence of continuous parts in the spectrum. We present a numerical scheme with which we can investigate the linear spectrum for equilibrium states with stratification. The slow and thermal subspectra of a crude coronal model are given as a preliminary result. (author). 6 refs.; 1 fig

  12. Non-thermal hydrogen plasma processing effectively increases the antibacterial activity of graphene oxide

    Science.gov (United States)

    Ke, Zhigang; Ma, Yulong; Zhu, Zhongjie; Zhao, Hongwei; Wang, Qi; Huang, Qing

    2018-01-01

    Graphene-based materials (GMs) are promising antibacterial agents which provide an alternative route to treat pathogenic bacteria with resistance to conventional antibiotics. To further improve their antibacterial activity, many methods have been developed to functionalize the GMs with chemicals. However, the application of additional chemicals may pose potential risks to the environment and human being. Herein, a radio-frequency-driven inductively coupled non-thermal hydrogen plasma was used to treat and reduce graphene oxide (GO) without using any other chemicals, and we found that the plasma-reduced GO (prGO) is with significantly higher bactericidal activity against Escherichia coli. The mechanism of the increased antibacterial activity of prGO is due to that plasma processing breaks down the GO sheets into smaller layers with more rough surface defects, which can thus induce more destructive membrane damages to the bacteria. This work sets another good example, showing that plasma processing is a green and low-cost alternative for GM modification for biomedical applications.

  13. A universal mirror wave-mode threshold condition for non-thermal space plasma environments

    Directory of Open Access Journals (Sweden)

    M. P. Leubner

    2002-01-01

    Full Text Available Magnetic fluctuations are recognized in a large variety of space plasmas by increasingly high resolution, in situ observations as mirror wave mode structures. A typical requirement for the excitation of mirror modes is a dominant perpendicular pressure in a high-beta plasma environment. Contrary, we demonstrate from a realistic kinetic analysis how details of the velocity space distributions are of considerable significance for the instability threshold. Introducing the most common characteristics of observed ion and electron distributions by a mixed suprathermal-loss-cone, we derive a universal mirror instability criterion from an energy principle for collisionless plasmas. As a result, the transition from two temperature Maxwellians to realistic non-thermal features provides a strong source for the generation of mirror wave mode activity, reducing drastically the instability threshold. In particular, a number of space-related examples illuminate how the specific structure of the velocity space distribution dominates as a regulating excitation mechanism over the effects related to changes in the plasma parameters.

  14. Changing the surface properties on naval steel as result of non-thermal plasma treatment

    Science.gov (United States)

    Hnatiuc, B.; Sabău, A.; Dumitrache, C. L.; Hnatiuc, M.; Crețu, M.; Astanei, D.

    2016-08-01

    The problem of corrosion, related to Biofouling formation, is an issue with very high importance in the maritime domain. According to new rules, the paints and all the technologies for the conditioning of naval materials must fulfil more restrictive environmental conditions. In order to solve this issue, different new clean technologies have been proposed. Among them, the use of non-thermal plasmas produced at atmospheric pressure plays a very important role. This study concerns the opportunity of plasma treatment for preparation or conditioning of naval steel OL36 type. The plasma reactors chosen for the experiments can operate at atmospheric pressure and are easy to use in industrial conditions. They are based on electrical discharges GlidArc and Spark, which already proved their efficiency for the surface activation or even for coatings of the surface. The non-thermal character of the plasma is ensured by a gas flow blown through the electrical discharges. One power supply has been used for reactors that provide a 5 kV voltage and a maximum current of 100 mA. The modifications of the surface properties and composition have been studied by XPS technique (X-ray Photoelectron Spectroscopy). There were taken into consideration 5 samples: 4 of them undergoing a Mini-torch plasma, a Gliding Spark, a GlidArc with dry air and a GlidArc with CO2, respectively the fifth sample which is the untreated witness. Before the plasma treatment, samples of naval steel were processed in order to obtain mechanical gloss. The time of treatment was chosen to 12 minutes. In the spectroscopic analysis, done on a ULVAC-PHI, Inc. PHI 5000 Versa Probe scanning XPS microprobe, a monocromated Al Kα X-ray source with a spot size of 100 μm2 was used to scan each sample while the photoelectrons were collected at a 45-degree take-off angle. Differences were found between atomic concentrations in each individual case, which proves that the active species produced by each type of plasma affects

  15. Internal transport barrier and β limit in ohmically heated plasma in TUMAN-3M

    International Nuclear Information System (INIS)

    Andreiko, M.V.; Askinazi, L.G.; Golant, V.E.

    1999-01-01

    An Internal Transport Barrier (ITB) was found in ohmically heated plasma in TUMAN-3M (R 0 = 53 cm, a l = 22 cm - circular limiter configuration, B t ≤ 0.7 T, I p ≤ 175 kA, ≤ 6.0·10 19 m -3 ). The barrier reveals itself as a formation of a steep gradient on electron temperature and density radial profiles. The regions with reduced diffusion and electron thermal diffusivity are in between r = 0.5a and r = 0.7a. The ITB appears more frequently in the shots with higher plasma current. At lower currents (I p N limit in the ohmically heated plasma are presented. Stored energy was measured using diamagnetic loops and compared with W calculated from kinetic data obtained by Thomson scattering and microwave interferometry. Measurements of the stored energy and of the β were performed in the ohmic H-mode before and after boronization and in the scenario with the fast Current Ramp-Down in the ohmic H-mode. Maximum value of β T of 2.0% and β N of 2 were achieved. The β N limit achieved is 'soft' (non-disruptive) limit. The stored energy slowly decays after the Current Ramp-Down. No correlation was found between beta restriction and MHD phenomena. (author)

  16. Evolution of thermal ion transport barriers in reversed shear/ optimised shear plasmas

    International Nuclear Information System (INIS)

    Voitsekhovitch, I.; Garbet, X.; Moreau, D.; Bush, C.E.; Budny, R.V.; Gohil, P.; Kinsey, J.E.; Talyor, T.S.; Litaudon, X.

    2001-01-01

    The effects of the magnetic and ExB rotation shears on the thermal ion transport in advanced tokamak scenarios are analyzed through the predictive modelling of the evolution of internal transport barriers. Such a modelling is performed with an experimentally validated L-mode thermal diffusivity completed with a semi-empirical shear correction which is based on simple theoretical arguments from turbulence studies. A multi-machine test of the model on relevant discharges from the ITER Data Base (TFTR, DIII-D and JET) is presented. (author)

  17. Pyrite-enhanced methylene blue degradation in non-thermal plasma water treatment reactor

    Energy Technology Data Exchange (ETDEWEB)

    Benetoli, Luis Otavio de Brito, E-mail: luskywalcker@yahoo.com.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Cadorin, Bruno Mena; Baldissarelli, Vanessa Zanon [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Geremias, Reginaldo [Departamento de Ciencias Rurais, Universidade Federal de Santa Catarina (UFSC), Curitibanos, SC (Brazil); Goncalvez de Souza, Ivan [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Debacher, Nito Angelo, E-mail: debacher@qmc.ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer We use O{sub 2} as the feed gas and pyrite was added to the non-thermal plasma reactor. Black-Right-Pointing-Pointer The methylene blue removal by NTP increased in the presence of pyrite. Black-Right-Pointing-Pointer The total organic carbon content decreased substantially. Black-Right-Pointing-Pointer The acute toxicity test showed that the treated solution is not toxic. Black-Right-Pointing-Pointer The dye degradation occurs via electron impact as well as successive hydroxylation. - Abstract: In this study, methylene blue (MB) removal from an aqueous phase by electrical discharge non-thermal plasma (NTP) over water was investigated using three different feed gases: N{sub 2}, Ar, and O{sub 2}. The results showed that the dye removal rate was not strongly dependent on the feed gas when the electrical current was kept the same for all gases. The hydrogen peroxide generation in the water varied according to the feed gas (N{sub 2} < Ar < O{sub 2}). Using O{sub 2} as the feed gas, pyrite was added to the reactor in acid medium resulting in an accentuated increase in the dye removal, which suggests that pyrite acts as a Fenton-like catalyst. The total organic carbon (TOC) content of the dye solution decreased slightly as the plasma treatment time increased, but in the presence of the pyrite catalyst the TOC removal increased substantially. The acute toxicity test using Artemia sp. microcrustaceans showed that the treated solution is not toxic when Ar, O{sub 2} or O{sub 2}-pyrite is employed. Electrospray ionization mass spectrometry analysis (ESI-MS) of the treated samples indicated that the dye degradation occurs via high energy electron impact as well as successive hydroxylation in the benzene rings of the dye molecules.

  18. The effects of thermal motion of neutrals on the non-potential instabilities in a weakly sodium plasma

    International Nuclear Information System (INIS)

    Zigman, V.J.; Milic, B.S.

    1982-01-01

    The results of recent experimental measurements of the differential cross-section for elastic scattering of electrons on sodium atoms are used to evaluate the electron steady-state distribution function in a weakly ionized, uniform and non-magnetized sodium plasma placed in a d.c. electric field. The field is assumed to be of moderate intensity, so that the thermal motion of the neutrals has to be taken into account in the evaluation of the distribution function. The resulting 'modified Druyvesteinian function' is applied to study the non-potential instabilities arising from the presence of the field in this particular plasma. Threshold drifts for both very slow and slow modes are obtained and the conditions for the onset of instabilities are discussed. It is shown that the thermal motion of the neutrals affects both critical drifts and the angles of propagation. (author)

  19. Effects of non-thermal plasmas and electric field on hydrocarbon/air flames

    Science.gov (United States)

    Ganguly, Biswa

    2009-10-01

    Need to improve fuel efficiency, and reduce emission from hydrocarbon combustor in automotive and gas turbine engines have reinvigorated interest in reducing combustion instability of a lean flame. The heat generation rate in a binary reaction is HQ =N^2 c1c2 Q exp(-E/RT), where N is the density, c1 and c2 are mol fractions of the reactants, Q is the reaction heat release, E is the activation energy, R is the gas constant and T is the average temperature. For hydrocarbon-air reactions, the typical value of E/R ˜20, so most heat release reactions are confined to a thin reaction sheet at T >=1400 K. The lean flame burning condition is susceptible to combustion instability due to a critical balance between heat generation and heat loss rates, especially at high gas flow rate. Radical injection can increase flame speed by reducing the hydrocarbon oxidation reaction activation barrier and it can improve flame stability. Advances in nonequilibrium plasma generation at high pressure have prompted its application for energy efficient radical production to enhance hydrocarbon-air combustion. Dielectric barrier discharges and short pulse excited corona discharges have been used to enhance combustion stability. Direct electron impact dissociation of hydrocarbon and O2 produces radicals with lower fuel oxidation reaction activation barriers, initiating heat release reaction CnHm+O CnHm-1+ OH (and other similar sets of reactions with partially dissociated fuel) below the typical cross-over temperature. Also, N2 (A) produced in air discharge at a moderate E/n can dissociate O2 leading to oxidation of fuel at lower gas temperature. Low activation energy reactions are also possible by dissociation of hydrocarbon CnHm+e -> CnHm-2+H2+e, where a chain propagation reaction H2+ O OH+H can be initiated at lower gas temperature than possible under thermal equilibrium kinetics. Most of heat release comes from the reaction CO+OH-> CO2 +H, nonthermal OH production seem to improve

  20. Physical phenomena in a low-temperature non-equilibrium plasma and in MHD generators with non-equilibrium conductivity

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Golubev, V.S.; Dykhne, A.M.

    1976-01-01

    The paper assesses the position in 1975 of theoretical and experimental work on the physics of a magnetohydrodynamic generator with non-equilibrium plasma conductivity. This research started at the beginning of the 1960s; as work on the properties of thermally non-equilibrium plasma in magnetic fields and also in MHD generator ducts progressed, a number of phenomena were discovered and investigated that had either been unknown in plasma physics or had remained uninvestigated until that time: ionization instability and ionization turbulence of plasma in a magnetic field, acoustic instability of a plasma with anisotropic conductivity, the non-equilibrium ionization wave and the energy balance of a non-equilibrium plasma. At the same time, it was discovered what physical requirements an MHD generator with non-equilibrium conductivity must satisfy to achieve high efficiency in converting the thermal or kinetic energy of the gas flow into electric energy. The experiments on MHD power generation with thermally non-equilibrium plasma carried out up to 1975 indicated that it should be possible to achieve conversion efficiencies of up to 20-30%. (author)

  1. Non-Thermal Plasma Treatment Diminishes Fungal Viability and Up-Regulates Resistance Genes in a Plant Host

    Science.gov (United States)

    Panngom, Kamonporn; Lee, Sang Hark; Park, Dae Hoon; Sim, Geon Bo; Kim, Yong Hee; Uhm, Han Sup; Park, Gyungsoon; Choi, Eun Ha

    2014-01-01

    Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation) while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar) plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR) genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum) after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance. PMID:24911947

  2. Non-thermal plasma treatment diminishes fungal viability and up-regulates resistance genes in a plant host.

    Directory of Open Access Journals (Sweden)

    Kamonporn Panngom

    Full Text Available Reactive oxygen and nitrogen species can have either harmful or beneficial effects on biological systems depending on the dose administered and the species of organism exposed, suggesting that application of reactive species can possibly produce contradictory effects in disease control, pathogen inactivation and activation of host resistance. A novel technology known as atmospheric-pressure non-thermal plasma represents a means of generating various reactive species that adversely affect pathogens (inactivation while simultaneously up-regulating host defense genes. The anti-microbial efficacy of this technology was tested on the plant fungal pathogen Fusarium oxysporum f.sp. lycopersici and its susceptible host plant species Solanum lycopercicum. Germination of fungal spores suspended in saline was decreased over time after exposed to argon (Ar plasma for 10 min. Although the majority of treated spores exhibited necrotic death, apoptosis was also observed along with the up-regulation of apoptosis related genes. Increases in the levels of peroxynitrite and nitrite in saline following plasma treatment may have been responsible for the observed spore death. In addition, increased transcription of pathogenesis related (PR genes was observed in the roots of the susceptible tomato cultivar (S. lycopercicum after exposure to the same Ar plasma dose used in fungal inactivation. These data suggest that atmospheric-pressure non-thermal plasma can be efficiently used to control plant fungal diseases by inactivating fungal pathogens and up-regulating mechanisms of host resistance.

  3. In situ SANS study of pore microstructure in YSZ thermal barrier coatings

    Czech Academy of Sciences Publication Activity Database

    Strunz, Pavel; Schumacher, G.; Vassen, R.; Wiedenmann, A.

    2004-01-01

    Roč. 52, č. 11 (2004), s. 3305-3312 ISSN 1359-6454 R&D Projects: GA ČR GA202/03/0891 Institutional research plan: CEZ:AV0Z1048901 Keywords : plasma spraying * thermal barrier coatings * ceramics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.490, year: 2004

  4. Temperature diagnostics of a non-thermal plasma jet at atmospheric pressure

    Science.gov (United States)

    Schäfer, Jan

    2013-09-01

    The study reflects the concept of the temperature as a physical quantity resulting from the second thermodynamic law. The reliability of different approaches of the temperature diagnostics of open non-equilibrium systems is discussed using examples of low temperature atmospheric pressure discharges. The focus of this work is a miniaturized non-thermal atmospheric pressure plasma jet for local surface treatment at ambient atmosphere. The micro-discharge is driven with a capacitively coupled radio frequency electric field at 27.12 MHz and fed with argon at rates of about 1 slm through the capillary with an inner diameter of 4 mm. The discharge consists of several contracted filaments with diameter around 300 μm which are rotating azimuthally in the capillary in a self-organized manner. While the measured temperatures of the filament core exceed 700 K, the heat impact on a target below the plasma jet remains limited leading to target temperatures below 400 K. Different kinds of temperatures and energy transport processes are proposed and experimentally investigated. Nevertheless, a reliable and detailed temperature diagnostics is a challenge. We report on a novel diagnostics approach for the spatially and temporally resolved measurement of the gas temperature based on the optical properties of the plasma. Laser Schlieren Deflectometry is adapted to explore temperature profiles of filaments and their behaviour. In parallel, the method demonstrates a fundamental Fermat's principle of minimal energy. Information acquired with this method plays an important role for the optimization of local thin film deposition and surface functionalization by means of the atmospheric pressure plasma jet. The work was supported in part by the Deutsche Forschungsgemeinschaft within SFB-TR 24.

  5. Yttria-stabilized zirkonia / gadolinium zirconate double-layer plasma-sprayed thermal barrier coating systems (TBCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bakan, Emine

    2015-07-01

    Thermal barrier coating (TBC) research and development is driven by the desirability of further increasing the maximum inlet temperature in a gas turbine engine. A number of new top coat ceramic materials have been proposed during the last decades due to limited temperature capability (1200 C) of the state-of-the-art yttria-stabilized zirconia (7 wt. % Y{sub 2}O{sub 3}-ZrO{sub 2}, YSZ) at long term operation. Zirconate pyrochlores of the large lanthanides((Gd → La){sub 2}Zr{sub 2}O{sub 7}) have been particularly attractive due to their higher temperature phase stability than that of the YSZ. Nonetheless, the issues related with the implementation of pyrochlores such as low fracture toughness and formation of deleterious interphases with thermally grown oxide (TGO, Al{sub 2}O{sub 3}) were reported. The implication was the requirement of an interlayer between the pyrochlores and TGO, which introduced double-layer systems to the TBC literature. Furthermore, processability issues of pyrochlores associated with the different evaporation rates of lanthanide oxides and zirconia resulting in unfavorable composition variations in the coatings were addressed in different studies. After all, although the material properties are available, there is a paucity of data in the literature concerning the properties of the coatings made of pyrochlores. From the processability point of view the most reported pyrochlore is La{sub 2}Zr{sub 2}O{sub 7}. Hence, the goal of this research was to investigate plasma-sprayed Gd{sub 2}Zr{sub 2}O{sub 7} (GZO) coatings and YSZ/GZO double-layer TBC systems. Three main topics were examined based on processing, performance and properties: (i) the plasma spray processing of the GZO and its impact on the microstructural and compositional properties of the GZO coatings; (ii) the cycling lifetime of the YSZ/GZO double-layer systems under thermal gradient at a surface temperature of 1400 C; (iii) the properties of the GZO and YSZ coatings such as

  6. Failure mechanism for thermal fatigue of thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Giolli, C.; Scrivani, A.; Rizzi, G. [Turbocoating S.p.A., Rubbiano di Solignano (Italy); Borgioli, F. [Firenze Univ., Sesto Fiorentino (Italy); Bolelli, G.; Lusvarghi, L. [Univ. di Modena e Reggio Emilia, Modena (Italy)

    2008-07-01

    High temperature thermal fatigue causes the failure of Thermal Barrier Coating (TBC) systems. Due to the difference in thickness and microstructure between thick TBCs and traditional thin TBCs, they cannot be assumed a-priori to possess the same failure mechanisms. Thick TBCs, consisting of a CoNiCrAlY bond coat and Yttria Partially Stabilised Zirconia top coat with different values of porosity, were produced by Air Plasma Spray. Thermal fatigue resistance limit of TBCs was tested by Furnace Cycling Tests (FCT) according to the specifications of an Original Equipment Manufacturer (OEM). TBC systems were analyzed before and after FCT. The morphological and chemical evolution of CoNiCrAlY/TGO microstructure was studied. Sintering effect, residual stress, phase transformation and fracture toughness were evaluated in the ceramic Top Coat. All the tested samples passed FCT according to the specification of an important OEM. Thermal fatigue resistance increases with the amount of porosity in the top coat. The compressive in-plane stresses increase in the TBC systems after thermal cycling, nevertheless the increasing rate has a trend contrary to the porosity level of top coat. The data suggest that the spallation happens at the TGO/Top Coat interface. The failure mechanism of thick TBCs subjected to thermal fatigue was eventually found to be similar to the failure mechanism of thin TBC systems made by APS. (orig.)

  7. Application of non-thermal plasma reactor for degradation and detoxification of high concentrations of dye Reactive Black 5 in water

    Directory of Open Access Journals (Sweden)

    Dojčinović Biljana P.

    2016-01-01

    Full Text Available Degradation and detoxification efficiency of high concentrations of commercially available reactive textile dye Reactive Black 5 solution (40, 80, 200, 500, 1000 mg L-1, were studied. Advanced oxidation processes in water falling film based dielectric barrier discharge as a non-thermal plasma reactor were used. For the first time, this reactor was used for the treatment of high concentrations of organic pollutants such as reactive textile dye Reactive Black 5 in water. Solution of the dye is treated by plasma as thin water solution film that is constantly regenerated. Basically, the reactor works as a continuous flow reactor and the electrical discharge itself takes place at the gas-liquid interphase. The dye solution was recirculated through the reactor with an applied energy density of 0-374 kJ L-1. Decolorization efficiency (% was monitored by UV-VIS spectrophotometric technique. Samples were taken after every recirculation (~ 22 kJ L-1 and decolorization percent was measured after 5 min and 24 h of plasma treatment. The efficiency of degradation (i.e. mineralization and possible degradation products were also tracked by determination of the chemical oxygen demand (COD and by ion chromatography (IC. Initial toxicity and toxicity of solutions after the treatment were studied with Artemia salina test organisms. Efficiency of decolorization decreased with the increase of the dye concentration. Complete decolorization, high mineralization and non-toxicity of the solution (<10 % were acomplished after plasma treatment using energy density of 242 kJ L-1, while the initial concentrations of Reactive Black 5 were 40 and 80 mg L-1. [Projekat Ministarstva nauke Republike Srbije, br. 172030 i br. 171034

  8. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang XiaoNing; Xia WeiDong [Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Li HePing [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Murphy, Anthony B. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)

    2013-03-15

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that m{sub e}/m{sub h} Much-Less-Than 1, where m{sub e} and m{sub h} are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  9. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    Science.gov (United States)

    Zhang, Xiao-Ning; Li, He-Ping; Murphy, Anthony B.; Xia, Wei-Dong

    2013-03-01

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that me/mh ≪ 1, where me and mh are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  10. Bond strength and stress measurements in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Gell, M.; Jordan, E. [Univ. of Connecticut, Storrs, CT (United States)

    1995-10-01

    Thermal barrier coatings have been used extensively in aircraft gas turbines for more than 15 years to insulate combustors and turbine vanes from the hot gas stream. Plasma sprayed thermal barrier coatings (TBCs) provide metal temperature reductions as much as 300{degrees}F, with improvements in durability of two times or more being achieved. The introduction of TBCs deposited by electron beam physical vapor deposition (EB-PVD) processes in the last five years has provided a major improvement in durability and also enabled TBCs to be applied to turbine blades for improved engine performance. To meet the aggressive Advanced Turbine Systems goals for efficiency, durability and the environment, it will be necessary to employ thermal barrier coatings on turbine airfoils and other hot section components. For The successful application of TBCs to ATS engines with 2600{degrees}F turbine inlet temperatures and required component lives 10 times greater than those for aircraft gas turbine engines, it is necessary to develop quantitative assessment techniques for TBC coating integrity with time and cycles in ATS engines. Thermal barrier coatings in production today consist of a metallic bond coat, such as an MCrAlY overlay coating or a platinum aluminide (Pt-Al) diffusion coating. During heat treatment, both these coatings form a thin, tightly adherent alumina (Al{sub 2}O{sub 3}) film. Failure of TBC coatings in engine service occurs by spallation of the ceramic coating at or near the bond coat to alumina or the alumina to zirconia bonds. Thus, it is the initial strength of these bonds and the stresses at the bond plane, and their changes with engine exposure, that determines coating durability. The purpose of this program is to provide, for the first time, a quantitative assessment of TBC bond strength and bond plane stresses as a function of engine time and cycles.

  11. Role of thermo-physical properties on design and development of thermal plasma devices

    International Nuclear Information System (INIS)

    Ghorui, S.

    2014-01-01

    Thermal plasma devices find wide application in variety of technological areas like cutting, welding, spray coating, waste management, material processing, chemical reduction, nano-synthesis, novel material synthesis etc. Highly non-linear behavior of the plasma properties coupled with inherent instabilities, extremely high temperature, high gradients in thermal, and flow field, presence of thermal and chemical non-equilibrium make design and development of the plasma generating devices a challenging task as power levels of the devices increase

  12. Experimental investigation on electrical characteristics and dose measurement of dielectric barrier discharge plasma device used for therapeutic application.

    Science.gov (United States)

    Shahbazi Rad, Zahra; Abbasi Davani, Fereydoun

    2017-04-01

    In this research, a Dielectric Barrier Discharge (DBD) plasma device operating in air has been made. The electrical characteristics of this device like instantaneous power, dissipated power, and discharge capacitance have been measured. Also, the effects of applied voltage on the dissipated power and discharge capacitance of the device have been investigated. The determination of electrical parameters is important in DBD plasma device used in living tissue treatment for choosing the proper treatment doses and preventing the destructive effects. The non-thermal atmospheric pressure DBD plasma source was applied for studying the acceleration of blood coagulation time, in vitro and wound healing time, in vivo. The citrated blood drops coagulated within 5 s treatment time by DBD plasma. The effects of plasma temperature and electric field on blood coagulation have been studied as an affirmation of the applicability of the constructed device. Also, the effect of constructed DBD plasma on wound healing acceleration has been investigated.

  13. Effect of Non Thermal Plasma on Alfalfa (Medicago sativa L.) Forage Production

    International Nuclear Information System (INIS)

    Abd El-Daem, G.A.N.A.; El-Aragi, G.M.; Tarrad, M.M.; Zayed, E.M.

    2013-01-01

    Field experiments were conducted at Atomic Energy Authority (AEA) Farm, at Inshas, Egypt during 2011–2012 on alfalfa. The aim of this investigation to caused mutation in alfalfa to obtain new variation. Seeds of the alfalfa were subjected to six doses of non-thermal plasma pulse. The plasma (consisting of ozone, UV and visible light) was injected into the seed samples for different durations or number of pulses. The doses used treatments were 2, 4, 6, 8, and 10 pulses (P) and non-treated control. The results showed difference seeds in both level field performances from cut 1st to cut 10th in the forage production. The results showed differences between the Control and treatment (number of pulses (P)) in each of all cuts for the productivity. The results showed the impact of plant height, Number of leaves/plant and number of branches/leaf and stem diameter as well as fresh weight of plant, fresh/weight (t/fed), dry yield (t/fed) in some cuts for Pulses 2, 4 and 10, and the ten pulses were the best for the majority of the qualities and cuts.

  14. Double internal transport barrier triggering mechanism in tokamak plasmas

    International Nuclear Information System (INIS)

    Dong, Jiaqi; Mou, Zongze; Long, Yongxing; Mahajan, Swadesh M.

    2004-01-01

    Sheared flow layers created by energy released in magnetic reconnection processes are studied with the magneto hydrodynamics (MHD), aimed at internal transport barrier (ITB) dynamics. The double tearing mode induced by electron viscosity is investigated and proposed as a triggering mechanism for double internal transport barrier (DITB) observed in tokamak plasmas with non-monotonic safety factor profiles. The quasi-linear development of the mode is simulated and the emphasis is placed on the structure of sheared poloidal flow layers formed in the vicinity of the magnetic islands. For viscosity double tearing modes, it is shown that the sheared flows induced by the mode may reach the level required by the condition for ITB formation. Especially, the flow layers are found to form just outside the magnetic islands. The scaling of the generated velocity with plasma parameters is given. Possible explanation for the experimental observations that the preferential formation of transport barriers in the proximity of low order rational surface is discussed. (author)

  15. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water.

    Science.gov (United States)

    Hao, Xiao Long; Zhou, Ming Hua; Lei, Le Cheng

    2007-03-22

    TiO(2) photocatalyst (P-25) (50mgL(-1)) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO(2) were obviously increased. Pulsed high-voltage discharge process with TiO(2) had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10x10(-6) to 1.50x10(-6)Ms(-1), the ozone formation rate from 1.99x10(-8) to 2.35x10(-8)Ms(-1), respectively. In addition, this process had no influence on the photocatalytic properties of TiO(2). The introduction of TiO(2) photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants.

  16. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water

    International Nuclear Information System (INIS)

    Hao Xiaolong; Zhou Ming Hua; Lei Lecheng

    2007-01-01

    TiO 2 photocatalyst (P-25) (50 mg L -1 ) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO 2 were obviously increased. Pulsed high-voltage discharge process with TiO 2 had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10 x 10 -6 to 1.50 x 10 -6 M s -1 , the ozone formation rate from 1.99 x 10 -8 to 2.35 x 10 -8 M s -1 , respectively. In addition, this process had no influence on the photocatalytic properties of TiO 2 . The introduction of TiO 2 photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants

  17. Morphological study of polymer surfaces exposed to non-thermal plasma based on contact angle and the use of scaling laws

    Energy Technology Data Exchange (ETDEWEB)

    Felix, T., E-mail: tsfelix81@gmail.com [Chemistry Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Cassini, F.A.; Benetoli, L.O.B. [Chemistry Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Dotto, M.E.R. [Physics Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil); Debacher, N.A. [Chemistry Department, Federal University of Santa Catarina, Campus Trindade, 88040-900 Florianópolis, SC (Brazil)

    2017-05-01

    Highlights: • Polymeric surfaces were etched using non-thermal plasma at different intensities. • Polymers of low mechanical hardness reached the saturation level faster. • A mathematical model based on scaling laws was proposed. - Abstract: The experiments presented in this communication have the purpose to elaborate an explanation for the morphological evolution of the growth of polymeric surfaces provided by the treatment of non-thermal plasma. According to the roughness analysis and the model proposed by scaling laws it is possible relate to a predictable or merely random effect. Polyethylene terephthalate (PET) and poly(etherether)ketone (PEEK) samples were exposed to a non-thermal plasma discharge and the resulting surfaces roughness were analyzed based on the measurements from contact angle, scanning electron microscopy and atomic force microscopy coupled with scaling laws analysis which can help to describe and understand the dynamic of formation of a wide variety of rough surfaces. The roughness, R{sub RMS} (RMS- Root Mean Square) values for polymer surface range between 19.8 nm and 110.9 nm. The contact angle and the AFM (Atomic Force Microscopy) measurements as a function of the plasma exposure time were in agreement with both polar and dispersive components according to the surface roughness and also with the morphology evaluated described by Wolf-Villain model, with proximate values of α between 0.91{sub (PET)} and 0.88{sub (PEEK)}, β = 0.25{sub (PET)} and z = 3,64{sub (PET)}.

  18. Morphological study of polymer surfaces exposed to non-thermal plasma based on contact angle and the use of scaling laws

    International Nuclear Information System (INIS)

    Felix, T.; Cassini, F.A.; Benetoli, L.O.B.; Dotto, M.E.R.; Debacher, N.A.

    2017-01-01

    Highlights: • Polymeric surfaces were etched using non-thermal plasma at different intensities. • Polymers of low mechanical hardness reached the saturation level faster. • A mathematical model based on scaling laws was proposed. - Abstract: The experiments presented in this communication have the purpose to elaborate an explanation for the morphological evolution of the growth of polymeric surfaces provided by the treatment of non-thermal plasma. According to the roughness analysis and the model proposed by scaling laws it is possible relate to a predictable or merely random effect. Polyethylene terephthalate (PET) and poly(etherether)ketone (PEEK) samples were exposed to a non-thermal plasma discharge and the resulting surfaces roughness were analyzed based on the measurements from contact angle, scanning electron microscopy and atomic force microscopy coupled with scaling laws analysis which can help to describe and understand the dynamic of formation of a wide variety of rough surfaces. The roughness, R_R_M_S (RMS- Root Mean Square) values for polymer surface range between 19.8 nm and 110.9 nm. The contact angle and the AFM (Atomic Force Microscopy) measurements as a function of the plasma exposure time were in agreement with both polar and dispersive components according to the surface roughness and also with the morphology evaluated described by Wolf-Villain model, with proximate values of α between 0.91_(_P_E_T_) and 0.88_(_P_E_E_K_), β = 0.25_(_P_E_T_) and z = 3,64_(_P_E_T_).

  19. Thermal shock behavior of toughened gadolinium zirconate/YSZ double-ceramic-layered thermal barrier coating

    International Nuclear Information System (INIS)

    Zhong, Xinghua; Zhao, Huayu; Zhou, Xiaming; Liu, Chenguang; Wang, Liang; Shao, Fang; Yang, Kai; Tao, Shunyan; Ding, Chuanxian

    2014-01-01

    Highlights: • Gd 2 Zr 2 O 7 /YSZ DCL thermal barrier coating was designed and fabricated. • The Gd 2 Zr 2 O 7 top ceramic layer was toughened by addition of nanostructured 3YSZ. • Remarkable improvement in thermal shock resistance of the DCL coating was achieved. - Abstract: Double-ceramic-layered (DCL) thermal barrier coating system comprising of toughened Gadolinium zirconate (Gd 2 Zr 2 O 7 , GZ) as the top ceramic layer and 4.5 mol% Y 2 O 3 partially-stabilized ZrO 2 (4.5YSZ) as the bottom ceramic layer was fabricated by plasma spraying and thermal shock behavior of the DCL coating was investigated. The GZ top ceramic layer was toughened by addition of nanostructured 3 mol% Y 2 O 3 partially-stabilized ZrO 2 (3YSZ) to improve fracture toughness of the matrix. The thermal shock resistance of the DCL coating was enhanced significantly compared to that of single-ceramic-layered (SCL) GZ-3YSZ composite coating, which is believed to be primarily attributed to the two factors: (i) the increase in fracture toughness of the top ceramic layer by incorporating nanostructured YSZ particles and (ii) the improvement in strain tolerance through the utilization of 4.5YSZ as the bottom ceramic layer. In addition, the failure mechanisms are mainly attributed to the still low fracture toughness of the top ceramic layer and oxidation of the bond-coat

  20. Evaluation of Degradation of Isothermally Aged Plasma-Sprayed Thermal Barrier Coating

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Jae Mean; Seok, Chang Sung; Kang, Min Sung; Kim, Dae Jin [Sungkyunkwan University, Seoul (Korea, Republic of); Lee, Dong Hoon [HYUNDAI STEEL CO., Incheon (Korea, Republic of); Kim, Mun Young [KPS Gas Turbine Technology Service Center, Seongnam (Korea, Republic of)

    2010-04-15

    The thermal barrier coating of a gas turbine blade was degraded by isothermal heating in a furnace and by varying the exposure time and temperature. Then, a micro-Vickers hardness test was conducted on the cross section of the bond coat and Ni-based superalloy substrate. Further, the thickness of TGO(Thermally Grown Oxide) was measured by using an image analyzer, and the changes in the microstructure and element contents in the coating were analyzed by using an optical microscope and by performing SEM-EDX analysis. No significant change was observed in the Vickers hardness of the bond coat when the coated specimen was degraded at a high temperature: delamination was observed between the top coat and the bond coat when the coating was degraded for 50 h at a temperature 1,151 .deg. C.

  1. Deposition stress effects on the life of thermal barrier coatings on burner rigs

    Science.gov (United States)

    Watson, J. W.; Levine, S. R.

    1984-01-01

    A study of the effect of plasma spray processing parameters on the life of a two layer thermal barrier coating was conducted. The ceramic layer was plasma sprayed at plasma arc currents of 900 and 600 amps onto uncooled tubes, cooled tubes, and solid bars of Waspalloy in a lathe with 1 or 8 passes of the plasma gun. These processing changes affected the residual stress state of the coating. When the specimens were tested in a Mach 0.3 cyclic burner rig at 1130 deg C, a wide range of coating lives resulted. Processing factors which reduced the residual stress state in the coating, such as reduced plasma temperature and increased heat dissipation, significantly increased coating life.

  2. Non-equilibrium synergistic effects in atmospheric pressure plasmas.

    Science.gov (United States)

    Guo, Heng; Zhang, Xiao-Ning; Chen, Jian; Li, He-Ping; Ostrikov, Kostya Ken

    2018-03-19

    Non-equilibrium is one of the important features of an atmospheric gas discharge plasma. It involves complicated physical-chemical processes and plays a key role in various actual plasma processing. In this report, a novel complete non-equilibrium model is developed to reveal the non-equilibrium synergistic effects for the atmospheric-pressure low-temperature plasmas (AP-LTPs). It combines a thermal-chemical non-equilibrium fluid model for the quasi-neutral plasma region and a simplified sheath model for the electrode sheath region. The free-burning argon arc is selected as a model system because both the electrical-thermal-chemical equilibrium and non-equilibrium regions are involved simultaneously in this arc plasma system. The modeling results indicate for the first time that it is the strong and synergistic interactions among the mass, momentum and energy transfer processes that determine the self-consistent non-equilibrium characteristics of the AP-LTPs. An energy transfer process related to the non-uniform spatial distributions of the electron-to-heavy-particle temperature ratio has also been discovered for the first time. It has a significant influence for self-consistently predicting the transition region between the "hot" and "cold" equilibrium regions of an AP-LTP system. The modeling results would provide an instructive guidance for predicting and possibly controlling the non-equilibrium particle-energy transportation process in various AP-LTPs in future.

  3. Degradation of sulfur dioxide using plasma technology; Degradacion de dioxido de azufre empleando tecnologia de plasma

    Energy Technology Data Exchange (ETDEWEB)

    Estrada M, N.; Garcia E, R. [Instituto Tecnologico de Toluca, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Pacheco P, M.; Valdivia B, R.; Pacheco S, J., E-mail: nadiaemz@yahoo.com.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-07-01

    This paper presents the electro-chemical study performed for sulfur dioxide (SO{sub 2}) treatment using non thermal plasma coupled to a nano structured fluid bed enhancing the toxic gas removal and the adsorption of acids formed during plasma treatment, more of 80% of removal was obtained. Non thermal plasma was ignited by dielectric barrier discharge (Dbd). The research was developed through an analysis of the chemical kinetics of the process and experimental study of degradation; in each experiment the electrical parameters and the influence of carbon nano structures were monitored to establish the optimal conditions of degradation. We compared the theoretical and experimental results to conclude whether the proposed model is correct for degradation. (Author)

  4. Aerospace Applications of Non-Equilibrium Plasma

    Science.gov (United States)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  5. Design of Thermochromic Polynorbornene Bearing Spiropyran Chromophore Moieties: Synthesis, Thermal Behavior and Dielectric Barrier Discharge Plasma Treatment

    Directory of Open Access Journals (Sweden)

    Saleh A. Ahmed

    2017-11-01

    Full Text Available A new class of thermochromic polynorbornene with pendent spiropyran moieties has been synthesized. Functionalization of norbornene monomers with spirobenzopyran moieties has been achieved using Steglich esterification. These new monomeric materials were polymerized via Ring Opening Metathesis Polymerization (ROMP. In spite of their poor solubility, polynorbornenes with spirobenzopyran exhibited thermochromic behavior due to the conversion of their closed spiropyran moieties to the open merocyanine form. Moreover, these polymers displayed bathochromic shifts in their optical response, which was attributed to the J-aggregation of the attached merocyanine moieties that were associated with their high concentration in the polymeric chain. The surface of the obtained polymers was exposed to atmospheric pressure air Dielectric Barrier Discharge (DBD plasma system, which resulted in the reduction of the surface porosity and converted some surface area into completely non-porous regions. Moreover, the plasma system created some areas with highly ordered J-aggregates of the merocyanine form in thread-like structures. This modification of the polymers’ morphology may alter their applications and allow for these materials to be potential candidates for new applications, such as non-porous membranes for reverse osmosis, nanofiltration, or molecular separation in the gas phase.

  6. Modeling and experimental validation of TCE abatement and ozone formation with non thermal plasma

    OpenAIRE

    Vandenbroucke, Arne; Aerts, Robby; Morent, Rino; De Geyter, Nathalie; Bogaerts, Annemie; Leys, Christophe

    2012-01-01

    In this study, the formation of ozone and the abatement of trichloroethylene (TCE) with non thermal plasma was experimentally and theoretically investigated. The model predicts that the ozone formation increases with the energy deposition and decreases with the relative humidity (RH) of the air, which is qualitatively in agreement with experimental data. For an energy deposition of 0.136 J/cm³, the abatement of 1000 ppm TCE in air with 5 % RH is dominated by atomic oxygen and to a lesser exte...

  7. Timescale and magnitude of plasma thermal energy loss before and during disruptions in JET

    International Nuclear Information System (INIS)

    Riccardo, V.; Loarte, A.

    2005-01-01

    In this paper we analyse and discuss the thermal energy loss dynamics before and during JET disruptions that occurred between 2002 and 2004 in discharges which reached >4.5 MJ of thermal energy. We observe the slow thermal energy transients with diamagnetic loops and the fast ones with electron cyclotron emission and soft x-ray diagnostics. For most disruption types in JET, the plasma thermal energy at the time of the thermal quench is substantially less than that of the full performance plasma, typically in the range of 10-50% depending on plasma conditions and disruption type. The exceptions to this observation are disruptions in plasmas with a strong internal transport barrier (ITB) and in discharges terminating in a pure vertical displacement event, in which the plasma conserves a very high energy content up to the thermal quench. These disruption types are very sudden, leaving little scope for the combined action of soft plasma landing strategies and intrinsic performance degradation, both requiring >500 ms to be effective, to decrease the available thermal energy. The characteristic time for the loss of energy from the main plasma towards the PFCs in the thermal quench of JET disruptions is in the range 0.05-3.0 ms. The shortest timescales are typical of disruptions caused by excessive pressure peaking in ITB discharges. The available thermal energy fraction and thermal quench duration observed in JET can be processed (with due caution) into estimates for the projected PFC lifetime of the ITER target

  8. PEO-like Plasma Polymers Prepared by Atmospheric Pressure Surface Dielectric Barrier Discharge

    Czech Academy of Sciences Publication Activity Database

    Gordeev, I.; Choukourov, A.; Šimek, Milan; Prukner, Václav; Biederman, H.

    2012-01-01

    Roč. 9, č. 8 (2012), s. 782-791 ISSN 1612-8850 R&D Projects: GA ČR(CZ) GD104/09/H080 Institutional research plan: CEZ:AV0Z20430508 Keywords : fibrinogen * non-fouling properties * PEO * plasma polymerization * surface dielectric barrier discharge Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.730, year: 2012

  9. The interplay between biological and physical scenarios of bacterial death induced by non-thermal plasma

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Jäger, Aleš; Polívka, Leoš; Syková, E.; Dejneka, Alexandr; Kubinová, Šárka

    2016-01-01

    Roč. 82, Mar (2016), s. 71-83 ISSN 0142-9612 R&D Projects: GA MŠk LO1409; GA MŠk(CZ) LM2011026 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568; AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 Keywords : non-thermal plasma * bacteria * cytotoxicity * apoptosis * bacterial inactivation * reactive oxygen species (ROS) Subject RIV: BO - Biophysics Impact factor: 8.402, year: 2016

  10. Non-thermal plasma-induced photocatalytic degradation of 4-chlorophenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Hao Xiaolong [Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China); Zhou Ming Hua [Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China); Lei Lecheng [Institute of Environmental Pollution Control Technologies, Xixi Campus, Zhejiang University, Hangzhou 310028, Zhejiang (China)]. E-mail: lclei@zju.edu.cn

    2007-03-22

    TiO{sub 2} photocatalyst (P-25) (50 mg L{sup -1}) was tentatively introduced into pulsed high-voltage discharge process for non-thermal plasma-induced photocatalytic degradation of the representative mode organic pollutant parachlorophenol (4-CP), including other compounds phenol and methyl red in water. The experimental results showed that rate constant of 4-CP degradation, energy efficiency for 4-CP removal and TOC removal with TiO{sub 2} were obviously increased. Pulsed high-voltage discharge process with TiO{sub 2} had a promoted effect for the degradation of these pollutants under a broad range of liquid conductivity. Furthermore, the apparent formation rates of chemically active species (e.g., ozone and hydrogen peroxide) were increased, the hydrogen peroxide formation rate from 1.10 x 10{sup -6} to 1.50 x 10{sup -6} M s{sup -1}, the ozone formation rate from 1.99 x 10{sup -8} to 2.35 x 10{sup -8} M s{sup -1}, respectively. In addition, this process had no influence on the photocatalytic properties of TiO{sub 2}. The introduction of TiO{sub 2} photocatalyst into pulsed discharge plasma process in the utilizing of ultraviolet radiation and electric field in pulsed discharge plasma process enhanced the yields of chemically active species, which were available for highly efficient removal and mineralization of organic pollutants.

  11. Thermal Plasma decomposition of fluoriated greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Soo Seok; Watanabe, Takayuki [Tokyo Institute of Technology, Yokohama (Japan); Park, Dong Wha [Inha University, Incheon (Korea, Republic of)

    2012-02-15

    Fluorinated compounds mainly used in the semiconductor industry are potent greenhouse gases. Recently, thermal plasma gas scrubbers have been gradually replacing conventional burn-wet type gas scrubbers which are based on the combustion of fossil fuels because high conversion efficiency and control of byproduct generation are achievable in chemically reactive high temperature thermal plasma. Chemical equilibrium composition at high temperature and numerical analysis on a complex thermal flow in the thermal plasma decomposition system are used to predict the process of thermal decomposition of fluorinated gas. In order to increase economic feasibility of the thermal plasma decomposition process, increase of thermal efficiency of the plasma torch and enhancement of gas mixing between the thermal plasma jet and waste gas are discussed. In addition, noble thermal plasma systems to be applied in the thermal plasma gas treatment are introduced in the present paper.

  12. Use of residual hydrocarbons treated by Thermal Plasma (recovery of energy by-products)

    International Nuclear Information System (INIS)

    Carreno B, J.A.; Pacheco S, J.O.; Ramos F, F.; Cruz A, A.; Duran G, M.

    2001-01-01

    The emergence of new technologies is getting greater importance for the control of pollution. One of them is the destruction of hazardous wastes treated by thermal plasma, which is of special interest for the efficient treatment of the hazardous wastes since the heat generated by thermal plasma is able to destroy the molecular bonds generating solids and gaseous products which do not represent danger for the human being and the environment. The thermal plasma is the suitable technology for treating a wide range of hazardous wastes, including the residual hydrocarbons from the refinement process of petroleum, plasma exceeds the barrier of 3000 Centigrade. The efficiency of the degradation of residues is greater than 99.99%. Toxic emissions are not generated to environment as SO 2 , NO x and CO 2 neither dioxins and furans by being a pyrolysis process. The use of hydrogen as fuel does not generate pollution to environment. (Author)

  13. Thermal Conductivity of Ceramic Thermal Barrier and Environmental Barrier Coating Materials

    Science.gov (United States)

    Zhu, Dong-Ming; Bansal, Narottam P.; Lee, Kang N.; Miller, Robert A.

    2001-01-01

    Thermal barrier and environmental barrier coatings (TBC's and EBC's) have been developed to protect metallic and Si-based ceramic components in gas turbine engines from high temperature attack. Zirconia-yttria based oxides and (Ba,Sr)Al2Si2O8(BSAS)/mullite based silicates have been used as the coating materials. In this study, thermal conductivity values of zirconia-yttria- and BSAS/mullite-based coating materials were determined at high temperatures using a steady-state laser heat flux technique. During the laser conductivity test, the specimen surface was heated by delivering uniformly distributed heat flux from a high power laser. One-dimensional steady-state heating was achieved by using thin disk specimen configuration (25.4 mm diam and 2 to 4 mm thickness) and the appropriate backside air-cooling. The temperature gradient across the specimen thickness was carefully measured by two surface and backside pyrometers. The thermal conductivity values were thus determined as a function of temperature based on the 1-D heat transfer equation. The radiation heat loss and laser absorption corrections of the materials were considered in the conductivity measurements. The effects of specimen porosity and sintering on measured conductivity values were also evaluated.

  14. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    International Nuclear Information System (INIS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-01-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  15. Linear and non-linear energy barriers in systems of interacting single-domain ferromagnetic particles

    International Nuclear Information System (INIS)

    Petrila, Iulian; Bodale, Ilie; Rotarescu, Cristian; Stancu, Alexandru

    2011-01-01

    A comparative analysis between linear and non-linear energy barriers used for modeling statistical thermally-excited ferromagnetic systems is presented. The linear energy barrier is obtained by new symmetry considerations about the anisotropy energy and the link with the non-linear energy barrier is also presented. For a relevant analysis we compare the effects of linear and non-linear energy barriers implemented in two different models: Preisach-Neel and Ising-Metropolis. The differences between energy barriers which are reflected in different coercive field dependence of the temperature are also presented. -- Highlights: → The linear energy barrier is obtained from symmetry considerations. → The linear and non-linear energy barriers are calibrated and implemented in Preisach-Neel and Ising-Metropolis models. → The temperature and time effects of the linear and non-linear energy barriers are analyzed.

  16. Improvements in or relating to thermal barrier systems

    International Nuclear Information System (INIS)

    Birch, W.; Pearson, R.

    1976-01-01

    Reference is made to thermal barrier systems for the internal surface of gas cooled reactor prestressed concrete pressure vessels. Provision has to be made to anchor the thermal barrier system to a metal limit within the pressure vessel, and the object of the arrangement described is to provided a suitable attachment means. The thermal barrier may consist of a number of plates arranged in overlapped fashion or having flexible joint portions. A problem that arises concerns anchoring of the hot plates to the cold pressure vessel by a rigid attachment, and the design must be such as to ensure adequate bending and axial strength compatible with a minimum heat conduction area and allowable thermal stress. The arrangement must also allow easy installation. The arrangement described also provides for a 'fail-safe' structure. It comprises a metal stud with a hollow body; two or more helical channels are provided through the side walls of the body. The body portion expands or contracts to accommodate axial temperature gradient stress set up by the temperature difference between the pressure vessel and the thermal barrier. The space between the thermal barrier and the pressure vessel may contain solid insulating material. (U.K.)

  17. Conversion of carbon dioxide to carbon monoxide by pulse dielectric barrier discharge plasma

    Science.gov (United States)

    Wang, Taobo; Liu, Hongxia; Xiong, Xiang; Feng, Xinxin

    2017-01-01

    The conversion of carbon dioxide (CO2) to carbon monoxide (CO) was investigated in a non-thermal plasma dielectric barrier discharge (DBD) reactor, and the effects of different process conditions on the CO2 conversion were investigated. The results showed that the increase of input power could optimize the conversion of CO2 to CO. The CO2 conversion and CO yield were negatively correlated with the gas flow rate, but there was an optimum gas flow rate, that made the CO selectivity best. The carrier gas (N2, Ar) was conducive to the conversion of CO2, and the effect of N2 as carrier gas was better than Ar. The conversion of CO2 to CO was enhanced by addition of the catalyst (5A molecular sieve).

  18. Exploring Chemical and Thermal Non-equilibrium in Nitrogen Arcs

    International Nuclear Information System (INIS)

    Ghorui, S; Das, A K

    2012-01-01

    Plasma torches operating with nitrogen are of special importance as they can operate with usual tungsten based refractory electrodes and offer radical rich non-oxidizing high temperature environment for plasma chemistry. Strong gradients in temperature as well as species densities and huge convective fluxes lead to varying degrees of chemical non-equilibrium in associated regions. An axi-symmetric two-temperature chemical non-equilibrium model of a nitrogen plasma torch has been developed to understand the effects of thermal and chemical non-equilibrium in arcs. A 2-D finite volume CFD code in association with a non-equilibrium property routine enabled extraction of steady state self-consistent distributions of various plasma quantities inside the torch under various thermal and chemical non-equilibrium conditions. Chemical non-equilibrium has been incorporated through computation of diffusive and convective fluxes in each finite volume cell in every iteration and associating corresponding thermodynamic and transport properties through the scheme of 'chemical non-equilibrium parameter' introduced by Ghorui et. al. Recombination coefficient data from Nahar et. al. and radiation data from Krey and Morris have been used in the simulation. Results are presented for distributions of temperature, pressure, velocity, current density, electric potential, species densities and chemical non-equilibrium effects. Obtained results are compared with similar results under LTE.

  19. Robust TaNx diffusion barrier for Cu-interconnect technology with subnanometer thickness by metal-organic plasma-enhanced atomic layer deposition

    International Nuclear Information System (INIS)

    Kim, H.; Detavenier, C.; Straten, O. van der; Rossnagel, S.M.; Kellock, A.J.; Park, D.-G.

    2005-01-01

    TaN x diffusion barriers with good barrier properties at subnanometer thickness were deposited by plasma-enhanced atomic layer deposition (PE-ALD) from pentakis(dimethylamino)Ta. Hydrogen and/or nitrogen plasma was used as reactants to produce TaN x thin films with a different nitrogen content. The film properties including the carbon and oxygen impurity content were affected by the nitrogen flow during the process. The deposited film has nanocrystalline grains with hydrogen-only plasma, while the amorphous structure was obtained for nitrogen plasma. The diffusion barrier properties of deposited TaN films for Cu interconnects have been studied by thermal stress test based on synchrotron x-ray diffraction. The results indicate that the PE-ALD TaN films are good diffusion barriers even at a small thickness as 0.6 nm. Better diffusion barrier properties were obtained for higher nitrogen content. Based on a diffusion kinetics analysis, the nanocrystalline microstructure of the films was responsible for the better diffusion barrier properties compared to polycrystalline PE-ALD TaN films deposited from TaCl 5

  20. Development of ultra-hydrophilic and non-cytotoxic dental vinyl polysiloxane impression materials using a non-thermal atmospheric-pressure plasma jet

    Science.gov (United States)

    Kwon, Jae-Sung; Kim, Yong Hee; Choi, Eun Ha; Kim, Kyoung-Nam

    2013-05-01

    Dental vinyl polysiloxane (VPS) impression materials are widely used for the replication of intraoral tissue where hydrophilicity is important as the oral tissues are surrounded by wet saliva. Recent attempts to improve the wettability of VPS using a ‘surfactant’, however, have resulted in a high level of cytotoxicity. Hence, in this study, application of a non-thermal atmospheric-pressure plasma jet (NTAPPJ) on VPS and its effects in terms of both hydrophilicity and cytotoxicity were investigated. The results showed that the application of the plasma jet resulted in significant improvement of hydrophilicity of VPS that had no surfactant, whereby the results were similar to commercially available products with the surfactant. The surface chemical analysis results indicated that this was due to the oxidation and decreased amount of hydrocarbon on the surface following NTAPPJ exposure. Meanwhile, an NTAPPJ-treated sample was shown to be non-cytotoxic. Therefore, the use of dental VPS impression materials without any surfactant, in conjunction with an NTAPPJ treatment, is a promising method for ultra-hydrophilic but yet non-cytotoxic materials.

  1. Development of ultra-hydrophilic and non-cytotoxic dental vinyl polysiloxane impression materials using a non-thermal atmospheric-pressure plasma jet

    International Nuclear Information System (INIS)

    Kwon, Jae-Sung; Kim, Kyoung-Nam; Kim, Yong Hee; Choi, Eun Ha

    2013-01-01

    Dental vinyl polysiloxane (VPS) impression materials are widely used for the replication of intraoral tissue where hydrophilicity is important as the oral tissues are surrounded by wet saliva. Recent attempts to improve the wettability of VPS using a ‘surfactant’, however, have resulted in a high level of cytotoxicity. Hence, in this study, application of a non-thermal atmospheric-pressure plasma jet (NTAPPJ) on VPS and its effects in terms of both hydrophilicity and cytotoxicity were investigated. The results showed that the application of the plasma jet resulted in significant improvement of hydrophilicity of VPS that had no surfactant, whereby the results were similar to commercially available products with the surfactant. The surface chemical analysis results indicated that this was due to the oxidation and decreased amount of hydrocarbon on the surface following NTAPPJ exposure. Meanwhile, an NTAPPJ-treated sample was shown to be non-cytotoxic. Therefore, the use of dental VPS impression materials without any surfactant, in conjunction with an NTAPPJ treatment, is a promising method for ultra-hydrophilic but yet non-cytotoxic materials. (paper)

  2. Degradation of sulfur dioxide using plasma technology

    International Nuclear Information System (INIS)

    Estrada M, N.; Garcia E, R.; Pacheco P, M.; Valdivia B, R.; Pacheco S, J.

    2013-01-01

    This paper presents the electro-chemical study performed for sulfur dioxide (SO 2 ) treatment using non thermal plasma coupled to a nano structured fluid bed enhancing the toxic gas removal and the adsorption of acids formed during plasma treatment, more of 80% of removal was obtained. Non thermal plasma was ignited by dielectric barrier discharge (Dbd). The research was developed through an analysis of the chemical kinetics of the process and experimental study of degradation; in each experiment the electrical parameters and the influence of carbon nano structures were monitored to establish the optimal conditions of degradation. We compared the theoretical and experimental results to conclude whether the proposed model is correct for degradation. (Author)

  3. Novel Therapeutic Effects of Non-thermal atmospheric pressure plasma for Muscle Regeneration and Differentiation

    Science.gov (United States)

    Choi, Jae Won; Kang, Sung Un; Kim, Yang Eun; Park, Ju Kyeong; Yang, Sang Sik; Kim, Yeon Soo; Lee, Yun Sang; Lee, Yuijina; Kim, Chul-Ho

    2016-01-01

    Skeletal muscle can repair muscle tissue damage, but significant loss of muscle tissue or its long-lasting chronic degeneration makes injured skeletal muscle tissue difficult to restore. It has been demonstrated that non-thermal atmospheric pressure plasma (NTP) can be used in many biological areas including regenerative medicine. Therefore, we determined whether NTP, as a non-contact biological external stimulator that generates biological catalyzers, can induce regeneration of injured muscle without biomaterials. Treatment with NTP in the defected muscle of a Sprague Dawley (SD) rat increased the number of proliferating muscle cells 7 days after plasma treatment (dapt) and rapidly induced formation of muscle tissue and muscle cell differentiation at 14 dapt. In addition, in vitro experiments also showed that NTP could induce muscle cell proliferation and differentiation of human muscle cells. Taken together, our results demonstrated that NTP promotes restoration of muscle defects through control of cell proliferation and differentiation without biological or structural supporters, suggesting that NTP has the potential for use in muscle tissue engineering and regenerative therapies. PMID:27349181

  4. Validity of Saha's equation of thermal ionization for negatively charged spherical particles in complex plasmas in thermal equilibrium

    International Nuclear Information System (INIS)

    Sodha, M. S.; Mishra, S. K.

    2011-01-01

    The authors have discussed the validity of Saha's equation for the charging of negatively charged spherical particles in a complex plasma in thermal equilibrium, even when the tunneling of the electrons, through the potential energy barrier surrounding the particle is considered. It is seen that the validity requires the probability of tunneling of an electron through the potential energy barrier surrounding the particle to be independent of the direction (inside to outside and vice versa) or in other words the Born's approximation should be valid.

  5. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    Science.gov (United States)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  6. Heat and momentum transport of ion internal transport barrier plasmas on Large Helical Device

    International Nuclear Information System (INIS)

    Nagaoka, K.; Ida, K.; Yoshinuma, M.

    2010-11-01

    The peaked ion-temperature profile with steep gradient so called ion internal transport barrier (ion ITB) was formed in the neutral beam heated plasmas on the Large Helical Device (LHD) and the high-ion-temperature regime of helical plasmas has been significantly extended. The ion thermal diffusivity in the ion ITB plasma decreases down to the neoclassical transport level. The heavy ion beam probe (HIBP) observed the smooth potential profile with negative radial electric field (ion root) in the core region where the ion thermal diffusivity decreases significantly. The large toroidal rotation was also observed in the ion ITB core and the transport of toroidal momentum was analyzed qualitatively. The decrease of momentum diffusivity with ion temperature increase was observed in the ion ITB core. The toroidal rotation driven by ion temperature gradient so called intrinsic rotation is also identified. (author)

  7. Transition phenomena and thermal transport properties in LHD plasmas with an electron internal transport barrier

    International Nuclear Information System (INIS)

    Shimozuma, T.; Kubo, S.; Idei, H.; Inagaki, S.; Tamura, N.; Tokuzawa, T.; Morisaki, T.; Watanabe, K.Y.; Ida, K.; Yamada, I.; Narihara, K.; Muto, S.; Yokoyama, M.; Yoshimura, Y.; Notake, T.; Ohkubo, K.; Seki, T.; Saito, K.; Kumazawa, R.; Mutoh, T.; Watari, T.; Komori, A.

    2005-01-01

    Two types of improved core confinement were observed during centrally focused electron cyclotron heating (ECH) into plasmas sustained by counter (CNTR) and Co neutral beam injections (NBI) in the Large Helical Device. The CNTR NBI plasma displayed transition phenomena to the high-electron-temperature state and had a clear electron internal transport barrier, while the Co NBI plasma did not show a clear transition or an ECH power threshold but showed broad high temperature profiles with moderate temperature gradient. This indicated that the Co NBI plasma with additional ECH also had an improved core confinement. The electron heat transport characteristics of these plasmas were directly investigated using heat pulse propagation excited by modulated ECH. These effects appear to be related to the m/n = 2/1 rational surface or the island induced by NBI beam-driven current

  8. Electro-Catalysis System for Biodiesel Synthesis from Palm Oil over Dielectric-Barrier Discharge Plasma Reactor

    Directory of Open Access Journals (Sweden)

    Istadi Istadi

    2014-07-01

    Full Text Available Biodiesel synthesis reaction routes from palm oil using plasma electro-catalysis process over Dielectric-Barrier Discharge (DBD plasma reactor were studied. The study was focused on finding possible reaction mechanism route during plasma electro-catalysis process. The prediction was performed based on the changes of Gas Chromatography Mass Spectrometer (GC-MS and Fourier Transform Infra Red (FT-IR analyses to the biodiesel products with respect to time length of plasma treatment. It was found that main reaction mechanism occurred in the plasma electro-catalysis system was non-thermal pyrolysis rather than transesterification. The main reactions within the plasma treatment were due to collision between high energetic electrons (supplied from high voltage power supply through high voltage electrode and the reaction mixtures. The high energetic electrons affected the electrons pair of covalent bonding to be excited or dissociated even ionized at higher energy. Therefore, this plasma electro-catalysis system was promising for biodiesel synthesis from vegetable oils due to only very short time reaction was needed, even no need a catalyst, no soap formation, and no glycerol by-product. This system could produce fatty acid methyl ester yield of 75.65% at 120 seconds and other possible chemicals, such as alkynes, alkanes, esters, carboxylic acid, and aldehydes. However, during the plasma process, the reaction mechanisms were still difficult to be controlled due the action of available high energetic electrons. The advanced studies on how to control the reaction mechanism selectively in the plasma electro-catalysis will be published elsewhere. © 2014 BCREC UNDIP. All rights reservedReceived: 23rd January 2014; Revised: 20th March 2014; Accepted: 23rd March 2014[How to Cite: Istadi, I., Yudhistira, A.D., Anggoro, D.D., Buchori, L. (2014. Electro-Catalysis System for Biodiesel Synthesis from Palm Oil over Dielectric-Barrier Discharge Plasma Reactor

  9. TMX tandem-mirror experiments and thermal-barrier theoretical studies

    International Nuclear Information System (INIS)

    Simonen, T.C.; Baldwin, D.E.; Allen, S.L.

    1982-01-01

    This paper describes recent analysis of energy confinement in the Tandem Mirror Experiment (TMX). TMX data also indicates that warm plasma limits the amplitude of the anisotropy driven Alfven ion cyclotron (AIC) mode. Theoretical calculations show strong AIC stabilization with off-normal beam injection as planned in TMX-U and MFTF-B. This paper reports results of theoretical analysis of hot electrons in thermal barriers including electron heating calculations by Monte Carlo and Fokker-Planck codes and analysis of hot electron MHD and microinstability. Initial results from the TMX-U experiment are presented which show the presence of sloshing ions

  10. THERMAL PROPERTIES OF TRANSPARENT BARRIER MODIFIED WITH ORGANIC PCMS

    Directory of Open Access Journals (Sweden)

    Michał MUSIAŁ

    2016-03-01

    Full Text Available Renewable energy sources are increasingly often applied in civil engineering as a mean to reduce buildings energy demand for heating. One of the ways to reduce HVAC energy demand is to limit heat transfer and excessive solar gain through building's glazed barriers. Preliminary results of the research conducted on organic PCM-modified transparent barrier are presented in this paper. Multiple publications concerning PCMs application in structural materials have recently appeared. Most of them are focused on modification of structure of non-transparent sections of buildings' envelope. Augmenting a glazed barrier with PCMs increases its heat capacity and thermal resistance. The most important feature of the assembly is the thermal buffer, a product of PCM's considerable value of specific latent heat. Research were conducted on a triple-pane transparent rectangular barrier, that constituted one of the faces of cubic chamber. Internal volume of the chamber was 1m3. The applied PCM was a mixture of saturated and non-saturated hydrocarbons. The described assembly was subjected to temperature and radiation that occur in Poland during winter. Glazing temperature, melted/total PCM ratio were measured, as well as energy demand for keeping internal temperature at constant level. Measurements were made in steady states, for various PCM layer thickness. The influence of the modification on energy demand was determined, along with the most effective and rational thickness of PCM layer to be applied. Conducted research enabled to develop a basis for further investigation of PCMs application in civil engineering.

  11. Evaluation of Erosion Resistance of Advanced Turbine Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Kuczmarski, Maria A.; Miller, Robert A.; Cuy, Michael D.

    2007-01-01

    The erosion resistant turbine thermal barrier coating system is critical to aircraft engine performance and durability. By demonstrating advanced turbine material testing capabilities, we will be able to facilitate the critical turbine coating and subcomponent development and help establish advanced erosion-resistant turbine airfoil thermal barrier coatings design tools. The objective of this work is to determine erosion resistance of advanced thermal barrier coating systems under simulated engine erosion and/or thermal gradient environments, validating advanced turbine airfoil thermal barrier coating systems based on nano-tetragonal phase toughening design approaches.

  12. Atmospheric-pressure plasma technology

    International Nuclear Information System (INIS)

    Kogelschatz, U

    2004-01-01

    Major industrial plasma processes operating close to atmospheric pressure are discussed. Applications of thermal plasmas include electric arc furnaces and plasma torches for generation of powders, for spraying refractory materials, for cutting and welding and for destruction of hazardous waste. Other applications include miniature circuit breakers and electrical discharge machining. Non-equilibrium cold plasmas at atmospheric pressure are obtained in corona discharges used in electrostatic precipitators and in dielectric-barrier discharges used for generation of ozone, for pollution control and for surface treatment. More recent applications include UV excimer lamps, mercury-free fluorescent lamps and flat plasma displays

  13. Tandem mirror reactor with thermal barriers

    International Nuclear Information System (INIS)

    Carlson, G.A.; Arfin, B.; Barr, W.L.; Boghosian, B.M.; Erickson, J.L.; Fink, J.H.; Hamilton, G.W.; Logan, B.G.; Myall, J.O.; Neef, W.S. Jr.

    1979-01-01

    This report gives detailed information in the form of the following chapters: (1) overview, (2) plasma physics, (3) magnets, (4) end-plug neutral beams, (5) barrier pump neutral beams, (6) ecr heating, (7) plasma direct converter, and (8) central cell

  14. Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles

    Science.gov (United States)

    Linbo, GU; Yixi, CAI; Yunxi, SHI; Jing, WANG; Xiaoyu, PU; Jing, TIAN; Runlin, FAN

    2017-11-01

    To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min-1 was more appropriate for the purification of particles.

  15. Plasma spheroidization of iron powders in a non-transferred DC thermal plasma jet

    International Nuclear Information System (INIS)

    Kumar, S.; Selvarajan, V.

    2008-01-01

    In this paper, the results of plasma spheroidization of iron powders using a DC non-transferred plasma spray torch are presented. The morphology of the processed powders was characterized through scanning electron microscopy (SEM) and optical microscopy (OM). The percentages of spheroidized powders were calculated by the shape factors such as the Irregularity Parameter (IP) and Roundness (RN). A maximum of 83% of spheroidization can be achieved. The spheroidization results are compared with the theoretical estimation and they are found to be in good agreement. The phase composition of the spheroidized powder was analyzed by XRD. The effect of plasma jet temperature and plasma gas flow rate on spheroidization is discussed. At low plasma gas flow rates and at high plasma jet temperatures, the percentage of spheroidization is high

  16. Electron thermal transport barrier and magnetohydrodynamic activity observed in Tokamak plasmas with negative central shear

    NARCIS (Netherlands)

    M.R. de Baar,; Hogeweij, G. M. D.; Cardozo, N. J. L.; Oomens, A. A. M.; Schüller, F. C.

    1997-01-01

    In the Rijnhuizen Tokamak Project, plasmas with steady-state negative central shear (NCS) are made with off-axis electron cyclotron heating. Shifting the power deposition by 2 mm results in a sharp transition of confinement. The good confinement branch features a transport barrier at the off-axis

  17. Thermal model of attic systems with radiant barriers

    Energy Technology Data Exchange (ETDEWEB)

    Wilkes, K.E.

    1991-07-01

    This report summarizes the first phase of a project to model the thermal performance of radiant barriers. The objective of this phase of the project was to develop a refined model for the thermal performance of residential house attics, with and without radiant barriers, and to verify the model by comparing its predictions against selected existing experimental thermal performance data. Models for the thermal performance of attics with and without radiant barriers have been developed and implemented on an IBM PC/AT computer. The validity of the models has been tested by comparing their predictions with ceiling heat fluxes measured in a number of laboratory and field experiments on attics with and without radiant barriers. Cumulative heat flows predicted by the models were usually within about 5 to 10 percent of measured values. In future phases of the project, the models for attic/radiant barrier performance will be coupled with a whole-house model and further comparisons with experimental data will be made. Following this, the models will be utilized to provide an initial assessment of the energy savings potential of radiant barriers in various configurations and under various climatic conditions. 38 refs., 14 figs., 22 tabs.

  18. Numerical study of non-ideal Vlasov-BGK plasmas

    International Nuclear Information System (INIS)

    Levchenko, V.D.; Sigov, Y.S.; Premuda, F.

    1995-01-01

    A relatively simple quasi-classical description of quantum plasmas using as first approximation the Bhatnagar-Gross-Krook (BGK) collision integral, if combined with the modern numerical simulation methods, might be effective tool of a deep study of non-ideal plasma kinetics in a variety of urgent applications as inertial confinement and cold fusion, transport and collective properties of highly condensed plasmas in liquid metals, semi- and superconductors and others. Consider one-dimensional degenerate plasma consisting of thermal electrons and thermal bosons (deuterons) in the vicinity of the equilibrium Fermi- and Bose-type distributions respectively. In the frame of our rough mixed model we solve Vlasov-BGK-Poisson eqs using simplified version of the SUR code

  19. Thermal barrier coatings: Coating methods, performance, and heat engine applications. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The bibliography contains citations concerning conference proceedings on coating methods, performance evaluations, and applications of thermal barrier coatings as protective coatings for heat engine components against high temperature corrosions and chemical erosions. The developments of thermal barrier coating techniques for high performance and reliable gas turbines, diesel engines, jet engines, and internal combustion engines are presented. Topics include plasma sprayed coating methods, yttria stabilized zirconia coatings, coating life models, coating failure and durability, thermal shock and cycling, and acoustic emission analysis of coatings. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  20. Thermal barrier coatings: Coating methods, performance, and heat engine applications. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The bibliography contains citations concerning conference proceedings on coating methods, performance evaluations, and applications of thermal barrier coatings as protective coatings for heat engine components against high temperature corrosions and chemical erosions. The developments of thermal barrier coating techniques for high performance and reliable gas turbines, diesel engines, jet engines, and internal combustion engines are presented. Topics include plasma sprayed coating methods, yttria stabilized zirconia coatings, coating life models, coating failure and durability, thermal shock and cycling, and acoustic emission analysis of coatings. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  1. Performance evaluation of non-thermal plasma on particulate matter, ozone and CO2 correlation for diesel exhaust emission reduction

    DEFF Research Database (Denmark)

    Babaie, Meisam; Davari, Pooya; Talebizadeh, Poyan

    2015-01-01

    This study is seeking to investigate the effect of non-thermal plasma technology in the abatement of particulate matter (PM) from the actual diesel exhaust. Ozone (O3) strongly promotes PM oxidation, the main product of which is carbon dioxide (CO2). PM oxidation into the less harmful product (CO2...

  2. Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge

    DEFF Research Database (Denmark)

    Fateev, A.; Leipold, F.; Kusano, Y.

    2005-01-01

    An atmospheric pressure dielectric barrier discharge (DBD) in Ar/NH3 (0.1 - 10%) mixtures with a parallel plate electrode geometry was studied. The plasma was investigated by emission and absorption spectroscopy in the UV spectral range. Discharge current and voltage were measured as well. UV...... of an atmospheric pressure Ar/NH3 DBD are H-2, N-2 and N2H4. The hydrazine (N2H4) concentration in the plasma and in the exhaust gases at various ammonia concentrations and different discharge powers was measured. Thermal N2H4 decomposition into NH2 radicals may be used for NOx reduction processes....

  3. Effects of plasma pretreatment on the process of self-forming Cu–Mn alloy barriers for Cu interconnects

    Directory of Open Access Journals (Sweden)

    Jae-Hyung Park

    2018-02-01

    Full Text Available This study investigated the effect of plasma pretreatment on the process of a self-forming Cu–Mn alloy barrier on porous low-k dielectrics. To study the effects of plasma on the performance of a self-formed Mn-based barrier, low-k dielectrics were pretreated with H2 plasma or NH3 plasma. Cu–Mn alloy materials on low-k substrates that were subject to pretreatment with H2 plasma exhibited lower electrical resistivity values and the formation of thicker Mn-based interlayers than those on low-k substrates that were subject to pretreatment with NH3 plasma. Transmission electron microscopy (TEM, X-ray photoemission spectroscopy (XPS, and thermal stability analyses demonstrated the exceptional performance of the Mn-based interlayer on plasma-pretreated low-k substrates with regard to thickness, chemical composition, and reliability. Plasma treating with H2 gas formed hydrophilic Si–OH bonds on the surface of the low-k layer, resulting in Mn-based interlayers with greater thickness after annealing. However, additional moisture uptake was induced on the surface of the low-k dielectric, degrading electrical reliability. By contrast, plasma treating with NH3 gas was less effective with regard to forming a Mn-based interlayer, but produced a Si–N/C–N layer on the low-k surface, yielding improved barrier characteristics.

  4. Application of non-thermal plasma reactor and Fenton reaction for degradation of ibuprofen

    Energy Technology Data Exchange (ETDEWEB)

    Marković, Marijana [Center of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Jović, Milica; Stanković, Dalibor [Innovation Center, Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia); Kovačević, Vesna [Faculty of Physics, University of Belgrade, P.O. Box 44, 11000 Belgrade (Serbia); Roglić, Goran [Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia); Gojgić-Cvijović, Gordana [Center of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, 11000 Belgrade (Serbia); Manojlović, Dragan, E-mail: manojlo@chem.bg.ac.rs [Faculty of Chemistry, University of Belgrade, P.O. Box 51, 11058 Belgrade 118 (Serbia)

    2015-02-01

    Pharmaceutical compounds have been detected frequently in surface and ground water. Advanced Oxidation Processes (AOPs) were reported as very efficient for removal of various organic compounds. Nevertheless, due to incomplete degradation, toxic intermediates can induce more severe effects than the parent compound. Therefore, toxicity studies are necessary for the evaluation of possible uses of AOPs. In this study the effectiveness and capacity for environmental application of three different AOPs were estimated. They were applied and evaluated for removal of ibuprofen from water solutions. Therefore, two treatments were performed in a non-thermal plasma reactor with dielectric barrier discharge with and without a homogenous catalyst (Fe{sup 2+}). The third treatment was the Fenton reaction. The degradation rate of ibuprofen was measured by HPLC-DAD and the main degradation products were identified using LC–MS TOF. Twelve degradation products were identified, and there were differences according to the various treatments applied. Toxicity effects were determined with two bioassays: Vibrio fischeri and Artemia salina. The efficiency of AOPs was demonstrated for all treatments, where after 15 min degradation percentage was over 80% accompanied by opening of the aromatic ring. In the treatment with homogenous catalyst degradation reached 99%. V. fischeri toxicity test has shown greater sensitivity to ibuprofen solution after the Fenton treatment in comparison to A. salina. - Highlights: • Twelve ibuprofen degradation products were identified in total. • The degradation percentage differed between treatments (DBD/Fe{sup 2+} was 99%). • In DBD/Fe{sup 2+} only aliphatic degradation products were identified. • V. fischeri was sensitive to ibuprofen solution after the Fenton treatment. • A. salina showed no toxic effect when exposed to all post treatment solutions.

  5. Application of non-thermal plasma reactor and Fenton reaction for degradation of ibuprofen

    International Nuclear Information System (INIS)

    Marković, Marijana; Jović, Milica; Stanković, Dalibor; Kovačević, Vesna; Roglić, Goran; Gojgić-Cvijović, Gordana; Manojlović, Dragan

    2015-01-01

    Pharmaceutical compounds have been detected frequently in surface and ground water. Advanced Oxidation Processes (AOPs) were reported as very efficient for removal of various organic compounds. Nevertheless, due to incomplete degradation, toxic intermediates can induce more severe effects than the parent compound. Therefore, toxicity studies are necessary for the evaluation of possible uses of AOPs. In this study the effectiveness and capacity for environmental application of three different AOPs were estimated. They were applied and evaluated for removal of ibuprofen from water solutions. Therefore, two treatments were performed in a non-thermal plasma reactor with dielectric barrier discharge with and without a homogenous catalyst (Fe 2+ ). The third treatment was the Fenton reaction. The degradation rate of ibuprofen was measured by HPLC-DAD and the main degradation products were identified using LC–MS TOF. Twelve degradation products were identified, and there were differences according to the various treatments applied. Toxicity effects were determined with two bioassays: Vibrio fischeri and Artemia salina. The efficiency of AOPs was demonstrated for all treatments, where after 15 min degradation percentage was over 80% accompanied by opening of the aromatic ring. In the treatment with homogenous catalyst degradation reached 99%. V. fischeri toxicity test has shown greater sensitivity to ibuprofen solution after the Fenton treatment in comparison to A. salina. - Highlights: • Twelve ibuprofen degradation products were identified in total. • The degradation percentage differed between treatments (DBD/Fe 2+ was 99%). • In DBD/Fe 2+ only aliphatic degradation products were identified. • V. fischeri was sensitive to ibuprofen solution after the Fenton treatment. • A. salina showed no toxic effect when exposed to all post treatment solutions

  6. Metallographic techniques for evaluation of thermal barrier coatings

    Science.gov (United States)

    Brindley, William J.; Leonhardt, Todd A.

    1990-01-01

    The performance of ceramic thermal barrier coatings is strongly dependent on the amount and shape of the porosity in the coating. Current metallographic techniques do not provide polished surfaces that are adequate for a repeatable interpretation of the coating structures. A technique recently developed at NASA-Lewis for preparation of thermal barrier coating sections combines epoxy impregnation, careful sectioning and polishing, and interference layering to provide previously unobtainable information on processing-induced porosity. In fact, increased contrast and less ambiguous structure developed by the method make automatic quantitative metallography a viable option for characterizing thermal barrier coating structures.

  7. Thermal efficiency of a non-transferred thermal plasma cannon; Eficiencia termica de un canon de plasma termico no-transferido

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, A; Cota, G; Merlo, L; Pacheco, J; Pena, R; Cruz, A [Instituto nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1997-07-01

    This work shows a thermal efficiency research ({nu}) for a plasma torch in d.c. which was carried out through the realization of an energy balance around the system under consideration. The plasma torch is manufactured in copper with a tungsten incrustations in cathode. The gas used was argon and the gas fluxes were at the rank of 10 and 40 lt/min to the total pressure of 1.2 bar (1.1 atm). With these conditions it was worked with electric currents at the rank of 40 and 180 A. The data were collected through a data acquisition card which was programmed in Windows environment. (Author)

  8. Non-hydrodynamic model of plasma focus structure

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Zueva, N.M.; Lokutsievskij, O.V.; Mikhajlova, M.S.

    1985-01-01

    Experimental and theoretical plasma focus study has resulted in the necessity of creating a non-hydrodynamic plasma focus structure model (MKHD model). This model describes the final stage of plasma focus, which starts immediately after maximum plasma compression. It is related to a very limited space near the neck of the sausage instability. The MKHD model is two-dimensional, axially symmetric and collisionless with respect to the ions and magnetohydrodynamic with respect to the electrons; it accounts for the pinch instability of the sausage type (m=0 mode). The MKHD model, first of all, explains the long time of the plasma focus existence and non-thermonuclear peculiarities in the neutron yield. The initial and boundary conditions are formulated in accordance with the experiments and the results of computations in the 2D MHD model. A non-stationary process of plasma focus dynamics is studied numerically for a relatively long time - about 20 ns; this time is, in principle, not restricted. The computations show that the external edge of the neck expands rather slowly (at a speed that is lower than the thermal ion velocity, by an order of magnitude), and the magnetic field energy is converted to the kinetic energy of the chaotic ion motion (which is doubled for the time of computation). A 'supra-thermal' tail (with the deuterium ion energy higher than 10 keV) forms slowly at the ion distribution function; this tail determines a substantial part of the total neutron yield. The formation of stable vortices, which actually determine the structure of the plasma flow during the developed non-hydrodynamic stage of the plasma focus, is also found in the computations. These properties of the development of the sausage instability, as found in the numerical experiment with the MKHD plasma focus model, are in qualitative agreement with the behaviour of an instability of the same type in the MHD models of the Z-pinch

  9. Non-equilibrium in flowing atmospheric plasmas

    International Nuclear Information System (INIS)

    Haas, J.C.M. de.

    1986-01-01

    This thesis deals with the fundamental aspects of two different plasmas applied in technological processes. The first one is the cesium seeded argon plasma in a closed cycle Magnetohydrodynamic (MHD) generator, the second is the thermal argon plasma in a cascade arc with an imposed flow. In Chapter 2 the influence of non-equilibrium on the mass and energy balances of a plasma is worked out. The general theory presented there can be applied to both the plasma in an MHD generator and to the cascade arc with imposed flow. Introductions to these plasmas are given in the Chapters 3 and 6 respectively. These chapters are both followed by two chapters which treat the theoretical and the experimental investigations. The results are summarized in Chapter 9. (Auth.)

  10. On the Non-Thermal Energy Content of Cosmic Structures

    Directory of Open Access Journals (Sweden)

    Franco Vazza

    2016-11-01

    Full Text Available (1 Background: the budget of non-thermal energy in galaxy clusters is not well constrained, owing to the observational and theoretical difficulties in studying these diluted plasmas on large scales; (2 Method: we use recent cosmological simulations with complex physics in order to connect the emergence of non-thermal energy to the underlying evolution of gas and dark matter; (3 Results: the impact of non-thermal energy (e.g., cosmic rays, magnetic fields and turbulent motions is found to increase in the outer region of galaxy clusters. Within numerical and theoretical uncertainties, turbulent motions dominate the budget of non-thermal energy in most of the cosmic volume; (4 Conclusion: assessing the distribution non-thermal energy in galaxy clusters is crucial to perform high-precision cosmology in the future. Constraining the level of non-thermal energy in cluster outskirts will improve our understanding of the acceleration of relativistic particles and of the origin of extragalactic magnetic fields.

  11. Buckling of thermally fluctuating spherical shells: Parameter renormalization and thermally activated barrier crossing

    Science.gov (United States)

    Baumgarten, Lorenz; Kierfeld, Jan

    2018-05-01

    We study the influence of thermal fluctuations on the buckling behavior of thin elastic capsules with spherical rest shape. Above a critical uniform pressure, an elastic capsule becomes mechanically unstable and spontaneously buckles into a shape with an axisymmetric dimple. Thermal fluctuations affect the buckling instability by two mechanisms. On the one hand, thermal fluctuations can renormalize the capsule's elastic properties and its pressure because of anharmonic couplings between normal displacement modes of different wavelengths. This effectively lowers its critical buckling pressure [Košmrlj and Nelson, Phys. Rev. X 7, 011002 (2017), 10.1103/PhysRevX.7.011002]. On the other hand, buckled shapes are energetically favorable already at pressures below the classical buckling pressure. At these pressures, however, buckling requires to overcome an energy barrier, which only vanishes at the critical buckling pressure. In the presence of thermal fluctuations, the capsule can spontaneously overcome an energy barrier of the order of the thermal energy by thermal activation already at pressures below the critical buckling pressure. We revisit parameter renormalization by thermal fluctuations and formulate a buckling criterion based on scale-dependent renormalized parameters to obtain a temperature-dependent critical buckling pressure. Then we quantify the pressure-dependent energy barrier for buckling below the critical buckling pressure using numerical energy minimization and analytical arguments. This allows us to obtain the temperature-dependent critical pressure for buckling by thermal activation over this energy barrier. Remarkably, both parameter renormalization and thermal activation lead to the same parameter dependence of the critical buckling pressure on temperature, capsule radius and thickness, and Young's modulus. Finally, we study the combined effect of parameter renormalization and thermal activation by using renormalized parameters for the energy

  12. Transition phenomena and thermal transport property in LHD plasmas with an electron internal transport barrier

    International Nuclear Information System (INIS)

    Shimozuma, T.; Kubo, S.; Idei, H.

    2005-01-01

    Two kinds of improved core confinement were observed during centrally focused Electron Cyclotron Heating (ECH) into plasmas sustained by Counter (CNTR) and Co Neutral Beam Injections (NBI) in the Large Helical Device (LHD). One shows transition phenomena to the high-electron-temperature state and has a clear electron Internal Transport Barrier (eITB) in CNTR NBI plasma. Another has no clear transition and no ECH power threshold, but shows a broad high temperature profiles with moderate temperature gradient, which indicates the improved core confinement with additional ECH in Co NBI plasma. The electron heat transport characteristics of these plasmas were directly investigated by using the heat pulse propagation excited by Modulated ECH (MECH). The difference of the features could be caused by the existence of the m/n=2/1 rational surface or island determined by the direction of NBI beam-driven current. (author)

  13. Control of Internal Transport Barriers in Magnetically Confined Fusion Plasmas

    Science.gov (United States)

    Panta, Soma; Newman, David; Sanchez, Raul; Terry, Paul

    2016-10-01

    In magnetic confinement fusion devices the best performance often involves some sort of transport barriers to reduce the energy and particle flow from core to edge. Those barriers create gradients in the temperature and density profiles. If gradients in the profiles are too steep that can lead to instabilities and the system collapses. Control of these barriers is therefore an important challenge for fusion devices (burning plasmas). In this work we focus on the dynamics of internal transport barriers. Using a simple 7 field transport model, extensively used for barrier dynamics and control studies, we explore the use of RF heating to control the local gradients and therefore the growth rates and shearing rates for barrier initiation and control in self-heated fusion plasmas. Ion channel barriers can be formed in self-heated plasmas with some NBI heating but electron channel barriers are very sensitive. They can be formed in self-heated plasmas with additional auxiliary heating i.e. NBI and radio-frequency(RF). Using RF heating on both electrons and ions at proper locations, electron channel barriers along with ion channel barriers can be formed and removed demonstrating a control technique. Investigating the role of pellet injection in controlling the barriers is our next goal. Work supported by DOE Grant DE-FG02-04ER54741.

  14. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Young-Hyo Ryu

    Full Text Available Non-thermal plasma at atmospheric pressure has been actively applied to sterilization. However, its efficiency for inactivating microorganisms often varies depending on microbial species and environments surrounding the microorganisms. We investigated the influence of environmental factors (surrounding media on the efficiency of microbial inactivation by plasma using an eukaryotic model microbe, Saccharomyces cerevisiae, to elucidate the mechanisms for differential efficiency of sterilization by plasma. Yeast cells treated with plasma in water showed the most severe damage in viability and cell morphology as well as damage to membrane lipids, and genomic DNA. Cells in saline were less damaged compared to those in water, and those in YPD (Yeast extract, Peptone, Dextrose were least impaired. HOG1 mitogen activated protein kinase was activated in cells exposed to plasma in water and saline. Inactivation of yeast cells in water and saline was due to the acidification of the solutions by plasma, but higher survival of yeast cells treated in saline may have resulted from the additional effect related to salt strength. Levels of hydroxyl radical (OH· produced by plasma were the highest in water and the lowest in YPD. This may have resulted in differential inactivation of yeast cells in water, saline, and YPD by plasma. Taken together, our data suggest that the surrounding media (environment can crucially affect the outcomes of yeast cell plasma treatment because plasma modulates vital properties of media, and the toxic nature of plasma can also be altered by the surrounding media.

  15. Position- and time-resolved Stark broadening diagnostics of a non-thermal laser-induced plasma

    International Nuclear Information System (INIS)

    Liu, Hao; Truscott, Benjamin S; Ashfold, Michael N R

    2016-01-01

    We present an analysis of the Stark-broadened line shapes of silicon ions in a laser-induced plasma using a model constructed, without assuming local thermodynamic equilibrium (LTE), using a Druyvesteyn electron energy distribution function (EEDF). The method is applied to temporally and spatially resolved measurements of Si 2+ and Si 3+ emissions from a transient plasma expanding into vacuum, produced by 1064 nm, nanosecond pulsed laser ablation of a Si (1 0 0) target. The best-fitting simulated line shapes and the corresponding electron number densities and temperatures (or equivalently, Druyvesteyn average energies) are compared with those returned assuming LTE (i.e. for a Maxwellian EEDF). Non-thermal behavior is found to dominate at all but the very earliest stages of expansion close to the target surface, consistent with McWhirter’s criterion for the establishment of LTE. The Druyvesteyn EEDF always yields an equivalent or better model of the experimental measurements, and the observed increasingly strong departure from the Maxwellian case with time and distance from the ablation event highlights the essential invalidity of the LTE assumption for moderate-power, nanosecond laser-induced plasma expanding in vacuo. (paper)

  16. Control of the flanges of the thermal barriers fitting the 900 MWe PWR primary pumps

    International Nuclear Information System (INIS)

    Cleurennec, M.; Thebault, Y.; Abittan, E.; Pages, C.; Lhote, P.A.; Randrianarivo, L.

    1998-01-01

    During maintenance visit on 93 D type primary pumps of French 900 MWe nuclear units, cracking has been evidenced on the thermal barrier, first on the flange, on the face of connection of the cooling, water coils, and then on the weld between the housing and the flange. Laboratory examinations have exhibited that this cracking is due to a fatigue phenomenon which is initiated on locations where high residual stresses are present. One pump, in service in a plant, has received an instrumentation in order to determine stress cycling. Measurements of temperature on the surface of the metal have shown the presence of thermal cycling due to the thermohydraulic conditions inside the thermal barrier. A non destructive testing method using ultrasounds has been developed in order to asses the magnitude cracking. Corrective and preventive actions have been implemented for repairing and improving thermal barrier when cracking is detected. (authors)

  17. The role of non-thermal atmospheric pressure biocompatible plasma in the differentiation of osteoblastic precursor cells, MC3T3-E1.

    Science.gov (United States)

    Han, Ihn; Choi, Eun Ha

    2017-05-30

    Non-thermal atmospheric pressure plasma is ionized matter, composed of highly reactive species that include positive ions, negative ions, free radicals, neutral atoms, and molecules. Recent reports have suggested that non-thermal biocompatible plasma (NBP) can selectively kill a variety of cancer cells, and promote stem cell differentiation. However as of yet, the regulation of proliferation and differentiation potential of NBP has been poorly understood.Here, we investigated the effects of NBP on the osteogenic differentiation of precursor cell lines of osteoblasts, MC3T3 E1 and SaOS-2. For in vitro osteogenic differentiation, precursor cell lines were treated with NBP, and cultured with osteogenic induction medium. After 10 days of treatment, the NBP was shown to be effective in osteogenic differentiation in MC3T3 E1 cells by von Kossa and Alizarin Red S staining assay. Real-time PCR was then performed to investigate the expression of osteogenic specific genes, Runx2, OCN, COL1, ALP and osterix in MC3T3 E1 cells after treatment with NBP for 4 days. Furthermore, analysis of the protein expression showed that NBP treatment significantly reduced PI3K/AKT signaling and MAPK family signaling. However, p38 controlled phosphorylation of transcription factor forkhead box O1 (FoxO1) that related to cell differentiation with increased phosphorylated p38. These results suggest that non-thermal atmospheric pressure plasma can induce osteogenic differentiation, and enhance bone formation.

  18. Experimental studies of thermal and non-thermal electron cyclotron phenomena in tokamaks

    International Nuclear Information System (INIS)

    McDermott, F.S.

    1984-12-01

    A direct measurement of wave absorption in the ISX-B tokamak at the second harmonic of the electron cyclotron frequency is reported. Measurements of the absorption of a wave polarized in the extraordinary mode and propagating perpendicular to the toroidal magnetic field are in agreement with the absorption predicted by the linearized Vlasov equation for a thermal plasma. Agreement is found both for an analytic approximation to the wave absorption and for a numerical simulation of ray propagation in toroidal geometry. Observations are also reported on a non-linear, three-wave interaction process occurring during high power electron cyclotron resonance heating in the Versator II tokamak. The measured spectra and the threshold power are consistent with a model in which the incident power in the extraordinary mode of polarization decays at the upper hybrid resonance layer into a lower hybrid wave and an electron Bernstein wave. Finally, measurements of non-thermal emission at the second harmonic of the electron cyclotron frequency and below the electron plasma frequency are reported from low density, non-Maxwellian plasma in the Versator II tokamak. The emission spectra are in agreement with a model in which waves are driven unstable at the anomalous Doppler resonance, while only weakly damped at the Cerenkov resonance

  19. Design and optimization of coating structure for the thermal barrier coatings fabricated by atmospheric plasma spraying via finite element method

    Directory of Open Access Journals (Sweden)

    L. Wang

    2014-06-01

    Full Text Available The first prerequisite for fabricating the thermal barrier coatings (TBCs with excellent performance is to find an optimized coating structure with high thermal insulation effect and low residual stress. This paper discusses the design and optimization of a suitable coating structure for the TBCs prepared by atmospheric plasma spraying (APS using the finite element method. The design and optimization processes comply with the rules step by step, as the structure develops from a simple to a complex one. The research results indicate that the suitable thicknesses of the bond-coating and top-coating are 60–120 μm and 300–420 μm, respectively, for the single ceramic layer YSZ/NiCoCrAlY APS-TBC. The embedded interlayer (50 wt.%YSZ + 50 wt.%NiCoCrAlY will further reduce the residual stress without sacrificing the thermal insulation effect. The double ceramic layer was further considered which was based on the single ceramic layer TBC. The embedded interlayer and the upper additional ceramic layer will have a best match between the low residual stress and high thermal insulation effect. Finally, the optimized coating structure was obtained, i.e., the La2Ce2O7(LC/YSZ/Interlayer/NiCoCrAlY coating structure with appropriate layer thickness is the best choice. The effective thermal conductivity of this optimized LC/YSZ/IL/BL TBC is 13.2% lower than that of the typical single ceramic layer YSZ/BL TBC.

  20. Impact of impurity content on the sintering resistance and phase stability of dysprosia- and yttria-stabilized zirconia thermal barrier coatings

    Czech Academy of Sciences Publication Activity Database

    Curry, N.; Janikowski, W.; Pala, Zdeněk; Vilémová, Monika; Markocsan, N.

    2014-01-01

    Roč. 23, 1-2 (2014), s. 160-169 ISSN 1059-9630. [International Thermal Spray Conference (ITSC2013). Busan, 13.05.2013-15.05.2013] Institutional support: RVO:61389021 Keywords : atmospheric plasma spray (APS) * thermal and phase stability of coatings * thermal barrier coatings (TBCs) * thermal conductivity * zirconia Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass Impact factor: 1.344, year: 2014 http://link.springer.com/article/10.1007%2Fs11666-013-0014-9/fulltext.html

  1. Penetration of a dielectric barrier discharge plasma into textile structures at medium pressure

    International Nuclear Information System (INIS)

    Geyter, N De; Morent, R; Leys, C

    2006-01-01

    Plasma treatment of textiles is becoming more and more popular as a surface modification technique. Plasma treatment changes the outermost layer of a material without interfering with the bulk properties. However, textiles are several millimetres thick and need to be treated homogeneously throughout the entire thickness. To control the penetration depth of the plasma effect, it is necessary to study the influence of operating parameters. Three layers of a 100% polyester non-woven are treated in the medium pressure range (0.3-7 kPa) with a dielectric barrier discharge to study the influence of pressure and treatment time. Current and voltage waveforms and Lichtenberg figures are used to characterize the discharge. Process pressure proved to have an important effect on the penetration of the plasma through the textile layers. This is caused not only by the pressure dependence of diffusive transport of textile modifying particles but also by a different behaviour of the barrier discharge

  2. ECRH [electron-cyclotron resonance heating]-heated distributions in thermal-barrier tandem mirrors

    International Nuclear Information System (INIS)

    Cohen, R.H.; LoDestro, L.L.

    1987-01-01

    The distribution function is calculated for electrons subjected to strong electron-cyclotron resonance heating (ECRH) at the plug and barrier in a tandem-mirror thermal-barrier cell. When ECRH diffusion locally dominates over collisions and a boundary condition (associated with electrons passing to the center cell) imposes variations on the distribution function rapid compared to the variation of the ECRH and collisional diffusion coefficients, the kinetic equation can be reduced approximately to Laplace's equation. For the typical case where velocity space is divided into distinct regions in which plug and barrier ECRH dominate, the solution in each region can be expressed in terms of the plasma dispersion function or exponential integrals, according to whether the passing electrons are dominated by collisions or ECRH, respectively. The analytic results agree well with Fokker-Planck code results, in terms of both velocity-space structure and values of moments. 10 refs., 4 figs

  3. Dielectric barrier discharge micro-plasma emission spectrometry for the detection of acetone in exhaled breath.

    Science.gov (United States)

    Yang, Ting; Gao, Dong-Xue; Yu, Yong-Liang; Chen, Ming-Li; Wang, Jian-Hua

    2016-01-01

    Acetone is a predominant volatile organic compound (VOC) in the exhaled breath and a promising biomarker for diabetes and ketoacidosis. A non-thermal micro-plasma generated in a planar dielectric barrier discharge (DBD) is used as a radiation source for the excitation of gaseous acetone followed by its quantification with optical emission spectrometry (OES). Gaseous acetone can be directly sampled, while liquid acetone is evaporated by heated tungsten coil and then introduced into the DBD micro-plasma by a helium carrier flow for performing optical emission and detection at a 519 nm emission line. In the present study, the exhaled breath is collected and transferred into aqueous medium for sampling. With a sampling volume of 7 μL in a micro-drop, a linear range of 40-1600 mg L(-1) is obtained along with a detection limit of 44 ng and a precision of 5.7% RSD. The present system is successfully applied to the determination of breath acetone for both diabetic patients and healthy volunteers. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Full-wave Simulations of LH Wave Propagation in Toroidal Plasma with non-Maxwellian Electron Distributions

    International Nuclear Information System (INIS)

    Valeo, E.J.; Phillips, C.K.; Bonoli, P.T.; Wright, J.C.; Brambilla, M.

    2007-01-01

    The generation of energetic tails in the electron distribution function is intrinsic to lower-hybrid (LH) heating and current drive in weakly collisional magnetically confined plasma. The effects of these deformations on the RF deposition profile have previously been examined within the ray approximation. Recently, the calculation of full-wave propagation of LH waves in a thermal plasma has been accomplished using an adaptation of the TORIC code. Here, initial results are presented from TORIC simulations of LH propagation in a toroidal plasma with non-thermal electrons. The required efficient computation of the hot plasma dielectric tensor is accomplished using a technique previously demonstrated in full-wave simulations of ICRF propagation in plasma with non-thermal ions

  5. Removal of gas phase low-concentration toluene over Mn, Ag and Ce modified HZSM-5 catalysts by periodical operation of adsorption and non-thermal plasma regeneration.

    Science.gov (United States)

    Wang, Wenzheng; Wang, Honglei; Zhu, Tianle; Fan, Xing

    2015-07-15

    Ag/HZSM-5, Mn/HZSM-5, Ce/HZSM-5, Ag-Mn/HZSM-5 and Ce-Mn/HZSM-5 were prepared by impregnation method. Both their adsorption capacity and catalytic activity were investigated for the removal of gas phase low-concentration toluene by periodical operation of adsorption and non-thermal plasma regeneration. Results show that catalysts loaded with Ag (Ag/HZSM-5 and Ag-Mn/HZSM-5) had larger adsorption capacity for toluene than the other catalysts. And Ag-Mn/HZSM-5 displayed the best catalytic performance for both toluene oxidation by non-thermal plasma and byproducts suppression. On the other hand, the deactivated catalyst can be fully regenerated by calcining in air stream when its adsorption capacity and catalytic activity of the Ag-Mn/HZSM-5 catalyst was found to be decreased after 10 cycles of periodical adsorption and non-thermal regeneration. Copyright © 2015. Published by Elsevier B.V.

  6. Application of a Dielectric Barrier Discharge Atmospheric Cold Plasma (Dbd-Acp) for Eshcerichia Coli Inactivation in Apple Juice.

    Science.gov (United States)

    Liao, Xinyu; Li, Jiao; Muhammad, Aliyu Idris; Suo, Yuanjie; Chen, Shiguo; Ye, Xingqian; Liu, Donghong; Ding, Tian

    2018-02-01

    Atmospheric cold plasma (ACP) is a promising non-thermal technology in food industry. In this study, a dielectric barrier discharge (DBD)-ACP exhibited strong bactericidal effect on Escherichia coli in apple juice. Under a 30 to 50 W input power, less than 40 s treatment time was required for DBD-ACP to result in 3.98 to 4.34 log CFU/mL reduction of E. coli in apple juice. The inactivation behavior of ACP on E. coli was well described by the Weibull model. During the treatment, the cell membrane of E. coli was damaged severely by active species produced by plasma, such as hydrogen peroxide, ozone and nitrate. In addition, the ACP exposure had slight effect on the °Brix, pH, titratable acidity (TA), color values, total phenolic content, and antioxidant capacity of apple juice. However, higher level of DBD-ACP treatment, 50 W for more than 10 s in this case, resulted in significant change of the pH, TA, color and total phenolic content of apple juice. The results in this study have provided insight in potential use of DBD-ACP as an alternative to thermal processing for fruit juices in food industry. Escherichia coli O157:H7 in apple juice is a potential risk for public health. This study demonstrated that 30 s cold plasma treatment resulted in more than 4 log CFU/mL reduction under 50 W, while the quality attributes of apple juice were not significantly affected. Therefore, cold plasma technology is a promising alternative substitute of traditional thermal processing for juice pasteurization. © 2018 Institute of Food Technologists®.

  7. Mechanism and comparison of needle-type non-thermal direct and indirect atmospheric pressure plasma jets on the degradation of dyes

    Science.gov (United States)

    Attri, Pankaj; Yusupov, Maksudbek; Park, Ji Hoon; Lingamdinne, Lakshmi Prasanna; Koduru, Janardhan Reddy; Shiratani, Masaharu; Choi, Eun Ha; Bogaerts, Annemie

    2016-10-01

    Purified water supply for human use, agriculture and industry is the major global priority nowadays. The advanced oxidation process based on atmospheric pressure non-thermal plasma (NTP) has been used for purification of wastewater, although the underlying mechanisms of degradation of organic pollutants are still unknown. In this study we employ two needle-type atmospheric pressure non-thermal plasma jets, i.e., indirect (ID-APPJ) and direct (D-APPJ) jets operating at Ar feed gas, for the treatment of methylene blue, methyl orange and congo red dyes, for two different times (i.e., 20 min and 30 min). Specifically, we study the decolorization/degradation of all three dyes using the above mentioned plasma sources, by means of UV-Vis spectroscopy, HPLC and a density meter. We also employ mass spectroscopy to verify whether only decolorization or also degradation takes place after treatment of the dyes by the NTP jets. Additionally, we analyze the interaction of OH radicals with all three dyes using reactive molecular dynamics simulations, based on the density functional-tight binding method. This investigation represents the first report on the degradation of these three different dyes by two types of NTP setups, analyzed by various methods, and based on both experimental and computational studies.

  8. Morphological study of polymer surfaces exposed to non-thermal plasma based on contact angle and the use of scaling laws

    Science.gov (United States)

    Felix, T.; Cassini, F. A.; Benetoli, L. O. B.; Dotto, M. E. R.; Debacher, N. A.

    2017-05-01

    The experiments presented in this communication have the purpose to elaborate an explanation for the morphological evolution of the growth of polymeric surfaces provided by the treatment of non-thermal plasma. According to the roughness analysis and the model proposed by scaling laws it is possible relate to a predictable or merely random effect. Polyethylene terephthalate (PET) and poly(etherether)ketone (PEEK) samples were exposed to a non-thermal plasma discharge and the resulting surfaces roughness were analyzed based on the measurements from contact angle, scanning electron microscopy and atomic force microscopy coupled with scaling laws analysis which can help to describe and understand the dynamic of formation of a wide variety of rough surfaces. The roughness, RRMS (RMS- Root Mean Square) values for polymer surface range between 19.8 nm and 110.9 nm. The contact angle and the AFM (Atomic Force Microscopy) measurements as a function of the plasma exposure time were in agreement with both polar and dispersive components according to the surface roughness and also with the morphology evaluated described by Wolf-Villain model, with proximate values of α between 0.91(PET) and 0.88(PEEK), β = 0.25(PET) and z = 3,64(PET).

  9. Thermal barrier coatings application in diesel engines

    Science.gov (United States)

    Fairbanks, J. W.

    1995-01-01

    Commercial use of thermal barrier coatings in diesel engines began in the mid 70's by Dr. Ingard Kvernes at the Central Institute for Industrial Research in Oslo, Norway. Dr. Kvernes attributed attack on diesel engine valves and piston crowns encountered in marine diesel engines in Norwegian ships as hot-corrosion attributed to a reduced quality of residual fuel. His solution was to coat these components to reduce metal temperature below the threshold of aggressive hot-corrosion and also provide protection. Roy Kamo introduced thermal barrier coatings in his 'Adiabatic Diesel Engine' in the late 70's. Kamo's concept was to eliminate the engine block water cooling system and reduce heat losses. Roy reported significant performance improvements in his thermally insulated engine at the SAE Congress in 1982. Kamo's work stimulates major programs with insulated engines, particularly in Europe. Most of the major diesel engine manufacturers conducted some level of test with insulated combustion chamber components. They initially ran into increased fuel consumption. The German engine consortium had Prof. Woschni of the Technical Institute in Munich. Woschni conducted testing with pistons with air gaps to provide the insulation effects. Woschni indicated the hot walls of the insulated engine created a major increase in heat transfer he refers to as 'convection vive.' Woschni's work was a major factor in the abrupt curtailment of insulated diesel engine work in continental Europe. Ricardo in the UK suggested that combustion should be reoptimized for the hot-wall effects of the insulated combustion chamber and showed under a narrow range of conditions fuel economy could be improved. The Department of Energy has supported thermal barrier coating development for diesel engine applications. In the Clean Diesel - 50 Percent Efficient (CD-50) engine for the year 2000, thermal barrier coatings will be used on piston crowns and possibly other components. The primary purpose of the

  10. Advanced transport modeling of toroidal plasmas with transport barriers

    International Nuclear Information System (INIS)

    Fukuyama, A.; Murakami, S.; Honda, M.; Izumi, Y.; Yagi, M.; Nakajima, N.; Nakamura, Y.; Ozeki, T.

    2005-01-01

    Transport modeling of toroidal plasmas is one of the most important issue to predict time evolution of burning plasmas and to develop control schemes in reactor plasmas. In order to describe the plasma rotation and rapid transition self-consistently, we have developed an advanced scheme of transport modeling based on dynamical transport equation and applied it to the analysis of transport barrier formation. First we propose a new transport model and examine its behavior by the use of conventional diffusive transport equation. This model includes the electrostatic toroidal ITG mode and the electromagnetic ballooning mode and successfully describes the formation of internal transport barriers. Then the dynamical transport equation is introduced to describe the plasma rotation and the radial electric field self-consistently. The formation of edge transport barriers is systematically studied and compared with experimental observations. The possibility of kinetic transport modeling in velocity space is also examined. Finally the modular structure of integrated modeling code for tokamaks and helical systems is discussed. (author)

  11. Recent progress in the modelling of thermal plasma systems

    International Nuclear Information System (INIS)

    Xi Chen

    2002-01-01

    Plasma flow and heat transfer in thermal plasma systems are often of three-dimensional (3-D) features and cannot be well studied by use of a two-dimensional modelling approach. 3-D modelling studies are recently performed in our group. It is found that appreciable 3-D effects exist within non-transferred DC arc plasma torches even for the case with axisymmetrical external conditions. The key for the successful 3-D modelling of the non-transferred arc plasma torch is that the anode-nozzle wall is included in the computational domain. The predicted results are favorably compared with experimental observation. 3-D modelling of the plasma jets with lateral injection of particulate matter and its carrier gas also reveals distinct 3-D effects with the injection velocity and the distance between the carrier-gas injection-tube tip and the jet edge as critical parameters. The 3-D effects appreciably influence the trajectories and heating histories of particles injected into the plasma jet. (author)

  12. Analysis of the step responses of laminar premixed flames to forcing by non-thermal plasma

    KAUST Repository

    Lacoste, Deanna A.

    2016-07-16

    The step responses of lean methane-air flames to non-thermal plasma forcing is reported. The experimental setup consists of an axisymmetric burner, with a nozzle made of a quartz tube. The equivalence ratio is 0.95, allowing stabilization of the flame in a V-shape or an M-shape geometry, over a central stainless steel rod. The plasma is produced by short pulses of 10-ns duration, 8-kV maximum voltage amplitude, applied at 10 kHz. The central rod is used as a cathode, while the anode is a stainless steel ring, fixed on the outer surface of the quartz tube. Plasma forcing is produced by positive or negative steps of plasma. The step response of the flame is investigated through heat release rate (HRR) fluctuations, to facilitate comparisons with flame response to acoustic perturbations. The chemiluminescence of CH* between two consecutive pulses was recorded using an intensified camera equipped with an optical filter to estimate the HRR fluctuations. First, the results show that the flame does not respond to each single plasma pulse, but is affected only by the average plasma power, confirming the step nature of the forcing. The temporal evolutions of HRR are analyzed and the flame transfer functions are determined. A forcing mechanism, as a local increase in the reactivity of the fluid close to the rod, is proposed and compared with numerical simulations. Experiments and numerical simulations are in good qualitative agreement. © 2016.

  13. Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma.

    Science.gov (United States)

    Schäfer, J; Foest, R; Reuter, S; Kewitz, T; Šperka, J; Weltmann, K-D

    2012-10-01

    The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 ± 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 ± 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable

  14. Laser schlieren deflectometry for temperature analysis of filamentary non-thermal atmospheric pressure plasma

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, J.; Foest, R.; Reuter, S.; Weltmann, K.-D. [INP Greifswald, Felix-Hausdorff-Str. 2, 17489 Greifswald (Germany); Kewitz, T. [Institute of Experimental and Applied Physics, University Kiel, 24098 Kiel (Germany); Sperka, J. [Department of Physical Electronics, Masaryk University, 61137 Brno (Czech Republic)

    2012-10-15

    The heat convection generated by micro filaments of a self-organized non-thermal atmospheric pressure plasma jet in Ar is characterized by employing laser schlieren deflectometry (LSD). It is demonstrated as a proof of principle, that the spatial and temporal changes of the refractive index n in the optical beam path related to the neutral gas temperature of the plasma jet can be monitored and evaluated simultaneously. The refraction of a laser beam in a high gradient field of n(r) with cylindrical symmetry is given for a general real refraction index profile. However, the usually applied Abel approach represents an ill-posed problem and in particular for this plasma configuration. A simple analytical model is proposed in order to minimize the statistical error. Based on that, the temperature profile, specifically the absolute temperature in the filament core, the FWHM, and the frequencies of the collective filament dynamics are obtained for non-stationary conditions. For a gas temperature of 700 K inside the filament, the presented model predicts maximum deflection angles of the laser beam of 0.3 mrad which is in accordance to the experimental results obtained with LSD. Furthermore, the experimentally obtained FWHM of the temperature profile produced by the filament at the end of capillary is (1.5 {+-} 0.2) mm, which is about 10 times wider than the visual radius of the filament. The obtained maximum temperature in the effluent is (450 {+-} 30) K and is in consistence with results of other techniques. The study demonstrates that LSD represents a useful low-cost method for monitoring the spatiotemporal behaviour of microdischarges and allows to uncover their dynamic characteristics, e.g., the temperature profile even for challenging diagnostic conditions such as moving thin discharge filaments. The method is not restricted to the miniaturized and self-organized plasma studied here. Instead, it can be readily applied to other configurations that produce measurable

  15. Design of durability and lifetime assessment method under thermomechanical stress for thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Hyun Gyoo; Choi, Young Kue; Jeon, Seol; Lee, Hee Soo [Pusan National University, Busan (Korea, Republic of); Jeon, Min Seok [Korea Testing Laboratory, Seoul (Korea, Republic of)

    2014-01-15

    A durability testing method under thermo-mechanical stress for thermal barrier coatings (TBC) specimens was designed by a combination of an electric furnace and a tensile testing machine, which was done on TBCs on NIMONIC 263 substrates by an atmospheric plasma spraying (APS) deposition method. The testing conditions were chosen according to a preliminary experiment that identified the elastic deformation region of the top coating and the substrate during mechanical loading. Surface cracking and a decrease in the thickness of the top coating, which are typical degradation behaviors under conventional thermal shock testing, were observed after the designed thermal fatigue test, and delamination at the top coating-bond coating interface occurred by the mechanical load. Lifetime assessment was conducted by statistical software using life cycle data which were obtained after the thermal fatigue test.

  16. Industrial implementation of plasma deposition using the expanding thermal plasma technique

    NARCIS (Netherlands)

    Sanden, van de M.C.M.; Oever, van den P.J.; Creatore, M.; Schaepkens, M.; Miebach, T.; Iacovangelo, C.D.; Bosch, R.C.M.; Bijker, M.D.; Evers, M.F.J.; Schram, D.C.; Kessels, W.M.M.

    2004-01-01

    Two successful industrial implementations of the expanding thermal plasma setup, a novel plasma source, obtaining high deposition rate are discussed. The Ar/O2/hexamethyldisiloxane and Ar/O2/octamethyl-cyclosiloxane-fed expanding thermal plasma setup is used to deposit scratch resistant silicone

  17. Non-thermal plasma at atmospheric pressure for ozone generation and volatile organic compounds decomposition

    International Nuclear Information System (INIS)

    Pekarek, S.; Khun, J.

    2006-01-01

    The non-thermal plasma technologies based on electrical discharges play an important role in ecological applications. The classical corona discharge is however relatively low power discharge. With the aim to extend its current-voltage range we studied hollow needle-to-plate DC corona discharge enhanced by the flow of a gas through the needle electrode. With this type of the discharge we performed an extensive study of ozone generation and volatile organic compounds decomposition. We found that supply of air through the needle substantially increases current-voltage range of the discharge in comparison with classical pin-to-plate corona discharge. Consequently the ozone generation as well as toluene decomposition efficiency was increased (Authors)

  18. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  19. Roll-to-roll DBD plasma pretreated polyethylene web for enhancement of Al coating adhesion and barrier property

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Haibao; Li, Hua; Fang, Ming; Wang, Zhengduo; Sang, Lijun; Yang, Lizhen; Chen, Qiang, E-mail: lppmchenqiang@hotmail.com

    2016-12-01

    Graphical abstract: The images of Al coating adhesion testes for (a) untreated and (b) roll-to-roll DBD plasma treated PE. - Highlights: • Over three-months ageing a high surface energy was still existed in roll-to-roll DBD plasma-treated PE surface. • The adhesion and barrier property of Al-coated PE web were greatly improved. • The mechanism of plasma grafting to improve the properties of Al-coated PE web was found. - Abstract: In this paper the roll-to-roll atmospheric dielectric barrier discharge (DBD) was used to pre-treat polyethylene (PE) web surface before the conventional thermal evaporation aluminum (Al) was performed as a barrier layer. We emphasized the plasma environment effect based on the inlet three kinds of reactive monomers. The cross hatch test was employed to assess the Al coating adhesion; and the oxygen transmission rate (OTR) was used to evaluate gas barrier property. The results showed that after roll-to-roll DBD plasma treatment all Al coatings adhered strongly on PE films and were free from pinhole defects with mirror morphology. The OTR was reduced from 2673 cm{sup 3}/m{sup 2} day for Al-coated original PE to 138 cm{sup 3}/m{sup 2} day for Al-coated allyamine (C{sub 3}H{sub 7}N) modified PE. To well understand the mechanism the chemical compositions of the untreated and DBD plasma pretreated PE films were analyzed by X-ray photoelectron spectroscopy (XPS). The surface topography was characterized by atomic force microscopy (AFM). For the property of surface energy the water contact angle measurement was also carried out in the DBD plasma treated samples with deionized water.

  20. Roll-to-roll DBD plasma pretreated polyethylene web for enhancement of Al coating adhesion and barrier property

    International Nuclear Information System (INIS)

    Zhang, Haibao; Li, Hua; Fang, Ming; Wang, Zhengduo; Sang, Lijun; Yang, Lizhen; Chen, Qiang

    2016-01-01

    Graphical abstract: The images of Al coating adhesion testes for (a) untreated and (b) roll-to-roll DBD plasma treated PE. - Highlights: • Over three-months ageing a high surface energy was still existed in roll-to-roll DBD plasma-treated PE surface. • The adhesion and barrier property of Al-coated PE web were greatly improved. • The mechanism of plasma grafting to improve the properties of Al-coated PE web was found. - Abstract: In this paper the roll-to-roll atmospheric dielectric barrier discharge (DBD) was used to pre-treat polyethylene (PE) web surface before the conventional thermal evaporation aluminum (Al) was performed as a barrier layer. We emphasized the plasma environment effect based on the inlet three kinds of reactive monomers. The cross hatch test was employed to assess the Al coating adhesion; and the oxygen transmission rate (OTR) was used to evaluate gas barrier property. The results showed that after roll-to-roll DBD plasma treatment all Al coatings adhered strongly on PE films and were free from pinhole defects with mirror morphology. The OTR was reduced from 2673 cm 3 /m 2 day for Al-coated original PE to 138 cm 3 /m 2 day for Al-coated allyamine (C 3 H 7 N) modified PE. To well understand the mechanism the chemical compositions of the untreated and DBD plasma pretreated PE films were analyzed by X-ray photoelectron spectroscopy (XPS). The surface topography was characterized by atomic force microscopy (AFM). For the property of surface energy the water contact angle measurement was also carried out in the DBD plasma treated samples with deionized water.

  1. Thermal barrier coatings on gas turbine blades: Chemical vapor deposition (Review)

    Science.gov (United States)

    Igumenov, I. K.; Aksenov, A. N.

    2017-12-01

    Schemes are presented for experimental setups (reactors) developed at leading scientific centers connected with the development of technologies for the deposition of coatings using the CVD method: at the Technical University of Braunschweig (Germany), the French Aerospace Research Center, the Materials Research Institute (Tohoku University, Japan) and the National Laboratory Oak Ridge (USA). Conditions and modes for obtaining the coatings with high operational parameters are considered. It is established that the formed thermal barrier coatings do not fundamentally differ in their properties (columnar microstructure, thermocyclic resistance, thermal conductivity coefficient) from standard electron-beam condensates, but the highest growth rates and the perfection of the crystal structure are achieved in the case of plasma-chemical processes and in reactors with additional laser or induction heating of a workpiece. It is shown that CVD reactors can serve as a basis for the development of rational and more advanced technologies for coating gas turbine blades that are not inferior to standard electron-beam plants in terms of the quality of produced coatings and have a much simpler and cheaper structure. The possibility of developing a new technology based on CVD processes for the formation of thermal barrier coatings with high operational parameters is discussed, including a set of requirements for industrial reactors, high-performance sources of vapor precursors, and promising new materials.

  2. Thermal Insulation System for Non-Vacuum Applications Including a Multilayer Composite

    Science.gov (United States)

    Fesmire, James E. (Inventor)

    2017-01-01

    The thermal insulation system of the present invention is for non-vacuum applications and is specifically tailored to the ambient pressure environment with any level of humidity or moisture. The thermal insulation system includes a multilayered composite including i) at least one thermal insulation layer and at least one compressible barrier layer provided as alternating, successive layers, and ii) at least one reflective film provided on at least one surface of the thermal insulation layer and/or said compressible barrier layer. The different layers and materials and their combinations are designed to provide low effective thermal conductivity for the system by managing all modes of heat transfer. The thermal insulation system includes an optional outer casing surrounding the multilayered composite. The thermal insulation system is particularly suited for use in any sub-ambient temperature environment where moisture or its adverse effects are a concern. The thermal insulation system provides physical resilience against damaging mechanical effects including compression, flexure, impact, vibration, and thermal expansion/contraction.

  3. Thermal failure of nanostructured thermal barrier coatings with cold sprayed nanostructured NiCrAlY bond coat

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Li, Y.; Zhang, S.L.; Wang, X.R.; Yang, G.J.; Li, C.X.; Li, C.J. [Xi' an Jiaotong Univ., Xi' an (China)

    2008-07-01

    Nanostructured YSZ is expected to exhibit a high strain tolerability due to its low Young's modulus and consequently high durability. In this study, a porous YSZ as the thermal barrier coating was deposited by plasma spraying using an agglomerated nanostructured YSZ powder on a Ni-based superalloy Inconel 738 substrate with a cold-sprayed nanostructured NiCrAlY as the bond coat. The heat treatment in Ar atmosphere was applied to the cold-sprayed bond coat before deposition of YSZ. The isothermal oxidation and thermal cycling tests were applied to examine failure modes of plasma-sprayed nanostructured YSZ. The results showed that YSZ coating was deposited by partially melted YSZ particles. The nonmelted fraction of spray particles retains the porous nanostructure of the starting powder into the deposit. YSZ coating exhibits a bimodal microstructure consisting of nanosized particles retained from the powder and micro-columnar grains formed through the solidification of the melted fraction in spray particles. The oxidation of the bond coat occurs during the heat treatment in Ar atmosphere. The uniform oxide at the interface between the bond coat and YSZ can be formed during isothermal test. The cracks were observed at the interface between TGO/BC or TGO/YSZ after thermal cyclic test. However, the failure of TBCs mainly occurred through spalling of YSZ within YSZ coating. The failure characteristics of plasma-sprayed nanostructured YSZ are discussed based on the coating microstructure and formation of TGO on the bond coat surface. (orig.)

  4. Theoretical investigation of thermophysical properties in two-temperature argon-helium thermal plasma

    International Nuclear Information System (INIS)

    Sharma, Rohit; Singh, Kuldip; Singh, Gurpreet

    2011-01-01

    The thermophysical properties of argon-helium thermal plasma have been studied in the temperature range from 5000 to 40 000 K at atmospheric pressure in local thermodynamic equilibrium and non-local thermodynamic equilibrium conditions. Two cases of thermal plasma considered are (i) ground state plasma in which all the atoms and ions are assumed to be in the ground state and (ii) excited state plasma in which atoms and ions are distributed over various possible excited states. The influence of electronic excitation and non-equilibrium parameter θ = T e /T h on thermodynamic properties (composition, degree of ionization, Debye length, enthalpy, and total specific heat) and transport properties (electrical conductivity, electron thermal conductivity, and thermal diffusion ratio) have been studied. Within the framework of Chapman-Enskog method, the higher-order contributions to transport coefficient and their convergence are studied. The influence of different molar compositions of argon-helium plasma mixture on convergence of higher-orders is investigated. Furthermore, the effect of different definitions of Debye length has also been examined for electrical conductivity and it is observed that electrical conductivity with the definition of Debye length (in which only electrons participate in screening) is less than that of the another definition (in which both the electrons and ions participate in screening) and this deviation increases with electron temperature. Finally, the effect of lowering of ionization energy is examined on electron number density, Debye length, and higher-order contribution to electrical conductivity. It is observed that the lowering of the ionization energy affects the electron transport-properties and consequently their higher-order contributions depending upon the value of the non-equilibrium parameter θ.

  5. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    Science.gov (United States)

    Barni, R.; Biganzoli, I.; Dell'Orto, E.; Riccardi, C.

    2014-11-01

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma.

  6. On the use of pulsed Dielectric Barrier Discharges to control the gas-phase composition of atmospheric pressure air plasmas

    International Nuclear Information System (INIS)

    Barni, R; Biganzoli, I; Dell'Orto, E; Riccardi, C

    2014-01-01

    We presents results obtained from the numerical simulation of the gas-phase chemical kinetics in atmospheric pressure air non-equilibrium plasmas. In particular we have addressed the effect of pulsed operation mode of a plane dielectric barrier discharge. It was conjectured that the large difference in the time scales involved in the fast dissociation of oxygen molecules in plasma and their subsequent reactions to produce ozone and nitrogen oxides, makes the presence of a continuously repeated plasma production unnecessary and a waste of electrical power and thus efficiency. In order to test such suggestion we have performed a numerical study of the composition and the temporal evolution of the gas-phase of atmospheric pressure air non-equilibrium plasmas. Comparison with experimental findings in a dielectric barrier discharge with an electrode configuration symmetrical and almost ideally plane is briefly addressed too, using plasma diagnostics to extract the properties of the single micro-discharges and a sensor to measure the concentration of ozone produced by the plasma

  7. Non-thermal particle acceleration in collisionless relativistic electron-proton reconnection

    Science.gov (United States)

    Werner, G. R.; Uzdensky, D. A.; Begelman, M. C.; Cerutti, B.; Nalewajko, K.

    2018-02-01

    Magnetic reconnection in relativistic collisionless plasmas can accelerate particles and power high-energy emission in various astrophysical systems. Whereas most previous studies focused on relativistic reconnection in pair plasmas, less attention has been paid to electron-ion plasma reconnection, expected in black hole accretion flows and relativistic jets. We report a comprehensive particle-in-cell numerical investigation of reconnection in an electron-ion plasma, spanning a wide range of ambient ion magnetizations σi, from the semirelativistic regime (ultrarelativistic electrons but non-relativistic ions, 10-3 ≪ σi ≪ 1) to the fully relativistic regime (both species are ultrarelativistic, σi ≫ 1). We investigate how the reconnection rate, electron and ion plasma flows, electric and magnetic field structures, electron/ion energy partitioning, and non-thermal particle acceleration depend on σi. Our key findings are: (1) the reconnection rate is about 0.1 of the Alfvénic rate across all regimes; (2) electrons can form concentrated moderately relativistic outflows even in the semirelativistic, small-σi regime; (3) while the released magnetic energy is partitioned equally between electrons and ions in the ultrarelativistic limit, the electron energy fraction declines gradually with decreased σi and asymptotes to about 0.25 in the semirelativistic regime; and (4) reconnection leads to efficient non-thermal electron acceleration with a σi-dependent power-law index, p(σ _i)˜eq const+0.7σ _i^{-1/2}. These findings are important for understanding black hole systems and lend support to semirelativistic reconnection models for powering non-thermal emission in blazar jets, offering a natural explanation for the spectral indices observed in these systems.

  8. Thermal Conductivity of EB-PVD Thermal Barrier Coatings Evaluated by a Steady-State Laser Heat Flux Technique

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Nagaraj, Ben A.; Bruce, Robert W.

    2000-01-01

    The thermal conductivity of electron beam-physical vapor deposited (EB-PVD) Zr02-8wt%Y2O3 thermal barrier coatings was determined by a steady-state heat flux laser technique. Thermal conductivity change kinetics of the EB-PVD ceramic coatings were also obtained in real time, at high temperatures, under the laser high heat flux, long term test conditions. The thermal conductivity increase due to micro-pore sintering and the decrease due to coating micro-delaminations in the EB-PVD coatings were evaluated for grooved and non-grooved EB-PVD coating systems under isothermal and thermal cycling conditions. The coating failure modes under the high heat flux test conditions were also investigated. The test technique provides a viable means for obtaining coating thermal conductivity data for use in design, development, and life prediction for engine applications.

  9. Improved Thermally Grown Oxide Scale in Air Plasma Sprayed NiCrAlY/Nano-YSZ Coatings

    International Nuclear Information System (INIS)

    Daroonparvar, M.; Yajid, M.A.M.; Yusof, N.M.; Hussain, M.S.

    2013-01-01

    Oxidation has been considered as one of the principal disruptive factors in thermal barrier coating systems during service. So, oxidation behavior of thermal barrier coating (TBC) systems with nano structured and micro structured YSZ coatings was investigated at 1000 degree c for 24 h, 48 h, and 120 h. Air plasma sprayed nano-YSZ coating exhibited a tri modal structure. Microstructural characterization also demonstrated an improved thermally grown oxide scale containing lower spinels in nano-TBC system after 120 h of oxidation. This phenomenon is mainly related to the unique structure of the nano-YSZ coating, which acted as a strong barrier for oxygen diffusion into the TBC system at elevated temperatures. Nearly continues but thinner Al 2 O 3 layer formation at the NiCrAlY/nano-YSZ interface was seen, due to lower oxygen infiltration into the system. Under this condition, spinels formation and growth on the Al 2 O 3 oxide scale were diminished in nano-TBC system compared to normal TBC system.

  10. New Insight in Loss of Gut Barrier during Major Non-Abdominal Surgery.

    Directory of Open Access Journals (Sweden)

    Joep P M Derikx

    Full Text Available Gut barrier loss has been implicated as a critical event in the occurrence of postoperative complications. We aimed to study the development of gut barrier loss in patients undergoing major non-abdominal surgery.Twenty consecutive children undergoing spinal fusion surgery were included. This kind of surgery is characterized by long operation time, significant blood loss, prolonged systemic hypotension, without directly leading to compromise of the intestines by intestinal manipulation or use of extracorporeal circulation. Blood was collected preoperatively, every two hours during surgery and 2, 4, 15 and 24 hours postoperatively. Gut mucosal barrier was assessed by plasma markers for enterocyte damage (I-FABP, I-BABP and urinary presence of tight junction protein claudin-3. Intestinal mucosal perfusion was measured by gastric tonometry (P(rCO2, P(r-aCO2-gap. Plasma concentration of I-FABP, I-BABP and urinary expression of claudin-3 increased rapidly and significantly after the onset of surgery in most children. Postoperatively, all markers decreased promptly towards baseline values together with normalisation of MAP. Plasma levels of I-FABP, I-BABP were significantly negatively correlated with MAP at (1/2 hour before blood sampling (-0.726 (p<0.001, -0.483 (P<0.001, respectively. Furthermore, circulating I-FABP correlated with gastric mucosal P(rCO2, P(r-aCO2-gap measured at the same time points (0.553 (p = 0.040, 0.585 (p = 0.028, respectively.This study shows the development of gut barrier loss in children undergoing major non-abdominal surgery, which is related to preceding hypotension and mesenterial hypoperfusion. These data shed new light on the potential role of peroperative circulatory perturbation and intestinal barrier loss.

  11. New Insight in Loss of Gut Barrier during Major Non-Abdominal Surgery

    Science.gov (United States)

    Derikx, Joep P. M.; van Waardenburg, Dick A.; Thuijls, Geertje; Willigers, Henriëtte M.; Koenraads, Marianne; van Bijnen, Annemarie A.; Heineman, Erik; Poeze, Martijn; Ambergen, Ton; van Ooij, André; van Rhijn, Lodewijk W.; Buurman, Wim A.

    2008-01-01

    Background Gut barrier loss has been implicated as a critical event in the occurrence of postoperative complications. We aimed to study the development of gut barrier loss in patients undergoing major non-abdominal surgery. Methodology/Principal Findings Twenty consecutive children undergoing spinal fusion surgery were included. This kind of surgery is characterized by long operation time, significant blood loss, prolonged systemic hypotension, without directly leading to compromise of the intestines by intestinal manipulation or use of extracorporeal circulation. Blood was collected preoperatively, every two hours during surgery and 2, 4, 15 and 24 hours postoperatively. Gut mucosal barrier was assessed by plasma markers for enterocyte damage (I-FABP, I-BABP) and urinary presence of tight junction protein claudin-3. Intestinal mucosal perfusion was measured by gastric tonometry (PrCO2, Pr-aCO2-gap). Plasma concentration of I-FABP, I-BABP and urinary expression of claudin-3 increased rapidly and significantly after the onset of surgery in most children. Postoperatively, all markers decreased promptly towards baseline values together with normalisation of MAP. Plasma levels of I-FABP, I-BABP were significantly negatively correlated with MAP at ½ hour before blood sampling (−0.726 (p<0.001), −0.483 (P<0.001), respectively). Furthermore, circulating I-FABP correlated with gastric mucosal PrCO2, Pr-aCO2-gap measured at the same time points (0.553 (p = 0.040), 0.585 (p = 0.028), respectively). Conclusions/Significance This study shows the development of gut barrier loss in children undergoing major non-abdominal surgery, which is related to preceding hypotension and mesenterial hypoperfusion. These data shed new light on the potential role of peroperative circulatory perturbation and intestinal barrier loss. PMID:19088854

  12. Results from transient transport experiments in Rijnhuizen tokamak project: Heat convection, transport barriers and 'non-local' effects

    International Nuclear Information System (INIS)

    Mantica, P.; Gorini, G.; Hogeweij, G.M.D.; Kloe, J. de; Lopez Cardozo, N.J.; Schilham, A.M.R.

    2001-01-01

    An overview of experimental transport studies performed on the Rijnhuizen Tokamak Project (RTP) using transient transport techniques in both Ohmic and ECH dominated plasmas is presented. Modulated Electron Cyclotron Heating (ECH) and oblique pellet injection (OPI) have been used to induce electron temperature (T e ) perturbations at different radial locations. These were used to probe the electron transport barriers observed near low order rational magnetic surfaces in ECH dominated steady-state RTP plasmas. Layers of inward electron heat convection in off-axis ECH plasmas were detected with modulated ECH. This suggests that RTP electron transport barriers consist of heat pinch layers rather than layers of low thermal diffusivity. In a different set of experiments, OPI triggered a transient rise of the core T e due to an increase of the T e gradient in the 1< q<2 region. These transient transport barriers were probed with modulated ECH and found to be due to a transient drop of the electron heat diffusivity, except for off-axis ECH plasmas, where a transient inward pinch is also observed. Transient transport studies in RTP could not solve this puzzling interplay between heat diffusion and convection in determining an electron transport barrier. They nevertheless provided challenging experimental evidence both for theoretical modelling and for future experiments. (author)

  13. Suitability of thermal plasmas for large-area bacteria inactivation on temperature-sensitive surfaces – first results with Geobacillus stearothermophilus spores

    International Nuclear Information System (INIS)

    Szulc, M; Schein, S; Schaup, J; Zimmermann, S; Schein, J

    2017-01-01

    The application of thermal plasma for large-area bacteria inactivation on temperature-sensitive surfaces is not a common one. Nonetheless, there are thermal plasma generators which offer a high sheath homogeneity and have proven to be suitable for treatment of thermally sensitive materials in the past. To investigate the suitability of such plasmas, agar dishes plated with endospores of Geobacillus stearothermophilus have been treated with a long arc plasma generator called LARGE. The achieved results have been compared with a commercially available non-thermal plasma generator. A significant inactivation of the endospores could be observed only after 60 s of treatment with the thermal plasma source. This was not possible with the non-thermal generator. Moreover, no temperature damage or increase of the specimen could be detected. An attempt to determine the main agents responsible for the microbicidal effects have been made – the influence of plasma gas composition, discharge current and treatment time has been investigated. Significant improvements in the disinfection rates after adding small amounts of nitrogen to the plasma gas could be observed. A first discussion regarding the suitability of thermal plasmas for bacteria inactivation has been given. (paper)

  14. Technological challenges in thermal plasma production

    International Nuclear Information System (INIS)

    Ramakrishnan, S.

    1995-01-01

    Thermal plasmas, generated by electric arc discharges, are used in a variety of industrial applications. The electric arc is a constricted electrical discharge with a high temperature in the range 6000-25,000 K. These characteristics are useful in plasma cutting, spraying, welding and specific areas of material processing. The thermal plasma technology is an enabling process technology and its status in the market depends upon its advantages over competing technologies. A few technological challenges to enhance the status of plasma technology are to improve the utilisation of the unique characteristics of the electric arc and to provide enhanced control of the process. In particular, new solutions are required for increasing the plasma-material interaction, controlling the electrode roots and controlling the thermal power generated by the arcing process. In this paper, the advantages of plasma technology, its constraints and future challenges for technology developments are highlighted. 36 refs., 14 figs

  15. An investigation of the treatment of particulate matter from gasoline engine exhaust using non-thermal plasma

    International Nuclear Information System (INIS)

    Ye Dan; Gao Dengshan; Yu Gang; Shen Xianglin; Gu Fan

    2005-01-01

    A plasma reactor with catalysts was used to treat exhaust gas from a gasoline engine in order to decrease particulate matter (PM) emissions. The effect of non-thermal plasma (NTP) of the dielectric discharges on the removal of PM from the exhaust gas was investigated experimentally. The removal efficiency of PM was based on the concentration difference in PM for particle diameters ranging from 0.3 to 5.0 μm as measured by a particle counter. Several factors affecting PM conversion, including the density of plasma energy, reaction temperature, flow rate of exhaust gas, were investigated in the experiment. The results indicate that PM removal efficiency ranged approximately from 25 to 57% and increased with increasing energy input in the reactor, reaction temperature and residence time of the exhaust gas in the reactor. Enhanced removal of the PM was achieved by filling the discharge gap of the reactor with Cu-ZSM-5 catalyst pellets. In addition, the removal of unburned hydrocarbons was studied. Finally, available approaches for PM conversion were analyzed involving the interactions between discharge and catalytic reactions

  16. The thermalization of soft modes in non-expanding isotropic quark gluon plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul, E-mail: jean-paul.blaizot@cea.fr [Institut de Physique Théorique, CNRS/UMR 3681, CEA Saclay, F-91191 Gif-sur-Yvette (France); Liao, Jinfeng [Physics Department and Center for Exploration of Energy and Matter, Indiana University, 2401 N Milo B. Sampson Lane, Bloomington, IN 47408 (United States); RIKEN BNL Research Center, Bldg. 510A, Brookhaven National Laboratory, Upton, NY 11973 (United States); Mehtar-Tani, Yacine [Institute for Nuclear Theory, University of Washington, Seattle, WA 98195-1550 (United States)

    2017-05-15

    We discuss the role of elastic and inelastic collisions and their interplay in the thermalization of the quark–gluon plasma. We consider a simplified situation of a static plasma, spatially uniform and isotropic in momentum space. We focus on the small momentum region, which equilibrates first, and on a short time scale. We obtain a simple kinetic equation that allows for an analytic description of the most important regimes. The present analysis suggests that the formation of a Bose condensate, expected when only elastic collisions are present, is strongly hindered by the inelastic, radiative, processes.

  17. Thermal Barrier Coatings Resistant to Glassy Deposits

    Science.gov (United States)

    Drexler, Julie Marie

    Engineering of alloys has for years allowed aircraft turbine engines to become more efficient and operate at higher temperatures. As advancements in these alloy systems have become more difficult, ceramic thermal barrier coatings (TBCs), often yttria (7 wt %) stabilized zirconia (7YSZ), have been utilized for thermal protection. TBCs have allowed for higher engine operating temperatures and better fuel efficiency but have also created new engineering problems. Specifically, silica based particles such as sand and volcanic ash that enter the engine during operation form glassy deposits on the TBCs. These deposits can cause the current industrial 7YSZ thermal barrier coatings to fail since the glass formed penetrates and chemically interacts with the TBC. When this occurs, coating failure may occur due to a loss of strain tolerance, which can lead to fracture, and phase changes of the TBC material. There have been several approaches used to stop calcium-magnesium aluminio-silcate (CMAS) glasses (molten sand) from destroying the entire TBC, but overall there is still limited knowledge. In this thesis, 7YSZ and new TBC materials will be examined for thermochemical and thermomechanical performance in the presence of molten CMAS and volcanic ash. Two air plasma sprayed TBCs will be shown to be resistant to volcanic ash and CMAS. The first type of coating is a modified 7YSZ coating with 20 mol% Al2O3 and 5 mol% TiO2 in solid solution (YSZ+20Al+5Ti). The second TBC is made of gadolinium zirconate. These novel TBCs impede CMAS and ash penetration by interacting with the molten CMAS or ash and drastically changing the chemistry. The chemically modified CMAS or ash will crystallize into an apatite or anorthite phase, blocking the CMAS or ash from further destroying the coating. A presented mechanism study will show these coatings are effective due to the large amount of solute (Gd, Al) in the zirconia structure, which is the key to creating the crystalline apatite or

  18. Fischer-Tropsch Performance of an SiO2-Supported Co-Based Catalyst Prepared by Hydrogen Dielectric-Barrier Discharge Plasma

    International Nuclear Information System (INIS)

    Fu Tingjun; Huang Chengdu; Lv Jing; Li Zhenhua

    2014-01-01

    A silica-supported cobalt catalyst was prepared by hydrogen dielectric-barrier discharge (H 2 -DBD) plasma. Compared to thermal hydrogen reduction, H 2 -DBD plasma treatment can not only fully decompose the cobalt precursor but also partially reduce the cobalt oxides at lower temperature and with less time. The effect of the discharge atmosphere on the property of the plasma-prepared catalyst and the Fischer-Tropsch synthesis activity was studied. The results indicate that H 2 -DBD plasma treatment is a promising alternative for preparing Co/SiO 2 catalysts from the viewpoint of energy savings and efficiency

  19. Effect of Layer-Graded Bond Coats on Edge Stress Concentration and Oxidation Behavior of Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.

    1998-01-01

    Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.

  20. Discontinuity model for internal transport barrier formation in reversed magnetic shear plasmas

    International Nuclear Information System (INIS)

    Kishimoto, Y.; Dettrick, S.A.; Li, J.Q.; Shirai, S.; Kim, J.Y.; Horton, W.; Tajima, T.; LeBrun, M.J.

    2000-01-01

    It is becoming clear that tokamak anomalous transport is dominated by radially extended non-local modes which originate from strong toroidal coupling of rational surfaces in non-uniform plasmas. To aid in understanding the internal transport barrier (ITB) formed in reversed magnetic shear experiments, in addition to the well known shear flow effect, the article points out an important non-local effect and/or finite size effect which comes from the complex behaviour of the mode over a finite radial region around the minimum q (safety factor) surface. The non-local mode, which is characterized by its radial extent and the degree of tilting in the poloidal direction (Δr, θ 0 ), changes its structure depending on the sign of the magnetic shear, and as a result such modes are weakly excited across the q min surface. This leads to a discontinuity or gap which disconnects the phase relation in the global wave structure across the q min surface. Once such a discontinuity (or gap) is formed, transport suppression occurs and therefore a transport barrier can be expected near the q min surface. The existence of this discontinuity is confirmed through use of a toroidal particle simulation. It is also shown that whether such a discontinuity is efficiently established depends on the presence of the radial electric field and the related plasma shear flow. (author)

  1. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wei, E-mail: yangwei861212@126.com; Zhou, Qianhong; Dong, Zhiwei [Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China)

    2016-08-28

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N{sub 2}, O{sub 2}, and air, as well as femtosecond laser filament discharge in dry and humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.

  2. Non-Thermal Plasma (NTP) session overview: Second International Symposium on Environmental Applications of Advanced Oxidation Technologies (AOTs)

    International Nuclear Information System (INIS)

    Rosocha, L.A.

    1996-01-01

    Advanced Oxidation Technologies (used in pollution control and treating hazardous wastes) has expanded from using hydroxyl radicals to treat organic compounds in water, to using reductive free radicals as well, and to application to pollutants in both gases and aqueous media. Non-Thermal Plasma (NTP) is created in a gas by an electrical discharge or energetic electron injection. Highly reactive species (O atoms, OH, N radicals, plasma electrons) react with entrained hazardous organic chemicals in the gas, converting them to CO2, H2O, etc. NTP can be used to simultaneously remove different kinds of pollutants (eg, VOCs, SOx, NOx in flue gases). This paper presents an overview of NTP technology for pollution control and hazardous waste treatment; it is intended as an introduction to the NTP session of the symposium

  3. Alpha-induced instabilities in tandem thermal barriers

    Energy Technology Data Exchange (ETDEWEB)

    Kammash, T.; Galbraith, D.L.

    1987-01-01

    A major premise in the operation of Tandem Mirror reactors is that the fusion reactions take place in the central cell only. The alpha particles generated by the Deuterium-Tritium (DT) fusions, along with other ions, will however pass from the central cell to the thermal barriers and return to the central cell as a result of reflection by the potential hills that exist by the plugs' side of these barriers. This streaming motion gives rise to electrostatic and electomagnetic instabilities which could detract from the barrier's function as a thermal insulator. The number density and streaming velocity of these passing particles are dictated by the electrostatic potential variation and the magnetic field structure in these regions. It is shown that, in the absence of alphas, barriers with deep potential depression are less susceptible to electrostatic instabilities while particularly vulnerable to unstable electromagnetic modes. In the presence of alphas, especially the fast alphas whose mean energy is significantly larger than the barrier potentials they see, (which is twice as high as that seen by the ions) both types of modes become unstable.

  4. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

    Science.gov (United States)

    Darthout, Émilien; Gitzhofer, François

    2017-12-01

    Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

  5. Synergistic effects of non-thermal plasma-assisted catalyst and ultrasound on toluene removal.

    Science.gov (United States)

    Sun, Yongli; Zhou, Libo; Zhang, Luhong; Sui, Hong

    2012-01-01

    A wire-mesh catalyst coated by La0.8Sr0.2MnO3 was combined with a dielectric barrier discharge (DBD) reactor for toluene removal at atmospheric pressure. It was found that toluene removal efficiency and carbon dioxide selectivity were enhanced in the catalytic packed-bed reactor. In addition, ozone and nitrogen monoxide from the gas effluent byproducts decreased. This is the first time that ultrasound combined with plasma has been used for toluene removal. A synergistic effect on toluene removal was observed in the plasma-assisted ultrasound system. At the same time, the system increased toluene conversion and reduced ozone emission.

  6. TGO growth and crack propagation in a thermal barrier coating

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.R.; Archer, R.; Huang, X. [National Research Council of Canada, Ottawa, ON (Canada); Marple, B.R. [National Research Council of Canada, Boucherville, PQ (Canada)

    2008-07-01

    In thermal barrier coating (TBC) systems, a continuous alumina layer developed at the ceramic topcoat/bond coat interface helps to protect the metallic bond coat from further oxidation and improve the durability of the TBC system under service conditions. However, other oxides such as spinel and nickel oxide, formed in the oxidizing environment, are believed to be detrimental to TBC durability during service at high temperatures. It was shown that in an air-plasma-sprayed (APS) TBC system, post-spraying heat treatments in low-pressure oxygen environments could suppress the formation of the detrimental oxides by promoting the formation of an alumina layer at the ceramic topcoat/bond coat interface, leading to an improved TBC durability. This work presents the influence of post-spraying heat treatments in low-pressure oxygen environments on the oxidation behaviour and durability of a thermally sprayed TBC system with high-velocity oxy-fuel (HVOF)-produced Co-32Ni-21Cr-8Al-0.5Y (wt.%) bond coat. Oxidation behaviour of the TBCs is evaluated by examining their microstructural evolution, growth kinetics of the thermally grown oxide (TGO) layers, as well as crack propagation during low frequency thermal cycling at 1050 C. The relationship between the TGO growth and crack propagation will also be discussed. (orig.)

  7. Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas

    Energy Technology Data Exchange (ETDEWEB)

    An, Jiutao; Shang, Kefeng; Lu, Na [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China); Jiang, Yuze [Shandong Electric Power Research Institute, Jinan 250002 (China); Wang, Tiecheng [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China); Li, Jie, E-mail: lijie@dlut.edu.cn [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China); Wu, Yan [Institute of Electrostatics and Special Power, Dalian University of Technology, Dalian 116024 (China); Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education of the People' s Republic of China, Dalian 116024 (China)

    2014-03-01

    Graphical abstract: - Highlights: • The use of non-thermal plasma injection approach to oxidize Hg{sup 0} in simulated flue gas at 110 °C was studied. • A high Hg{sup 0} oxidation efficiency was observed in the mixed flue gas that included O{sub 2}, H{sub 2}O, SO{sub 2}, NO and HCl. • Chemical and physical processes (e.g., ozone, N{sub 2} metastable states and UV-light) contributed to Hg{sup 0} oxidation. • Mercury species mainly existed in the form of HgO(s) adhering to the suspended aerosols in the gas-phase. - Abstract: The use of non-thermal plasma (NTP) injection approach to oxidize elemental mercury (Hg{sup 0}) in simulated flue gas at 110 °C was studied, where a surface discharge plasma reactor (SDPR) inserted in the simulated flue duct was used to generate and inject active species into the flue gas. Approximately 81% of the Hg{sup 0} was oxidized and 20.5 μg kJ{sup −1} of energy yield was obtained at a rate of 3.9 J L{sup −1}. A maximal Hg{sup 0} oxidation efficiency was found with a change in the NTP injection air flow rate. A high Hg{sup 0} oxidation efficiency was observed in the mixed flue gas that included O{sub 2}, H{sub 2}O, SO{sub 2}, NO and HCl. Chemical and physical processes (e.g., ozone, N{sub 2} metastable states and UV-light) were found to contribute to Hg{sup 0} oxidation, with ozone playing a dominant role. The deposited mercury species on the internal surface of the flue duct was analyzed using X-ray photoelectron spectroscopy (XPS) and electronic probe microanalysis (EPMA), and the deposit was identified as HgO. The mercury species is thought to primarily exist in the form of HgO(s) by adhering to the suspended aerosols in the gas-phase.

  8. GaN Schottky diodes with single-crystal aluminum barriers grown by plasma-assisted molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Tseng, H. Y.; Yang, W. C.; Lee, P. Y.; Lin, C. W.; Cheng, Kai-Yuan; Hsieh, K. C.; Cheng, K. Y., E-mail: kycheng@ee.nthu.edu.tw [Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hsu, C.-H. [Division of Scientific Research, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China)

    2016-08-22

    GaN-based Schottky barrier diodes (SBDs) with single-crystal Al barriers grown by plasma-assisted molecular beam epitaxy are fabricated. Examined using in-situ reflection high-energy electron diffractions, ex-situ high-resolution x-ray diffractions, and high-resolution transmission electron microscopy, it is determined that epitaxial Al grows with its [111] axis coincident with the [0001] axis of the GaN substrate without rotation. In fabricated SBDs, a 0.2 V barrier height enhancement and 2 orders of magnitude reduction in leakage current are observed in single crystal Al/GaN SBDs compared to conventional thermal deposited Al/GaN SBDs. The strain induced piezoelectric field is determined to be the major source of the observed device performance enhancements.

  9. Dielectric barrier discharge plasma actuator for flow control

    Science.gov (United States)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  10. Investigations of thermal barrier coatings of turbine parts using gas flame heating

    Science.gov (United States)

    Lepeshkin, A. R.; Bichkov, N. G.; Ilinskaja, O. I.; Nazarov, V. V.

    2017-09-01

    The development of methods for the calculated and experimental investigations thermal barrier coatings and thermal state of gas-turbine engine parts with a thermal barrier coatings is actual work. The gas flame heating was demonstrated to be effectively used during investigations of a thermal ceramic barrier coatings and thermal state of such gas-turbine engine parts with a TBC as the cooled turbine blades and vanes and combustion liner components. The gas-flame heating is considered to be preferable when investigating the gas-turbine engine parts with a TBC in the special cases when both the convective and radiant components of thermal flow are of great importance. The small-size rig with gas-flame flow made it possible to conduct the comparison investigations with the purpose of evaluating the efficiency of thermal protection of the ceramic deposited thermal barrier coatings on APS and EB techniques. The developed design-experiment method was introduced in bench tests of turbine blades and combustion liner components of gas turbine engines.

  11. Transport barriers with and without shear flows in a magnetized plasma

    International Nuclear Information System (INIS)

    Martinell, Julio J.

    2014-01-01

    Different ways of producing a transport barrier in a toroidal magnetized plasma are discussed and the properties of the barriers are analyzed. The first mechanism is associated with the presence of a sheared plasma flow that is present in a limited region of the plasma, which creates a zonal flow. In contrast to the usual paradigm stating that the sheared flow reduces the turbulence correlation length and leads to suppression of the fluctuation driven transport in the region of highest shear, it is shown that from the perspective of chaotic transport of plasma particles in the fluctuation fields, the transport barrier is formed in the region of zero shear and it can be destroyed when the fluctuation level is high enough. It is also shown that finite gyroradius effects modify the dynamics and introduces new conditions for barrier formation. The second mechanism considers a method in which radio-frequency waves injected into the plasma can stabilize the drift waves and therefore the anomalous transport is reduced, creating a barrier. This process does not involve the presence of sheared flows and depends only on the effect of the RF wave field on the drift waves. The stabilizing effect in this case is due to the nonlinear ponderomotive force which acts in a way that offsets the pressure gradient destabilization. Finally, a mechanism based on the ponderomotive force of RF waves is described which produces poloidal plasma rotation around the resonant surface due to the asymmetry of induced transport; it creates a transport barrier by shear flow stabilization of turbulence

  12. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    Directory of Open Access Journals (Sweden)

    Tae-Hee Kim

    2016-02-01

    Full Text Available Gallium nitride (GaN nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO33∙xH2O was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6 powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3. Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing.

  13. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ruonan; Wang, Guomin; Tian, Ying; Wang, Kaile [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhang, Jue, E-mail: zhangjue@pku.edu.cn [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China); Fang, Jing [Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); College of Engineering, Peking University, Beijing 100871 (China)

    2015-12-30

    Highlights: • We propose a new approach to treat S. aureus inoculated on strawberries by PAW. • PAW could inactivate S. aureus on strawberries via the Log Reduction results, further confirmed by CLSM and SEM. • The short-lived ROS in PAW are considered the most important agents in inactivation process. • No significant change was found in color, firmness and pH of the PAW treated strawberries. - Abstract: Non-thermal plasma has been widely considered to be an effective method for decontamination of foods. Recently, numerous studies report that plasma-activated water (PAW) also has outstanding antibacterial ability. This study presents the first report on the potential of PAW for the inactivation of Staphylococcus aureus (S. aureus) inoculated on strawberries. PAW treatments achieved a reduction of S. aureus ranging from 1.6 to 2.3 log at day-0 storage, while 1.7 to 3.4 log at day-4 storage. The inactivation efficiency depended on the plasma-activated time for PAW generation and PAW-treated time of strawberries inoculated with S. aureus. LIVE/DEAD staining and scanning electron microscopy results confirm that PAW could damage the bacterial cell wall. Moreover, optical emission spectra and oxidation reduction potential results demonstrate the inactivation is mainly attributed to oxidative stress induced by reactive oxygen species in PAW. In addition, no significant change was found in color, firmness and pH of the PAW treated strawberries. Thus, PAW can be a promising alternative to traditional sanitizers applied in the fresh produce industry.

  14. Non-thermal plasma-activated water inactivation of food-borne pathogen on fresh produce

    International Nuclear Information System (INIS)

    Ma, Ruonan; Wang, Guomin; Tian, Ying; Wang, Kaile; Zhang, Jue; Fang, Jing

    2015-01-01

    Highlights: • We propose a new approach to treat S. aureus inoculated on strawberries by PAW. • PAW could inactivate S. aureus on strawberries via the Log Reduction results, further confirmed by CLSM and SEM. • The short-lived ROS in PAW are considered the most important agents in inactivation process. • No significant change was found in color, firmness and pH of the PAW treated strawberries. - Abstract: Non-thermal plasma has been widely considered to be an effective method for decontamination of foods. Recently, numerous studies report that plasma-activated water (PAW) also has outstanding antibacterial ability. This study presents the first report on the potential of PAW for the inactivation of Staphylococcus aureus (S. aureus) inoculated on strawberries. PAW treatments achieved a reduction of S. aureus ranging from 1.6 to 2.3 log at day-0 storage, while 1.7 to 3.4 log at day-4 storage. The inactivation efficiency depended on the plasma-activated time for PAW generation and PAW-treated time of strawberries inoculated with S. aureus. LIVE/DEAD staining and scanning electron microscopy results confirm that PAW could damage the bacterial cell wall. Moreover, optical emission spectra and oxidation reduction potential results demonstrate the inactivation is mainly attributed to oxidative stress induced by reactive oxygen species in PAW. In addition, no significant change was found in color, firmness and pH of the PAW treated strawberries. Thus, PAW can be a promising alternative to traditional sanitizers applied in the fresh produce industry.

  15. Thermal equilibrium of pure electron plasmas across a central region of magnetic surfaces

    Science.gov (United States)

    Hahn, Michael; Pedersen, Thomas Sunn

    2009-06-01

    Measurements of the equilibria of plasmas created by emission from a biased filament located off the magnetic axis in the Columbia Non-neutral Torus (CNT) [T. S. Pedersen, J. P. Kremer, R. G. Lefrancois et al., Fusion Sci. Technol. 50, 372 (2006)] show that such plasmas have equilibrium properties consistent with the inner surfaces being in a state of cross-surface thermal equilibrium. Numerical solutions to the equilibrium equation were used to fit the experimental data and demonstrate consistency with cross-surface thermal equilibrium. Previous experiments in CNT showed that constant temperatures across magnetic surfaces are characteristic of CNT plasmas, implying thermal confinement times much less than particle confinement times. These results show that when emitting off axis there is a volume of inner surfaces where diffusion into that region is balanced by outward transport, producing a Boltzmann distribution of electrons. When combined with the low thermal energy confinement time this is a cross-surface thermal equilibrium.

  16. Thermal equilibrium of pure electron plasmas across a central region of magnetic surfaces

    International Nuclear Information System (INIS)

    Hahn, Michael; Pedersen, Thomas Sunn

    2009-01-01

    Measurements of the equilibria of plasmas created by emission from a biased filament located off the magnetic axis in the Columbia Non-neutral Torus (CNT) [T. S. Pedersen, J. P. Kremer, R. G. Lefrancois et al., Fusion Sci. Technol. 50, 372 (2006)] show that such plasmas have equilibrium properties consistent with the inner surfaces being in a state of cross-surface thermal equilibrium. Numerical solutions to the equilibrium equation were used to fit the experimental data and demonstrate consistency with cross-surface thermal equilibrium. Previous experiments in CNT showed that constant temperatures across magnetic surfaces are characteristic of CNT plasmas, implying thermal confinement times much less than particle confinement times. These results show that when emitting off axis there is a volume of inner surfaces where diffusion into that region is balanced by outward transport, producing a Boltzmann distribution of electrons. When combined with the low thermal energy confinement time this is a cross-surface thermal equilibrium.

  17. Non Equilbrium Vibrational Kinetics in Expanding Plasma Flows

    International Nuclear Information System (INIS)

    Colonna, Gianpiero

    2008-01-01

    The supersonic expansion of a plasma is a system of interest for aerospace applications, ranging from propulsion to hypersonic wind tunnels. Under these conditions the plasma shows significant departures from chemical and thermal equilibrium, similarly to post-discharge conditions. The multitemperature description is not adequate because the internal level distributions show tails overpopulated with respect to a Boltzmann distribution. The state-to-state approach has to be used, including the interaction with free electrons which follow non-maxwellian distributions.

  18. Investigation of atmospheric pressure capillary non-thermal plasmas and their applications to the degradation of volatile organic compounds

    Science.gov (United States)

    Yin, Shu-Min

    Atmospheric pressure capillary non-thermal plasma (AP-CNTP) has been investigated as a potential technology far the removal of volatile organic compounds (VOCs) in Advanced Life Support Systems (ALS). AP-CNTP is a destructive technology far the removal of VOCs from air streams by active plasma species, such as electrons, ions, and excited molecules. Complete VOC destruction ideally results in the formation of water, carbon dioxide (CO2), and other by-product's may also form, including ozone (O3), nitrous oxide (N2O), nitrogen dioxide (NO2), and decomposed hydrocarbons. Several organic compounds, such as BTEX, ethylene, n-heptane, isooctane, methanol and NH3, were tested in an AP-CNTP system. Parametric experiments were carried out by varying plasma discharge power, flowrates, and initial concentrations. The degradation efficiency varied depending on the chemical nature of the compounds. A plasmochemical kinetic model was derived for toluene, ethylbenzene, and m-xylene and n-heptane.

  19. Development of non-thermal plasma jet and its potential application for color degradation of organic pollutant in wastewater treatment

    Science.gov (United States)

    Pirdo Kasih, Tota; Kharisma, Angel; Perdana, Muhammad Kevin; Murphiyanto, Richard Dimas Julian

    2017-12-01

    This paper presents the development of non-thermal plasma-based AOPs for color degradation in wastewater treatment. The plasma itself was generated by an in-house high voltage power supply (HVPS). Instead of gas-phase plasma system, we applied plasma jet system underwater during wastewater treatment without additional any chemicals (chemical-free processing). The method is thought to maximize the energy transfer and increase the efficient interaction between plasma and solution during the process. Our plasma jet system could proceed either by using helium (He), argon (Ar) and air as the medium in an open air atmosphere. Exploring the developed plasma to be applied in organic wastewater treatment, we demonstrated that the plasma jet could be generated underwater and yields in color degradation of methylene blue (MB) wastewater model. When using Ar gas as a medium, the color degradation of MB could be achieved within 90 minutes. Whereas, by using Ar with an admixing of oxygen (O2) gas, the similar result could be accomplished within 60 minutes. Additional O2 gas in the latter might produce more hydroxyl radicals and oxygen-based species which speed up the oxidative reaction with organic pollutants, and hence accelerate the process of color degradation.

  20. Cyclotron radiation from thermal and non-thermal electrons in the WEGA-stellarator

    International Nuclear Information System (INIS)

    Piekaar, H.W.; Rutgers, W.R.

    1980-11-01

    Electron cyclotron radiation measurements on the WEGA-stellarator are reported. Emission spectra around 2ωsub(ce) and 3ωsub(ce) were measured with a far-infra-red spectrometer and InSb detectors. When the plasma loop voltage is high, runaway electrons give rise to intense broad-band emission. Runaway particles can be removed by increasing the plasma density. For low loop voltage discharges the electron temperature profile was deduced from thermal emission around 2ωsub(ce). In spite of the low E-field, runaway particles are still created and pitch-angle scattered because ωsub(pe)/ωsub(ce) approximately 1. From non-thermal emission below 2ωsub(ce) and 3ωsub(ce) the energy and number of particles could be calculated, and was found to be in agreement with existing theories

  1. Study of non inductive current generation in a plasma

    International Nuclear Information System (INIS)

    Rax, J.M.

    1987-01-01

    The problem of non-thermal bremsstrahlung during lower hybrid current drive is considered. The proposed method shows the role of the Compton effects at low frequencies and allows us to establish the link between the emitted power and the absorbed power at high frequency. The non-thermal emission is considered as a kinematical mode conversion between the absorbed radio-frequency mode and the emitted X ray photons. The fast electrons diagnostics and the ways to reach the wave structure are shown. Kinetic and electromagnetic problems concerning current generation are described. The plasma properties and diagnostics in the case of a non inductive current generation are discussed [fr

  2. Nuclear reactor vessel fuel thermal insulating barrier

    Science.gov (United States)

    Keegan, C. Patrick; Scobel, James H.; Wright, Richard F.

    2013-03-19

    The reactor vessel of a nuclear reactor installation which is suspended from the cold leg nozzles in a reactor cavity is provided with a lower thermal insulating barrier spaced from the reactor vessel that has a hemispherical lower section that increases in volume from the center line of the reactor to the outer extent of the diameter of the thermal insulating barrier and smoothly transitions up the side walls of the vessel. The space between the thermal insulating harrier and the reactor vessel forms a chamber which can be flooded with cooling water through passive valving to directly cool the reactor vessel in the event of a severe accident. The passive inlet valve for the cooling water includes a buoyant door that is normally maintained sealed under its own weight and floats open when the cavity is Hooded. Passively opening steam vents are also provided.

  3. Internal transport barrier and β limit in ohmically heated plasma in TUMAN-3M

    International Nuclear Information System (INIS)

    Andreiko, M.V.; Askinazi, L.G.; Golant, V.E.

    2001-01-01

    An Internal Transport Barrier (ITB) was found in ohmically heated plasma in TUMAN-3M (R 0 =53 cm, a l =22 cm - circular limiter configuration, B t ≤0.7T, I p ≤175 kA, ≤6.0·10 19 m -3 ). The barrier reveals itself as a formation of a steep gradient on electron temperature and density radial profiles. The regions with reduced diffusion and electron thermal diffusivity are in between r=0.5a and r=0.7a. The ITB appears more frequently in the shots with higher plasma current. At lower currents (I p N limit in the ohmically heated plasma are presented. Stored energy was measured using diamagnetic loops and compared with W calculated from kinetic data obtained by Thomson scattering and microwave interferometry. Measurements of the stored energy and of the β were performed in the ohmic H-mode before and after boronization and in the scenario with the fast Current Ramp-Down in the ohmic H-mode. Maximum value of β T of 2.0 % and β N of 2 were achieved. The β N limit achieved is 'soft' (nondisruptive) limit. The stored energy slowly decays after the Current Ramp-Down. No correlation was found between beta restriction and MHD phenomena. (author)

  4. Low Thermal Conductivity, High Durability Thermal Barrier Coatings for IGCC Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Eric [Univ. of Connecticut, Storrs, CT (United States); Gell, Maurice [Univ. of Connecticut, Storrs, CT (United States)

    2015-01-15

    Advanced thermal barrier coatings (TBC) are crucial to improved energy efficiency in next generation gas turbine engines. The use of traditional topcoat materials, e.g. yttria-stabilized zirconia (YSZ), is limited at elevated temperatures due to (1) the accelerated undesirable phase transformations and (2) corrosive attacks by calcium-magnesium-aluminum-silicate (CMAS) deposits and moisture. The first goal of this project is to use the Solution Precursor Plasma Spray (SPPS) process to further reduce the thermal conductivity of YSZ TBCs by introducing a unique microstructural feature of layered porosity, called inter-pass boundaries (IPBs). Extensive process optimization accompanied with hundreds of spray trials as well as associated SEM cross-section and laser-flash measurements, yielded a thermal conductivity as low as 0.62 Wm⁻¹K⁻¹ in SPPS YSZ TBCs, approximately 50% reduction of APS TBCs; while other engine critical properties, such as cyclic durability, erosion resistance and sintering resistance, were characterized to be equivalent or better than APS baselines. In addition, modifications were introduced to SPPS TBCs so as to enhance their resistance to CMAS under harsh IGCC environments. Several mitigation approaches were explored, including doping the coatings with Al₂O₃ and TiO₂, applying a CMAS infiltration-inhibiting surface layer, and filling topcoat cracks with blocking substances. The efficacy of all these modifications was assessed with a set of novel CMAS-TBC interaction tests, and the moisture resistance was tested in a custom-built high-temperature moisture rig. In the end, the optimal low thermal conductivity TBC system was selected based on all evaluation tests and its processing conditions were documented. The optimal coating consisted on a thick inner layer of YSZ coating made by the SPPS process having a thermal conductivity 50% lower than standard YSZ coatings topped with a high temperature tolerant CMAS resistant gadolinium

  5. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    Science.gov (United States)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  6. Plasma sprayed thermal barrier coatings for industrial gas turbines: morphology, processing and properties

    International Nuclear Information System (INIS)

    Gruenling, H.W.; Mannsmann, W.

    1993-01-01

    Thermal barrier coatings out of fully or partially stabilized zirconia offer a unique chance in gas turbines to increase the gas inlet temperature significantly while keeping the temperature of the structural material of the component within conventional limits. The protection of combustor parts and transition pieces as well as of some stationary gas turbine parts however is state of the art. As a consequence of still insufficient reliability, the application for hot rotating parts is very limited. The introduction as a design element requires safe life within defined time intervals. These depend on the overhaul and repair intervals of the engines. For large land based industrial or utility gas turbines, for example, coating life between 25.000 and 30.000 hrs. is a minimum requirement. Premature failure of a coating by e.g. local spalling causes local overheating of the component with the consequence of its total destruction or even more expensive secondary damages. Life limiting is the corrosion rate at the ceramic-metal interface and the behavior of the coated system under transient operating conditions, where multiaxial strain and stress distributions are generated. Sufficient strain tolerance of the coating both under tensile as well as compressive conditions is required. The properties of thermal barrier coating systems depend strongly on the structure and phase composition of the coating layers and the morphology of and the adhesion at the ceramic-metal interface. They have to be controlled by the process itself, the process parameters and the characteristics of the applied materials (e.g. chemical composition, processing, morphology, particle size and size distribution). It will be reviewed, how properties and structures of coating systems correlate and how structures can be modified by careful control of the process parameters. (orig.)

  7. Lower-Conductivity Ceramic Materials for Thermal-Barrier Coatings

    Science.gov (United States)

    Bansal, Narottam P.; Zhu, Dongming

    2006-01-01

    Doped pyrochlore oxides of a type described below are under consideration as alternative materials for high-temperature thermal-barrier coatings (TBCs). In comparison with partially-yttria-stabilized zirconia (YSZ), which is the state-of-the-art TBC material now in commercial use, these doped pyrochlore oxides exhibit lower thermal conductivities, which could be exploited to obtain the following advantages: For a given difference in temperature between an outer coating surface and the coating/substrate interface, the coating could be thinner. Reductions in coating thicknesses could translate to reductions in weight of hot-section components of turbine engines (e.g., combustor liners, blades, and vanes) to which TBCs are typically applied. For a given coating thickness, the difference in temperature between the outer coating surface and the coating/substrate interface could be greater. For turbine engines, this could translate to higher operating temperatures, with consequent increases in efficiency and reductions in polluting emissions. TBCs are needed because the temperatures in some turbine-engine hot sections exceed the maximum temperatures that the substrate materials (superalloys, Si-based ceramics, and others) can withstand. YSZ TBCs are applied to engine components as thin layers by plasma spraying or electron-beam physical vapor deposition. During operation at higher temperatures, YSZ layers undergo sintering, which increases their thermal conductivities and thereby renders them less effective as TBCs. Moreover, the sintered YSZ TBCs are less tolerant of stress and strain and, hence, are less durable.

  8. Galaxy Cluster Outskirts from the Thermal SZ and Non-Thermal Synchrotron Link

    Directory of Open Access Journals (Sweden)

    Kaustuv Basu

    2016-11-01

    Full Text Available Galaxy cluster merger shocks are the main agent for the thermalization of the intracluster medium and the energization of cosmic ray particles in it. Shock propagation changes the state of the tenuous intracluster plasma, and the corresponding signal variations are measurable with the current generation of X-ray and Sunyaev–Zel’dovich (SZ effect instruments. Additionally, non-thermal electrons (re-energized by the shocks sometimes give rise to extended and luminous synchrotron sources known as radio relics, which are prominent indicators of shocks propagating roughly in the plane of the sky. In this short review, we discuss how the joint modeling of the non-thermal and thermal signal variations across radio relic shock fronts is helping to advance our knowledge of the gas thermodynamical properties and magnetic field strengths in the cluster outskirts. We describe the first use of the SZ effect to measure the Mach numbers of relic shocks, for both the nearest (Coma and the farthest (El Gordo clusters with known radio relics.

  9. Inactivation of Candida biofilms by non-thermal plasma and its enhancement for fungistatic effect of antifungal drugs.

    Directory of Open Access Journals (Sweden)

    Yi Sun

    Full Text Available We investigated the antifungal effect of non-thermal plasma, as well as its combination with common antifungal drugs, against Candida biofilms. A direct current atmospheric pressure He/O(2 (2% plasma microjet (PMJ was used to treat Candida biofilms in a 96-well plate. Inactivation efficacies of the biofilms were evaluated by XTT assay and counting colony forming units (CFUs. Morphological properties of the biofilms were evaluated by Scanning Electron Microscope (SEM. The sessile minimal inhibitory concentrations (SMICs of fluconazole, amphotericin B, and caspofungin for the biofilms were also tested. Electron Spin Resonance (ESR spectroscopy was used to detect the reactive oxygen species (ROS generated directly and indirectly by PMJ. The Candida biofilms were completely inactivated after 1 min PMJ treatment, where severely deformed fungal elements were observed in SEM images. The SMICs of the tested antifungal drugs for the plasma-treated biofilms were decreased by 2-6 folds of dilution, compared to those of the untreated controls. ROS such as hydroxyl radical ((•OH, superoxide anion radical ((•O(2 (- and singlet molecular oxygen ((1O(2 were detected by ESR. We hence conclude that He/O(2 (2% plasma alone, as well as in combination with common antifungal drugs, is able to inactivate Candida biofilms rapidly. The generation of ROS is believed to be one of the underlying mechanisms for the fungicidal activity of plasma.

  10. Theoretical modeling of transport barriers in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S.; Itoh, K.; Ohyabu, N.

    2008-10-01

    A unified transport modelling to explain electron Internal Transport Barriers (e-ITB) in helical plasmas and Internal Diffusion Barriers (IDB) observed in Large Helical Device (LHD) is proposed. The e-ITB can be predicted with the effect of zonal flows to obtain the e-ITB in the low collisional regime when the radial variation of the particle anomalous diffusivity is included. Transport analysis in this article can newly show that the particle fuelling induces the IDB formation when this unified transport modelling is used in the high collisional regime. The density limit for the IDB in helical plasmas is also examined including the effect of the radiation loss. (author)

  11. Observation of scaling laws of ion confining potential versus thermal barrier depth and of axial particle confinement time in the tandem mirror GAMMA 10

    International Nuclear Information System (INIS)

    Cho, T.; Inutake, M.; Ishii, K.

    1988-01-01

    In the thermal barrier tandem mirror GAMMA 10, the scaling law governing the enhancement of the ion confining potential, φ c , resulting from thermal barrier formation, is obtained experimentally, and is consistently interpreted in terms of the weak and strong ECH theories set up by Cohen and co-workers. The scaling law on the axial particle confinement time, τ pparallel , related to this φ c formation, is also demonstrated in detail; it is in good agreement with the Pastukhov theory as modified by Cohen and co-workers. This scaling is verified at any radial position in the core plasma region and at any time through the various stages of a discharge; this indicates a scaling with drastic improvement of τ pparallel , due to the potential formation in the tandem mirror plasma. (author). 41 refs, 12 figs

  12. Evaluation of properties and thermal stress field for thermal barrier coatings

    Institute of Scientific and Technical Information of China (English)

    王良; 齐红宇; 杨晓光; 李旭

    2008-01-01

    In order to get thermal stress field of the hot section with thermal barrier coating (TBCs), the thermal conductivity and elastic modulus of top-coat are the physical key properties. The porosity of top-coat was tested and evaluated under different high temperatures. The relationship between the microstructure (porosity of top-coat) and properties of TBCs were analyzed to predict the thermal properties of ceramic top-coat, such as thermal conductivity and elastic modulus. The temperature and stress field of the vane with TBCs were simulated using two sets of thermal conductivity data and elastic modulus, which are from literatures and this work, respectively. The results show that the temperature and stress distributions change with thermal conductivity and elastic modulus. The differences of maximum temperatures and stress are 6.5% and 8.0%, respectively.

  13. Oxide growth and damage evolution in thermal barrier coatings

    NARCIS (Netherlands)

    Hille, T.S.; Turteltaub, S.R.; Suiker, A.S.J.

    2011-01-01

    Cracking in thermal barrier coatings (TBC) is triggered by the development of a thermally-grown oxide (TGO) layer that develops during thermal cycling from the oxidation of aluminum present in the bond coat (BC). In the present communication a numerical model is presented that describes the

  14. The energy partitioning of non-thermal particles in a plasma: the Coulomb logarithm revisited

    International Nuclear Information System (INIS)

    Singleton, Robert L Jr; Brown, Lowell S

    2008-01-01

    The charged particle stopping power in a highly ionized and weakly to moderately coupled plasma has been calculated exactly to leading and next-to-leading accuracy in the plasma density by Brown, Preston and Singleton (BPS). Since the calculational techniques of BPS might be unfamiliar to some, and since the same methodology can also be used for other energy transport phenomena, we will review the main ideas behind the calculation. BPS used their stopping power calculation to derive a Fokker-Planck equation, also accurate to leading and next-to-leading orders, and we will also review this. We use this Fokker-Planck equation to compute the electron-ion energy partitioning of a charged particle traversing a plasma. The motivation for this application is ignition for inertial confinement fusion-more energy delivered to the ions means a better chance of ignition, and conversely. It is therefore important to calculate the fractional energy loss to electrons and ions as accurately as possible. One method by which one calculates the electron-ion energy splitting of a charged particle traversing a plasma involves integrating the stopping power dE/dx. However, as the charged particle slows down and becomes thermalized into the background plasma, this method of calculating the electron-ion energy splitting breaks down. As a result, it suffers a systematic error that may be as large as T/E 0 , where T is the plasma temperature and E 0 is the initial energy of the charged particle. The formalism presented here is designed to account for the thermalization process and it provides results that are near-exact.

  15. Internal transport barrier in tokamak and helical plasmas

    Science.gov (United States)

    Ida, K.; Fujita, T.

    2018-03-01

    The differences and similarities between the internal transport barriers (ITBs) of tokamak and helical plasmas are reviewed. By comparing the characteristics of the ITBs in tokamak and helical plasmas, the mechanisms of the physics for the formation and dynamics of the ITB are clarified. The ITB is defined as the appearance of discontinuity of temperature, flow velocity, or density gradient in the radius. From the radial profiles of temperature, flow velocity, and density the ITB is characterized by the three parameters of normalized temperature gradient, R/{L}T, the location, {ρ }{ITB}, and the width, W/a, and can be expressed by ‘weak’ ITB (small R/{L}T) or ‘strong’ (large R/{L}T), ‘small’ ITB (small {ρ }{ITB}) or ‘large’ ITB (large {ρ }{ITB}), and ‘narrow’ (small W/a) or ‘wide’ (large W/a). Three key physics elements for the ITB formation, radial electric field shear, magnetic shear, and rational surface (and/or magnetic island) are described. The characteristics of electron and ion heat transport and electron and impurity transport are reviewed. There are significant differences in ion heat transport and electron heat transport. The dynamics of ITB formation and termination is also discussed. The emergence of the location of the ITB is sometimes far inside the ITB foot in the steady-state phase and the ITB region shows radial propagation during the formation of the ITB. The non-diffusive terms in momentum transport and impurity transport become more dominant in the plasma with the ITB. The reversal of the sign of non-diffusive terms in momentum transport and impurity transport associated with the formation of the ITB reported in helical plasma is described. Non-local transport plays an important role in determining the radial profile of temperature and density. The spontaneous change in temperature curvature (second radial derivative of temperature) in the ITB region is described. In addition, the key parameters of the control of the

  16. Thermal plasma waste treatment

    International Nuclear Information System (INIS)

    Heberlein, Joachim; Murphy, Anthony B

    2008-01-01

    Plasma waste treatment has over the past decade become a more prominent technology because of the increasing problems with waste disposal and because of the realization of opportunities to generate valuable co-products. Plasma vitrification of hazardous slags has been a commercial technology for several years, and volume reduction of hazardous wastes using plasma processes is increasingly being used. Plasma gasification of wastes with low negative values has attracted interest as a source of energy and spawned process developments for treatment of even municipal solid wastes. Numerous technologies and approaches exist for plasma treatment of wastes. This review summarizes the approaches that have been developed, presents some of the basic physical principles, provides details of some specific processes and considers the advantages and disadvantages of thermal plasmas in waste treatment applications. (topical review)

  17. Removal of main exhaust gases of vehicles by a double dielectric barrier discharge

    International Nuclear Information System (INIS)

    Pacheco, M; Valdivia, R; Pacheco, J; Rivera, C; Alva, E; Santana, A; Huertas, J; Lefort, B; Estrada, N

    2012-01-01

    Because the health effects and their contribution to climate change, the emissions of toxic gases are becoming more controlled. In order to improve the diminution of toxic gases to the atmosphere, several techniques have been developed; here it will be focus only to automotive emissions. This work deals about the treatment of toxic gases emitted from vehicles by a non-thermal plasma. Several tests were done in a 4-cylinder 2002/Z16SE motor to characterize the vehicle emissions. With these results gas mixture simulating the exhaust gases vehicles, was used in experiments at different conditions employing a double dielectric barrier reactor for their treatment. The removal efficiencies superior to 90% show the competence of the non-thermal plasma reactor to treat these gases. Experimental results are explained with the aid of a simple chemical model that suggests a possible mechanism of degradation of toxic gases. The plasma reactor employed could works at 12V supplied without difficulty by a vehicle battery.

  18. Microstructure Evolution and Impedance Spectroscopy Characterization of Thermal Barrier Coating Exposed to Gas Thermal-shock Environment

    Directory of Open Access Journals (Sweden)

    CHEN Wen-long

    2017-10-01

    Full Text Available Gas thermal-shock experiment of thermal barrier coatings (TBCs was carried out in air up to 1250℃ in order to simulate the thermal cycling process of the engine blades during the start heating and shut down cooling. The growth of thermal growth oxide (TGO layer and microstructure evolution of YSZ layer during thermal cycling process were investigated systematically by electrochemical impedance spectroscopy testing and SEM. The results show that the thickness of TGO layer increases when increasing the frequency of thermal cycling, and the impedance response of middle frequencies is more and more remarkable. Meanwhile, initiation and growth of micro-cracks occur in YSZ layer during the gas thermal-shock experiment. The corresponding impedance characterization of YSZ layer after 100 cycles is similar to the as-sprayed sample, indicating that micro-cracks in short time could heal since the YSZ micro-cracks sinter at high temperature. But after 300 cycles, the impedance spectroscopy of YSZ layer is quite different to the as-sprayed sample, with the corresponding impedance of particle-gap of YSZ more and more remarkable with the increase of the thermal-shock times, indicating that non-healing micro-cracks form in the YSZ layer, which may be the main reason to induce the failure of YSZ layer.

  19. Calcium-Magnesium-Aluminosilicate (CMAS) Infiltration and Cyclic Degradations of Thermal and Environmental Barrier Coatings in Thermal Gradients

    Science.gov (United States)

    Zhu, Dongming; Harder, Bryan; Smialek, Jim; Miller, Robert A.

    2014-01-01

    In a continuing effort to develop higher temperature capable turbine thermal barrier and environmental barrier coating systems, Calcium-Magnesium-Aluminosilicate (CMAS) resistance of the advanced coating systems needs to be evaluated and improved. This paper highlights some of NASA past high heat flux testing approaches for turbine thermal and environmental barrier coatings assessments in CMAS environments. One of our current emphases has been focused on the thermal barrier - environmental barrier coating composition and testing developments. The effort has included the CMAS infiltrations in high temperature and high heat flux turbine engine like conditions using advanced laser high heat flux rigs, and subsequently degradation studies in laser heat flux thermal gradient cyclic and isothermal furnace cyclic testing conditions. These heat flux CMAS infiltration and related coating durability testing are essential where appropriate CMAS melting, infiltration and coating-substrate temperature exposure temperature controls can be achieved, thus helping quantify the CMAS-coating interaction and degradation mechanisms. The CMAS work is also playing a critical role in advanced coating developments, by developing laboratory coating durability assessment methodologies in simulated turbine engine conditions and helping establish CMAS test standards in laboratory environments.

  20. Measurements and Simulations of Surface Dielectric Barrier Discharges Used as Plasma Actuators

    Science.gov (United States)

    Hoskinson, Alan R.

    2012-01-01

    This report is a Ph.D. dissertation performed under NRA cooperative agreement and submitted as part of the final report. Asymmetric surface dielectric barrier discharges (DBDs) have shown promise for use as aerodynamic actuators for active flow control. In this project we studied DBD actuators experimentally and numerically. Our DBDs used a symmetric triangular high voltage waveform to generate plasma in atmospheric pressure air. Time-averaged measurements indicated that the induced force of a single barrier actuator design (one electrode insulated from the plasma) can be increased exponentially above the results of previous studies by decreasing both the length and thickness of the electrode exposed to the plasma. This increased force may allow these devices to control flow separation in a wider range of flow environments. Experiments using an intensified digital camera to examine the plasma on time scales of a few nanoseconds showed that, in addition to the previously-observed filamentary and jet-like plasma structures, discharges with very thin exposed electrodes exhibited a weak but constant plasma immediately adjacent to those electrodes. In double-barrier actuators (both electrodes insulated), decreasing the diameter of the narrower electrode lead to increasing forces, and recorded images showed the simultaneous existence of both filamentary and jet-like plasma structures. The development and application of a time-dependent, two-dimensional computational fluid plasma model has aided in understanding the detailed physics of surface DBDs at all-time scales. For simulated single-barrier discharges, the model qualitatively reproduced the filamentary and jet-like micro-discharge structures. The model was somewhat successful in reproducing the observed characteristics of double-barrier actuators. For both actuator geometries, the model indicated that the majority of the forces induced on the neutral gas occur in between micro-discharges as the plasmas decay.

  1. Enthalpy probe measurements and three-dimensional modelling on air plasma jets generated by a non-transferred plasma torch with hollow electrodes

    International Nuclear Information System (INIS)

    Kim, Keun Su; Park, Jin Myung; Choi, Sooseok; Kim, Jongin; Hong, Sang Hee

    2008-01-01

    Thermal flow characteristics of air plasma jets generated by a non-transferred plasma torch with hollow electrodes are experimentally and numerically investigated in order to provide more reliable scientific and technical information, which has been insufficient for their practical applications to material and environmental industries. In this work, a thermal plasma torch of hollow electrode type is first designed and fabricated, and similarity criteria for predicting operational conditions for the scale-up to high-power torches are derived from the arc voltage characteristics measured with various operating and geometry conditions of the torch. The thermal flow characteristics of air plasma jets ejected from the torch are measured by enthalpy probe diagnostics and turn out to have relatively low temperatures of around 3000-7000 K, but show features of other unique properties, such as high energy flux, broad high temperature region and long plasma jet with moderate axial velocity, which are promising for their applications to material syntheses and hazardous waste treatments. Such high enthalpy at a relatively low temperature of air thermal plasma compared with the argon one is due to the high thermal energy residing in the vibrational and rotational states and oxygen dissociation, besides the translational states in monatomic gases such as argon. It is expected that this high specific enthalpy of the air plasma will enable material and environmental industries to treat a large amount of precursors and waste materials effectively at a lower temperature for a longer residence time by the low plasma velocity. It is also found from the measurements that the turbulence intensity influenced by the size of the electrode diameter has a significant effect on the axial and radial profiles of plasma jet properties and that a longer plasma jet is more readily achievable with a larger electrode diameter reducing the turbulence intensity in the external region of the torch. In

  2. Influence of non-equilibrium effects on plasma property functions in hybrid water-argon plasma torch

    Czech Academy of Sciences Publication Activity Database

    Křenek, Petr; Hrabovský, Milan

    2010-01-01

    Roč. 14, 1-2 (2010), s. 95-100 ISSN 1093-3611. [European High Temperature Plasma Processes (HTPP)/10th./. Patras (Patras University), 07.07.2008-11.07.2008] R&D Projects: GA ČR GA202/08/1084 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * material properties * non-equlibrium phenomena * dc arc torch Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.189, year: 2010 http://www.begellhouse.com/journals/57d172397126f956,227c67f42b79464a,5bbc4c7760b4b6cb.html

  3. Fabrication of samarium strontium aluminate ceramic and deposition of thermal barrier coatings by air plasma spray process

    Directory of Open Access Journals (Sweden)

    Baskaran T

    2018-01-01

    Full Text Available Thermal barrier coatings (TBC with the metallic NiCrAlY bond coat are often used in many aircraft engines to protect superalloy components from high-temperature corrosion thereby to improve the life of gas turbine components. The search for new TBC material has been intensified in recent years due to lack of thermo-physical properties of conventionally used Yttria stabilized Zirconia (YSZ TBCs. Recently, the rare earth containing Samarium Strontium Aluminate (SSA based ceramic was proposed as a new TBC material due to its matching thermo-physical properties with the substrate. The present work focused on the synthesis of SSA ceramics for TBCs application and its coatings development on Ni-based superalloy Inconel 718 substrate by air plasma spray process. The X-ray photoelectron spectroscopy (XPS result confirmed the formation of single phase SSA ceramic after synthesis. The surface morphology of SSA TBCs is mainly composed of melted splats, semi and un-melted particles. The cross-sectional SEM micrographs did not show any spallation at the interface which indicated good mechanical interlocking between the bond coat and ceramic top coat. The Young’s modulus and hardness of SSA TBCs were found to be 80 and 6.1 GPa, respectively. The load-depth curve of SSA TBC showed good elastic recovery about 47 %.

  4. Evaluation of thermal and non-thermal processing effect on non-prebiotic and prebiotic acerola juices using 1H qNMR and GC-MS coupled to chemometrics.

    Science.gov (United States)

    Alves Filho, Elenilson G; Silva, Lorena Mara A; de Brito, Edy S; Wurlitzer, Nedio Jair; Fernandes, Fabiano A N; Rabelo, Maria Cristiane; Fonteles, Thatyane V; Rodrigues, Sueli

    2018-11-01

    The effects of thermal (pasteurization and sterilization) and non-thermal (ultrasound and plasma) processing on the composition of prebiotic and non-prebiotic acerola juices were evaluated using NMR and GC-MS coupled to chemometrics. The increase in the amount of Vitamin C was the main feature observed after thermal processing, followed by malic acid, choline, trigonelline, and acetaldehyde. On the other hand, thermal processing increased the amount of 2-furoic acid, a degradation product from ascorbic acid, as well as influenced the decrease in the amount of esters and alcohols. In general, the non-thermal processing did not present relevant effect on juices composition. The addition of prebiotics (inulin and gluco-oligosaccharides) decreased the effect of processing on juices composition, which suggested a protective effect by microencapsulation. Therefore, chemometric evaluation of the 1 H qNMR and GC-MS dataset was suitable to follow changes in acerola juice under different processing. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Numerical calculation of axisymmetric non-neutral plasma equilibria

    International Nuclear Information System (INIS)

    Spencer, R.L.; Rasband, S.N.; Vanfleet, R.R.

    1993-01-01

    Efficient techniques for computing axisymmetric non-neutral plasma equilibria are described. These equilibria may be obtained either by requiring global thermal equilibrium, by specifying the midplane radial density profile, or by specifying the radial profile of ∫n dz. Both splines and finite-differences are used, and the accuracy of the two is compared by using a new characterization of the thermal equilibrium density profile which gives a simple formula for estimating the radial and axial gradient scale lengths of thermal equilibria. It is found that for global thermal equilibrium 1% accuracy is achieved with splines if the distance between neighboring splines is about two Debye lengths while finite differences require a grid spacing of about one-half Debye length to achieve the same accuracy

  6. Non-thermal plasma treatment as a new biotechnology in relation to seeds, dry fruits, and grains

    Science.gov (United States)

    Božena, ŠERÁ; Michal, ŠERÝ

    2018-04-01

    Non-thermal plasma (NTP) technology offers wide potential use in the food technology, the same as in the unconventional agriculture. Some seeds, dry fruits, grains and their sprouts gain popularity in the culinary industry as ‘raw seeds’. This review paper draws the current research and trends in NTP pre-treatment of selected seeds/fruits that are useable as ‘raw seeds’. The main applications are connected with activation of seed germination, early growth of seedlings, microbial inactivation of seed/fruit surface, and possibility of increasing quantity of biological active compounds in sprouting seeds. The paper presents a list of plant species that are able to be used as ‘raw seed’ including current information about main type of NTP treatment implemented.

  7. Microstability of TMX-U during initial thermal barrier operation

    International Nuclear Information System (INIS)

    Casper, T.A.; Berzins, L.V.; Ellis, R.F.; James, R.A.; Lasnier, C.

    1984-03-01

    During the initial thermal barrier experiments on the Tandem Mirror Experiment-Upgrade (TMX-U), we successfully demonstrated the principle of improved axial tandem mirror confinement achieved by establishment of both the thermal barrier and the ion confining potential peak. During this operation, we created both hot (100-keV) mirror-confined electron and hot (8-keV) mirror-confined ion populations in the end cells. In certain parameter ranges, we observed these species to be weakly unstable to various microinstabilities, but we did not observe clear evidence for an absolute limit to confinement

  8. Hierarchical modeling of plasma and transport phenomena in a dielectric barrier discharge reactor

    Science.gov (United States)

    Bali, N.; Aggelopoulos, C. A.; Skouras, E. D.; Tsakiroglou, C. D.; Burganos, V. N.

    2017-12-01

    A novel dual-time hierarchical approach is developed to link the plasma process to macroscopic transport phenomena in the interior of a dielectric barrier discharge (DBD) reactor that has been used for soil remediation (Aggelopoulos et al 2016 Chem. Eng. J. 301 353-61). The generation of active species by plasma reactions is simulated at the microseconds (µs) timescale, whereas convection and thermal conduction are simulated at the macroscopic (minutes) timescale. This hierarchical model is implemented in order to investigate the influence of the plasma DBD process on the transport and reaction mechanisms during remediation of polluted soil. In the microscopic model, the variables of interest include the plasma-induced reactive concentrations, while in the macroscopic approach, the temperature distribution, and the velocity field both inside the discharge gap and within the polluted soil material as well. For the latter model, the Navier-Stokes and Darcy Brinkman equations for the transport phenomena in the porous domain are solved numerically using a FEM software. The effective medium theory is employed to provide estimates of the effective time-evolving and three-phase transport properties in the soil sample. Model predictions considering the temporal evolution of the plasma remediation process are presented and compared with corresponding experimental data.

  9. Modeling of Thermal Barrier Coatings

    Science.gov (United States)

    Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.

    1992-01-01

    The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.

  10. Minimized thermal conductivity in highly stable thermal barrier W/ZrO{sub 2} multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Doering, Florian; Major, Anna; Eberl, Christian; Krebs, Hans-Ulrich [University of Goettingen, Institut fuer Materialphysik, Goettingen (Germany)

    2016-10-15

    Nanoscale thin-film multilayer materials are of great research interest since their large number of interfaces can strongly hinder phonon propagation and lead to a minimized thermal conductivity. When such materials provide a sufficiently small thermal conductivity and feature in addition also a high thermal stability, they would be possible candidates for high-temperature applications such as thermal barrier coatings. For this article, we have used pulsed laser deposition in order to fabricate thin multilayers out of the thermal barrier material ZrO{sub 2} in combination with W, which has both a high melting point and high density. Layer thicknesses were designed such that bulk thermal conductivity is governed by the low value of ZrO{sub 2}, while ultrathin W blocking layers provide a high number of interfaces. By this phonon scattering, reflection and shortening of mean free path lead to a significant reduction in overall thermal conductivity even below the already low value of ZrO{sub 2}. In addition to this, X-ray reflectivity measurements were taken showing strong Bragg peaks even after annealing such multilayers at 1300 K. Those results identify W/ZrO{sub 2} multilayers as desired thermally stable, low-conductivity materials. (orig.)

  11. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, H.

    2002-01-01

    Relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated for the first time in reversed shear (RS) and high-β p ELMy H-mode (weak positive shear) plasmas of JT-60U for understanding of compatibility of improved energy confinement and effective particle control such as exhaust of helium ash and reduction in impurity contamination. In the RS plasma, no helium and carbon accumulation inside the ITB is observed even with highly improved energy confinement. In the high-β p plasma, both helium and carbon density profiles are flat. As the ion temperature profile changes from parabolic- to box-type, the helium diffusivity decreases by a factor of about 2 as well as the ion thermal diffusivity in the RS plasma. The measured soft X-ray profile is more peaked than that calculated by assuming the same n AR profile as the n e profile in the Ar injected RS plasma with the box-type profile, suggesting accumulation of Ar inside the ITB. Particle transport is improved with no change of ion temperature in the RS plasma, when density fluctuation is drastically reduced by a pellet injection. (author)

  12. Power dependence of ion thermal diffusivity at the internal transport barrier in JT-60U

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Yoshiteru; Suzuki, Takahiro; Ide, Shunsuke [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment] [and others

    2002-09-01

    The formation properties of an internal transport barrier (ITB) were investigated in a weak positive magnetic shear plasma by changing the neutral beam heating power. The ion thermal diffusivity in the core region shows L-mode state, weak ITB, and strong ITB, depending upon the heating power. Two features of ITB formation were experimentally confirmed. Weak ITB was formed in spite of the absence of an apparent transition in an ion temperature profile. On the other hand, strong ITB appeared after an apparent transition from the weak ITB. In addition, the ion thermal diffusivity at the ITB is correlated to the radial electric field shear. In the case of the weak ITB, ion thermal diffusivity decreased gradually with increases in the radial electric field shear. There exists a threshold in the radial electric field shear, which allows for a change in state from that of weak to strong ITBs. (author)

  13. Removal of dimethyl sulfide by the combination of non-thermal plasma and biological process.

    Science.gov (United States)

    Wei, Z S; Li, H Q; He, J C; Ye, Q H; Huang, Q R; Luo, Y W

    2013-10-01

    A bench scale system integrated with a non-thermal plasma (NTP) and a biotricking filtration (BTF) unit for the treatment of gases containing dimethyl sulfide (DMS) was investigated. DMS removal efficiency in the integrated system was up to 96%. Bacterial communities in the BTF were assessed by PCR-DGGE, which play the dominant role in the biological processes of metabolism, sulfur oxidation, sulfate-reducing and carbon oxidation. The addition of ozone from NTP made microbial community in BTF more complicated and active for DMS removal. The NTP oxidize DMS to simple compounds such as methanol and carbonyl sulfide; the intermediate organic products and DMS are further oxidized to sulfate, carbon dioxide, water vapors by biological degradation. These results show that NTP-BTF is achievable and open new possibilities for applying the integrated with NTP and BTF to odour gas treatment. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Measurement of the non-thermal properties of a low pressure spraying plasma by electric and spectroscopic methods

    International Nuclear Information System (INIS)

    Jung, Yong Ho

    2003-02-01

    For the case of an atmospheric plasma, the local thermodynamic equilibrium (LTE) model can be applied to plasmas at a nozzle entrance and to those on the axis of the plasma flame, but it is not easy to justify applying the LTE model to off-center plasma and to a low-pressure spraying plasma. Although the energy distribution of the electrons is assumed to be Maxwellian for the most of spraying plasmas, the non-Maxwellian distribution is possible for the case of low-pressure spaying plasma and edge plasma of atmospheric spraying plasma. In this work, the non-Maxwellian distribution of electrons was measured by using an electric probe installed on the fast scanning probe system, and non-LTE effects were measured by using the optical emission spectroscopy system. Distribution of the electrons of a low-pressure spraying plasma is observed not as Maxwellian but as bi-Maxwellian by the measurement of the single probe. Bi-Maxwellian distribution appears in the edge of a low pressure spraying plasma and seems to be due to the reduction of the collisonality by the drastic variation of the plasma density. Non-LTE characteristics of a low-pressure spraying plasma can be deuced from the measured results of the optical emission spectroscopy and is analyzed by the collisional radiative equilibrium (CRE) model, where the Maxwellian and the non-Maxwellian distributions are assumed for comparison. For the electron temperature, the results from optical emission spectroscopy were similar to the results from the single probe (3∼5 % in error)

  15. SUPERFAST THERMALIZATION OF PLASMA

    Science.gov (United States)

    Chang, C.C.

    1962-06-12

    A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

  16. Diffuse plasma treatment of polyamide 66 fabric in atmospheric pressure air

    International Nuclear Information System (INIS)

    Li, Lee; Peng, Ming-yang; Teng, Yun; Gao, Guozhen

    2016-01-01

    Graphical abstract: - Highlights: • A cylindrical-electrode nanosecond-pulse diffuse-discharge reactor is presented. • Large-scale non-thermal plasmas were generated steadily in atmospheric air. • Treated PA66 fabric is etched with oxygen-containing group increases. • The hydrophily of treated PA66 fabric improves effectively. • Extending the treatment time is a method to reduce the treatment frequency. - Abstract: The polyamide 66 (PA66) fabrics are hard to be colored or glued in industrial production due to the poor hydrophily. Diffuse plasma is a kind of non-thermal plasma generated at atmospheric pressure in air. This paper proposes that large-scale diffuse plasma generated between wire electrodes can be employed for improving the hydrophily of PA66 fabrics. A repetitive nanosecond-pulse diffuse-discharge reactor using a cylindrical wire electrode configuration is presented, which can generate large-scale non-thermal plasmas steadily at atmospheric pressure without any barrier dielectric. Then the reactor is used to treat PA66 fabrics in different discharge conditions. The hydrophilicity property of modified PA66 is measured by wicking test method. The modified PA66 is also analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to prove the surface changes in physical microstructure and chemical functional groups, respectively. What's more, the effects of treatment time and treatment frequency on surface modification are investigated and discussed.

  17. Detection of thermally grown oxides in thermal barrier coatings by nondestructive evaluation

    Science.gov (United States)

    Fahr, A.; Rogé, B.; Thornton, J.

    2006-03-01

    The thermal-barrier coatings (TBC) sprayed on hot-section components of aircraft turbine engines commonly consist of a partially stabilized zirconia top-coat and an intermediate bond-coat applied on the metallic substrate. The bond-coat is made of an aluminide alloy that at high engine temperatures forms thermally grown oxides (TGO). Although formation of a thin layer of aluminum oxide at the interface between the ceramic top-coat and the bond-coat has the beneficial effect of protecting the metallic substrate from hot gases, oxide formation at splat boundaries or pores within the bond-coat is a source of weakness. In this study, plasma-sprayed TBC specimens are manufactured from two types of bond-coat powders and exposed to elevated temperatures to form oxides at the ceramic-bond-coat boundary and within the bond-coat. The specimens are then tested using nondestructive evaluation (NDE) and destructive metallography and compared with the as-manufactured samples. The objective is to determine if NDE can identify the oxidation within the bond-coat and give indication of its severity. While ultrasonic testing can provide some indication of the degree of bond-coat oxidation, the eddy current (EC) technique clearly identifies severe oxide formation within the bond-coat. Imaging of the EC signals as the function of probe location provides information on the spatial variations in the degree of oxidation, and thereby identifies which components or areas are prone to premature damage.

  18. High resolution X-ray spectroscopy of thermal plasmas

    International Nuclear Information System (INIS)

    Canizares, C.R.

    1990-01-01

    This paper concentrates on reviewing highlights of the Focal Plane Crystal Spectrometer (FPCS) results on thermal plasmas, particularly supernova remnants (SNRs) and clusters of galaxies from the Einstein observatory. During Einstein's short but happy life, we made over 400 observations with the FPCS of 40 different objects. Three quarters of these were objects in which the emission was primarily from optically thin thermal plasma, primarily supernova remnants (SNRs) and clusters of galaxies. Thermal plasmas provide an excellent illustration of how spectral data, particularly high resolution spectral data, can be an important tool for probing the physical properties of astrophysical objects. (author)

  19. Plasma measurements with surface barrier detectors

    International Nuclear Information System (INIS)

    Futch, A.H. Jr.; Bradley, A.E.

    1969-01-01

    A surface barrier detector system for measuring the loss rate of protons from a hydrogen plasma and their energy spectrum is described. A full width at half maximum (FWHM) resolution of 1.4 keV for 15-keV hydrogen atoms was obtained using a selected detector having a sensitive area of 3 mm 2 and a depletion depth of 700 microns

  20. Effect of Young's modulus evolution on residual stress measurement of thermal barrier coatings by X-ray diffraction

    International Nuclear Information System (INIS)

    Chen, Q.; Mao, W.G.; Zhou, Y.C.; Lu, C.

    2010-01-01

    Subjected to thermal cycling, the apparent Young's modulus of air plasma-sprayed (APS) 8 wt.% Y 2 O 3 -stabilized ZrO 2 (8YSZ) thermal barrier coatings (TBCs) was measured by nanoindentation. Owing to the effects of sintering and porous microstructure, the apparent Young's modulus follows a Weibull distribution and changes from 50 to 93 GPa with an increase of thermal cycling. The evolution of residual stresses in the top coating of an 8YSZ TBC system was determined by X-ray diffraction (XRD). The residual stresses derived from the XRD data are well consistent with that obtained by the Vickers indention. It is shown that the evolution of Young's modulus plays an important role in improving the measurement precision of residual stresses in TBCs by XRD.

  1. Optimized functionally graded La2Zr2O7/8YSZ thermal barrier coatings fabricated by suspension plasma spraying

    International Nuclear Information System (INIS)

    Wang, Chaohui; Wang, You; Fan, Shan; You, Yuan; Wang, Liang; Yang, Changlong; Sun, Xiaoguang; Li, Xuewei

    2015-01-01

    In this paper, an optimized functionally graded coating (OFGC) was successfully fabricated by suspension plasma spraying (SPS) with feedstocks of the suspension of nanoparticles. La 2 Zr 2 O 7 /8YSZ OFGC with gradual compositional variation along the through-thickness direction is proposed to mitigate spallation and crack formation owing to the high residual stresses caused by frequent thermal cycling for TBCs. The single ceramic layer coatings (SCLC) of LZ and double ceramic layer coatings (DCLC) of LZ/8YSZ were fabricated by SPS as comparison. The phase composition and microstructure of the SCLC, OFGC and DCLC were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Energy Dispersive Spectrometer (EDS). Moreover, the thermal cycling tests were carried out to evaluate their thermal shock behavior. Changes in weight and morphology of specimens were analyzed during thermal cycling tests. The results showed that OFGC has extended lifetime compared with SCLC and DCLC. The failure of DCLC with clear interface between different ceramic layers occurred via delamination mode, as a result of crack initiation and propagation generated by thermal mismatch between LZ and 8YSZ. While the failure of OFGC occurred in thermally grown oxide (TGO) layers, indicating that the gradual compositional variation avoided thermal stress concentration in the top ceramic layers. - Highlights: • Optimized functionally graded coatings and double ceramic layer coatings were deposited by suspension plasma spray. • The graded area of OFGC is continuously changed from inner 8YSZ to outer La 2 Zr 2 O 7 (LZ). • The OFGC shows a more extended thermal cycling life than the LZ SCLC and LZ/8YSZ DCLC. • Various failure mechanisms were proposed to explain thermal cycling behavior

  2. Thermophysical and Thermomechanical Properties of Thermal Barrier Coating Systems

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.

    2000-01-01

    Thermal barrier coatings have been developed for advanced gas turbine and diesel engine applications to improve engine reliability and fuel efficiency. However, the issue of coating durability under high temperature cyclic conditions is still of major concern. The coating failure is closely related to thermal stresses and oxidation in the coating systems. Coating shrinkage cracking resulting from ceramic sintering and creep at high temperatures can further accelerate the coating failure process. The purpose of this paper is to address critical issues such as ceramic sintering and creep, thermal fatigue and their relevance to coating life prediction. Novel test approaches have been established to obtain critical thermophysical and thermomechanical properties of the coating systems under near-realistic temperature and stress gradients encountered in advanced engine systems. Emphasis is placed on the dynamic changes of the coating thermal conductivity and elastic modulus, fatigue and creep interactions, and resulting failure mechanisms during the simulated engine tests. Detailed experimental and modeling results describing processes occurring in the thermal barrier coating systems provide a framework for developing strategies to manage ceramic coating architecture, microstructure and properties.

  3. Flavour equilibration studies of quark-gluon plasma with non-zero ...

    Indian Academy of Sciences (India)

    Abstract. Flavour equilibration for a thermally equilibrated but chemically non- equilibrated quark-gluon plasma is presented. Flavour equilibration is studied enforcing baryon number conservation. In addition to the usual processes like single additional gluon production gg ⇌ ggg and its reverse and quark–antiquark pair ...

  4. Possibility of internal transport barrier formation and electric field bifurcation in LHD plasma

    International Nuclear Information System (INIS)

    Sanuki, H.; Itoh, K.; Yokoyama, M.; Fujisawa, A.; Ida, K.; Toda, S.; Itoh, S.-I.; Yagi, M.; Fukuyama, A.

    1999-05-01

    Theoretical analysis of the electric field bifurcation is made for the LHD plasma. For given shapes of plasma profiles, a region of bifurcation is obtained in a space of the plasma parameters. In this region of plasma parameters, the electric field domain interface is predicted to appear in the plasma column. The reduction of turbulent transport is expected to occur in the vicinity of the interface, inducing a internal transport barrier. Within this simple model, the plasma with internal barriers is predicted to be realized for the parameters of T e (0) ∼ 2 keV and n(0) ≅ 10 18 m -3 . (author)

  5. Comparative analysis of turbulent effects on thermal plasma characteristics inside the plasma torches with rod- and well-type cathodes

    International Nuclear Information System (INIS)

    Hur, Min; Hong, Sang Hee

    2002-01-01

    The thermal plasma characteristics inside the two non-transferred plasma torches with rod-type cathode (RTC) and well-type cathode (WTC) are analysed in conjunction with turbulent effects on them in the atmospheric-pressure conditions. A control volume method and a modified semi-implicit pressure linked equations revised algorithm are used for solving the governing equations, i.e. conservation equations of mass, momentum, and energy together with a current continuity equation for arc discharge. A cold flow analysis is introduced to find the cathode spot position in the WTC torch, and both the laminar and turbulent models are employed to gain a physical insight into the turbulent effects on the thermal plasma characteristics produced inside the two torches. The numerical analysis for an RTC torch shows that slightly different values of plasma temperature and velocity between the laminar and turbulent calculations occur and the radial temperature profiles are constricted at the axis with increasing the gas flow rate, and that the large turbulent viscosities appear mostly near the anode wall. These calculated results indicate that the turbulent effects on the thermal plasma characteristics are very weak in the whole discharge region inside the RTC torch. On the other hand, the calculated results of the two numerical simulations for a WTC torch present that the significantly different values of plasma characteristics between the two models appear in the whole torch region and the plasma temperatures decrease with increasing the gas flow rate because the relatively strong turbulent effects are prevailing in the entire interior region of the WTC torch. From the comparisons of plasma net powers calculated and measured in this work, the turbulent modelling turns out to provide the more accurately calculated results close to the measured ones compared with the laminar one, especially for the torch with WTC. This is because the turbulent effects are considerably strong in

  6. Research on electric and thermal characteristics of plasma torch based on similarity theory

    International Nuclear Information System (INIS)

    Cheng Changming; Tang Deli; Lan Wei

    2007-01-01

    Configuration and working principle of a DC non-transferred plasma torch have been introduced. Based on similarity theory, connections between the electric-thermal characteristics and operational parameter such as flowing gas rate and arc power have been investigated. Calculation and experiment are compared. The results indicate that the calculation results are in agreement with experimental ones. The formulas can be used for plasma torch improvement and optimization. (authors)

  7. TMX-U [Tandem Mirror Experiment-Upgrade] tandem-mirror thermal-barrier experiments

    International Nuclear Information System (INIS)

    Simonen, T.C.; Allen, S.L.; Baldwin, D.E.

    1986-01-01

    Thermal-barrier experiments have been carried out in the Tandem Mirror Experiment-Upgrade (TMX-U). Measurements of nonambipolar and ambipolar radial transport show that these transport processes, as well as end losses, can be controlled at modest densities and durations. Central-cell heating methods using ion-cyclotron heating (ICH) and neutral-beam injection have been demonstrated. Potential mesurements with recently developed methods indicate that deep thermal barriers can be established

  8. Design and Performance Optimizations of Advanced Erosion-Resistant Low Conductivity Thermal Barrier Coatings for Rotorcraft Engines

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2012-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future rotorcraft engine higher fuel efficiency and lower emission goals. For thermal barrier coatings designed for rotorcraft turbine airfoil applications, further improved erosion and impact resistance are crucial for engine performance and durability, because the rotorcraft are often operated in the most severe sand erosive environments. Advanced low thermal conductivity and erosion-resistant thermal barrier coatings are being developed, with the current emphasis being placed on thermal barrier coating toughness improvements using multicomponent alloying and processing optimization approaches. The performance of the advanced thermal barrier coatings has been evaluated in a high temperature erosion burner rig and a laser heat-flux rig to simulate engine erosion and thermal gradient environments. The results have shown that the coating composition and architecture optimizations can effectively improve the erosion and impact resistance of the coating systems, while maintaining low thermal conductivity and cyclic oxidation durability

  9. Residual stress evolution regularity in thermal barrier coatings under thermal shock loading

    Directory of Open Access Journals (Sweden)

    Ximin Chen

    2014-01-01

    Full Text Available Residual stress evolution regularity in thermal barrier ceramic coatings (TBCs under different cycles of thermal shock loading of 1100°C was investigated by the microscopic digital image correlation (DIC and micro-Raman spectroscopy, respectively. The obtained results showed that, as the cycle number of the thermal shock loading increases, the evolution of the residual stress undergoes three distinct stages: a sharp increase, a gradual change, and a reduction. The extension stress near the TBC surface is fast transformed to compressive one through just one thermal cycle. After different thermal shock cycles with peak temperature of 1100°C, phase transformation in TBC does not happen, whereas the generation, development, evolution of the thermally grown oxide (TGO layer and micro-cracks are the main reasons causing the evolution regularity of the residual stress.

  10. Influence of creep and cyclic oxidation in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Philipp; Baeker, Martin; Roesler, Joachim [Technische Univ. Braunschweig (Germany). Inst. fuer Werkstoffe

    2012-01-15

    The lifetime of thermal barrier coating systems is limited by cracks close to the interfaces, causing delamination. To study the failure mechanisms, a simplified model system is analysed which consists of a bond-coat bulk material, a thermally grown oxide, and an yttria-stabilised zirconia topcoat. The stresses in the model system are calculated using a finite element model which covers the simulation of full thermal cycles, creep in all layers, and the anisotropic oxidation during dwelling. Creep in the oxide and the thermal barrier coating is varied with the use of different creep parameter sets. The influence of creep in the bondcoat is analysed by using two different bond-coat materials: fast creeping Fecralloy and slow creeping oxide dispersion strengthened MA956. It is shown that creep in the bondcoat influences the lifetime of the coatings. Furthermore, a fast creeping thermally grown oxide benefits the lifetime of the coating system. (orig.)

  11. High speed PVD thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beele, W. [Sulzer Metco Coatings BV (Netherlands); Eschendorff, G. [Sulzer Metco Coatings BV (Netherlands); Eldim BV (Netherlands)

    2006-07-15

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  12. High speed PVD thermal barrier coatings

    International Nuclear Information System (INIS)

    Beele, W.; Eschendorff, G.

    2006-01-01

    The high speed PVD process (HS-PVD) combines gas phase coating synthesis with high deposition rates. The process has been demonstrated for high purity YSZ deposited as a chemically bonded top thermal barrier with columnar structure of EB-PVD features. The process can manufacture EB-PVD like coatings that match in regards to their TGO-formation and columnar structure. Coatings with a columnar structure formed by individual columns of 1/4 of the diameter of a classical EB-PVD type TBC have been deposited. These coatings have the potential to prove a significant reduction in thermal conductivity and in erosion performance. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  13. Implosive Thermal Plasma Source for Energy Conversion

    Czech Academy of Sciences Publication Activity Database

    Šonský, Jiří; Tesař, Václav; Gruber, Jan; Mašláni, Alan

    2017-01-01

    Roč. 4, č. 1 (2017), s. 87-90 ISSN 2336-2626 Institutional support: RVO:61388998 ; RVO:61389021 Keywords : implosion * thermal plasma * detonation wave Subject RIV: BL - Plasma and Gas Discharge Physics; BL - Plasma and Gas Discharge Physics (UFP-V) OBOR OECD: Fluids and plasma physics (including surface physics); Fluids and plasma physics (including surface physics) (UFP-V) https://ppt.fel.cvut.cz/ppt2017.html#number1

  14. Hydrogen production by thermal water splitting using a thermal plasma

    International Nuclear Information System (INIS)

    Boudesocque, N.; Lafon, C.; Girold, C.; Vandensteendam, C.; Baronnet, J.M.

    2006-01-01

    CEA has been working for more than 10 years in plasma technologies devoted to waste treatment: incineration, vitrification, gases and liquid treatment. Based on this experience, CEA experiments since several years an innovative route for hydrogen production by thermal water splitting, using a plasma as heat source. This new approach could be considered as an alternative to electrolysis for massive hydrogen production from water and electricity. This paper presents a brief state of the art of water thermal plasmas, showing the temperatures and quench velocity ranges technologically achievable today. Thermodynamic properties of a water plasma are presented and discussed. A kinetic computational model is presented, describing the behavior of splitted products during the quench in a plasma plume for various parameters, such as the quench rate. The model results are compared to gas analysis in the plasma plume obtained with in-situ sampling probe. The plasma composition measurements are issued from an Optical Emission Spectroscopic method (OES). The prediction of 30 % H 2 recovery with a 108 K.s -1 quench rate has been verified. A second experimentation has been performed: mass gas analysis, flowrate measurement and OES to study the 'behavior' and species in underwater electrical arc stricken between graphite electrodes. With this quench, a synthesis gas was produced with a content 55 % of hydrogen. (authors)

  15. Comparison of different models for the determination of the absorption and scattering coefficients of thermal barrier coatings

    International Nuclear Information System (INIS)

    Wang, Li; Eldridge, Jeffrey I.; Guo, S.M.

    2014-01-01

    The thermal radiative properties of thermal barrier coatings (TBCs) are becoming more important as the inlet temperatures of advanced gas-turbine engines are continuously being pushed higher in order to improve efficiency. To determine the absorption and scattering coefficients of TBCs, four-flux, two-flux and Kubelka–Munk models were introduced and used to characterize the thermal radiative properties of plasma-sprayed yttria-stabilized zirconia (YSZ) coatings. The results show that the absorption coefficient of YSZ is extremely low for wavelengths 200 μm suggests that when the coating thickness is larger than around twice the average scattering distance, the collimated flux can be simply treated as a diffuse flux inside the coating, and thus the two-flux model can be used to determine the absorption and scattering coefficients as a simplification of the four-flux model

  16. Time-dependent ionization balance model for non-LTE plasma

    International Nuclear Information System (INIS)

    Lee, Y.T.; Zimmerman, G.B.; Bailey, D.S.; Dickson, D.; Kim, D.

    1986-01-01

    We have developed a detailed configuration-accounting kinetic model for calculating time-dependent ionization-balance and ion-level populations in non-local thermal-equilibrium (non-LTE) plasmas. We use these population estimates in computing spectral line intensities, line ratios, and synthetic spectra, and in fitting these calculated values to experimental measurements. The model is also used to design laboratory x-ray laser experiments. For this purpose, it is self-consistently coupled to the hydrodynamics code LASNEX. 20 refs., 14 figs

  17. Stability of tritium permeation prevention barrier with TiC and TiN + TiC coating

    International Nuclear Information System (INIS)

    Shan Changqi; Chen Qingwang; Dai Shaoxia; Jiang Weisheng

    1999-01-01

    The stability of tritium permeation prevention barrier of 316L stainless steel with coating TiC and TiN + TiC under the conditions of very large thermal gradient, thermal cycling and plasma irradiation is researched. The research includes two aspects: one is the study on the stability resisting H + plasma irradiation; another is on the ability of two coating materials when they are used in long term under the condition of very large thermal gradient and cycling. The results show that TiC and TiN + TiC composite coating materials, after chemical heat treatment and forming tritium permeation prevention barrier, can resist H + ion irradiation, and also can resist very large thermal gradient and thermal cycling. The long time experiments show that tritium permeation prevention barrier of those coating materials is stable when they are used in long term

  18. Plasma application for detoxification of Jatropha phorbol esters

    International Nuclear Information System (INIS)

    Kongmany, S; Matsuura, H; Furuta, M; Okuda, S; Imamura, K; Maeda, Y

    2013-01-01

    Atmospheric pressure non-thermal dielectric barrier discharge (DBD) plasma generated by helium gas at high voltage and input power of about 50 W was first applied to detoxification of Jatropha curcas phorbol esters (J. PEs) as well as standard phorbol ester (4β-12-O-tetradecanoyl phorbol-13-acetate, TPA) in water and methanol. Plasma irradiation on the solution sample was conducted for 15 min. In aqueous solution, only 16% of TPA was degraded and complete degradation of J. PEs was observed. On the contrary, complete degradation of both TPA and J. PEs in methanol was achieved by the same plasma irradiation condition. Hydroxyl radical (.OH) generated by plasma irradiation of the solution is expected as the main radical inducing the degradation of PEs.

  19. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    Science.gov (United States)

    Robert, E.; Sarron, V.; Riès, D.; Dozias, S.; Vandamme, M.; Pouvesle, J.-M.

    2012-06-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 107-108 cm s-1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications.

  20. Characterization of pulsed atmospheric-pressure plasma streams (PAPS) generated by a plasma gun

    International Nuclear Information System (INIS)

    Robert, E; Sarron, V; Riès, D; Dozias, S; Vandamme, M; Pouvesle, J-M

    2012-01-01

    An experimental study of atmospheric-pressure rare gas plasma propagation in a high-aspect-ratio capillary is reported. The plasma is generated with a plasma gun device based on a dielectric barrier discharge (DBD) reactor powered by either nanosecond or microsecond rise-time high-voltage pulses at single-shot to multi-kHz frequencies. The influence of the voltage waveform, pulse polarity, pulse repetition rate and capillary material have been studied using nanosecond intensified charge-coupled device imaging and plasma-front velocity measurements. The evolution of the plasma appearance during its propagation and the study of the role of the different experimental parameters lead us to suggest a new denomination of pulsed atmospheric-pressure plasma streams to describe all the plasma features, including the previously so-called plasma bullet. The unique properties of such non-thermal plasma launching in capillaries, far from the primary DBD plasma, are associated with a fast ionization wave travelling with velocity in the 10 7 –10 8 cm s −1 range. Voltage pulse tailoring is shown to allow for a significant improvement of such plasma delivery. Thus, the plasma gun device affords unique opportunities in biomedical endoscopic applications. (paper)

  1. ICRF Wave Propagation and Absorption in Plasmas with Non-thermal Populations

    International Nuclear Information System (INIS)

    Dumont, R.J.; Phillips, C.K.; Smithe, D.N.

    2002-01-01

    Some results obtained with the one dimensional, all orders, full wave code METS, which has been successfully employed in the past to describe a number of experiments, are reported. By using massively parallel computers, this code has been extended to handle non-thermal populations. Various physical situations, in which non-Maxwellian species are expected to be encountered, are studied, such as simultaneous neutral beam injection and high harmonic fast wave electron heating or ion cyclotron resonance heating in the presence of fusion products

  2. Electrical and thermal conductivities in dense plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Faussurier, G., E-mail: gerald.faussurier@cea.fr; Blancard, C.; Combis, P.; Videau, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-09-15

    Expressions for the electrical and thermal conductivities in dense plasmas are derived combining the Chester-Thellung-Kubo-Greenwood approach and the Kramers approximation. The infrared divergence is removed assuming a Drude-like behaviour. An analytical expression is obtained for the Lorenz number that interpolates between the cold solid-state and the hot plasma phases. An expression for the electrical resistivity is proposed using the Ziman-Evans formula, from which the thermal conductivity can be deduced using the analytical expression for the Lorenz number. The present method can be used to estimate electrical and thermal conductivities of mixtures. Comparisons with experiment and quantum molecular dynamics simulations are done.

  3. Oxygen Barrier Coating Deposited by Novel Plasma-enhanced Chemical Vapor Deposition

    DEFF Research Database (Denmark)

    Jiang, Juan; Benter, M.; Taboryski, Rafael Jozef

    2010-01-01

    We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source. This confi......We report the use of a novel plasma-enhanced chemical vapor deposition chamber with coaxial electrode geometry for the SiOx deposition. This novel plasma setup exploits the diffusion of electrons through the inner most electrode to the interior samples space as the major energy source...... effect of single-layer coatings deposited under different reaction conditions was studied. The coating thickness and the carbon content in the coatings were found to be the critical parameters for the barrier property. The novel barrier coating was applied on different polymeric materials...

  4. Dispersion in thermal plasma including arbitrary degeneracy and quantum recoil

    International Nuclear Information System (INIS)

    Mushtaq, A.; Melrose, D.B.

    2012-01-01

    The longitudinal response function for a thermal electron gas was calculated including two quantum effects exactly, degeneracy and the quantum recoil. The Fermi-Dirac distribution was expanded in powers of a parameter that is small in the non-degenerate limit and the response function was evaluated in terms of the conventional plasma dispersion function to arbitrary order in this parameter. The infinite sum was performed in terms of poly logarithms in the long-wavelength and quasi-static limits, giving results that apply for arbitrary degeneracy. The results were applied to the dispersion relations for Langmuir waves and to screening, reproducing known results in the non-degenerate and completely degenerate limits], and generalizing them to arbitrary degeneracy. The occupation number for the completely degenerate limit is shown. The importance of the results regarding to semiconductor plasmas were highlighted. (orig./A.B.)

  5. Global plasma oscillations in electron internal transport barriers in TCV

    Energy Technology Data Exchange (ETDEWEB)

    Udintsev, V S; Sauter, O; Asp, E; Fable, E; Goodman, T P; Turri, G; Graves, J P; Zucca, C [Association Euratom-Confederation Suisse, EPFL/SB/CRPP, Station 13, CH-1015, Lausanne (Switzerland); Scarabosio, A [Max-Planck Institut fuer Plasmaphysik, IPP-EURATOM Association, Garching (Germany); Zhuang, G [Huazhong University of Science and Technology, Wuhan, Hubei (China)

    2008-12-15

    In the Tokamak a Configuration Variable (TCV) (Hofmann F et al1994 Plasma Phys. Control. Fusion 36 B277), global plasma oscillations have been discovered in fully non-inductively driven plasmas featuring electron internal transport barriers (ITB) with strong ECRH/ECCD. These oscillations are linked to the destabilization and stabilization of MHD modes near the foot of the ITB and can lead to large oscillations of the total plasma current and line-averaged density, among others. They are intrinsically related to the fact that ITBs have large pressure gradients in a region of low magnetic shear. Therefore, the ideal MHD limit is relatively low and infernal modes can be unstable. Depending on the proximity to the ideal limit, small crashes or resistive modes can appear which affect the time evolution of the discharge. Being near marginal stability, the modes can self-stabilize due to the modification of the pressure gradient and local q-profile. The plasma recovers good confinement, reverses shear and the ITB builds up, until a new MHD mode is destabilized. TCV results show that this cycling behaviour can be controlled by modifying the current density or the pressure profiles, either with Ohmic current density perturbation or by modifying the ECH/ECCD power. It is demonstrated that many observations such as q {>=} 2 sawteeth, beta collapses, minor disruptions and oscillation regimes in ITBs can be assigned to the same physics origin: the proximity to the infernal mode stability limit.

  6. Global plasma oscillations in electron internal transport barriers in TCV

    Science.gov (United States)

    Udintsev, V. S.; Sauter, O.; Asp, E.; Fable, E.; Goodman, T. P.; Turri, G.; Graves, J. P.; Scarabosio, A.; Zhuang, G.; Zucca, C.; TCV Team

    2008-12-01

    In the Tokamak à Configuration Variable (TCV) (Hofmann F et al1994 Plasma Phys. Control. Fusion 36 B277), global plasma oscillations have been discovered in fully non-inductively driven plasmas featuring electron internal transport barriers (ITB) with strong ECRH/ECCD. These oscillations are linked to the destabilization and stabilization of MHD modes near the foot of the ITB and can lead to large oscillations of the total plasma current and line-averaged density, among others. They are intrinsically related to the fact that ITBs have large pressure gradients in a region of low magnetic shear. Therefore, the ideal MHD limit is relatively low and infernal modes can be unstable. Depending on the proximity to the ideal limit, small crashes or resistive modes can appear which affect the time evolution of the discharge. Being near marginal stability, the modes can self-stabilize due to the modification of the pressure gradient and local q-profile. The plasma recovers good confinement, reverses shear and the ITB builds up, until a new MHD mode is destabilized. TCV results show that this cycling behaviour can be controlled by modifying the current density or the pressure profiles, either with Ohmic current density perturbation or by modifying the ECH/ECCD power. It is demonstrated that many observations such as q >= 2 sawteeth, beta collapses, minor disruptions and oscillation regimes in ITBs can be assigned to the same physics origin: the proximity to the infernal mode stability limit.

  7. Silicon drift detector based X-ray spectroscopy diagnostic system for the study of non-thermal electrons at Aditya tokamak.

    Science.gov (United States)

    Purohit, S; Joisa, Y S; Raval, J V; Ghosh, J; Tanna, R; Shukla, B K; Bhatt, S B

    2014-11-01

    Silicon drift detector based X-ray spectrometer diagnostic was developed to study the non-thermal electron for Aditya tokamak plasma. The diagnostic was mounted on a radial mid plane port at the Aditya. The objective of diagnostic includes the estimation of the non-thermal electron temperature for the ohmically heated plasma. Bi-Maxwellian plasma model was adopted for the temperature estimation. Along with that the study of high Z impurity line radiation from the ECR pre-ionization experiments was also aimed. The performance and first experimental results from the new X-ray spectrometer system are presented.

  8. Thermal Plasma Generators with Water Stabilized Arc

    Czech Academy of Sciences Publication Activity Database

    Hrabovský, Milan

    2009-01-01

    Roč. 2, č. 1 (2009), s. 99-104 ISSN 1876-5343 R&D Projects: GA ČR GA202/08/1084 Institutional research plan: CEZ:AV0Z20430508 Keywords : Thermal plasma * plasma torch * Gerdien arc Subject RIV: BL - Plasma and Gas Discharge Physics http://www.bentham.org/open/toppj/openaccess2.htm

  9. Electron internal transport barrier in the core of TJ-II ECH plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, T.; Hidalgo, C. [Laboratorio Nacional de Fusion por Confinamiento Magnetico. Asociacion EURATOM CIEMAT, Madrid (Spain); Dreval, N. [and others

    2003-07-01

    The influence of the magnetic topology on the formation of electron internal transport barriers (e-ITB) has been experimentally studied in the stellarator TJ-II. The formation of e-ITBs in electron cyclotron heated plasmas can be triggered by positioning a low order rational surface close to the plasma core region, while in configurations without any low order rational there are no indications of barrier formation within the available heating power. The e-ITB formation is characterized by an increase in the core electron temperature and plasma potential. Positive radial electric field increases in a factor of three in the plasma central region when the e-ITB forms. The results demonstrate that low order rational surfaces modify radial electric fields and electron heat transport. (orig.)

  10. Thermal conductivity issues of EB-PVD thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, U.; Raetzer-Scheibe, H.J.; Saruhan, B. [DLR - German Aerospace Center, Institute of Materials Research, 51170 Cologne (Germany); Renteria, A.F. [BTU, Physical Metallurgy and Materials Technology, Cottbus (Germany)

    2007-09-15

    The thermal conductivity of electron-beam physical vapor deposited (EB-PVD) thermal barrier coatings (TBCs) was investigated by the Laser Flash technique. Sample type and methodology of data analyses as well as atmosphere during the measurement have some influence on the data. A large variation of the thermal conductivity was found by changes in TBC microstructure. Exposure at high temperature caused sintering of the porous microstructure that finally increased thermal conductivity up to 30 %. EB-PVD TBCs show a distinct thickness dependence of the thermal conductivity due to the anisotropic microstructure in thickness direction. Thin TBCs had a 20 % lower thermal conductivity than thick coatings. New compositions of the ceramic top layer offer the largest potential to lower thermal conductivity. Values down to 0.8W/(mK) have been already demonstrated with virgin coatings of pyrochlore compositions. (Abstract Copyright [2007], Wiley Periodicals, Inc.) [German] Die Waermeleitfaehigkeit von elektronenstrahl-aufgedampften (EB-PVD) Waermedaemmschichten (TBCs) wurde mittels Laser-Flash untersucht. Probentyp, Messmethodik und die Atmosphaere waehrend der Messung haben einen Einfluss auf die Ergebnisse. Aenderungen in der Mikrostruktur der TBC fuehrten zu grossen Unterschieden der Waermeleitfaehigkeit. Eine Hochtemperaturbelastung verursachte Sintervorgaenge in der poroesen Mikrostruktur, was die Waermeleitfaehigkeit um bis zu 30 % ansteigen liess. EB-PVD TBCs zeigen eine deutliche Dickenabhaengigkeit der Waermeleitfaehigkeit durch die Anisotropie der Mikrostruktur in dieser Richtung. Duenne TBCs haben eine um 20 % geringere Waermeleitfaehigkeit als dicke Schichten. Neue Zusammensetzungen der keramischen Deckschicht bieten die groessten Moeglichkeiten fuer eine Reduktion der Waermeleitfaehigkeit. Werte bis zu 0,8 W/(mK) wurden damit bereits erreicht. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  11. Plasma potential formation and measurement in TMX-U and MFTF-B

    International Nuclear Information System (INIS)

    Grubb, D.P.

    1984-01-01

    Tandem mirrors control the axial variation of the plasma potential to create electrostatic plugs that improve the axial confinement of central cell ions and, in a thermal barrier tandem mirror, control the electron axial heat flow. Measurements of the spatial and temporal variations of the plasma potential are, therefore, important to the understanding of confinement in a tandem mirror. In this paper we discuss potential formation in a thermal barrier tandem mirror and examine the diagnostics and data obtained on the TMX-U device, including measurements of the thermal barrier potential profile using a diagnostic neutral beam and charged particle energy-spectroscopy. We then describe the heavy ion beam probe and other new plasma potential diagnostics that are under development for TMX-U and MFTF-B and examine problem areas where additional diagnostic development is desirable

  12. Effects of variations in coating materials and process conditions on the thermal cycle properties of NiCrAlY/YSZ thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tang Feng [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)]. E-mail: ftang@ucdavis.edu; Ajdelsztajn, Leonardo [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States); Kim, George E. [Perpetual Technologies, Montreal, Que., H3E 1T8 (Canada); Provenzano, Virgil [National Institute of Standards and Technology, Gaithersburg, MD 20899 (United States); Schoenung, Julie M. [Department of Chemical Engineering and Materials Science, University of California, Davis, CA 95616 (United States)

    2006-06-15

    Thermal cycle tests were conducted on a variety of thermal barrier coating (TBC) specimens with bond coats that had been prepared in different ways. Variables include: (1) different thermal spray processes (high velocity oxy-fuel (HVOF) spray and low pressure plasma spray (LPPS)) (2) different feedstock powder (gas-atomized and cryomilled) (3) the introduction of nano-sized alumina additives (particles and whiskers) and (4) with and without a post-spray vacuum heat treatment. The results show that the cryomilling of the NiCrAlY powder and the post-spray heat treatment in vacuum can both lead to significant improvement in the thermal cycle lifetime of the TBCs. The TBC specimens with LPPS bond coats also generally showed longer lifetimes than those with HVOF bond coats. In contrast, the intentional dispersion of alumina particles or whiskers in the NiCrAlY powders during cryomilling did not result in the further improvement of the lifetime of the TBCs. Microstructural evolution, including the thermally grown oxide (TGO) formation, the distribution of the dispersoids in the bond coat, the internal oxidation of the bond coat, the bond coat shrinkage during the thermal cycle tests and the reduction of the ZrO{sub 2} in the top coat during the heat treatment in vacuum, was investigated.

  13. Synthesis of functional nanocrystallites through reactive thermal plasma processing

    Directory of Open Access Journals (Sweden)

    Takamasa Ishigaki and Ji-Guang Li

    2007-01-01

    Full Text Available A method of synthesizing functional nanostructured powders through reactive thermal plasma processing has been developed. The synthesis of nanosized titanium oxide powders was performed by the oxidation of solid and liquid precursors. Quench gases, either injected from the shoulder of the reactor or injected counter to the plasma plume from the bottom of the reactor, were used to vary the quench rate, and therefore the particle size, of the resultant powders. The experimental results are well supported by numerical analysis on the effects of the quench gas on the flow pattern and temperature field of the thermal plasma as well as on the trajectory and temperature history of the particles. The plasma-synthesized TiO2 nanoparticles showed phase preferences different from those synthesized by conventional wet-chemical processes. Nanosized particles of high crystallinity and nonequilibrium chemical composition were formed in one step via reactive thermal plasma processing.

  14. Algebraic motion of vertically displacing plasmas

    Science.gov (United States)

    Pfefferlé, D.; Bhattacharjee, A.

    2018-02-01

    The vertical motion of a tokamak plasma is analytically modelled during its non-linear phase by a free-moving current-carrying rod inductively coupled to a set of fixed conducting wires or a cylindrical conducting shell. The solutions capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the surrounding vacuum vessel. The plasma shape and profiles are assumed not to vary during the vertical drifting phase such that the plasma column behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented to come in contact with the wall due to steep effective potential barriers created by the induced Eddy currents. Resistivity in the wall allows the equilibrium point to drift towards the vessel on the slow timescale of flux penetration. The initial exponential motion of the plasma, understood as a resistive vertical instability, is succeeded by a non-linear "sinking" behaviour shown to be algebraic and decelerating. The acceleration of the plasma column often observed in experiments is thus concluded to originate from an early sharing of toroidal current between the core, the halo plasma, and the wall or from the thermal quench dynamics precipitating loss of plasma current.

  15. FAILURE MECHANISMS OF THERMAL BARRIER COATINGS INTERNAL COMBUSTION ENGINES AND llMPROVEMENTS

    Directory of Open Access Journals (Sweden)

    ADNAN PARLAK

    2003-04-01

    Full Text Available MechanicaJ properties of high performance ceramics have been improved to the point where their use in heat engines is possible. The high temperature strength and low thermal expansion properties of bigh performance ceramics offer an advantage over metals in the development of non-water cooling engine. However, because bard environment in diesel engine combustion chamber, solving the problem of durabiUty of TBC is important. DurabiUty of thermal barrier coatings(TBC is liınited by two main failure mechanisms: Therınal expansion nlİsmatch betwcen bond coat and top coat and bond coat oxidation. Both of these can cause failure of the ceramic top coat. Developments of recent years sholv that bond coats \\Vith higher oxidation resistance tend to have better coating system cyclic lives

  16. Effects of Non-Maxwellian Plasma Species on ICRF Propagation and Absorption in Toroidal Magnetic Confinement Devices

    International Nuclear Information System (INIS)

    Dumont, R.J.; Phillips, C.K.; Smithe, D.N.

    2003-01-01

    Auxiliary heating supplied by externally launched electromagnetic waves is commonly used in toroidal magnetically confined fusion experiments for profile control via localized heating, current drive and perhaps flow shear. In these experiments, the confined plasma is often characterized by the presence of a significant population of non-thermal species arising from neutral beam injection, from acceleration of the particles by the applied waves, or from copious fusion reactions in future devices. Such non-thermal species may alter the wave propagation as well as the wave absorption dynamics in the plasma. Previous studies have treated the corresponding velocity distributions as either equivalent Maxwellians, or else have included realistic distributions only in the finite Larmor radius limit. In this work, the hot plasma dielectric response of the plasma has been generalized to treat arbitrary distribution functions in the non-relativistic limit. The generalized dielectric tensor has been incorporated into a one-dimensional full wave all-orders kinetic field code. Initial comparative studies of ion cyclotron range of frequency wave propagation and heating in plasmas with nonthermal species, represented by realistic distribution functions or by appropriately defined equivalent Maxwellians, have been completed for some specific experiments and are presented

  17. Development of Scaling Algorithms and Economic Evaluation for Non-Thermal Plasma Reactors - Adsorbant/Catalyzer Hybrid System for Control of NOx Released During Army and Related U.S. Department of Defense (DOD) Operations

    National Research Council Canada - National Science Library

    Urashima, K

    1998-01-01

    Computer code (SUENTP-J) to predict scale-up and economic evaluation of several eligible non-thermal plasma processes for air pollution control - electron beam process, pulsed corona process, and corona radical shower...

  18. Spectroscopic diagnostics of industrial plasmas

    International Nuclear Information System (INIS)

    Joshi, N.K.

    2004-01-01

    Plasmas play key role in modern industry and are being used for processing micro electronic circuits to the destruction of toxic waste. Characterization of industrial plasmas which includes both 'thermal plasmas' and non-equilibrium plasmas or 'cold plasmas' in industrial environment offers quite a challenge. Numerous diagnostic techniques have been developed for the measurement of these partially ionized plasma and/or particulate parameters. The 'simple' non-invasive spectroscopic methods for characterization of industrial plasmas will be discussed in detail in this paper. The excitation temperature in thermal (DC/RF) plasma jets has been determined using atomic Boltzmann technique. The central axis temperature of thermal plasma jets in a spray torch can be determined using modified atomic Boltzmann technique with out using Abel inversion. The Stark broadening of H β and Ar-I (430 nm) lines have been used to determine the electron number density in thermal plasma jets. In low-pressure non-equilibrium argon plasma, electron temperature has been measured using the Corona model from the ratio of line intensities of atomic and ionic transitions. (author)

  19. Microstructure Analysis of Laser Remelting for Thermal Barrier Coatings on the Surface of Titanium Alloy

    Directory of Open Access Journals (Sweden)

    Lu Bin

    2016-01-01

    Full Text Available In this paper, the preparation and organization performance of thermal barrier coatings (TCBs on the surface of titanium were studied experimentally. Nanostructured 8 wt% yttria partially stabilized zirconia coatings were deposited by air plasma spraying. The microstructure of nanostructured and the conventional coating was studied after laser remelting. It has shown that formed a network of micro-cracks and pits after laser remelting on nanostructured coatings. With the decrease of the laser scanning speed, mesh distribution of micro cracks was gradually thinning on nanostructured coatings. Compared with conventional ceramic layers, the mesh cracks of nanostructured coating is dense and the crack width is small.

  20. Characterization of Mullite-Zirconia Composite Processed by Non-Transferred and Transferred Arc Plasma

    International Nuclear Information System (INIS)

    Yugeswaran, S.; Selvarajan, V.; Lusvarghi, L.; Tok, A. I. Y.; Krishna, D. Siva Rama

    2009-01-01

    The arc plasma melting technique is a simple method to synthesize high temperature reaction composites. In this study, mullite-zirconia composite was synthesized by transferred and non-transferred arc plasma melting, and the results were compared. A mixture of alumina and zircon powders with a mole ratio of 3: 2 were ball milled for four hours and melted for two minutes in the transferred and non-transferred mode of plasma arcs. Argon and air were used as plasma forming gases. The phase and microstructural formation of melted samples were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The microstructure of the composites was found to be affected by the mode of melting. In transferred arc melting, zirconia flowers with uniform lines along with mullite whiskers were obtained. In the case of non-transferred arc plasma melting, mullite whiskers along with star shape zirconia were formed. Differential thermal analysis (DTA) of the synthesized mullite-zirconia composites provided a deeper understanding of the mechanisms of mullite formation during the two different processes. (plasma technology)

  1. Microsecond-pulsed dielectric barrier discharge plasma stimulation of tissue macrophages for treatment of peripheral vascular disease

    Energy Technology Data Exchange (ETDEWEB)

    Miller, V., E-mail: vmiller@coe.drexel.edu; Lin, A.; Brettschneider, J.; Fridman, G.; Fridman, A. [AJ Drexel Plasma Institute, Drexel University, Camden, New Jersey 08103 (United States); Kako, F.; Gabunia, K.; Kelemen, S.; Autieri, M. [Department of Physiology, Independence Blue Cross Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, Pennsylvania 19140 (United States)

    2015-12-15

    Angiogenesis is the formation of new blood vessels from pre-existing vessels and normally occurs during the process of inflammatory reactions, wound healing, tissue repair, and restoration of blood flow after injury or insult. Stimulation of angiogenesis is a promising and an important step in the treatment of peripheral artery disease. Reactive oxygen species have been shown to be involved in stimulation of this process. For this reason, we have developed and validated a non-equilibrium atmospheric temperature and pressure short-pulsed dielectric barrier discharge plasma system, which can non-destructively generate reactive oxygen species and other active species at the surface of the tissue being treated. We show that this plasma treatment stimulates the production of vascular endothelial growth factor, matrix metalloproteinase-9, and CXCL 1 that in turn induces angiogenesis in mouse aortic rings in vitro. This effect may be mediated by the direct effect of plasma generated reactive oxygen species on tissue.

  2. Non-equilibrium nitrogen DC-arc plasma treatment of TiO2 nanopowder.

    Science.gov (United States)

    Suzuki, Yoshikazu; Gonzalez-Aguilar, José; Traisnel, Noel; Berger, Marie-Hélène; Repoux, Monique; Fulcheri, Laurent

    2009-01-01

    Non-equilibrium nitrogen DC-arc plasma treatment of a commercial TiO2 anatase nanopowder was examined to obtain nitrogen-doped TiO2. By using a non-thermal discharge at low current (150 mA) and high voltage (1200 V) using pure N2 gas, light yellowish-gray TiO2 powder was successfully obtained within a short period of 5-10 min. XPS and TEM-EELS studies confirmed the existence of doped nitrogen. Due to the relatively mild conditions (plasma power of 180 W), metastable anatase structure and fine crystallite size of TiO2 (ca. 10 nm) were maintained after the plasma treatment. The in-flight powder treatment system used in this study is promising for various type of powder treatment.

  3. Study of hydroxylation of benzene and toluene using a micro-DBD plasma reactor

    International Nuclear Information System (INIS)

    Sekiguchi, H; Ando, M; Kojima, H

    2005-01-01

    The hydroxylation behaviour of benzene and toluene were studied using a micro-plasma reactor, where an atmospheric non-thermal plasma was generated by a dielectric barrier discharge (DBD). The results indicated that oxidation products primarily consisted of phenol and C 4 -compounds for benzene hydroxylation, whereas cresol, benzaldehyde, benzylalcohol and C 4 -compounds were detected for toluene hydroxylation. By taking into consideration the reaction mechanism in the plasma reactor, these products were classified into (1) oxidation of the aromatic ring and functional group on the ring and (2) cleavage of the aromatic ring or dissociation of the functional group on the ring

  4. Toroidal confinement of non-neutral plasma - A new approach to high-beta equilibrium

    International Nuclear Information System (INIS)

    Yoshida, Z.; Ogawa, Y.; Morikawa, J.

    2001-01-01

    Departure from the quasi-neutral condition allows us to apply significant two-fluid effects that impart a new freedom to the design of high-performance fusion plasma. The self-electric field in a non-neutralized plasma induces a strong ExB-drift flow. A fast flow produces a large hydrodynamic pressure that can balance with the thermal pressure of the plasma. Basic concepts to produce a toroidal non-neutral plasma have been examined on the internal-conductor toroidal confinement device Proto-RT. A magnetic separatrix determines the boundary of the confinement region. Electrons describe chaotic orbits in the neighborhood of the magnetic null point on the separatrix. The chaos yields collisionless diffusion of electrons from the particle source (electron gun) towards the confinement region. Collisionless heating also occurs in the magnetic null region, which can be applied to produce a plasma. (author)

  5. Thermal barrier coatings issues in advanced land-based gas turbines

    Science.gov (United States)

    Parks, W. P.; Lee, W. Y.; Wright, I. G.

    1995-01-01

    The Department of Energy's Advanced Turbine System (ATS) program is aimed at forecasting the development of a new generation of land-based gas turbine systems with overall efficiencies significantly beyond those of current state-of-the-art machines, as well as greatly increased times between inspection and refurbishment, improved environmental impact, and decreased cost. The proposed duty cycle of ATS turbines will require the use of different criteria in the design of the materials for the critical hot gas path components. In particular, thermal barrier coatings will be an essential feature of the hot gas path components in these machines. While such coatings are routinely used in high-performance aircraft engines and are becoming established in land-based turbines, the requirements of the ATS turbine application are sufficiently different that significant improvements in thermal barrier coating technology will be necessary. In particular, it appears that thermal barrier coatings will have to function on all airfoil sections of the first stage vanes and blades to provide the significant temperature reduction required. In contrast, such coatings applied to the blades and vances of advanced aircraft engines are intended primarily to reduce air cooling requirements and extend component lifetime; failure of those coatings can be tolerated without jeopardizing mechanical or corrosion performance. A major difference is that in ATS turbines these components will be totally reliant on thermal barrier coatings which will, therefore, need to be highly reliable even over the leading edges of first stage blades. Obviously, the ATS program provides a very challenging opportunity for TBC's, and involves some significant opportunities to extend this technology.

  6. Dielectric barrier discharge plasma treatment of cellulose nanofibre surfaces

    DEFF Research Database (Denmark)

    Kusano, Yukihiro; Madsen, Bo; Berglund, Linn

    2017-01-01

    on the nanofibre surface. Ultrasonic irradiation further enhanced the wetting and oxidation of the nanofibre coating. Scanning electron microscopic observations showed skeleton-like features on the plasma-treated surface, indicating preferential etching of weaker domains, such as low-molecular weight domains......Dielectric barrier discharge plasma treatment was applied to modify cellulose nanofibre (CNF) surfaces with and without ultrasonic irradiation. The plasma treatment improved the wetting by deionised water and glycerol, and increased the contents of oxygen, carbonyl group, and carboxyl group...... and amorphous phases. Ultrasonic irradiation also improved the uniformity of the treatment. Altogether, it is demonstrated that atmospheric pressure plasma treatment is a promising technique to modify the CNF surface before composite processing....

  7. Algebraic motion of vertically displacing plasmas

    Science.gov (United States)

    Bhattacharjee, Amitava; Pfefferle, David; Hirvijoki, Eero

    2017-10-01

    The vertical displacement of tokamak plasmas is modelled during the non-linear phase by a free-moving current-carrying rod coupled to a set of fixed conducting wires and a cylindrical conducting shell. The models capture the leading term in a Taylor expansion of the Green's function for the interaction between the plasma column and the vacuum vessel. The plasma is assumed not to vary during the VDE such that it behaves as a rigid body. In the limit of perfectly conducting structures, the plasma is prevented from coming in contact with the wall due to steep effective potential barriers by the eddy currents, and will hence oscillate at Alfvénic frequencies about a given force-free position. In addition to damping oscillations, resistivity allows for the column to drift towards the vessel on slow flux penetration timescales. The initial exponential motion of the plasma, i.e. the resistive vertical instability, is succeeded by a non-linear sinking behaviour, that is shown analytically to be algebraic and decelerative. The acceleration of the plasma column often observed in experiments is thus conjectured to originate from an early sharing of toroidal current between the core, the halo plasma and the wall or from the thermal quench dynamics precipitating loss of plasma current

  8. Shock tube experiments on nitromethane and Promotion of chemical reactions by non-thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Seljeskog, Morten

    2002-06-01

    -constant activation energy was found from the correlations, to be 64.574 kJ/mol and 113.544 kJ/mole, respectively. The correlations for the ignition delay for time signals with and without emission were deduced as {tau}{sub emission} 0.3669x10{sup -2}*[NM]{sup -1.02}[O{sub 2}]{sup -1.08}*[Ar]{sup 1.42}*exp(7767/T) and {tau}{sub n} 0.3005*10{sup -2}*[NM]{sup -0.28}[O{sub 2}]{sup 0.12}*[Ar]-{sup 0.59}*exp(13657/T), respective second approach to molecular decomposition concerned the application of non-thermal plasma to initiate reactions and decompose/oxidize selected hydrocarbons, methane and propane, in air. Experiments with a gliding arc discharge device were performed at the university of Orleans on the decomposition/reforming of low-to-stoichiometric concentration air/CH{sub 4} mixtures. The presented results show that complete reduction of methane could be obtained if the residence time in the reactor was sufficiently long. The products of the methane decomposition were mainly CO{sub 2}, CO and H{sub 2}O. The CH{sub 4} conversion rate showed to increase with increasing residence time, temperature of the operating gas, and initial concentration of methane. To achieve complete decomposition of CH{sub 4} in 1 m{sup 3} of a 2 vol% mixture, the energy cost was about 1.5 kWh. However, the formation of both CO and NO{sub x} in the present gliding discharge system was found to be significant. The produced amount of both Co (0.4-1 vol%) and NO{sub x} (2000-3500 ppm) were in such high quantities that they would constitute an important pollution threat if this process as of today was to be used in large scale CH{sub 4} decomposition. Further experimental investigations were performed on self-built laboratory scale, single- and double dielectric-barrier discharge devices as a means of removing CH{sub 4} and C{sub 3}H{sub 8} from simulated reactive inlet mixtures. The different discharge reactors were all powered by an arrangement of commercially available Tesla coil units capable of high

  9. Mechanical, thermal, and barrier properties of methylcellulose/cellulose nanocrystals nanocomposites

    Directory of Open Access Journals (Sweden)

    Hudson Alves Silvério

    2014-12-01

    Full Text Available In this work, the effects of incorporating cellulose nanocrystals from soy hulls (WSH30 on the mechanical, thermal, and barrier properties of methylcellulose (MC nanocomposites were evaluated. MC/WSH30 nanocomposite films with different filler levels (2, 4, 6, 8, and 10% were prepared by casting. Compared to neat MC film, improvements in the mechanical and barrier properties were observed, while thermal stability was retained. The improved mechanical properties of nanocomposites prepared may be attributed to mechanical percolation of WSH30, formation of a continuous network of WSH30 linked by hydrogen interactions and a close association between filler and matrix.

  10. Mechanical, thermal, and barrier properties of methylcellulose/cellulose nanocrystals nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Silverio, Hudson Alves; Flauzino Neto, Wilson Pires; Silva, Ingrid Souza Vieira da; Rosa, Joyce Rover; Pasquini, Daniel, E-mail: pasquini@iqufu.ufu.br, E-mail: danielpasquini2005@yahoo.com.br [Universidade de Uberlandia (USU), MG (Brazil). Instituto de Quimica; Assuncao, Rosana Maria Nascimento de [Universidade de Uberlandia (USU), Ituiutaba, MG (brazil). Fac. de Ciencias Integradas do Pontal; Barud, Hernane da Silva; Ribeiro, Sidney Jose Lima [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica

    2014-11-15

    In this work, the effects of incorporating cellulose nanocrystals from soy hulls (WSH{sub 30}) on the mechanical, thermal, and barrier properties of methylcellulose (MC) nanocomposites were evaluated. MC/WSH{sub 30} nanocomposite films with different filler levels (2, 4, 6, 8, and 10%) were prepared by casting. Compared to neat MC film, improvements in the mechanical and barrier properties were observed, while thermal stability was retained. The improved mechanical properties of nanocomposites prepared may be attributed to mechanical percolation of WSH{sub 30}, formation of a continuous network of WSH{sub 30} linked by hydrogen interactions and a close association between filler and matrix. (author)

  11. Phenotypic and genetic differentiation among yellow monkeyflower populations from thermal and non-thermal soils in Yellowstone National Park.

    Science.gov (United States)

    Lekberg, Ylva; Roskilly, Beth; Hendrick, Margaret F; Zabinski, Catherine A; Barr, Camille M; Fishman, Lila

    2012-09-01

    In flowering plants, soil heterogeneity can generate divergent natural selection over fine spatial scales, and thus promote local adaptation in the absence of geographic barriers to gene flow. Here, we investigate phenotypic and genetic differentiation in one of the few flowering plants that thrives in both geothermal and non-thermal soils in Yellowstone National Park (YNP). Yellow monkeyflowers (Mimulus guttatus) growing at two geothermal ("thermal") sites in YNP were distinct in growth form and phenology from paired populations growing nearby ( 0.34), which were only weakly differentiated from each other (all F (ST) geothermal gradient in Yellowstone.

  12. Mechanical Properties of Layered La2Zr2O7 Thermal Barrier Coatings

    Science.gov (United States)

    Guo, Xingye; Li, Li; Park, Hyeon-Myeong; Knapp, James; Jung, Yeon-Gil; Zhang, Jing

    2018-04-01

    Lanthanum zirconate (La2Zr2O7) has been proposed as a promising thermal barrier coating (TBC) material due to its low thermal conductivity and high stability at high temperatures. In this work, both single and double-ceramic-layer (DCL) TBC systems of La2Zr2O7 and 8 wt.% yttria-stabilized zirconia (8YSZ) were prepared using air plasma spray (APS) technique. The thermomechanical properties and microstructure were investigated. Thermal gradient mechanical fatigue (TGMF) tests were applied to investigate the thermal cycling performance. The results showed that DCL La2Zr2O7 + 8YSZ TBC samples lasted fewer cycles compared with single-layered 8YSZ TBC samples in TGMF tests. This is because DCL La2Zr2O7 TBC samples had higher residual stress during the thermal cycling process, and their fracture toughness was lower than that of 8YSZ. Bond strength test results showed that 8YSZ TBC samples had higher bond strength compared with La2Zr2O7. The erosion rate of La2Zr2O7 TBC samples was higher than that of 8YSZ samples, due to the lower critical erodent velocity and fracture toughness of La2Zr2O7. DCL porous 8YSZ + La2Zr2O7 had a lower erosion rate than other SCL and DCL La2Zr2O7 coatings, suggesting that porous 8YSZ serves as a stress-relief buffer layer.

  13. Internal transport barriers in optimized shear plasmas in JET

    International Nuclear Information System (INIS)

    Sips, A.C.C.; Baranov, Y.F.; Challis, C.D.; Cottrell, G.A.; Eriksson, L.-G.; Gormezano, C.; Gowers, C.; Haas, J.C.M. de; Hellermann, M. von; Huysmans, G.T.A.; Howman, A.; K ig, R.; Lazarus, A.; Nielsen, P.; O'Brien, D.; Sadler, G.; Soeldner, F.X.; Stamp, M.F.; Tubbing, B.J.D.; Ward, D.J.; Greenfield, C.M.; Luce, T.; Strait, E.J.; Lazarus, E.A.; Wade, M.; Rice, B.W.

    1998-01-01

    Experiments using high-power heating during the current ramp-up phase of the discharge have obtained the highest D-D neutron rates in JET; S n =5x6x10 16 neutrons s -1 , with n e0 approx.= 6x10 19 m - 3, T e0 approx.= 12 keV and T i0 approx.= 26 keV. The best discharges (I p = 3.3 MA and B t = 3.4 tesla) have peaked pressure profiles with a transport barrier located at r/a = 0.55. The pressure peaking is limited by MHD modes and requires active input power control to achieve the best performance. Deuterium neutral beam injection into a tritium-rich target plasma has established internal transport barriers at power levels close to the lowest threshold for pure deuterium plasmas. (author)

  14. Control of stationary crossflow modes in swept Hiemenz flows with dielectric barrier discharge plasma actuators

    Science.gov (United States)

    Wang, Zhefu; Wang, Liang; Fu, Song

    2017-09-01

    Sensitivity analyses and non-linear parabolized stability equations are solved to provide a computational assessment of the potential use of a Dielectric Barrier Discharge (DBD) plasma actuator for a prolonging laminar region in swept Hiemenz flow. The derivative of the kinetic energy with respect to the body force is deduced, and its components in different directions are defined as sensitivity functions. The results of sensitivity analyses and non-linear parabolized stability equations both indicate that the introduction of a body force as the plasma actuator at the bottom of a crossflow vortex can mitigate instability to delay flow transition. In addition, the actuator is more effective when placed more upstream until the neutral point. In fact, if the actuator is sufficiently close to the neutral point, it is likely to act as a strong disturbance over-riding the natural disturbance and dominating transition. Different operating voltages of the DBD actuators are tested, resulting in an optimal practice for transition delay. The results demonstrate that plasma actuators offer great potential for transition control.

  15. Plasma heating by non-linear wave-Plasma interaction | Echi ...

    African Journals Online (AJOL)

    We simulate the non-linear interaction of waves with magnetized tritium plasma with the aim of determining the parameter values that characterize the response of the plasma. The wave-plasma interaction has a non-conservative Hamiltonian description. The resulting system of Hamilton's equations is integrated numerically ...

  16. Development and Life Prediction of Erosion Resistant Turbine Low Conductivity Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Miller, Robert A.; Kuczmarski, Maria A.

    2010-01-01

    Future rotorcraft propulsion systems are required to operate under highly-loaded conditions and in harsh sand erosion environments, thereby imposing significant material design and durability issues. The incorporation of advanced thermal barrier coatings (TBC) in high pressure turbine systems enables engine designs with higher inlet temperatures, thus improving the engine efficiency, power density and reliability. The impact and erosion resistance of turbine thermal barrier coating systems are crucial to the turbine coating technology application, because a robust turbine blade TBC system is a prerequisite for fully utilizing the potential coating technology benefit in the rotorcraft propulsion. This paper describes the turbine blade TBC development in addressing the coating impact and erosion resistance. Advanced thermal barrier coating systems with improved performance have also been validated in laboratory simulated engine erosion and/or thermal gradient environments. A preliminary life prediction modeling approach to emphasize the turbine blade coating erosion is also presented.

  17. Thermal cycling damage evolution of a thermal barrier coating and the influence of substrate creep, interface roughness and pre-oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Schweda, Mario; Beck, Tilmann; Singheiser, Lorenz [Forschungszentrum Juelich GmbH (DE). Inst. fuer Energie- und Klimaforschung (IEK), Werkstoffstruktur und Eigenschaften (IEK-2)

    2012-01-15

    The influence of roughness profile shape, roughness depth, bond coat creep strength and pre-oxidation on the thermal cycling damage evolution and lifetime of a plasma-sprayed ZrO{sub 2} thermal barrier coating system was investigated. A simplified model system was used where FeCrAlY substrates simulated the bond coat. Substrate creep was varied by using the oxide dispersoid strengthened alloy MA956 and the conventional material Fecralloy. Stochastic 3- and periodic 2-dimensional roughness profiles were produced by sand blasting and high speed turning. Damage evolution is significantly influenced by substrate creep with a trend to higher lifetimes for the fast creeping substrate. Pre-oxidation has no influence. Lifetimes of the periodically profiled samples are up to 100 times lower than these of stochastically profiled samples. In the case of periodically profiled samples, the highest lifetime was reached for the highest roughness depth combined with local undercuttings in the roughness profile. For stochastically profiled samples the influence of roughness depth could not be determined due to the wide lifetime scatter. (orig.)

  18. Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model.

    Directory of Open Access Journals (Sweden)

    Laura Brullé

    Full Text Available Pancreatic tumors are the gastrointestinal cancer with the worst prognosis in humans and with a survival rate of 5% at 5 years. Nowadays, no chemotherapy has demonstrated efficacy in terms of survival for this cancer. Previous study focused on the development of a new therapy by non thermal plasma showed significant effects on tumor growth for colorectal carcinoma and glioblastoma. To allow targeted treatment, a fibered plasma (Plasma Gun was developed and its evaluation was performed on an orthotopic mouse model of human pancreatic carcinoma using a MIA PaCa2-luc bioluminescent cell line. The aim of this study was to characterize this pancreatic carcinoma model and to determine the effects of Plasma Gun alone or in combination with gemcitabine. During a 36 days period, quantitative BLI could be used to follow the tumor progression and we demonstrated that plasma gun induced an inhibition of MIA PaCa2-luc cells proliferation in vitro and in vivo and that this effect could be improved by association with gemcitabine possibly thanks to its radiosensitizing properties.

  19. Effects of a non thermal plasma treatment alone or in combination with gemcitabine in a MIA PaCa2-luc orthotopic pancreatic carcinoma model.

    Science.gov (United States)

    Brullé, Laura; Vandamme, Marc; Riès, Delphine; Martel, Eric; Robert, Eric; Lerondel, Stéphanie; Trichet, Valérie; Richard, Serge; Pouvesle, Jean-Michel; Le Pape, Alain

    2012-01-01

    Pancreatic tumors are the gastrointestinal cancer with the worst prognosis in humans and with a survival rate of 5% at 5 years. Nowadays, no chemotherapy has demonstrated efficacy in terms of survival for this cancer. Previous study focused on the development of a new therapy by non thermal plasma showed significant effects on tumor growth for colorectal carcinoma and glioblastoma. To allow targeted treatment, a fibered plasma (Plasma Gun) was developed and its evaluation was performed on an orthotopic mouse model of human pancreatic carcinoma using a MIA PaCa2-luc bioluminescent cell line. The aim of this study was to characterize this pancreatic carcinoma model and to determine the effects of Plasma Gun alone or in combination with gemcitabine. During a 36 days period, quantitative BLI could be used to follow the tumor progression and we demonstrated that plasma gun induced an inhibition of MIA PaCa2-luc cells proliferation in vitro and in vivo and that this effect could be improved by association with gemcitabine possibly thanks to its radiosensitizing properties.

  20. Potential solver for sloshing-ion thermal barriers

    International Nuclear Information System (INIS)

    Boghosian, B.M.; Campbell, R.B.; Gilmore, J.M.

    1981-01-01

    The quasineutrality equations at points (a) and (b) in a sloshing-ion thermal barrier are derived and an algorithm for their solution is given. The solution technique is sufficiently reliable and efficient to be used in a fluid code where it must be invoked at each time step. Circumstances under which the equations admit multiple solutions are noted and discussed

  1. Characterization of a dielectric barrier plasma gun discharging at atmospheric pressure

    International Nuclear Information System (INIS)

    Zhang Guangqiu; Ge Yuanjing; Zhang Yuefei; Chen Guangliang

    2004-01-01

    The authors develop a plasma gun based on dielectric barrier discharge and working at atmospheric pressure. A theoretical model to predict the gun discharge voltage is built, which is in agreement with the experimental results. After investigating the characterization of discharging gun and utilizing it for polymerization, authors find that the gun can be used as a source to generate a stable uniform plasma for different plasma-processing technologies. (author)

  2. Non-linear gyrokinetic simulations of microturbulence in TCV electron internal transport barriers

    Science.gov (United States)

    Lapillonne, X.; Brunner, S.; Sauter, O.; Villard, L.; Fable, E.; Görler, T.; Jenko, F.; Merz, F.

    2011-05-01

    Using the local (flux-tube) version of the Eulerian code GENE (Jenko et al 2000 Phys. Plasmas 7 1904), gyrokinetic simulations of microturbulence were carried out considering parameters relevant to electron-internal transport barriers (e-ITBs) in the TCV tokamak (Sauter et al 2005 Phys. Rev. Lett. 94 105002), generated under conditions of low or negative shear. For typical density and temperature gradients measured in such barriers, the corresponding simulated fluctuation spectra appears to simultaneously contain longer wavelength trapped electron modes (TEMs, for typically k⊥ρi 0.5). The contributions to the electron particle flux from these two types of modes are, respectively, outward/inward and may cancel each other for experimentally realistic gradients. This mechanism may partly explain the feasibility of e-ITBs. The non-linear simulation results confirm the predictions of a previously developed quasi-linear model (Fable et al 2010 Plasma Phys. Control. Fusion 52 015007), namely that the stationary condition of zero particle flux is obtained through the competitive contributions of ITG and TEM. A quantitative comparison of the electron heat flux with experimental estimates is presented as well.

  3. Functionally gradient materials for thermal barrier coatings in advanced gas turbine systems

    Energy Technology Data Exchange (ETDEWEB)

    Banovic, S.W.; Barmak, K.; Chan, H.M. [Lehigh Univ., Bethlehem, PA (United States)] [and others

    1995-10-01

    New designs for advanced gas turbine engines for power production are required to have higher operating temperatures in order to increase efficiency. However, elevated temperatures will increase the magnitude and severity of environmental degradation of critical turbine components (e.g. combustor parts, turbine blades, etc{hor_ellipsis}). To offset this problem, the usage of thermal barrier coatings (TBCs) has become popular by allowing an increase in maximum inlet temperatures for an operating engine. Although thermal barrier technology is over thirty years old, the principle failure mechanism is the spallation of the ceramic coating at or near the ceramic/bond coat interface. Therefore, it is desirable to develop a coating that combines the thermal barrier qualities of the ceramic layer and the corrosion protection by the metallic bond coat without the detrimental effects associated with the localization of the ceramic/metal interface to a single plane.

  4. Effects of gap and elevated pressure on ethanol reforming in a non-thermal plasma reactor

    International Nuclear Information System (INIS)

    Hoang, Trung Q; Zhu Xinli; Lobban, Lance L; Mallinson, Richard G

    2011-01-01

    Production of hydrogen for fuel cell vehicles, mobile power generators and for hydrogen-enhanced combustion from ethanol is demonstrated using energy-efficient non-thermal plasma reforming. A tubular reactor with a multipoint electrode system operated in pulsed mode was used. Complete conversion can be achieved with high selectivity (based on ethanol) of H 2 and CO of 111% and 78%, respectively, at atmospheric pressure. An elevated pressure of 15 psig shows improvement of selectivity of H 2 and CO to 120% and 87%, with a significant reduction of C 2 H x side products. H 2 selectivity increased to 127% when a high ratio (29.2) of water-to-ethanol feed was used. Increasing CO 2 selectivity is observed at higher water-to-ethanol ratios indicating that the water gas shift reaction occurs. A higher productivity and lower C 2 H x products were observed at larger gas gaps. The highest overall energy efficiency achieved, including electrical power consumption, was 82% for all products or 66% for H 2 only.

  5. Thickness and microstructure characterization of TGO in thermal barrier coatings by 3D reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xuemei; Meng, Fangli [The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, , Chinese Academy of Sciences, Shanghai 200050 (China); Kong, Mingguang [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Yongzhe [The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, , Chinese Academy of Sciences, Shanghai 200050 (China); Huang, Liping; Zheng, Xuebin [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Zeng, Yi, E-mail: zengyi@mail.sic.ac.cn [The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, , Chinese Academy of Sciences, Shanghai 200050 (China); CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050 (China)

    2016-10-15

    Yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBCs) are prepared by plasma spraying. Thermally grown oxide (TGO) would be formed between YSZ topcoat and bond coat after 50 h thermal service for YSZ TBCs. The electron back scattered diffraction (EBSD) results reveal that the TGO layer is composed of α-Al{sub 2}O{sub 3} and cubic Al{sub 2}NiO{sub 4} layers. Measured values of TGO thickness from the 2D-SEM image are greater than or equal to its real thickness due to the fact that the TGO layer is much rolling so that up and down surfaces of the TGO can't be completely perpendicular to the cross-section direction confirmed by 3D-SEM. Furthermore, 3D-SEM results reveal that the real thickness of TGO layer is 3.10 μm instead of 7.1 μm. In addition, 3D-EBSD confirmed that α-Al{sub 2}O{sub 3} layer in TGO is composed of single layer of grains and Al{sub 2}NiO{sub 4} layer consist of multilayer of grains while α-Al{sub 2}O{sub 3} layer is mixed with single layer and multilayer of α-Al{sub 2}O{sub 3} grains from observation of the 2D-EBSD image. It provides a new method to characterize real thickness and microstructure of TGO, which is also applied to other film materials. - Highlights: •This work provides a new method to measure the real thickness of TGO. •YSZ TBCs were prepared by plasma spraying. •TGO is formed in TBCs by simulating thermal service at 1100 °C for 50 h. •Real thickness and microstructure of TGO were investigated by 3D reconstruction.

  6. Computational design and experimental validation of new thermal barrier systems

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Shengmin [Louisiana State Univ., Baton Rouge, LA (United States)

    2015-03-31

    The focus of this project is on the development of a reliable and efficient ab initio based computational high temperature material design method which can be used to assist the Thermal Barrier Coating (TBC) bond-coat and top-coat design. Experimental evaluations on the new TBCs are conducted to confirm the new TBCs’ properties. Southern University is the subcontractor on this project with a focus on the computational simulation method development. We have performed ab initio density functional theory (DFT) method and molecular dynamics simulation on screening the top coats and bond coats for gas turbine thermal barrier coating design and validation applications. For experimental validations, our focus is on the hot corrosion performance of different TBC systems. For example, for one of the top coatings studied, we examined the thermal stability of TaZr2.75O8 and confirmed it’s hot corrosion performance.

  7. High-temperature stability of yttria-stabilized zirconia thermal barrier ...

    Indian Academy of Sciences (India)

    temperature drop was found to increase with the coating thickness of YSZ. The coatings ... thermal barrier coating system on niobium alloys for supersonic vehicles. .... Voltage (V). 75 ..... However, distribution of the other elements; such as Ni,.

  8. Effects of vortex-like and non-thermal ion distributions on non-linear dust-acoustic waves

    International Nuclear Information System (INIS)

    Mamun, A.A.; Cairns, R.A.; Shukla, P.K.

    1996-01-01

    The effects of vortex-like and non-thermal ion distributions are incorporated in the study of nonlinear dust-acoustic waves in an unmagnetized dusty plasma. It is found that owing to the departure from the Boltzmann ion distribution to a vortex-like phase space distribution, the dynamics of small but finite amplitude dust-acoustic waves is governed by a modified Kortweg endash de Vries equation. The latter admits a stationary dust-acoustic solitary wave solution, which has larger amplitude, smaller width, and higher propagation velocity than that involving adiabatic ions. On the other hand, consideration of a non-thermal ion distribution provides the possibility of coexistence of large amplitude rarefactive as well as compressive dust-acoustic solitary waves, whereas these structures appear independently when the wave amplitudes become infinitely small. The present investigation should help us to understand the salient features of the non-linear dust-acoustic waves that have been observed in a recent numerical simulation study. copyright 1996 American Institute of Physics

  9. Non equilibrium atomic processes and plasma spectroscopy

    International Nuclear Information System (INIS)

    Kato, Takako

    2003-01-01

    Along with the technical progress in plasma spectroscopy, non equilibrium ionization processes have been recently observed. We study non local thermodynamic equilibrium and non ionization equilibrium for various kinds of plasmas. Specifically we discuss non equilibrium atomic processes in magnetically confined plasmas, solar flares and laser produced plasmas using a collisional radiative model based on plasma spectroscopic data. (author)

  10. New concepts for drift pumping a thermal barrier with rf

    International Nuclear Information System (INIS)

    Barter, J.D.; Baldwin, D.; Chen, Y.; Poulsen, P.

    1985-01-01

    Pump neutral beams, which are directed into the loss cone of the TMX-U plugs, are normally used to pump ions from the thermal barriers. Because these neutral beams introduce cold gas that reduces pumping efficiency, and require a straight line entrance and exit from the plug, alternate methods are being investigated to provide barrier pumping. To maintain the thermal barrier, either of two classes of particles can be pumped. First, the collisionally trapped ions can be pumped directly. In this case, the most promising selection criterion is the azimuthal drift frequency. Second, the excess sloshing-ion density can be removed, allowing the use of increased sloshing-beam density to pump the trapped ions. The selection mechanism in this case is the Doppler-shifted ion-cyclotron resonance of the high-energy sloshing-ions (3 keV less than or equal to U/sub parallel/ less than or equal to 10 keV)

  11. Thermal response of plasma sprayed tungsten coating to high heat flux

    International Nuclear Information System (INIS)

    Liu, X.; Yang, L.; Tamura, S.; Tokunaga, K.; Yoshida, N.; Noda, N.; Xu, Z.

    2004-01-01

    In order to investigate the thermal response of tungsten coating on carbon and copper substrates by vacuum plasma spray (VPS) or inert gas plasma spray (IPS), annealing and cyclic heat load experiments of these coatings were conducted. It is indicated that the multi-layered tungsten and rhenium interface of VPS-W/CFC failed to act as a diffusion barrier at elevated temperature and tungsten carbides were developed after 1 h incubation time when annealing temperature was higher than 1600 deg. C. IPS-W/Cu and W/C without an intermediate bonding layer were failed by the detachment of the tungsten coating at 900 and 1200 deg. C annealing for several hours, respectively. Cyclic heat load of electron beam with 35 MW/m 2 and 3-s pulse duration indicated that IPS-W/Cu samples failed with local detachment of the tungsten coating within 200 cycles and IPS-W/C showed local cracks by 300 cycles, but VPS-W/CFC withstood 1000 cycles without visible damages. However, crack creation and propagation in VPS-W/CFC were also observed under higher heat load

  12. Self-organization of dissipative and coherent vortex structures in non-equilibrium magnetized two-dimensional plasmas

    International Nuclear Information System (INIS)

    Bystrenko, O; Bystrenko, T

    2010-01-01

    The properties of non-equilibrium magnetized plasmas confined in planar geometry are studied on the basis of first-principle microscopic Langevin dynamics computer simulations. The non-equilibrium state of plasmas is maintained due to the recombination and generation of charges. The intrinsic microscopic structure of non-equilibrium steady-state magnetized plasmas, in particular the inter-particle correlations and self-organization of vortex structures, are examined. The simulations have been performed for a wide range of parameters including strong plasma coupling, high charge recombination and generation rates and intense magnetic field. As is shown in simulations, the non-equilibrium recombination and generation processes trigger the formation of ordered dissipative or coherent drift vortex states in 2D plasmas with distinctly spatially separated components, which are far from thermal equilibrium. This is evident from the unusual properties of binary distributions and behavior of the Coulomb energy of the system, which turn out to be quite different from the ones typical for the equilibrium state of plasmas under the same conditions.

  13. Improving Hydrophobicity of Glass Surface Using Dielectric Barrier Discharge Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Fang Zhi; Qiu Yuchang; Wang Hui; Kuffel, E

    2007-01-01

    Non-thermal plasmas under atmospheric pressure are of great interest in industrial applications, especially in material surface treatment. In this paper, the treatment of a glass surface for improving hydrophobicity using the non-thermal plasma generated by dielectric barrier discharge (DBD) at atmospheric pressure in ambient air is conducted, and the surface properties of the glass before and after the DBD treatment are studied by using contact angle measurement, surface resistance measurement and wet flashover voltage tests. The effects of the applied voltage and time duration of DBD on the surface modification are studied, and the optimal conditions for the treatment are obtained. It is found that a layer of hydrophobic coating is formed on the glass surface after spraying a thin layer of silicone oil and undergoing the DBD treatment, and the improvement of hydrophobicity depends on DBD voltage and treating time. It seems that there exists an optimum treating time for a certain applied voltage of DBD during the surface treatment. The test results of thermal aging and chemical aging show that the hydrophobic layer has quite stable characteristics. The interaction mechanism between the DBD plasma and the glass surface is discussed. It is concluded that CH 3 and large molecule radicals can react with the radicals in the glass surface to replace OH, and the hydrophobicity of the glass surface is improved accordingly

  14. Non-thermal plasma exhaust aftertreatment: Are all plasmas the same?

    Energy Technology Data Exchange (ETDEWEB)

    Whealton, J.H.; Hanson, G.R.; Storey, J.M.; Raridon, R.J.; Armfield, J.S.; Bigelow, T.S.; Graves, R.L. [Oak Ridge National Lab., TN (United States)

    1997-12-31

    The authors describe initial experiments employing 5.5 GHz pulsed microwave power, which should result in enhanced chemistry compared to present state-of-the-art plasma aftertreatments by; reducing plasma electric field shielding, increasing availability of atomic nitrogen, exploiting surface charging of dielectrics, avoiding (low field) threshold initiated discharges, and achieving a higher high energy tail on the electron distribution function. As an example, the authors decided to test for NO reduction in N{sub 2}. While this reaction is not a complete description of the exhaust issues by any means, they thought it would demonstrate the technology proposed.

  15. Radio frequency plasma power dependence of the moisture permeation barrier characteristics of Al2O3 films deposited by remote plasma atomic layer deposition

    International Nuclear Information System (INIS)

    Jung, Hyunsoo; Choi, Hagyoung; Lee, Sanghun; Jeon, Heeyoung; Jeon, Hyeongtag

    2013-01-01

    In the present study, we investigated the gas and moisture permeation barrier properties of Al 2 O 3 films deposited on polyethersulfone films (PES) by capacitively coupled plasma (CCP) type Remote Plasma Atomic Layer Deposition (RPALD) at Radio Frequency (RF) plasma powers ranging from 100 W to 400 W in 100 W increments using Trimethylaluminum [TMA, Al(CH 3 ) 3 ] as the Al source and O 2 plasma as the reactant. To study the gas and moisture permeation barrier properties of 100-nm-thick Al 2 O 3 at various plasma powers, the Water Vapor Transmission Rate (WVTR) was measured using an electrical Ca degradation test. WVTR decreased as plasma power increased with WVTR values for 400 W and 100 W of 2.6 × 10 −4 gm −2 day −1 and 1.2 × 10 −3 gm −2 day −1 , respectively. The trends for life time, Al-O and O-H bond, density, and stoichiometry were similar to that of WVTR with improvement associated with increasing plasma power. Further, among plasma power ranging from 100 W to 400 W, the highest power of 400 W resulted in the best moisture permeation barrier properties. This result was attributed to differences in volume and amount of ion and radical fluxes, to join the ALD process, generated by O 2 plasma as the plasma power changed during ALD process, which was determined using a plasma diagnosis technique called the Floating Harmonic Method (FHM). Plasma diagnosis by FHM revealed an increase in ion flux with increasing plasma power. With respect to the ALD process, our results indicated that higher plasma power generated increased ion and radical flux compared with lower plasma power. Thus, a higher plasma power provides the best gas and moisture permeation barrier properties

  16. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    Science.gov (United States)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  17. Two-dimensional plasma photonic crystals in dielectric barrier discharge

    International Nuclear Information System (INIS)

    Fan Weili; Dong Lifang; Zhang Xinchun

    2010-01-01

    A series of two-dimensional plasma photonic crystals have been obtained by filaments' self-organization in atmospheric dielectric barrier discharge with two water electrodes, which undergo the transition from square to square superlattice and finally to the hexagon. The spatio-temporal behaviors of the plasma photonic crystals in nanosecond scale have been studied by optical method, which show that the plasma photonic crystal is actually an integration of different transient sublattices. The photonic band diagrams of the transverse electric (TE) mode and transverse magnetic mode for each sublattice of these plasma photonic crystals have been investigated theoretically. A wide complete band gap is formed in the hexagonal plasma photonic crystal with the TE mode. The changes of the band edge frequencies and the band gap widths in the evolvement of different structures are studied. A kind of tunable plasma photonic crystal which can be controlled both in space and time is suggested.

  18. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    Science.gov (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  19. Development of plasma properties along thermal plasma jet generated by hybrid water-argon torch

    Czech Academy of Sciences Publication Activity Database

    Kavka, Tetyana; Hrabovský, Milan

    2002-01-01

    Roč. 52, supplement D (2002), s. 637-642 ISSN 0011-4626. [Symposium on Plasma Physics and Technology/20th./. Prague, 10.06.2002-13.06.2002] Institutional research plan: CEZ:AV0Z2043910 Keywords : thermal plasma, plasma jet, enthalpy probe Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.311, year: 2002

  20. Preliminary experiments on wastes degradation by thermal plasma

    International Nuclear Information System (INIS)

    Cota S, G.; Pacheco S, J.; Segovia R, A.; Pena E, R.; Merlo S, L.

    1996-01-01

    This work presents the fundamental aspects involved in the installation and start up of an experimental equipment for the hazardous wastes degradation using the thermal plasma technology. It is mentioned about the form in which the thermal plasma is generated and the characteristics that its make to be an appropriate technology for the hazardous wastes degradation. Just as the installed structures for to realize the experiments and results of the first studies on degradation, using nylon as problem sample. (Author)

  1. Response of a thermal barrier system to acoustic excitation in a gas turbine nuclear reactor

    International Nuclear Information System (INIS)

    Betts, W.S. Jr.; Blevins, R.D.

    1980-11-01

    A gas turbine located within a High-Temperature Gas-Cooled Reactor (HTGR) induces high acoustic sound pressure levels into the primary coolant (helium). This acoustic loading induces high cycle fatigue stresses which may control the design of the thermal barrier system. This study examines the dynamic response of a thermal barrier configuration consisting of a fibrous insulation compressed against the reactor vessel by a coverplate which is held in position by a central attachment fixture. The results of dynamic vibration analyses indicate the effect of the plate size and curvature and the attachment size on the response of the thermal barrier

  2. Microstructure and durability of zirconia thermal barrier coatings

    International Nuclear Information System (INIS)

    Suhr, D.S.; Mitchell, T.E.; Keller, R.J.

    1983-01-01

    Various combinations of plasma-sprayed bond coatings and zirconia ceramic coatings on a nickel-based superalloy substrate were tested by static thermal exposure at 1200 0 C and cyclic thermal exposure to 1000 0 C. The bond coats were based on Ni-Cr-Al alloys with additions of rare earth elements and Si. The ceramic coats were various ZrO 2 -Y 2 O 3 compositions, of which the optimum was found to be ZrO 2 -8.9 wt% Y 2 O 3 . Microstructural analysis showed that resistance to cracking during thermal exposure is strongly related to deleterious phase changes

  3. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 - 10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 gm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the article refractive index

  4. Diagnostic methods of thermal dusty plasma flows

    International Nuclear Information System (INIS)

    Nefedov, A.P.

    1995-01-01

    The presence in the high-temperature flows of condensed disperse phase (CDP) particles may lead either to an increase of the electron number density n e if the particles assume a positive charge or to its decrease if the charge is negative. The existence of CDP also may effect on optical parameters of the thermal dusty plasma flows, on heat and radiative transfer in the plasma. The entire range of states, from a Debye plasma to a highly nonideal system of charged particles, is realized in a thermal dusty plasma under standard conditions T=2000-3000 K, n e =10 8 -10 14 cm -3 . The advanced probe and optical diagnostic instruments are needed to study the optical and electrophysical properties of thermal dusty plasma flows. The diagnostic techniques must give the data about such parameters of gas and dispersed phase as temperatures of gas and particles, number densities of electrons, atoms and ions of alkali metals, sizes, velocities and concentrations of CDP particles. It should be noted that number density of alkali metal atoms and gas temperature may be measured by the well known full absorption and generalized reversal methods. This paper describes the probe and optical techniques for diagnostic of dusty plasma flows developed in High Energy Density Research Center of Russian Academy of Sciences. The Forward Angle Scattering Transmissometer (FAST) allows measurement of the average size (Sauter diameter), mass number density, and refractive index of particles in the 0.5-15.0 μm size range. The basis of the method is a dependence of the measured extinction of radiation upon an angular acceptance aperture of the photo detector. The FAST instrument allows one to determine the mass density and the Sauter diameter of a polydispersion of particles without a priori specification of the particle size distribution model and exact data about the particle refractive index

  5. Thermal radiation properties of PTFE plasma

    Science.gov (United States)

    Liu, Xiangyang; Wang, Siyu; Zhou, Yang; Wu, Zhiwen; Xie, Kan; Wang, Ningfei

    2017-06-01

    To illuminate the thermal transfer mechanism of devices adopting polytetrafluoroethylene (PTFE) as ablation materials, the thermal radiation properties of PTFE plasma are calculated and discussed based on local thermodynamic equilibrium (LTE) and optical thin assumptions. It is clarified that line radiation is the dominant mechanism of PTFE plasma. The emission coefficient shows an opposite trend for both wavelength regions divided by 550 nm at a temperature above 15 000 K. The emission coefficient increases with increasing temperature and pressure. Furthermore, it has a good log linear relation with pressure. Equivalent emissivity varies complexly with temperature, and has a critical point between 20 000 K to 25 000 K. The equivalent cross points of the average ionic valence and radiation property are about 10 000 K and 15 000 K for fully single ionization.

  6. Coherent structures induced by dielectric barrier discharge plasma actuator

    Science.gov (United States)

    Zhang, Xin; Li, Huaxing; Choi, Kwing So; Song, Longfei

    2017-11-01

    The structures of a flow field induced by a plasma actuator were investigated experimentally in quiescent air using high-speed Particle Image Velocimetry (PIV) technology. The motivation behind was to figure out the flow control mechanism of the plasma technique. A symmetrical Dielectric Barrier Discharge (DBD) plasma actuator was mounted on the suction side of the SC (2)-0714 supercritical airfoil. The results demonstrated that the plasma jet had some coherent structures in the separated shear layer and these structures were linked to a dominant frequency of f0 = 39 Hz when the peak-to-peak voltage of plasma actuator was 9.8 kV. The high speed PIV measurement of the induced airflow suggested that the plasma actuator could excite the flow instabilities which lead to production of the roll-up vortex. Analysis of transient results indicated that the roll-up vortices had the process of formation, movement, merging and breakdown. This could promote the entrainment effect of plasma actuator between the outside airflow and boundary layer flow, which is very important for flow control applications.

  7. Stationary self-focusing of Gaussian laser beam in relativistic thermal quantum plasma

    International Nuclear Information System (INIS)

    Patil, S. D.; Takale, M. V.

    2013-01-01

    In the present paper, we have employed the quantum dielectric response in thermal quantum plasma to model relativistic self-focusing of Gaussian laser beam in a plasma. We have presented an extensive parametric investigation of the dependence of beam-width parameter on distance of propagation in relativistic thermal quantum plasma. We have studied the role of Fermi temperature in the phenomenon of self-focusing. It is found that the quantum effects cause much higher oscillations of beam-width parameter and better relativistic focusing of laser beam in thermal quantum plasma in comparison with that in the relativistic cold quantum plasma and classical relativistic plasma. Our computations show more reliable results in comparison to the previous works

  8. Treatment of mixed wastes by thermal plasma discharges

    International Nuclear Information System (INIS)

    Diaz A, L.V.

    2007-01-01

    The present study has as purpose to apply the technology of thermal plasma in the destruction of certain type of waste generated in the ININ. As first instance, origin, classification and disposition of the radioactive waste generated in the ININ is identified. Once identified the waste, the waste to treat is determined based on: the easiness of treating him with plasma, classification and importance. Later on, a substance or compound settles down (sample model) that serves as indicative of the waste for its physical-chemical characteristics, this is made because in the Thermal Plasma Applications Laboratory is not had the license to work with radioactive material. The sample model and the material to form the vitreous matrix are characterized before and after the treatment in order to evaluating their degradation and vitrification. During the treatment by means of the thermal plasma, the appropriate conditions are determined for the degradation and vitrification of the waste. Also, it is carried out an energy balance in the system to know the capacity to fuse the material depending the transfer of existent heat between the plasma and the material to treat. Obtaining favorable results, it thought about to climb in the project and by this way to help to solve one of the environmental problems in Mexico, as they are it the mixed wastes. (Author)

  9. DEVELOPMENT OF COMPLEX EQUIPMENT FOR PLASMA SPRAY CERAMIC COATINGS

    Directory of Open Access Journals (Sweden)

    V. V. Okovity

    2017-01-01

    Full Text Available Develop a set equipment for plasma forming ceramic coatings. The article presents characteristics and parameters of the developed complex equipment for formation of plasma ceramic coatings as well as results of its testing. Methods of research is based on studies of structural elements composite plasma coatings system ZrO2 – Y2O3  obtained  using  developed complex equipment. One of the most effective ways to protect the components from high temperature corrosion and oxidation is formation on the surface of plasma thermal barrier coatings. For thermal barrier coating has very strict requirements: сharacterized by a smooth change of physico-mechanical properties (porosity, microhardness, elastic modulus in the cross section of the metal substrate to the outer ceramic layer; to withstand multiple cycles of thermal cycling from room temperature to the operating temperature; to maintain gastightness under operating conditions and thus ensure a sufficiently high level of adhesive strength. For realization of new technological schemes applying thermal barrier coatings with high operational characteristics was developed, patented and manufactured a range of new equipment. The experiments show that authors developed PBG-1 plasmatron and powder feeder PPBG-04 have at least 2–3 times the service life during the deposition of ceramic materials compared to the standard equipment of the company "Plasma-Technik", by changing the structure of the cathode-anode plasma torch assembly and construction of the delivery unit of the feeder to facilitate the uniform supply of the powder into the plasma jet and the best of his penetration. The result is better plasma coatings with improved operational characteristics: adhesion strength is increased to 1.3–2 times, material utilization in 1.5–1.6 times microhardness 1.2–1.4 times the porosity is reduced by 2–2.5 times.

  10. Effects of plasma jet parameters, ionization, thermal conduction, and radiation on stagnation conditions of an imploding plasma liner

    Science.gov (United States)

    Stanic, Milos

    The disciplines of High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF) are characterized by hypervelocity implosions and strong shocks. The Plasma Liner Experiment (PLX) is focused on reaching HEDP and/or ICF relevant regimes in excess of 1 Mbar peak pressure by the merging and implosion of discrete plasma jets, as a potentially efficient path towards these extreme conditions in a laboratory. In this work we have presented the first 3D simulations of plasma liner, formation, and implosion by the merging of discrete plasma jets in which ionization, thermal conduction, and radiation are all included in the physics model. The study was conducted by utilizing a smoothed particle hydrodynamics code (SPHC) and was a part of the plasma liner experiment (PLX). The salient physics processes of liner formation and implosion are studied, namely vacuum propagation of plasma jets, merging of the jets (liner forming), implosion (liner collapsing), stagnation (peak pressure), and expansion (rarefaction wave disassembling the target). Radiative transport was found to significantly reduce the temperature of the liner during implosion, thus reducing the thermal expansion rates and leaving more pronounced gradients in the plasma liner during the implosion compared with ideal hydrodynamic simulations. These pronounced gradients lead to a greater sensitivity of initial jet geometry and symmetry on peak pressures obtained. Accounting for ionization and transport, many cases gave higher peak pressures than the ideal hydrodynamic simulations. Scaling laws were developed accordingly, creating a non-dimensional parameter space in which performance of an imploding plasma jet liner can be estimated. It is shown that HEDP regimes could be reached with ≈ 5 MJ of liner energy, which would translate to roughly 10 to 20 MJ of stored (capacitor) energy. This is a potentially significant improvement over the currently available means via ICF of achieving HEDP and nuclear

  11. Measurement of thermal plasma jet temperature and velocity by laser light lineshape analysis

    International Nuclear Information System (INIS)

    Snyder, S.C.; Reynolds, L.D.

    1991-01-01

    Two important parameters of thermal plasma jets are kinetic or gas temperatures and flow velocity. Gas temperatures have been traditionally measured using emission spectroscopy, but this method depends on either the generally unrealistic assumption of the existence of local thermodynamic equilibrium (LTE) within the plasma, or the use of various non-LTE or partial LTE models to relate the intensity of the emission lines to the gas temperature. Plasma jet velocities have been measured using laser Doppler velocimetry on particles injected into the plasma. However, this method is intrusive and it is not known how well the particle velocities represent the gas velocity. Recently, plasma jet velocities have been measured from the Doppler shift of laser light scattered by the plasma. In this case, the Doppler shift was determined from the difference in the transmission profile of a high resolution monochromator between red shifted and blue shifted scattered light. A direct approach to measuring localized temperatures and velocities is afforded by high resolution scattered light lineshape measurements. The linewidth of laser light scattered by atoms and ions can be related to the kinetic temperature without LTE assumptions, while a shift in the peak position relative to the incident laser lineshape yields the gas velocity. We report in this paper work underway to measure gas temperatures and velocities in an argon thermal plasma jet using high resolution lineshape analysis of scattered laser light

  12. Thermal cycling behaviour of lanthanum zirconate as EB-PVD thermal barrier coating

    International Nuclear Information System (INIS)

    Bobzin, K.; Lugscheider, E.; Bagcivan, N.

    2006-01-01

    Thermal cycling tests with two different EB-PVD thermal barrier coatings (TBC) were performed in a furnace cycle test. The results of these tests showed an increase of endurable cycle number when pyrochloric La 2 Zr 2 O 7 was used as TBC. 1865 cycles were reached with La 2 Zr 2 O 7 and 1380 cycles with 7 weigth-% yttria stabilised zirconia (YSZ) EB-PVD TBC. Additional investigation was made with scanning electron microscope (SEM) to investigate morphology and to determine chemical composition by electron dispersive x-ray spectroscopy (EDS) analysis. X-Ray diffraction was performed to analyze structural constitution of deposited coatings. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  13. Axisymmetric pumping scheme for the thermal barrier in a tandem mirror

    International Nuclear Information System (INIS)

    Li, X.Z.

    1985-09-01

    An axisymmetric pumping scheme is proposed to pump the particles that trap in a thermal barrier without invoking the neutral beam or geodesic curvature. In this scheme a magnetic scraper is moved uni-directionally on the barrier peak to push the barely trapped particles into the central cell. We utilize a potential jump that forms at the peak field for sufficiently strong pumping. The non-collisional catching effect has to be limited by setting an upper limit on the scraping frequency of the magnetic bump. On the other hand, the dynamic stability of the pumping scheme sets a lower limit on the scraping frequency. Using the variational method, we are able to estimate the window between these two limits, which seems feasible for the Tara reactor parameter set. A primary calculation shows that the magnetic bump, ΔB/B is about 10 -4 and the scraping frequency, nu/sub sc/, is about 10 +5 sec -1 , which are similar to the parameters required for those for drift pumping

  14. Collective Phenomena In Volume And Surface Barrier Discharges

    Science.gov (United States)

    Kogelschatz, U.

    2010-07-01

    Barrier discharges are increasingly used as a cost-effective means to produce non-equilibrium plasmas at atmospheric pressure. This way, copious amounts of electrons, ions, free radicals and excited species can be generated without appreciable gas heating. In most applications the barrier is made of dielectric material. In laboratory experiments also the use of resistive, ferroelectric and semiconducting materials has been investigated, also porous ceramic layers and dielectric barriers with controlled surface conductivity. Major applications utilizing mainly dielectric barriers include ozone generation, surface cleaning and modification, polymer and textile treatment, sterilization, pollution control, CO2 lasers, excimer lamps, plasma display panels (flat TV screens). More recent research efforts are also devoted to biomedical applications and to plasma actuators for flow control. Sinu- soidal feeding voltages at various frequencies as well as pulsed excitation schemes are used. Volume as well as surface barrier discharges can exist in the form of filamentary, regularly patterned or laterally homogeneous discharges. Reviews of the subject and the older literature on barrier discharges were published by Kogelschatz (2002, 2003), by Wagner et al. (2003) and by Fridman et al. (2005). A detailed discussion of various properties of barrier discharges can also be found in the recent book "Non-Equilibrium Air Plasmas at Atmospheric Pressure" by Becker et al. (2005). The physical effects leading to collective phenomena in volume and surface barrier discharges will be discussed in detail. Special attention will be given to self-organization of current filaments. Main similarities and differences of the two types of barrier discharges will be elaborated.

  15. Optimized functionally graded La{sub 2}Zr{sub 2}O{sub 7}/8YSZ thermal barrier coatings fabricated by suspension plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chaohui [Laboratory of Nano Surface Engineering, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Wang, You, E-mail: wangyou@hit.edu.cn [Laboratory of Nano Surface Engineering, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Fan, Shan; You, Yuan [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Wang, Liang [Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 201899 (China); Yang, Changlong [College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006 (China); Sun, Xiaoguang [National Engineering Research Center for High-speed EMU, CSR Qingdao Sifang Co. Ltd., Qingdao 266111 (China); Li, Xuewei [Laboratory of Nano Surface Engineering, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-11-15

    In this paper, an optimized functionally graded coating (OFGC) was successfully fabricated by suspension plasma spraying (SPS) with feedstocks of the suspension of nanoparticles. La{sub 2}Zr{sub 2}O{sub 7}/8YSZ OFGC with gradual compositional variation along the through-thickness direction is proposed to mitigate spallation and crack formation owing to the high residual stresses caused by frequent thermal cycling for TBCs. The single ceramic layer coatings (SCLC) of LZ and double ceramic layer coatings (DCLC) of LZ/8YSZ were fabricated by SPS as comparison. The phase composition and microstructure of the SCLC, OFGC and DCLC were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and Energy Dispersive Spectrometer (EDS). Moreover, the thermal cycling tests were carried out to evaluate their thermal shock behavior. Changes in weight and morphology of specimens were analyzed during thermal cycling tests. The results showed that OFGC has extended lifetime compared with SCLC and DCLC. The failure of DCLC with clear interface between different ceramic layers occurred via delamination mode, as a result of crack initiation and propagation generated by thermal mismatch between LZ and 8YSZ. While the failure of OFGC occurred in thermally grown oxide (TGO) layers, indicating that the gradual compositional variation avoided thermal stress concentration in the top ceramic layers. - Highlights: • Optimized functionally graded coatings and double ceramic layer coatings were deposited by suspension plasma spray. • The graded area of OFGC is continuously changed from inner 8YSZ to outer La{sub 2}Zr{sub 2}O{sub 7} (LZ). • The OFGC shows a more extended thermal cycling life than the LZ SCLC and LZ/8YSZ DCLC. • Various failure mechanisms were proposed to explain thermal cycling behavior.

  16. Thermal plasma synthesis of Fe1−xNix alloy nanoparticles

    International Nuclear Information System (INIS)

    Raut, Suyog A.; Kanhe, Nilesh S.; Bhoraskar, S. V.; Mathe, V. L.; Das, A. K.

    2014-01-01

    Fe-Ni alloy nanoparticles are of great interest because of diverse practical applications in the fields such as magnetic fluids, high density recording media, catalysis and medicine. We report the synthesis of Fe-Ni nanoparticles via thermal plasma route. Thermal plasma assisted synthesis is a high temperature process and gives high yields of production. Here, we have used direct arc thermal plasma plume of 6kw as a source of energy at operating pressure 500 Torr. The mixture of Fe-Ni powder in required proportion (Fe 1−x Ni x ; x=0.30, 0.32, 0.34, 0.36, 0.38 and 0.40) was made to evaporate simultaneously from the graphite anode in thermal plasma reactor to form Fe-Ni bimetallic nanoparticles. The as synthesized particles were characterized by X-Ray Diffraction (XRD), Thermo-Gravimetric Analysis/Differential Scanning Calorimtry (TGA/DSC)

  17. Thermal barrier and support for nuclear reactor fuel core

    International Nuclear Information System (INIS)

    Betts, W.S. Jr.; Pickering, J.L.; Black, W.E.

    1987-01-01

    A nuclear reactor is described having a thermal barrier for supporting a fuel column of a nuclear reactor core within a reactor vessel having a fixed rigid metal liner. The fuel column has a refractory post extending downward. The thermal barrier comprises, in combination, a metallic core support having an interior chamber secured to the metal liner; fibrous thermal insulation material covering the metal liner and surrounding the metallic core support; means associated with the metallic core support and resting on the top for locating and supporting the full column post; and a column of ceramic material located within the interior chamber of the metallic core support, the height of the column is less than the height of the metallic core support so that the ceramic column will engage the means for locating and supporting the fuel column post only upon plastic deformation of the metallic core support; the core support comprises a metallic cylinder and the ceramic column comprises coaxially aligned ceramic pads. Each pad has a hole located within the metallic cylinder by means of a ceramic post passing through the holes in the pads

  18. Degradation of m-cresol in aqueous solution by dielectric barrier discharge

    International Nuclear Information System (INIS)

    Jaramillo-Sierra, B; De la Piedad-Benitez, A; Mercado-Cabrera, A; López-Callejas, R; Peña-Eguiluz, R; Barocio, S R; Valencia-Alvarado, R; Rodríguez-Méndez, B; Muñoz-Castro, A

    2012-01-01

    It was carried out a theoretical and experimental study of the m-cresol degradation in aqueous solution using a non-thermal plasma induced by dielectric barrier discharge. For the experimental setup a coaxial reactor vertically placed was used. Wherein a liquid solution flowing inside the internal electrode was impelled by a peristaltic pump and falling over the external surface of the internal electrode. Working gas was applied in a parallel direction respect to the surface of the liquid and inside of the quartz tube. Non-thermal plasma was generated at the gas-liquid interface in Ar-O 2 gas mixtures with a high-voltage power supply system. The electric power applied ranged from 10–60W at a 3.0 kHz frequency. The initial concentration of m-cresol was of 5 × 10 −3 mol/L, and the removal efficiency up to 97.3% was obtained after 1 h of treatment. For the theoretical study a simplified model of the chemical kinetics was developed where the temporary evolution of the compounds generated in the process of degradation of the m-cresol was analyzed. Byproducts as oxalic acid and CO 2 were found.

  19. Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose

    Science.gov (United States)

    Huang, Fangmin; Long, Zhouyang; Liu, Sa; Qin, Zhenglong

    2017-04-01

    Dielectric barrier discharge (DBD) plasma was used as a pretreatment method for downstream hydrolysis of microcrystalline cellulose (MCC). The degree of polymerization (DP) of MCC decreased after it was pretreated by DBD plasma under a carrier gas of air/argon. The effectiveness of depolymerization was found to be influenced by the crystallinity of MCC when under the pretreatment of DBD plasma. With the addition of tert-butyl alcohol in the treated MCC water suspension solution, depolymerization effectiveness of MCC was inhibited. When MCC was pretreated by DBD plasma for 30 min, the total reducing sugar concentration (TRSC) and liquefaction yield (LY) of pretreated-MCC (PMCC) increased by 82.98% and 34.18% respectively compared with those for raw MCC.

  20. Internal transport barriers: critical physics issues?

    Energy Technology Data Exchange (ETDEWEB)

    Litaudon, X [Association Euratom-CEA, DSM, Departement de Recherches sur La Fusion Controlee, Centre d' Etudes de Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2006-05-15

    Plasmas regimes with improved core energy confinement properties, i.e. with internal transport barriers (ITB), provide a possible route towards simultaneous high fusion performance and continuous tokamak reactor operation in a non-inductive current drive state. High core confinement regimes should be made compatible with a dominant fraction of the plasma current self-generated (pressure-driven) by the bootstrap effect while operating at high normalized pressure and moderate current. Furthermore, ITB regimes with 'non-stiff' plasma core pressure break the link observed in standard inductive operation between fusion performances and plasma pressure at the edge, thus offering a new degree of freedom in the tokamak operational space. Prospects and critical issues for using plasmas with enhanced thermal core insulation as a basis for steady tokamak reactor operation are reviewed in the light of the encouraging experimental and modelling results obtained recently (typically in the last two years). An extensive set of data from experiments carried out worldwide has been gathered on ITB regimes covering a wide range of parameters (q-profile, T{sub i}/T{sub e}, gradient length, shaping, normalized toroidal Larmor radius, collisionality, Mach number, etc). In the light of the progress made recently, the following critical physics issues relevant to the extrapolation of ITB regimes to next-step experiments, such as ITER, are addressed: 1. conditions for ITB formation and existence of a power threshold,; 2. ITB sustainment at T{sub i} {approx} T{sub e}, with low toroidal torque injection, low central particle fuelling but at high density and low impurity concentration,; 3. control of confinement for sustaining wide ITBs that encompass a large volume at high {beta}{sub N},; 4. real time profile control (q and pressure) with high bootstrap current and large fraction of alpha-heating and; 5. compatibility of core with edge transport barriers or with external core

  1. Synthesis of {gamma}-aluminium oxynitride spinel using thermal plasma technique

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Pravuram; Singh, S. K.; Sinha, S. P. [School of Applied Science (Physics), KIIT University, Bhubaneswar 751024 (India); Advanced Materials Technology Department, IMMT (CSIR), Bhubaneswar 751013 (India); School of Applied Science (Physics), KIIT University, Bhubaneswar 751024 (India)

    2012-07-23

    The synthesis technique of {gamma}-AlON in NH{sub 3} plasma using extended arc thermal plasma reactor have been reported. Dense cubic AlON spinel was synthesized in liquid state by fusion of mixture of Al{sub 2}O{sub 3} and AlN powder under thermal plasma. The density of the fused AlON was found to be 3.64 g/cc which is 98.11% of theoretical value. The formation of AlON was confirmed from XRD and Raman studies. Well faceted structure of plasma fused AlON was observed in FE-SEM micrograph.

  2. Plasma processes and film growth of expanding thermal plasma deposited textured zinc oxide

    NARCIS (Netherlands)

    Groenen, R.; Linden, J.L.; Sanden, van de M.C.M.

    2005-01-01

    Plasma processes and film growth of textured zinc oxide deposited from oxygen and diethyl zinc utilizing expanding thermal argon plasma created by a cascaded arc is discussed. In all conditions explored, an excess of argon ions and low temperature electrons is available, which represent the

  3. Physics of electron internal transport barrier in toroidal helical plasmas

    International Nuclear Information System (INIS)

    Itoh, K.; Toda, S.; Fujisawa, A.; Ida, K.; Itoh, S.-I.; Yagi, M.; Fukuyama, A.; Diamond, P.H.

    2006-10-01

    The role of zonal flows in the formation of the transport barrier in the helical plasmas is analyzed using the transport code. A set of one-dimensional transport equations is analyzed, including the effect of zonal flows. The turbulent transport coefficient is shown to be suppressed when the plasma state changes from the weak negative radial electric field to the strong positive one. This bifurcation of the turbulent transport is newly caused by the change of the damping rate of zonal flows. It is theoretically demonstrated that the damping rate of zonal flows governs the global confinement in toroidal plasmas. (author)

  4. On the propagation of hydromagnetic waves in a plasma of thermal and suprathermal components

    Science.gov (United States)

    Kumar, Nagendra; Sikka, Himanshu

    2007-12-01

    The propagation of MHD waves is studied when two ideal fluids, thermal and suprathermal gases, coupled by magnetic field are moving with the steady flow velocity. The fluids move independently in a direction perpendicular to the magnetic field but gets coupled along the field. Due to the presence of flow in suprathermal and thermal fluids there appears forward and backward waves. All the forward and backward modes propagate in such a way that their rate of change of phase speed with the thermal Mach number is same. It is also found that besides the usual hydromagnetic modes there appears a suprathermal mode which propagates with faster speed. Surface waves are also examined on an interface formed with composite plasma (suprathermal and thermal gases) on one side and the other is a non-magnetized plasma. In this case, the modes obtained are two or three depending on whether the sound velocity in thermal gas is equal to or greater than the sound velocity in suprathermal gas. The results lead to the conclusion that the interaction of thermal and suprathermal components may lead to the occurrence of an additional mode called suprathermal mode whose phase velocity is higher than all the other modes.

  5. First experimental result of toroidal confinement of non-neutral plasma on Proto-RT

    International Nuclear Information System (INIS)

    Himura, H.; Yoshida, Z.; Morikawa, J.

    1999-01-01

    Recently, an internal-ring device named Proto-RT (Prototype Ring Trap) was constructed at University of Tokyo, and experiments on the device have been just initiated. The goal of Proto-RT is to explore an innovative way which has a possibility to attain a plasma equilibrium with extremely high-β (β>1) in a toroidal geometry using non-neutral condition. At the first series of the experiments, pure electron plasma (n e ∼10 12 m -3 ) is successfully confined inside a separatrix. No disruption is so far observed. The confinement time of the electron plasma is the order of 1 sec. A shear effect of magnetic fields seems to result in longer confinement. The non-neutrality of Δn e ∼10 12 m -3 is already beyond the value required to produce an enough self-electric field E in plasma, causing a strong ExB flow thoroughly all over the plasma where the hydrodynamic pressure of the flow is predicted to balance with the thermal pressure of the plasma. (author)

  6. Cytocompatibility of Plasma and Thermally Treated Biopolymers

    Directory of Open Access Journals (Sweden)

    Petr Slepička

    2013-01-01

    Full Text Available This paper is focused on the surface characterization of plasma and consequently thermally treated biocompatible polymers. PLLA (poly(L-lactide acid and PMP (poly-4-methyl-1-pentene are studied. The influence of Ar plasma treatment on the surface polarity of substrate measured immediately after treatment and during the polymer surface aging is studied. Surface roughness, morphology, wettability, and surface chemistry were determined. Plasma treatment leads to significant changes in PLLA surface morphology and chemistry, with the PMP being slightly affected. The higher resistance to plasma fluence results in smaller ablation of PMP than that of PLLA. The plasma treatment improves cell adhesion and proliferation on the PMP. Plasma treatment of PLLA influences mostly the homogeneity of adhered and proliferated VSMC.

  7. Study of the efficiency of the anti-convective thermal barrier of the Super-Phenix vessels inter space

    International Nuclear Information System (INIS)

    Durin, M.; Mejane, A.

    1983-08-01

    In the LMFBR Phenix reactor, the junction between the primary vessel and the roof slab is a region of large thermal gradients. In order to limit the gradient in the primary vessel, a thermal barrier has been installed between the primary and the safety vessel. The purpose of this barrier is to prevent the penetration of hot gas in the upper part of the vessels inter space. Experimental results have been obtained on a full scale model representing a 25 0 vessel sector of the reactor. Different geometrical configurations have been tested for a large range of boundary condition: - perfectly tight barrier - no thermal barrier; - simulation of leakages on the barrier [fr

  8. Self-organization process of a magnetohydrodynamic plasma in the presence of thermal conduction

    International Nuclear Information System (INIS)

    Zhu, Shao-ping; Horiuchi, Ritoku; Sato, Tetsuya; Watanabe, K.; Hayashi, T.; Todo, Y.; Watanabe, T.H.; Kageyama, A.; Takamaru, H.

    1995-12-01

    A self-organization process of a magnetohydrodynamic(MHD) plasma with a finite thermal conductivity is investigated by means of a three-dimensional MHD simulation. With no thermal conduction an MHD system self-organizes to a non-Taylor's state in which the electric current perpendicular to the magnetic field remains comparable to the parallel electric current. In the presence of thermal conductivity the perpendicular component of electric current and the nonuniformity of thermal pressure generated by driven reconnection tend to be smoothened. Thus, the self-organized state approaches to a force-free minimum energy state under the influence of thermal conduction. Detailed energy conversion processes are also studied to find that the rapid decay of magnetic energy during the self-organization process is caused not only through the ohmic heating, but also through the work done by the j x B force. (author)

  9. Decomposition mechanism of trichloroethylene based on by-product distribution in the hybrid barrier discharge plasma process

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sang-Bo [Industry Applications Research Laboratory, Korea Electrotechnology Research Institute, Changwon, Kyeongnam (Korea, Republic of); Oda, Tetsuji [Department of Electrical Engineering, The University of Tokyo, Tokyo 113-8656 (Japan)

    2007-05-15

    The hybrid barrier discharge plasma process combined with ozone decomposition catalysts was studied experimentally for decomposing dilute trichloroethylene (TCE). Based on the fundamental experiment for catalytic activities on ozone decomposition, MnO{sub 2} was selected for application in the main experiments for its higher catalytic abilities than other metal oxides. A lower initial TCE concentration existed in the working gas; the larger ozone concentration was generated from the barrier discharge plasma treatment. Near complete decomposition of dichloro-acetylchloride (DCAC) into Cl{sub 2} and CO{sub x} was observed for an initial TCE concentration of less than 250 ppm. C=C {pi} bond cleavage in TCE gave a carbon single bond of DCAC through oxidation reaction during the barrier discharge plasma treatment. Those DCAC were easily broken in the subsequent catalytic reaction. While changing oxygen concentration in working gas, oxygen radicals in the plasma space strongly reacted with precursors of DCAC compared with those of trichloro-acetaldehyde. A chlorine radical chain reaction is considered as a plausible decomposition mechanism in the barrier discharge plasma treatment. The potential energy of oxygen radicals at the surface of the catalyst is considered as an important factor in causing reactive chemical reactions.

  10. Laser Cladding of Embedded Sensors for Thermal Barrier Coating Applications

    Directory of Open Access Journals (Sweden)

    Yanli Zhang

    2018-05-01

    Full Text Available The accurate real-time monitoring of surface or internal temperatures of thermal barrier coatings (TBCs in hostile environments presents significant benefits to the efficient and safe operation of gas turbines. A new method for fabricating high-temperature K-type thermocouple sensors on gas turbine engines using coaxial laser cladding technology has been developed. The deposition of the thermocouple sensors was optimized to provide minimal intrusive features to the TBC, which is beneficial for the operational reliability of the protective coatings. Notably, this avoids a melt pool on the TBC surface. Sensors were deposited onto standard yttria-stabilized zirconia (7–8 wt % YSZ coated substrates; subsequently, they were embedded with second YSZ layers by the Atmospheric Plasma Spray (APS process. Morphology of cladded thermocouples before and after embedding was optimized in terms of topography and internal homogeneity, respectively. The dimensions of the cladded thermocouple were in the order of 200 microns in thickness and width. The thermal and electrical response of the cladded thermocouple was tested before and after embedding in temperatures ranging from ambient to approximately 450 °C in a furnace. Seebeck coefficients of bared and embedded thermocouples were also calculated correspondingly, and the results were compared to that of a commercial standard K-type thermocouple, which demonstrates that laser cladding is a prospective technology for manufacturing microsensors on the surface of or even embedded into functional coatings.

  11. What makes a thermal plasma suitable for hazardous waste disposal

    International Nuclear Information System (INIS)

    Benocci, R.; Florio, R.; Galassi, A.; Paolicchio, M.; Sindoni, E.

    1997-01-01

    The basic transport and thermodynamic characteristic of a thermal plasma are analysed in order to emphasize those properties that make a high-temperature source profitable and suitable over the conventional devices for hazardous waste treatment. In addition a survey of the basic reaction sequence and apparatus units is made together with the different approaches to thermal plasma waste treatments

  12. Direct plasma interaction with living tissue

    Science.gov (United States)

    Fridman, Gregory

    For some time, plasma has been used in medicine to cauterize or cut tissue using heat and mechanical energy. In the recent decade, some researchers around the world have started to investigate how gas jets that pass through thermal plasma can be employed in medicine. This thesis presents the first investigation of biomedical uses of non-thermal plasma discharge which comes in direct contact with living tissue. It is demonstrated that the direct application of non-thermal plasma in air can cause rapid deactivation of bacteria on surfaces of tissues without causing any visible tissue damage. Medical need for such a device is discussed. Construction and operation of various types of non-thermal plasma power supplies and many types of treatment electrodes are presented as well. Application of this plasma to living organisms is shown to be safe from both the electrical perspective and from the biological perspective. Biological safety is revealed through a series of differential skin toxicity trials on human cadaver tissue, live hairless mouse skin tissue, live pig skin tissue, and finally in an open wound model on pigs. Direct non-thermal plasma in air is shown to deactivate bacteria about 100 times faster than indirect application using jets. A series of experiments reveal that this effectiveness is due to the ability of direct discharge to bring charges to tissue surfaces. It is demonstrated that neither ultraviolet (UV) radiation nor neutral active species such as hydroxyl radicals or ozone produced in plasma are responsible for the main effect on bacteria. Although much additional work remains on establishing detailed mechanism by which charges from plasma achieve this effect, the work carried out in this thesis clearly demonstrates that direct application of non-thermal plasma in air can be a very useful tool in medicine.

  13. Transition Region Emission and the Energy Input to Thermal Plasma in Solar Flares

    Science.gov (United States)

    Holman, Gordon D.; Holman, Gordon D.; Dennis, Brian R.; Haga, Leah; Raymond, John C.; Panasyuk, Alexander

    2005-01-01

    Understanding the energetics of solar flares depends on obtaining reliable determinations of the energy input to flare plasma. X-ray observations of the thermal bremsstrahlung from hot flare plasma provide temperatures and emission measures which, along with estimates of the plasma volume, allow the energy content of this hot plasma to be computed. However, if thermal energy losses are significant or if significant energy goes directly into cooler plasma, this is only a lower limit on the total energy injected into thermal plasma during the flare. We use SOHO UVCS observations of O VI flare emission scattered by coronal O VI ions to deduce the flare emission at transition region temperatures between 100,000 K and 1 MK for the 2002 July 23 and other flares. We find that the radiated energy at these temperatures significantly increases the deduced energy input to the thermal plasma, but by an amount that is less than the uncertainty in the computed energies. Comparisons of computed thermal and nonthermal electron energies deduced from RHESSI, GOES, and UVCS are shown.

  14. Non-Fourier based thermal-mechanical tissue damage prediction for thermal ablation.

    Science.gov (United States)

    Li, Xin; Zhong, Yongmin; Smith, Julian; Gu, Chengfan

    2017-01-02

    Prediction of tissue damage under thermal loads plays important role for thermal ablation planning. A new methodology is presented in this paper by combing non-Fourier bio-heat transfer, constitutive elastic mechanics as well as non-rigid motion of dynamics to predict and analyze thermal distribution, thermal-induced mechanical deformation and thermal-mechanical damage of soft tissues under thermal loads. Simulations and comparison analysis demonstrate that the proposed methodology based on the non-Fourier bio-heat transfer can account for the thermal-induced mechanical behaviors of soft tissues and predict tissue thermal damage more accurately than classical Fourier bio-heat transfer based model.

  15. Dynamics of the edge transport barrier at plasma biasing on the CASTOR tokamak

    Czech Academy of Sciences Publication Activity Database

    Stöckel, Jan; Spolaore, M.; Peleman, P.; Brotánková, Jana; Horáček, Jan; Dejarnac, Renaud; Devynck, P.; Ďuran, Ivan; Gunn, J. P.; Hron, Martin; Kocan, M.; Martines, E.; Pánek, Radomír; Sharma, A.; Van Oost, G.

    2006-01-01

    Roč. 12, č. 6 (2006), s. 19-23 ISSN 1562-6016. [International Conference on Plasma Physics and Technology/11th./. Alushta, 11.9.2006-16.9.2006] Institutional research plan: CEZ:AV0Z20430508 Keywords : tokamak * plasma * transport barrier * relaxations Subject RIV: BL - Plasma and Gas Discharge Physics http:// vant .kipt.kharkov.ua/TABFRAME.html

  16. Electron temperature determination in LTE and non-LTE plasmas

    International Nuclear Information System (INIS)

    Eddy, T.L.

    1983-01-01

    This article discusses how most experimental investigations assume a type of ''thermal equilibrium'' in which the excited levels are assumed to be populated according to the electron kinetic temperature, in the determination of electron temperature in LTE and non-LTE plasmas. This is justified on the basis that electron collisions dominate the equilibration of adjacent excited levels as shown by Byron, Stabler and Boartz. The comparison of temperature values calculated by various common methods as a check for local thermodynamic equilibrium (LTDE) or local thermal equilibrium (LTE) of the upper excited levels and the free electrons has been shown to indicate the excitation temperature in all cases utilized. Thomas shows that the source function of the first excited level may be dominated by non-local radiation, which would usually result in a different population than local collisional excitation would provide. Ionization from upper levels is by collisional means. The result may yield different valued excitation and electron temperatures

  17. Numerical Modelling of Wood Gasification in Thermal Plasma Reactor

    Czech Academy of Sciences Publication Activity Database

    Hirka, Ivan; Živný, Oldřich; Hrabovský, Milan

    2017-01-01

    Roč. 37, č. 4 (2017), s. 947-965 ISSN 0272-4324 Institutional support: RVO:61389021 Keywords : Plasma modelling * CFD * Thermal plasma reactor * Biomass * Gasification * Syngas Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.355, year: 2016 https://link.springer.com/article/10.1007/s11090-017-9812-z

  18. Large-amplitude dust acoustic shocklets in non-Maxwellian dusty plasmas

    Science.gov (United States)

    Ali, S.; Naeem, Ismat; Mirza, Arshad M.

    2017-10-01

    The formation and propagation of fully nonlinear dust-acoustic (DA) waves and shocks are studied in a non-Maxwellian thermal dusty plasma which is composed of Maxwellian electrons and nonthermal energetic ions with a neutralizing background of negatively charged dust grains. For this purpose, we have solved dust dynamical equations along with quasineutrality equation by using a diagonalization matrix technique. A set of two characteristic wave equations is obtained, which admits both analytical and numerical solutions. Taylor expansion in the small-amplitude limit ( Φ ≪ 1 ) leads to nonlinear effective phase and shock speeds accounting for nonthermal energetic ions. It is numerically shown that DA pulses can be developed into DA shocklets involving the negative electrostatic potential, dust fluid velocity, and dust number density. These structures are significantly influenced by the ion-nonthermality, dust thermal correction, and temporal variations. However, the amplitudes of solitary and shock waves are found smaller in case of Cairns-distributed ions as compared to Kappa-distributed ions due to smaller linear and nonlinear effective phase speeds that cause smaller nonlinearity effects. The present results should be useful for understanding the nonlinear characteristics of large-amplitude DA excitations and nonstationary shocklets in a laboratory non-Maxwellian dusty plasma, where nonthermal energetic ions are present in addition to Maxwellian electrons.

  19. Characterization and evaluation of EB-PVD thermal barrier coatings by impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chunxia; Liu Fushun; Gong Shengkai; Xu Huibin [School of Materials Science and Engineering, Beihang Univ., Beijing, BJ (China)

    2005-07-01

    Two layer thermal barrier coatings (TBCs) were prepared by EB-PVD (electron beam-physical vapor deposition) at different substrate temperatures in the range of 823 to 1123 K, and their microstructure was investigated with SEM and AC impedance as a function of substrate temperature and thermal cycling time. YSZ layer of all TBCs samples is in column structure, but the grain size and growth orientation are different with substrate. In this research, impedance spectra (IS) was measured as a function of thermal cycling between 1323 K and 298 K for these thermal barrier coatings. Grain boundary and bulk can be distinguished from analysis of AC impedance spectroa to provide information about the relation between microstructure and electric properties. The change in IS until failure was found to be related with the thickness, microcracks and macrocracks of TGO and the change in the interfacial of TGO/YSZ. (orig.)

  20. Gas Diffusion Barriers Prepared by Spatial Atmospheric Pressure Plasma Enhanced ALD.

    Science.gov (United States)

    Hoffmann, Lukas; Theirich, Detlef; Pack, Sven; Kocak, Firat; Schlamm, Daniel; Hasselmann, Tim; Fahl, Henry; Räupke, André; Gargouri, Hassan; Riedl, Thomas

    2017-02-01

    In this work, we report on aluminum oxide (Al 2 O 3 ) gas permeation barriers prepared by spatial ALD (SALD) at atmospheric pressure. We compare the growth characteristics and layer properties using trimethylaluminum (TMA) in combination with an Ar/O 2 remote atmospheric pressure plasma for different substrate velocities and different temperatures. The resulting Al 2 O 3 films show ultralow water vapor transmission rates (WVTR) on the order of 10 -6 gm -2 d -1 . In notable contrast, plasma based layers already show good barrier properties at low deposition temperatures (75 °C), while water based processes require a growth temperature above 100 °C to achieve equally low WVTRs. The activation energy for the water permeation mechanism was determined to be 62 kJ/mol.

  1. Suppressing electron turbulence and triggering internal transport barriers with reversed magnetic shear in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J. L. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Bell, R.; Guttenfelder, W.; Hammett, G. W.; Kaye, S. M.; LeBlanc, B.; Mikkelsen, D. R. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Candy, J. [General Atomics, San Diego, California 92186 (United States); Smith, D. R. [Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Yuh, H. Y. [Nova Photonics Inc., Princeton, New Jersey 08540 (United States)

    2012-05-15

    The National Spherical Torus Experiment (NSTX) [M. Ono et al., Nucl. Fusion 40, 557 (2000)] can achieve high electron plasma confinement regimes that are super-critically unstable to the electron temperature gradient driven (ETG) instability. These plasmas, dubbed electron internal transport barriers (e-ITBs), occur when the magnetic shear becomes strongly negative. Using the gyrokinetic code GYRO [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)], the first nonlinear ETG simulations of NSTX e-ITB plasmas reinforce this observation. Local simulations identify a strongly upshifted nonlinear critical gradient for thermal transport that depends on magnetic shear. Global simulations show e-ITB formation can occur when the magnetic shear becomes strongly negative. While the ETG-driven thermal flux at the outer edge of the barrier is large enough to be experimentally relevant, the turbulence cannot propagate past the barrier into the plasma interior.

  2. Oxidation of clofibric acid in aqueous solution using a non-thermal plasma discharge or gamma radiation

    Science.gov (United States)

    Madureira, Joana; Ceriani, Elisa; Pinhão, Nuno; Marotta, Ester; Melo, Rita; Cabo Verde, Sandra; Paradisi, Cristina; Margaça, Fernanda M. A.

    2017-11-01

    In this work, we study degradation of clofibric acid (CFA) in aqueous solution using either ionizing radiation from a $^{60}$Co source or a non-thermal plasma produced by discharges in the air above the solution. The results obtained with the two technologies are compared in terms of effectiveness of CFA degradation and its by-products. In both cases the CFA degradation follows a quasi-exponential decay in time well modelled by a kinetic scheme which considers the competition between CFA and all reaction intermediates for the reactive species generated in solution as well as the amount of the end product formed. A new degradation law is deduced to explain the results. Although the end-product CO$_2$ was detected and the CFA conversion found to be very high under the studied conditions, HPLC analysis reveals several degradation intermediates still bearing the aromatic ring with the chlorine substituent. The extent of mineralization is rather limited. The energy yield is found to be higher in the gamma radiation experiments.

  3. Modeling of thermal plasma arc technology FY 1994 report

    International Nuclear Information System (INIS)

    Hawkes, G.L.; Nguyen, H.D.; Paik, S.; McKellar, M.G.

    1995-03-01

    The thermal plasma arc process is under consideration to thermally treat hazardous and radioactive waste. A computer model for the thermal plasma arc technology was designed as a tool to aid in the development and use of the plasma arc-Joule beating process. The value of this computer model is to: (a) aid in understanding the plasma arc-Joule beating process as applied to buried waste or exhumed buried waste, (b) help design melter geometry and electrode configuration, (c) calculate the process capability of vitrifying waste (i.e., tons/hour), (d) develop efficient plasma and melter operating conditions to optimize the process and/or reduce safety hazards, (e) calculate chemical reactions during treatment of waste to track chemical composition of off-gas products, and composition of final vitrified waste form and (f) help compare the designs of different plasma-arc facilities. A steady-state model of a two-dimensional axisymmetric transferred plasma arc has been developed and validated. A parametric analysis was performed that studied the effects of arc length, plasma gas composition, and input power on the temperatures and velocity profiles of the slag and plasma gas. A two-dimensional transient thermo-fluid model of the US Bureau of Mines plasma arc melter has been developed. This model includes the growth of a slag pool. The thermo-fluid model is used to predict the temperature and pressure fields within a plasma arc furnace. An analysis was performed to determine the effects of a molten metal pool on the temperature, velocity, and voltage fields within the slag. A robust and accurate model for the chemical equilibrium calculations has been selected to determine chemical composition of final waste form and off-gas based on the temperatures and pressures within the plasma-arc furnace. A chemical database has been selected. The database is based on the materials to be processed in the plasma arc furnaces

  4. Noble Cantor sets acting as partial internal transport barriers in fusion plasmas

    International Nuclear Information System (INIS)

    Misguich, J.H.; Reuss, J.D.; Constantinescu, D.; Steinbrecher, G.; Vlad, M.; Spineanu, F.; Weyssow, B.; Balescu, R.

    2002-03-01

    In hot laboratory plasmas, Internal Transport Barriers (ITB) have recently been observed, localized in the radial profile 'around' rational values of the winding number ω(r)=1/q(r). Such barriers are obviously related to the perturbed magnetic structure, described by a 1+1/2 Hamiltonian in presence of a perturbation. From the point of view of non-linear Hamiltonian dynamical systems this experimental result appears highly paradoxical since rational q-values generally correspond to the less robust tori. We have studied the appearance of chaos of toroidal magnetic lines by a discrete area-preserving map named 'tokamap'. By increasing the perturbation, we have observed in a wide chaotic sea the destruction of the last confining Kolmogorov-Arnold-Moser (KAM) surfaces, broken and transformed into permeable Cantor sets (Cantori). The flux across a Cantorus has been computed by using refined mathematical techniques due to MacKay, Mather and Aubry. We have proved that the ITB observed in the tokamap is actually composed of two permeable Cantori with 'noble' values of ω (in the definition of Percival). More generally, between the dominant chains of rational islands q = m/m-1, the most resistant barriers between q = m+2/m+1 and m+1/m have been checked (Green, MacKay and Stark) to be localized on the 'most irrational' numbers in these Farey intervals, i.e. on the noble numbers N(1,m)≡ 1+[1/(m+1/G)] (where G is the Golden number) defined by their continuous fraction expansion N(i,m) = [i,m,(1) ∞ ]. In conclusion, the study of the tokamap mapping allowed us to predict on mathematical basis that ITB can occur in tokamak plasmas not only 'around' rational magnetic surfaces but more precisely on noble q-values of irrational surfaces, and to localize them by the Fibonacci series of their convergent. (authors)

  5. Towards the understanding of non-thermal airplasma action: effects on bacteria and fibroblasts

    Czech Academy of Sciences Publication Activity Database

    Lunov, Oleg; Zablotskyy, Vitaliy A.; Churpita, Olexandr; Jäger, Aleš; Polívka, Leoš; Syková, Eva; Terebova, N.; Kulikov, A.; Kubinová, Šárka; Dejneka, Alexandr

    2016-01-01

    Roč. 6, č. 30 (2016), 25286-25292 ISSN 2046-2069 R&D Projects: GA MŠk(CZ) LM2011026; GA MŠk(CZ) LO1309 Institutional support: RVO:68378271 ; RVO:68378041 Keywords : non-thermal plasma * bactericidal effects * medical applications Subject RIV: BO - Biophysics Impact factor: 3.108, year: 2016

  6. First wall thermal hydraulic models for fusion blankets

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1980-01-01

    Subject to normal and off-normal reactor conditions, thermal hydraulic models of first walls, e.g., a thermal mass barrier, a tubular shield, and a radiating liner are reviewed. Under normal operation the plasma behaves as expected in a predicted way for transient and steady-state conditions. The most severe thermal loading on the first wall occurs when the plasma becomes unstable and dumps its energy on the wall in a very short period of time (milliseconds). Depending on the plasma dump time and area over which the energy is deposited may result in melting of the first wall surface, and if the temperature is high enough, vaporization

  7. Surface modification of gutta-percha cones by non-thermal plasma

    Energy Technology Data Exchange (ETDEWEB)

    Prado, Maíra, E-mail: maira@metalmat.ufrj.br [Department of Metallurgic and Materials Engineering, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil); Menezes, Marilia Santana de Oliveira [Department of Metallurgic and Materials Engineering, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil); Gomes, Brenda Paula Figueiredo de Almeida [Department of Restorative Dentistry, Endodontics Division, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, SP (Brazil); Barbosa, Carlos Augusto de Melo [Department of Clinical Dentistry, Endodontic Division, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil); Athias, Leonardo [Social Indicators Division, Brazilian Institute of Geography and Statistics, Rio de Janeiro, RJ (Brazil); Simão, Renata Antoun [Department of Metallurgic and Materials Engineering, Federal University of Rio de Janeiro – UFRJ, Rio de Janeiro, RJ (Brazil)

    2016-11-01

    This study was designed to evaluate the effects of Oxygen and Argon plasma on gutta-percha surfaces. A total of 185 flat smooth gutta-percha surfaces were used. Samples were divided into groups: control: no plasma treatment; Oxygen: treatment with Oxygen plasma for 1 min; Argon: treatment with Argon plasma for 1 min. Samples were evaluated topographically by scanning electron microscopy and atomic force microscopy; and chemically by Fourier Transform-infrared Spectroscopy. A goniometer was used to determine the surface free energy and the wettability of the endodontic sealers. Additionally 60 bovine teeth were filled using pellets of gutta-percha (control, oxygen and argon plasma) and the sealers. Teeth were evaluated by push-out and microleakage tests. Data were statistically analyzed using specific tests. Argon plasma did not change the surface topography, while Oxygen plasma led to changes. Both treatments chemically modified the gutta-percha surface. Argon and Oxygen plasma increased the surface free energy and favored the wettability of AH Plus and Pulp Canal Sealer EWT. Regarding bond strength analysis, for AH Plus sealer, both plasma treatments on gutta-percha favored the bond strength to dentin. However, for Pulp Canal Sealer, there is no statistically significant influence. For leakage test, dye penetration occurred between sealer and dentin in all groups. In conclusion, Oxygen plasma led to both topographic and chemical changes in the gutta-percha surface, while Argon plasma caused only chemical changes. Both treatments increased the surface free energy, favoring the wettability of AH Plus and Pulp Canal Sealer EWT sealers and influenced positively in the adhesion and leakage. - Highlights: • Argon plasma did not change the gutta-percha surface. • Oxygen plasma led to topographic changes. • Both treatments chemically modified the gutta-percha surface. • Treatments increased the surface free energy and favored the wettability of sealers. • Plasma

  8. Surface modification of gutta-percha cones by non-thermal plasma

    International Nuclear Information System (INIS)

    Prado, Maíra; Menezes, Marilia Santana de Oliveira; Gomes, Brenda Paula Figueiredo de Almeida; Barbosa, Carlos Augusto de Melo; Athias, Leonardo; Simão, Renata Antoun

    2016-01-01

    This study was designed to evaluate the effects of Oxygen and Argon plasma on gutta-percha surfaces. A total of 185 flat smooth gutta-percha surfaces were used. Samples were divided into groups: control: no plasma treatment; Oxygen: treatment with Oxygen plasma for 1 min; Argon: treatment with Argon plasma for 1 min. Samples were evaluated topographically by scanning electron microscopy and atomic force microscopy; and chemically by Fourier Transform-infrared Spectroscopy. A goniometer was used to determine the surface free energy and the wettability of the endodontic sealers. Additionally 60 bovine teeth were filled using pellets of gutta-percha (control, oxygen and argon plasma) and the sealers. Teeth were evaluated by push-out and microleakage tests. Data were statistically analyzed using specific tests. Argon plasma did not change the surface topography, while Oxygen plasma led to changes. Both treatments chemically modified the gutta-percha surface. Argon and Oxygen plasma increased the surface free energy and favored the wettability of AH Plus and Pulp Canal Sealer EWT. Regarding bond strength analysis, for AH Plus sealer, both plasma treatments on gutta-percha favored the bond strength to dentin. However, for Pulp Canal Sealer, there is no statistically significant influence. For leakage test, dye penetration occurred between sealer and dentin in all groups. In conclusion, Oxygen plasma led to both topographic and chemical changes in the gutta-percha surface, while Argon plasma caused only chemical changes. Both treatments increased the surface free energy, favoring the wettability of AH Plus and Pulp Canal Sealer EWT sealers and influenced positively in the adhesion and leakage. - Highlights: • Argon plasma did not change the gutta-percha surface. • Oxygen plasma led to topographic changes. • Both treatments chemically modified the gutta-percha surface. • Treatments increased the surface free energy and favored the wettability of sealers. • Plasma

  9. Field-aligned plasma-potential structure formed by local electron cyclotron resonance

    International Nuclear Information System (INIS)

    Hatakeyama, Rikizo; Kaneko, Toshiro; Sato, Noriyoshi

    2001-01-01

    The significance of basic experiments on field-aligned plasma-potential structure formed by local electron cyclotron resonance (ECR) is claimed based on the historical development of the investigation on electric double layer and electrostatic potential confinement of open-ended fusion-oriented plasmas. In the presence of a single ECR point in simple mirror-type configurations of magnetic field, a potential dip (thermal barrier) appears around this point, being followed by a subsequent potential hump (plug potential) along a collisionless plasma flow. The observed phenomenon gives a clear-cut physics to the formation of field-aligned plug potential with thermal barrier, which is closely related to the double layer formation triggered by a negative dip. (author)

  10. INFERENCE OF HEATING PROPERTIES FROM “HOT” NON-FLARING PLASMAS IN ACTIVE REGION CORES. I. SINGLE NANOFLARES

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, W. T.; Bradshaw, S. J. [Department of Physics and Astronomy, Rice University, Houston, TX 77251-1892 (United States); Cargill, P. J., E-mail: will.t.barnes@rice.edu [Space and Atmospheric Physics, The Blackett Laboratory, Imperial College, London SW7 2BW (United Kingdom)

    2016-09-20

    The properties that are expected of “hot” non-flaring plasmas due to nanoflare heating in active regions are investigated using hydrodynamic modeling tools, including a two-fluid development of the Enthalpy Based Thermal Evolution of Loops code. Here we study a single nanoflare and show that while simple models predict an emission measure distribution extending well above 10 MK, which is consistent with cooling by thermal conduction, many other effects are likely to limit the existence and detectability of such plasmas. These include: differential heating between electrons and ions, ionization non-equilibrium, and for short nanoflares, the time taken for the coronal density to increase. The most useful temperature range to look for this plasma, often called the “smoking gun” of nanoflare heating, lies between 10{sup 6.6} and 10{sup 7} K. Signatures of the actual heating may be detectable in some instances.

  11. Aspects of fatigue life in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Brodin, H.

    2001-08-01

    Thermal barrier coatings (TBC) are applied on hot components in airborne and land based gas turbines when higher turbine inlet temperature, meaning better thermal efficiency, is desired. The TBC is mainly applied to protect underlying material from high temperatures, but also serves as a protection from the aggressive corrosive environment. Plasma sprayed coatings are often duplex TBC's with an outer ceramic top coat (TC) made from partially stabilised zirconia - ZrO{sub 2} + 6-8% Y{sub 2}O{sub 3}. Below the top coat there is a metallic bond coat (BC). The BC is normally a MCrAlX coating (M=Ni, Co, Fe... and X=Y, Hf, Si ... ). In gas turbine components exposed to elevated temperatures nickel-based superalloys are commonly adopted as load carrying components. In the investigations performed here a commercial wrought Ni-base alloy Haynes 230 has been used as substrate for the TBC. As BC a NiCoCrAlY serves as a reference material and in all cases 7% Yttria PS zirconia has been used. Phase development and failure mechanisms in APS TBC during service-like conditions, have been evaluated in the present study. This is done by combinations of thermal cycling and low cycle fatigue tests. The aim is to achieve better knowledge regarding how, when and why thermal barrier coatings fail. As a final outcome of the project a model capable of predicting fatigue life of a given component will help engineers and designers of land based gas turbines for power generation to better optimise TBC's. In the investigations it is seen that TBC life is strongly influenced by oxidation of the BC and interdiffusion between BC and the substrate. The bond coat is known to oxidise with time at high temperature. The initial oxide found during testing is alumina. With increased time at high temperature Al is depleted from the bond coat due to inter-diffusion and oxidation. Oxides others than alumina start to form when the Al content is reduced below a critical limit. It is here believed

  12. Plasma sheath in non-Maxwellian plasma

    International Nuclear Information System (INIS)

    Shimizu, Takuo; Horigome, Takashi

    1992-01-01

    Reviewing many theoretical and experimental works on the electron-energy distributions (EEDF) of various plasmas, we point out that many plasmas have EEDF of non-Maxwellian in shape. Therefore, the recent treatment of plasma sheath using the Maxwell-Boltzmann distribution approximation should be improved. To do this, we have adopted Rutcher's standard distribution as a generalized form in place of the traditional Maxwellian, and found that the minimum energy of ions entering the sheath edge (Bohm's criterion) varies largely, and have also shown the variation of Debye length with the shape of EEDF. The length is the most important parameter to proceed with more detailed analysis on plasma-sheaths, and also to control them in the future. (author)

  13. Shear strength of a thermal barrier coating parallel to the bond coat

    International Nuclear Information System (INIS)

    Cruse, T.A.; Dommarco, R.C.; Bastias, P.C.

    1998-01-01

    The static and low cycle fatigue strength of an air plasma sprayed (APS) partially stabilized zirconia thermal barrier coating (TBC) is experimentally evaluated. The shear testing utilized the Iosipescu shear test arrangement. Testing was performed parallel to the TBC-substrate interface. The TBC testing required an innovative use of steel extensions with the TBC bonded between the steel extensions to form the standard Iosipescu specimen shape. The test method appears to have been successful. Fracture of the TBC was initiated in shear, although unconstrained specimen fractures propagated at the TBC-bond coat interface. The use of side grooves on the TBC was successful in keeping the failure in the gage section and did not appear to affect the shear strength values that were measured. Low cycle fatigue failures were obtained at high stress levels approaching the ultimate strength of the TBC. The static and fatigue strengths do not appear to be markedly different from tensile properties for comparable TBC material

  14. Electric Characteristic Enhancement of an AZO/Si Schottky Barrier Diode with Hydrogen Plasma Surface Treatment and AlxOx Guard Ring Structure

    Directory of Open Access Journals (Sweden)

    Chien-Yu Li

    2018-01-01

    Full Text Available In this study, the design and fabrication of AZO/n-Si Schottky barrier diodes (SBDs with hydrogen plasma treatment on silicon surface and AlxOx guard ring were presented. The Si surface exhibited less interface defects after the cleaning process following with 30 w of H2 plasma treatment that improved the switching properties of the following formed SBDs. The rapid thermal annealing experiment also held at 400 °C to enhance the breakdown voltage of SBDs. The edge effect of the SBDs was also suppressed with the AlxOx guard ring structure deposited by the atomic layer deposition (ALD at the side of the SBDs. Experimental results show that the reverse leakage current was reduced and the breakdown voltage increased with an addition of the AlxOx guard ring. The diode and fabrication technology developed in the study were applicable to the realization of SBDs with a high breakdown voltage (>200 V, a low reverse leakage current density (≤72 μA/mm2@100 V, and a Schottky barrier height of 1.074 eV.

  15. Electric Characteristic Enhancement of an AZO/Si Schottky Barrier Diode with Hydrogen Plasma Surface Treatment and AlxOx Guard Ring Structure

    Science.gov (United States)

    Li, Chien-Yu; Cheng, Min-Yu; Houng, Mau-Phon; Yang, Cheng-Fu; Liu, Jing

    2018-01-01

    In this study, the design and fabrication of AZO/n-Si Schottky barrier diodes (SBDs) with hydrogen plasma treatment on silicon surface and AlxOx guard ring were presented. The Si surface exhibited less interface defects after the cleaning process following with 30 w of H2 plasma treatment that improved the switching properties of the following formed SBDs. The rapid thermal annealing experiment also held at 400 °C to enhance the breakdown voltage of SBDs. The edge effect of the SBDs was also suppressed with the AlxOx guard ring structure deposited by the atomic layer deposition (ALD) at the side of the SBDs. Experimental results show that the reverse leakage current was reduced and the breakdown voltage increased with an addition of the AlxOx guard ring. The diode and fabrication technology developed in the study were applicable to the realization of SBDs with a high breakdown voltage (>200 V), a low reverse leakage current density (≤72 μA/mm2@100 V), and a Schottky barrier height of 1.074 eV. PMID:29316726

  16. Chip-carrier thermal barrier and its impact on lateral thermal lens profile and beam parameter product in high power broad area lasers

    Science.gov (United States)

    Rieprich, J.; Winterfeldt, M.; Kernke, R.; Tomm, J. W.; Crump, P.

    2018-03-01

    High power broad area diode lasers with high optical power density in a small focus spot are in strong commercial demand. For this purpose, the beam quality, quantified via the beam parameter product (BPP), has to be improved. Previous studies have shown that the BPP is strongly affected by current-induced heating and the associated thermal lens formed within the laser stripe. However, the chip structure and module-assembly related factors that regulate the size and the shape of the thermal lens are not well known. An experimental infrared thermographic technique is used to quantify the thermal lens profile in diode lasers operating at an emission wavelength of 910 nm, and the results are compared with finite element method simulations. The analysis indicates that the measured thermal profiles can best be explained when a thermal barrier is introduced between the chip and the carrier, which is shown to have a substantial impact on the BPP and the thermal resistance. Comparable results are observed in further measurements of samples from multiple vendors, and the barrier is only observed for junction-down (p-down) mounting, consistent with the barrier being associated with the GaAs-metal transition.

  17. Vibration damage testing of thermal barrier fibrous blanket insulation

    International Nuclear Information System (INIS)

    Black, W.E.; Betts, W.S.

    1984-01-01

    GA Technologies is engaged in a long-term, multiphase program to determine the vibration characteristics of thermal barrier components leading to qualification of assemblies for High Temperature Gas-Cooled Reactor (HTGR) service. The phase of primary emphasis described herein is the third in a series of acoustic tests and uses as background the more elemental tests preceding it. Two sizes of thermal barrier coverplates with one fibrous blanket insulation type were tested in an acoustic environment at sound pressure levels up to 160 dB. Three tests were conducted using sinusoidal and random noise for up to 200 h duration at room temperature. Frequent inspections were made to determine the progression of degradation using definition of stages from a prior test program. Initially the insulation surface adjacent to the metallic seal sheets (noise side) assumed a chafed or polished appearance. This was followed by flattening of the as-received pillowed surface. This stage was followed by a depression being formed in the vicinity of the free edge of the coverplate. Next, loose powder from within the blanket and from fiber erosion accumulated in the depression. Prior experience showed that the next stage of deterioration exhibited a consolidation of the powder to form a local crust. In this test series, this last stage generally failed to materialize. Instead, surface holes generated by solid ceramic particulates (commonly referred to as 'shot') constituted the stage following powdering. With the exception of some manufacturing-induced anomalies, the final stage, namely, gross fiber breakup, did not occur. It is this last stage that must be prevented for the thermal barrier to maintain its integrity. (orig./GL)

  18. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    Science.gov (United States)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  19. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    International Nuclear Information System (INIS)

    Salarieh Setareh; Dorranian Davoud

    2013-01-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O 2 , He, and He/O 2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O 2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment

  20. Thermal plasma chemical vapor deposition

    International Nuclear Information System (INIS)

    Heberlein, J.; Pfender, E.

    1993-01-01

    Thermal plasmas, with temperatures up to and even exceeding 10 4 K, are capable of producing high density vapor phase precursors for the deposition of relatively thick films. Although this technology is still in its infancy, it will fill the void between the relatively slow deposition processes such as physical vapor deposition and the high rate thermal spray deposition processes. In this chapter, the present state-of-the-art of this field is reviewed with emphasis on the various types of reactors proposed for this emerging technology. Only applications which attracted particular attention, namely diamond and high T c superconducting film deposition, are discussed in greater detail. (orig.)

  1. Optimization of Heat Transfer on Thermal Barrier Coated Gas Turbine Blade

    Science.gov (United States)

    Aabid, Abdul; Khan, S. A.

    2018-05-01

    In the field of Aerospace Propulsion technology, material required to resist the maximum temperature. In this paper, using thermal barrier coatings (TBCs) method in gas turbine blade is used to protect hot section component from high-temperature effect to extend the service life and reduce the maintenance costs. The TBCs which include three layers of coating corresponding initial coat is super alloy-INCONEL 718 with 1 mm thickness, bond coat is Nano-structured ceramic-metallic composite-NiCoCrAIY with 0.15 mm thickness and top coat is ceramic composite-La2Ce2O7 with 0.09 mm thickness on the nickel alloy turbine blade which in turn increases the strength, efficiency and life span of the blades. Modeling a gas turbine blade using CATIA software and determining the amount of heat transfer on thermal barrier coated blade using ANSYS software has been performed. Thermal stresses and effects of different TBCs blade base alloys are considered using CATIA and ANSYS.

  2. Thermal cycling characteristics of plasma synthesized mullite films

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, O.R.; Hou, P.Y.; Brown, I.G. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-01

    The authors have developed a plasma-based technique for the synthesis of mullite and mullite-like films on silicon carbide substrate material. The method, which they refer to as MePIIID (for Metal Plasma Immersion Ion Implantation and Deposition), uses two vacuum arc plasma sources and simultaneous pulse biasing of the substrate in a low pressure oxygen atmosphere. The Al:Si ratio can be controlled via the separate plasma guns, and the film adhesion, structure and morphology can be controlled via the ion energy which in turn is controlled by the pulse bias voltage. The films are amorphous as-deposited, and crystalline mullite is formed by subsequent annealing at 1000 C for 2 hours in air. Adhesion between the aluminum-silicon oxide film and the substrate increases after this first annealing. They have tested the behavior of films when subjected to repetitive thermal cycling between room temperature and 1100 C, and found that the films retain their adhesion and quality. Here they review the plasma synthesis technique and the characteristics of the mullite films prepared in this way, and summarize the status of the thermal cycling experiments.

  3. Inductive thermal plasma generation applied for the materials coating

    International Nuclear Information System (INIS)

    Pacheco, J.; Pena, R.; Cota, G.; Segovia, A.; Cruz, A.

    1996-01-01

    The coatings by thermal plasma are carried out introducing particles into a plasma system where they are accelerated and melted (total or partially) before striking the substrate to which they adhere and are suddenly cooled down. The nature of consolidation and solidification of the particles allows to have control upon the microstructure of the deposit. This technique is able to deposit any kind of material that is suitable to be merged (metal, alloy, ceramic, glass) upon any type of substrate (metal, graphite, ceramic, wood) with an adjustable thickness ranging from a few microns up to several millimeters. The applications are particularly focused to the coating of materials in order to improve their properties of resistance to corrosion, thermal and mechanical efforts as well as to preserve the properties of the so formed compound. In this work the electromagnetic induction phenomenon in an ionized medium by means of electric conductivity, is described. Emphasis is made on the devices and control systems employed in order to generate the thermal plasma and in carrying out the coatings of surfaces by the projection of particles based on plasma

  4. Acoustic Emission Analysis of Damage Progression in Thermal Barrier Coatings Under Thermal Cyclic Conditions

    Science.gov (United States)

    Appleby, Matthew; Zhu, Dongming; Morscher, Gregory

    2015-01-01

    Damage evolution of electron beam-physical vapor deposited (EBVD-PVD) ZrO2-7 wt.% Y2O3 thermal barrier coatings (TBCs) under thermal cyclic conditions was monitored using an acoustic emission (AE) technique. The coatings were heated using a laser heat flux technique that yields a high reproducibility in thermal loading. Along with AE, real-time thermal conductivity measurements were also taken using infrared thermography. Tests were performed on samples with induced stress concentrations, as well as calcium-magnesium-alumino-silicate (CMAS) exposure, for comparison of damage mechanisms and AE response to the baseline (as-produced) coating. Analysis of acoustic waveforms was used to investigate damage development by comparing when events occurred, AE event frequency, energy content and location. The test results have shown that AE accumulation correlates well with thermal conductivity changes and that AE waveform analysis could be a valuable tool for monitoring coating degradation and provide insight on specific damage mechanisms.

  5. Multi-Directional Optical Diagnostics of Thermal Plasma Jets

    Czech Academy of Sciences Publication Activity Database

    Hlína, Jan; Chvála, František; Šonský, Jiří; Gruber, Jan

    2008-01-01

    Roč. 19, č. 1 (2008), s. 1-6 ISSN 0957-0233 R&D Projects: GA ČR(CZ) GA202/05/0728 Institutional research plan: CEZ:AV0Z20570509 Keywords : thermal plasma jet * optical diagnostics * Radon transform Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.493, year: 2008

  6. Effect of the top coat on the phase transformation of thermally grown oxide in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X. [Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom); Hashimoto, T. [Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom); Xiao, P. [Materials Science Centre, School of Materials, University of Manchester, Manchester M1 7HS (United Kingdom)]. E-mail: ping.xiao@manchester.ac.uk

    2006-12-15

    The phase transformation of the thermally grown oxide (TGO) formed on a Pt enriched {gamma} + {gamma}' bond coat in electron beam physical vapour deposited thermal barrier coatings (TBCs) was studied by photo-stimulaluminescence spectroscopy. The presence of the TBC retards the {theta} to {alpha} transformation of the TGO and leads to a higher oxidation rate. The reasons for these phenomena are discussed.

  7. Control of internal transport barriers on Alcator C-Mod

    International Nuclear Information System (INIS)

    Fiore, C.L.; Bonoli, P.T.; Ernst, D.R.; Hubbard, A.E.; Greenwald, M.J.; Lynn, A.; Marmar, E.S.; Phillips, P.; Redi, M.H.; Rice, J.E.; Wolfe, S.M.; Wukitch, S.J.; Zhurovich, K.

    2004-01-01

    Recent studies of internal transport and double transport barrier regimes in the Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] have explored the limits for forming, maintaining, and controlling these plasmas. The C-Mod provides a unique platform for studying such discharges: the ions and electrons are tightly coupled by collisions and the plasma has no internal particle or momentum sources. The double-barrier mode comprised of an edge barrier with an internal transport barrier (ITB) can be induced at will using off-axis ion cyclotron range of frequency (ICRF) injection on either the low or high field side of the plasma with either of the available ICRF frequencies (70 or 80 MHz). When an enhanced D α high confinement mode (EDA H-mode) is accessed in Ohmic plasmas, the double barrier ITB forms spontaneously if the H-mode is sustained for ∼2 energy confinement times. The ITBs formed in both Ohmic and ICRF heated plasmas are quite similar regardless of the trigger method. They are characterized by strong central peaking of the electron density, and a reduction of the core particle and energy transport. The control of impurity influx and heating of the core plasma in the presence of the ITB have been achieved with the addition of central ICRF power in both the Ohmic H-mode and ICRF induced ITBs. The radial location of the particle transport barrier is dependent on the toroidal magnetic field but not on the location of the ICRF resonance. A narrow region of decreased electron thermal transport, as determined by sawtooth heat pulse analysis, is found in these plasmas as well. Transport analysis indicates that a reduction of the particle diffusivity in the barrier region allows the neoclassical pinch to drive the density and impurity accumulation in the plasma center. An examination of the gyrokinetic stability at the trigger time for the ITB suggests that the density and temperature profiles are inherently stable to ion temperature gradient and

  8. Nonideal plasmas as non-equilibrium media

    International Nuclear Information System (INIS)

    Morozov, I V; Norman, G E; Valuev, A A; Valuev, I A

    2003-01-01

    Various aspects of the collective behaviour of non-equilibrium nonideal plasmas are studied. The relaxation of kinetic energy to the equilibrium state is simulated by the molecular dynamics (MD) method for two-component non-degenerate strongly non-equilibrium plasmas. The initial non-exponential stage, its duration and the subsequent exponential stage of the relaxation process are studied for a wide range of ion charge, nonideality parameter and ion mass. A simulation model of the nonideal plasma excited by an electron beam is proposed. An approach is developed to calculate the dynamic structure factor in non-stationary conditions. Instability increment is obtained from MD simulations

  9. Gene Transfection Method Using Atmospheric Pressure Dielectric-Barrier Discharge Plasmas

    Science.gov (United States)

    Sasaki, Shota; Kanzaki, Makoto; Kaneko, Toshiro

    2013-09-01

    Gene transfection which is the process of deliberately introducing nucleic acids into cells is expected to play an important role in medical treatment because the process is necessary for gene therapy and creation of induced pluripotent stem (iPS) cells. However, the conventional transfection methods have some problems, so we focus attention on promising transfection methods by atmospheric pressure dielectric-barrier discharge (AP-DBD) plasmas. AP-DBD He plasmas are irradiated to the living cell covered with genes. Preliminarily, we use fluorescent dye YOYO-1 instead of the genes and use LIVE/DEAD Stain for cell viability test, and we analyze the transfection efficiency and cell viability under the various conditions. It is clarified that the transfection efficiency is strongly dependence on the plasma irradiation time and cell viability rates is high rates (>90%) regardless of long plasma irradiation time. These results suggest that ROS (Reactive Oxygen Species) and electric field generated by the plasma affect the gene transfection. In addition to this (the plasma irradiation time) dependency, we now investigate the effect of the plasma irradiation under the various conditions.

  10. Plasma Turbulence Suppression and Transport Barrier Formation by Externally Driven RF Waves in Spherical Tokamaks

    International Nuclear Information System (INIS)

    Bruma, C.; Cuperman, S.C.; Komoshvili, K.

    2002-01-01

    Turbulent transport of heat and particles is the principle obstacle confronting controlled fusion today. Thus, we investigate quantitatively the suppression of turbulence and formation of transport barriers in spherical tokamaks by sheared electric fields generated by externally driven radio-frequency (RF) waves, in the frequency range o)A n o] < o)ci (e)A and o)ci are the Alfven and ion cyclotron frequencies). This investigation consists of the solution of the full-wave equation for a spherical tokamak in the presence of externally driven fast waves and the evaluation of the power dissipation by the mode-converted Alfven waves. This in turn, provides a radial flow shear responsible for the suppression of plasma turbulence. Thus, a strongly non-linear equation for the radial sheared electric field is solved, the turbulent transport suppression rate is evaluated and compared with the ion temperature gradient (ITG) instability increment. For illustration, the case of START-like device (Sykes 2000) is treated. Thus, (i) the exact D-shape cross-section is considered; (ii) additional kinetic (including Landau damping) and particle trapping effects are added to the resistive two-fluid dielectric tensor operator; (iii) a finite extension antenna located on the low-field-side of the plasma is considered; (iv) a rigorous 2.5 finite elements numerical code (Sewell 1993) is used; and (v) the turbulence and transport barrier generated as a result of wave-plasma interaction is evaluated

  11. Apparatus and method for removing particle species from fusion-plasma-confinement devices

    Science.gov (United States)

    Hamilton, G.W.

    1981-10-26

    In a mirror fusion plasma confinement apparatus, method and apparatus are provided for selectively removing (pumping) trapped low energy (thermal) particle species from the end cell region, without removing the still useful high energy particle species, and without requiring large power input to accomplish the pumping. Perturbation magnets are placed in the thermal barrier region of the end cell region at the turning point characteristic of trapped thermal particles, thus deflecting the thermal particles from their closed trajectory, causing them to drift sufficiently to exit the thermal barrier.

  12. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    Energy Technology Data Exchange (ETDEWEB)

    Chintakunta, Satish R. [Engineering and Software Consultants, Inc., 14123 Robert Paris Ct., Chantilly, VA 20151 (United States); Boone, Shane D. [Federal Highway Administration, Turner Fairbank Highway Research Center, 6300 Georgetown Pike, McLean, VA 22101 (United States)

    2014-02-18

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  13. Non-destructive inspection protocol for reinforced concrete barriers and bridge railings

    Science.gov (United States)

    Chintakunta, Satish R.; Boone, Shane D.

    2014-02-01

    Reinforced concrete highway barriers and bridge railings serve to prevent errant vehicles from departing the travel way at grade separations. Despite the important role that they play in maintaining safety and their ubiquitous nature, barrier inspection rarely moves beyond visual inspection. In August 2008, a tractor-trailer fatally departed William Preston Lane, Jr. Memorial Bridge after it dislodged a section of the bridge barrier. Investigations following the accident identified significant corrosion of the anchor bolts attaching the bridge railing to the bridge deck. As a result of the information gathered during its investigation of the accident, the National Transportation Safety Board (NTSB) made recommendations to the Federal Highway Administration concerning Non-Destructive Evaluation (NDE) of concrete bridge railings. The Center for nondestructive evaluation (NDE) at Turner Fairbank Highway Research Center in McLean, VA is currently evaluating feasibility of using four technologies - ground penetrating radar (GPR), ultrasonic pulse-echo, digital radiography and infrared thermal imaging methods to develop bridge inspection methods that augment visual inspections, offer reliable measurement techniques, and are practical, both in terms of time and cost, for field inspection work. Controlled samples containing predefined corrosion levels in reinforcing steel were embedded at barrier connection points for laboratory testing. All four NDE techniques were used in the initial phase I testing. An inspection protocol for detecting and measuring the corrosion of reinforced steel embedded in the anchorage system will be developed as part of phase II research. The identified technologies shall be further developed for field testing utilizing a structure with a barrier in good condition and a structure with a barrier in poor condition.

  14. Aerospace Ceramic Materials: Thermal, Environmental Barrier Coatings and SiC/SiC Ceramic Matrix Composites for Turbine Engine Applications

    Science.gov (United States)

    Zhu, Dongming

    2018-01-01

    Ceramic materials play increasingly important roles in aerospace applications because ceramics have unique properties, including high temperature capability, high stiffness and strengths, excellent oxidation and corrosion resistance. Ceramic materials also generally have lower densities as compared to metallic materials, making them excellent candidates for light-weight hot-section components of aircraft turbine engines, rocket exhaust nozzles, and thermal protection systems for space vehicles when they are being used for high-temperature and ultra-high temperature ceramics applications. Ceramic matrix composites (CMCs), including non-oxide and oxide CMCs, are also recently being incorporated in gas turbine engines for high pressure and high temperature section components and exhaust nozzles. However, the complexity and variability of aerospace ceramic processing methods, compositions and microstructures, the relatively low fracture toughness of the ceramic materials, still remain the challenging factors for ceramic component design, validation, life prediction, and thus broader applications. This ceramic material section paper presents an overview of aerospace ceramic materials and their characteristics. A particular emphasis has been placed on high technology level (TRL) enabling ceramic systems, that is, turbine engine thermal and environmental barrier coating systems and non-oxide type SiC/SiC CMCs. The current status and future trend of thermal and environmental barrier coatings and SiC/SiC CMC development and applications are described.

  15. Electric discharge plasmas influence attachment of cultured CHO k1 cells

    NARCIS (Netherlands)

    Kieft, I.E.; Broers, J.L.V.; Caubet-Hilloutou, V.; Slaaf, D.W.; Ramaekers, F.C.S.; Stoffels - Adamowicz, E.

    2004-01-01

    Non-thermal plasmas can be generated by electric discharges in gases. These plasmas are reactive media, capable of superficial treatment of various materials. A novel non-thermal atmospheric plasma source (plasma needle) has been developed and tested. Plasma appears at the end of a metal pin as a

  16. Foundations of atmospheric pressure non-equilibrium plasmas

    Science.gov (United States)

    Bruggeman, Peter J.; Iza, Felipe; Brandenburg, Ronny

    2017-12-01

    Non-equilibrium plasmas have been intensively studied over the past century in the context of material processing, environmental remediation, ozone generation, excimer lamps and plasma display panels. Research on atmospheric pressure non-equilibrium plasmas intensified over the last two decades leading to a large variety of plasma sources that have been developed for an extended application range including chemical conversion, medicine, chemical analysis and disinfection. The fundamental understanding of these discharges is emerging but there remain a lot of unexplained phenomena in these intrinsically complex plasmas. The properties of non-equilibrium plasmas at atmospheric pressure span over a huge range of electron densities as well as heavy particle and electron temperatures. This paper provides an overview of the key underlying processes that are important for the generation and stabilization of atmospheric pressure non-equilibrium plasmas. The unique physical and chemical properties of theses discharges are also summarized.

  17. Non-linear gyrokinetic simulations of microturbulence in TCV electron internal transport barriers

    Energy Technology Data Exchange (ETDEWEB)

    Lapillonne, X; Brunner, S; Sauter, O; Villard, L [Centre de Recherches en Physique des Plasmas, Association EURATOM-Confederation Suisse, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (Switzerland); Fable, E; Goerler, T; Jenko, F; Merz, F, E-mail: stephan.brunner@epfl.ch [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching (Germany)

    2011-05-15

    Using the local (flux-tube) version of the Eulerian code GENE (Jenko et al 2000 Phys. Plasmas 7 1904), gyrokinetic simulations of microturbulence were carried out considering parameters relevant to electron-internal transport barriers (e-ITBs) in the TCV tokamak (Sauter et al 2005 Phys. Rev. Lett. 94 105002), generated under conditions of low or negative shear. For typical density and temperature gradients measured in such barriers, the corresponding simulated fluctuation spectra appears to simultaneously contain longer wavelength trapped electron modes (TEMs, for typically k{sub p}erpendicular{rho}{sub i} < 0.5, k{sub p}erpendicular being the characteristic perpendicular wavenumber and {rho}{sub i} the ion Larmor radius) and shorter wavelength ion temperature gradient modes (ITG, k{sub p}erpendicular{rho}{sub i} > 0.5). The contributions to the electron particle flux from these two types of modes are, respectively, outward/inward and may cancel each other for experimentally realistic gradients. This mechanism may partly explain the feasibility of e-ITBs. The non-linear simulation results confirm the predictions of a previously developed quasi-linear model (Fable et al 2010 Plasma Phys. Control. Fusion 52 015007), namely that the stationary condition of zero particle flux is obtained through the competitive contributions of ITG and TEM. A quantitative comparison of the electron heat flux with experimental estimates is presented as well.

  18. Analysis of the flow structure of a turbulent thermal plasma jet

    International Nuclear Information System (INIS)

    Spores, R.A.

    1989-01-01

    The goal of this research project is to attain a better understanding of the fluid mechanics associated with the high temperature jet of a thermal plasma torch. The analysis of a plasma, which has the ability to vaporize anything placed inside it without proper cooling, presents a unique research challenge. Several types of non-intrusive diagnostic techniques has been used to examine the jet from different perspectives. To actually map out the mean gas velocities and turbulence intensities throughout the jet, laser Doppler anemometry has been employed. The plasma gas and entrained air him been seeded separately in order to conditionally sample the two fluids and attain information about the gas mixing process. Both radial and axial turbulence levels have been measured in order to analyze the non-isotropic nature of the jet. A parabolic numerical code has been modified and compared with the obtained experimental results. A new diagnostic technique for plasma torches, which involves the spectral analysis of voltage, optical (temperature), and acoustical (pressure) fluctuations, has been implemented. The acoustical spectrum can provide information about the existence of coherent structures in the flow while the cross correlation of the acoustical signal with the voltage fluctuations can tell one to what extent perturbations of the internal arc affect the external flow. Since temperature is a scalar that is dependent on the flow field, observing temperature fluctuations can likewise help one to understand the mechanics of the flow. Flow visualization of the plasma jet using a high speed video camera has also been undertaken in order to better understand the entrainment process

  19. Plasma current dependence of the edge pedestal height in JET ELM-free H-modes

    International Nuclear Information System (INIS)

    Nave, M.F.F; Lomas, P.; Gowers, C.; Guo, H.; Hawkes, N.; Huysmans, G.T.A.; Jones, T.; Parail, V.V.; Rimini, F.; Schunke, B.

    2000-01-01

    Some models for the suppression of turbulence in the L to H transition, suggest that the width of the H-mode edge barrier is either proportional or is of the order of the thermal or the fast-ion poloidal Larmor radius. This would require that the width of the edge barrier should depend on the plasma current. This dependence has been clearly verified at JET in experiments designed to control the edge MHD stability of ELM-free hot-ion H-mode plasmas. The effects of isotopic mass and the applicability of several edge barrier models to the hot-ion H-mode plasmas were analysed in (Guo H Y et al 2000 Edge transport barrier in JET hot-ion H-modes Nucl. Fusion 40 69) using a large database containing both deuterium-only and deuterium-tritium plasmas. This database has now been enlarged to include discharges from a plasma shape scan, allowing one to study the dependence of the pedestal height on the edge shear. In addition, the range of plasma currents was extended up to 6 MA. It is shown that the edge data are best described by a model where the edge barrier width is determined by the fast ions weighted towards the components with largest poloidal Larmor radii. However, it is not possible to conclusively eliminate the thermal ion model. (author)

  20. Plasma sprayed and electrospark deposited zirconium metal diffusion barrier coatings

    International Nuclear Information System (INIS)

    Hollis, Kendall J.; Pena, Maria I.

    2010-01-01

    Zirconium metal coatings applied by plasma spraying and electrospark deposition (ESD) have been investigated for use as diffusion barrier coatings on low enrichment uranium fuel for research nuclear reactors. The coatings have been applied to both stainless steel as a surrogate and to simulated nuclear fuel uranium-molybdenum alloy substrates. Deposition parameter development accompanied by coating characterization has been performed. The structure of the plasma sprayed coating was shown to vary with transferred arc current during deposition. The structure of ESD coatings was shown to vary with the capacitance of the deposition equipment.