WorldWideScience

Sample records for non-target organism drosophila

  1. Toxicological Evaluation of a New Lepidopteran Insecticide, Flubendiamide, in Non-Target Drosophila melanogaster Meigen (Diptera: Drosophilidae

    Directory of Open Access Journals (Sweden)

    Saurabh Sarkar

    2018-04-01

    Full Text Available Background: Flubendiamide, comparatively a new pesticide designed to eradicate lepidopteran insect pests is known to have low risk to birds, mammals, fish, algae, honey bees, non-target arthropods, earthworms, soil macro- and micro-organisms, non-target plants as well as sewage treatment organisms; however, the risk assessment for aquatic invertebrates from metabolite could not be finalized with available data. Methods: Different concentrations of flubendiamide (TATA TAKUMI®, Rallis, India were introduced to larvae, pupae, and adult flies. A wide range of comparatively higher concentrations was selected for acute LC50 than chronic LC50 due to their exposure duration. Furthermore, relatively lower concentrations were introduced to larvae for assessment of emergence. Results: At chronic exposure, the effect-concentration relationship exhibited a linear response when adult emergence was considered in Drosophila melanogaster. When acute LC50 of flubendiamide in 3rd instar larvae was compared with the chronic LC50 then it was seen to be approximately 21 fold higher whereas chronic LC50 for adult flies was nearly 19 times less than the adult acute LC50. Similarly, adult emergence was seen to lower by 91.95% at 1500 µg/mL concentration. The chronic LC50 of the flubendiamide in Drosophila was approximately 170303 times more than the reported No Observed Effect Concentration (NOEC. Conclusion: Hence, the chemical, flubendiamide can induce its effects at very low concentration, far below the lethal ones. Thus, the study is of relevance for the non-target insects as well as the insect dependent organisms.

  2. Effect of malachite green toxicity on non target soil organisms.

    Science.gov (United States)

    Gopinathan, R; Kanhere, J; Banerjee, J

    2015-02-01

    Although malachite green (MG), is banned in Europe and US for its carcinogenic and teratogenic effect, the dye being cheap, is persistently used in various countries for fish farming, silk, dye, leather and textile industries. Current research, however, fails to elucidate adequate knowledge concerning the effects of MG in our ecosystem. In the present investigation, for the first time, an attempt has been made to study the effects of MG on soil biota by testing Bacillus subtilis, Azotobacter chroococcum, Saccharomyces cerevisiae, Penicillium roqueforti, Eisenia fetida and seeds of three crop plants of different families. Various tests were conducted for determining cytotoxicity, genotoxicity, acute toxicity, morphological and germination effect. Our data confirmed MG toxicity on fungi and bacteria (gram positive and gram negative organisms) showing elevated level of ROS. Genotoxicity caused in the microorganisms was detected by DNA polymorphism and fragmentation. Also, scanning electron microscopy data suggests that the inhibitory effect of MG to these beneficial microbes in the ecosystem might be due to pore formation in the cell and its eventual disruption. Filter paper and artificial soil test conducted on earthworms demonstrated a LC 50 of 2.6 mg cm(-2) and 1.45 mg kg(-1) respectively with severe morphological damage. However, seed germination of Mung bean, Wheat and Mustard was found to be unaffected in presence of MG up to 100 mL(-1) concentration. Thus, understanding MG toxicity in non target soil organisms and emphasis on its toxicological effects would potentially explicate its role as an environmental contaminant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Monitoring the effects of a lepidopteran insecticide, Flubendiamide, on the biology of a non-target dipteran insect, Drosophila melanogaster.

    Science.gov (United States)

    Sarkar, Saurabh; Roy, Sumedha

    2017-10-13

    Various organisms are adversely affected when subjected to chronic fluoride exposure. This highly electronegative ion present in several insecticide formulations is found to be lethal to target pests. In the present study, Drosophila melanogaster is treated with sub-lethal concentrations of a diamide insecticide formulation, Flubendiamide. Chronic exposure to the diamide (0.5-100 μg/mL) was found to be responsible for increase in fluoride ion concentration in larval as well as adult body fluid. Interestingly, 100 μg/mL Flubendiamide exposure resulted in 107 and 298% increase in fluoride ion concentration whereas only 23 and 52% of Flubendiamide concentration increase in larval and adult body fluid, respectively. Further, in this study, selected life cycle parameters like larval duration, pupal duration and emergence time showed minimal changes, whereas percentage of emergence and fecundity revealed significant treatment-associated variation. It can be noted that nearly 79% reduction in fecundity was observed with 100 μg/mL Flubendiamide exposure. The variations in these parameters indicate probable involvement of fluoride ion in detectable alterations in the biology of the non-target model insect, D. melanogaster. Furthermore, the outcomes of life cycle study suggest change in resource allocation pattern in the treated flies. The altered resource allocation might have been sufficient to resist changes in selective life cycle parameters, but it could not defend the changes in fecundity. The significant alterations indicate a definite trade-off pattern, where the treated individuals happen to compromise. Thus, survival is apparently taking an upper hand in comparison to reproductive ability in response to Flubendiamide exposure. Graphical abstract The figure demonstrates increase in Fluoride and Flubendiamide concentrations in Drosophila melanogaster after chronic sub-lethal exposure to Flubendiamide. Treatment-induced alterations in larval and pupal duration

  4. Impact of parathion exposure on some biochemical parameters in rabbit as a non target organism

    Directory of Open Access Journals (Sweden)

    Nagat Aly

    2015-03-01

    Conclusion: The results indicated that changes in body and organ weights have been used as indicators of adverse effects of parathion and also alteration in tested enzymes activity can be used as relevant biomarkers for monitoring toxicity due to parathion exposure in non target organisms.

  5. Impact of fungicide and insecticide use on non-target aquatic organisms in rice paddy fields

    Directory of Open Access Journals (Sweden)

    Alana Cristina Dorneles Wandscheer

    Full Text Available ABSTRACT: The intensive use of plant protection products in rice paddy fields ( Oryza sativa L. has caused concern about the environmental impact on communities of non-target organisms that are natural inhabitants in these agroecosystems. The purpose of this review is to analyze the data currently available in the literature about some important fungicides and insecticides (such as trifloxystrobin, tebuconazole, tricyclazole, lambda-cyhalothrin, and thiamethoxam, which are currently used to control pests and diseases in rice paddy fields, as well as their effects on the community of non-target aquatic organisms.

  6. ASSESSING POSSIBLE ECOLOGICAL RISKS OF GENETICALLY MODIFIED CROPS: GENE EXPRESSION ASSAYS AND GENETIC MONITORING OF NON-TARGET ORGANISMS

    Science.gov (United States)

    Widespread planting of genetically modified crops with the Bt transgene pesticide has led to concern over non-target effects of Bt compounds in agroecosystems. While some research suggests that non-target organisms exposed to Bt toxin exhibit reduced fecundity and increased morta...

  7. Do insect repellents induce drift behaviour in aquatic non-target organisms?

    Science.gov (United States)

    Fink, Patrick; Moelzner, Jana; Berghahn, Ruediger; von Elert, Eric

    2017-01-01

    Synthetic insect repellents are compounds applied to surfaces to discourage insects, mainly mosquitoes, from landing on those surfaces. As some of these repellents have repeatedly been detected in surface waters at significant concentrations, they may also exert repellent effects on aquatic non-target organisms. In running water systems, aquatic invertebrates actively enter downstream drift in order to avoid unfavourable environmental conditions. We thus tested the hypothesis that the widely used insect repellents DEET (N,N-Diethyl-m-toluamide), EBAAP (3-[N-butyl-N-acetyl]-aminopropionic acid ethyl ester) and Icaridin (1-piperidinecarboxylic acid 2-(2-hydroxyethyl)-1-methylpropyl ester) induce downstream drift behaviour in the aquatic invertebrates Gammarus pulex (Crustacea, Amphipoda) and Cloeon dipterum (Insecta, Ephemeroptera), using a laboratory-scale drift assay. We found no clear increase in the drift behaviour of both invertebrate species across a concentration gradient of eight orders of magnitude and even beyond maximum environmental concentrations for any of the three repellents. We found no evidence for a direct drift-inducing activity of insect repellents on aquatic non-target organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Assessment of Total Risk on Non-Target Organisms in Fungicide Application for Agricultural Sustainability

    Directory of Open Access Journals (Sweden)

    Ali Musa Bozdogan

    2014-02-01

    Full Text Available In Turkey, in 2010, the amount of pesticide (active ingredient; a.i. used in agriculture was about 23,000 metric tons, of which approximately 32% was fungicides. In 2012, 14 a.i. were used for fungus control in wheat cultivation areas in Adana province, Turkey. These a.i. were: azoxystrobin, carbendazim, difenoconazole, epoxiconazole, fluquinconazole, prochloraz, propiconazole, prothioconazole, pyraclostrobin, spiroxamine, tebuconazole, thiophanate-methyl, triadimenol, and trifloxystrobin. In this study, the potential risk of a.i. on non-target organisms in fungicide application of wheat cultivation was assessed by The Pesticide Occupational and Environmental Risk (POCER indicators. In this study, the highest human health risk was for fluquinconazole (Exceedence Factor (EF 1.798 for human health, whereas the fungicide with the highest environmental risk was propiconazole (EF 2.000 for the environment. For non-target organisms, the highest potential risk was determined for propiconazole when applied at 0.1250 kg a.i. ha-1 (EF 2.897. The lowest total risk was for azoxystrobin when applied at  0.0650 kg a.i. ha-1 (EF 0.625.

  9. Biosafety research for non-target organism risk assessment of RNAi-based GE plants

    Science.gov (United States)

    Roberts, Andrew F.; Devos, Yann; Lemgo, Godwin N. Y.; Zhou, Xuguo

    2015-01-01

    RNA interference, or RNAi, refers to a set of biological processes that make use of conserved cellular machinery to silence genes. Although there are several variations in the source and mechanism, they are all triggered by double stranded RNA (dsRNA) which is processed by a protein complex into small, single stranded RNA, referred to as small interfering RNAs (siRNA) with complementarity to sequences in genes targeted for silencing. The use of the RNAi mechanism to develop new traits in plants has fueled a discussion about the environmental safety of the technology for these applications, and this was the subject of a symposium session at the 13th ISBGMO in Cape Town, South Africa. This paper continues that discussion by proposing research areas that may be beneficial for future environmental risk assessments of RNAi-based genetically modified plants, with a particular focus on non-target organism assessment. PMID:26594220

  10. Molecular effects and bioaccumulation of levonorgestrel in the non-target organism Dreissena polymorpha

    International Nuclear Information System (INIS)

    Contardo-Jara, Valeska; Lorenz, Claudia; Pflugmacher, Stephan; Nuetzmann, Gunnar; Kloas, Werner; Wiegand, Claudia

    2011-01-01

    Bioaccumulation and effects of the contraceptive hormone levonorgestrel were examined in the non-target organism Dreissena polymorpha. Molecular biomarkers of biotransformation, elimination, antioxidant defence and protein damage were analyzed after exposure to increasing concentrations of levonorgestrel in a flow-through system. The lowest concentration (0.312 μg L -1 ) was 100-fold bioconcentrated within four days. A decrease of the bioconcentration factor was observed within one week for the highest test concentrations (3.12 and 6.24 μg L -1 ) suggesting enhanced excretory processes. The immediate mRNA up-regulation of pi class glutathione S-transferase proved that phase II biotransformation processes were induced. Disturbance of fundamental cell functions was assumed since the aryl hydrocarbon receptor has been permanently down-regulated. mRNA up-regulation of P-glycoprotein, superoxide dismutase and metallothioneine suggested enhanced elimination processes and ongoing oxidative stress. mRNA up-regulation of heat shock protein 70 in mussels exposed to the two highest concentrations clearly indicated impacts on protein damage. - Fundamental cell processes as biotransformation, elimination and prevention from oxidative stress are influenced by exposure of the contraceptive levonorgestrel in non-target organisms. - Research highlights: → Bioaccumulation of levonorgestrel in mussels is higher than expected based on its lipophilicity. → Exposure to levonorgestrel causes oxidative stress and enhanced elimination processes. → Glutathione S-transferase (pi class) mRNA induction after one day hint on phase II biotransformation. → mRNA induction of heat shock protein 70 after one week prove protein damage.

  11. Toxicity risk of non-target organs at risk receiving low-dose radiation: case report

    International Nuclear Information System (INIS)

    Shueng, Pei-Wei; Lin, Shih-Chiang; Chang, Hou-Tai; Chong, Ngot-Swan; Chen, Yu-Jen; Wang, Li-Ying; Hsieh, Yen-Ping; Hsieh, Chen-Hsi

    2009-01-01

    The spine is the most common site for bone metastases. Radiation therapy is a common treatment for palliation of pain and for prevention or treatment of spinal cord compression. Helical tomotherapy (HT), a new image-guided intensity modulated radiotherapy (IMRT), delivers highly conformal dose distributions and provides an impressive ability to spare adjacent organs at risk, thus increasing the local control of spinal column metastases and decreasing the potential risk of critical organs under treatment. However, there are a lot of non-target organs at risk (OARs) occupied by low dose with underestimate in this modern rotational IMRT treatment. Herein, we report a case of a pathologic compression fracture of the T9 vertebra in a 55-year-old patient with cholangiocarcinoma. The patient underwent HT at a dose of 30 Gy/10 fractions delivered to T8-T10 for symptom relief. Two weeks after the radiotherapy had been completed, the first course of chemotherapy comprising gemcitabine, fluorouracil, and leucovorin was administered. After two weeks of chemotherapy, however, the patient developed progressive dyspnea. A computed tomography scan of the chest revealed an interstitial pattern with traction bronchiectasis, diffuse ground-glass opacities, and cystic change with fibrosis. Acute radiation pneumonitis was diagnosed. Oncologists should be alert to the potential risk of radiation toxicities caused by low dose off-targets and abscopal effects even with highly conformal radiotherapy

  12. Acute Toxicity of the Antifouling Compound Butenolide in Non-Target Organisms

    KAUST Repository

    Zhang, Yi-Fan

    2011-08-29

    Butenolide [5-octylfuran-2(5H)-one] is a recently discovered and very promising anti-marine-fouling compound. In this study, the acute toxicity of butenolide was assessed in several non-target organisms, including micro algae, crustaceans, and fish. Results were compared with previously reported results on the effective concentrations used on fouling (target) organisms. According to OECD\\'s guideline, the predicted no effect concentration (PNEC) was 0.168 µg l^(−1), which was among one of the highest in representative new biocides. Mechanistically, the phenotype of butenolide-treated Danio rerio (zebrafish) embryos was similar to the phenotype of the pro-caspase-3 over-expression mutant with pericardial edema, small eyes, small brains, and increased numbers of apoptotic cells in the bodies of zebrafish embryos. Butenolide also induced apoptosis in HeLa cells, with the activation of c-Jun N-terminal kinases (JNK), Bcl-2 family proteins, and caspases and proteasomes/lysosomes involved in this process. This is the first detailed toxicity and toxicology study on this antifouling compound.

  13. Establishing a system with Drosophila melanogaster (Diptera: Drosophilidae) to assess the non-target effects of gut-active insecticidal compounds.

    Science.gov (United States)

    Haller, Simone; Meissle, Michael; Romeis, Jörg

    2016-12-01

    Potentially adverse effects on ecosystem functioning by the planting of insect-resistant, genetically engineered plants or by the direct application of insecticidal compounds are carefully evaluated in pre-market risk assessments. To date, few studies have assessed the potential risks of genetically engineered crops or insecticidal compounds on the survival and fitness of dipteran species, despite their important contribution to ecosystem services such as decomposition in agricultural systems. Therefore, we propose that Drosophila melanogaster Meigen (Drosophilidae) be used as a surrogate species for the order Diptera and for the functional guild of soil arthropod decomposers in pre-market risk assessments. We developed two assays to assess the toxicity of gut-active insecticidal compounds to D. melanogaster. One assay uses groups of fly larvae, and the other uses individuals. Cryolite, a mineral pesticide, proved to be an adequate positive control. The effects of cryolite on D. melanogaster larvae were comparable between the two assays. Statistical power analyses were used to define the number of replications required to identify different effect sizes between control and treatment groups. Finally, avidin, E-64, GNA, and SBTI were used as test compounds to validate the individual-based assay; only avidin adversely affected D. melanogaster. These results indicate that both D. melanogaster assays will be useful for early tier risk assessment concerning the effects of orally active compounds on non-target dipterans.

  14. Scientific Opinion on the assessment of potential impacts of genetically modified plants on non-target organisms

    DEFF Research Database (Denmark)

    Arpaia, Salvatore; Bartsch, Detlef; Delos, Marc

    The European Food Safety Authority (EFSA) asked the Panel on Genetically Modified Organisms to establish a self-tasking Working Group with the aim of (1) producing a scientific review of the current guidance of the GMO Panel for Environmental Risk Assessment (ERA), focusing on the potential impacts...... of GM plants on Non-Target Organisms (NTOs), (2) proposing criteria for NTOs selection, and (3) providing advise on standardized testing methodology. This initiative was undertaken in response to a need and request from a wide range of stakeholders, including the European Commission and Member States....... In first instance, the self-tasking Working Group on Non-Target Organisms (EFSA NTO WG) mainly considered impacts of GM plants on invertebrate species, but also took account of ecosystem functions that could be altered. The EFSA NTO WG considered the necessity for clear and objective protection goals...

  15. Drosophila Melanogaster as an Experimental Organism.

    Science.gov (United States)

    Rubin, Gerald M.

    1988-01-01

    Discusses the role of the fruit fly in genetics research requiring a multidisciplinary approach. Describes embryological and genetic methods used in the experimental analysis of this organism. Outlines the use of Drosophila in the study of the development and function of the nervous system. (RT)

  16. Attractive Toxic Sugar Bait (ATSB) For Control of Mosquitoes and Its Impact on Non-Target Organisms: A Review.

    Science.gov (United States)

    Fiorenzano, Jodi M; Koehler, Philip G; Xue, Rui-De

    2017-04-10

    Mosquito abatement programs contend with mosquito-borne diseases, insecticidal resistance, and environmental impacts to non-target organisms. However, chemical resources are limited to a few chemical classes with similar modes of action, which has led to insecticide resistance in mosquito populations. To develop a new tool for mosquito abatement programs that control mosquitoes while combating the issues of insecticidal resistance, and has low impacts of non-target organisms, novel methods of mosquito control, such as attractive toxic sugar baits (ATSBs), are being developed. Whereas insect baiting to dissuade a behavior, or induce mortality, is not a novel concept, as it was first introduced in writings from 77 AD, mosquito baiting through toxic sugar baits (TSBs) had been quickly developing over the last 60 years. This review addresses the current body of research of ATSB by providing an overview of active ingredients (toxins) include in TSBs, attractants combined in ATSB, lethal effects on mosquito adults and larvae, impact on non-target insects, and prospects for the use of ATSB.

  17. Compatibility of organic farming treatments against Monosteira unicostata with non-target arthropod fauna of almond trees canopy

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-Ramos, I.; Marcotegui, A.; Pascual, S.; Fernández, C.E.; Cobos, G.; González-Núñez, M.

    2017-07-01

    Field trials had shown that 1-2 applications of kaolin and potassium salts of fatty acids combined with thyme essential oil (PSTEO) reduced the abundance of the lace bug Monosteira unicostata (Mulsant & Rey) (Hemiptera: Tingidae), an important pest of almond trees in the Mediterranean region. These products could be useful for the control of this pest in organic production of almonds, but higher number of applications could be necessary. However, the possible detrimental effects on the almond orchard ecosystem should be evaluated. In the present work, the effects observed on the non-target arthropod fauna of the almond trees canopy in those field assays are shown. First, a comprehensive report of the non-target arthropod fauna of the almond tree is provided. Regarding natural enemies, most of the predatory arthropods captured were spiders belonging to different families like Salticidae, Thomisidae, Philodromidae, Theridiidae, Araneidae or Oxyopidae. Other predatory families that appeared in significant numbers were Chrysopidae, Anthocoridae, Aeolothripidae, Coccinellidae, Phytoseiidae, Erythraeidae or Forficulidae. Among parasitoids, the most abundant families were Eulophidae, Scelionidae and Dryinidae. Kaolin reduced the abundance of natural enemies and other non-target arthropods as well as their diversity and number of species. On the contrary, PSTEO only produced a slight reduction in the number of natural enemies, whereas no effect was found on the diversity and species richness. These effects were observed despite the reduced number of applications, so greater effect is expected if its frequency is increased in order to achieve an efficient control of M. unicostata.

  18. Compatibility of organic farming treatments against Monosteira unicostata with non-target arthropod fauna of almond trees canopy

    International Nuclear Information System (INIS)

    Sánchez-Ramos, I.; Marcotegui, A.; Pascual, S.; Fernández, C.E.; Cobos, G.; González-Núñez, M.

    2017-01-01

    Field trials had shown that 1-2 applications of kaolin and potassium salts of fatty acids combined with thyme essential oil (PSTEO) reduced the abundance of the lace bug Monosteira unicostata (Mulsant & Rey) (Hemiptera: Tingidae), an important pest of almond trees in the Mediterranean region. These products could be useful for the control of this pest in organic production of almonds, but higher number of applications could be necessary. However, the possible detrimental effects on the almond orchard ecosystem should be evaluated. In the present work, the effects observed on the non-target arthropod fauna of the almond trees canopy in those field assays are shown. First, a comprehensive report of the non-target arthropod fauna of the almond tree is provided. Regarding natural enemies, most of the predatory arthropods captured were spiders belonging to different families like Salticidae, Thomisidae, Philodromidae, Theridiidae, Araneidae or Oxyopidae. Other predatory families that appeared in significant numbers were Chrysopidae, Anthocoridae, Aeolothripidae, Coccinellidae, Phytoseiidae, Erythraeidae or Forficulidae. Among parasitoids, the most abundant families were Eulophidae, Scelionidae and Dryinidae. Kaolin reduced the abundance of natural enemies and other non-target arthropods as well as their diversity and number of species. On the contrary, PSTEO only produced a slight reduction in the number of natural enemies, whereas no effect was found on the diversity and species richness. These effects were observed despite the reduced number of applications, so greater effect is expected if its frequency is increased in order to achieve an efficient control of M. unicostata.

  19. Control of sand flies with attractive toxic sugar baits (ATSB) and potential impact on non-target organisms in Morocco.

    Science.gov (United States)

    Qualls, Whitney A; Müller, Gunter C; Khallaayoune, Khalid; Revay, Edita E; Zhioua, Elyes; Kravchenko, Vasiliy D; Arheart, Kristopher L; Xue, Rui-De; Schlein, Yosef; Hausmann, Axel; Kline, Daniel L; Beier, John C

    2015-02-08

    The persistence and geographical expansion of leishmaniasis is a major public health problem that requires the development of effective integrated vector management strategies for sand fly control. Moreover, these strategies must be economically and environmentally sustainable approaches that can be modified based on the current knowledge of sand fly vector behavior. The efficacy of using attractive toxic sugar baits (ATSB) for sand fly control and the potential impacts of ATSB on non-target organisms in Morocco was investigated. Sand fly field experiments were conducted in an agricultural area along the flood plain of the Ourika River. Six study sites (600 m x 600 m); three with "sugar rich" (with cactus hedges bearing countless ripe fruits) environments and three with "sugar poor" (green vegetation only suitable for plant tissue feeding) environments were selected to evaluate ATSB, containing the toxin, dinotefuran. ATSB applications were made either with bait stations or sprayed on non-flowering vegetation. Control sites were established in both sugar rich and sugar poor environments. Field studies evaluating feeding on vegetation treated with attractive (non-toxic) sugar baits (ASB) by non-target arthropods were conducted at both sites with red stained ASB applied to non-flowering vegetation, flowering vegetation, or on bait stations. At both the sites, a single application of ATSB either applied to vegetation or bait stations significantly reduced densities of both female and male sand flies (Phlebotomus papatasi and P. sergenti) for the five-week trial period. Sand fly populations were reduced by 82.8% and 76.9% at sugar poor sites having ATSB applied to vegetation or presented as a bait station, respectively and by 78.7% and 83.2%, respectively at sugar rich sites. The potential impact of ATSB on non-targets, if applied on green non-flowering vegetation and bait stations, was low for all non-target groups as only 1% and 0.7% were stained with non-toxic bait

  20. The Presence of Algae Mitigates the Toxicity of Copper-Based Algaecides to a Non-Target Organism.

    Science.gov (United States)

    Bishop, West M; Willis, Ben E; Richardson, Robert J; Cope, W Gregory

    2018-05-07

    Copper-based algaecides are routinely applied to target noxious algal blooms in freshwaters. Standard toxicity testing data with copper suggest typical concentrations used to control algae can cause deleterious acute impacts to non-target organisms. These "clean" water experiments lack algae, which are specifically targeted in field applications of algaecides and contain competing ligands. This research measured the influence of algae on algaecide exposure and subsequent response of the non-target species Daphnia magna to copper sulfate and an ethanolamine-chelated copper algaecide (Captain®). Significant shifts (Palgae were present in exposures along with a copper salt or chelated copper formulation. Copper sulfate 48-h LC50 values shifted from 75.3 to 317.8 and 517.8 µg Cu/L whereas Captain increased from 353.8 to 414.2 and 588.5 µg Cu/L in no algae, 5 × 10 5 and 5 × 10 6 cells/mL algae treatments, respectively. Larger shifts were measured with copper sulfate exposures, although Captain was less toxic to Daphnia magna in all corresponding treatments. Captain was more effective at controlling Scenedesmus dimorphus at most concentrations, and control was inversely proportional to toxicity to D. magna. Overall, incorporating target competing ligands (i.e., algae) into standard toxicity testing is important for accurate risk assessment, and copper formulation can significantly alter algaecidal efficacy and risks to non-target organisms. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. A new approach to data evaluation in the non-target screening of organic trace substances in water analysis.

    Science.gov (United States)

    Müller, Alexander; Schulz, Wolfgang; Ruck, Wolfgang K L; Weber, Walter H

    2011-11-01

    Non-target screening via high performance liquid chromatography-mass spectrometry (HPLC-MS) has gained increasingly in importance for monitoring organic trace substances in water resources targeted for the production of drinking water. In this article a new approach for evaluating the data from non-target HPLC-MS screening in water is introduced and its advantages are demonstrated using the supply of drinking water as an example. The crucial difference between this and other approaches is the comparison of samples based on compounds (features) determined by their full scan data. In so doing, we take advantage of the temporal, spatial, or process-based relationships among the samples by applying the set operators, UNION, INTERSECT, and COMPLEMENT to the features of each sample. This approach regards all compounds, detectable by the used analytical method. That is the fundamental meaning of non-target screening, which includes all analytical information from the applied technique for further data evaluation. In the given example, in just one step, all detected features (1729) of a landfill leachate sample could be examined for their relevant influences on water purification respectively drinking water. This study shows that 1721 out of 1729 features were not relevant for the water purification. Only eight features could be determined in the untreated water and three of them were found in the final drinking water after ozonation. In so doing, it was possible to identify 1-adamantylamine as contamination of the landfill in the drinking water at a concentration in the range of 20 ng L(-1). To support the identification of relevant compounds and their transformation products, the DAIOS database (Database-Assisted Identification of Organic Substances) was used. This database concept includes some functions such as product ion search to increase the efficiency of the database query after the screening. To identify related transformation products the database function

  2. Quality of laboratory studies assessing effects of Bt-proteins on non-target organisms: minimal criteria for acceptability.

    Science.gov (United States)

    De Schrijver, Adinda; Devos, Yann; De Clercq, Patrick; Gathmann, Achim; Romeis, Jörg

    2016-08-01

    The potential risks that genetically modified plants may pose to non-target organisms and the ecosystem services they contribute to are assessed as part of pre-market risk assessments. This paper reviews the early tier studies testing the hypothesis whether exposure to plant-produced Cry34/35Ab1 proteins as a result of cultivation of maize 59122 is harmful to valued non-target organisms, in particular Arthropoda and Annelida. The available studies were assessed for their scientific quality by considering a set of criteria determining their relevance and reliability. As a case-study, this exercise revealed that when not all quality criteria are met, weighing the robustness of the study and its relevance for risk assessment is not obvious. Applying a worst-case expected environmental concentration of bioactive toxins equivalent to that present in the transgenic crop, confirming exposure of the test species to the test substance, and the use of a negative control were identified as minimum criteria to be met to guarantee sufficiently reliable data. This exercise stresses the importance of conducting studies meeting certain quality standards as this minimises the probability of erroneous or inconclusive results and increases confidence in the results and adds certainty to the conclusions drawn.

  3. Compatibility of organic farming treatments against Monosteira unicostata with non-target arthropod fauna of almond trees canopy

    Directory of Open Access Journals (Sweden)

    Ismael Sánchez-Ramos

    2017-07-01

    Full Text Available Field trials had shown that 1-2 applications of kaolin and potassium salts of fatty acids combined with thyme essential oil (PSTEO reduced the abundance of the lace bug Monosteira unicostata (Mulsant & Rey (Hemiptera: Tingidae, an important pest of almond trees in the Mediterranean region. These products could be useful for the control of this pest in organic production of almonds, but higher number of applications could be necessary. However, the possible detrimental effects on the almond orchard ecosystem should be evaluated. In the present work, the effects observed on the non-target arthropod fauna of the almond trees canopy in those field assays are shown. First, a comprehensive report of the non-target arthropod fauna of the almond tree is provided. Regarding natural enemies, most of the predatory arthropods captured were spiders belonging to different families like Salticidae, Thomisidae, Philodromidae, Theridiidae, Araneidae or Oxyopidae. Other predatory families that appeared in significant numbers were Chrysopidae, Anthocoridae, Aeolothripidae, Coccinellidae, Phytoseiidae, Erythraeidae or Forficulidae. Among parasitoids, the most abundant families were Eulophidae, Scelionidae and Dryinidae. Kaolin reduced the abundance of natural enemies and other non-target arthropods as well as their diversity and number of species. On the contrary, PSTEO only produced a slight reduction in the number of natural enemies, whereas no effect was found on the diversity and species richness. These effects were observed despite the reduced number of applications, so greater effect is expected if its frequency is increased in order to achieve an efficient control of M. unicostata.

  4. Effect of the entomopathogenic fungus Lecanicillium muscariumon the predatory mite Phytoseiulus persimilis as a non-target organism.

    Science.gov (United States)

    Donka, András; Sermann, Helga; Büttner, Carmen

    2008-01-01

    In biological control, different benefit organisms have to combine for an effective management. If entomopathogenic fungi will be integrated, than it has to be considered also the effect on non-target organisms Like beneficial arthropods. Because of the high importance of predatory mite Phytoseiulus persimilis in biological control it was to determine side effects of Leconicillium muscarium on this species. In two standardised biotests in petri dish and on plants (P. vulgaris) individuals were dipped in suspension or set down on leafs after spraying with L. muscarium at different spore density. Results indicate pathogenicity for the predatory mite in principle. But the dimension of infection risk decrease, all the more conditions approach to practical sequence. Under practical conditions on plants and in practical relevant concentration of 10(6) and 10(7) sp./ml no risk is to expect on the plant.

  5. Effect of an insecticide on growth and metabolism of some non-target soil micro-organisms

    International Nuclear Information System (INIS)

    Balasubramanian, A.; Nilakantan, Gita

    1975-01-01

    Aldicarb, a systemic insecticide, enhanced the growth of Rhizobium japonicum in vitro at 1 ppm concentration but inhibited it at 5 ppm level. The cell yields of Azotobacter chroococcum and Pseudomonas solanacearum were reduced by both the concentrations of the chemical. 1 and 5 ppm levels of the insecticide the incorporation of 14 C-glucose by R. japonicum, but it was stimulated in the case of R. chroococcum. In the case of P. solanacearum, however, 1 ppm level of the insecticide enhanced the incorporation of the label. Uptake of 32 P-di-potassium hydrogen phosphate by the cells was also significantly reduced indicating that the metabolic activities of these non-target soil micro-organisms are altered by the insecticide treatment. (author)

  6. Drosophila melanogaster as a model organism to study nanotoxicity.

    Science.gov (United States)

    Ong, Cynthia; Yung, Lin-Yue Lanry; Cai, Yu; Bay, Boon-Huat; Baeg, Gyeong-Hun

    2015-05-01

    Drosophila melanogaster has been used as an in vivo model organism for the study of genetics and development since 100 years ago. Recently, the fruit fly Drosophila was also developed as an in vivo model organism for toxicology studies, in particular, the field of nanotoxicity. The incorporation of nanomaterials into consumer and biomedical products is a cause for concern as nanomaterials are often associated with toxicity in many in vitro studies. In vivo animal studies of the toxicity of nanomaterials with rodents and other mammals are, however, limited due to high operational cost and ethical objections. Hence, Drosophila, a genetically tractable organism with distinct developmental stages and short life cycle, serves as an ideal organism to study nanomaterial-mediated toxicity. This review discusses the basic biology of Drosophila, the toxicity of nanomaterials, as well as how the Drosophila model can be used to study the toxicity of various types of nanomaterials.

  7. Selection of focal earthworm species as non-target soil organisms for environmental risk assessment of genetically modified plants.

    Science.gov (United States)

    van Capelle, Christine; Schrader, Stefan; Arpaia, Salvatore

    2016-04-01

    By means of a literature survey, earthworm species of significant relevance for soil functions in different biogeographical regions of Europe (Atlantic, Boreal, Mediterranean) were identified. These focal earthworm species, defined here according to the EFSA Guidance Document on the environmental risk assessment (ERA) of genetically modified plants, are typical for arable soils under crop rotations with maize and/or potatoes within the three regions represented by Ireland, Sweden and Spain, respectively. Focal earthworm species were selected following a matrix of four steps: Identification of functional groups, categorization of non-target species, ranking species on ecological criteria, and final selection of focal species. They are recommended as appropriate non-target organisms to assess environmental risks of genetically modified (GM) crops; in this case maize and potatoes. In total, 44 literature sources on earthworms in arable cropping systems including maize or potato from Ireland, Sweden and Spain were collected, which present information on species diversity, individual density and specific relevance for soil functions. By means of condensed literature data, those species were identified which (i) play an important functional role in respective soil systems, (ii) are well adapted to the biogeographical regions, (iii) are expected to occur in high abundances under cultivation of maize or potato and (iv) fulfill the requirements for an ERA test system based on life-history traits. First, primary and secondary decomposers were identified as functional groups being exposed to the GM crops. In a second step, anecic and endogeic species were categorized as potential species. In step three, eight anecic and endogeic earthworm species belonging to the family Lumbricidae were ranked as relevant species: Aporrectodea caliginosa, Aporrectodea rosea, Aporrectodea longa, Allolobophora chlorotica, Lumbricus terrestris, Lumbricus friendi, Octodrilus complanatus and

  8. Structural and functional effects of herbicides on non-target organisms in aquatic ecosystems with an emphasis on atrazine

    Science.gov (United States)

    Fairchild, James; Kortekamp, Andreas

    2011-01-01

    for controlling nuisance aquatic vegetation. Although aquatic herbicide exposure has been widely documented, these exposures are not necessarily related to adverse non-target ecological effects on natural communities in aquatic environments. This chapter evaluates the potential for effects of herbicides on the structure and function of aquatic envrionments at the population, community, and ecosystem levels of biological organization. In this manuscript I examine several critical aspects of the subject matter area: primary herbicides in use and chemical modes of action; the regulatory process used for registration and risk assessment of herbicides; data regarding non-target risks and the relative sensitivity of aquatic plants, inveretebrates, and fish to herbicides; and emerging areas of science regarding the potential for endocrine-disrupting effects of herbicides on aquatic vertebrates. Much of the focus of this paper is on atrazine due to the extensive database which exists regarding its fate and effects. 

  9. The beta-receptor blocker metoprolol alters detoxification processes in the non-target organism Dreissena polymorpha

    Energy Technology Data Exchange (ETDEWEB)

    Contardo-Jara, Valeska, E-mail: contardo@igb-berlin.d [Dpt. Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Pflugmacher, Stephan, E-mail: pflugmacher@igb-berlin.d [Dpt. Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Nuetzmann, Gunnar, E-mail: nuetzmann@igb-berlin.d [Dpt. Ecohydrology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Kloas, Werner, E-mail: werner.kloas@igb-berlin.d [Dpt. Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Mueggelseedamm 301, 12587 Berlin (Germany); Wiegand, Claudia, E-mail: wiegand@biology.sdu.d [University of Southern Denmark Institute of Biology, Campusvej 55, 5230 Odense M (Denmark)

    2010-06-15

    Due to increasing amounts of pharmaceutically active compounds (PhACs) in the aquatic environment, their largely unknown effects to non-target organisms need to be assessed. This study examined physiological changes in the freshwater mussel Dreissena polymorpha exposed to increasing concentrations (0.534, 5.34, 53.4 and 534 mug L{sup -1}) of the beta-blocker metoprolol in a flow-through system for seven days. The two lower concentrations represent the environmentally relevant range. Surprisingly, metallothionein mRNA was immediately up-regulated in all treatments. For the two higher concentrations mRNA up-regulation in gills was found for P-glycoprotein after one day, and after four days for pi class glutathione S-transferase, demonstrating elimination and biotransformation processes, respectively. Additionally, catalase and superoxide dismutase were up-regulated in the digestive gland indicating oxidative stress. In all treated mussels a significant up-regulation of heat shock protein mRNA was observed in gills after four days, which suggests protein damage and the requirement for repair processes. Metoprolol was 20-fold bioaccumulated for environmentally relevant concentrations. - Evidence for significant physiological changes in an aquatic mollusc due to exposure to a pharmaceutically active compound detected by real-time PCR.

  10. The effects of organochlorine pesticides on some non-target organisms in maize and cowpea agro-ecosystems in Ghana

    International Nuclear Information System (INIS)

    Montford, K.G.

    1997-01-01

    In order to study the effects of organochlorine pesticides on non-target organisms under tropical conditions, a three-year study was conducted in Ghana applying lindane at 1 kg AI. ha -1 and endosulfan at 0.75 kg AI. ha -1 to maize and cowpeas respectively. The endosulfan treatment was preceded by two consecutive treatments with cypermethrin at 50 g AI ha -1 . Lindane significantly reduced the numbers of ants, spiders and springtails trapped though the numbers of ants and spiders generally recovered within the cropping period. Lindane significantly increased the numbers of leafhoppers caught from maize plots probably due to the elimination of a natural enemy. Ant, spider and springtail numbers were also significantly reduced by the endosulfan treatment in cowpea plots 5. Lindane did not significantly increase maize yields in two of the three years. Endosulfan contributed to significant yield increases and reduced seed damage in cowpeas. Neither lindane nor endosulfan seemed to have any significant adverse effects on the activities of soil microfauna and microflora based on the rates of decomposition of leaf discs buried in the experimental plots. (author). 12 refs, 10 figs, 9 tabs

  11. Assessing environmental impacts of genetically modified plants on non-target organisms: The relevance of in planta studies.

    Science.gov (United States)

    Arpaia, Salvatore; Birch, A Nicholas E; Kiss, Jozsef; van Loon, Joop J A; Messéan, Antoine; Nuti, Marco; Perry, Joe N; Sweet, Jeremy B; Tebbe, Christoph C

    2017-04-01

    In legal frameworks worldwide, genetically modified plants (GMPs) are subjected to pre-market environmental risk assessment (ERA) with the aim of identifying potential effects on the environment. In the European Union, the EFSA Guidance Document introduces the rationale that GMPs, as well as their newly produced metabolites, represent the potential stressor to be evaluated during ERA. As a consequence, during several phases of ERA for cultivation purposes, it is considered necessary to use whole plants or plant parts in experimental protocols. The importance of in planta studies as a strategy to address impacts of GMPs on non-target organisms is demonstrated, to evaluate both effects due to the intended modification in plant phenotype (e.g. expression of Cry proteins) and effects due to unintended modifications in plant phenotype resulting from the transformation process (e.g. due to somaclonal variations or pleiotropic effects). In planta tests are also necessary for GMPs in which newly expressed metabolites cannot easily be studied in vitro. This paper reviews the scientific literature supporting the choice of in planta studies as a fundamental tool in ERA of GMPs in cultivation dossiers; the evidence indicates they can realistically mimic the ecological relationships occurring in their receiving environments and provide important insights into the biology and sustainable management of GMPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. A statistical simulation model for field testing of non-target organisms in environmental risk assessment of genetically modified plants.

    Science.gov (United States)

    Goedhart, Paul W; van der Voet, Hilko; Baldacchino, Ferdinando; Arpaia, Salvatore

    2014-04-01

    Genetic modification of plants may result in unintended effects causing potentially adverse effects on the environment. A comparative safety assessment is therefore required by authorities, such as the European Food Safety Authority, in which the genetically modified plant is compared with its conventional counterpart. Part of the environmental risk assessment is a comparative field experiment in which the effect on non-target organisms is compared. Statistical analysis of such trials come in two flavors: difference testing and equivalence testing. It is important to know the statistical properties of these, for example, the power to detect environmental change of a given magnitude, before the start of an experiment. Such prospective power analysis can best be studied by means of a statistical simulation model. This paper describes a general framework for simulating data typically encountered in environmental risk assessment of genetically modified plants. The simulation model, available as Supplementary Material, can be used to generate count data having different statistical distributions possibly with excess-zeros. In addition the model employs completely randomized or randomized block experiments, can be used to simulate single or multiple trials across environments, enables genotype by environment interaction by adding random variety effects, and finally includes repeated measures in time following a constant, linear or quadratic pattern in time possibly with some form of autocorrelation. The model also allows to add a set of reference varieties to the GM plants and its comparator to assess the natural variation which can then be used to set limits of concern for equivalence testing. The different count distributions are described in some detail and some examples of how to use the simulation model to study various aspects, including a prospective power analysis, are provided.

  13. Fabrication of nano-mosquitocides using chitosan from crab shells: Impact on non-target organisms in the aquatic environment.

    Science.gov (United States)

    Murugan, Kadarkarai; Anitha, Jaganathan; Dinesh, Devakumar; Suresh, Udaiyan; Rajaganesh, Rajapandian; Chandramohan, Balamurugan; Subramaniam, Jayapal; Paulpandi, Manickam; Vadivalagan, Chitravel; Amuthavalli, Pandiyan; Wang, Lan; Hwang, Jiang-Shiou; Wei, Hui; Alsalhi, Mohamad Saleh; Devanesan, Sandhanasamy; Kumar, Suresh; Pugazhendy, Kannaiyan; Higuchi, Akon; Nicoletti, Marcello; Benelli, Giovanni

    2016-10-01

    Mosquitoes are arthropods of huge medical and veterinary relevance, since they vector pathogens and parasites of public health importance, including malaria, dengue and Zika virus. Currently, nanotechnology is considered a potential eco-friendly approach in mosquito control research. We proposed a novel method of biofabrication of silver nanoparticles (AgNP) using chitosan (Ch) from crab shells. Ch-AgNP nanocomposite was characterized by UV-vis spectroscopy, FTIR, SEM, EDX and XRD. Ch-AgNP were tested against larvae and pupae of the malaria vector Anopheles stephensi obtaining LC50 ranging from 3.18 ppm (I) to 6.54 ppm (pupae). The antibacterial properties of Ch-AgNP were proved against Bacillus subtilis, Klebsiella pneumoniae and Salmonella typhi, while no growth inhibition was reported in assays conducted on Proteus vulgaris. Concerning non-target effects, in standard laboratory considtions the predation efficiency of Danio rerio zebrafishes was 68.8% and 61.6% against I and II instar larvae of A. stephensi, respectively. In a Ch-AgNP-contaminated environment, fish predation was boosted to 89.5% and 77.3%, respectively. Quantitative analysis of antioxidant enzymes SOD, CAT and LPO from hepatopancreas of fresh water crabs Paratelphusa hydrodromous exposed for 16 days to a Ch-AgNP-contaminated aquatic environment were conducted. Notably, deleterious effects of Ch-AgNP contaminating aquatic enviroment on the non-target crab P. hydrodromous were observed, particularly when doses higher than 8-10ppm are tested. Overall, this research highlights the potential of Ch-AGNP for the development of newer control tools against young instar populations of malaria mosquitoes, also highlighting some risks concerned the employ of nanoparticles in aquatic environments. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Effect of seed kernel aqueous extract from Annona squamosa against three mosquito vectors and its impact on non-target aquatic organisms

    Directory of Open Access Journals (Sweden)

    Ravichandran Ramanibai

    2016-09-01

    Full Text Available Objective: To evaluate the toxicity of Annona squamosa (A. squamosa aqueous (physiological saline seed soluble extract and its control of mosquito population. Methods: Ovicidal, larvicidal and pupicidal activity of A. squamosa crude soluble seed kernel extract was determined according to World Health Organization. The mortality of each mosquito stage was recorded after 24 h exposured to plant material. Toxicity assay was used to assess the non-target organisms with different concentrations according to Organisation for Economic Co-operation and Development. Results: The aqueous solubilized extracts of A. squamosa elicit the toxicity against all stages of Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus, and the LC50 values against stages of egg, 1st-4th larvae were (1.45 and 1.26–2.5 mg/mL, (1.12 and 1.19–2.81 mg/ mL and (1.80 and 2.12–3.41 mg/mL respectively. The pupicidal activity also brought forth amended activity against all three mosquitoes species, and the LC50 values were consider to be 3.19, 2.42 and 4.47 mg/mL. Ultimately there was no mortality observed from non-target organism of Chironomus costatus. Conclusions: Based on the findings of the study, it suggests that the use of A. squamosa plant extract can act as an alternate insecticidal agents for controlling target mosquitoes without affecting the non-target aquatic insect. Further investigation to identify the active compounds and their mechanisms of action is recommended.

  15. [Target and non-target screening of volatile organic compounds in industrial exhaust gas using thermal desorption-gas chromatography-mass spectrometry].

    Science.gov (United States)

    Ma, Huilian; Jin, Jing; Li, Yun; Chen, Jiping

    2017-10-08

    A method of comprehensive screening of the target and non-target volatile organic compounds (VOCs) in industrial exhaust gas using thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) has been developed. In this paper, two types of solid phase adsorption column were compared, and the Tenex SS TD Tube was selected. The analytes were enriched into the adsorption tube by constant flow sampling, and detected by TD-GC-MS in full scan mode. Target compounds were quantified by internal standard method, and the quantities of non-target compounds were calculated by response coefficient of toluene. The method detection limits (MDLs) for the 24 VOCs were 1.06 to 5.44 ng, and MDLs could also be expressed as 0.004 to 0.018 mg/m 3 assuming that the sampling volume was 300 mL. The average recoveries were in the range of 78.4% to 89.4% with the relative standard deviations (RSDs) of 3.9% to 14.4% ( n =7). The established analytical method was applied for the comprehensive screening of VOCs in a waste incineration power plant in Dalian city. Twenty-nine VOCs were identified. In these compounds, only five VOCs were the target compounds set in advance, which accounted for 26.7% of the total VOCs identified. Therefore, this study further proved the importance of screening non-target compounds in the analysis of VOCs in industrial exhaust gas, and has certain reference significance for the complete determination of VOCs distribution.

  16. The use of statistical tools in field testing of putative effects of genetically modified plants on non-target organisms

    NARCIS (Netherlands)

    Semenov, Alexander V.; van Elsas, Jan Dirk; Glandorf, Debora C. M.; Schilthuizen, Menno; de Boer, Willem F.

    To fulfill existing guidelines, applicants that aim to place their genetically modified (GM) insect-resistant crop plants on the market are required to provide data from field experiments that address the potential impacts of the GM plants on nontarget organisms (NTO's). Such data may be based on

  17. A non-targeted metabolomic approach to identify food markers to support discrimination between organic and conventional tomato crops.

    Science.gov (United States)

    Martínez Bueno, María Jesús; Díaz-Galiano, Francisco José; Rajski, Łukasz; Cutillas, Víctor; Fernández-Alba, Amadeo R

    2018-04-20

    In the last decade, the consumption trend of organic food has increased dramatically worldwide. However, the lack of reliable chemical markers to discriminate between organic and conventional products makes this market susceptible to food fraud in products labeled as "organic". Metabolomic fingerprinting approach has been demonstrated as the best option for a full characterization of metabolome occurring in plants, since their pattern may reflect the impact of both endogenous and exogenous factors. In the present study, advanced technologies based on high performance liquid chromatography-high-resolution accurate mass spectrometry (HPLC-HRAMS) has been used for marker search in organic and conventional tomatoes grown in greenhouse under controlled agronomic conditions. The screening of unknown compounds comprised the retrospective analysis of all tomato samples throughout the studied period and data processing using databases (mzCloud, ChemSpider and PubChem). In addition, stable nitrogen isotope analysis (δ 15 N) was assessed as a possible indicator to support discrimination between both production systems using crop/fertilizer correlations. Pesticide residue analyses were also applied as a well-established way to evaluate the organic production. Finally, the evaluation by combined chemometric analysis of high-resolution accurate mass spectrometry (HRAMS) and δ 15 N data provided a robust classification model in accordance with the agricultural practices. Principal component analysis (PCA) showed a sample clustering according to farming systems and significant differences in the sample profile was observed for six bioactive components (L-tyrosyl-L-isoleucyl-L-threonyl-L-threonine, trilobatin, phloridzin, tomatine, phloretin and echinenone). Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Genetically modified crops and aquatic ecosystems: considerations for environmental risk assessment and non-target organism testing.

    Science.gov (United States)

    Carstens, Keri; Anderson, Jennifer; Bachman, Pamela; De Schrijver, Adinda; Dively, Galen; Federici, Brian; Hamer, Mick; Gielkens, Marco; Jensen, Peter; Lamp, William; Rauschen, Stefan; Ridley, Geoff; Romeis, Jörg; Waggoner, Annabel

    2012-08-01

    Environmental risk assessments (ERA) support regulatory decisions for the commercial cultivation of genetically modified (GM) crops. The ERA for terrestrial agroecosystems is well-developed, whereas guidance for ERA of GM crops in aquatic ecosystems is not as well-defined. The purpose of this document is to demonstrate how comprehensive problem formulation can be used to develop a conceptual model and to identify potential exposure pathways, using Bacillus thuringiensis (Bt) maize as a case study. Within problem formulation, the insecticidal trait, the crop, the receiving environment, and protection goals were characterized, and a conceptual model was developed to identify routes through which aquatic organisms may be exposed to insecticidal proteins in maize tissue. Following a tiered approach for exposure assessment, worst-case exposures were estimated using standardized models, and factors mitigating exposure were described. Based on exposure estimates, shredders were identified as the functional group most likely to be exposed to insecticidal proteins. However, even using worst-case assumptions, the exposure of shredders to Bt maize was low and studies supporting the current risk assessments were deemed adequate. Determining if early tier toxicity studies are necessary to inform the risk assessment for a specific GM crop should be done on a case by case basis, and should be guided by thorough problem formulation and exposure assessment. The processes used to develop the Bt maize case study are intended to serve as a model for performing risk assessments on future traits and crops.

  19. Drosophila melanogaster--the model organism of choice for the complex biology of multi-cellular organisms

    Science.gov (United States)

    Beckingham, Kathleen M.; Armstrong, J. Douglas; Texada, Michael J.; Munjaal, Ravi; Baker, Dean A.

    2005-01-01

    Drosophila melanogaster has been intensely studied for almost 100 years. The sophisticated array of genetic and molecular tools that have evolved for analysis of gene function in this organism are unique. Further, Drosophila is a complex multi-cellular organism in which many aspects of development and behavior parallel those in human beings. These combined advantages have permitted research in Drosophila to make seminal contributions to the understanding of fundamental biological processes and ensure that Drosophila will continue to provide unique insights in the genomic era. An overview of the genetic methodologies available in Drosophila is given here, together with examples of outstanding recent contributions of Drosophila to our understanding of cell and organismal biology. The growing contribution of Drosophila to our knowledge of gravity-related responses is addressed.

  20. Microtubules are organized independently of the centrosome in Drosophila neurons

    Directory of Open Access Journals (Sweden)

    Nguyen Michelle M

    2011-12-01

    Full Text Available Abstract Background The best-studied arrangement of microtubules is that organized by the centrosome, a cloud of microtubule nucleating and anchoring proteins is clustered around centrioles. However, noncentrosomal microtubule arrays are common in many differentiated cells, including neurons. Although microtubules are not anchored at neuronal centrosomes, it remains unclear whether the centrosome plays a role in organizing neuronal microtubules. We use Drosophila as a model system to determine whether centrosomal microtubule nucleation is important in mature neurons. Results In developing and mature neurons, centrioles were not surrounded by the core nucleation protein γ-tubulin. This suggests that the centrioles do not organize functional centrosomes in Drosophila neurons in vivo. Consistent with this idea, centriole position was not correlated with a specific region of the cell body in neurons, and growing microtubules did not cluster around the centriole, even after axon severing when the number of growing plus ends is dramatically increased. To determine whether the centrosome was required for microtubule organization in mature neurons, we used two approaches. First, we used DSas-4 centriole duplication mutants. In these mutants, centrioles were present in many larval sensory neurons, but they were not fully functional. Despite reduced centriole function, microtubule orientation was normal in axons and dendrites. Second, we used laser ablation to eliminate the centriole, and again found that microtubule polarity in axons and dendrites was normal, even 3 days after treatment. Conclusion We conclude that the centrosome is not a major site of microtubule nucleation in Drosophila neurons, and is not required for maintenance of neuronal microtubule organization in these cells.

  1. Are leaves that fall from imidacloprid-treated maple trees to control Asian longhorned beetles toxic to non-target decomposer organisms?

    Science.gov (United States)

    Kreutzweiser, David P; Good, Kevin P; Chartrand, Derek T; Scarr, Taylor A; Thompson, Dean G

    2008-01-01

    The systemic insecticide imidacloprid may be applied to deciduous trees for control of the Asian longhorned beetle, an invasive wood-boring insect. Senescent leaves falling from systemically treated trees contain imidacloprid concentrations that could pose a risk to natural decomposer organisms. We examined the effects of foliar imidacloprid concentrations on decomposer organisms by adding leaves from imidacloprid-treated sugar maple trees to aquatic and terrestrial microcosms under controlled laboratory conditions. Imidacloprid in maple leaves at realistic field concentrations (3-11 mg kg(-1)) did not affect survival of aquatic leaf-shredding insects or litter-dwelling earthworms. However, adverse sublethal effects at these concentrations were detected. Feeding rates by aquatic insects and earthworms were reduced, leaf decomposition (mass loss) was decreased, measurable weight losses occurred among earthworms, and aquatic and terrestrial microbial decomposition activity was significantly inhibited. Results of this study suggest that sugar maple trees systemically treated with imidacloprid to control Asian longhorned beetles may yield senescent leaves with residue levels sufficient to reduce natural decomposition processes in aquatic and terrestrial environments through adverse effects on non-target decomposer organisms.

  2. Drosophila melanogaster as a Versatile Model Organism in Food and Nutrition Research.

    Science.gov (United States)

    Staats, Stefanie; Lüersen, Kai; Wagner, Anika E; Rimbach, Gerald

    2018-04-18

    Drosophila melanogaster has been widely used in the biological sciences as a model organism. Drosophila has a relatively short life span of 60-80 days, which makes it attractive for life span studies. Moreover, approximately 60% of the fruit fly genes are orthologs to mammals. Thus, metabolic and signal transduction pathways are highly conserved. Maintenance and reproduction of Drosophila do not require sophisticated equipment and are rather cheap. Furthermore, there are fewer ethical issues involved in experimental Drosophila research compared with studies in laboratory rodents, such as rats and mice. Drosophila is increasingly recognized as a model organism in food and nutrition research. Drosophila is often fed complex solid diets based on yeast, corn, and agar. There are also so-called holidic diets available that are defined in terms of their amino acid, fatty acid, carbohydrate, vitamin, mineral, and trace element compositions. Feed intake, body composition, locomotor activity, intestinal barrier function, microbiota, cognition, fertility, aging, and life span can be systematically determined in Drosophila in response to dietary factors. Furthermore, diet-induced pathophysiological mechanisms including inflammation and stress responses may be evaluated in the fly under defined experimental conditions. Here, we critically evaluate Drosophila melanogaster as a versatile model organism in experimental food and nutrition research, review the corresponding data in the literature, and make suggestions for future directions of research.

  3. Genetic effects of organic mercury compounds. II. Chromosome segregation in Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Ramel, C; Magnusson, J

    1969-01-01

    The genetic effect of organic mercury compounds on the fruit fly, Drosophila melanogaster was investigated. Treatments of larvae with methyl and phenyl mercury gave rise to development disturbances. Chromosomal abnormalities were noted.

  4. Laser microdissection of sensory organ precursor cells of Drosophila microchaetes.

    Directory of Open Access Journals (Sweden)

    Eulalie Buffin

    Full Text Available BACKGROUND: In Drosophila, each external sensory organ originates from the division of a unique precursor cell (the sensory organ precursor cell or SOP. Each SOP is specified from a cluster of equivalent cells, called a proneural cluster, all of them competent to become SOP. Although, it is well known how SOP cells are selected from proneural clusters, little is known about the downstream genes that are regulated during SOP fate specification. METHODOLOGY/PRINCIPAL FINDINGS: In order to better understand the mechanism involved in the specification of these precursor cells, we combined laser microdissection, toisolate SOP cells, with transcriptome analysis, to study their RNA profile. Using this procedure, we found that genes that exhibit a 2-fold or greater expression in SOPs versus epithelial cells were mainly associated with Gene Ontology (GO terms related with cell fate determination and sensory organ specification. Furthermore, we found that several genes such as pebbled/hindsight, scabrous, miranda, senseless, or cut, known to be expressed in SOP cells by independent procedures, are particularly detected in laser microdissected SOP cells rather than in epithelial cells. CONCLUSIONS/SIGNIFICANCE: These results confirm the feasibility and the specificity of our laser microdissection based procedure. We anticipate that this analysis will give new insight into the selection and specification of neural precursor cells.

  5. Organization and evolution of Drosophila terminin: similarities and differences between Drosophila and human telomeres

    Directory of Open Access Journals (Sweden)

    Grazia Daniela Raffa

    2013-05-01

    Full Text Available Drosophila lacks telomerase and fly telomeres are elongated by occasional transposition of three specialized retroelements. Drosophila telomeres do not terminate with GC-rich repeats and are assembled independently of the sequence of chromosome ends. Recent work has shown that Drosophila telomeres are capped by the terminin complex, which includes the fast-evolving proteins HOAP, HipHop, Moi and Ver. These proteins are not conserves outside Drosophilidae and localize and function exclusively at telomeres, protecting them from fusion events. Other proteins required to prevent end-to-end fusion in flies include HP1, Eff/UbcD1, ATM, the components of the Mre11-Rad50-Nbs (MRN complex, and the Woc transcription factor. These proteins do not share the terminin properties; they are evolutionarily conserved non-fast-evolving proteins that do not accumulate only telomeres and do not serve telomere-specific functions. We propose that following telomerase loss, Drosophila rapidly evolved terminin to bind chromosome ends in a sequence-independent manner. This hypothesis suggests that terminin is the functional analog of the shelterin complex that protects human telomeres. The non-terminin proteins are instead likely to correspond to ancestral telomere-associated proteins that did not evolve as rapidly as terminin because of the functional constraints imposed by their involvement in diverse cellular processes. Thus, it appears that the main difference between Drosophila and human telomeres is in the protective complexes that specifically associate with the DNA termini. We believe that Drosophila telomeres offer excellent opportunities for investigations on human telomere biology. The identification of additional Drosophila genes encoding non-terminin proteins involved in telomere protection might lead to the discovery of novel components of human telomeres.

  6. Neurotoxicity of fungal volatile organic compounds in Drosophila melanogaster.

    Science.gov (United States)

    Inamdar, Arati A; Masurekar, Prakash; Bennett, Joan Wennstrom

    2010-10-01

    Many volatile organic compounds (VOCs) are found in indoor environment as products of microbial metabolism. In damp indoor environments, fungi are associated with poor air quality. Some epidemiological studies have suggested that microbial VOCs have a negative impact on human health. Our study was designed to provide a reductionist approach toward studying fungal VOC-mediated toxicity using the inexpensive model organism, Drosophila melanogaster, and pure chemical standards of several important fungal VOCs. Low concentrations of the following known fungal VOCs, 0.1% of 1-octen-3-ol and 0.5% of 2-octanone; 2,5 dimethylfuran; 3-octanol; and trans-2-octenal, caused locomotory defects and changes in green fluorescent protein (GFP)- and antigen-labeled dopaminergic neurons in adult D. melanogaster. Locomotory defects could be partially rescued with L-DOPA. Ingestion of the antioxidant, vitamin E, improved the survival span and delayed the VOC-mediated changes in dopaminergic neurons, indicating that the VOC-mediated toxicity was due, in part, to generation of reactive oxygen species.

  7. Intercomparison of Dosimeters for Non-Target Organ Dose Measurements in Radiotherapy - Activity of EURADOS WG 9: Radiation Protection in Medicine

    International Nuclear Information System (INIS)

    Miljanic, S.; Knezevic, Z.; Bessieres, I.; Bordy, J.-M.; D'Agostino, E.; d'Errico, F.; di Fulvio, A.; Domingo, C.; Olko, P.; Stolarczyk; Silari, M.; Harrison, R.

    2011-01-01

    It has been known for a long time that patients treated with ionizing radiation carry a risk of developing radiation induced cancer in their lifetimes. It is recognized that cure/survival rates in radiotherapy are increasing, but so are secondary cancers. These occurrences are amplified by the early detection of disease in younger patients. These patients are cured from the primary disease and have long life-expectancies, which increase their chances of developing secondary malignancies. The motivation of the EURADOS Working Group 9 (WG 9) ''Radiation protection dosimetry in medicine'' is to assess undue non-target patient doses in radiotherapy and the related risks of secondary malignancy with the most accredited available methods and with the emphasis on a thorough evaluation of dosimetry methods for the measurements of doses remote from the target volume, in phantom experiments. The development of a unified and comprehensive dosimetry methodology for non-target dose estimation is the key element of the WG9 current work. The first scientific aim is to select and review dosimeters suitable for photon and neutron dosimetry in radiotherapy and to evaluate the characteristics of dosimeters at CEA LIST Saclay in reference clinical LINAC beam. (author)

  8. Reading the maps: Organization and function of chromatin types in Drosophila

    NARCIS (Netherlands)

    Braunschweig, U.

    2010-01-01

    The work presented in this thesis shows that the Drosophila genome is organized in chromatin domains with many implications for gene regulation, nuclear organization, and evolution. Furthermore it provides examples of how maps of chromatin protein binding, combined with computational approaches, can

  9. A Behavior-Based Circuit Model of How Outcome Expectations Organize Learned Behavior in Larval "Drosophila"

    Science.gov (United States)

    Schleyer, Michael; Saumweber, Timo; Nahrendorf, Wiebke; Fischer, Benjamin; von Alpen, Desiree; Pauls, Dennis; Thum, Andreas; Gerber, Bertram

    2011-01-01

    Drosophila larvae combine a numerically simple brain, a correspondingly moderate behavioral complexity, and the availability of a rich toolbox for transgenic manipulation. This makes them attractive as a study case when trying to achieve a circuit-level understanding of behavior organization. From a series of behavioral experiments, we suggest a…

  10. Dynamic role and importance of surrogate species for assessing potential adverse environmental impacts of genetically engineered insect-resistant plants on non-target organisms.

    Science.gov (United States)

    Wach, Michael; Hellmich, Richard L; Layton, Raymond; Romeis, Jörg; Gadaleta, Patricia G

    2016-08-01

    Surrogate species have a long history of use in research and regulatory settings to understand the potentially harmful effects of toxic substances including pesticides. More recently, surrogate species have been used to evaluate the potential effects of proteins contained in genetically engineered insect resistant (GEIR) crops. Species commonly used in GEIR crop testing include beneficial organisms such as honeybees, arthropod predators, and parasitoids. The choice of appropriate surrogates is influenced by scientific factors such as the knowledge of the mode of action and the spectrum of activity as well as societal factors such as protection goals that assign value to certain ecosystem services such as pollination or pest control. The primary reasons for using surrogates include the inability to test all possible organisms, the restrictions on using certain organisms in testing (e.g., rare, threatened, or endangered species), and the ability to achieve greater sensitivity and statistical power by using laboratory testing of certain species. The acceptance of surrogate species data can allow results from one region to be applied or "transported" for use in another region. On the basis of over a decade of using surrogate species to evaluate potential effects of GEIR crops, it appears that the current surrogates have worked well to predict effects of GEIR crops that have been developed (Carstens et al. GM Crops Food 5:1-5, 2014), and it is expected that they should work well to predict effects of future GEIR crops based on similar technologies.

  11. Molecular and Cellular Organization of Taste Neurons in Adult Drosophila Pharynx

    OpenAIRE

    Yu-Chieh David Chen; Anupama Dahanukar

    2017-01-01

    Summary: The Drosophila pharyngeal taste organs are poorly characterized despite their location at important sites for monitoring food quality. Functional analysis of pharyngeal neurons has been hindered by the paucity of molecular tools to manipulate them, as well as their relative inaccessibility for neurophysiological investigations. Here, we generate receptor-to-neuron maps of all three pharyngeal taste organs by performing a comprehensive chemoreceptor-GAL4/LexA expression analysis. The ...

  12. Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels

    International Nuclear Information System (INIS)

    Karlsson, Jenny; Ytreberg, Erik; Eklund, Britta

    2010-01-01

    Leachates of anti-fouling paints for use on ships and leisure boats are examined for their ecotoxicological potential. Paint leachates were produced in both 7 per mille artificial (ASW) and natural seawater (NSW) and tested on three organisms, the bacterium Vibrio fischeri, the macroalga Ceramium tenuicorne, and the crustacean Nitocra spinipes. Generally, leaching in ASW produced a more toxic leachate and was up to 12 times more toxic to the organisms than was the corresponding NSW leachate. The toxicity could be explained by elevated concentrations of Cu and Zn in the ASW leachates. Of the NSW leachates, those from the ship paints were more toxic than those from leisure boat paints. The most toxic paint was the biocide-free leisure boat paint Micron Eco. This implies that substances other than added active agents (biocides) were responsible for the observed toxicity, which would not have been discovered without the use of biological tests. - Leachate from a biocide-free anti-fouling paint for leisure boat use was more toxic than leachates from ship paints.

  13. 9th International Symposium on the Biosafety of Genetically Modified Organisms. Session II: Identifying and defining hazards and potential consequences I: Concepts for problem formulation and non-target risk assessment.

    Science.gov (United States)

    Bigler, Franz

    2006-01-01

    The scientific organizers of the symposium put much emphasis on the identification and definition of hazard and the potential consequences thereof and three full sessions with a total of 13 presentations encompassing a wide range of related themes were planned for this topic. Unfortunately, one talk had to be cancelled because of illness of the speaker (BM Khadi, India). Some presentations covered conceptual approaches for environmental risk assessment (ERA) of GM plants (problem formulation in the risk assessment framework, familiarity approach, tiered and methodological frameworks, non-target risk assessment) and the use of models in assessing invasiveness and weediness of GM plants. Other presentations highlighted the lessons learned for future ERA from case studies and commercialized GM crops, and from monitoring of unintended releases to the environment. When the moderators of the three sessions came together after the presentations to align their summaries, there was an obvious need to restructure the 12 presentations in a way that allowed for a consistent summarizing discussion. The following new organization of the 12 talks was chosen: (1) Concepts for problem formulation and non-target risk assessment, (2) Modeling as a tool for predicting invasiveness of GM plants, (3) Case-studies of ERA of large-scale release, (4) Lessons learned for ERA from a commercialized GM plant, (5) Monitoring of unintended release of Bt maize in Mexico. The new thematic structure facilitates a more in-depth discussion of the presentations related to a specific topic, and the conclusions to be drawn are thus more consistent. Each moderator agreed to take responsibility for summarizing one or more themes and to prepare the respective report.

  14. Larvicidal, Histopathological Efficacy of Penicillium daleae against Larvae of Culex quinquefasciatus and Aedes aegypti Plus Biotoxicity on Artemia nauplii a Non-target Aquatic Organism

    Directory of Open Access Journals (Sweden)

    C. Ragavendran

    2017-10-01

    Full Text Available Mosquitoes can transmit the terrible diseases to human beings. Soil-borne fungal products act as potential source for low-cost chemicals, used for developing eco-friendly control agents against mosquito-vector borne diseases. The prime aim of study was to check the larvicidal potential of fungus mycelia (by ethyl acetate solvent extract from Penicillium daleae (KX387370 against Culex quinquefasciatus and Aedes aegypti and to test the toxicity of brine shrimp Artemia nauplii, by observing the physiological activity. The ethyl acetate extract of P. daleae mycelia (after 15 days from Potato dextrose broth (PDB medium revealed better result with least LC50 and LC90 values of I-IV instars larvae of Cx. quinquefasciatus (LC50 = 127.441, 129.087, 108.683, and 93.521; LC90 = 152.758, 158.169, 139.091, and 125.918 μg/ml and Ae. aegypti (LC50 = 105.077, 83.943, 97.158, and 76.513; LC90 = 128.035, 106.869, 125.640, and 104.606 μg/ml respectively. At higher concentration (1000 μg/ml of extracts, mortality begins at 18 h of exposure and attained 100% mortality after 48 h exposure. Overall, the activity was depends on the dose and time of exposure to the extracts. The stereomicroscopic and histopathological analysis of Ae. aegypti and Cx. quinquefasciatus larvae treated with mycelium ethyl acetate extract showed complete disintegration of abdominal region, particularly the midgut and caeca, loss of cuticular parts and caudal hairs. Morphological characterization of the fungi was performed and taxonomically identified through 5.8s rDNA technique. The phylogenetic analysis of rDNA sequence was carried out to find out the taxonomic and the evolutionary sketch of isolate in relation to earlier described genus Penicillium. Behavior and swimming speed alteration was analyzed together with mortality. The results of the experiment indicates that swimming behavior recorder (SBR is a appropriate tool to detect individual swimming speed of the A. nauplii organisms

  15. Timing of RNA synthesis for sperimiogenesis in organ cultures of Drosophila melanogaster teste

    Energy Technology Data Exchange (ETDEWEB)

    Gould-Somero, M; Holland, L

    1974-01-01

    A method for the organ culture of Drosophila testes is described which supports the differentiation of primary spermatocytes through the meiotic divisions to elongating spermatids. Autoradiographic and inhibitor studies reveal no evidence for RNA synthesis by developing spermatids of Drosophila melanogaster; most, if not all, of the RNA required for the differentiation and elongation of sperm is synthesized earlier in the primary spermatocytes. Primary spermatocytes will differentiate into elongating spermatids in organ culture, despite severe (96 to 98%) inhibition of /sup 3/H-uridine incorporation into RNA effected by 50 ..mu..g/ml 3'-deoxyadenosine. Protein synthesis in spermatids continues to be active in the presence of 3'-deoxyadenosine, but that in growing spermatocytes is severely inhibited.

  16. Mapping organism expression levels at cellular resolution in developing Drosophila

    Science.gov (United States)

    Knowles, David W.; Keranen, Soile; Biggin, Mark D.; Sudar, Damir

    2002-05-01

    The development of an animal embryo is orchestrated by a network of genetically determined, temporal and spatial gene expression patterns that determine the animals final form. To understand such networks, we are developing novel quantitative optical imaging techniques to map gene expression levels at cellular and sub-cellular resolution within pregastrula Drosophila. Embryos at different stages of development are labeled for total DNA and specific gene products using different fluorophors and imaged in 3D with confocal microscopy. Innovative steps have been made which allow the DNA-image to be automatically segmented to produce a morphological mask of the individual nuclear boundaries. For each stage of development an average morphology is chosen to which images from different embryo are compared. The morphological mask is then used to quantify gene-product on a per nuclei basis. What results is an atlas of the relative amount of the specific gene product expressed within the nucleus of every cell in the embryo at the various stages of development. We are creating a quantitative database of transcription factor and target gene expression patterns in wild-type and factor mutant embryos with single cell resolution. Our goal is to uncover the rules determining how patterns of gene expression are generated.

  17. Large-scale isolation and fractionation of organs of Drosophila melanogaster larvae.

    Science.gov (United States)

    Zweidler, A; Cohen, L H

    1971-10-01

    Methods for the mass isolation of diverse organs from small animals are described. They involve novel devices: a mechanical dissecting system, a centrifugal agitator for the separation of fibrillar from globular particles, and a settling chamber for the fractionation at unit gravity of particles with sedimentation velocities above the useful range for centrifugation. The application of these methods to the isolation of polytene and nonpolytene nuclei from Drosophila melanogaster larvae is described.

  18. The cell adhesion molecule Fasciclin2 regulates brush border length and organization in Drosophila renal tubules

    DEFF Research Database (Denmark)

    Halberg, Kenneth Agerlin; Rainey, Stephanie M.; Veland, Iben Rønn

    2016-01-01

    Multicellular organisms rely on cell adhesion molecules to coordinate cell-cell interactions, and to provide navigational cues during tissue formation. In Drosophila, Fasciclin 2 (Fas2) has been intensively studied due to its role in nervous system development and maintenance; yet, Fas2 is most...... role for this well-known cell adhesion molecule, and propose that Fas2-mediated intermicrovillar homophilic adhesion complexes help stabilize the brush border....

  19. Relationship between organization and function of ribosomal genes in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Karpen, G.H.

    1987-01-01

    In most eukaryotic organisms, the genes that encode the 18S and 28S ribosomal RNAs (rDNA genes) are tandemly repeated, and are located in constitutive heterochromatin and/or centromeric or telomeric regions. P-element mediated transformation was used to investigate the relationship between rDNA organization and function in Drosophila melanogaster. Tritiated-uridine incorporation under heat shock conditions and in situ hybridization to rRNA were used to demonstrate that a single rDNA gene inserted into euchromatin can be transcribed at a high rate, in polytene nuclei. P-element-mediated transformation of a single Drosophila rDNA gene was also utilized to investigate the ability of ribosomal DNA to organize a nucleolus. Cytological approaches demonstrated that structures resembling the endogenous nucleoli were preferentially associated with four different sites of rDNA insertion, in polytene nuclei. These mini-nucleoli also contained components specific to the nucleolus, as shown by in situ hybridization to rRNA and indirect immunofluorescence with an antibody that binds to Drosophila nucleoli. The transformed genes were able to partially rescue mutant phenotypes due to a deficiency of rDNA, indicating that the mini-nucleoli were functional

  20. I Believe I Can Fly!: Use of Drosophila as a Model Organism in Neuropsychopharmacology Research.

    Science.gov (United States)

    Narayanan, Anjana S; Rothenfluh, Adrian

    2016-05-01

    Neuropsychiatric disorders are of complex etiology, often including a large genetic component. In order to help identify and study the molecular and physiological mechanisms that such genes participate in, numerous animal models have been established in a variety of species. Over the past decade, this has increasingly included the vinegar fly, Drosophila melanogaster. Here, we outline why we study an invertebrate organism in the context of neuropsychiatric disorders, and we discuss how we can gain insight from studies in Drosophila. We focus on a few disorders and findings to make the larger point that modeling these diseases in flies can have both mechanistic and predictive validity. Highlighting some translational examples, we underline the fact that their brains works more like ours than one would have anticipated.

  1. Effect of myonuclear number and mitochondrial fusion on Drosophila indirect flight muscle organization and size

    International Nuclear Information System (INIS)

    Rai, Mamta; Nongthomba, Upendra

    2013-01-01

    Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. - Highlights: • Drosophila dorsal longitudinal muscles are similar to vertebrate skeletal muscles. • A threshold number of myoblasts governs the organization of a fibre and its size. • Mitochondrial fusion defect leads to abnormal fibre growth and organization

  2. Effect of myonuclear number and mitochondrial fusion on Drosophila indirect flight muscle organization and size

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Mamta; Nongthomba, Upendra, E-mail: upendra@mrdg.iisc.ernet.in

    2013-10-15

    Mechanisms involved in establishing the organization and numbers of fibres in a muscle are not completely understood. During Drosophila indirect flight muscle (IFM) formation, muscle growth is achieved by both incorporating hundreds of nuclei, and hypertrophy. As a result, IFMs provide a good model with which to understand the mechanisms that govern overall muscle organization and growth. We present a detailed analysis of the organization of dorsal longitudinal muscles (DLMs), a subset of the IFMs. We show that each DLM is similar to a vertebrate fascicle and consists of multiple muscle fibres. However, increased fascicle size does not necessarily change the number of constituent fibres, but does increase the number of myofibrils packed within the fibres. We also find that altering the number of myoblasts available for fusion changes DLM fascicle size and fibres are loosely packed with myofibrils. Additionally, we show that knock down of genes required for mitochondrial fusion causes a severe reduction in the size of DLM fascicles and fibres. Our results establish the organization levels of DLMs and highlight the importance of the appropriate number of nuclei and mitochondrial fusion in determining the overall organization, growth and size of DLMs. - Highlights: • Drosophila dorsal longitudinal muscles are similar to vertebrate skeletal muscles. • A threshold number of myoblasts governs the organization of a fibre and its size. • Mitochondrial fusion defect leads to abnormal fibre growth and organization.

  3. Molecular and Cellular Organization of Taste Neurons in Adult Drosophila Pharynx

    Directory of Open Access Journals (Sweden)

    Yu-Chieh David Chen

    2017-12-01

    Full Text Available Summary: The Drosophila pharyngeal taste organs are poorly characterized despite their location at important sites for monitoring food quality. Functional analysis of pharyngeal neurons has been hindered by the paucity of molecular tools to manipulate them, as well as their relative inaccessibility for neurophysiological investigations. Here, we generate receptor-to-neuron maps of all three pharyngeal taste organs by performing a comprehensive chemoreceptor-GAL4/LexA expression analysis. The organization of pharyngeal neurons reveals similarities and distinctions in receptor repertoires and neuronal groupings compared to external taste neurons. We validate the mapping results by pinpointing a single pharyngeal neuron required for feeding avoidance of L-canavanine. Inducible activation of pharyngeal taste neurons reveals functional differences between external and internal taste neurons and functional subdivision within pharyngeal sweet neurons. Our results provide roadmaps of pharyngeal taste organs in an insect model system for probing the role of these understudied neurons in controlling feeding behaviors. : Chen and Dahanukar carry out a large-scale, systematic analysis to understand the molecular organization of pharyngeal taste neurons. Taking advantage of the molecular genetic toolkit that arises from this map, they use genetic dissection strategies to probe the functional roles of selected pharyngeal neurons in food choice. Keywords: Drosophila, taste, pharynx, chemosensory receptors, gustatory receptors, ionotropic receptors, feeding

  4. Development of suspect and non-target screening methods for detection of organic contaminants in highway runoff and fish tissue with high-resolution time-of-flight mass spectrometry.

    Science.gov (United States)

    Du, Bowen; Lofton, Jonathan M; Peter, Katherine T; Gipe, Alexander D; James, C Andrew; McIntyre, Jenifer K; Scholz, Nathaniel L; Baker, Joel E; Kolodziej, Edward P

    2017-09-20

    Untreated urban stormwater runoff contributes to poor water quality in receiving waters. The ability to identify toxicants and other bioactive molecules responsible for observed adverse effects in a complex mixture of contaminants is critical to effective protection of ecosystem and human health, yet this is a challenging analytical task. The objective of this study was to develop analytical methods using liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) to detect organic contaminants in highway runoff and in runoff-exposed fish (adult coho salmon, Oncorhynchus kisutch). Processing of paired water and tissue samples facilitated contaminant prioritization and aided investigation of chemical bioavailability and uptake processes. Simple, minimal processing effort solid phase extraction (SPE) and elution procedures were optimized for water samples, and selective pressurized liquid extraction (SPLE) procedures were optimized for fish tissues. Extraction methods were compared by detection of non-target features and target compounds (e.g., quantity and peak area), while minimizing matrix interferences. Suspect screening techniques utilized in-house and commercial databases to prioritize high-risk detections for subsequent MS/MS characterization and identification efforts. Presumptive annotations were also screened with an in-house linear regression (log K ow vs. retention time) to exclude isobaric compounds. Examples of confirmed identifications (via reference standard comparison) in highway runoff include ethoprophos, prometon, DEET, caffeine, cotinine, 4(or 5)-methyl-1H-methylbenzotriazole, and acetanilide. Acetanilide was also detected in runoff-exposed fish gill and liver samples. Further characterization of highway runoff and fish tissues (14 and 19 compounds, respectively with tentative identification by MS/MS data) suggests that many novel or poorly characterized organic contaminants exist in urban

  5. Studies of Non-Targeted Effects of Ionising Radiation

    International Nuclear Information System (INIS)

    Oleg V Belyakov; Heli Mononen; Marjo Peraelae

    2006-01-01

    The discovery of ionising radiation induced non-targeted effects is important for understanding the dose-response mechanisms relevant to low dose irradiation in vivo. One important question is whether the non-targeted effects relates to a protective mechanism or whether, conversely, it amplifies the number of cells damaged by the isolated radiation tracks of low dose exposures leading to an increased risk of carcinogenesis. One theory supported by the experimental data obtained during this project is that the main functions of the non-targeted effects are to decrease the risk of transformation in a multicellular organism exposed to radiation. Differences in the gene expression profiles, temporal and spatial patterns of key proteins expressed in directly irradiated and bystander cells may determine how the cells ultimately respond to low doses of radiation. Such a mechanism of co-operative response would make the tissue system much more robust. (N.C.)

  6. Studies of Non-Targeted Effects of Ionising Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Oleg V Belyakov; Heli Mononen; Marjo Peraelae [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The discovery of ionising radiation induced non-targeted effects is important for understanding the dose-response mechanisms relevant to low dose irradiation in vivo. One important question is whether the non-targeted effects relates to a protective mechanism or whether, conversely, it amplifies the number of cells damaged by the isolated radiation tracks of low dose exposures leading to an increased risk of carcinogenesis. One theory supported by the experimental data obtained during this project is that the main functions of the non-targeted effects are to decrease the risk of transformation in a multicellular organism exposed to radiation. Differences in the gene expression profiles, temporal and spatial patterns of key proteins expressed in directly irradiated and bystander cells may determine how the cells ultimately respond to low doses of radiation. Such a mechanism of co-operative response would make the tissue system much more robust. (N.C.)

  7. Molecular and cellular organization of taste neurons in adult Drosophila pharynx

    Science.gov (United States)

    Chen, Yu-Chieh (David); Dahanukar, Anupama

    2017-01-01

    SUMMARY The Drosophila pharyngeal taste organs are poorly characterized despite their location at important sites for monitoring food quality. Functional analysis of pharyngeal neurons has been hindered by the paucity of molecular tools to manipulate them, as well as their relative inaccessibility for neurophysiological investigations. Here, we generate receptor-to-neuron maps of all three pharyngeal taste organs by performing a comprehensive chemoreceptor-GAL4/LexA expression analysis. The organization of pharyngeal neurons reveals similarities and distinctions in receptor repertoires and neuronal groupings compared to external taste neurons. We validate the mapping results by pinpointing a single pharyngeal neuron required for feeding avoidance of L-canavanine. Inducible activation of pharyngeal taste neurons reveals functional differences between external and internal taste neurons and functional subdivision within pharyngeal sweet neurons. Our results provide road maps of pharyngeal taste organs in an insect model system for probing the role of these understudied neurons in controlling feeding behaviors. PMID:29212040

  8. Capu and Spire Assemble a Cytoplasmic Actin~Mesh that Maintains Microtubule Organization in the Drosophila Oocyte

    DEFF Research Database (Denmark)

    Dahlgaard, K.; Raposo, A.A.S.F.; Niccoli, T.

    2007-01-01

    Mutants in the actin nucleators Cappuccino and Spire disrupt the polarized microtubule network in the Drosophila oocyte that defines the anterior-posterior axis, suggesting that microtubule organization depends on actin. Here, we show that Cappuccino and Spire organize an isotropic mesh of actin...

  9. Genetic organization of interphase chromosome bands and interbands in Drosophila melanogaster.

    Science.gov (United States)

    Zhimulev, Igor F; Zykova, Tatyana Yu; Goncharov, Fyodor P; Khoroshko, Varvara A; Demakova, Olga V; Semeshin, Valeriy F; Pokholkova, Galina V; Boldyreva, Lidiya V; Demidova, Darya S; Babenko, Vladimir N; Demakov, Sergey A; Belyaeva, Elena S

    2014-01-01

    Drosophila melanogaster polytene chromosomes display specific banding pattern; the underlying genetic organization of this pattern has remained elusive for many years. In the present paper, we analyze 32 cytology-mapped polytene chromosome interbands. We estimated molecular locations of these interbands, described their molecular and genetic organization and demonstrate that polytene chromosome interbands contain the 5' ends of housekeeping genes. As a rule, interbands display preferential "head-to-head" orientation of genes. They are enriched for "broad" class promoters characteristic of housekeeping genes and associate with open chromatin proteins and Origin Recognition Complex (ORC) components. In two regions, 10A and 100B, coding sequences of genes whose 5'-ends reside in interbands map to constantly loosely compacted, early-replicating, so-called "grey" bands. Comparison of expression patterns of genes mapping to late-replicating dense bands vs genes whose promoter regions map to interbands shows that the former are generally tissue-specific, whereas the latter are represented by ubiquitously active genes. Analysis of RNA-seq data (modENCODE-FlyBase) indicates that transcripts from interband-mapping genes are present in most tissues and cell lines studied, across most developmental stages and upon various treatment conditions. We developed a special algorithm to computationally process protein localization data generated by the modENCODE project and show that Drosophila genome has about 5700 sites that demonstrate all the features shared by the interbands cytologically mapped to date.

  10. Genetic organization of interphase chromosome bands and interbands in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Igor F Zhimulev

    Full Text Available Drosophila melanogaster polytene chromosomes display specific banding pattern; the underlying genetic organization of this pattern has remained elusive for many years. In the present paper, we analyze 32 cytology-mapped polytene chromosome interbands. We estimated molecular locations of these interbands, described their molecular and genetic organization and demonstrate that polytene chromosome interbands contain the 5' ends of housekeeping genes. As a rule, interbands display preferential "head-to-head" orientation of genes. They are enriched for "broad" class promoters characteristic of housekeeping genes and associate with open chromatin proteins and Origin Recognition Complex (ORC components. In two regions, 10A and 100B, coding sequences of genes whose 5'-ends reside in interbands map to constantly loosely compacted, early-replicating, so-called "grey" bands. Comparison of expression patterns of genes mapping to late-replicating dense bands vs genes whose promoter regions map to interbands shows that the former are generally tissue-specific, whereas the latter are represented by ubiquitously active genes. Analysis of RNA-seq data (modENCODE-FlyBase indicates that transcripts from interband-mapping genes are present in most tissues and cell lines studied, across most developmental stages and upon various treatment conditions. We developed a special algorithm to computationally process protein localization data generated by the modENCODE project and show that Drosophila genome has about 5700 sites that demonstrate all the features shared by the interbands cytologically mapped to date.

  11. The Drosophila HEM-2/NAP1 homolog KETTE controls axonal pathfinding and cytoskeletal organization.

    Science.gov (United States)

    Hummel, T; Leifker, K; Klämbt, C

    2000-04-01

    In Drosophila, the correct formation of the segmental commissures depends on neuron-glial interactions at the midline. The VUM midline neurons extend axons along which glial cells migrate in between anterior and posterior commissures. Here, we show that the gene kette is required for the normal projection of the VUM axons and subsequently disrupts glial migration. Axonal projection defects are also found for many other moto- and interneurons. In addition, kette affects the cell morphology of mesodermal and epidermal derivatives, which show an abnormal actin cytoskeleton. The KETTE protein is homologous to the transmembrane protein HEM-2/NAP1 evolutionary conserved from worms to vertebrates. In vitro analysis has shown a specific interaction of the vertebrate HEM-2/NAP1 with the SH2-SH3 adapter protein NCK and the small GTPase RAC1, which both have been implicated in regulating cytoskeleton organization and axonal growth. Hypomorphic kette mutations lead to axonal defects similar to mutations in the Drosophila NCK homolog dreadlocks. Furthermore, we show that kette and dock mutants genetically interact. NCK is thought to interact with the small G proteins RAC1 and CDC42, which play a role in axonal growth. In line with these observations, a kette phenocopy can be obtained following directed expression of mutant DCDC42 or DRAC1 in the CNS midline. In addition, the kette mutant phenotype can be partially rescued by expression of an activated DRAC1 transgene. Our data suggest an important role of the HEM-2 protein in cytoskeletal organization during axonal pathfinding.

  12. NON-TARGET AND ECOSYSTEM IMPACTS FROM GENETICALLY MODIFIED CROPS CONTAINING PLANT INCORPORATED PROTECTANTS (PIPS)

    Science.gov (United States)

    The risk of unintended and unexpected adverse impacts on non-target organisms and ecosystems is a key issue in environmental risk assessment of PIP crop plants. While there has been considerable examination of the effects of insect resistant crops on certain non-target organisms...

  13. Muscle organizers in Drosophila: the role of persistent larval fibers in adult flight muscle development

    Science.gov (United States)

    Farrell, E. R.; Fernandes, J.; Keshishian, H.

    1996-01-01

    In many organisms muscle formation depends on specialized cells that prefigure the pattern of the musculature and serve as templates for myoblast organization and fusion. These include muscle pioneers in insects and muscle organizing cells in leech. In Drosophila, muscle founder cells have been proposed to play a similar role in organizing larval muscle development during embryogenesis. During metamorphosis in Drosophila, following histolysis of most of the larval musculature, there is a second round of myogenesis that gives rise to the adult muscles. It is not known whether muscle founder cells organize the development of these muscles. However, in the thorax specific larval muscle fibers do not histolyze at the onset of metamorphosis, but instead serve as templates for the formation of a subset of adult muscles, the dorsal longitudinal flight muscles (DLMs). Because these persistent larval muscle fibers appear to be functioning in many respects like muscle founder cells, we investigated whether they were necessary for DLM development by using a microbeam laser to ablate them singly and in combination. We found that, in the absence of the larval muscle fibers, DLMs nonetheless develop. Our results show that the persistent larval muscle fibers are not required to initiate myoblast fusion, to determine DLM identity, to locate the DLMs in the thorax, or to specify the total DLM fiber volume. However, they are required to regulate the number of DLM fibers generated. Thus, while the persistent larval muscle fibers are not obligatory for DLM fiber formation and differentiation, they are necessary to ensure the development of the correct number of fibers.

  14. Non-targeted effects of ionising radiation

    International Nuclear Information System (INIS)

    Belyakov, O.V.

    2008-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects and genomic instability. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm would cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (orig.)

  15. Polytene Chromosomes - A Portrait of Functional Organization of the Drosophila Genome.

    Science.gov (United States)

    Zykova, Tatyana Yu; Levitsky, Victor G; Belyaeva, Elena S; Zhimulev, Igor F

    2018-04-01

    This mini-review is devoted to the problem genetic meaning of main polytene chromosome structures - bands and interbands. Generally, densely packed chromatin forms black bands, moderately condensed regions form grey loose bands, whereas decondensed regions of the genome appear as interbands. Recent progress in the annotation of the Drosophila genome and epigenome has made it possible to compare the banding pattern and the structural organization of genes, as well as their activity. This was greatly aided by our ability to establish the borders of bands and interbands on the physical map, which allowed to perform comprehensive side-by-side comparisons of cytology, genetic and epigenetic maps and to uncover the association between the morphological structures and the functional domains of the genome. These studies largely conclude that interbands 5'-ends of housekeeping genes that are active across all cell types. Interbands are enriched with proteins involved in transcription and nucleosome remodeling, as well as with active histone modifications. Notably, most of the replication origins map to interband regions. As for grey loose bands adjacent to interbands, they typically host the bodies of house-keeping genes. Thus, the bipartite structure composed of an interband and an adjacent grey band functions as a standalone genetic unit. Finally, black bands harbor tissue-specific genes with narrow temporal and tissue expression profiles. Thus, the uniform and permanent activity of interbands combined with the inactivity of genes in bands forms the basis of the universal banding pattern observed in various Drosophila tissues.

  16. Gene expression disruptions of organism versus organ in Drosophila species hybrids.

    Directory of Open Access Journals (Sweden)

    Daniel J Catron

    2008-08-01

    Full Text Available Hybrid dysfunctions, such as sterility, may result in part from disruptions in the regulation of gene expression. Studies of hybrids within the Drosophila simulans clade have reported genes expressed above or below the expression observed in their parent species, and such misexpression is associated with male sterility in multigenerational backcross hybrids. However, these studies often examined whole bodies rather than testes or had limited replication using less-sensitive but global techniques. Here, we use a new RNA isolation technique to re-examine hybrid gene expression disruptions in both testes and whole bodies from single Drosophila males by real-time quantitative RT-PCR. We find two early-spermatogenesis transcripts are underexpressed in hybrid whole-bodies but not in assays of testes alone, while two late-spermatogenesis transcripts seem to be underexpressed in both whole-bodies and testes alone. Although the number of transcripts surveyed is limited, these results provide some support for a previous hypothesis that the spermatogenesis pathway in these sterile hybrids may be disrupted sometime after the expression of the early meiotic arrest genes.

  17. Drosophila melanogaster "a potential model organism" for identification of pharmacological properties of plants/plant-derived components.

    Science.gov (United States)

    Panchal, Komal; Tiwari, Anand K

    2017-05-01

    Plants/plant-derived components have been used from ancient times to treat/cure several human diseases. Plants and their parts possess several chemical components that play the vital role in the improvement of human health and their life expectancy. Allopathic medicines have been playing a key role in the treatment of several diseases. Though allopathic medicines provide fast relief, long time consumption cause serious health concerns such as hyperallergic reactions, liver damage, etc. So, the study of medicinal plants which rarely cause any side effect is very important to mankind. Plants contain many health benefit properties like antioxidant, anti-aging, neuroprotective, anti-genotoxic, anti-mutagenic and bioinsecticidal activity. Thus, identification of pharmacological properties of plants/plant-derived components are of utmost importance to be explored. Several model organisms have been used to identify the pharmacological properties of the different plants or active components therein and Drosophila is one of them. Drosophila melanogaster "fruit fly" is a well understood, high-throughput model organism being used more than 110 years to study the different biological aspects related to the development and diseases. Most of the developmental and cell signaling pathways and ∼75% human disease-related genes are conserved between human and Drosophila. Using Drosophila, one can easily analyze the pharmacological properties of plants/plant-derived components by performing several assays available with flies such as survivorship, locomotor, antioxidant, cell death, etc. The current review focuses on the potential of Drosophila melanogaster for the identification of medicinal/pharmacological properties associated with plants/plant-derived components. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Molecular cloning and genomic organization of a second probable allatostatin receptor from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Grimmelikhuijzen, C J

    2000-01-01

    We (C. Lenz et al. (2000) Biochem. Biophys. Res. Commun. 269, 91-96) and others (N. Birgül et al. (1999) EMBO J. 18, 5892-5900) have recently cloned a Drosophila receptor that was structurally related to the mammalian galanin receptors, but turned out to be a receptor for a Drosophila peptide bel...

  19. Evidence of activity-specific, radial organization of mitotic chromosomes in Drosophila.

    Directory of Open Access Journals (Sweden)

    Yuri G Strukov

    2011-01-01

    Full Text Available The organization and the mechanisms of condensation of mitotic chromosomes remain unsolved despite many decades of efforts. The lack of resolution, tight compaction, and the absence of function-specific chromatin labels have been the key technical obstacles. The correlation between DNA sequence composition and its contribution to the chromosome-scale structure has been suggested before; it is unclear though if all DNA sequences equally participate in intra- or inter-chromatin or DNA-protein interactions that lead to formation of mitotic chromosomes and if their mitotic positions are reproduced radially. Using high-resolution fluorescence microscopy of live or minimally perturbed, fixed chromosomes in Drosophila embryonic cultures or tissues expressing MSL3-GFP fusion protein, we studied positioning of specific MSL3-binding sites. Actively transcribed, dosage compensated Drosophila genes are distributed along the euchromatic arm of the male X chromosome. Several novel features of mitotic chromosomes have been observed. MSL3-GFP is always found at the periphery of mitotic chromosomes, suggesting that active, dosage compensated genes are also found at the periphery of mitotic chromosomes. Furthermore, radial distribution of chromatin loci on mitotic chromosomes was found to be correlated with their functional activity as judged by core histone modifications. Histone modifications specific to active chromatin were found peripheral with respect to silent chromatin. MSL3-GFP-labeled chromatin loci become peripheral starting in late prophase. In early prophase, dosage compensated chromatin regions traverse the entire width of chromosomes. These findings suggest large-scale internal rearrangements within chromosomes during the prophase condensation step, arguing against consecutive coiling models. Our results suggest that the organization of mitotic chromosomes is reproducible not only longitudinally, as demonstrated by chromosome-specific banding

  20. The three-dimensional genome organization of Drosophila melanogaster through data integration.

    Science.gov (United States)

    Li, Qingjiao; Tjong, Harianto; Li, Xiao; Gong, Ke; Zhou, Xianghong Jasmine; Chiolo, Irene; Alber, Frank

    2017-07-31

    Genome structures are dynamic and non-randomly organized in the nucleus of higher eukaryotes. To maximize the accuracy and coverage of three-dimensional genome structural models, it is important to integrate all available sources of experimental information about a genome's organization. It remains a major challenge to integrate such data from various complementary experimental methods. Here, we present an approach for data integration to determine a population of complete three-dimensional genome structures that are statistically consistent with data from both genome-wide chromosome conformation capture (Hi-C) and lamina-DamID experiments. Our structures resolve the genome at the resolution of topological domains, and reproduce simultaneously both sets of experimental data. Importantly, this data deconvolution framework allows for structural heterogeneity between cells, and hence accounts for the expected plasticity of genome structures. As a case study we choose Drosophila melanogaster embryonic cells, for which both data types are available. Our three-dimensional genome structures have strong predictive power for structural features not directly visible in the initial data sets, and reproduce experimental hallmarks of the D. melanogaster genome organization from independent and our own imaging experiments. Also they reveal a number of new insights about genome organization and its functional relevance, including the preferred locations of heterochromatic satellites of different chromosomes, and observations about homologous pairing that cannot be directly observed in the original Hi-C or lamina-DamID data. Our approach allows systematic integration of Hi-C and lamina-DamID data for complete three-dimensional genome structure calculation, while also explicitly considering genome structural variability.

  1. Molecular Cloning and Genomic Organization of a Novel Receptor from Drosophila melanogaster Structurally Related to Mammalian Galanin Receptors

    DEFF Research Database (Denmark)

    Lenz, Camilla; Søndergaard, L.; Grimmelikhuijzen, Cornelis J.P.

    2000-01-01

    neurobiologi, molekylærbiologi, zoologi, neurohormonereceptor, allatostatin, galanin, insekt, Drosophila......neurobiologi, molekylærbiologi, zoologi, neurohormonereceptor, allatostatin, galanin, insekt, Drosophila...

  2. Comparative ecotoxicity of chlorantraniliprole to non-target soil invertebrates.

    Science.gov (United States)

    Lavtižar, Vesna; Berggren, Kristina; Trebše, Polonca; Kraak, Michiel H S; Verweij, Rudo A; van Gestel, Cornelis A M

    2016-09-01

    The insecticide chlorantraniliprole (CAP) is gaining importance in agricultural practice, but data on its possible negative effects on non-target organisms is severely deficient. This study therefore determined CAP toxicity to non-target soil invertebrates playing a crucial role in ecosystem functioning, including springtails (Folsomia candida), isopods (Porcellio scaber), enchytraeids (Enchytraeus crypticus) and oribatid mites (Oppia nitens). In sublethal toxicity tests in Lufa 2.2 soil, chronic exposure to CAP concentrations up to 1000 mg/kgdw did not affect the survival and reproduction of E. crypticus and O. nitens nor the survival, body weight and consumption of P. scaber. In contrast, the survival and reproduction of F. candida was severely affected, with an EC50 for effects on reproduction of 0.14 mg CAP/kgdw. The toxicity of CAP to the reproduction of F. candida was tested in four different soils following OECD guideline 232, and additionally in an avoidance test according to ISO guideline 17512-2. A significantly lower toxicity in soils rich in organic matter was observed, compared to low organic soils. Observations in the avoidance test with F. candida suggest that CAP acted in a prompt way, by affecting collembolan locomotor abilities thus preventing them from escaping contaminated soil. This study shows that CAP may especially pose a risk to non-target soil arthropods closely related to insects, while other soil invertebrates seem rather insensitive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Fife, a Drosophila Piccolo-RIM Homolog, Promotes Active Zone Organization and Neurotransmitter Release

    Science.gov (United States)

    Bruckner, Joseph J.; Gratz, Scott J.; Slind, Jessica K.; Geske, Richard R.; Cummings, Alexander M.; Galindo, Samantha E.; Donohue, Laura K.; O'Connor-Giles, Kate M.

    2012-01-01

    Neuronal communication depends on the precisely orchestrated release of neurotransmitter at specialized sites called active zones (AZs). A small number of scaffolding and cytoskeletal proteins comprising the cytomatrix of the active zone (CAZ) are thought to organize the architecture and functional properties of AZs. The majority of CAZ proteins are evolutionarily conserved, underscoring the fundamental similarities in neurotransmission at all synapses. However, core CAZ proteins Piccolo and Bassoon have long been believed exclusive to vertebrates, raising intriguing questions about the conservation of the molecular mechanisms that regulate presynaptic properties. Here, we present the identification of a piccolo-rim-related gene in invertebrates, together with molecular phylogenetic analyses that indicate the encoded proteins may represent Piccolo orthologs. In accordance, we find that the Drosophila homolog, Fife, is neuronal and localizes to presynaptic AZs. To investigate the in vivo function of Fife, we generated a deletion of the fife locus. We find that evoked neurotransmitter release is substantially decreased in fife mutants and loss of fife results in motor deficits. Through morphological analysis of fife synapses, we identify underlying AZ abnormalities including pervasive presynaptic membrane detachments and reduced synaptic vesicle clustering. Our data demonstrate the conservation of a Piccolo-related protein in invertebrates and identify critical roles for Fife in regulating AZ structure and function. These findings suggest the CAZ is more conserved than previously thought, and open the door to a more complete understanding of how CAZ proteins regulate presynaptic structure and function through genetic studies in simpler model systems. PMID:23197698

  4. Dissecting the function and assembly of acentriolar microtubule organizing centers in Drosophila cells in vivo.

    Directory of Open Access Journals (Sweden)

    Janina Baumbach

    2015-05-01

    Full Text Available Acentriolar microtubule organizing centers (aMTOCs are formed during meiosis and mitosis in several cell types, but their function and assembly mechanism is unclear. Importantly, aMTOCs can be overactive in cancer cells, enhancing multipolar spindle formation, merotelic kinetochore attachment and aneuploidy. Here we show that aMTOCs can form in acentriolar Drosophila somatic cells in vivo via an assembly pathway that depends on Asl, Cnn and, to a lesser extent, Spd-2--the same proteins that appear to drive mitotic centrosome assembly in flies. This finding enabled us to ablate aMTOC formation in acentriolar cells, and so perform a detailed genetic analysis of the contribution of aMTOCs to acentriolar mitotic spindle formation. Here we show that although aMTOCs can nucleate microtubules, they do not detectably increase the efficiency of acentriolar spindle assembly in somatic fly cells. We find that they are required, however, for robust microtubule array assembly in cells without centrioles that also lack microtubule nucleation from around the chromatin. Importantly, aMTOCs are also essential for dynein-dependent acentriolar spindle pole focusing and for robust cell proliferation in the absence of centrioles and HSET/Ncd (a kinesin essential for acentriolar spindle pole focusing in many systems. We propose an updated model for acentriolar spindle pole coalescence by the molecular motors Ncd/HSET and dynein in conjunction with aMTOCs.

  5. Drosophila KDM2 is a H3K4me3 demethylase regulating nucleolar organization

    Directory of Open Access Journals (Sweden)

    Birchler James A

    2009-10-01

    Full Text Available Abstract Background CG11033 (dKDM2 is the Drosophila homolog of the gene KDM2B. dKDM2 has been known to possess histone lysine demethylase activity towards H3K36me2 in cell lines and it regulates H2A ubiquitination. The human homolog of the gene has dual activity towards H3K36me2 as well as H3K4me3, and plays an important role in cellular senescence. Findings We have used transgenic flies bearing an RNAi construct for the dKDM2 gene. The knockdown of dKDM2 gene was performed by crossing UAS-RNAi-dKDM2 flies with actin-Gal4 flies. Western blots of acid extracted histones and immunofluoresence analysis of polytene chromosome showed the activity of the enzyme dKDM2 to be specific for H3K4me3 in adult flies. Immunofluoresence analysis of polytene chromosome also revealed the presence of multiple nucleoli in RNAi knockdown mutants of dKDM2 and decreased H3-acetylation marks associated with active transcription. Conclusion Our findings indicate that dKDM2 is a histone lysine demethylase with specificity for H3K4me3 and regulates nucleolar organization.

  6. Investigating inbreeding depression for heat stress tolerance in the model organism Drosophila melanogaster

    DEFF Research Database (Denmark)

    Pedersen, Kamilla Sofie; Pedersen, Louise Dybdahl; Sørensen, Anders Christian

    2012-01-01

    Mating between closely related individuals often causes reduced fitness, which is termed ‘inbreeding depression’. Inbreeding is, therefore, a threat towards the persistence of animal and plant populations. Here we present methods and results from a practical for high-school and first-year univers......Mating between closely related individuals often causes reduced fitness, which is termed ‘inbreeding depression’. Inbreeding is, therefore, a threat towards the persistence of animal and plant populations. Here we present methods and results from a practical for high-school and first......-year university students and discuss learning outcomes of the exercise as an example of inquiry-based science teaching. We use the model organism Drosophila melanogaster to test the ability of inbred and control (non-inbred) females to survive heat stress exposure. Flies were anaesthetised and collected...... into vials before exposure to 38°C heat stress in a water bath for 1 h. Half an hour later the number of comatose inbred and control flies were scored and chi-square statistic procedures were used to test for different degrees of heat stress tolerance between the two lines of flies. The practical introduces...

  7. Target organ specific activity of drosophila MRP (ABCC1) moderates developmental toxicity of methylmercury.

    Science.gov (United States)

    Prince, Lisa; Korbas, Malgorzata; Davidson, Philip; Broberg, Karin; Rand, Matthew Dearborn

    2014-08-01

    Methylmercury (MeHg) is a ubiquitous and persistent neurotoxin that poses a risk to human health. Although the mechanisms of MeHg toxicity are not fully understood, factors that contribute to susceptibility are even less well known. Studies of human gene polymorphisms have identified a potential role for the multidrug resistance-like protein (MRP/ABCC) family, ATP-dependent transporters, in MeHg susceptibility. MRP transporters have been shown to be important for MeHg excretion in adult mouse models, but their role in moderating MeHg toxicity during development has not been explored. We therefore investigated effects of manipulating expression levels of MRP using a Drosophila development assay. Drosophila MRP (dMRP) is homologous to human MRP1-4 (ABCC1-4), sharing 50% identity and 67% similarity with MRP1. A greater susceptibility to MeHg is seen in dMRP mutant flies, demonstrated by reduced rates of eclosion on MeHg-containing food. Furthermore, targeted knockdown of dMRP expression using GAL4>UAS RNAi methods demonstrates a tissue-specific function for dMRP in gut, Malpighian tubules, and the nervous system in moderating developmental susceptibility to MeHg. Using X-ray synchrotron fluorescence imaging, these same tissues were also identified as the highest Hg-accumulating tissues in fly larvae. Moreover, higher levels of Hg are seen in dMRP mutant larvae compared with a control strain fed an equivalent dose of MeHg. In sum, these data demonstrate that dMRP expression, both globally and within Hg-targeted organs, has a profound effect on susceptibility to MeHg in developing flies. Our findings point to a potentially novel and specific role for dMRP in neurons in the protection against MeHg. Finally, this experimental system provides a tractable model to evaluate human polymorphic variants of MRP and other gene variants relevant to genetic studies of mercury-exposed populations. © The Author 2014. Published by Oxford University Press on behalf of the Society of

  8. Expression profiling of prospero in the Drosophila larval chemosensory organ: Between growth and outgrowth

    Directory of Open Access Journals (Sweden)

    Raharijaona Mahatsangy

    2010-01-01

    Full Text Available Abstract Background The antenno-maxilary complex (AMC forms the chemosensory system of the Drosophila larva and is involved in gustatory and olfactory perception. We have previously shown that a mutant allele of the homeodomain transcription factor Prospero (prosVoila1, V1, presents several developmental defects including abnormal growth and altered taste responses. In addition, many neural tracts connecting the AMC to the central nervous system (CNS were affected. Our earlier reports on larval AMC did not argue in favour of a role of pros in cell fate decision, but strongly suggested that pros could be involved in the control of other aspect of neuronal development. In order to identify these functions, we used microarray analysis of larval AMC and CNS tissue isolated from the wild type, and three other previously characterised prospero alleles, including the V1 mutant, considered as a null allele for the AMC. Results A total of 17 samples were first analysed with hierarchical clustering. To determine those genes affected by loss of pros function, we calculated a discriminating score reflecting the differential expression between V1 mutant and other pros alleles. We identified a total of 64 genes in the AMC. Additional manual annotation using all the computed information on the attributed role of these genes in the Drosophila larvae nervous system, enabled us to identify one functional category of potential Prospero target genes known to be involved in neurite outgrowth, synaptic transmission and more specifically in neuronal connectivity remodelling. The second category of genes found to be differentially expressed between the null mutant AMC and the other alleles concerned the development of the sensory organs and more particularly the larval olfactory system. Surprisingly, a third category emerged from our analyses and suggests an association of pros with the genes that regulate autophagy, growth and insulin pathways. Interestingly, EGFR and

  9. Drosophila convoluted/dALS is an essential gene required for tracheal tube morphogenesis and apical matrix organization.

    Science.gov (United States)

    Swanson, Lianna E; Yu, Marcus; Nelson, Kevin S; Laprise, Patrick; Tepass, Ulrich; Beitel, Greg J

    2009-04-01

    Insulin-like growth factors (IGFs) control cell and organism growth through evolutionarily conserved signaling pathways. The mammalian acid-labile subunit (ALS) is a secreted protein that complexes with IGFs to modulate their activity. Recent work has shown that a Drosophila homolog of ALS, dALS, can also complex with and modulate the activity of a Drosophila IGF. Here we report the first mutations in the gene encoding dALS. Unexpectedly, we find that these mutations are allelic to a previously described mutation in convoluted (conv), a gene required for epithelial morphogenesis. In conv mutants, the tubes of the Drosophila tracheal system become abnormally elongated without altering tracheal cell number. conv null mutations cause larval lethality, but do not disrupt several processes required for tracheal tube size control, including septate junction formation, deposition of a lumenal/apical extracellular matrix, and lumenal secretion of Vermiform and Serpentine, two putative matrix-modifying proteins. Clearance of lumenal matrix and subcellular localization of clathrin also appear normal in conv mutants. However, we show that Conv/dALS is required for the dynamic organization of the transient lumenal matrix and normal structure of the cuticle that lines the tracheal lumen. These and other data suggest that the Conv/dALS-dependent tube size control mechanism is distinct from other known processes involved in tracheal tube size regulation. Moreover, we present evidence indicating that Conv/dALS has a novel, IGF-signaling independent function in tracheal morphogenesis.

  10. Drosophila embryos as model to assess cellular and developmental toxicity of multi-walled carbon nanotubes (MWCNT in living organisms.

    Directory of Open Access Journals (Sweden)

    Boyin Liu

    Full Text Available Different toxicity tests for carbon nanotubes (CNT have been developed to assess their impact on human health and on aquatic and terrestrial animal and plant life. We present a new model, the fruit fly Drosophila embryo offering the opportunity for rapid, inexpensive and detailed analysis of CNTs toxicity during embryonic development. We show that injected DiI labelled multi-walled carbon nanotubes (MWCNTs become incorporated into cells in early Drosophila embryos, allowing the study of the consequences of cellular uptake of CNTs on cell communication, tissue and organ formation in living embryos. Fluorescently labelled subcellular structures showed that MWCNTs remained cytoplasmic and were excluded from the nucleus. Analysis of developing ectodermal and neural stem cells in MWCNTs injected embryos revealed normal division patterns and differentiation capacity. However, an increase in cell death of ectodermal but not of neural stem cells was observed, indicating stem cell-specific vulnerability to MWCNT exposure. The ease of CNT embryo injections, the possibility of detailed morphological and genomic analysis and the low costs make Drosophila embryos a system of choice to assess potential developmental and cellular effects of CNTs and test their use in future CNT based new therapies including drug delivery.

  11. Side Effects of Nitrification Inhibitors on Non Target Microbial Processes in Soils

    OpenAIRE

    Johannes Carl Gottlieb Ottow; Gero Benckiser; Ferisman Tindaon

    2011-01-01

    Agricultural chemicals have been used extensively in modern agriculture and toxicological studies suggest a great potential for inducing undesirable effects on non target organisms. A model experiment was conducted in order to determine side effects of three nitrification inhibitors (NIs, 3,4dimethylpyrazolephosphate = DMPP, 4-Chlormethylpyrazole phosphate = ClMPP and dicyandiamide = DCD) on non target microbial processes in soils. Side effects and dose response curve of three NIs were quanti...

  12. Molecular cloning and genomic organization of an allatostatin preprohormone from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Grimmelikhuijzen, C J

    2000-01-01

    The insect allatostatins are neurohormones, acting on the corpora allata (where they block the release of juvenile hormone) and on the insect gut (where they block smooth muscle contraction). We screened the "Drosophila Genome Project" database with electronic sequences corresponding to various i...

  13. Severe Fertility Effects of sheepish Sperm Caused by Failure To Enter Female Sperm Storage Organs in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Masatoshi Tomaru

    2018-01-01

    Full Text Available In Drosophila, mature sperm are transferred from males to females during copulation, stored in the sperm storage organs of females, and then utilized for fertilization. Here, we report a gene named sheepish (shps of Drosophila melanogaster that is essential for sperm storage in females. shps mutant males, although producing morphologically normal and motile sperm that are effectively transferred to females, produce very few offspring. Direct counts of sperm indicated that the primary defect was correlated to failure of shps sperm to migrate into the female sperm storage organs. Increased sperm motion parameters were seen in the control after transfer to females, whereas sperm from shps males have characteristics of the motion parameters different from the control. The few sperm that occasionally entered the female sperm storage organs showed no obvious defects in fertilization and early embryo development. The female postmating responses after copulation with shps males appeared normal, at least with respect to conformational changes of uterus, mating plug formation, and female remating rates. The shps gene encodes a protein with homology to amine oxidases, including as observed in mammals, with a transmembrane region at the C-terminal end. The shps mutation was characterized by a nonsense replacement in the third exon of CG13611, and shps was rescued by transformants of the wild-type copy of CG13611. Thus, shps may define a new class of gene responsible for sperm storage.

  14. Organ-specific gene expression: the bHLH protein Sage provides tissue specificity to Drosophila FoxA.

    Science.gov (United States)

    Fox, Rebecca M; Vaishnavi, Aria; Maruyama, Rika; Andrew, Deborah J

    2013-05-01

    FoxA transcription factors play major roles in organ-specific gene expression, regulating, for example, glucagon expression in the pancreas, GLUT2 expression in the liver, and tyrosine hydroxylase expression in dopaminergic neurons. Organ-specific gene regulation by FoxA proteins is achieved through cooperative regulation with a broad array of transcription factors with more limited expression domains. Fork head (Fkh), the sole Drosophila FoxA family member, is required for the development of multiple distinct organs, yet little is known regarding how Fkh regulates tissue-specific gene expression. Here, we characterize Sage, a bHLH transcription factor expressed exclusively in the Drosophila salivary gland (SG). We show that Sage is required for late SG survival and normal tube morphology. We find that many Sage targets, identified by microarray analysis, encode SG-specific secreted cargo, transmembrane proteins, and the enzymes that modify these proteins. We show that both Sage and Fkh are required for the expression of Sage target genes, and that co-expression of Sage and Fkh is sufficient to drive target gene expression in multiple cell types. Sage and Fkh drive expression of the bZip transcription factor Senseless (Sens), which boosts expression of Sage-Fkh targets, and Sage, Fkh and Sens colocalize on SG chromosomes. Importantly, expression of Sage-Fkh target genes appears to simply add to the tissue-specific gene expression programs already established in other cell types, and Sage and Fkh cannot alter the fate of most embryonic cell types even when expressed early and continuously.

  15. Identification and characterization of proteins involved in nuclear organization using Drosophila GFP protein trap lines.

    Directory of Open Access Journals (Sweden)

    Margaret Rohrbaugh

    Full Text Available Strains from a collection of Drosophila GFP protein trap lines express GFP in the normal tissues where the endogenous protein is present. This collection can be used to screen for proteins distributed in the nucleus in a non-uniform pattern.We analyzed four lines that show peripheral or punctate nuclear staining. One of these lines affects an uncharacterized gene named CG11138. The CG11138 protein shows a punctate distribution in the nuclear periphery similar to that of Drosophila insulator proteins but does not co-localize with known insulators. Interestingly, mutations in Lamin proteins result in alterations in CG11138 localization, suggesting that this protein may be a novel component of the nuclear lamina. A second line affects the Decondensation factor 31 (Df31 gene, which encodes a protein with a unique nuclear distribution that appears to segment the nucleus into four different compartments. The X-chromosome of males is confined to one of these compartments. We also find that Drosophila Nucleoplasmin (dNlp is present in regions of active transcription. Heat shock leads to loss of dNlp from previously transcribed regions of polytene chromosome without redistribution to the heat shock genes. Analysis of Stonewall (Stwl, a protein previously found to be necessary for the maintenance of germline stem cells, shows that Stwl is present in a punctate pattern in the nucleus that partially overlaps with that of known insulator proteins. Finally we show that Stwl, dNlp, and Df31 form part of a highly interactive network. The properties of other components of this network may help understand the role of these proteins in nuclear biology.These results establish screening of GFP protein trap alleles as a strategy to identify factors with novel cellular functions. Information gained from the analysis of CG11138 Stwl, dNlp, and Df31 sets the stage for future studies of these proteins.

  16. Does Bt rice pose risks to non-target arthropods? Results of a meta-analysis in China

    Science.gov (United States)

    Transgenic Bt rice expressing the protoxin proteins derived from Bacillus thuringiensis Berliner (Bt) have been developed since 1989. Their ecological risks toward non-target organisms have been investigated. However, these studies were conducted individually, yielding inconsistent conclusions and u...

  17. 40 CFR 156.85 - Non-target organisms.

    Science.gov (United States)

    2010-07-01

    ... oral LD50 of 100 mg/kg or less, the statement, “This pesticide is toxic to wildlife” is required. (2) If a pesticide intended for outdoor use contains an active ingredient with a fish acute LC50 of 1 ppm... for outdoor use contains an active ingredient with an avian acute oral LD50 of 100 mg/kg or less, or a...

  18. Side Effects of Nitrification Inhibitors on Non Target Microbial Processes in Soils

    Directory of Open Access Journals (Sweden)

    Johannes Carl Gottlieb Ottow

    2011-01-01

    Full Text Available Agricultural chemicals have been used extensively in modern agriculture and toxicological studies suggest a great potential for inducing undesirable effects on non target organisms. A model experiment was conducted in order to determine side effects of three nitrification inhibitors (NIs, 3,4dimethylpyrazolephosphate = DMPP, 4-Chlor-methylpyrazole phosphate = ClMPP and dicyandiamide = DCD on non target microbial processes in soils. Side effects and dose response curve of three NIs were quantified under laboratory conditions using silty clay, loam and a sandy soils. Dehydrogenase, dimethylsulfoxide reductase as well as nitrogenase activity (NA and potential denitrification capacity were measured as common and specific non target microbial processes. The influence of 5-1000 times the base concentration, dose response curves were examined, and no observable effect level = NOEL, as well as effective dose ED10 and ED50 (10% and 50% inhibition were calculated. The NOEL for microbial non target processes were about 30–70 times higher than base concentration in all investigated soils. The potential denitrification capacity revealed to be the most sensitive parameter. ClMPP exhibited the strongest influence on the non target microbial processes in the three soils. The NOEL, ED10 and ED50 values were higher in clay than in loamy or sandy soil. The NIs was the most effective in sandy soils.

  19. Use of Drosophila to study DNA repair

    International Nuclear Information System (INIS)

    Boyd, J.B.; Harris, P.V.; Sakaguchi, K.

    1988-01-01

    This paper discusses Drosophila, the premier metazoan organism for analyzing many fundamental features of eukaryotic gene regulation. The authors present adaptations of several approaches for studying DNA repair to an analysis of repair-defective mutants in Drosophila. A current understanding of Drosophila DNA repair is described

  20. Modeling Human Cancers in Drosophila.

    Science.gov (United States)

    Sonoshita, M; Cagan, R L

    2017-01-01

    Cancer is a complex disease that affects multiple organs. Whole-body animal models provide important insights into oncology that can lead to clinical impact. Here, we review novel concepts that Drosophila studies have established for cancer biology, drug discovery, and patient therapy. Genetic studies using Drosophila have explored the roles of oncogenes and tumor-suppressor genes that when dysregulated promote cancer formation, making Drosophila a useful model to study multiple aspects of transformation. Not limited to mechanism analyses, Drosophila has recently been showing its value in facilitating drug development. Flies offer rapid, efficient platforms by which novel classes of drugs can be identified as candidate anticancer leads. Further, we discuss the use of Drosophila as a platform to develop therapies for individual patients by modeling the tumor's genetic complexity. Drosophila provides both a classical and a novel tool to identify new therapeutics, complementing other more traditional cancer tools. © 2017 Elsevier Inc. All rights reserved.

  1. Volatile organic compounds emitted by filamentous fungi isolated from flooded homes after Hurricane Sandy show toxicity in a Drosophila bioassay.

    Science.gov (United States)

    Zhao, G; Yin, G; Inamdar, A A; Luo, J; Zhang, N; Yang, I; Buckley, B; Bennett, J W

    2017-05-01

    Superstorm Sandy provided an opportunity to study filamentous fungi (molds) associated with winter storm damage. We collected 36 morphologically distinct fungal isolates from flooded buildings. By combining traditional morphological and cultural characters with an analysis of ITS sequences (the fungal DNA barcode), we identified 24 fungal species that belong to eight genera: Penicillium (11 species), Fusarium (four species), Aspergillus (three species), Trichoderma (two species), and one species each of Metarhizium, Mucor, Pestalotiopsis, and Umbelopsis. Then, we used a Drosophila larval assay to assess possible toxicity of volatile organic compounds (VOCs) emitted by these molds. When cultured in a shared atmosphere with growing cultures of molds isolated after Hurricane Sandy, larval toxicity ranged from 15 to 80%. VOCs from Aspergillus niger 129B were the most toxic yielding 80% mortality to Drosophila after 12 days. The VOCs from Trichoderma longibrachiatum 117, Mucor racemosus 138a, and Metarhizium anisopliae 124 were relatively non-toxigenic. A preliminary analysis of VOCs was conducted using solid-phase microextraction-gas chromatography-mass spectrometry from two of the most toxic, two of the least toxic, and two species of intermediate toxicity. The more toxic molds produced higher concentrations of 1-octen-3-ol, 3-octanone, 3-octanol, 2-octen-1-ol, and 2-nonanone; while the less toxic molds produced more 3-methyl-1-butanol and 2-methyl-1-propanol, or an overall lower amount of volatiles. Our data support the hypothesis that at certain concentrations, some VOCs emitted by indoor molds are toxigenic. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Drosophila sosie functions with βH-Spectrin and actin organizers in cell migration, epithelial morphogenesis and cortical stability

    Science.gov (United States)

    Urwyler, Olivier; Cortinas-Elizondo, Fabiola; Suter, Beat

    2012-01-01

    Summary Morphogenesis in multicellular organisms requires the careful coordination of cytoskeletal elements, dynamic regulation of cell adhesion and extensive cell migration. sosie (sie) is a novel gene required in various morphogenesis processes in Drosophila oogenesis. Lack of sie interferes with normal egg chamber packaging, maintenance of epithelial integrity and control of follicle cell migration, indicating that sie is involved in controlling epithelial integrity and cell migration. For these functions sie is required both in the germ line and in the soma. Consistent with this, Sosie localizes to plasma membranes in the germ line and in the somatic follicle cells and is predicted to present an EGF-like domain on the extracellular side. Two positively charged residues, C-terminal to the predicted transmembrane domain (on the cytoplasmic side), are required for normal plasma membrane localization of Sosie. Because sie also contributes to normal cortical localization of βH-Spectrin, it appears that cortical βH-Spectrin mediates some of the functions of sosie. sie also interacts with the genes coding for the actin organizers Filamin and Profilin and, in the absence of sie function, F-actin is less well organized and nurse cells frequently fuse. PMID:23213377

  3. Drosophila sosie functions with β(H)-Spectrin and actin organizers in cell migration, epithelial morphogenesis and cortical stability.

    Science.gov (United States)

    Urwyler, Olivier; Cortinas-Elizondo, Fabiola; Suter, Beat

    2012-10-15

    Morphogenesis in multicellular organisms requires the careful coordination of cytoskeletal elements, dynamic regulation of cell adhesion and extensive cell migration. sosie (sie) is a novel gene required in various morphogenesis processes in Drosophila oogenesis. Lack of sie interferes with normal egg chamber packaging, maintenance of epithelial integrity and control of follicle cell migration, indicating that sie is involved in controlling epithelial integrity and cell migration. For these functions sie is required both in the germ line and in the soma. Consistent with this, Sosie localizes to plasma membranes in the germ line and in the somatic follicle cells and is predicted to present an EGF-like domain on the extracellular side. Two positively charged residues, C-terminal to the predicted transmembrane domain (on the cytoplasmic side), are required for normal plasma membrane localization of Sosie. Because sie also contributes to normal cortical localization of β(H)-Spectrin, it appears that cortical β(H)-Spectrin mediates some of the functions of sosie. sie also interacts with the genes coding for the actin organizers Filamin and Profilin and, in the absence of sie function, F-actin is less well organized and nurse cells frequently fuse.

  4. Molecular cloning, genomic organization, and expression of a B-type (cricket-type) allatostatin preprohormone from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Williamson, M; Lenz, C; Winther, A M

    2001-01-01

    and nonamidated C terminus. We have previously reported the structure of an A-type allatostatin preprohormone from the fruitfly Drosophila melanogaster. Here we describe the molecular cloning of a B-type prepro-allatostatin from Drosophila (DAP-B). DAP-B is 211 amino acid residues long and contains one copy each...

  5. Pox neuro control of cell lineages that give rise to larval poly-innervated external sensory organs in Drosophila.

    Science.gov (United States)

    Jiang, Yanrui; Boll, Werner; Noll, Markus

    2015-01-15

    The Pox neuro (Poxn) gene of Drosophila plays a crucial role in the development of poly-innervated external sensory (p-es) organs. However, how Poxn exerts this role has remained elusive. In this study, we have analyzed the cell lineages of all larval p-es organs, namely of the kölbchen, papilla 6, and hair 3. Surprisingly, these lineages are distinct from any previously reported cell lineages of sensory organs. Unlike the well-established lineage of mono-innervated external sensory (m-es) organs and a previously proposed model of the p-es lineage, we demonstrate that all wild-type p-es lineages exhibit the following features: the secondary precursor, pIIa, gives rise to all three support cells-socket, shaft, and sheath, whereas the other secondary precursor, pIIb, is neuronal and gives rise to all neurons. We further show that in one of the p-es lineages, that of papilla 6, one cell undergoes apoptosis. By contrast in Poxn null mutants, all p-es lineages have a reduced number of cells and their pattern of cell divisions is changed to that of an m-es organ, with the exception of a lineage in a minority of mutant kölbchen that retains a second bipolar neuron. Indeed, the role of Poxn in p-es lineages is consistent with the specification of the developmental potential of secondary precursors and the regulation of cell division but not apoptosis. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. TADs are 3D structural units of higher-order chromosome organization in Drosophila

    Science.gov (United States)

    Szabo, Quentin; Jost, Daniel; Chang, Jia-Ming; Cattoni, Diego I.; Papadopoulos, Giorgio L.; Bonev, Boyan; Sexton, Tom; Gurgo, Julian; Jacquier, Caroline; Nollmann, Marcelo; Bantignies, Frédéric; Cavalli, Giacomo

    2018-01-01

    Deciphering the rules of genome folding in the cell nucleus is essential to understand its functions. Recent chromosome conformation capture (Hi-C) studies have revealed that the genome is partitioned into topologically associating domains (TADs), which demarcate functional epigenetic domains defined by combinations of specific chromatin marks. However, whether TADs are true physical units in each cell nucleus or whether they reflect statistical frequencies of measured interactions within cell populations is unclear. Using a combination of Hi-C, three-dimensional (3D) fluorescent in situ hybridization, super-resolution microscopy, and polymer modeling, we provide an integrative view of chromatin folding in Drosophila. We observed that repressed TADs form a succession of discrete nanocompartments, interspersed by less condensed active regions. Single-cell analysis revealed a consistent TAD-based physical compartmentalization of the chromatin fiber, with some degree of heterogeneity in intra-TAD conformations and in cis and trans inter-TAD contact events. These results indicate that TADs are fundamental 3D genome units that engage in dynamic higher-order inter-TAD connections. This domain-based architecture is likely to play a major role in regulatory transactions during DNA-dependent processes. PMID:29503869

  7. Surface display of recombinant Drosophila melanogaster acetylcholinesterase for detection of organic phosphorus and carbamate pesticides.

    Directory of Open Access Journals (Sweden)

    Jingquan Li

    Full Text Available Acetylcholinesterase (AChE is commonly used for the detection of organophosphate (OP and carbamate (CB insecticides. However, the cost of this commercially available enzyme is high, making high-throughput insecticide detection improbable. In this study we constructed a new AChE yeast expression system in Saccharomyces cerevisiae for the expression of a highly reactive recombinant AChE originating from Drosophila melanogaster (DmAChE. Specifically, the coding sequence of DmAChE was fused with the 3'-terminal half of an α-agglutinin anchor region, along with an antigen tag for the detection of the recombinant protein. The target sequence was cloned into the yeast expression vector pYes-DEST52, and the signal peptide sequence was replaced with a glucoamylase secretion region for induced expression. The resultant engineered vector was transformed into S. cerevisiae. DmAChE was expressed and displayed on the cell surface after galactose induction. Our results showed that the recombinant protein displayed activity comparable to the commercial enzyme. We also detected different types of OP and CB insecticides through enzyme inhibition assays, with the expressed DmAChE showing high sensitivity. These results show the construction of a new yeast expression system for DmAChE, which can subsequently be used for detecting OP and CB insecticides with reduced economic costs.

  8. The Drosophila melanogaster host model

    Science.gov (United States)

    Igboin, Christina O.; Griffen, Ann L.; Leys, Eugene J.

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed. PMID:22368770

  9. The Drosophila melanogaster host model

    Directory of Open Access Journals (Sweden)

    Christina O. Igboin

    2012-02-01

    Full Text Available The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen–host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial–host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis–host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  10. The Drosophila melanogaster host model.

    Science.gov (United States)

    Igboin, Christina O; Griffen, Ann L; Leys, Eugene J

    2012-01-01

    The deleterious and sometimes fatal outcomes of bacterial infectious diseases are the net result of the interactions between the pathogen and the host, and the genetically tractable fruit fly, Drosophila melanogaster, has emerged as a valuable tool for modeling the pathogen-host interactions of a wide variety of bacteria. These studies have revealed that there is a remarkable conservation of bacterial pathogenesis and host defence mechanisms between higher host organisms and Drosophila. This review presents an in-depth discussion of the Drosophila immune response, the Drosophila killing model, and the use of the model to examine bacterial-host interactions. The recent introduction of the Drosophila model into the oral microbiology field is discussed, specifically the use of the model to examine Porphyromonas gingivalis-host interactions, and finally the potential uses of this powerful model system to further elucidate oral bacterial-host interactions are addressed.

  11. Impact of genetically modified maize expressing Cry 3Bb1 on some non-target arthropods

    Czech Academy of Sciences Publication Activity Database

    Hussein, Hany; Svobodová, Zdeňka; Habuštová, Oxana; Půža, Vladimír; Sehnal, František

    2012-01-01

    Roč. 8, č. 10 (2012), s. 5124-5131 ISSN 1819-544X R&D Projects: GA MZe QH91093 Grant - others:projekt MOBITAG(CZ) REGPOT-2008-1, GA 229518 Institutional support: RVO:60077344 Keywords : MON 88017 * Cry3Bb1 * non-target organisms Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection http://www.aensiweb.com/jasr/jasr/2012/5124-5131.pdf

  12. Conversion of neurons and glia to external-cell fates in the external sensory organs of Drosophila hamlet mutants by a cousin-cousin cell-type respecification.

    Science.gov (United States)

    Moore, Adrian W; Roegiers, Fabrice; Jan, Lily Y; Jan, Yuh-Nung

    2004-03-15

    The Drosophila external sensory organ forms in a lineage elaborating from a single precursor cell via a stereotypical series of asymmetric divisions. HAMLET transcription factor expression demarcates the lineage branch that generates two internal cell types, the external sensory neuron and thecogen. In HAMLET mutant organs, these internal cells are converted to external cells via an unprecedented cousin-cousin cell-fate respecification event. Conversely, ectopic HAMLET expression in the external cell branch leads to internal cell production. The fate-determining signals NOTCH and PAX2 act at multiple stages of lineage elaboration and HAMLET acts to modulate their activity in a branch-specific manner.

  13. Drosophila C-terminal binding protein, dCtBP is required for sensory organ prepattern and sharpens proneural transcriptional activity of the GATA factor Pnr.

    Science.gov (United States)

    Biryukova, Inna; Heitzler, Pascal

    2008-11-01

    The peripheral nervous system is required for animals to detect and to relay environmental stimuli to central nervous system for the information processing. In Drosophila, the precise spatial and temporal expression of two proneural genes achaete (ac) and scute (sc), is necessary for development of the sensory organs. Here we present an evidence that the transcription co-repressor, dCtBP acts as a negative regulator of sensory organ prepattern. Loss of dCtBP function mutant exhibits ectopic sensory organs, while overexpression of dCtBP results in a dramatic loss of sensory organs. These phenotypes are correlated with mis-emerging of sensory organ precursors and perturbated expression of proneural transcription activator Ac. Mammalian CtBP-1 was identified via interaction with the consensus motif PXDLSX(K/R) of adenovirus E1A oncoprotein. We demonstrated that dCtBP binds directly to PLDLS motif of Drosophila Friend of GATA-1 protein, U-shaped and sharpens the adult sensory organ development. Moreover, we found that dCtBP mediates multivalent interaction with the GATA transcriptional activator Pannier and acts as a direct co-repressor of the Pannier-mediated activation of proneural genes. We demonstrated that Pannier genetically interacts with dCtBP-interacting protein HDAC1, suggesting that the dCtBP-dependent regulation of Pannier activity could utilize a repressive mechanism involving alteration of local chromatine structure.

  14. Hearing regulates Drosophila aggression.

    Science.gov (United States)

    Versteven, Marijke; Vanden Broeck, Lies; Geurten, Bart; Zwarts, Liesbeth; Decraecker, Lisse; Beelen, Melissa; Göpfert, Martin C; Heinrich, Ralf; Callaerts, Patrick

    2017-02-21

    Aggression is a universal social behavior important for the acquisition of food, mates, territory, and social status. Aggression in Drosophila is context-dependent and can thus be expected to involve inputs from multiple sensory modalities. Here, we use mechanical disruption and genetic approaches in Drosophila melanogaster to identify hearing as an important sensory modality in the context of intermale aggressive behavior. We demonstrate that neuronal silencing and targeted knockdown of hearing genes in the fly's auditory organ elicit abnormal aggression. Further, we show that exposure to courtship or aggression song has opposite effects on aggression. Our data define the importance of hearing in the control of Drosophila intermale aggression and open perspectives to decipher how hearing and other sensory modalities are integrated at the neural circuit level.

  15. Morphological Effect of Non-targeted Biomolecule-Modified MNPs on Reticuloendothelial System.

    Science.gov (United States)

    Li, Xiao; Hu, Yan; Xiao, Jie; Cheng, Dengfeng; Xiu, Yan; Shi, Hongcheng

    2015-12-01

    Magnetic nanoparticles (MNPs) with special morphology were commonly used as biomaterials, while morphological effects of non-targeted biomolecule-modified MNPs on biological behaviors were still unclear. In this research, spherical and rod-like Fe3O4 in a comparable size were synthesized and then surface-modified by bovine serum albumin (BSA) as a model of non-targeted biomolecule-modified MNPs. Morphological effects were featured by TEM and quantification of in vitro phagocytic uptake, as well as the in vivo quantification of particles in reticuloendothelial system (RES)-related organs of normal Kunming mice. For these non-targeted BSA-modified MNPs, intracellular distributions were the same, but the rod-like MNPs were more likely to be uptake by macrophages; furthermore, the BSA-modified MNPs gathered in RES-related organs soon after intravenous injection, but the rod-like ones were expelled from the lung more quickly and expelled from the spleen more slowly. These preliminary results may be referable if MNPs or other similar biomolecule-modified nanoparticles were used.

  16. Two Types of Genetic Interaction Implicate the Whirligig Gene of Drosophila Melanogaster in Microtubule Organization in the Flagellar Axoneme

    Science.gov (United States)

    Green, L. L.; Wolf, N.; McDonald, K. L.; Fuller, M. T.

    1990-01-01

    The mutant nc4 allele of whirligig (3-54.4) of Drosophila melanogaster fails to complement mutations in an α-tubulin locus, α1t, mutations in a β-tubulin locus, B2t, or a mutation in the haywire locus. However, wrl fails to map to any of the known α- or β-tubulin genes. The extragenic failure to complement could indicate that the wrl product participates in structural interactions with microtubule proteins. The whirligig locus appears to be haploinsufficient for male fertility. Both a deficiency of wrl and possible loss of function alleles obtained by reverting the failure to complement between wrl(nc4) and B2t(n) are dominant male sterile in a genetic background wild type for tubulin. The dominant male sterility of the revertant alleles is suppressed if the flies are also heterozygous for B2t(n), for a deficiency of α1t, or for the hay(nc2) allele. These results suggest that it is not the absolute level of wrl gene product but its level relative to tubulin or microtubule function that is important for normal spermatogenesis. The phenotype of homozygous wrl mutants suggests that the whirligig product plays a role in postmeiotic spermatid differentiation, possibly in organizing the microtubules of the sperm flagellar axoneme. Flies homozygous for either wrl(nc4) or revertant alleles are viable and female fertile but male sterile. Premeiotic and meiotic stages of spermatogenesis appear normal. However, in post-meiotic stages, flagellar axonemes show loss of the accessory microtubule on the B-subfiber of outer doublet microtubules, outer triplet instead of outer doublet microtubules, and missing central pair microtubules. PMID:2127579

  17. Effects of neonicotinoids and fipronil on non-target invertebrates.

    Science.gov (United States)

    Pisa, L W; Amaral-Rogers, V; Belzunces, L P; Bonmatin, J M; Downs, C A; Goulson, D; Kreutzweiser, D P; Krupke, C; Liess, M; McField, M; Morrissey, C A; Noome, D A; Settele, J; Simon-Delso, N; Stark, J D; Van der Sluijs, J P; Van Dyck, H; Wiemers, M

    2015-01-01

    We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal effects on honeybees (Apis mellifera) because this important pollinator is the most studied non-target invertebrate species. Lepidoptera (butterflies and moths), Lumbricidae (earthworms), Apoidae sensu lato (bumblebees, solitary bees) and the section "other invertebrates" review available studies on the other terrestrial species. The sections on freshwater and marine species are rather short as little is known so far about the impact of neonicotinoid insecticides and fipronil on the diverse invertebrate fauna of these widely exposed habitats. For terrestrial and aquatic invertebrate species, the known effects of neonicotinoid pesticides and fipronil are described ranging from organismal toxicology and behavioural effects to population-level effects. For earthworms, freshwater and marine species, the relation of findings to regulatory risk assessment is described. Neonicotinoid insecticides exhibit very high toxicity to a wide range of invertebrates, particularly insects, and field-realistic exposure is likely to result in both lethal and a broad range of important sublethal impacts. There is a major knowledge gap regarding impacts on the grand majority of invertebrates, many of which perform essential roles enabling healthy ecosystem functioning. The data on the few non-target species on which field tests have been performed are limited by major flaws in the outdated test protocols. Despite large knowledge gaps and uncertainties, enough knowledge exists to conclude that existing levels of pollution with neonicotinoids and fipronil resulting from presently authorized uses frequently exceed the lowest observed adverse effect concentrations and are thus likely to have large

  18. Exposure-dependent variation in cryolite induced lethality in the nontarget insect, Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Podder Sayanti

    2014-03-01

    Full Text Available The starting point of toxicity testing of any chemical in an organism is the determination of its Lethal Concentration 50 (LC50. In the present study, LC50 of a fluorinated insecticide cryolite is determined in a non-target insect model, Drosophila melanogaster. Interestingly, the result shows that acute LC50 of cryolite was much greater in comparison to the chronic one in case of Drosophila larvae. Larvae which were exposed to 65,000 to 70,000 μg/ml cryolite through food showed 50% mortality after 18 hours of acute exposure, whereas only 150 to 160 μg/ml cryolite was sufficient to cause 50% mortality in case of chronic exposure. Thus cryolite in a small amount when applied once cannot produce noticeable changes in Drosophila, whereas the same amount when used continuously can be fatal. The non-feeding pupal stage was also seen to be affected by chemical treatment. This suggests that the test chemical affects the developmental fate and results in failure of adult emergence. Absence of chemical-induced mortality in adults assumes that the toxicity of cryolite might be restricted to the preimaginal stages of the organism. Reduction in body size of larvae after ingestion of cryolite (with food in acute treatment schedule is another interesting finding of this study. Some individuals consuming cryolite containing food cannot survive whereas the few survivors manifest a significant growth retardation which might be due to a tendency of refusal in feeding. Hence the present findings provide a scope of assessment of risk of other similar non-target groups

  19. Assessing Potential Impact of Bt Eggplants on Non-Target Arthropods in the Philippines

    Science.gov (United States)

    Navasero, Mario V.; Candano, Randolph N.; Hautea, Desiree M.; Hautea, Randy A.; Shotkoski, Frank A.; Shelton, Anthony M.

    2016-01-01

    Studies on potential adverse effects of genetically engineered crops are part of an environmental risk assessment that is required prior to the commercial release of these crops. Of particular concern are non-target organisms (NTOs) that provide important ecosystem services. Here, we report on studies conducted in the Philippines over three cropping seasons with Bt eggplants expressing Cry1Ac for control of the eggplant fruit and shoot borer (EFSB), Leucinodes orbonalis, to examine potential effects on field abundance, community composition, structure and biodiversity of NTO’s, particularly non-target arthropod (NTA) communities. We document that many arthropod taxa are associated with Bt eggplants and their non-Bt comparators and that the number of taxa and their densities varied within season and across trials. However, we found few significant differences in seasonal mean densities of arthropod taxa between Bt and non-Bt eggplants. As expected, a lower abundance of lepidopteran pests was detected in Bt eggplants. Higher abundance of a few non-target herbivores was detected in non-Bt eggplants as were a few non-target beneficials that might control them. Principal Response Curve (PRC) analyses showed no statistically significant impact of Bt eggplants on overall arthropod communities through time in any season. Furthermore, we found no significant adverse impacts of Bt eggplants on species abundance, diversity and community dynamics, particularly for beneficial NTAs. These results support our previous studies documenting that Bt eggplants can effectively and selectively control the main pest of eggplant in Asia, the EFSB. The present study adds that it can do so without adverse effects on NTAs. Thus, Bt eggplants can be a foundational component for controlling EFSB in an Integrated Pest Management (IPM) program and dramatically reduce dependence on conventional insecticides. PMID:27798662

  20. Identical functional organization of nonpolytene and polytene chromosomes in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Tatyana Yu Vatolina

    Full Text Available Salivary gland polytene chromosomes demonstrate banding pattern, genetic meaning of which is an enigma for decades. Till now it is not known how to mark the band/interband borders on physical map of DNA and structures of polytene chromosomes are not characterized in molecular and genetic terms. It is not known either similar banding pattern exists in chromosomes of regular diploid mitotically dividing nonpolytene cells. Using the newly developed approach permitting to identify the interband material and localization data of interband-specific proteins from modENCODE and other genome-wide projects, we identify physical limits of bands and interbands in small cytological region 9F13-10B3 of the X chromosome in D. melanogaster, as well as characterize their general molecular features. Our results suggests that the polytene and interphase cell line chromosomes have practically the same patterns of bands and interbands reflecting, probably, the basic principle of interphase chromosome organization. Two types of bands have been described in chromosomes, early and late-replicating, which differ in many aspects of their protein and genetic content. As appeared, origin recognition complexes are located almost totally in the interbands of chromosomes.

  1. Perlecan and Dystroglycan act at the basal side of the Drosophila follicular epithelium to maintain epithelial organization

    DEFF Research Database (Denmark)

    Schneider, Martina; Khalil, Ashraf A; Poulton, John

    2006-01-01

    and the cytoskeleton. Disruption of this linkage in skeletal muscle leads to various types of muscular dystrophies. In epithelial cells, reduced expression of Dg is associated with increased invasiveness of cancer cells. We have previously shown that Dg is required for epithelial cell polarity in Drosophila......, but the mechanisms of this polarizing activity and upstream/downstream components are largely unknown. Using the Drosophila follicle-cell epithelium (FCE) as a model system, we show that the ECM molecule Perlecan (Pcan) is required for maintenance of epithelial-cell polarity. Follicle cells that lack Pcan develop...... polarity defects similar to those of Dg mutant cells. Furthermore, Dg depends on Pcan but not on Laminin A for its localization in the basal-cell membrane, and the two proteins bind in vitro. Interestingly, the Dg form that interacts with Pcan in the FCE lacks the mucin-like domain, which is thought...

  2. Mutagenic and recombinagenic activity of airborne particulates, PM10 and TSP, organic extracts in the Drosophila wing-spot test

    International Nuclear Information System (INIS)

    Rodrigues Dihl, Rafael; Grazielli Azevedo da Silva, Carla; Souza do Amaral, Viviane; Reguly, Maria Luiza; Rodrigues de Andrade, Heloisa Helena

    2008-01-01

    The genotoxicity associated with air pollution in the city of Canoas, Rio Grande do Sul (Brazil), was assessed in November (spring) and January (summer). We applied the somatic mutation and recombination test (SMART) in Drosophila melanogaster in its standard version with normal bioactivation (ST) and in its variant with increased cytochrome P450-dependent biotransformation capacity (HB). The data indicated the genotoxicity of TSP and PM10 collected in November, in both ST and HB crosses. The genotoxic activity of the PM10 material in the spring sample was exclusively associated with the induction of mitotic recombination, whereas the TSP genetic toxicity was due to both recombinational as well as point and/or chromosomal mutation events. Considering PM10 collected in January, a positive response-100% (17.10 m 3 /ml) concentration-was observed in the HB cross, which was not detected in the ST cross. - Drosophila Wing-Spot Test can be used for detection of airborne particulates mutagenesis

  3. An Org-1-Tup transcriptional cascade reveals different types of alary muscles connecting internal organs in Drosophila.

    Science.gov (United States)

    Boukhatmi, Hadi; Schaub, Christoph; Bataillé, Laetitia; Reim, Ingolf; Frendo, Jean-Louis; Frasch, Manfred; Vincent, Alain

    2014-10-01

    The T-box transcription factor Tbx1 and the LIM-homeodomain transcription factor Islet1 are key components in regulatory circuits that generate myogenic and cardiogenic lineage diversity in chordates. We show here that Org-1 and Tup, the Drosophila orthologs of Tbx1 and Islet1, are co-expressed and required for formation of the heart-associated alary muscles (AMs) in the abdomen. The same holds true for lineage-related muscles in the thorax that have not been described previously, which we name thoracic alary-related muscles (TARMs). Lineage analyses identified the progenitor cell for each AM and TARM. Three-dimensional high-resolution analyses indicate that AMs and TARMs connect the exoskeleton to the aorta/heart and to different regions of the midgut, respectively, and surround-specific tracheal branches, pointing to an architectural role in the internal anatomy of the larva. Org-1 controls tup expression in the AM/TARM lineage by direct binding to two regulatory sites within an AM/TARM-specific cis-regulatory module, tupAME. The contributions of Org-1 and Tup to the specification of Drosophila AMs and TARMs provide new insights into the transcriptional control of Drosophila larval muscle diversification and highlight new parallels with gene regulatory networks involved in the specification of cardiopharyngeal mesodermal derivatives in chordates. © 2014. Published by The Company of Biologists Ltd.

  4. ATR-dependent bystander effects in non-targeted cells

    International Nuclear Information System (INIS)

    Burdak-Rothkamm, S.

    2007-01-01

    Complete text of publication follows. Radiation induced non-targeted bystander effects have been reported for a range of endpoints including the induction of γH2AX foci which serve as a marker for DNA double strand breaks. We have recently reported the induction of γH2AX foci in non-targeted bystander cells up to 48 hours after irradiation and the involvement of reactive oxygen species (ROS) and TGF-beta 1 in the induction of γH2AX foci (Oncogene (2007) 26:993-1002). Here, we wanted to determine the role of the PI3-like kinases ATM, ATR and DNA-PK in DNA damage signalling in bystander cells. Conditioned medium from T98G cells irradiated with 2 Gy of X-rays was transferred onto non-irradiated cells that were subsequently analysed for the induction of γH2AX, ATR and 53BP1 foci as well as clonogenic survival. Irradiated T98G glioma cells generated signals that induced γH2AX and 53BP1 foci in cells treated with the conditioned medium from irradiated cells. These foci co-localised with ATR foci. Inhibition of ATM and DNA-PK could not suppress the induction of bystander γH2AX foci whereas the mutation of ATR in Seckel cells abrogated bystander foci induction. A restriction of bystander foci to the S-phase of the cell cycle both in T98G cells and in ATR- proficient fibroblasts was observed. These results identify ATR as a central player within the bystander signalling cascade leading to γH2AX and 53BP1 foci formation, and suggest a mechanism of DNA damage induction in non-targeted cells. Further investigations have shown decreased clonogenic cell survival in bystander T98G and ATR wild-type fibroblasts. ATR mutated Seckel cells and also ATM-/- fibroblasts were resistant to this effect suggesting a role for both ATR and ATM in the bystander signalling cascade with regard to cell survival. Taken together, these observations support a hypothesis of DNA damage-induced accumulation of stalled replication forks in bystander cells which are subsequently processed by

  5. A perisynaptic ménage à trois between Dlg, DLin-7, and Metro controls proper organization of Drosophila synaptic junctions.

    Science.gov (United States)

    Bachmann, André; Kobler, Oliver; Kittel, Robert J; Wichmann, Carolin; Sierralta, Jimena; Sigrist, Stephan J; Gundelfinger, Eckart D; Knust, Elisabeth; Thomas, Ulrich

    2010-04-28

    Structural plasticity of synaptic junctions is a prerequisite to achieve and modulate connectivity within nervous systems, e.g., during learning and memory formation. It demands adequate backup systems that allow remodeling while retaining sufficient stability to prevent unwanted synaptic disintegration. The strength of submembranous scaffold complexes, which are fundamental to the architecture of synaptic junctions, likely constitutes a crucial determinant of synaptic stability. Postsynaptic density protein-95 (PSD-95)/ Discs-large (Dlg)-like membrane-associated guanylate kinases (DLG-MAGUKs) are principal scaffold proteins at both vertebrate and invertebrate synapses. At Drosophila larval glutamatergic neuromuscular junctions (NMJs) DlgA and DlgS97 exert pleiotropic functions, probably reflecting a few known and a number of yet-unknown binding partners. In this study we have identified Metro, a novel p55/MPP-like Drosophila MAGUK as a major binding partner of perisynaptic DlgS97 at larval NMJs. Based on homotypic LIN-2,-7 (L27) domain interactions, Metro stabilizes junctional DlgS97 in a complex with the highly conserved adaptor protein DLin-7. In a remarkably interdependent manner, Metro and DLin-7 act downstream of DlgS97 to control NMJ expansion and proper establishment of synaptic boutons. Using quantitative 3D-imaging we further demonstrate that the complex controls the size of postsynaptic glutamate receptor fields. Our findings accentuate the importance of perisynaptic scaffold complexes for synaptic stabilization and organization.

  6. Toxicological effects of pyrethroids on non-target aquatic insects.

    Science.gov (United States)

    Antwi, Frank B; Reddy, Gadi V P

    2015-11-01

    The toxicological effects of pyrethroids on non-target aquatic insects are mediated by several modes of entry of pyrethroids into aquatic ecosystems, as well as the toxicological characteristics of particular pyrethroids under field conditions. Toxicokinetics, movement across the integument of aquatic insects, and the toxicodynamics of pyrethroids are discussed, and their physiological, symptomatic and ecological effects evaluated. The relationship between pyrethroid toxicity and insecticide uptake is not fully defined. Based on laboratory and field data, it is likely that the susceptibility of aquatic insects (vector and non-vector) is related to biochemical and physiological constraints associated with life in aquatic ecosystems. Understanding factors that influence aquatic insects susceptibility to pyrethroids is critical for the effective and safe use of these compounds in areas adjacent to aquatic environments. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Non-targeted bystander effects induced by ionizing radiation

    International Nuclear Information System (INIS)

    Morgan, William F.; Sowa, Marianne B.

    2007-01-01

    Radiation-induced bystander effects refer to those responses occurring in cells that were not subject to energy deposition events following ionizing radiation. These bystander cells may have been neighbors of irradiated cells, or physically separated but subject to soluble secreted signals from irradiated cells. Bystander effects have been observed in vitro and in vivo and for various radiation qualities. In tribute to an old friend and colleague, Anthony V. Carrano, who would have said 'well what are the critical questions that should be addressed, and so what?', we review the evidence for non-targeted radiation-induced bystander effects with emphasis on prevailing questions in this rapidly developing research field, and the potential significance of bystander effects in evaluating the detrimental health effects of radiation exposure

  8. Some important questions connected with non-targeted effects

    International Nuclear Information System (INIS)

    Baverstock, Keith; Belyakov, Oleg V.

    2010-01-01

    This paper briefly reviews the highlights of experimental evidence that led to the adoption of the term 'non-targeted' to describe new effects induced by ionising radiation that did not fit the classical radiobiological paradigm, principally genomic instability and bystander effect, identifying the reports that were most influential on the subsequent course of radiobiological research. The issue of appropriate terminology for the new effects is discussed. Particular emphasis is placed on the inheritance of genomic instability, where there are issues concerning which effects should be considered as transgenerational. Finally, in respect of the question as to whether these new effects are likely to have an impact on human health is addressed. It is concluded that there is a need for a clearer terminology to facilitate research progress, that real health effects cannot be ruled out and that therefore there is a need for new paradigms not only for radiobiology but also for risk assessment and radiological protection.

  9. Semi-automated quantitative Drosophila wings measurements.

    Science.gov (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  10. Short communication. Incidence of the OLIPE mass-trapping on olive non-target arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Porcel, M.; Ruano, F.; Sanllorente, O.; Caballero, J. A.; Campos, M.

    2009-07-01

    Due to the widespread of mass-trapping systems for Bactrocera oleae (Gmelin) (Diptera: Tephritidae) control in organic olive cropping, an assessment of the impact on arthropods of the olive agroecosystem was undertaken for the OLIPE trap type. The sampling was carried out in Los Pedroches valley (Cordoba, southern Spain) in three different organic orchard sites. Six OLIPE traps baited with diammonium phosphate were collected from each site (18 in total) from July to November 2002 every 15 days on average. Additionally, in the latest sampling dates, half the traps were reinforced with pheromone to assess its impact on non-target arthropods. From an average of 43.0 catches per trap (cpt) of non-target arthropods during the whole sampling period, the highest number of captures corresponds to the Order Diptera (that represents a 68.5%), followed distantly by the family Formicidae (12.9%) and the Order Lepidoptera (10.4%). Besides the impact on ant populations, other beneficial groups were recorded such as parasitoids (Other Hymenoptera: 2.6%) and predators (Araneae: 1.0%; Neuroptera s.l.: 0.4%). Concerning the temporal distribution of catches, total captures peaked on July and had a slight increase at the beginning of autumn. No significant differences were observed between traps with and without pheromone. The results evidence that a considerable amount of non-specific captures could be prevented by improving the temporal planning of the mass-trapping system. (Author) 25 refs.

  11. Mutagenic and recombinagenic activity of airborne particulates, PM10 and TSP, organic extracts in the Drosophila wing-spot test

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues Dihl, Rafael [Programa de Pos Graduacao em Genetica e Biologia Molecular (PPGBM), Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Grazielli Azevedo da Silva, Carla [Instituto de Quimica, Departamento de Quimica Organica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Souza do Amaral, Viviane; Reguly, Maria Luiza [Laboratorio de Diagnostico da Toxicidade Genetica (TOXIGEN), Programa de Pos Graduacao em Genetica e Toxicologia Aplicada (PPGGTA), Universidade Luterana do Brasil - ULBRA, Avenida Farroupilha 8001, 92420280 Canoas, RS (Brazil); Rodrigues de Andrade, Heloisa Helena [Laboratorio de Diagnostico da Toxicidade Genetica (TOXIGEN), Programa de Pos Graduacao em Genetica e Toxicologia Aplicada (PPGGTA), Universidade Luterana do Brasil -ULBRA, Avenida Farroupilha 8001, 92420280 Canoas, RS (Brazil)], E-mail: heloisa@ulbra.br

    2008-01-15

    The genotoxicity associated with air pollution in the city of Canoas, Rio Grande do Sul (Brazil), was assessed in November (spring) and January (summer). We applied the somatic mutation and recombination test (SMART) in Drosophila melanogaster in its standard version with normal bioactivation (ST) and in its variant with increased cytochrome P450-dependent biotransformation capacity (HB). The data indicated the genotoxicity of TSP and PM10 collected in November, in both ST and HB crosses. The genotoxic activity of the PM10 material in the spring sample was exclusively associated with the induction of mitotic recombination, whereas the TSP genetic toxicity was due to both recombinational as well as point and/or chromosomal mutation events. Considering PM10 collected in January, a positive response-100% (17.10 m{sup 3}/ml) concentration-was observed in the HB cross, which was not detected in the ST cross. - Drosophila Wing-Spot Test can be used for detection of airborne particulates mutagenesis.

  12. The future impacts of non-targeted effects.

    Science.gov (United States)

    Bright, Scott; Kadhim, Munira

    2018-04-11

    Ionizing radiation was traditionally thought to exert its detrimental effects through interaction with sensitive cellular targets, nuclear DNA being of most importance. This theory has since merged with a more recently described radiation response called non-targeted effects (NTE). This review will briefly look at the various types of NTE and the potential implications they may have for radiobiology research and its applications. The most well-known NTE are genomic instability (GI) and bystander effects (BE). Other NTE include abscopal effects, which are similar to bystander effects but are generally based in a clinical environment with immune involvement as the defining feature. Currently, our understanding of NTE is limited to certain signaling pathways/molecules, and as yet there is no theory that describes or can accurately predict the occurrence or outcome of these NTE. There are numerous groups investigating these processes in vitro and in vivo, and thus steady progress is being made. Developing a deeper understanding of NTE has potential impacts for therapy and diagnosis, safer occupational exposures, space flight and our general understanding of radiation biology.

  13. [Exposure degree of important non-target arthropods to Cry2Aa in Bt rice fields].

    Science.gov (United States)

    Zhang, Qing-Ling; Li, Yun-He; Hua, Hong-Xia; Yang, Chang-Ju; Wu, Hong-Jin; Peng, Yu-Fa

    2013-06-01

    Based on the principle of "risk = hazard x exposure", the selected representative nontarget organisms in the assessment of the potential effects of insect-resistant genetically modified (GM) crops on non-target arthropods in laboratory are generally the arthropod species highly exposed to the insecticidal proteins expressed by the GM crops in farmland ecosystem. In order to understand the exposure degree of the important arthropod species to Cry proteins in Bt rice fields, and to select the appropriate non-target arthropods in the risk assessment of insect-resistant GM crops, the enzyme-linked immunosorbent assay (ELISA) was conducted to measure the Cry2Aa protein concentration in the arthropods collected from the cry2Aa rice fields at different rice growth stages. The results showed that there was a significant difference in the Cry2Aa content protein concentration in different arthropod species. Some species did not contain Cry2Aa protein, while some species contained larger amounts of Cry2Aa protein. Relative to the arthropods colleted after rice anthesis, the arthropods colleted in rice anthesis contained relative higher concentrations of Cry2Aa protein, especially for the predacious arthropods. No Cry proteins were detected in parasitic arthropods. This study provided references for the laboratory assessment of the effects of GM rice on nontarget arthropods.

  14. Non-cancer diseases and non-targeted effects

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Guido, E-mail: guido.hildebrandt@med.uni-rostock.de [Department of Radiotherapy and Radiation Oncology, University of Leipzig, Stephanstrasse 9a, 04103 Leipzig (Germany); Department of Radiotherapy, University of Rostock, Suedring 75, 18059 Rostock (Germany)

    2010-05-01

    It is well established that moderate to high doses of radiation can increase the occurrence also of a variety of non-cancer effects in exposed individuals, but for radiation protection purposes it has generally been assumed that there is a threshold of dose below which no significant non-cancer effects (apart from hereditary disease) arise. In recent years, there is growing epidemiological evidence of excess risk of late occurring cardiovascular disease at much lower radiation doses and occurring over much longer intervals after radiation exposure without a clear cut threshold. However, the epidemiological evidence available so far for non-cancer health effects after exposure to moderate or low radiation doses is suggestive rather than persuasive. The mechanisms of radiation-induced vascular disease induction are far away from being understood. However, it seems to be very likely that inflammatory responses are involved. Recent experimental studies by Stewart et al. could demonstrate that high dose exposure to the cardiovascular system is associated with an earlier onset and accelerated development of macrophage-rich, inflammatory atherosclerotic lesions prone to intra-plaque hemorrhage and may also cause a decrease in myocardial perfusion. Both, macro-vascular and micro-vascular radiation effects involve the endothelium and pro-inflammatory signalling cascades. If modulation of inflammatory response is arguably also the most likely cause of radiation-induced cardiovascular disease after low dose exposure, this also implies a role for non-targeted radiation effects. In the absence of a convincing mechanistic explanation of the currently available epidemiological evidence for radiation-induced cardiovascular risk at low radiation doses, caution is required in the interpretation of the statistical associations. On the other hand, the possibility of such a causal explanation cannot be reliably excluded. Further epidemiological and biological evidence from currently

  15. The Drosophila IKK-related kinase (Ik2 and Spindle-F proteins are part of a complex that regulates cytoskeleton organization during oogenesis

    Directory of Open Access Journals (Sweden)

    Shaanan Boaz

    2008-09-01

    Full Text Available Abstract Background IkappaB kinases (IKKs regulate the activity of Rel/NF-kappaB transcription factors by targeting their inhibitory partner proteins, IkappaBs, for degradation. The Drosophila genome encodes two members of the IKK family. Whereas the first is a kinase essential for activation of the NF-kappaB pathway, the latter does not act as IkappaB kinase. Instead, recent findings indicate that Ik2 regulates F-actin assembly by mediating the function of nonapoptotic caspases via degradation of DIAP1. Also, it has been suggested that ik2 regulates interactions between the minus ends of the microtubules and the actin-rich cortex in the oocyte. Since spn-F mutants display oocyte defects similar to those of ik2 mutant, we decided to investigate whether Spn-F could be a direct regulatory target of Ik2. Results We found that Ik2 binds physically to Spn-F, biomolecular interaction analysis of Spn-F and Ik2 demonstrating that both proteins bind directly and form a complex. We showed that Ik2 phosphorylates Spn-F and demonstrated that this phosphorylation does not lead to Spn-F degradation. Ik2 is localized to the anterior ring of the oocyte and to punctate structures in the nurse cells together with Spn-F protein, and both proteins are mutually required for their localization. Conclusion We conclude that Ik2 and Spn-F form a complex, which regulates cytoskeleton organization during Drosophila oogenesis and in which Spn-F is the direct regulatory target for Ik2. Interestingly, Ik2 in this complex does not function as a typical IKK in that it does not direct SpnF for degradation following phosphorylation.

  16. Interorgan Communication Pathways in Physiology: Focus on Drosophila

    OpenAIRE

    Droujinine, Ilia A.; Perrimon, Norbert

    2016-01-01

    Studies in mammals and Drosophila have demonstrated the existence and significance of secreted factors involved in communication between distal organs. In this review, primarily focusing on Drosophila, we examine the known interorgan communication factors and their functions, physiological inducers, and integration in regulating physiology. Moreover, we describe how organ-sensing screens in Drosophila can systematically identify novel conserved interorgan communication factors. Finally, we di...

  17. Modelling Cooperative Tumorigenesis in Drosophila

    Science.gov (United States)

    2018-01-01

    The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression. PMID:29693007

  18. Modelling Cooperative Tumorigenesis in Drosophila

    Directory of Open Access Journals (Sweden)

    Helena E. Richardson

    2018-01-01

    Full Text Available The development of human metastatic cancer is a multistep process, involving the acquisition of several genetic mutations, tumour heterogeneity, and interactions with the surrounding microenvironment. Due to the complexity of cancer development in mammals, simpler model organisms, such as the vinegar fly, Drosophila melanogaster, are being utilized to provide novel insights into the molecular mechanisms involved. In this review, we highlight recent advances in modelling tumorigenesis using the Drosophila model, focusing on the cooperation of oncogenes or tumour suppressors, and the interaction of mutant cells with the surrounding tissue in epithelial tumour initiation and progression.

  19. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals.

    Science.gov (United States)

    Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F; Jaiswal, Sonal Nagarkar; Cai, Tiantian; Godt, Dorothea; Groves, Andrew K; Bellen, Hugo J

    2016-06-22

    Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs.

  20. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals

    Science.gov (United States)

    Li, Tongchao; Giagtzoglou, Nikolaos; Eberl, Daniel F; Jaiswal, Sonal Nagarkar; Cai, Tiantian; Godt, Dorothea; Groves, Andrew K; Bellen, Hugo J

    2016-01-01

    Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs. DOI: http://dx.doi.org/10.7554/eLife.15258.001 PMID:27331610

  1. Phylogeny of the Genus Drosophila

    Science.gov (United States)

    O’Grady, Patrick M.; DeSalle, Rob

    2018-01-01

    Understanding phylogenetic relationships among taxa is key to designing and implementing comparative analyses. The genus Drosophila, which contains over 1600 species, is one of the most important model systems in the biological sciences. For over a century, one species in this group, Drosophila melanogaster, has been key to studies of animal development and genetics, genome organization and evolution, and human disease. As whole-genome sequencing becomes more cost-effective, there is increasing interest in other members of this morphologically, ecologically, and behaviorally diverse genus. Phylogenetic relationships within Drosophila are complicated, and the goal of this paper is to provide a review of the recent taxonomic changes and phylogenetic relationships in this genus to aid in further comparative studies. PMID:29716983

  2. Patterning Muscles Using Organizers: Larval Muscle Templates and Adult Myoblasts Actively Interact to Pattern the Dorsal Longitudinal Flight Muscles of Drosophila

    Science.gov (United States)

    Roy, Sudipto; VijayRaghavan, K.

    1998-01-01

    Pattern formation in muscle development is often mediated by special cells called muscle organizers. During metamorphosis in Drosophila, a set of larval muscles function as organizers and provide scaffolding for the development of the dorsal longitudinal flight muscles. These organizers undergo defined morphological changes and dramatically split into templates as adult fibers differentiate during pupation. We have investigated the cellular mechanisms involved in the use of larval fibers as templates. Using molecular markers that label myoblasts and the larval muscles themselves, we show that splitting of the larval muscles is concomitant with invasion by imaginal myoblasts and the onset of differentiation. We show that the Erect wing protein, an early marker of muscle differentiation, is not only expressed in myoblasts just before and after fusion, but also in remnant larval nuclei during muscle differentiation. We also show that interaction between imaginal myoblasts and larval muscles is necessary for transformation of the larval fibers. In the absence of imaginal myoblasts, the earliest steps in metamorphosis, such as the escape of larval muscles from histolysis and changes in their innervation, are normal. However, subsequent events, such as the splitting of these muscles, fail to progress. Finally, we show that in a mutant combination, null for Erect wing function in the mesoderm, the splitting of the larval muscles is aborted. These studies provide a genetic and molecular handle for the understanding of mechanisms underlying the use of muscle organizers in muscle patterning. Since the use of such organizers is a common theme in myogenesis in several organisms, it is likely that many of the processes that we describe are conserved. PMID:9606206

  3. Radiation responses of stem cells: targeted and non-targeted effects

    International Nuclear Information System (INIS)

    Kavanagh, J.N.; Waring, E.J.; Prise, K.M.

    2015-01-01

    Stem cells are fundamental to the development of any tissue or organism via their ability to self-renew, which is aided by their unlimited proliferative capacity and their ability to produce fully differentiated offspring, often from multiple lineages. Stems cells are long lived and have the potential to accumulate mutations, including in response to radiation exposure. It is thought that stem cells have the potential to be induced into a cancer stem cell phenotype and that these may play an important role in resistance to radiotherapy. For radiation-induced carcinogenesis, the role of targeted and non-targeted effects is unclear with tissue or origin being important. Studies of genomic instability and bystander responses have shown consistent effects in haematopoietic models. Several models of radiation have predicted that stem cells play an important role in tumour initiation and that bystander responses could play a role in proliferation and self-renewal. (authors)

  4. Dynein-dependent transport of nanos RNA in Drosophila sensory neurons requires Rumpelstiltskin and the germ plasm organizer Oskar.

    Science.gov (United States)

    Xu, Xin; Brechbiel, Jillian L; Gavis, Elizabeth R

    2013-09-11

    Intracellular mRNA localization is a conserved mechanism for spatially regulating protein production in polarized cells, such as neurons. The mRNA encoding the translational repressor Nanos (Nos) forms ribonucleoprotein (RNP) particles that are dendritically localized in Drosophila larval class IV dendritic arborization (da) neurons. In nos mutants, class IV da neurons exhibit reduced dendritic branching complexity, which is rescued by transgenic expression of wild-type nos mRNA but not by a localization-compromised nos derivative. While localization is essential for nos function in dendrite morphogenesis, the mechanism underlying the transport of nos RNP particles was unknown. We investigated the mechanism of dendritic nos mRNA localization by analyzing requirements for nos RNP particle motility in class IV da neuron dendrites through live imaging of fluorescently labeled nos mRNA. We show that dynein motor machinery components mediate transport of nos mRNA in proximal dendrites. Two factors, the RNA-binding protein Rumpelstiltskin and the germ plasm protein Oskar, which are required for diffusion/entrapment-mediated localization of nos during oogenesis, also function in da neurons for formation and transport of nos RNP particles. Additionally, we show that nos regulates neuronal function, most likely independent of its dendritic localization and function in morphogenesis. Our results reveal adaptability of localization factors for regulation of a target transcript in different cellular contexts.

  5. Anticoagulant rodenticide toxicity to non-target wildlife under controlled exposure conditions

    Science.gov (United States)

    Rattner, Barnett A.; Mastrota, F. Nicholas; van den Brink, Nico; Elliott, J.; Shore, R.; Rattner, B.

    2018-01-01

    wildlife. Ecological risk assessments of anticoagulant rodenticides would be improved with additional data on (i) interspecific differences in sensitivity, particularly for understudied taxa, (ii) sublethal effects unrelated to coagulopathy, (iii) responses to mixtures and sequential exposures, and (iv) the role of vitamin K status on toxicity, and significance of inclusion of supplemental vitamin K or menadione (provitamin) in the diet of test organisms. A more complete understanding of the toxicity of anticoagulant rodenticides in non-target wildlife would enable regulators and natural resource managers to better predict and even mitigate risk.

  6. Effects of the herbicide glyphosate on non-target plant native species from Chaco forest (Argentina).

    Science.gov (United States)

    Florencia, Ferreira María; Carolina, Torres; Enzo, Bracamonte; Leonardo, Galetto

    2017-10-01

    Agriculture based on transgenic crops has expanded in Argentina into areas formerly occupied by Chaco forest. Even though glyphosate is the herbicide most widely used in the world, increasing evidence indicates severe ecotoxicological effects on non-target organisms as native plants. The aim of this work is to determine glyphosate effects on 23 native species present in the remaining Chaco forests immersed in agricultural matrices. This is a laboratory/greenhouse approach studying acute effects on seedlings after 21 days. A gradient of glyphosate rates (525, 1050, 2100, 4200, and 8400g ai/Ha; recommended field application rate (RFAR) = 2100g ai/Ha) was applied on four-week seedlings cultivated in a greenhouse and response variables (phytotoxicity, growth reduction, and sensitivity to the herbicide) were measured. This gradient of herbicide rates covers realistic rates of glyphosate applications in the crop field and also those that can reach vegetation of forest relicts by off-target drift and overspray. Testing was performed following guidelines for vegetative vigour (post-germination spray). All species showed lethal or sublethal effects after the application of the 25% of RFAR (50% of species showed severe phytotoxicity or death and 70% of species showed growth reduction). The results showed a gradient of sensitivity to glyphosate by which some of the studied species are very sensitive to glyphosate and seedlings died with 25% of RFAR while other species can be classified as herbicide-tolerant. Thus, the vegetation present in the forest relicts could be strongly affected by glyphosate application on crops. Lethal and sublethal effects of glyphosate on non-target plants could promote both the loss of biodiversity in native forest relicts immersed in the agroecosystems and the selection of new crop weeds considering that some biotypes are continuously exposed to low doses of glyphosate. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Mapping of gene mutations in drosophila melanogaster

    OpenAIRE

    Halvorsen, Charlotte Marie

    2004-01-01

    In this experiment, mutant genes of a given unknown mutant strain of Drosophila melanogaster were mapped to specific chromosomes. Drosophila melanogaster, commonly known as the fruit fly, was the appropriate choice for the organism to use in this specific experiment because of its relatively rapid life cycle of 10-14 days and because of the small amount of space and food neccessary for maintaining thousands of flies. The D. Melanogaster unknown strain specifically used in this experiment wa...

  8. Non-target trials with Pseudomonas fluorescens strain CL145A, a lethal control agent of dreissenid mussels (Bivalvia: Dreissenidae

    Directory of Open Access Journals (Sweden)

    Daniel P. Molloy

    2013-01-01

    these invertebrate and vertebrate non-target trials areencouraging, but it would be unrealistic to think that dreissenids are the only aquatic organisms sensitive to Pf-CL145A’s dreissenid-killingnatural product. Additional testing is needed to better define Pf-CL145A’s margin of safety by identifying the sensitivity of other susceptibleorganisms. The results of these non-target safety trials – in combination with equally promising mussel control efficacy data – have now ledto Pf-CL145A’s commercialization under the product name Zequanox®, with dead cells as the product’s active ingredient. The commercialavailability of only dead-cell Zequanox formulations will eliminate the risk of any possible non-target infection by Pf-CL145A, furtherreducing environmental concerns. During the non-target project reported herein, the limited quantities of Pf-CL145A cells that we were ableto culture severely restricted the number and size of our trials. In contrast, the availability of Zequanox will now greatly expand theopportunities for non-target testing. The trials reported herein – exposing non-target organisms under aerated conditions to unformulated,laboratory-cultured cells – clearly point to Pf-CL145A’s potential for high host specificity, but non-target trials with Zequanox – using Pf-CL145A cells cultured, killed, and formulated using industrial-scale protocols – will be even more important as they will define the nontargetsafety limits of the actual commercial products under a wide range of environmental conditions.

  9. The non-target impact of spinosyns on beneficial arthropods.

    Science.gov (United States)

    Biondi, Antonio; Mommaerts, Veerle; Smagghe, Guy; Viñuela, Elisa; Zappalà, Lucia; Desneux, Nicolas

    2012-12-01

    Spinosyn-based products, mostly spinosad, have been widely recommended by extension specialists and agribusiness companies; consequently, they have been used to control various pests in many different cropping systems. Following the worldwide adoption of spinosad-based products for integrated and organic farming, an increasing number of ecotoxicological studies have been published in the past 10 years. These studies are primarily related to the risk assessment of spinosad towards beneficial arthropods. This review takes into account recent data with the aim of (i) highlighting potentially adverse effects of spinosyns on beneficial arthropods (and hence on ecosystem services that they provide in agroecosystems), (ii) clarifying the range of methods used to address spinosyn side effects on biocontrol agents and pollinators in order to provide new insights for the development of more accurate bioassays, (iii) identifying pitfalls when analysing laboratory results to assess field risks and (iv) gaining increasing knowledge on side effects when using spinosad for integrated pest management (IPM) programmes and organic farming. For the first time, a thorough review of possible risks of spinosad and novel spinosyns (such as spinetoram) to beneficial arthropods (notably natural enemies and pollinators) is provided. The acute lethal effect and multiple sublethal effects have been identified in almost all arthropod groups studied. This review will help to optimise the future use of spinosad and new spinosyns in IPM programmes and for organic farming, notably by preventing the possible side effects of spinosyns on beneficial arthropods. Copyright © 2012 Society of Chemical Industry.

  10. The implementation of flipped classroom model in CIE in the environment of non-target language

    Science.gov (United States)

    Xiao, Renfei; Mustofa, Ali; Zhang, Fang; Su, Xiaoxue

    2018-01-01

    This paper sets a theoretical framework that it’s both feasible and indispensable of flipping classroom in Chinese International Education (CIE) in the non-target language environments. There are mainly three sections included: 1) what is flipped classroom and why it becomes inevitable existence; 2) why should we flip the classroom in CIE environments, especially in non-target language environments; 3) take Pusat Bahasa Mandarin Universitas Negeri Surabaya as an instance to discuss the application of flipped classroom in non-target language environments.

  11. Drosophila Courtship Conditioning As a Measure of Learning and Memory

    NARCIS (Netherlands)

    Koemans, T.S.; Oppitz, C.; Donders, R.; Bokhoven, H. van; Schenck, A.; Keleman, K.; Kramer, J.M.

    2017-01-01

    Many insights into the molecular mechanisms underlying learning and memory have been elucidated through the use of simple behavioral assays in model organisms such as the fruit fly, Drosophila melanogaster. Drosophila is useful for understanding the basic neurobiology underlying cognitive deficits

  12. The organization and evolution of the Responder satellite in species of the Drosophila melanogaster group: dynamic evolution of a target of meiotic drive.

    Science.gov (United States)

    Larracuente, Amanda M

    2014-11-25

    Satellite DNA can make up a substantial fraction of eukaryotic genomes and has roles in genome structure and chromosome segregation. The rapid evolution of satellite DNA can contribute to genomic instability and genetic incompatibilities between species. Despite its ubiquity and its contribution to genome evolution, we currently know little about the dynamics of satellite DNA evolution. The Responder (Rsp) satellite DNA family is found in the pericentric heterochromatin of chromosome 2 of Drosophila melanogaster. Rsp is well-known for being the target of Segregation Distorter (SD)- an autosomal meiotic drive system in D. melanogaster. I present an evolutionary genetic analysis of the Rsp family of repeats in D. melanogaster and its closely-related species in the melanogaster group (D. simulans, D. sechellia, D. mauritiana, D. erecta, and D. yakuba) using a combination of available BAC sequences, whole genome shotgun Sanger reads, Illumina short read deep sequencing, and fluorescence in situ hybridization. I show that Rsp repeats have euchromatic locations throughout the D. melanogaster genome, that Rsp arrays show evidence for concerted evolution, and that Rsp repeats exist outside of D. melanogaster, in the melanogaster group. The repeats in these species are considerably diverged at the sequence level compared to D. melanogaster, and have a strikingly different genomic distribution, even between closely-related sister taxa. The genomic organization of the Rsp repeat in the D. melanogaster genome is complex-it exists of large blocks of tandem repeats in the heterochromatin and small blocks of tandem repeats in the euchromatin. My discovery of heterochromatic Rsp-like sequences outside of D. melanogaster suggests that SD evolved after its target satellite and that the evolution of the Rsp satellite family is highly dynamic over a short evolutionary time scale (<240,000 years).

  13. Non-target effects of fungicides on nectar-inhabiting fungi of almond flowers.

    Science.gov (United States)

    Schaeffer, Robert N; Vannette, Rachel L; Brittain, Claire; Williams, Neal M; Fukami, Tadashi

    2017-04-01

    Nectar mediates interactions between plants and pollinators in natural and agricultural systems. Specialized microorganisms are common nectar inhabitants, and potentially important mediators of plant-pollinator interactions. However, their diversity and role in mediating pollination services in agricultural systems are poorly characterized. Moreover, agrochemicals are commonly applied to minimize crop damage, but may present ecological consequences for non-target organisms. Assessment of ecological risk has tended to focus on beneficial macroorganisms such as pollinators, with less attention paid to microorganisms. Here, using culture-independent methods, we assess the impact of two widely-used fungicides on nectar microbial community structure in the mass-flowering crop almond (Prunus dulcis). We predicted that fungicide application would reduce fungal richness and diversity, whereas competing bacterial richness would increase, benefitting from negative effects on fungi. We found that fungicides reduced fungal richness and diversity in exposed flowers, but did not significantly affect bacterial richness, diversity, or community composition. The relative abundance of Metschnikowia OTUs, nectar specialists that can impact pollination, was reduced by both fungicides. Given growing recognition of the importance of nectar microorganisms as mediators of plant-pollinator mutualisms, future research should consider the impact of management practices on plant-associated microorganisms and consequences for pollination services in agricultural landscapes. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Metabolome analysis of Drosophila melanogaster during embryogenesis.

    Science.gov (United States)

    An, Phan Nguyen Thuy; Yamaguchi, Masamitsu; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-01-01

    The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos' metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo.

  15. Interorgan Communication Pathways in Physiology: Focus on Drosophila.

    Science.gov (United States)

    Droujinine, Ilia A; Perrimon, Norbert

    2016-11-23

    Studies in mammals and Drosophila have demonstrated the existence and significance of secreted factors involved in communication between distal organs. In this review, primarily focusing on Drosophila, we examine the known interorgan communication factors and their functions, physiological inducers, and integration in regulating physiology. Moreover, we describe how organ-sensing screens in Drosophila can systematically identify novel conserved interorgan communication factors. Finally, we discuss how interorgan communication enabled and evolved as a result of specialization of organs. Together, we anticipate that future studies will establish a model for metazoan interorgan communication network (ICN) and how it is deregulated in disease.

  16. Limited taste discrimination in Drosophila.

    Science.gov (United States)

    Masek, Pavel; Scott, Kristin

    2010-08-17

    In the gustatory systems of mammals and flies, different populations of sensory cells recognize different taste modalities, such that there are cells that respond selectively to sugars and others to bitter compounds. This organization readily allows animals to distinguish compounds of different modalities but may limit the ability to distinguish compounds within one taste modality. Here, we developed a behavioral paradigm in Drosophila melanogaster to evaluate directly the tastes that a fly distinguishes. These studies reveal that flies do not discriminate among different sugars, or among different bitter compounds, based on chemical identity. Instead, flies show a limited ability to distinguish compounds within a modality based on intensity or palatability. Taste associative learning, similar to olfactory learning, requires the mushroom bodies, suggesting fundamental similarities in brain mechanisms underlying behavioral plasticity. Overall, these studies provide insight into the discriminative capacity of the Drosophila gustatory system and the modulation of taste behavior.

  17. Molecular Cloning, Genomic Organization and Developmental Regulation of a Novel Receptor from Drosophila melanogaster Structurally Related to Gonadotropin-Releasing Hormone Receptors from Vertebrates

    DEFF Research Database (Denmark)

    Hauser, Frank; Søndergaard, Leif; Grimmelikhuijzen, Cornelis J.P.

    1998-01-01

    After screening the data base of the BerkeleyDrosophilaGenome Project with a sequence coding for the transmembrane region of a G protein-coupled receptor, we found thatDrosophilamight contain a gene coding for a receptor that is structurally related to the Gonadotropin-Releasing Hormone (GnRH) re...

  18. [WMN: a negative ERPs component related to working memory during non-target visual stimuli processing].

    Science.gov (United States)

    Zhao, Lun; Wei, Jin-he

    2003-10-01

    To study non-target stimuli processing in the brain. Features of the event-related potentials (ERPs) from non-target stimuli during selective response task (SR) was compared with that during visual selective discrimination (DR) task in 26 normal subjects. The stimuli consisted of two color LED flashes (red and green) appeared randomly in left (LVF) or right (RVF) visual field with same probability. ERPs were derived at 9 electrode sites on the scalp under 2 task conditions: a) SR, making switch response to the target (NT) stimuli from LVF or RVF in one direction and making no response to the non-target (NT) ones; b) DR, making switching response to T stimuli differentially, i.e., to the left for T from LVF and to the right for T from RVF. 1) the non-target stimuli in DR conditions, compared with that in SR condition, elicited smaller P2 and P3 components and larger N2 component at the frontal brain areas; 2) a significant negative component, named as WMN (working memory negativity), appeared in the non-target ERPs during DR in the period of 100 to 700 ms post stimulation which was predominant at the frontal brain areas. According to the major difference between brain activities for non-target stimuli during SR and DR, the predominant appearance of WMN at the frontal brain areas demonstrated that the non-target stimulus processing was an active process and was related to working memory, i.e., the temporary elimination and the retrieval of the response mode which was stored in working memory.

  19. Non-targeted effects of ionising radiation. Proceedings of the RISC-RAD specialised training course

    International Nuclear Information System (INIS)

    Belyakov, O.V.

    2008-12-01

    The training course 'Non-targeted effects of ionising radiation' took place at the STUK, Radiation and Nuclear Safety Authority, Helsinki, Finland 14-16 February 2005. Proceeding of this course is collected in this volume. The idea of the course was to convene a number of scientists leading in the area of non-targeted effects of ionising radiation with the aim to outline their visions for the role of these effects and outline the future directions of radiation research on the basis of their expertise. The course was supported by the RISC-RAD IP FI6R-CT-2003-508842, Euratom specific programme for research and training on nuclear energy, 6th FP of the EC. The main objectives of the training course were: (1) to clarify the mechanisms of non-targeted effects, in particular, bystander effects, genomic instability and adaptive response; (2) to look if and how non-targeted effects modulate the cancer risk in the low dose region, and whether they relate to protective or harmful functions; (3) to clarify if ionising radiation can cause non-cancer diseases or beneficial effects at low and intermediate doses; (4) address the issue of individual susceptibility and other factors modifying non-targeted responses; (5) attempt to assess the relevance of non-targeted effects for radiation protection and to set the scientific basis for a modern, more realistic, radiation safety system; (6) and finally to contribute to the conceptualisation of a new paradigm in radiation biology that would cover both the classical direct (DNA-targeted) and non-targeted (indirect) effects

  20. Viruses and Antiviral Immunity in Drosophila

    Science.gov (United States)

    Xu, Jie; Cherry, Sara

    2013-01-01

    Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools available in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue. PMID:23680639

  1. Non-targeted Colonization by the Endomycorrhizal Fungus, Serendipita vermifera, in Three Weeds Typically Co-occurring with Switchgrass

    Directory of Open Access Journals (Sweden)

    Prasun Ray

    2018-01-01

    Full Text Available Serendipita vermifera (=Sebacina vermifera; isolate MAFF305830 is a mycorrhizal fungus originally isolated from the roots of an Australian orchid that we have previously shown to be beneficial in enhancing biomass yield and drought tolerance in switchgrass, an important bioenergy crop for cellulosic ethanol production in the United States. However, almost nothing is known about how this root-associated fungus proliferates and grows through the soil matrix. Such information is critical to evaluate the possibility of non-target effects, such as unintended spread to weedy plants growing near a colonized switchgrass plant in a field environment. A microcosm experiment was conducted to study movement of vegetative mycelia of S. vermifera between intentionally inoculated switchgrass (Panicum virgatum L. and nearby weeds. We constructed size-exclusion microcosms to test three different common weeds, large crabgrass (Digitaria sanguinalis L., Texas panicum (Panicum texanum L., and Broadleaf signalgrass (Brachiaria platyphylla L., all species that typically co-occur in Southern Oklahoma and potentially compete with switchgrass. We report that such colonization of non-target plants by S. vermifera can indeed occur, seemingly via co-mingled root systems. As a consequence of colonization, significant enhancement of growth was noted in signalgrass, while a mild increase (albeit not significant was evident in crabgrass. Migration of the fungus seems unlikely in root-free bulk soil, as we failed to see transmission when the roots were kept separate. This research is the first documentation of non-targeted colonization of this unique root symbiotic fungus and highlights the need for such assessments prior to deployment of biological organisms in the field.

  2. Fine-structure analysis and gentic organization at the base of the x chromosome in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Lifschytz, E.

    1978-01-01

    Genetic organization at the base of the X chromosome was studied through the analysis of x-ray-induced deficiencies. Deficiencies were recovered so as to have a preselected right end anchored in the centric heterochromatin to the right of the su(f) locus. Free ends of deficiencies occurred at any of 22 intervals in Section 20 and in the proximal portion of Section 19 of Bridges' (1938) polytene chromosome map. The distribution of 130 such free ends of deficiencies induced in normal, In(1)sc 8 , and In(1)w/sup m4/ chromosomes suggests that on the single section level, genes are flanked by hot or cold sites for x-ray-induced breaks, and that occurrence of the hot spots is dependent on their interaction with the fixed-end sites in the centric heterochromatin. In the light of these results, it is argued that long heterochromatic sequences separate the relatively few genes in Section 20, and thus endow it with several characteristics typical of heterochromatic regions. Section 20 is considered to be a transition region between the mostly heterochromatic and mostly euchromatic regions of the X chromosome; the differences between them are suggested as being merely quantitative

  3. Non-targeted effects of ionising radiation - Implications for radiation protection

    International Nuclear Information System (INIS)

    Sisko Salomaa

    2006-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (author)

  4. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Sisko Salomaa [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (LNT) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (author)

  5. Planar Cell Polarity Breaks the Symmetry of PAR Protein Distribution prior to Mitosis in Drosophila Sensory Organ Precursor Cells.

    Science.gov (United States)

    Besson, Charlotte; Bernard, Fred; Corson, Francis; Rouault, Hervé; Reynaud, Elodie; Keder, Alyona; Mazouni, Khalil; Schweisguth, François

    2015-04-20

    During development, cell-fate diversity can result from the unequal segregation of fate determinants at mitosis. Polarization of the mother cell is essential for asymmetric cell division (ACD). It often involves the formation of a cortical domain containing the PAR complex proteins Par3, Par6, and atypical protein kinase C (aPKC). In the fly notum, sensory organ precursor cells (SOPs) divide asymmetrically within the plane of the epithelium and along the body axis to generate two distinct cells. Fate asymmetry depends on the asymmetric localization of the PAR complex. In the absence of planar cell polarity (PCP), SOPs divide with a random planar orientation but still asymmetrically, showing that PCP is dispensable for PAR asymmetry at mitosis. To study when and how the PAR complex localizes asymmetrically, we have used a quantitative imaging approach to measure the planar polarization of the proteins Bazooka (Baz, fly Par3), Par6, and aPKC in living pupae. By using imaging of functional GFP-tagged proteins with image processing and computational modeling, we find that Baz, Par6, and aPKC become planar polarized prior to mitosis in a manner independent of the AuroraA kinase and that PCP is required for the planar polarization of Baz, Par6, and aPKC during interphase. This indicates that a "mitosis rescue" mechanism establishes asymmetry at mitosis in PCP mutants. This study therefore identifies PCP as the initial symmetry-breaking signal for the planar polarization of PAR proteins in asymmetrically dividing SOPs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Drosophila: Retrotransposons Making up Telomeres.

    Science.gov (United States)

    Casacuberta, Elena

    2017-07-19

    Drosophila and extant species are the best-studied telomerase exception. In this organism, telomere elongation is coupled with targeted retrotransposition of Healing Transposon (HeT-A) and Telomere Associated Retrotransposon (TART) with sporadic additions of Telomere Associated and HeT-A Related (TAHRE), all three specialized non-Long Terminal Repeat (non-LTR) retrotransposons. These three very special retroelements transpose in head to tail arrays, always in the same orientation at the end of the chromosomes but never in interior locations. Apparently, retrotransposon and telomerase telomeres might seem very different, but a detailed view of their mechanisms reveals similarities explaining how the loss of telomerase in a Drosophila ancestor could successfully have been replaced by the telomere retrotransposons. In this review, we will discover that although HeT-A, TART, and TAHRE are still the only examples to date where their targeted transposition is perfectly tamed into the telomere biology of Drosophila, there are other examples of retrotransposons that manage to successfully integrate inside and at the end of telomeres. Because the aim of this special issue is viral integration at telomeres, understanding the base of the telomerase exceptions will help to obtain clues on similar strategies that mobile elements and viruses could have acquired in order to ensure their survival in the host genome.

  7. Optogenetic pacing in Drosophila melanogaster

    Science.gov (United States)

    Alex, Aneesh; Li, Airong; Tanzi, Rudolph E.; Zhou, Chao

    2015-01-01

    Electrical stimulation is currently the gold standard for cardiac pacing. However, it is invasive and nonspecific for cardiac tissues. We recently developed a noninvasive cardiac pacing technique using optogenetic tools, which are widely used in neuroscience. Optogenetic pacing of the heart provides high spatial and temporal precisions, is specific for cardiac tissues, avoids artifacts associated with electrical stimulation, and therefore promises to be a powerful tool in basic cardiac research. We demonstrated optogenetic control of heart rhythm in a well-established model organism, Drosophila melanogaster. We developed transgenic flies expressing a light-gated cation channel, channelrhodopsin-2 (ChR2), specifically in their hearts and demonstrated successful optogenetic pacing of ChR2-expressing Drosophila at different developmental stages, including the larva, pupa, and adult stages. A high-speed and ultrahigh-resolution optical coherence microscopy imaging system that is capable of providing images at a rate of 130 frames/s with axial and transverse resolutions of 1.5 and 3.9 μm, respectively, was used to noninvasively monitor Drosophila cardiac function and its response to pacing stimulation. The development of a noninvasive integrated optical pacing and imaging system provides a novel platform for performing research studies in developmental cardiology. PMID:26601299

  8. Intestinal stem cells in the adult Drosophila midgut

    International Nuclear Information System (INIS)

    Jiang, Huaqi; Edgar, Bruce A.

    2011-01-01

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: ► The homeostasis and regeneration of adult fly midguts are mediated by ISCs. ► Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). ► EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. ► Notch signaling regulates ISC self-renewal and differentiation.

  9. A Review on the Toxicity and Non-Target Effects of Macrocyclic Lactones in Terrestrial and Aquatic Environments

    Science.gov (United States)

    Lumaret, Jean-Pierre; Errouissi, Faiek; Floate, Kevin; Römbke, Jörg; Wardhaugh, Keith

    2012-01-01

    The avermectins, milbemycins and spinosyns are collectively referred to as macrocyclic lactones (MLs) which comprise several classes of chemicals derived from cultures of soil micro-organisms. These compounds are extensively and increasingly used in veterinary medicine and agriculture. Due to their potential effects on non-target organisms, large amounts of information on their impact in the environment has been compiled in recent years, mainly caused by legal requirements related to their marketing authorization or registration. The main objective of this paper is to critically review the present knowledge about the acute and chronic ecotoxicological effects of MLs on organisms, mainly invertebrates, in the terrestrial and aquatic environment. Detailed information is presented on the mode-of-action as well as the ecotoxicity of the most important compounds representing the three groups of MLs. This information, based on more than 360 references, is mainly provided in nine tables, presenting the effects of abamectin, ivermectin, eprinomectin, doramectin, emamectin, moxidectin, and spinosad on individual species of terrestrial and aquatic invertebrates as well as plants and algae. Since dung dwelling organisms are particularly important non-targets, as they are exposed via dung from treated animals over their whole life-cycle, the information on the effects of MLs on dung communities is compiled in an additional table. The results of this review clearly demonstrate that regarding environmental impacts many macrocyclic lactones are substances of high concern particularly with larval instars of invertebrates. Recent studies have also shown that susceptibility varies with life cycle stage and impacts can be mitigated by using MLs when these stages are not present. However information on the environmental impact of the MLs is scattered across a wide range of specialised scientific journals with research focusing mainly on ivermectin and to a lesser extent on abamectin

  10. Community composition of target vs. non-target fungi in fungicide treated wheat

    DEFF Research Database (Denmark)

    Knorr, Kamilla; Jørgensen, Lise Nistrup; Justesen, Annemarie Fejer

    2012-01-01

    disease in wheat and within the last decade, new aggressive strains of yellow rust has caused severe epidemics that lead to substantial yield losses. This study explored the community composition of target versus non-target fungi in yellow rust infected wheat as affected by treatment timing and dose......Fungicide treatments are common control strategies used to manage fungal pathogens in agricultural fields, however, effects of treatments on the composition of total fungal communities, including non-target fungi, in the phyllosphere is not well known. Yellow rust (Puccinia striiformis) is a common...

  11. Non-targeted and delayed effects of exposure to ionizing radiation

    International Nuclear Information System (INIS)

    Zuo Yahui; Tong Jian

    2007-01-01

    Non-targeted and delayed effects are relative phenomena in cellular responses to ionizing radiation. These effects (bystander effects, genomic instability and adaptive responses) have been studied most extensively for radiation exposures. It is clear that adaptive responses, bystander effects and genomic instability will play an important role in the low dose-response to radiation. This review will provide a synthesis of the known, and proposed interrelationships amongst low-dose cellular responses to radiation, It also will examine the potential biological significance of non-targeted and delayed effects of exposure to ionizing radiation. (authors)

  12. Study on the non-target effect of ionizing radiation using single cell gel electrophoresis

    International Nuclear Information System (INIS)

    Wang Yan; Li Deguan; Liu Jianfeng; Chu Liping; Liu Qiang

    2008-01-01

    Objective: To assess the non-target effect of ionizing radiation by single cell gel electrophoresis (SCGE). Methods: Cross incubated the irradiated( 137 Cs; 2Gy) or non-irradiated lymphocytes of human peripheral blood in the irradiated or non-irradiated plasma respectively, then, assess the DNA damage of lymphocytes using SCGE analysis. Results: The lymphocytes incubated in the irradiated plasma presented more obvious DNA damage than the incubated in the non-irradiated plasma dose (P<0.05). Conclusion: The non-target effect of ionizing radiation can be assessed by SCGE, and the results confirm that cytokines may play a great role in it. (authors)

  13. Non-targeted effects of ionising radiation (note). A new European integrated project, 2006-2010

    International Nuclear Information System (INIS)

    Salomaa, S.; Wright, E.G.; Hildebrandt, G.; Kadhim, M.; Little, M.P.; Prise, K.M.; Belyakov, O.V.

    2007-01-01

    Complete text of publication follows. The general objectives of the NOTE project are: (1) to investigate the mechanisms of nontargeted effects, in particular, bystander effects, genomic instability and adaptive response; (2) to investigate if and how non-targeted effects modulate the cancer risk in the low dose region, and whether they relate to protective or harmful functions; (3) to investigate if ionising radiation can cause non-cancer diseases or beneficial effects at low and intermediate doses; (4) to investigate individual susceptibility and other factors modifying non-targeted responses; (5) to assess the relevance of non-targeted effects for radiation protection and to set the scientific basis for a modern, more realistic, radiation safety system; (6) to contribute to the conceptualisation of a new paradigm in radiation biology that would cover both the classical direct (DNA-targeted) and non-targeted (indirect) effects. The NOTE brings together 19 major European and Canadian groups involved in the discovery, characterisation and mechanistic investigation of non-targeted effects of ionising radiation in cellular, tissue and animal models. The NOTE research activities are organised in six work packages. Four work packages (WPs 2-5) are problem-oriented, focussing on major questions relevant for the scientific basis of the system of radiation protection: WP2 Mechanisms of non-targeted effects, WP3 Non-cancer diseases, WP4 Factors modifying non-targeted responses, WP5 Modelling of non-targeted effects. The integration activities provided by WP6 strengthen the collaboration by supporting the access to infrastructures, mobility and training. WP7 provides dissemination and exploitation activities in the form of workshops and a public website. Managerial activities (WP1) ensure the organisation and structures for decision making, monitoring of progress, knowledge management and efficient flow of information and financing. Coordinator of the NOTE project is Prof

  14. Impact of Bt crops on non-target organisms – 3 systematic reviews

    Science.gov (United States)

    The cultivation of genetically modified (GM) crops producing Cry toxins, originating from the bacterium Bacillus thuringiensis (Bt), has raised environmental concerns over their sustainable use and consequences for biodiversity and ecosystem services in agricultural land. During the last two decades...

  15. Acute Toxicity of the Antifouling Compound Butenolide in Non-Target Organisms

    KAUST Repository

    Zhang, Yi-Fan; Xiao, Kang; Chandramouli, Kondethimmanahalli; Xu, Ying; Pan, Ke; Wang, Wen-Xiong; Qian, Pei-Yuan

    2011-01-01

    in representative new biocides. Mechanistically, the phenotype of butenolide-treated Danio rerio (zebrafish) embryos was similar to the phenotype of the pro-caspase-3 over-expression mutant with pericardial edema, small eyes, small brains, and increased numbers

  16. Assessing environmental impacts of genetically modified plants on non-target organisms

    NARCIS (Netherlands)

    Arpaia, Salvatore; Birch, A.N.E.; Kiss, Jozsef; Loon, van Joop J.A.; Messéan, Antoine; Nuti, Marco; Perry, Joe N.; Sweet, Jeremy B.; Tebbe, Christoph C.

    2017-01-01

    In legal frameworks worldwide, genetically modified plants (GMPs) are subjected to pre-market environmental risk assessment (ERA) with the aim of identifying potential effects on the environment. In the European Union, the EFSA Guidance Document introduces the rationale that GMPs, as well as their

  17. Longevity and the stress response in Drosophila

    DEFF Research Database (Denmark)

    Vermeulen, Corneel J.; Loeschcke, Volker

    2007-01-01

    briefly review the state of the art of research on ageing and longevity in the model organism Drosophila, with focus on the role of the general stress response. We will conclude by contemplating some of the implications of the findings in this research and will suggest several directions for future...... research. Keywords: Ageing; Stress response; Hsp; Drosophila; Stress......The concept that lifespan is a function of the capacity to withstand extrinsic stress is very old. In concordance with this, long-lived individuals often have increased resistance against a variety of stresses throughout life. Genes underlying the stress response may therefore have the ability...

  18. Receptor Tyrosine Kinases in Drosophila Development

    Science.gov (United States)

    Sopko, Richelle; Perrimon, Norbert

    2013-01-01

    Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases. PMID:23732470

  19. Non-targeted plasma metabolome of early and late lactation gilts

    Science.gov (United States)

    Female pigs nursing their first litter (first-parity gilts) have increased energy requirements not only to support their piglets, but they themselves are still maturing. Non-targeted plasma metabolomics were used to investigate the differences between (1) post-farrowing and weaning (early or late l...

  20. Effects of suction-dredging for cockles on non-target fauna in the Wadden Sea

    NARCIS (Netherlands)

    Hiddink, JG

    2003-01-01

    Suction dredging for cockles removes large cockles from tidal flats and may also cause mortality of non-target fauna and make the habitat less suitable for some species. This study examines whether suction dredging for cockles on tidal flats of the Dutch Wadden Sea had affected densities of

  1. Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli

    International Nuclear Information System (INIS)

    Wood, R.D.; Hutchinson, F.

    1984-01-01

    Non-targeted mutagenesis of lambda phage by ultraviolet light is the increase over background mutagenesis when non-irradiated phage are grown in irradiated Escherichia coli host cells. Such mutagenesis is caused by different processes from targeted mutagenesis, in which mutations in irradiated phage are correlated with photoproducts in the phage DNA. Non-irradiated phage grown in heavily irradiated uvr + host cells showed non-targeted mutations, which were 3/4 frameshifts, whereas targeted mutations were 2/3 transitions. For non-targeted mutagenesis in heavily irradiated host cells, there were one or two mutant phage per mutant burst. From the results of a series of experiments with various mutant host cells, a major pathway of non-targeted mutagenesis by ultraviolet light was proposed which acts in addition to ''SOS induction''. This pathway involves binding of the enzyme DNA polymerase I to damaged genomic DNA, and low polymerase activity leads to frameshift mutations during semiconservative DNA replication. The data suggest that this process will play a much smaller role in ultraviolet mutagenesis of the bacterial genome than it does in the mutagenesis of lambda phage. (author)

  2. Non-targeted mutagenesis of unirradiated lambda phage in Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R.D.; Hutchinson, F. (Yale Univ., New Haven, CT (USA). Dept. of Molecular Biophysics and Biochemistry)

    1984-03-05

    Non-targeted mutagenesis of lambda phage by ultraviolet light is the increase over background mutagenesis when non-irradiated phage are grown in irradiated Escherichia coli host cells. Such mutagenesis is caused by different processes from targeted mutagenesis, in which mutations in irradiated phage are correlated with photoproducts in the phage DNA. Non-irradiated phage grown in heavily irradiated uvr/sup +/ host cells showed non-targeted mutations, which were 3/4 frameshifts, whereas targeted mutations were 2/3 transitions. For non-targeted mutagenesis in heavily irradiated host cells, there were one or two mutant phage per mutant burst. From the results of a series of experiments with various mutant host cells, a major pathway of non-targeted mutagenesis by ultraviolet light was proposed which acts in addition to ''SOS induction''. This pathway involves binding of the enzyme DNA polymerase I to damaged genomic DNA, and low polymerase activity leads to frameshift mutations during semiconservative DNA replication. The data suggest that this process will play a much smaller role in ultraviolet mutagenesis of the bacterial genome than it does in the mutagenesis of lambda phage.

  3. Manifestations and mechanisms of non-targeted effects of ionizing radiation

    International Nuclear Information System (INIS)

    Wright, Eric G.

    2010-01-01

    A well-established radiobiological paradigm is that the biological effects of ionizing radiation occur in irradiated cells as a consequence of the DNA damage they incur. However, many observations of, so-called, non-targeted effects indicate that genetic alterations are not restricted to directly irradiated cells. Non-targeted effects are responses exhibited by non-irradiated cells that are the descendants of irradiated cells (radiation-induced genomic instability) or by cells that have communicated with irradiated cells (radiation-induced bystander effects). Radiation-induced genomic instability is characterized by chromosomal abnormalities, gene mutations and cell death. Similar effects, as well as responses that may be regarded as protective, have been attributed to bystander mechanisms. The majority of studies to date have used in vitro systems but some non-targeted effects have been demonstrated in vivo and there is also evidence for radiation-induced instability in the mammalian germ line. However, there may be situations where radiation-induced genomic instability in vivo may not necessarily identify genomically unstable somatic cells but the manifestation of responses to ongoing production of damaging signals generated by genotype-dependent mechanisms having properties in common with inflammatory processes. Non-targeted mechanisms have significant implications for understanding mechanisms of radiation action but the current state of knowledge does not permit definitive statements about whether these phenomena have implications for assessing radiation risk.

  4. Indirect Effects of Functional Communication Training on Non-Targeted Disruptive Behavior

    Science.gov (United States)

    Schieltz, Kelly M.; Wacker, David P.; Harding, Jay W.; Berg, Wendy K.; Lee, John F.; Padilla Dalmau, Yaniz C.; Mews, Jayme; Ibrahimovic, Muska

    2011-01-01

    The purpose of this study was to evaluate the effects of functional communication training (FCT) on the occurrence of non-targeted disruptive behavior. The 10 participants were preschool-aged children with developmental disabilities who engaged in both destructive (property destruction, aggression, self-injury) and disruptive (hand flapping,…

  5. Effects of neonicotinoids and fipronil on non-target invertebrates : Environmental Science and Pollution Research

    NARCIS (Netherlands)

    Pisa, L.W.; Amaral-Rogers, V.; Belzunces, L.P.; Bonmatin, J.M.; Downs, C.A.; Goulson, D.; Kreutzweiser, D.P.; Krupke, C.; Liess, M.; McField, M.; Morrissey, C.A.; Noome, D.A.; Settele, J.; Simon-Delso, N.; Stark, J.D.; Van der Sluijs, J.P.; Van Dyck, H.; Wiemers, M.

    2015-01-01

    We assessed the state of knowledge regarding the effects of large-scale pollution with neonicotinoid insecticides and fipronil on non-target invertebrate species of terrestrial, freshwater and marine environments. A large section of the assessment is dedicated to the state of knowledge on sublethal

  6. Metabolomic Studies in Drosophila.

    Science.gov (United States)

    Cox, James E; Thummel, Carl S; Tennessen, Jason M

    2017-07-01

    Metabolomic analysis provides a powerful new tool for studies of Drosophila physiology. This approach allows investigators to detect thousands of chemical compounds in a single sample, representing the combined contributions of gene expression, enzyme activity, and environmental context. Metabolomics has been used for a wide range of studies in Drosophila , often providing new insights into gene function and metabolic state that could not be obtained using any other approach. In this review, we survey the uses of metabolomic analysis since its entry into the field. We also cover the major methods used for metabolomic studies in Drosophila and highlight new directions for future research. Copyright © 2017 by the Genetics Society of America.

  7. The Gyc76C Receptor Guanylyl Cyclase and the Foraging cGMP-Dependent Kinase Regulate Extracellular Matrix Organization and BMP Signaling in the Developing Wing of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Justin Schleede

    2015-10-01

    Full Text Available The developing crossveins of the wing of Drosophila melanogaster are specified by long-range BMP signaling and are especially sensitive to loss of extracellular modulators of BMP signaling such as the Chordin homolog Short gastrulation (Sog. However, the role of the extracellular matrix in BMP signaling and Sog activity in the crossveins has been poorly explored. Using a genetic mosaic screen for mutations that disrupt BMP signaling and posterior crossvein development, we identify Gyc76C, a member of the receptor guanylyl cyclase family that includes mammalian natriuretic peptide receptors. We show that Gyc76C and the soluble cGMP-dependent kinase Foraging, likely linked by cGMP, are necessary for normal refinement and maintenance of long-range BMP signaling in the posterior crossvein. This does not occur through cell-autonomous crosstalk between cGMP and BMP signal transduction, but likely through altered extracellular activity of Sog. We identify a novel pathway leading from Gyc76C to the organization of the wing extracellular matrix by matrix metalloproteinases, and show that both the extracellular matrix and BMP signaling effects are largely mediated by changes in the activity of matrix metalloproteinases. We discuss parallels and differences between this pathway and other examples of cGMP activity in both Drosophila melanogaster and mammalian cells and tissues.

  8. The Gyc76C Receptor Guanylyl Cyclase and the Foraging cGMP-Dependent Kinase Regulate Extracellular Matrix Organization and BMP Signaling in the Developing Wing of Drosophila melanogaster.

    Science.gov (United States)

    Schleede, Justin; Blair, Seth S

    2015-10-01

    The developing crossveins of the wing of Drosophila melanogaster are specified by long-range BMP signaling and are especially sensitive to loss of extracellular modulators of BMP signaling such as the Chordin homolog Short gastrulation (Sog). However, the role of the extracellular matrix in BMP signaling and Sog activity in the crossveins has been poorly explored. Using a genetic mosaic screen for mutations that disrupt BMP signaling and posterior crossvein development, we identify Gyc76C, a member of the receptor guanylyl cyclase family that includes mammalian natriuretic peptide receptors. We show that Gyc76C and the soluble cGMP-dependent kinase Foraging, likely linked by cGMP, are necessary for normal refinement and maintenance of long-range BMP signaling in the posterior crossvein. This does not occur through cell-autonomous crosstalk between cGMP and BMP signal transduction, but likely through altered extracellular activity of Sog. We identify a novel pathway leading from Gyc76C to the organization of the wing extracellular matrix by matrix metalloproteinases, and show that both the extracellular matrix and BMP signaling effects are largely mediated by changes in the activity of matrix metalloproteinases. We discuss parallels and differences between this pathway and other examples of cGMP activity in both Drosophila melanogaster and mammalian cells and tissues.

  9. Efficacy and Ecotoxicity of Novel Anti-Fouling Nanomaterials in Target and Non-Target Marine Species.

    Science.gov (United States)

    Avelelas, Francisco; Martins, Roberto; Oliveira, Tânia; Maia, Frederico; Malheiro, Eliana; Soares, Amadeu M V M; Loureiro, Susana; Tedim, João

    2017-04-01

    Biofouling is a global problem that affects virtually all the immersed structures. Currently, several novel environmentally friendly approaches are being tested worldwide to decrease the toxicity of biocides in non-fouling species, such as the encapsulation/immobilization of commercially available biocides, in order to achieve control over the leaching rate. The present study addresses the toxicity of two widely used booster biocides, zinc pyrithione (ZnPT) and copper pyrithione (CuPT), in its free and incorporated forms in order to assess their toxicity and anti-fouling efficacy in target and non-target species. To achieve this goal, the following marine organisms were tested; the green microalgae Tetraselmis chuii (non-target species) and both target species, the diatom Phaeodactylum tricornutum and the mussel Mytilus edulis. Organisms were exposed to both biocides, two unloaded nanostructured materials and nanomaterials loaded with biocides, from 10 μg/L to 100 mg/L total weight, following standard protocols. The most eco-friendly and simultaneously efficient anti-fouling solution against the two photosynthetic species (nanoclays loaded with ZnPT) was then tested on mussels to assess its lethal efficacy (LC 50  = 123 μg/L) and compared with free biocide (LC 50  = 211 μg/L) and unloaded material (LC 50  > 1000 μg/L). A second exposure test with sub-lethal concentrations (lower than 100 μg/L), using mussels, was carried out to assess biochemical changes caused by the tested compounds. Oxidative stress, detoxification and neurotransmission markers were not responsive; however, different antioxidant patterns were found with free ZnPT and loaded nanoclay exposures. Thus, the immobilization of the biocide ZnPT into nanoclays proved to be a promising efficient and eco-friendly anti-fouling strategy.

  10. The influence of sterol metabolism upon radiation-induced aneuploidy of Drosophila melanogaster in the yeast-drosophila system

    International Nuclear Information System (INIS)

    Savitsij, V.V.; Luchnikova, E.M.; Inge-Vechtomov, S.I.

    1985-01-01

    The influence of sterol metabolism upon induced Drosophila melanogaster mutagenesis in an ecology-genetic yeast-drosophila system has been studied. The sterol deficit in fly organism has been created for account of using as food substrate for fremales of biomass of saccharomyces cerevisiae living cells of 9-2-PZ12 train with nyssup(r1) locus mutation which blocks the ergosterol synthesis. It has been found that the Drosophila females content on mutant yeast increases the frequency of losses and non discrepancy of X-chromosomes induced by X-radiation (1000 R). Addition into yeast biomass of 0.1 % cholesterol solution in 10 %-ethanol reduces the oocytes resistance to X-radiation up to control level. Possible hormonal and membrane mechanisms of increasing radiation-induced aneuploidy of Drosophila and the role of sterol metabolism in organism resistance to damaging factors are discussed

  11. Non-targeted effects of ionising radiation—Implications for low dose risk

    DEFF Research Database (Denmark)

    Kadhim, Munira; Salomaa, Sisko; Wright, Eric

    2013-01-01

    and adaptive responses are powered by fundamental, but not clearly understood systems that maintain tissue homeostasis. Despite excellent research in this field by various groups, there are still gaps in our understanding of the likely mechanisms associated with non-DNA targeted effects, particularly......Non-DNA targeted effects of ionising radiation, which include genomic instability, and a variety of bystander effects including abscopal effects and bystander mediated adaptive response, have raised concerns about the magnitude of low-dose radiation risk. Genomic instability, bystander effects....... Furthermore, it is still not known what the initial target and early interactions in cells are that give rise to non-targeted responses in neighbouring or descendant cells. This paper provides a commentary on the current state of the field as a result of the non-targeted effects of ionising radiation (NOTE...

  12. Study of target and non-target interplay in spatial attention task.

    Science.gov (United States)

    Sweeti; Joshi, Deepak; Panigrahi, B K; Anand, Sneh; Santhosh, Jayasree

    2018-02-01

    Selective visual attention is the ability to selectively pay attention to the targets while inhibiting the distractors. This paper aims to study the targets and non-targets interplay in spatial attention task while subject attends to the target object present in one visual hemifield and ignores the distractor present in another visual hemifield. This paper performs the averaged evoked response potential (ERP) analysis and time-frequency analysis. ERP analysis agrees to the left hemisphere superiority over late potentials for the targets present in right visual hemifield. Time-frequency analysis performed suggests two parameters i.e. event-related spectral perturbation (ERSP) and inter-trial coherence (ITC). These parameters show the same properties for the target present in either of the visual hemifields but show the difference while comparing the activity corresponding to the targets and non-targets. In this way, this study helps to visualise the difference between targets present in the left and right visual hemifields and, also the targets and non-targets present in the left and right visual hemifields. These results could be utilised to monitor subjects' performance in brain-computer interface (BCI) and neurorehabilitation.

  13. Non-target adjacent stimuli classification improves performance of classical ERP-based brain computer interface

    Science.gov (United States)

    Ceballos, G. A.; Hernández, L. F.

    2015-04-01

    Objective. The classical ERP-based speller, or P300 Speller, is one of the most commonly used paradigms in the field of Brain Computer Interfaces (BCI). Several alterations to the visual stimuli presentation system have been developed to avoid unfavorable effects elicited by adjacent stimuli. However, there has been little, if any, regard to useful information contained in responses to adjacent stimuli about spatial location of target symbols. This paper aims to demonstrate that combining the classification of non-target adjacent stimuli with standard classification (target versus non-target) significantly improves classical ERP-based speller efficiency. Approach. Four SWLDA classifiers were trained and combined with the standard classifier: the lower row, upper row, right column and left column classifiers. This new feature extraction procedure and the classification method were carried out on three open databases: the UAM P300 database (Universidad Autonoma Metropolitana, Mexico), BCI competition II (dataset IIb) and BCI competition III (dataset II). Main results. The inclusion of the classification of non-target adjacent stimuli improves target classification in the classical row/column paradigm. A gain in mean single trial classification of 9.6% and an overall improvement of 25% in simulated spelling speed was achieved. Significance. We have provided further evidence that the ERPs produced by adjacent stimuli present discriminable features, which could provide additional information about the spatial location of intended symbols. This work promotes the searching of information on the peripheral stimulation responses to improve the performance of emerging visual ERP-based spellers.

  14. Communicating the non-targeted effects of radiation from irradiated to non-irradiated cells

    International Nuclear Information System (INIS)

    Laiakis, E.C.; Morgan, W.F.

    2005-01-01

    For many years, the central dogma in radiobiology has been that energy deposited in the cell nucleus is responsible for the biological effects associated with radiation exposure. However, non-targeted and delayed effects of radiation have shifted this belief. The studies of radiation-induced genomic instability, the bystander and abscopal effects, clastogenic factors, and the Death Inducing Effect have dominated the interest of the radiobiology field of late. The passing of signals from irradiated to non-irradiated cells can be accomplished through cell-to-cell gap junction communication or secretion of molecules, which in turn can elicit a response through activation of signal transduction pathways. Proposed mediators of this phenotype include proteins involved with inflammation. Given their size and connection with oxidative stress, cytokines are an attractive candidate as mediators of the induction of the non-targeted effects of radiation. Here we review the evidence for a possible connection between these delayed non-targeted effects of radiation and the cytokine cascades associated with inflammation. (author)

  15. Toxicity assessment of sodium fluoride in Drosophila melanogaster after chronic sub-lethal exposure.

    Science.gov (United States)

    Dutta, Moumita; Rajak, Prem; Khatun, Salma; Roy, Sumedha

    2017-01-01

    Sodium fluoride (NaF), one of the most frequently used fluoride compound is composed of Na + and F - . Apart from its use in water fluoridation, NaF also acts as a major component for different dental products like toothpastes, gels and mouth rinses etc. The present study was carried out to explore the toxic impact of chronic NaF exposure on a non-target organism, Drosophila melanogaster. The larvae exposed to different concentrations of NaF through food showed a significant increase in HSP70 expression both qualitatively and quantitatively. The altered tail length and tail intensity in Comet assay validate the increased DNA damage in treated larvae. The activity of AChE, oxidative stress marker enzymes, phase I and phase II detoxifying enzymes were found to be significantly inhibited in the treated larvae when compared to control though there was no evidence of dose dependent change in each case. The alterations in the mentioned parameters can be due to increased body Fluoride ion (F - ) concentration since the analysis with ion electrode analyzer revealed that F - concentration increased significantly with NaF treatment. Hence, the results suggest that D. melanogaster manifest prominent toxic response when subjected to chronic exposure to sub-lethal NaF concentrations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Visualization of genome signatures of eukaryote genomes by batch-learning self-organizing map with a special emphasis on Drosophila genomes.

    Science.gov (United States)

    Abe, Takashi; Hamano, Yuta; Ikemura, Toshimichi

    2014-01-01

    A strategy of evolutionary studies that can compare vast numbers of genome sequences is becoming increasingly important with the remarkable progress of high-throughput DNA sequencing methods. We previously established a sequence alignment-free clustering method "BLSOM" for di-, tri-, and tetranucleotide compositions in genome sequences, which can characterize sequence characteristics (genome signatures) of a wide range of species. In the present study, we generated BLSOMs for tetra- and pentanucleotide compositions in approximately one million sequence fragments derived from 101 eukaryotes, for which almost complete genome sequences were available. BLSOM recognized phylotype-specific characteristics (e.g., key combinations of oligonucleotide frequencies) in the genome sequences, permitting phylotype-specific clustering of the sequences without any information regarding the species. In our detailed examination of 12 Drosophila species, the correlation between their phylogenetic classification and the classification on the BLSOMs was observed to visualize oligonucleotides diagnostic for species-specific clustering.

  17. Use of anticoagulant rodenticides in outdoor urban areas: considerations and proposals for the protection of public health and non-target species.

    Science.gov (United States)

    Dutto, M; Di Domenico, D; Rubbiani, M

    2018-01-01

    Rodent control operations represent an important tool for the prevention and management of infestations, in outdoor environments, by synanthropic rodents (Rattus rattus and R. norvegicus), which are a source of economic and environmental damage with significant sanitary implications. Although the use of anticoagulants is safer to humans and pets compared to the use of acute poisoning substances, an intrinsic hazard of the active ingredients exists, i.e. the possible poisoning of non-target organisms (e.g., children, pets and wildlife) following exposure. The risks arising from the use of anticoagulants for rodent control operations in anthropic contexts can therefore only be mitigated by a proper selection of the active ingredient, bait formulation and administration techniques, since an active ingredient with selective action towards non-target species does not currently exist on the market. This document lists practical proposals aimed at reducing the possibility of toxic exposure to anticoagulant rodenticides and mitigate the toxicological risk of human baits and non-target species.

  18. No association between the use of Bti for mosquito control and the dynamics of non-target aquatic invertebrates in French coastal and continental wetlands.

    Science.gov (United States)

    Lagadic, Laurent; Schäfer, Ralf B; Roucaute, Marc; Szöcs, Eduard; Chouin, Sébastien; de Maupeou, Jérôme; Duchet, Claire; Franquet, Evelyne; Le Hunsec, Benoit; Bertrand, Céline; Fayolle, Stéphanie; Francés, Benoît; Rozier, Yves; Foussadier, Rémi; Santoni, Jean-Baptiste; Lagneau, Christophe

    2016-05-15

    The environmental safety of Bacillus thuringiensis subsp. israelensis (Bti) is still controversial, mainly because most of the previous field studies on its undesired effects were spatially limited and did not address the relationship between community similarity and application time and frequency. No general statement can therefore be drawn on the usage conditions of Bti that insure protection of non-target organisms. The present study was conducted in eight sites distributed over the main geographical sectors where mosquito control is implemented in mainland France and Corsica. Changes in non-target aquatic invertebrates were followed at elapsed time after repeated applications of two Bti formulations (VectoBac® WDG or 12AS) up to four consecutive years. We examined the influence of both larvicide treatments and environmental variables on community dynamics and dissimilarity between treated and control areas. As it can be argued that chironomids are the most vulnerable group of non-target invertebrates, we scrutinised potential Bti-related effects on the dynamics of their community. The use of VectoBac® WDG and 12AS in coastal and continental wetlands had no immediate or long-term detectable effect on the taxonomic structure and taxa abundance of non-target aquatic invertebrate communities, including chironomids. This applied to the main habitats where mosquito larvae occur, regardless of their geographic location. Flooding, whose frequency and duration depend on local meteorological and hydrological conditions, was identified as the main environmental driver of invertebrate community dynamics. Our findings add support to the environmental safety of currently available Bti formulations when following recommended application rates and best mosquito control practices. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Assessing risks to non-target species during poison baiting programs for feral cats.

    Directory of Open Access Journals (Sweden)

    Tony Buckmaster

    Full Text Available Poison baiting is used frequently to reduce the impacts of pest species of mammals on agricultural and biodiversity interests. However, baiting may not be appropriate if non-target species are at risk of poisoning. Here we use a desktop decision tree approach to assess the risks to non-target vertebrate species in Australia that arise from using poison baits developed to control feral house cats (Felis catus. These baits are presented in the form of sausages with toxicant implanted in the bait medium within an acid-soluble polymer capsule (hard shell delivery vehicle, or HSDV that disintegrates after ingestion. Using criteria based on body size, diet and feeding behaviour, we assessed 221 of Australia's 3,769 native vertebrate species as likely to consume cat-baits, with 47 of these likely to ingest implanted HSDVs too. Carnivorous marsupials were judged most likely to consume both the baits and HSDVs, with some large-bodied and ground-active birds and reptiles also consuming them. If criteria were relaxed, a further 269 species were assessed as possibly able to consume baits and 343 as possibly able to consume HSDVs; most of these consumers were birds. One threatened species, the Tasmanian devil (Sarcophilus harrisii was judged as definitely able to consume baits with implanted HSDVs, whereas five threatened species of birds and 21 species of threatened mammals were rated as possible consumers. Amphibia were not considered to be at risk. We conclude that most species of native Australian vertebrates would not consume surface-laid baits during feral cat control programs, and that significantly fewer would be exposed to poisoning if HSDVs were employed. However, risks to susceptible species should be quantified in field or pen trials prior to the implementation of a control program, and minimized further by applying baits at times and in places where non-target species have little access.

  20. Non-targeted analysis of unexpected food contaminants using LC-HRMS.

    Science.gov (United States)

    Kunzelmann, Marco; Winter, Martin; Åberg, Magnus; Hellenäs, Karl-Erik; Rosén, Johan

    2018-03-29

    A non-target analysis method for unexpected contaminants in food is described. Many current methods referred to as "non-target" are capable of detecting hundreds or even thousands of contaminants. However, they will typically still miss all other possible contaminants. Instead, a metabolomics approach might be used to obtain "true non-target" analysis. In the present work, such a method was optimized for improved detection capability at low concentrations. The method was evaluated using 19 chemically diverse model compounds spiked into milk samples to mimic unknown contamination. Other milk samples were used as reference samples. All samples were analyzed with UHPLC-TOF-MS (ultra-high-performance liquid chromatography time-of-flight mass spectrometry), using reversed-phase chromatography and electrospray ionization in positive mode. Data evaluation was performed by the software TracMass 2. No target lists of specific compounds were used to search for the contaminants. Instead, the software was used to sort out all features only occurring in the spiked sample data, i.e., the workflow resembled a metabolomics approach. Procedures for chemical identification of peaks were outside the scope of the study. Method, study design, and settings in the software were optimized to minimize manual evaluation and faulty or irrelevant hits and to maximize hit rate of the spiked compounds. A practical detection limit was established at 25 μg/kg. At this concentration, most compounds (17 out of 19) were detected as intact precursor ions, as fragments or as adducts. Only 2 irrelevant hits, probably natural compounds, were obtained. Limitations and possible practical use of the approach are discussed.

  1. Assessing risks to non-target species during poison baiting programs for feral cats.

    Science.gov (United States)

    Buckmaster, Tony; Dickman, Christopher R; Johnston, Michael J

    2014-01-01

    Poison baiting is used frequently to reduce the impacts of pest species of mammals on agricultural and biodiversity interests. However, baiting may not be appropriate if non-target species are at risk of poisoning. Here we use a desktop decision tree approach to assess the risks to non-target vertebrate species in Australia that arise from using poison baits developed to control feral house cats (Felis catus). These baits are presented in the form of sausages with toxicant implanted in the bait medium within an acid-soluble polymer capsule (hard shell delivery vehicle, or HSDV) that disintegrates after ingestion. Using criteria based on body size, diet and feeding behaviour, we assessed 221 of Australia's 3,769 native vertebrate species as likely to consume cat-baits, with 47 of these likely to ingest implanted HSDVs too. Carnivorous marsupials were judged most likely to consume both the baits and HSDVs, with some large-bodied and ground-active birds and reptiles also consuming them. If criteria were relaxed, a further 269 species were assessed as possibly able to consume baits and 343 as possibly able to consume HSDVs; most of these consumers were birds. One threatened species, the Tasmanian devil (Sarcophilus harrisii) was judged as definitely able to consume baits with implanted HSDVs, whereas five threatened species of birds and 21 species of threatened mammals were rated as possible consumers. Amphibia were not considered to be at risk. We conclude that most species of native Australian vertebrates would not consume surface-laid baits during feral cat control programs, and that significantly fewer would be exposed to poisoning if HSDVs were employed. However, risks to susceptible species should be quantified in field or pen trials prior to the implementation of a control program, and minimized further by applying baits at times and in places where non-target species have little access.

  2. Some Aspects of Transmutation Studies in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Oftedal, P.; Kaplan, W. D. [Norsk Hydro Institute for Cancer Research, Oslo (Norway); City of Hope Medical Research Center, Duarte, CA (United States)

    1968-06-15

    The experimental data pertaining to the mutagenic efficiency of {sup 32}P in Drosophila are discussed. It is estimated that the efficiency of the transmutation phenomena is of the order of 10{sup -9} to 10{sup -3} for the induction of recessive lethals. It is thus orders of magnitude lower than that found in bacteria and fungi. The efficiency would be lower - in comparison with the radiation effects - in organisms of greater dimensions than Drosophila, where a smaller fraction of dose is lost through the escape from the organism of high-energy {beta}-particles. Data are also reported on the genetic effects of {sup 3}H-thymidine, {sup 3}H-lysine and {sup 3}H-arginine. It appears that in all probability the effects may be interpreted as caused by radiation alone, if due regard is given to variations in radiation sensitivity and cellular dimensions during spermiogenesis. (author)

  3. Evaluation of a non-targeted "Omic"' approach in the safety assessment of genetically modified plants

    DEFF Research Database (Denmark)

    Metzdorff, Stine Broeng; Kok, E. J.; Knuthsen, Pia

    2006-01-01

    -time PCR, and High Performance Liquid Chromatography. Analysis by cDNA microarray was used as a non-targeted approach for the identification of potential unintended effects caused by the transformation. The results revealed that, although the transgenic lines possessed different types of integration events...... has the potential to become a useful tool for screening of unintended effects, but state that it is crucial to have substantial information on the natural variation in traditional crops in order to be able to interpret "ornics" data correctly within the framework of food safety assessment strategies...

  4. The effect of lindane on non-target fauna in a maize agro-ecosystem in Zambia

    International Nuclear Information System (INIS)

    Deedat, Y.D.; Chanda, S.; Chivundu, A.M.; Kalembe, G.; Mecha, C.D.

    1997-01-01

    The effect of lindane on non-target fauna in a maize agro-ecosystem was studied in Zambia in 1992 and 1993. While lindane was effective against the stalk borers, a target pest, it also affected other non-target fauna. Ants, spiders and springtails were significantly reduced. However the effect was only transient and lasted for approximately two months. Lindane appeared to have no real effect on aerial non-target fauna or on soil inhabiting microorganisms. (author). 8 refs, 6 tabs

  5. Acquisition of Cry1Ac protein by non-target arthropods in Bt soybean fields.

    Directory of Open Access Journals (Sweden)

    Huilin Yu

    Full Text Available Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA. Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults and sampling dates (before, during, and after flowering. Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean.

  6. Acquisition of Cry1Ac Protein by Non-Target Arthropods in Bt Soybean Fields

    Science.gov (United States)

    Yu, Huilin; Romeis, Jörg; Li, Yunhe; Li, Xiangju; Wu, Kongming

    2014-01-01

    Soybean tissue and arthropods were collected in Bt soybean fields in China at different times during the growing season to investigate the exposure of arthropods to the plant-produced Cry1Ac toxin and the transmission of the toxin within the food web. Samples from 52 arthropod species/taxa belonging to 42 families in 10 orders were analysed for their Cry1Ac content using enzyme-linked immunosorbent assay (ELISA). Among the 22 species/taxa for which three samples were analysed, toxin concentration was highest in the grasshopper Atractomorpha sinensis and represented about 50% of the concentration in soybean leaves. Other species/taxa did not contain detectable toxin or contained a concentration that was between 1 and 10% of that detected in leaves. These Cry1Ac-positive arthropods included a number of mesophyll-feeding Hemiptera, a cicadellid, a curculionid beetle and, among the predators, a thomisid spider and an unidentified predatory bug belonging to the Anthocoridae. Within an arthropod species/taxon, the Cry1Ac content sometimes varied between life stages (nymphs/larvae vs. adults) and sampling dates (before, during, and after flowering). Our study is the first to provide information on Cry1Ac-expression levels in soybean plants and Cry1Ac concentrations in non-target arthropods in Chinese soybean fields. The data will be useful for assessing the risk of non-target arthropod exposure to Cry1Ac in soybean. PMID:25110881

  7. BMAA neurotoxicity in Drosophila.

    Science.gov (United States)

    Zhou, Xianchong; Escala, Wilfredo; Papapetropoulos, Spyridon; Bradley, Walter G; Zhai, R Grace

    2009-01-01

    We report the establishment of an in vivo model using the fruit fly Drosophila melanogaster to investigate the toxic effects of L-BMAA. We found that dietary intake of BMAA reduced the lifespan as well as the neurological functions of flies. Furthermore, we have developed an HPLC method to reliably detect both free and protein-bound BMAA in fly tissue extracts.

  8. Cancer in Drosophila

    DEFF Research Database (Denmark)

    Herranz, Héctor; Eichenlaub, Teresa; Cohen, Stephen M

    2016-01-01

    Cancer genomics has greatly increased our understanding of the complexity of the genetic and epigenetic changes found in human tumors. Understanding the functional relationships among these elements calls for the use of flexible genetic models. We discuss the use of Drosophila models to study...

  9. Genotoxicity studies of organically grown broccoli (Brassica oleracea var. italica) and its interactions with urethane, methyl methanesulfonate and 4-nitroquinoline-1-oxide genotoxicity in the wing spot test of Drosophila melanogaster.

    Science.gov (United States)

    Heres-Pulido, María Eugenia; Dueñas-García, Irma; Castañeda-Partida, Laura; Santos-Cruz, Luis Felipe; Vega-Contreras, Viridiana; Rebollar-Vega, Rosa; Gómez-Luna, Juan Carlos; Durán-Díaz, Angel

    2010-01-01

    Broccoli (Brassica oleracea var. italica) has been defined as a cancer preventive food. Nevertheless, broccoli contains potentially genotoxic compounds as well. We performed the wing spot test of Drosophila melanogaster in treatments with organically grown broccoli (OGB) and co-treatments with the promutagen urethane (URE), the direct alkylating agent methyl methanesulfonate (MMS) and the carcinogen 4-nitroquinoline-1-oxide (4-NQO) in the standard (ST) and high bioactivation (HB) crosses with inducible and high levels of cytochrome P450s (CYPs), respectively. Larvae of both crosses were chronically fed with OGB or fresh market broccoli (FMB) as a non-organically grown control, added with solvents or mutagens solutions. In both crosses, the OGB added with Tween-ethanol yielded the expected reduction in the genotoxicity spontaneous rate. OGB co-treatments did not affect the URE effect, MMS showed synergy and 4-NQO damage was modulated in both crosses. In contrast, FMB controls produced damage increase; co-treatments modulated URE genotoxicity, diminished MMS damage, and did not change the 4-NQO damage. The high dietary consumption of both types of broccoli and its protective effects in D. melanogaster are discussed. Copyright 2009 Elsevier Ltd. All rights reserved.

  10. Drosophila melanogaster: a fly through its history and current use.

    Science.gov (United States)

    Stephenson, R; Metcalfe, N H

    2013-01-01

    Drosophila melanogaster, the common fruit fly, has been used as a model organism in both medical and scientific research for over a century. Work by Thomas Hunt Morgan (1866-1945) and his students at Columbia University at the beginning of the twentieth century led to great discoveries such as sex-linked inheritance and that ionising radiation causes mutations in genes. However, the use of Drosophila was not limited to genetic research. Experimentation with this model organism has also led to discoveries in neuroscience and neurodevelopment, including the basis of circadian rhythms. Its complex nervous system, conserved neurological function, and human disease-related loci allow Drosophila to be an ideal model organism for the study of neurodegenerative disease, for which it is used today, aiding research into diseases such as Alzheimer's and Parkinson's, which are becoming more prevalent in today's ageing population.

  11. No association between the use of Bti for mosquito control and the dynamics of non-target aquatic invertebrates in French coastal and continental wetlands

    International Nuclear Information System (INIS)

    Lagadic, Laurent; Schäfer, Ralf B.; Roucaute, Marc; Szöcs, Eduard; Chouin, Sébastien; Maupeou, Jérôme de; Duchet, Claire

    2016-01-01

    The environmental safety of Bacillus thuringiensis subsp. israelensis (Bti) is still controversial, mainly because most of the previous field studies on its undesired effects were spatially limited and did not address the relationship between community similarity and application time and frequency. No general statement can therefore be drawn on the usage conditions of Bti that insure protection of non-target organisms. The present study was conducted in eight sites distributed over the main geographical sectors where mosquito control is implemented in mainland France and Corsica. Changes in non-target aquatic invertebrates were followed at elapsed time after repeated applications of two Bti formulations (VectoBac® WDG or 12AS) up to four consecutive years. We examined the influence of both larvicide treatments and environmental variables on community dynamics and dissimilarity between treated and control areas. As it can be argued that chironomids are the most vulnerable group of non-target invertebrates, we scrutinised potential Bti-related effects on the dynamics of their community. The use of VectoBac® WDG and 12AS in coastal and continental wetlands had no immediate or long-term detectable effect on the taxonomic structure and taxa abundance of non-target aquatic invertebrate communities, including chironomids. This applied to the main habitats where mosquito larvae occur, regardless of their geographic location. Flooding, whose frequency and duration depend on local meteorological and hydrological conditions, was identified as the main environmental driver of invertebrate community dynamics. Our findings add support to the environmental safety of currently available Bti formulations when following recommended application rates and best mosquito control practices. - Highlights: • Bti is used in a variety of continental and coastal wetlands against mosquito larvae. • Bti dosages recommended for mosquito control do not affect non-target invertebrates.

  12. No association between the use of Bti for mosquito control and the dynamics of non-target aquatic invertebrates in French coastal and continental wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Lagadic, Laurent, E-mail: Laurent.Lagadic@rennes.inra.fr [INRA, UMR985 Écologie et Santé des Écosystèmes, Agrocampus Ouest, 65 rue de Saint Brieuc, F-35042 Rennes (France); Schäfer, Ralf B. [Quantitative Landscape Ecology, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829 Landau (Germany); Roucaute, Marc [INRA, UMR985 Écologie et Santé des Écosystèmes, Agrocampus Ouest, 65 rue de Saint Brieuc, F-35042 Rennes (France); Szöcs, Eduard [Quantitative Landscape Ecology, Institute for Environmental Sciences, University of Koblenz-Landau, Fortstraße 7, D-76829 Landau (Germany); Chouin, Sébastien; Maupeou, Jérôme de [Etablissement Interdépartemental pour la Démoustication du Littoral Atlantique, 1 rue Toufaire, F-17300 Rochefort-sur-Mer (France); Duchet, Claire [Entente Interdépartementale pour la Démoustication du Littoral Méditerranéen, 165 avenue Paul-Rimbaud, F-34184 Montpellier (France); and others

    2016-05-15

    The environmental safety of Bacillus thuringiensis subsp. israelensis (Bti) is still controversial, mainly because most of the previous field studies on its undesired effects were spatially limited and did not address the relationship between community similarity and application time and frequency. No general statement can therefore be drawn on the usage conditions of Bti that insure protection of non-target organisms. The present study was conducted in eight sites distributed over the main geographical sectors where mosquito control is implemented in mainland France and Corsica. Changes in non-target aquatic invertebrates were followed at elapsed time after repeated applications of two Bti formulations (VectoBac® WDG or 12AS) up to four consecutive years. We examined the influence of both larvicide treatments and environmental variables on community dynamics and dissimilarity between treated and control areas. As it can be argued that chironomids are the most vulnerable group of non-target invertebrates, we scrutinised potential Bti-related effects on the dynamics of their community. The use of VectoBac® WDG and 12AS in coastal and continental wetlands had no immediate or long-term detectable effect on the taxonomic structure and taxa abundance of non-target aquatic invertebrate communities, including chironomids. This applied to the main habitats where mosquito larvae occur, regardless of their geographic location. Flooding, whose frequency and duration depend on local meteorological and hydrological conditions, was identified as the main environmental driver of invertebrate community dynamics. Our findings add support to the environmental safety of currently available Bti formulations when following recommended application rates and best mosquito control practices. - Highlights: • Bti is used in a variety of continental and coastal wetlands against mosquito larvae. • Bti dosages recommended for mosquito control do not affect non-target invertebrates.

  13. Modern aspects of Drosophila melanogaster radiobiology. Apoptosis and aging

    International Nuclear Information System (INIS)

    Zajnulin, V.G.; Moskalev, A.A.; Shaposhnikov, M.V.; Taskaev, A.I.

    1999-01-01

    An attempt is made to explain the radioinduced change in life span of multicell organisms by deregulation of apoptosis processes. Radiation capacity to induce the apoptosis is shown in Drosophila as well. Assumption is made that radiation changes the rate of natural organism aging deregulating the control of apoptosis mechanisms [ru

  14. Structure identification by Mass Spectrometry Non-Targeted Analysis using the US EPA’s CompTox Chemistry Dashboard

    Science.gov (United States)

    Identification of unknowns in mass spectrometry based non-targeted analyses (NTA) requires the integration of complementary pieces of data to arrive at a confident, consensus structure. Researchers use chemical reference databases, spectral matching, fragment prediction tools, r...

  15. The effect of target and non-target similarity on neural classification performance: A boost from confidence

    OpenAIRE

    Amar R Marathe; Anthony J Ries; Vernon J Lawhern; Vernon J Lawhern; Brent J Lance; Jonathan eTouryan; Kaleb eMcDowell; Hubert eCecotti

    2015-01-01

    Brain computer interaction (BCI) technologies have proven effective in utilizing single-trial classification algorithms to detect target images in rapid serial visualization presentation tasks. While many factors contribute to the accuracy of these algorithms, a critical aspect that is often overlooked concerns the feature similarity between target and non-target images. In most real-world environments there are likely to be many shared features between targets and non-targets resulting in si...

  16. The effect of target and non-target similarity on neural classification performance: a boost from confidence

    OpenAIRE

    Marathe, Amar R.; Ries, Anthony J.; Lawhern, Vernon J.; Lance, Brent J.; Touryan, Jonathan; McDowell, Kaleb; Cecotti, Hubert

    2015-01-01

    Brain computer interaction (BCI) technologies have proven effective in utilizing single-trial classification algorithms to detect target images in rapid serial visualization presentation tasks. While many factors contribute to the accuracy of these algorithms, a critical aspect that is often overlooked concerns the feature similarity between target and non-target images. In most real-world environments there are likely to be many shared features between targets and non-targets resulting in si...

  17. Impacts of transgenic poplar-cotton agro-ecosystems upon target pests and non-target insects under field conditions.

    Science.gov (United States)

    Zhang, D J; Liu, J X; Lu, Z Y; Li, C L; Comada, E; Yang, M S

    2015-07-27

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of cotton fields in China. With increasing acres devoted to transgenic insect-resistant poplar and transgenic insect-resistant cotton, studies examining the effects of transgenic plants on target and non-target insects become increasingly important. We systematically surveyed populations of both target pests and non-target insects for 4 different combinations of poplar-cotton eco-systems over 3 years. Transgenic Bt cotton strongly resisted the target insects Fall webworm moth [Hyphantria cunea (Drury)], Sylepta derogata Fabrieius, and American bollworm (Heliothis armigera), but no clear impact on non-target insect cotton aphids (Aphis gossypii). Importantly, intercrops containing transgenic Pb29 poplar significantly increased the inhibitory effects of Bt cotton on Fall webworm moth in ecosystem IV. Highly resistant Pb29 poplar reduced populations of the target pests Grnsonoma minutara Hubner and non-target insect poplar leaf aphid (Chaitophorus po-pulialbae), while Fall webworm moth populations were unaffected. We determined the effects of Bt toxin from transgenic poplar and cotton on target and non-target pests in different ecosystems of cotton-poplar intercrops and identified the synergistic effects of such combinations toward both target and non-target insects.

  18. The effect of target and non-target similarity on neural classification performance: A boost from confidence

    Directory of Open Access Journals (Sweden)

    Amar R Marathe

    2015-08-01

    Full Text Available Brain computer interaction (BCI technologies have proven effective in utilizing single-trial classification algorithms to detect target images in rapid serial visualization presentation tasks. While many factors contribute to the accuracy of these algorithms, a critical aspect that is often overlooked concerns the feature similarity between target and non-target images. In most real-world environments there are likely to be many shared features between targets and non-targets resulting in similar neural activity between the two classes. It is unknown how current neural-based target classification algorithms perform when qualitatively similar target and non-target images are presented. This study address this question by comparing behavioral and neural classification performance across two conditions: first, when targets were the only infrequent stimulus presented amongst frequent background distracters; and second when targets were presented together with infrequent non-targets containing similar visual features to the targets. The resulting findings show that behavior is slower and less accurate when targets are presented together with similar non-targets; moreover, single-trial classification yielded high levels of misclassification when infrequent non-targets are included. Furthermore, we present an approach to mitigate the image misclassification. We use confidence measures to assess the quality of single-trial classification, and demonstrate that a system in which low confidence trials are reclassified through a secondary process can result in improved performance.

  19. Imaging cell competition in Drosophila imaginal discs.

    Science.gov (United States)

    Ohsawa, Shizue; Sugimura, Kaoru; Takino, Kyoko; Igaki, Tatsushi

    2012-01-01

    Cell competition is a process in which cells with higher fitness ("winners") survive and proliferate at the expense of less fit neighbors ("losers"). It has been suggested that cell competition is involved in a variety of biological processes such as organ size control, tissue homeostasis, cancer progression, and the maintenance of stem cell population. By advent of a genetic mosaic technique, which enables to generate fluorescently marked somatic clones in Drosophila imaginal discs, recent studies have presented some aspects of molecular mechanisms underlying cell competition. Now, with a live-imaging technique using ex vivo-cultured imaginal discs, we can dissect the spatiotemporal nature of competitive cell behaviors within multicellular communities. Here, we describe procedures and tips for live imaging of cell competition in Drosophila imaginal discs. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Overview of Drosophila immunity: a historical perspective.

    Science.gov (United States)

    Imler, Jean-Luc

    2014-01-01

    The functional analysis of genes from the model organism Drosophila melanogaster has provided invaluable information for many cellular and developmental or physiological processes, including immunity. The best-understood aspect of Drosophila immunity is the inducible humoral response, first recognized in 1972. This pioneering work led to a remarkable series of findings over the next 30 years, ranging from the identification and characterization of the antimicrobial peptides produced, to the deciphering of the signalling pathways activating the genes that encode them and, ultimately, to the discovery of the receptors sensing infection. These studies on an insect model coincided with a revival of the field of innate immunity, and had an unanticipated impact on the biomedical field. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Nematocytes: Discovery and characterization of a novel anculeate hemocyte in Drosophila falleni and Drosophila phalerata.

    Directory of Open Access Journals (Sweden)

    Julianna Bozler

    Full Text Available Immune challenges, such as parasitism, can be so pervasive and deleterious that they constitute an existential threat to a species' survival. In response to these ecological pressures, organisms have developed a wide array of novel behavioral, cellular, and molecular adaptations. Research into these immune defenses in model systems has resulted in a revolutionary understanding of evolution and functional biology. As the field has expanded beyond the limited number of model organisms our appreciation of evolutionary innovation and unique biology has widened as well. With this in mind, we have surveyed the hemolymph of several non-model species of Drosophila. Here we identify and describe a novel hemocyte, type-II nematocytes, found in larval stages of numerous Drosophila species. Examined in detail in Drosophila falleni and Drosophila phalerata, we find that these remarkable cells are distinct from previously described hemocytes due to their anucleate state (lacking a nucleus and unusual morphology. Type-II nematocytes are long, narrow cells with spindle-like projections extending from a cell body with high densities of mitochondria and microtubules, and exhibit the ability to synthesize proteins. These properties are unexpected for enucleated cells, and together with our additional characterization, we demonstrate that these type-II nematocytes represent a biological novelty. Surprisingly, despite the absence of a nucleus, we observe through live cell imaging that these cells remain motile with a highly dynamic cellular shape. Furthermore, these cells demonstrate the ability to form multicellular structures, which we suggest may be a component of the innate immune response to macro-parasites. In addition, live cell imaging points to a large nucleated hemocyte, type-I nematocyte, as the progenitor cell, leading to enucleation through a budding or asymmetrical division process rather than nuclear ejection: This study is the first to report such a

  2. Effects of the light goose conservation order on non-target waterfowl distribution during spring migration

    Science.gov (United States)

    Dinges, Andrew J.; Webb, Elisabeth B.; Vrtiska, Mark P.

    2015-01-01

    The Light Goose Conservation Order (LGCO) was initiated in 1999 to reduce mid-continent populations of light geese (lesser snow geese Chen caerulescens and Ross's geese C. rossi). However, concern about potential for LGCO activities (i.e. hunting activities) to negatively impact non-target waterfowl species during spring migration in the Rainwater Basin (RWB) of Nebraska prompted agency personnel to limit the number of hunt days each week and close multiple public wetlands to LGCO activities entirely. To evaluate the effects of the LGCO in the RWB, we quantified waterfowl density at wetlands open and closed to LGCO hunting and recorded all hunter encounters during springs 2011 and 2012. We encountered a total of 70 hunting parties on 22 study wetlands, with over 90% of these encounters occurring during early season when the majority of waterfowl used the RWB region. We detected greater overall densities of dabbling ducks Anas spp., as well as for mallards A. platyrhynchos and northern pintails A. acuta on wetlands closed to the LGCO. We detected no effects of hunt day in the analyses of dabbling duck densities. We detected no differences in mean weekly dabbling duck densities among wetlands open to hunting, regardless of weekly or cumulative hunting encounter frequency throughout early season. Additionally, hunting category was not a predictor for the presence of greater white-fronted geese Anser albifronsin a logistic regression model. Given that dabbling duck densities were greater on wetlands closed to hunting, providing wetlands free from hunting disturbance as refugia during the LGCO remains an important management strategy at migration stopover sites. However, given that we did not detect an effect of hunt day or hunting frequency on dabbling duck density, our results suggest increased hunting frequency at sites already open to hunting would likely have minimal impacts on the distribution of non-target waterfowl species using the region for spring

  3. Competitive release and outbreaks of non-target pests associated with transgenic Bt cotton.

    Science.gov (United States)

    Zeilinger, Adam R; Olson, Dawn M; Andow, David A

    2016-06-01

    The adoption of transgenic Bt cotton has, in some cases, led to environmental and economic benefits through reduced insecticide use. However, the distribution of these benefits and associated risks among cotton growers and cotton-growing regions has been uneven due in part to outbreaks of non-target or secondary pests, thereby requiring the continued use of synthetic insecticides. In the southeastern USA, Bt cotton adoption has resulted in increased abundance of and damage from stink bug pests, Euschistus servus and Nezara viridula (Heteroptera: Pentatomidae). While the impact of increased stink bug abundance has been well-documented, the causes have remained unclear. We hypothesize that release from competition with Bt-susceptible target pests may drive stink bug outbreaks in Bt cotton. We first examined the evidence for competitive release of stink bugs through meta-analysis of previous studies. We then experimentally tested if herbivory by Bt-susceptible Helicoverpa zea increases stink bug leaving rates and deters oviposition on non-Bt cotton. Consistent with previous studies, we found differences in leaving rates only for E servus, but we found that both species strongly avoided ovipositing on H. zea-damaged plants. Considering all available evidence, competitive release of stink bug populations in Bt cotton likely contributes to outbreaks, though the relative importance of competitive release remains an open question. Ecological risk assessments of Bt crops and other transgenic insecticidal crops would benefit from greater understanding of the ecological mechanisms underlying non-target pest outbreaks and greater attention to indirect ecological effects more broadly.

  4. Three-dimensional imaging of Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Leeanne McGurk

    2007-09-01

    Full Text Available The major hindrance to imaging the intact adult Drosophila is that the dark exoskeleton makes it impossible to image through the cuticle. We have overcome this obstacle and describe a method whereby the internal organs of adult Drosophila can be imaged in 3D by bleaching and clearing the adult and then imaging using a technique called optical projection tomography (OPT. The data is displayed as 2D optical sections and also in 3D to provide detail on the shape and structure of the adult anatomy.We have used OPT to visualize in 2D and 3D the detailed internal anatomy of the intact adult Drosophila. In addition this clearing method used for OPT was tested for imaging with confocal microscopy. Using OPT we have visualized the size and shape of neurodegenerative vacuoles from within the head capsule of flies that suffer from age-related neurodegeneration due to a lack of ADAR mediated RNA-editing. In addition we have visualized tau-lacZ expression in 2D and 3D. This shows that the wholemount adult can be stained without any manipulation and that this stain penetrates well as we have mapped the localization pattern with respect to the internal anatomy.We show for the first time that the intact adult Drosophila can be imaged in 3D using OPT, also we show that this method of clearing is also suitable for confocal microscopy to image the brain from within the intact head. The major advantage of this is that organs can be represented in 3D in their natural surroundings. Furthermore optical sections are generated in each of the three planes and are not prone to the technical limitations that are associated with manual sectioning. OPT can be used to dissect mutant phenotypes and to globally map gene expression in both 2D and 3D.

  5. Tolerance in Drosophila

    OpenAIRE

    Atkinson, Nigel S.

    2009-01-01

    The set of genes that underlie ethanol tolerance (inducible resistance) are likely to overlap with the set of genes responsible for ethanol addiction. Whereas addiction is difficult to recognize in simple model systems, behavioral tolerance is readily identifiable and can be induced in large populations of animals. Thus, tolerance lends itself to analysis in model systems with powerful genetics. Drosophila melanogaster has been used by a variety of laboratories for the identification of genes...

  6. Behavioral Teratogenesis in Drosophila melanogaster.

    Science.gov (United States)

    Mishra, Monalisa; Barik, Bedanta Kumar

    2018-01-01

    Developmental biology is a fascinating branch of science which helps us to understand the mechanism of development, thus the findings are used in various therapeutic approach. Drosophila melanogaster served as a model to find the key molecules that initiate and regulate the mechanism of development. Various genes, transcription factors, and signaling pathways helping in development are identified in Drosophila. Many toxic compounds, which can affect the development, are also recognized using Drosophila model. These compounds, which can affect the development, are named as a teratogen. Many teratogens identified using Drosophila may also act as a teratogen for a human being since 75% of conservation exist between the disease genes present in Drosophila and human. There are certain teratogens, which do not cause developmental defect if exposed during pregnancy, however; behavioral defect appears in later part of development. Such compounds are named as a behavioral teratogen. Thus, it is worthy to identify the potential behavioral teratogen using Drosophila model. Drosophila behavior is well studied in various developmental stages. This chapter describes various methods which can be employed to test behavioral teratogenesis in Drosophila.

  7. Distribution of DNA replication proteins in Drosophila cells

    Science.gov (United States)

    Easwaran, Hariharan P; Leonhardt, Heinrich; Cardoso, M Cristina

    2007-01-01

    Background DNA replication in higher eukaryotic cells is organized in discrete subnuclear sites called replication foci (RF). During the S phase, most replication proteins assemble at the RF by interacting with PCNA via a PCNA binding domain (PBD). This has been shown to occur for many mammalian replication proteins, but it is not known whether this mechanism is conserved in evolution. Results Fluorescent fusions of mammalian replication proteins, Dnmt1, HsDNA Lig I and HsPCNA were analyzed for their ability to target to RF in Drosophila cells. Except for HsPCNA, none of the other proteins and their deletions showed any accumulation at RF in Drosophila cells. We hypothesized that in Drosophila cells there might be some other peptide sequence responsible for targeting proteins to RF. To test this, we identified the DmDNA Lig I and compared the protein sequence with HsDNA Lig I. The two orthologs shared the PBD suggesting a functionally conserved role for this domain in the Drosophila counterpart. A series of deletions of DmDNA Lig I were analyzed for their ability to accumulate at RF in Drosophila and mammalian cells. Surprisingly, no accumulation at RF was observed in Drosophila cells, while in mammalian cells DmDNA Lig I accumulated at RF via its PBD. Further, GFP fusions with the PBD domains from Dnmt1, HsDNA Lig I and DmDNA Lig I, were able to target to RF only in mammalian cells but not in Drosophila cells. Conclusion We show that S phase in Drosophila cells is characterized by formation of RF marked by PCNA like in mammalian cells. However, other than PCNA none of the replication proteins and their deletions tested here showed accumulation at RF in Drosophila cells while the same proteins and deletions are capable of accumulating at RF in mammalian cells. We hypothesize that unlike mammalian cells, in Drosophila cells, replication proteins do not form long-lasting interactions with the replication machinery, and rather perform their functions via very

  8. Plenary panel 1: The scientific bases of radiation protection. Non-targeted effects of ionising radiation - Implications for radiation protection

    International Nuclear Information System (INIS)

    Salomaa, S.

    2006-01-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (L.N.T.) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (authors)

  9. Plenary panel 1: The scientific bases of radiation protection. Non-targeted effects of ionising radiation - Implications for radiation protection

    Energy Technology Data Exchange (ETDEWEB)

    Salomaa, S. [STUK - Radiation and Nuclear Safety Authority, Helsinki (Finland)

    2006-07-01

    The universality of the target theory of radiation-induced effects is challenged by observations on non-targeted effects such as bystander effects, genomic instability and adaptive response. Essential features of non-targeted effects are that they do not require direct nuclear exposure by radiation and they are particularly significant at low doses. This new evidence suggests a need for a new paradigm in radiation biology. The new paradigm should cover both the classical (targeted) and the non-targeted effects. New aspects include the role of cellular communication and tissue-level responses. A better understanding of non-targeted effects may have important consequences for health risk assessment and, consequently, on radiation protection. Non-targeted effects may contribute to the estimation of cancer risk from occupational, medical and environmental exposures. In particular, they may have implications for the applicability of the Linear-No-Threshold (L.N.T.) model in extrapolating radiation risk data into the low-dose region. This also means that the adequacy of the concept of dose to estimate risk is challenged by these findings. Moreover, these effects may provide new mechanistic explanations for the development of non-cancer diseases. Further research is required to determine if these effects, typically measured in cell cultures, are applicable in tissue level, whole animals, and ultimately in humans. (authors)

  10. Bt crop effects on functional guilds of non-target arthropods: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    L LaReesa Wolfenbarger

    Full Text Available BACKGROUND: Uncertainty persists over the environmental effects of genetically-engineered crops that produce the insecticidal Cry proteins of Bacillus thuringiensis (Bt. We performed meta-analyses on a modified public database to synthesize current knowledge about the effects of Bt cotton, maize and potato on the abundance and interactions of arthropod non-target functional guilds. METHODOLOGY/PRINCIPAL FINDINGS: We compared the abundance of predators, parasitoids, omnivores, detritivores and herbivores under scenarios in which neither, only the non-Bt crops, or both Bt and non-Bt crops received insecticide treatments. Predators were less abundant in Bt cotton compared to unsprayed non-Bt controls. As expected, fewer specialist parasitoids of the target pest occurred in Bt maize fields compared to unsprayed non-Bt controls, but no significant reduction was detected for other parasitoids. Numbers of predators and herbivores were higher in Bt crops compared to sprayed non-Bt controls, and type of insecticide influenced the magnitude of the difference. Omnivores and detritivores were more abundant in insecticide-treated controls and for the latter guild this was associated with reductions of their predators in sprayed non-Bt maize. No differences in abundance were found when both Bt and non-Bt crops were sprayed. Predator-to-prey ratios were unchanged by either Bt crops or the use of insecticides; ratios were higher in Bt maize relative to the sprayed non-Bt control. CONCLUSIONS/SIGNIFICANCE: Overall, we find no uniform effects of Bt cotton, maize and potato on the functional guilds of non-target arthropods. Use of and type of insecticides influenced the magnitude and direction of effects; insecticde effects were much larger than those of Bt crops. These meta-analyses underscore the importance of using controls not only to isolate the effects of a Bt crop per se but also to reflect the replacement of existing agricultural practices. Results will

  11. Does Non-Targeted Community CPR Training Increase Bystander CPR Frequency?

    Science.gov (United States)

    Uber, Amy; Sadler, Richard C; Chassee, Todd; Reynolds, Joshua C

    2018-05-01

    Only 37% of out-of-hospital cardiac arrests (OHCA) receive bystander Cardiopulmonary resuscitation (CPR) in Kent County, MI. In May 2014, prehospital providers offered one-time, point-of-contact compression-only CPR training to 2,253 passersby at 7 public locations in Grand Rapids, Michigan. To assess the impact of this intervention, we compared bystander CPR frequency and clinical outcomes in regions surrounding training sites before and after the intervention, adjusting for prehospital covariates. We aimed to assess the effect of this broad, non-targeted intervention on bystander CPR frequency, type of CPR utilized, and clinical outcomes. We also tested for differences in geospatial variation of bystander CPR and clinical outcomes clustered around training sites. Retrospective, observational, before-after study of adult, EMS-treated OHCA in Kent County from January 1, 2010 to December 31, 2015. We generated a 5-kilometer radius surrounding each training site to estimate any geospatial influence that training sites might have on bystander CPR frequency in nearby OHCA cases. Chi-squared, Fisher's exact, and t-tests assessed differences in subject features. Difference-in-differences analysis with generalized estimating equation (GEE) modeling assessed bystander CPR frequency, adjusting for training site, covariates (age, sex, witnessed, shockable rhythm, public location), and clustering around training sites. Similar modeling tested for changes in bystander CPR type, return of spontaneous circulation (ROSC), survival to hospital discharge, and cerebral performance category (CPC) of 1-2 at hospital discharge. We included 899 cases before and 587 cases post-intervention. Overall, we observed no increase in the frequency of bystander CPR or favorable clinical outcomes. We did observe an increase in compression-only CPR, but this was paradoxically restricted to OHCA cases falling outside radii around training sites. In adjusted modeling, the bystander CPR training

  12. Non-target-site resistance to ALS-inhibiting herbicides in a Sagittaria trifolia L. population.

    Science.gov (United States)

    Zhao, Bochui; Fu, Danni; Yu, Yang; Huang, Chengtian; Yan, Kecheng; Li, Pingsheng; Shafi, Jamil; Zhu, He; Wei, Songhong; Ji, Mingshan

    2017-08-01

    Sagittaria trifolia L. is one of the most competitive weeds in rice fields in northeastern China. The continuous use of acetolactate synthase (ALS)-inhibitors has led to the evolution of herbicide resistant S. trifolia. A subpopulation BC1, which was derived from the L1 population, was analyzed using DNA sequencing and ALS enzyme activity assays and levels of resistance to five ALS-inhibiting herbicides was determined. DNA sequencing and ALS enzyme assays revealed no amino acid substitutions and no significant differences in enzyme sensitivity between susceptible and resistant populations. Whole-plant dose-response experiments showed that the BC1 population exhibited different levels of resistance (resistance ratios ranging from 2.14 to 51.53) to five ALS herbicides, and the addition of malathion (P450 inhibitor) to bensulfuron-methyl, penoxsulam and bispyribac-sodium strongly reduced the dry weight accumulation of the BC1 population compared with the effects of the three herbicides alone. The results of the present study demonstrated that the BC1 population has evolved non-target-site resistance to ALS-inhibiting herbicides. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Fungicides transport in runoff from vineyard plot and catchment: contribution of non-target areas.

    Science.gov (United States)

    Lefrancq, Marie; Payraudeau, Sylvain; García Verdú, Antonio Joaquín; Maillard, Elodie; Millet, Maurice; Imfeld, Gwenaël

    2014-04-01

    Surface runoff and erosion during the course of rainfall events are major processes of pesticides transport from agricultural land to aquatic ecosystem. These processes are generally evaluated either at the plot or the catchment scale. Here, we compared at both scales the transport and partitioning in runoff water of two widely used fungicides, i.e., kresoxim-methyl (KM) and cyazofamid (CY). The objective was to evaluate the relationship between fungicides runoff from the plot and from the vineyard catchment. The results show that seasonal exports for KM and CY at the catchment were larger than those obtained at the plot. This underlines that non-target areas within the catchment largely contribute to the overall load of runoff-associated fungicides. Estimations show that 85 and 62 % of the loads observed for KM and CY at the catchment outlet cannot be explained by the vineyard plots. However, the partitioning of KM and CY between three fractions, i.e., the suspended solids (>0.7 μm) and two dissolved fractions (i.e., between 0.22 and 0.7 µm and plot scales enable to evaluate the sources areas of pesticide off-site transport.

  14. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores

    Science.gov (United States)

    Li, Ran; Zhang, Jin; Li, Jiancai; Zhou, Guoxin; Wang, Qi; Bian, Wenbo; Erb, Matthias; Lou, Yonggen

    2015-01-01

    Plants generally respond to herbivore attack by increasing resistance and decreasing growth. This prioritization is achieved through the regulation of phytohormonal signaling networks. However, it remains unknown how this prioritization affects resistance against non-target herbivores. In this study, we identify WRKY70 as a specific herbivore-induced, mitogen-activated protein kinase-regulated rice transcription factor that physically interacts with W-box motifs and prioritizes defence over growth by positively regulating jasmonic acid (JA) and negatively regulating gibberellin (GA) biosynthesis upon attack by the chewing herbivore Chilo suppressalis. WRKY70-dependent JA biosynthesis is required for proteinase inhibitor activation and resistance against C. suppressalis. In contrast, WRKY70 induction increases plant susceptibility against the rice brown planthopper Nilaparvata lugens. Experiments with GA-deficient rice lines identify WRKY70-dependent GA signaling as the causal factor in N. lugens susceptibility. Our study shows that prioritizing defence over growth leads to a significant resistance trade-off with important implications for the evolution and agricultural exploitation of plant immunity. DOI: http://dx.doi.org/10.7554/eLife.04805.001 PMID:26083713

  15. The drug target genes show higher evolutionary conservation than non-target genes.

    Science.gov (United States)

    Lv, Wenhua; Xu, Yongdeng; Guo, Yiying; Yu, Ziqi; Feng, Guanglong; Liu, Panpan; Luan, Meiwei; Zhu, Hongjie; Liu, Guiyou; Zhang, Mingming; Lv, Hongchao; Duan, Lian; Shang, Zhenwei; Li, Jin; Jiang, Yongshuai; Zhang, Ruijie

    2016-01-26

    Although evidence indicates that drug target genes share some common evolutionary features, there have been few studies analyzing evolutionary features of drug targets from an overall level. Therefore, we conducted an analysis which aimed to investigate the evolutionary characteristics of drug target genes. We compared the evolutionary conservation between human drug target genes and non-target genes by combining both the evolutionary features and network topological properties in human protein-protein interaction network. The evolution rate, conservation score and the percentage of orthologous genes of 21 species were included in our study. Meanwhile, four topological features including the average shortest path length, betweenness centrality, clustering coefficient and degree were considered for comparison analysis. Then we got four results as following: compared with non-drug target genes, 1) drug target genes had lower evolutionary rates; 2) drug target genes had higher conservation scores; 3) drug target genes had higher percentages of orthologous genes and 4) drug target genes had a tighter network structure including higher degrees, betweenness centrality, clustering coefficients and lower average shortest path lengths. These results demonstrate that drug target genes are more evolutionarily conserved than non-drug target genes. We hope that our study will provide valuable information for other researchers who are interested in evolutionary conservation of drug targets.

  16. Non-targeted effects of radiation exposure: recent advances and implications

    International Nuclear Information System (INIS)

    Kadhim, M.A.; Hill, M.A.

    2015-01-01

    The target theory of radiation-induced effects has been challenged by numerous studies, which indicate that in addition to biological effects resulting from direct DNA damage within the cell, a variety of non-DNA targeted effects (NTE) may make important contributions to the overall outcome. Ionising radiation induces complex, global cellular responses, such as genomic instability (GI) in both irradiated and never-irradiated 'bystander' cells that receive molecular signals produced by irradiated cells. GI is a well-known feature of many cancers, increasing the probability of cells to acquire the 'hallmarks of cancer' during the development of tumours. Although epidemiological data include contributions of both direct and NTE, they lack (i) statistical power at low dose where differences in dose response for NTE and direct effects are likely to be more important and (ii) heterogeneity of non-targeted responses due to genetic variability between individuals. In this article, NTE focussing on GI and bystander effects were critically examined, the specific principles of NTE were discussed and the potential influence on human health risk assessment from low-dose radiation was considered. (authors)

  17. Contribution of non-target-site resistance in imidazolinone-resistant Imisun sunflower

    Directory of Open Access Journals (Sweden)

    Gabriela Breccia

    2017-08-01

    Full Text Available ABSTRACT The first commercial herbicide-resistant trait in sunflower (Helianthus annuus L. is known as ‘Imisun’. Imidazolinone resistance in Imisun cultivars has been reported to be genetically controlled by a major gene (known as Imr1 or Ahasl1-1 and modifier genes. Imr1 is an allelic variant of the Ahasl1 locus that codes for the acetohydroxyacid synthase, which is the target site of these herbicides. The mechanism of resistance endowed by modifier genes has not been characterized and it could be related to non-target-site resistance. The objective of this study was to evaluate the role of cytochrome P450 monooxygenases (P450s in Imisun resistance. The response to imazapyr herbicide in combination with P450s inhibitor malathion was evaluated in 2 Imisun lines, IMI-1 and RHA426. Malathion reduced herbicide efficacy in both lines, but IMI-1 was affected in a greater extent. A significant reduction in plant growth in response to P450s inhibitors 1-aminobenzotriazole and piperonyl butoxide treatment was detected in the Imisun line HA425. The increased susceptibility to imazapyr after P450s-inhibitor treatment indicates that herbicide metabolism by P450s is a mechanism involved in Imisun resistance. These results also suggest the involvement of different P450s isozymes in endowing resistance to imazapyr in Imisun cultivars.

  18. A Non-Targeted Approach Unravels the Volatile Network in Peach Fruit

    Science.gov (United States)

    Sánchez, Gerardo; Besada, Cristina; Badenes, María Luisa; Monforte, Antonio José; Granell, Antonio

    2012-01-01

    Volatile compounds represent an important part of the plant metabolome and are of particular agronomic and biological interest due to their contribution to fruit aroma and flavor and therefore to fruit quality. By using a non-targeted approach based on HS-SPME-GC-MS, the volatile-compound complement of peach fruit was described. A total of 110 volatile compounds (including alcohols, ketones, aldehydes, esters, lactones, carboxylic acids, phenolics and terpenoids) were identified and quantified in peach fruit samples from different genetic backgrounds, locations, maturity stages and physiological responses. By using a combination of hierarchical cluster analysis and metabolomic correlation network analysis we found that previously known peach fruit volatiles are clustered according to their chemical nature or known biosynthetic pathways. Moreover, novel volatiles that had not yet been described in peach were identified and assigned to co-regulated groups. In addition, our analyses showed that most of the co-regulated groups showed good intergroup correlations that are therefore consistent with the existence of a higher level of regulation orchestrating volatile production under different conditions and/or developmental stages. In addition, this volatile network of interactions provides the ground information for future biochemical studies as well as a useful route map for breeding or biotechnological purposes. PMID:22761719

  19. Non-targeted effects of radiation: applications for radiation protection and contribution to LNT discussion

    International Nuclear Information System (INIS)

    Belyakov, O.V.; Folkard, M.; Prise, K.M.; Michael, B.D.; Mothersill, C.

    2002-01-01

    According to the target theory of radiation induced effects (Lea, 1946), which forms a central core of radiation biology, DNA damage occurs during or very shortly after irradiation of the nuclei in targeted cells and the potential for biological consequences can be expressed within one or two cell generations. A range of evidence has now emerged that challenges the classical effects resulting from targeted damage to DNA. These effects have also been termed non-(DNA)-targeted (Ward, 1999) and include radiation-induced bystander effects (Iyer and Lehnert, 2000a), genomic instability (Wright, 2000), adaptive response (Wolff, 1998), low dose hyper-radiosensitivity (HRS) (Joiner, et al., 2001), delayed reproductive death (Seymour, et al., 1986) and induction of genes by radiation (Hickman, et al., 1994). An essential feature of non-targeted effects is that they do not require a direct nuclear exposure by irradiation to be expressed and they are particularly significant at low doses. This new evidence suggests a new paradigm for radiation biology that challenges the universality of target theory. In this paper we will concentrate on the radiation-induced bystander effects because of its particular importance for radiation protection

  20. Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae from Argentina

    Directory of Open Access Journals (Sweden)

    Cristina Mónica Montagna

    2012-06-01

    Full Text Available Black flies, a non-target species of the insecticides used in fruit production, represent a severe medical and veterinary problem. Large increases in the level of resistance to the pyrethroids fenvalerate (more than 355-fold and deltamethrin (162-fold and a small increase in resistance to the organophosphate azinphos methyl (2-fold were observed between 1996-2008 in black fly larvae under insecticide pressure. Eventually, no change or a slight variation in insecticide resistance was followed by a subsequent increase in resistance. The evolution of pesticide resistance in a field population is a complex and stepwise process that is influenced by several factors, the most significant of which is the insecticide selection pressure, such as the dose and frequency of application. The variation in insecticide susceptibility within a black fly population in the productive area may be related to changes in fruit-pest control. The frequency of individuals with esterase activities higher than the maximum value determined in the susceptible population increased consistently over the sampling period. However, the insecticide resistance was not attributed to glutathione S-transferase activity. In conclusion, esterase activity in black flies from the productive area is one mechanism underlying the high levels of resistance to pyrethroids, which have been recently used infrequently. These enzymes may be reselected by currently used pesticides and enhance the resistance to these insecticides.

  1. Evolution of insecticide resistance in non-target black flies (Diptera: Simuliidae) from Argentina.

    Science.gov (United States)

    Montagna, Cristina Mónica; Gauna, Lidia Ester; D'Angelo, Ana Pechen de; Anguiano, Olga Liliana

    2012-06-01

    Black flies, a non-target species of the insecticides used in fruit production, represent a severe medical and veterinary problem. Large increases in the level of resistance to the pyrethroids fenvalerate (more than 355-fold) and deltamethrin (162-fold) and a small increase in resistance to the organophosphate azinphos methyl (2-fold) were observed between 1996-2008 in black fly larvae under insecticide pressure. Eventually, no change or a slight variation in insecticide resistance was followed by a subsequent increase in resistance. The evolution of pesticide resistance in a field population is a complex and stepwise process that is influenced by several factors, the most significant of which is the insecticide selection pressure, such as the dose and frequency of application. The variation in insecticide susceptibility within a black fly population in the productive area may be related to changes in fruit-pest control. The frequency of individuals with esterase activities higher than the maximum value determined in the susceptible population increased consistently over the sampling period. However, the insecticide resistance was not attributed to glutathione S-transferase activity. In conclusion, esterase activity in black flies from the productive area is one mechanism underlying the high levels of resistance to pyrethroids, which have been recently used infrequently. These enzymes may be reselected by currently used pesticides and enhance the resistance to these insecticides.

  2. Involvement of ways of death receptors in the target and non target effects of ionizing radiations

    International Nuclear Information System (INIS)

    Luce, A.

    2008-10-01

    Delayed cell death by mitotic catastrophe is a frequent mode of breast cancer cell death after γ-irradiation. Whereas the mechanisms that underlie the early γ-irradiation-induced cell death are well documented, those that drive the delayed cell death are largely unknown. Here we show that the Fas, TRAIL and TNF-α death receptor pathways mediate the delayed cell death observed after γ-irradiation of breast cancer cells. Receptors of the three pathways are over expressed early after irradiation and sensitize cells to apoptosis, whereas their ligands are over expressed three to four days after γ-irradiation, leading to apoptosis of the irradiated cells through a mitotic catastrophe. We also show for the first time that irradiated breast cancer cells excrete soluble forms of the three ligands which can induce the death of sensitive bystander cells. Altogether, these results define the molecular basis of the delayed cell death induced by targeted and non-targeted effects of γ-irradiation. (author)

  3. Non-target activity detection by post-radioembolization yttrium-90 PET/CT: Image assessment technique and case examples

    Directory of Open Access Journals (Sweden)

    Yung Hsiang eKao

    2014-02-01

    Full Text Available High-resolution yttrium-90 (90Y imaging of post-radioembolization microsphere biodistribution may be achieved by conventional positron emission tomography with integrated computed tomography (PET/CT scanners that have time-of-flight capability. However, reconstructed 90Y PET/CT images have high background noise, making non-target activity detection technically challenging. This educational article describes our image assessment technique for non-target activity detection by 90Y PET/CT which qualitatively overcomes the problem of background noise. We present selected case examples of non-target activity in untargeted liver, stomach, gallbladder, chest wall and kidney, supported by angiography and 90Y bremsstrahlung single photon emission computed tomography with integrated computed tomography (SPECT/CT or technetium-99m macroaggregated albumin SPECT/CT.

  4. Toxicity of noradrenaline, a novel anti-biofouling component, to two non-target zooplankton species, Daphnia magna and Ceriodaphnia dubia.

    Science.gov (United States)

    Overturf, C L; Wormington, A M; Blythe, K N; Gohad, N V; Mount, A S; Roberts, A P

    2015-05-01

    Noradrenaline (NA) is the active component of novel antifouling agents and acts by preventing attachment of fouling organisms. The goal of this study was to examine the toxicity of NA to the non-target zooplankton D. magna and C. dubia. Neonates were exposed to one of five concentrations of NA and effects on survival, reproduction and molting were determined. Calculated LC50 values were determined to be 46 and 38 μM in C. dubia and D. magna, respectively. A 10-day C. dubia study found that reproduction metrics were significantly impacted at non-lethal concentrations. In D. magna, concentrations greater than 40 μM significantly impacted molting. A toxicity test was conducted with D. magna using oxidized NA, which yielded similar results. These data indicate that both NA and oxidized NA are toxic to non-target zooplankton. Results obtained from this study can be used to guide future ecological risk assessments of catecholamine-based antifouling agents. Copyright © 2015. Published by Elsevier Inc.

  5. Intestinal stem cells in the adult Drosophila midgut

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Huaqi, E-mail: Huaqi.Jiang@UTSouthwestern.edu [Department of Developmental Biology, UT Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX, 75235 (United States); Edgar, Bruce A., E-mail: b.edgar@dkfz.de [ZMBH-DKFZ Alliance, Im Neuenheimer Feld 282, D-69120 Heidelberg (Germany); Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA 98109 (United States)

    2011-11-15

    Drosophila has long been an excellent model organism for studying stem cell biology. Notably, studies of Drosophila's germline stem cells have been instrumental in developing the stem cell niche concept. The recent discovery of somatic stem cells in adult Drosophila, particularly the intestinal stem cells (ISCs) of the midgut, has established Drosophila as an exciting model to study stem cell-mediated adult tissue homeostasis and regeneration. Here, we review the major signaling pathways that regulate the self-renewal, proliferation and differentiation of Drosophila ISCs, discussing how this regulation maintains midgut homeostasis and mediates regeneration of the intestinal epithelium after injury. -- Highlights: Black-Right-Pointing-Pointer The homeostasis and regeneration of adult fly midguts are mediated by ISCs. Black-Right-Pointing-Pointer Damaged enterocytes induce the proliferation of intestinal stem cells (ISC). Black-Right-Pointing-Pointer EGFR and Jak/Stat signalings mediate compensatory ISC proliferation. Black-Right-Pointing-Pointer Notch signaling regulates ISC self-renewal and differentiation.

  6. Research progress on Drosophila visual cognition in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Visual cognition,as one of the fundamental aspects of cognitive neuroscience,is generally associated with high-order brain functions in animals and human.Drosophila,as a model organism,shares certain features of visual cognition in common with mammals at the genetic,molecular,cellular,and even higher behavioral levels.From learning and memory to decision making,Drosophila covers a broad spectrum of higher cognitive behaviors beyond what we had expected.Armed with powerful tools of genetic manipulation in Drosophila,an increasing number of studies have been conducted in order to elucidate the neural circuit mechanisms underlying these cognitive behaviors from a genes-brain-behavior perspective.The goal of this review is to integrate the most important studies on visual cognition in Drosophila carried out in mainland China during the last decade into a body of knowledge encompassing both the basic neural operations and circuitry of higher brain function in Drosophila.Here,we consider a series of the higher cognitive behaviors beyond learning and memory,such as visual pattern recognition,feature and context generalization,different feature memory traces,salience-based decision,attention-like behavior,and cross-modal leaning and memory.We discuss the possible general gain-gating mechanism implementing by dopamine-mushroom body circuit in fly’s visual cognition.We hope that our brief review on this aspect will inspire further study on visual cognition in flies,or even beyond.

  7. Bioimage Informatics in the context of Drosophila research.

    Science.gov (United States)

    Jug, Florian; Pietzsch, Tobias; Preibisch, Stephan; Tomancak, Pavel

    2014-06-15

    Modern biological research relies heavily on microscopic imaging. The advanced genetic toolkit of Drosophila makes it possible to label molecular and cellular components with unprecedented level of specificity necessitating the application of the most sophisticated imaging technologies. Imaging in Drosophila spans all scales from single molecules to the entire populations of adult organisms, from electron microscopy to live imaging of developmental processes. As the imaging approaches become more complex and ambitious, there is an increasing need for quantitative, computer-mediated image processing and analysis to make sense of the imagery. Bioimage Informatics is an emerging research field that covers all aspects of biological image analysis from data handling, through processing, to quantitative measurements, analysis and data presentation. Some of the most advanced, large scale projects, combining cutting edge imaging with complex bioimage informatics pipelines, are realized in the Drosophila research community. In this review, we discuss the current research in biological image analysis specifically relevant to the type of systems level image datasets that are uniquely available for the Drosophila model system. We focus on how state-of-the-art computer vision algorithms are impacting the ability of Drosophila researchers to analyze biological systems in space and time. We pay particular attention to how these algorithmic advances from computer science are made usable to practicing biologists through open source platforms and how biologists can themselves participate in their further development. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Research progress on Drosophila visual cognition in China.

    Science.gov (United States)

    Guo, AiKe; Zhang, Ke; Peng, YueQin; Xi, Wang

    2010-03-01

    Visual cognition, as one of the fundamental aspects of cognitive neuroscience, is generally associated with high-order brain functions in animals and human. Drosophila, as a model organism, shares certain features of visual cognition in common with mammals at the genetic, molecular, cellular, and even higher behavioral levels. From learning and memory to decision making, Drosophila covers a broad spectrum of higher cognitive behaviors beyond what we had expected. Armed with powerful tools of genetic manipulation in Drosophila, an increasing number of studies have been conducted in order to elucidate the neural circuit mechanisms underlying these cognitive behaviors from a genes-brain-behavior perspective. The goal of this review is to integrate the most important studies on visual cognition in Drosophila carried out in mainland China during the last decade into a body of knowledge encompassing both the basic neural operations and circuitry of higher brain function in Drosophila. Here, we consider a series of the higher cognitive behaviors beyond learning and memory, such as visual pattern recognition, feature and context generalization, different feature memory traces, salience-based decision, attention-like behavior, and cross-modal leaning and memory. We discuss the possible general gain-gating mechanism implementing by dopamine - mushroom body circuit in fly's visual cognition. We hope that our brief review on this aspect will inspire further study on visual cognition in flies, or even beyond.

  9. Autophagy in Drosophila: From Historical Studies to Current Knowledge

    Science.gov (United States)

    Mulakkal, Nitha C.; Nagy, Peter; Takats, Szabolcs; Tusco, Radu; Juhász, Gábor; Nezis, Ioannis P.

    2014-01-01

    The discovery of evolutionarily conserved Atg genes required for autophagy in yeast truly revolutionized this research field and made it possible to carry out functional studies on model organisms. Insects including Drosophila are classical and still popular models to study autophagy, starting from the 1960s. This review aims to summarize past achievements and our current knowledge about the role and regulation of autophagy in Drosophila, with an outlook to yeast and mammals. The basic mechanisms of autophagy in fruit fly cells appear to be quite similar to other eukaryotes, and the role that this lysosomal self-degradation process plays in Drosophila models of various diseases already made it possible to recognize certain aspects of human pathologies. Future studies in this complete animal hold great promise for the better understanding of such processes and may also help finding new research avenues for the treatment of disorders with misregulated autophagy. PMID:24949430

  10. Autophagy in Drosophila: From Historical Studies to Current Knowledge

    Directory of Open Access Journals (Sweden)

    Nitha C. Mulakkal

    2014-01-01

    Full Text Available The discovery of evolutionarily conserved Atg genes required for autophagy in yeast truly revolutionized this research field and made it possible to carry out functional studies on model organisms. Insects including Drosophila are classical and still popular models to study autophagy, starting from the 1960s. This review aims to summarize past achievements and our current knowledge about the role and regulation of autophagy in Drosophila, with an outlook to yeast and mammals. The basic mechanisms of autophagy in fruit fly cells appear to be quite similar to other eukaryotes, and the role that this lysosomal self-degradation process plays in Drosophila models of various diseases already made it possible to recognize certain aspects of human pathologies. Future studies in this complete animal hold great promise for the better understanding of such processes and may also help finding new research avenues for the treatment of disorders with misregulated autophagy.

  11. Olfactory memory formation in Drosophila: from molecular to systems neuroscience.

    Science.gov (United States)

    Davis, Ronald L

    2005-01-01

    The olfactory nervous system of insects and mammals exhibits many similarities, which suggests that the mechanisms for olfactory learning may be shared. Molecular genetic investigations of Drosophila learning have uncovered numerous genes whose gene products are essential for olfactory memory formation. Recent studies of the products of these genes have continued to expand the range of molecular processes known to underlie memory formation. Recent research has also broadened the neuroanatomical areas thought to mediate olfactory learning to include the antennal lobes in addition to a previously accepted and central role for the mushroom bodies. The roles for neurons extrinsic to the mushroom body neurons are becoming better defined. Finally, the genes identified to participate in Drosophila olfactory learning have conserved roles in mammalian organisms, highlighting the value of Drosophila for gene discovery.

  12. Mapping Linked Genes in "Drosophila Melanogaster" Using Data from the F2 Generation of a Dihybrid Cross

    Science.gov (United States)

    Marshall, Pamela A.

    2008-01-01

    "Drosophila melanogaster" is a commonly utilized organism for testing hypotheses about inheritance of traits. Students in both high school and university labs study the genetics of inheritance by analyzing offspring of appropriate "Drosophila" crosses to determine inheritance patterns, including gene linkage. However, most genetics investigations…

  13. Non-targeted glycosidic profiling of international wines using neutral loss-high resolution mass spectrometry.

    Science.gov (United States)

    Barnaba, C; Dellacassa, E; Nicolini, G; Nardin, T; Serra, M; Larcher, R

    2018-07-06

    Many metabolites naturally occur as glycosides, since sugar moieties can be crucial for their biological activity and increase their water solubility. In the plant kingdom they may occur as glycosides or sugar esters, depending on precursor chemical structure, and in wine they have traditionally attracted attention due to their organoleptic properties, such as astringency and bitterness, and because they affect the colour and aroma of wines. A new approach directed at detailed description of glycosides in a large selection of monovarietal wines (8 samples each of Pinot Blanc, Muller Thurgau, Riesling, Traminer, Merlot, Pinot Noir and Cabernet Sauvignon) was developed by combining high performance liquid chromatography with high resolution tandem mass spectrometry. Analytical separation was performed on an Accucore™ Polar Premium LC column, while mass analysis was performed in negative ion mode with an non-targeted screening approach, using a Full MS/AIF/NL dd-MS 2 experiment at a resolving power of 140,000 FWHM. Over 280 glycoside-like compounds were detected, of which 133 (including low-molecular weight phenols, flavonoids and monoterpenols) were tentatively identified in the form of pentose (6), deoxyhexose (17), hexose (73), hexose-pentose (16), hexose-deoxyhexose (7), dihexose (5) and hexose ester (9) derivatives. It was not possible to univocally define the corresponding chemical structure for the remaining 149 glycosides. Non-parametric statistical analysis showed it was possible to well characterise the glycosylated profile of all red and Traminer wines, while the identified glycosides were almost entirely lacking in Pinot Blanc, Riesling and Muller Thurgau wines. Also Tukey's Honestly Significant Difference test (p wines from each other according to their glycosylated profile. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. The developmental transcriptome of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    University of Connecticut; Graveley, Brenton R.; Brooks, Angela N.; Carlson, Joseph W.; Duff, Michael O.; Landolin, Jane M.; Yang, Li; Artieri, Carlo G.; van Baren, Marijke J.; Boley, Nathan; Booth, Benjamin W.; Brown, James B.; Cherbas, Lucy; Davis, Carrie A.; Dobin, Alex; Li, Renhua; Lin, Wei; Malone, John H.; Mattiuzzo, Nicolas R.; Miller, David; Sturgill, David; Tuch, Brian B.; Zaleski, Chris; Zhang, Dayu; Blanchette, Marco; Dudoit, Sandrine; Eads, Brian; Green, Richard E.; Hammonds, Ann; Jiang, Lichun; Kapranov, Phil; Langton, Laura; Perrimon, Norbert; Sandler, Jeremy E.; Wan, Kenneth H.; Willingham, Aarron; Zhang, Yu; Zou, Yi; Andrews, Justen; Bicke, Peter J.; Brenner, Steven E.; Brent, Michael R.; Cherbas, Peter; Gingeras, Thomas R.; Hoskins, Roger A.; Kaufman, Thomas C.; Oliver, Brian; Celniker, Susan E.

    2010-12-02

    Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development. Drosophila melanogaster is an important non-mammalian model system that has had a critical role in basic biological discoveries, such as identifying chromosomes as the carriers of genetic information and uncovering the role of genes in development. Because it shares a substantial genic content with humans, Drosophila is increasingly used as a translational model for human development, homeostasis and disease. High-quality maps are needed for all functional genomic elements. Previous studies demonstrated that a rich collection of genes is deployed during the life cycle of the fly. Although expression profiling using microarrays has revealed the expression of, 13,000 annotated genes, it is difficult to map splice junctions and individual base modifications generated by RNA editing using such approaches. Single-base resolution is essential to define precisely the elements that comprise the Drosophila transcriptome. Estimates of the number of transcript isoforms are less accurate than estimates of the number of genes

  15. The intimate genetics of Drosophila fertilization

    Science.gov (United States)

    Loppin, Benjamin; Dubruille, Raphaëlle; Horard, Béatrice

    2015-01-01

    The union of haploid gametes at fertilization initiates the formation of the diploid zygote in sexually reproducing animals. This founding event of embryogenesis includes several fascinating cellular and nuclear processes, such as sperm–egg cellular interactions, sperm chromatin remodelling, centrosome formation or pronuclear migration. In comparison with other aspects of development, the exploration of animal fertilization at the functional level has remained so far relatively limited, even in classical model organisms. Here, we have reviewed our current knowledge of fertilization in Drosophila melanogaster, with a special emphasis on the genes involved in the complex transformation of the fertilizing sperm nucleus into a replicated set of paternal chromosomes. PMID:26246493

  16. Myoblast fusion in Drosophila

    Energy Technology Data Exchange (ETDEWEB)

    Haralalka, Shruti [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Abmayr, Susan M., E-mail: sma@stowers.org [Stowers Institute for Medical Research, Kansas City, MO 64110 (United States); Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, MO 66160 (United States)

    2010-11-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  17. Myoblast fusion in Drosophila

    International Nuclear Information System (INIS)

    Haralalka, Shruti; Abmayr, Susan M.

    2010-01-01

    The body wall musculature of a Drosophila larva is composed of an intricate pattern of 30 segmentally repeated muscle fibers in each abdominal hemisegment. Each muscle fiber has unique spatial and behavioral characteristics that include its location, orientation, epidermal attachment, size and pattern of innervation. Many, if not all, of these properties are dictated by founder cells, which determine the muscle pattern and seed the fusion process. Myofibers are then derived from fusion between a specific founder cell and several fusion competent myoblasts (FCMs) fusing with as few as 3-5 FCMs in the small muscles on the most ventral side of the embryo and as many as 30 FCMs in the larger muscles on the dorsal side of the embryo. The focus of the present review is the formation of the larval muscles in the developing embryo, summarizing the major issues and players in this process. We have attempted to emphasize experimentally-validated details of the mechanism of myoblast fusion and distinguish these from the theoretically possible details that have not yet been confirmed experimentally. We also direct the interested reader to other recent reviews that discuss myoblast fusion in Drosophila, each with their own perspective on the process . With apologies, we use gene nomenclature as specified by Flybase (http://flybase.org) but provide Table 1 with alternative names and references.

  18. SUMOylation in Drosophila Development

    Directory of Open Access Journals (Sweden)

    Albert J. Courey

    2012-07-01

    Full Text Available Small ubiquitin-related modifier (SUMO, an ~90 amino acid ubiquitin-like protein, is highly conserved throughout the eukaryotic domain. Like ubiquitin, SUMO is covalently attached to lysine side chains in a large number of target proteins. In contrast to ubiquitin, SUMO does not have a direct role in targeting proteins for proteasomal degradation. However, like ubiquitin, SUMO does modulate protein function in a variety of other ways. This includes effects on protein conformation, subcellular localization, and protein–protein interactions. Significant insight into the in vivo role of SUMOylation has been provided by studies in Drosophila that combine genetic manipulation, proteomic, and biochemical analysis. Such studies have revealed that the SUMO conjugation pathway regulates a wide variety of critical cellular and developmental processes, including chromatin/chromosome function, eggshell patterning, embryonic pattern formation, metamorphosis, larval and pupal development, neurogenesis, development of the innate immune system, and apoptosis. This review discusses our current understanding of the diverse roles for SUMO in Drosophila development.

  19. EPA’s Non-Targeted Analysis Research Program: Expanding public data resources in support of exposure science

    Science.gov (United States)

    Suspect screening (SSA) and non-targeted analysis (NTA) methods using high-resolution mass spectrometry (HRMS) offer new approaches to efficiently generate exposure data for chemicals in a variety of environmental and biological media. These techniques aid characterization of the...

  20. Non-target effects of broadleaf herbicide on a native perennial forb: a demographic framework for assessing and minimizing impacts

    Science.gov (United States)

    Elizabeth E. Crone; Marilyn Marler; Dean E. Pearson

    2009-01-01

    Invasive species are one of the leading threats to biodiversity worldwide. Therefore, chemical herbicides are increasingly used to control invasive plants in natural and semi-natural areas. Little is known about the non-target impacts of these chemicals on native species. We conducted an experiment to test the demographic effects of the herbicide picloram on a native...

  1. Molecular cloning, genomic organization, developmental regulation, and a knock-out mutant of a novel leu-rich repeats-containing G protein-coupled receptor (DLGR-2) from Drosophila melanogaster

    DEFF Research Database (Denmark)

    Eriksen, Kathrine Krageskov; Hauser, Frank; Schiøtt, Morten

    2000-01-01

    After screening the Berkeley Drosophila Genome Project database with sequences from a recently characterized Leu-rich repeats-containing G protein-coupled receptor (LGR) fromDrosophila (DLGR-1), we identified a second gene for a different LGR (DLGR-2) and cloned its cDNA. DLGR-2 is 1360 amino aci...... knock-out mutants, where the DLGR-2 gene is interrupted by a P element insertion, die around the time of hatching. This finding, together with the expression data, strongly suggests that DLGR-2 is exclusively involved in development....

  2. Non-target screening to trace ozonation transformation products in a wastewater treatment train including different post-treatments.

    Science.gov (United States)

    Schollée, Jennifer E; Bourgin, Marc; von Gunten, Urs; McArdell, Christa S; Hollender, Juliane

    2018-05-25

    Ozonation and subsequent post-treatments are increasingly implemented in wastewater treatment plants (WWTPs) for enhanced micropollutant abatement. While this technology is effective, micropollutant oxidation leads to the formation of ozonation transformation products (OTPs). Target and suspect screening provide information about known parent compounds and known OTPs, but for a more comprehensive picture, non-target screening is needed. Here, sampling was conducted at a full-scale WWTP to investigate OTP formation at four ozone doses (2, 3, 4, and 5 mg/L, ranging from 0.3 to 1.0 gO 3 /gDOC) and subsequent changes during five post-treatment steps (i.e., sand filter, fixed bed bioreactor, moving bed bioreactor, and two granular activated carbon (GAC) filters, relatively fresh and pre-loaded). Samples were measured with online solid-phase extraction coupled to liquid chromatography high-resolution tandem mass spectrometry (LC-HRMS/MS) using electrospray ionization (ESI) in positive and negative modes. Existing non-target screening workflows were adapted to (1) examine the formation of potential OTPs at four ozone doses and (2) compare the removal of OTPs among five post-treatments. In (1), data processing included principal component analysis (PCA) and chemical knowledge on possible oxidation reactions to prioritize non-target features likely to be OTPs. Between 394 and 1328 unique potential OTPs were detected in positive ESI for the four ozone doses tested; between 12 and 324 unique potential OTPs were detected in negative ESI. At a specific ozone dose of 0.5 gO 3 /gDOC, 27 parent compounds were identified and were related to 69 non-target features selected as potential OTPs. Two OTPs were confirmed with reference standards (venlafaxine N-oxide and chlorothiazide); 34 other potential OTPs were in agreement with literature data and/or reaction mechanisms. In (2), hierarchical cluster analysis (HCA) was applied on profiles detected in positive ESI mode across the

  3. Evolutionary genetics: the Drosophila model

    Indian Academy of Sciences (India)

    Unknown

    Evolutionary genetics straddles the two fundamental processes of life, ... of the genus Drosophila have been used extensively as model systems in experimental ... issue will prove interesting, informative and thought-provoking for both estab-.

  4. The non-targeted effects of radiation are perpetuated by exosomes

    Energy Technology Data Exchange (ETDEWEB)

    Al-Mayah, Ammar; Bright, Scott; Chapman, Kim [Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP (United Kingdom); Irons, Sarah [Insect Virus Research Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP (United Kingdom); Luo, Ping [Izon Science Ltd., The Oxford Science Park, Magdalen Centre, Robert Robinson Avenue, Oxford OX4 4GA (United Kingdom); Carter, David [Chromatin and non-coding RNA, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP (United Kingdom); Goodwin, Edwin [The New Mexico Consortium, Los Alamos, NM 87544 (United States); Kadhim, Munira, E-mail: mkadhim@brookes.ac.uk [Genomic Instability Group, Oxford Brookes University, Gipsy Lane Campus, Headington, Oxford OX3 0BP (United Kingdom)

    2015-02-15

    Highlights: • Radiation induces a DNA damaging process in bystander cells through cell–cell signalling. • Exosome RNA and protein molecules play crucial roles in bystander effects. • Cell progeny inherit the ability to secret bystander effect-inducing exosomes. • This mechanism is most likely accountable for the propagation of GI. - Abstract: Exosomes contain cargo material from endosomes, cytosol, plasma membrane and microRNA molecules, they are released by a number of non-cancer and cancer cells into both the extracellular microenvironment and body fluids such as blood plasma. Recently we demonstrated radiation-induced non-targeted effects [NTE: genomic instability (GI) and bystander effects (BE)] are partially mediated by exosomes, particularly the RNA content. However the mechanistic role of exosomes in NTE is yet to be fully understood. The present study used MCF7 cells to characterise the longevity of exosome-induced activity in the progeny of irradiated and unirradiated bystander cells. Exosomes extracted from conditioned media of irradiated and bystander progeny were added to unirradiated cells. Analysis was carried out at 1 and 20/24 population doublings following medium/exosome transfer for DNA/chromosomal damage. Results confirmed exosomes play a significant role in mediating NTE of ionising radiation (IR). This effect was remarkably persistent, observed >20 doublings post-irradiation in the progeny of bystander cells. Additionally, cell progeny undergoing a BE were themselves capable of inducing BE in other cells via exosomes they released. Furthermore we investigated the role of exosome cargo. Culture media from cells exposed to 2 Gy X-rays was subjected to ultracentrifugation and four inoculants prepared, (a) supernatants with exosomes removed, and pellets with (b) exosome proteins denatured, (c) RNA degraded, and (d) a combination of protein–RNA inactivation. These were added to separate populations of unirradiated cells. The BE was

  5. The non-targeted effects of radiation are perpetuated by exosomes

    International Nuclear Information System (INIS)

    Al-Mayah, Ammar; Bright, Scott; Chapman, Kim; Irons, Sarah; Luo, Ping; Carter, David; Goodwin, Edwin; Kadhim, Munira

    2015-01-01

    Highlights: • Radiation induces a DNA damaging process in bystander cells through cell–cell signalling. • Exosome RNA and protein molecules play crucial roles in bystander effects. • Cell progeny inherit the ability to secret bystander effect-inducing exosomes. • This mechanism is most likely accountable for the propagation of GI. - Abstract: Exosomes contain cargo material from endosomes, cytosol, plasma membrane and microRNA molecules, they are released by a number of non-cancer and cancer cells into both the extracellular microenvironment and body fluids such as blood plasma. Recently we demonstrated radiation-induced non-targeted effects [NTE: genomic instability (GI) and bystander effects (BE)] are partially mediated by exosomes, particularly the RNA content. However the mechanistic role of exosomes in NTE is yet to be fully understood. The present study used MCF7 cells to characterise the longevity of exosome-induced activity in the progeny of irradiated and unirradiated bystander cells. Exosomes extracted from conditioned media of irradiated and bystander progeny were added to unirradiated cells. Analysis was carried out at 1 and 20/24 population doublings following medium/exosome transfer for DNA/chromosomal damage. Results confirmed exosomes play a significant role in mediating NTE of ionising radiation (IR). This effect was remarkably persistent, observed >20 doublings post-irradiation in the progeny of bystander cells. Additionally, cell progeny undergoing a BE were themselves capable of inducing BE in other cells via exosomes they released. Furthermore we investigated the role of exosome cargo. Culture media from cells exposed to 2 Gy X-rays was subjected to ultracentrifugation and four inoculants prepared, (a) supernatants with exosomes removed, and pellets with (b) exosome proteins denatured, (c) RNA degraded, and (d) a combination of protein–RNA inactivation. These were added to separate populations of unirradiated cells. The BE was

  6. Quantitative modeling of responses to chronic ionizing radiation exposure using targeted and non-targeted effects.

    Directory of Open Access Journals (Sweden)

    Igor Shuryak

    Full Text Available The biological effects of chronic ionizing radiation exposure can be difficult to study, but important to understand in order to protect the health of occupationally-exposed persons and victims of radiological accidents or malicious events. They include targeted effects (TE caused by ionizations within/close to nuclear DNA, and non-targeted effects (NTE caused by damage to other cell structures and/or activation of stress-signaling pathways in distant cells. Data on radiation damage in animal populations exposed over multiple generations to wide ranges of dose rates after the Chernobyl nuclear-power-plant accident are very useful for enhancing our understanding of these processes. We used a mechanistically-motivated mathematical model which includes TE and NTE to analyze a large published data set on chromosomal aberrations in pond snail (Lymnaea stagnalis embryos collected over 16 years from water bodies contaminated by Chernobyl fallout, and from control locations. The fraction of embryo cells with aberrations increased dramatically (>10-fold and non-linearly over a dose rate range of 0.03-420 μGy/h (0.00026-3.7 Gy/year. NTE were very important for describing the non-linearity of this radiation response: the TE-only model (without NTE performed dramatically worse than the TE+NTE model. NTE were predicted to reach ½ of maximal intensity at 2.5 μGy/h (0.022 Gy/year and to contribute >90% to the radiation response slope at dose rates <11 μGy/h (0.1 Gy/year. Internally-incorporated 90Sr was possibly more effective per unit dose than other radionuclides. The radiation response shape for chromosomal aberrations in snail embryos was consistent with data for a different endpoint: the fraction of young amoebocytes in adult snail haemolymph. Therefore, radiation may affect different snail life stages by similar mechanisms. The importance of NTE in our model-based analysis suggests that the search for modulators of NTE-related signaling pathways

  7. High-resolution, in vivo magnetic resonance imaging of Drosophila at 18.8 Tesla.

    Directory of Open Access Journals (Sweden)

    Brian Null

    Full Text Available High resolution MRI of live Drosophila was performed at 18.8 Tesla, with a field of view less than 5 mm, and administration of manganese or gadolinium-based contrast agents. This study demonstrates the feasibility of MR methods for imaging the fruit fly Drosophila with an NMR spectrometer, at a resolution relevant for undertaking future studies of the Drosophila brain and other organs. The fruit fly has long been a principal model organism for elucidating biology and disease, but without capabilities like those of MRI. This feasibility marks progress toward the development of new in vivo research approaches in Drosophila without the requirement for light transparency or destructive assays.

  8. Can an aquatic macrophyte bioaccumulate glyphosate? A watershed scale study using a non-target hydrophyte Ludwigia peploides

    Science.gov (United States)

    Perez, Debora; Okada, Elena; Menone, Mirta; Aparicio, Virginia; Costa, Jose Luis

    2017-04-01

    The hydrophyte Ludwigia peploides is widely distributed in South America streams, and therefore, it can be used as a biomonitor for pesticides used in agricultural production. Glyphosate is one of the main pesticides used in Argentina. This has resulted in its occurrence in non-target wetland ecosystems. The objectives of this study were to: 1) establish and validate an extraction and quantification methodology for glyphosate in L.peploides plants, and 2) evaluated the role of this species as a glyphosate biomonitor in the agricultural watershed of the El Crespo stream. For the first objective, we collected plant material in the field. The leaves were dissected and oven dried at 60° C, grinded and sieved through a 0.5 mm mesh. Different solutions were tested for the extraction step. Labeled glyphosate was used as an internal standard to evaluate the recovery rate and the matrix effect of the different extraction methods. Glyphosate was derivatized with FMOC-Cl and then quantified by ultra-performance liquid chromatography (UPLC) coupled to a mass tandem spectrometer (MS/MS). The method based on an aqueous phase extraction step 0.01 mg/mL of activated carbon as a clean-up to decrease the matrix interference had a recovery of 117 ± 20% and the matrix effect was less than 20%. This method was used to analyze the glyphosate levels in L.peploides in the El Crespo stream. For the second objective, plants of L.peploides were collected on March 2016 in eight monitoring sites of the stream from the headwaters to the stream mouth. Surface water and sediments samples were collected at the same time to calculate the bioconcentration factors (BCFs) and biota-sediment bioaccumulation factors (BSAFs). The BCFs ranged between 28.57 - 280 L/Kg and the BSAFs ranged between 2.52- 30.66 at different sites. These results indicate that L.peploides can bioaccumulated glyphosate in its leaves and the major bioavailability is given mainly by the herbicide molecules present in surface

  9. Noninvasive Analysis of Microbiome Dynamics in the Fruit Fly Drosophila melanogaster

    OpenAIRE

    Fink, Christine; Staubach, Fabian; Kuenzel, Sven; Baines, John F.; Roeder, Thomas

    2013-01-01

    The diversity and structure of the intestinal microbial community has a strong influence on life history. To understand how hosts and microbes interact, model organisms with comparatively simple microbial communities, such as the fruit fly (Drosophila melanogaster), offer key advantages. However, studies of the Drosophila microbiome are limited to a single point in time, because flies are typically sacrificed for DNA extraction. In order to test whether noninvasive approaches, such as samplin...

  10. Humidity Sensing in Drosophila.

    Science.gov (United States)

    Enjin, Anders; Zaharieva, Emanuela E; Frank, Dominic D; Mansourian, Suzan; Suh, Greg S B; Gallio, Marco; Stensmyr, Marcus C

    2016-05-23

    Environmental humidity influences the fitness and geographic distribution of all animals [1]. Insects in particular use humidity cues to navigate the environment, and previous work suggests the existence of specific sensory mechanisms to detect favorable humidity ranges [2-5]. Yet, the molecular and cellular basis of humidity sensing (hygrosensation) remains poorly understood. Here we describe genes and neurons necessary for hygrosensation in the vinegar fly Drosophila melanogaster. We find that members of the Drosophila genus display species-specific humidity preferences related to conditions in their native habitats. Using a simple behavioral assay, we find that the ionotropic receptors IR40a, IR93a, and IR25a are all required for humidity preference in D. melanogaster. Yet, whereas IR40a is selectively required for hygrosensory responses, IR93a and IR25a mediate both humidity and temperature preference. Consistent with this, the expression of IR93a and IR25a includes thermosensory neurons of the arista. In contrast, IR40a is excluded from the arista but is expressed (and required) in specialized neurons innervating pore-less sensilla of the sacculus, a unique invagination of the third antennal segment. Indeed, calcium imaging showed that IR40a neurons directly respond to changes in humidity, and IR40a knockdown or IR93a mutation reduced their responses to stimuli. Taken together, our results suggest that the preference for a specific humidity range depends on specialized sacculus neurons, and that the processing of environmental humidity can happen largely in parallel to that of temperature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Laboratory evaluation of methanolic extract of Atlantia monophylla (Family: Rutaceae against immature stages of mosquitoes and non-target organisms

    Directory of Open Access Journals (Sweden)

    N Sivagnaname

    2004-02-01

    Full Text Available Methanolic extracts of the leaves of Atlantia monophylla (Rutaceae were evaluated for mosquitocidal activity against immature stages of three mosquito species, Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti in the laboratory.Larvae of Cx. quinquefasciatus and pupae of An. stephensi were found more susceptible, with LC50 values of 0.14 mg/l and 0.05 mg/l, respectively. Insect growth regulating activity of this extract was more pronounced against Ae. aegypti, with EI50 value 0.002 mg/l. The extract was found safe to aquatic mosquito predators Gambusia affinis, Poecilia reticulata, and Diplonychus indicus, with the respective LC50 values of 23.4, 21.3, and 5.7 mg/l. The results indicate that the mosquitocidal effects of the extract of this plant were comparable to neem extract and certain synthetic chemical larvicides like fenthion, methoprene, etc.

  12. Control of Sand Flies with Attractive Toxic Sugar Baits (ATSB) and Potential Impact on Non-Target Organisms in Morocco

    Science.gov (United States)

    2015-02-08

    Author details 1Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA. 2Department of Microbiology ...Germany. 9United States Department of Agriculture ARS Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA. Received: 5

  13. Hypergravity-induced altered behavior in Drosophila

    Science.gov (United States)

    Hosamani, Ravikumar; Wan, Judy; Marcu, Oana; Bhattacharya, Sharmila

    2012-07-01

    Microgravity and mechanical stress are important factors of the spaceflight environment, and affect astronaut health and behavior. Structural, functional, and behavioral mechanisms of all cells and organisms are adapted to Earth's gravitational force, 1G, while altered gravity can pose challenges to their adaptability to this new environment. On ground, hypergravity paradigms have been used to predict and complement studies on microgravity. Even small changes that take place at a molecular and genetic level during altered gravity may result in changes in phenotypic behavior. Drosophila provides a robust and simple, yet very reliable model system to understand the complexity of hypergravity-induced altered behavior, due to availability of a plethora of genetic tools. Locomotor behavior is a sensitive parameter that reflects the array of molecular adaptive mechanisms recruited during exposure to altered gravity. Thus, understanding the genetic basis of this behavior in a hypergravity environment could potentially extend our understanding of mechanisms of adaptation in microgravity. In our laboratory we are trying to dissect out the cellular and molecular mechanisms underlying hypergravity-induced oxidative stress, and its potential consequences on behavioral alterations by using Drosophila as a model system. In the present study, we employed pan-neuronal and mushroom body specific knock-down adult flies by using Gal4/UAS system to express inverted repeat transgenes (RNAi) to monitor and quantify the hypergravity-induced behavior in Drosophila. We established that acute hypergravity (3G for 60 min) causes a significant and robust decrease in the locomotor behavior in adult Drosophila, and that this change is dependent on genes related to Parkinson's disease, such as DJ-1α , DJ-1β , and parkin. In addition, we also showed that anatomically the control of this behavior is significantly processed in the mushroom body region of the fly brain. This work links a molecular

  14. Hermann Muller and Mutations in Drosophila

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Hermann Muller and Mutations in Drosophila Resources with University of Texas. In Austin his experiments on fruit flies (Drosophila) first showed that exposure to September to spend a year at the only Drosophila laboratory in Europe which was doing parallel work

  15. Whole genome phylogenies for multiple Drosophila species

    Directory of Open Access Journals (Sweden)

    Seetharam Arun

    2012-12-01

    Full Text Available Abstract Background Reconstructing the evolutionary history of organisms using traditional phylogenetic methods may suffer from inaccurate sequence alignment. An alternative approach, particularly effective when whole genome sequences are available, is to employ methods that don’t use explicit sequence alignments. We extend a novel phylogenetic method based on Singular Value Decomposition (SVD to reconstruct the phylogeny of 12 sequenced Drosophila species. SVD analysis provides accurate comparisons for a high fraction of sequences within whole genomes without the prior identification of orthologs or homologous sites. With this method all protein sequences are converted to peptide frequency vectors within a matrix that is decomposed to provide simplified vector representations for each protein of the genome in a reduced dimensional space. These vectors are summed together to provide a vector representation for each species, and the angle between these vectors provides distance measures that are used to construct species trees. Results An unfiltered whole genome analysis (193,622 predicted proteins strongly supports the currently accepted phylogeny for 12 Drosophila species at higher dimensions except for the generally accepted but difficult to discern sister relationship between D. erecta and D. yakuba. Also, in accordance with previous studies, many sequences appear to support alternative phylogenies. In this case, we observed grouping of D. erecta with D. sechellia when approximately 55% to 95% of the proteins were removed using a filter based on projection values or by reducing resolution by using fewer dimensions. Similar results were obtained when just the melanogaster subgroup was analyzed. Conclusions These results indicate that using our novel phylogenetic method, it is possible to consult and interpret all predicted protein sequences within multiple whole genomes to produce accurate phylogenetic estimations of relatedness between

  16. Non-target effects of the entomopathogenic fungus Metarhizium brunneum (BIPESCO 5/F52) on predatory arthropods

    DEFF Research Database (Denmark)

    Campos de Azevedo, Ana Gorete

    females in the presence of M. brunneum revealed that gravid A. aphidimyza are able to perceive the risk posed by M. brunneum and react to that by choosing a pathogen-free site for offspring. In conclusion, non-target effects of M. brunneum on predatory arthropods may be expected. However, knowledge......The overall objective of this PhD thesis was to investigate the interactions that may occur when combining natural enemies of an herbivore. This was done by assessing the non-target effects of the generalist entomopathogenic fungus Metarhizium brunneum on four different predatory arthropods...... of the life cycles of the predatory arthropods and the optimal timing for releasing the natural enemies can reduce the risk of antagonistic interactions. Findings confirm that A. aphidimyza females are able to change their oviposition behavior in the presence of the entomopathogen. It furthermore confirms...

  17. Mitochondrial apoptotic pathways induced by Drosophila programmed cell death regulators

    International Nuclear Information System (INIS)

    Claveria, Cristina; Torres, Miguel

    2003-01-01

    Multicellular organisms eliminate unwanted or damaged cells by cell death, a process essential to the maintenance of tissue homeostasis. Cell death is a tightly regulated event, whose alteration by excess or defect is involved in the pathogenesis of many diseases such as cancer, autoimmune syndromes, and neurodegenerative processes. Studies in model organisms, especially in the nematode Caenorhabditis elegans, have been crucial in identifying the key molecules implicated in the regulation and execution of programmed cell death. In contrast, the study of cell death in Drosophila melanogaster, often an excellent model organism, has identified regulators and mechanisms not obviously conserved in other metazoans. Recent molecular and cellular analyses suggest, however, that the mechanisms of action of the main programmed cell death regulators in Drosophila include a canonical mitochondrial pathway

  18. Exogenous Nitric Oxide Suppresses in Vivo X-ray-Induced Targeted and Non-Targeted Effects in Zebrafish Embryos

    Directory of Open Access Journals (Sweden)

    E.Y. Kong

    2016-08-01

    Full Text Available The present paper studied the X-ray-induced targeted effect in irradiated zebrafish embryos (Danio rerio, as well as a non-targeted effect in bystander naïve embryos partnered with irradiated embryos, and examined the influence of exogenous nitric oxide (NO on these targeted and non-targeted effects. The exogenous NO was generated using an NO donor, S-nitroso-N-acetylpenicillamine (SNAP. The targeted and non-targeted effects, as well as the toxicity of the SNAP, were assessed using the number of apoptotic events in the zebrafish embryos at 24 h post fertilization (hpf revealed through acridine orange (AO staining. SNAP with concentrations of 20 and 100 µM were first confirmed to have no significant toxicity on zebrafish embryos. The targeted effect was mitigated in zebrafish embryos if they were pretreated with 100 µM SNAP prior to irradiation with an X-ray dose of 75 mGy but was not alleviated in zebrafish embryos if they were pretreated with 20 µM SNAP. On the other hand, the non-targeted effect was eliminated in the bystander naïve zebrafish embryos if they were pretreated with 20 or 100 µM SNAP prior to partnering with zebrafish embryos having been subjected to irradiation with an X-ray dose of 75 mGy. These findings revealed the importance of NO in the protection against damages induced by ionizing radiations or by radiation-induced bystander signals, and could have important impacts on development of advanced cancer treatment strategies.

  19. Augmentative biocontrol in natural marine habitats: persistence, spread and non-target effects of the sea urchin Evechinus chloroticus.

    Directory of Open Access Journals (Sweden)

    Javier Atalah

    Full Text Available Augmentative biocontrol aims to control established pest populations through enhancement of their indigenous enemies. To our knowledge, this approach has not been applied at an operational scale in natural marine habitats, in part because of the perceived risk of adverse non-target effects on native ecosystems. In this paper, we focus on the persistence, spread and non-target effects of the sea urchin Evechinus chloroticus when used as biocontrol agent to eradicate an invasive kelp from Fiordland, New Zealand. Rocky reef macrobenthic assemblages were monitored over 17 months in areas where the indigenous algal canopy was either removed or left intact prior to the translocation of a large number of urchins (>50 ind.·m(-2. Urchin densities in treated areas significantly declined ∼9 months after transplant, and began spreading to adjacent sites. At the end of the 17-month study, densities had declined to ∼5 ind.·m(-2. Compared to controls, treatment sites showed persistent shifts from kelp forest to urchin barrens, which were accompanied by significant reductions in taxa richness. Although these non-target effects were pronounced, they were considered to be localised and reversible, and arguably outweigh the irreversible and more profound ecological impacts associated with the establishment of an invasive species in a region of high conservation value. Augmentative biocontrol, used in conjunction with traditional control methods, represents a promising tool for the integrated management of marine pests.

  20. Radiation induced COX-2 expression and mutagenesis at non-targeted lung tissues of gpt delta transgenic mice

    Science.gov (United States)

    Chai, Y; Calaf, G M; Zhou, H; Ghandhi, S A; Elliston, C D; Wen, G; Nohmi, T; Amundson, S A; Hei, T K

    2013-01-01

    Background: Although radiation-induced bystander effects have been confirmed using a variety of endpoints, the mechanism(s) underlying these effects are not well understood, especially for in vivo study. Methods: A 1-cm2 area (1 cm × 1 cm) in the lower abdominal region of gpt delta transgenic mice was irradiated with 5 Gy of 300 keV X-rays, and changes in out-of-field lung and liver were observed. Results: Compared with sham-treated controls, the Spi− mutation frequency increased 2.4-fold in non-targeted lung tissues at 24 h after partial body irradiation (PBIR). Consistent with dramatic Cyclooxygenase 2 (COX-2) induction in the non-targeted bronchial epithelial cells, increasing levels of prostaglandin, together with 8-hydroxydeoxyguanosine, in the out-of-field lung tissues were observed after PBIR. In addition, DNA double-strand breaks and apoptosis were induced in bystander lung tissues after PBIR. Conclusion: The PBIR induces DNA damage and mutagenesis in non-targeted lung tissues, especially in bronchial epithelial cells, and COX-2 has an essential role in bystander mutagenesis. PMID:23321513

  1. Simultaneous quantification of tumor uptake for targeted and non-targeted liposomes and their encapsulated contents by ICP-MS

    Science.gov (United States)

    Cheng, Zhiliang; Zaki, Ajlan Al; Hui, James Z; Tsourkas, Andrew

    2012-01-01

    Liposomes are intensively being developed for biomedical applications including drug and gene delivery. However, targeted liposomal delivery in cancer treatment is a very complicated multi-step process. Unfavorable liposome biodistribution upon intravenous administration and membrane destabilization in blood circulation could result in only a very small fraction of cargo reaching the tumors. It would therefore be desirable to develop new quantitative strategies to track liposomal delivery systems to improve the therapeutic index and decrease systemic toxicity. Here, we developed a simple and non-radiative method to quantify the tumor uptake of targeted and non-targeted control liposomes as well as their encapsulated contents simultaneously. Specifically, four different chelated lanthanide metals were encapsulated or surface-conjugated onto tumor-targeted and non-targeted liposomes, respectively. The two liposome formulations were then injected into tumor-bearing mice simultaneously and their tumor delivery was determined quantitatively via inductively coupled plasma-mass spectroscopy (ICP-MS), allowing for direct comparisons. Tumor uptake of the liposomes themselves and their encapsulated contents were consistent with targeted and non-targeted liposome formulations that were injected individually. PMID:22882145

  2. Epigenetic telomere protection by Drosophila DNA damage response pathways.

    Science.gov (United States)

    Oikemus, Sarah R; Queiroz-Machado, Joana; Lai, KuanJu; McGinnis, Nadine; Sunkel, Claudio; Brodsky, Michael H

    2006-05-01

    Analysis of terminal deletion chromosomes indicates that a sequence-independent mechanism regulates protection of Drosophila telomeres. Mutations in Drosophila DNA damage response genes such as atm/tefu, mre11, or rad50 disrupt telomere protection and localization of the telomere-associated proteins HP1 and HOAP, suggesting that recognition of chromosome ends contributes to telomere protection. However, the partial telomere protection phenotype of these mutations limits the ability to test if they act in the epigenetic telomere protection mechanism. We examined the roles of the Drosophila atm and atr-atrip DNA damage response pathways and the nbs homolog in DNA damage responses and telomere protection. As in other organisms, the atm and atr-atrip pathways act in parallel to promote telomere protection. Cells lacking both pathways exhibit severe defects in telomere protection and fail to localize the protection protein HOAP to telomeres. Drosophila nbs is required for both atm- and atr-dependent DNA damage responses and acts in these pathways during DNA repair. The telomere fusion phenotype of nbs is consistent with defects in each of these activities. Cells defective in both the atm and atr pathways were used to examine if DNA damage response pathways regulate telomere protection without affecting telomere specific sequences. In these cells, chromosome fusion sites retain telomere-specific sequences, demonstrating that loss of these sequences is not responsible for loss of protection. Furthermore, terminally deleted chromosomes also fuse in these cells, directly implicating DNA damage response pathways in the epigenetic protection of telomeres. We propose that recognition of chromosome ends and recruitment of HP1 and HOAP by DNA damage response proteins is essential for the epigenetic protection of Drosophila telomeres. Given the conserved roles of DNA damage response proteins in telomere function, related mechanisms may act at the telomeres of other organisms.

  3. Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model

    Science.gov (United States)

    Li, Ying; Liu, Zengrong

    MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.

  4. Functional Gustatory Role of Chemoreceptors in Drosophila Wings.

    Science.gov (United States)

    Raad, Hussein; Ferveur, Jean-François; Ledger, Neil; Capovilla, Maria; Robichon, Alain

    2016-05-17

    Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca(2+) levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechanical grooming, which facilitates the contact between tastants and wing chemoreceptors, and the vibrations of flapping wings that nebulize volatile molecules as carboxylic acids. Together, these data demonstrate that the Drosophila wing chemosensory sensilla are a functional taste organ and that they may have a role in the exploration of ecological niches. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. The ecology of the Drosophila-yeast mutualism in wineries

    Science.gov (United States)

    2018-01-01

    The fruit fly, Drosophila melanogaster, is preferentially found on fermenting fruits. The yeasts that dominate the microbial communities of these substrates are the primary food source for developing D. melanogaster larvae, and adult flies manifest a strong olfactory system-mediated attraction for the volatile compounds produced by these yeasts during fermentation. Although most work on this interaction has focused on the standard laboratory yeast Saccharomyces cerevisiae, a wide variety of other yeasts naturally ferment fallen fruit. Here we address the open question of whether D. melanogaster preferentially associates with distinct yeasts in different, closely-related environments. We characterized the spatial and temporal dynamics of Drosophila-associated fungi in Northern California wineries that use organic grapes and natural fermentation using high-throughput, short-amplicon sequencing. We found that there is nonrandom structure in the fungal communities that are vectored by flies both between and within vineyards. Within wineries, the fungal communities associated with flies in cellars, fermentation tanks, and pomace piles are distinguished by varying abundances of a small number of yeast species. To investigate the origins of this structure, we assayed Drosophila attraction to, oviposition on, larval development in, and longevity when consuming the yeasts that distinguish vineyard microhabitats from each other. We found that wild fly lines did not respond differentially to the yeast species that distinguish winery habitats in habitat specific manner. Instead, this subset of yeast shares traits that make them attractive to and ensure their close association with Drosophila. PMID:29768432

  6. Late replication domains are evolutionary conserved in the Drosophila genome.

    Science.gov (United States)

    Andreyenkova, Natalya G; Kolesnikova, Tatyana D; Makunin, Igor V; Pokholkova, Galina V; Boldyreva, Lidiya V; Zykova, Tatyana Yu; Zhimulev, Igor F; Belyaeva, Elena S

    2013-01-01

    Drosophila chromosomes are organized into distinct domains differing in their predominant chromatin composition, replication timing and evolutionary conservation. We show on a genome-wide level that genes whose order has remained unaltered across 9 Drosophila species display late replication timing and frequently map to the regions of repressive chromatin. This observation is consistent with the existence of extensive domains of repressive chromatin that replicate extremely late and have conserved gene order in the Drosophila genome. We suggest that such repressive chromatin domains correspond to a handful of regions that complete replication at the very end of S phase. We further demonstrate that the order of genes in these regions is rarely altered in evolution. Substantial proportion of such regions significantly coincide with large synteny blocks. This indicates that there are evolutionary mechanisms maintaining the integrity of these late-replicating chromatin domains. The synteny blocks corresponding to the extremely late-replicating regions in the D. melanogaster genome consistently display two-fold lower gene density across different Drosophila species.

  7. Combined influence of Bt rice and rice dwarf virus on biological parameters of a non-target herbivore, Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae)

    Science.gov (United States)

    The advent of genetically modified (GM) Bt rice creates the possibility of interactions among Bt crops, crop pathogens and non-target herbivores. In particular, information on how pathogen-infected Bt-expressing plants will influence non-target herbivores is necessary to predict the sustainability o...

  8. Comparative genome sequencing of Drosophila pseudoobscura: Chromosomal, gene, and cis-element evolution

    DEFF Research Database (Denmark)

    Richards, Stephen; Liu, Yue; Bettencourt, Brian R.

    2005-01-01

    years (Myr) since the pseudoobscura/melanogaster divergence. Genes expressed in the testes had higher amino acid sequence divergence than the genome-wide average, consistent with the rapid evolution of sex-specific proteins. Cis-regulatory sequences are more conserved than random and nearby sequences......We have sequenced the genome of a second Drosophila species, Drosophila pseudoobscura, and compared this to the genome sequence of Drosophila melanogaster, a primary model organism. Throughout evolution the vast majority of Drosophila genes have remained on the same chromosome arm, but within each...... between the species-but the difference is slight, suggesting that the evolution of cis-regulatory elements is flexible. Overall, a pattern of repeat-mediated chromosomal rearrangement, and high coadaptation of both male genes and cis-regulatory sequences emerges as important themes of genome divergence...

  9. Starvation-Induced Dietary Behaviour in Drosophila melanogaster Larvae and Adults.

    Science.gov (United States)

    Ahmad, Muhammad; Chaudhary, Safee Ullah; Afzal, Ahmed Jawaad; Tariq, Muhammad

    2015-09-24

    Drosophila melanogaster larvae are classified as herbivores and known to feed on non-carnivorous diet under normal conditions. However, when nutritionally challenged these larvae exhibit cannibalistic behaviour by consuming a diet composed of larger conspecifics. Herein, we report that cannibalism in Drosophila larvae is confined not only to scavenging on conspecifics that are larger in size, but also on their eggs. Moreover, such cannibalistic larvae develop as normally as those grown on standard cornmeal medium. When stressed, Drosophila melanogaster larvae can also consume a carnivorous diet derived from carcasses of organisms belonging to diverse taxonomic groups, including Musca domestica, Apis mellifera, and Lycosidae sp. While adults are ill-equipped to devour conspecific carcasses, they selectively oviposit on them and also consume damaged cadavers of conspecifics. Thus, our results suggest that nutritionally stressed Drosophila show distinct as well as unusual feeding behaviours that can be classified as detritivorous, cannibalistic and/or carnivorous.

  10. Deconstructing host-pathogen interactions in Drosophila

    Directory of Open Access Journals (Sweden)

    Ethan Bier

    2012-01-01

    Full Text Available Many of the cellular mechanisms underlying host responses to pathogens have been well conserved during evolution. As a result, Drosophila can be used to deconstruct many of the key events in host-pathogen interactions by using a wealth of well-developed molecular and genetic tools. In this review, we aim to emphasize the great leverage provided by the suite of genomic and classical genetic approaches available in flies for decoding details of host-pathogen interactions; these findings can then be applied to studies in higher organisms. We first briefly summarize the general strategies by which Drosophila resists and responds to pathogens. We then focus on how recently developed genome-wide RNA interference (RNAi screens conducted in cells and flies, combined with classical genetic methods, have provided molecular insight into host-pathogen interactions, covering examples of bacteria, fungi and viruses. Finally, we discuss novel strategies for how flies can be used as a tool to examine how specific isolated virulence factors act on an intact host.

  11. The Drosophila homolog of the mammalian imprint regulator, CTCF, maintains the maternal genomic imprint in Drosophila melanogaster

    Directory of Open Access Journals (Sweden)

    Rasheva Vanya

    2010-07-01

    Full Text Available Abstract Background CTCF is a versatile zinc finger DNA-binding protein that functions as a highly conserved epigenetic transcriptional regulator. CTCF is known to act as a chromosomal insulator, bind promoter regions, and facilitate long-range chromatin interactions. In mammals, CTCF is active in the regulatory regions of some genes that exhibit genomic imprinting, acting as insulator on only one parental allele to facilitate parent-specific expression. In Drosophila, CTCF acts as a chromatin insulator and is thought to be actively involved in the global organization of the genome. Results To determine whether CTCF regulates imprinting in Drosophila, we generated CTCF mutant alleles and assayed gene expression from the imprinted Dp(1;fLJ9 mini-X chromosome in the presence of reduced CTCF expression. We observed disruption of the maternal imprint when CTCF levels were reduced, but no effect was observed on the paternal imprint. The effect was restricted to maintenance of the imprint and was specific for the Dp(1;fLJ9 mini-X chromosome. Conclusions CTCF in Drosophila functions in maintaining parent-specific expression from an imprinted domain as it does in mammals. We propose that Drosophila CTCF maintains an insulator boundary on the maternal X chromosome, shielding genes from the imprint-induced silencing that occurs on the paternally inherited X chromosome. See commentary: http://www.biomedcentral.com/1741-7007/8/104

  12. Measurement of lifespan in Drosophila melanogaster.

    Science.gov (United States)

    Linford, Nancy J; Bilgir, Ceyda; Ro, Jennifer; Pletcher, Scott D

    2013-01-07

    Aging is a phenomenon that results in steady physiological deterioration in nearly all organisms in which it has been examined, leading to reduced physical performance and increased risk of disease. Individual aging is manifest at the population level as an increase in age-dependent mortality, which is often measured in the laboratory by observing lifespan in large cohorts of age-matched individuals. Experiments that seek to quantify the extent to which genetic or environmental manipulations impact lifespan in simple model organisms have been remarkably successful for understanding the aspects of aging that are conserved across taxa and for inspiring new strategies for extending lifespan and preventing age-associated disease in mammals. The vinegar fly, Drosophila melanogaster, is an attractive model organism for studying the mechanisms of aging due to its relatively short lifespan, convenient husbandry, and facile genetics. However, demographic measures of aging, including age-specific survival and mortality, are extraordinarily susceptible to even minor variations in experimental design and environment, and the maintenance of strict laboratory practices for the duration of aging experiments is required. These considerations, together with the need to practice careful control of genetic background, are essential for generating robust measurements. Indeed, there are many notable controversies surrounding inference from longevity experiments in yeast, worms, flies and mice that have been traced to environmental or genetic artifacts(1-4). In this protocol, we describe a set of procedures that have been optimized over many years of measuring longevity in Drosophila using laboratory vials. We also describe the use of the dLife software, which was developed by our laboratory and is available for download (http://sitemaker.umich.edu/pletcherlab/software). dLife accelerates throughput and promotes good practices by incorporating optimal experimental design, simplifying

  13. Nanoliter hemolymph sampling and analysis of individual adult Drosophila melanogaster.

    Science.gov (United States)

    Piyankarage, Sujeewa C; Featherstone, David E; Shippy, Scott A

    2012-05-15

    The fruit fly (Drosophila melanogaster) is an extensively used and powerful, genetic model organism. However, chemical studies using individual flies have been limited by the animal's small size. Introduced here is a method to sample nanoliter hemolymph volumes from individual adult fruit-flies for chemical analysis. The technique results in an ability to distinguish hemolymph chemical variations with developmental stage, fly sex, and sampling conditions. Also presented is the means for two-point monitoring of hemolymph composition for individual flies.

  14. Sucrose Improves Insecticide Activity Against Drosophila suzukii (Diptera: Drosophilidae).

    Science.gov (United States)

    Cowles, Richard S; Rodriguez-Saona, Cesar; Holdcraft, Robert; Loeb, Gregory M; Elsensohn, Johanna E; Hesler, Steven P

    2015-04-01

    The addition of sucrose to insecticides targeting spotted wing drosophila, Drosophila suzukii (Matsumura), enhanced lethality in laboratory, semifield, and field tests. In the laboratory, 0.1% sucrose added to a spray solution enhanced spotted wing drosophila feeding. Flies died 120 min earlier when exposed to spinosad residues at label rates enhanced with sucrose. Added sucrose reduced the LC50 for dried acetamiprid residues from 82 to 41 ppm in the spray solution. Laboratory bioassays of spotted wing drosophila mortality followed exposure to grape and blueberry foliage and/or fruit sprayed and aged in the field. On grape foliage, the addition of 2.4 g/liter of sugar with insecticide sprays resulted in an 11 and 6% increase of spotted wing drosophila mortality at 1 and 2 d exposures to residues, respectively, averaged over seven insecticides with three concentrations. In a separate experiment, spinetoram and cyantraniliprole reduced by 95-100% the larval infestation of blueberries, relative to the untreated control, 7 d after application at labeled rates when applied with 1.2 g/liter sucrose in a spray mixture, irrespective of rainfall; without sucrose infestation was reduced by 46-91%. Adding sugar to the organically acceptable spinosyn, Entrust, reduced larval infestation of strawberries by >50% relative to without sugar for five of the six sample dates during a season-long field trial. In a small-plot field test with blueberries, weekly applications in alternating sprays of sucrose plus reduced-risk insecticides, spinetoram or acetamiprid, reduced larval infestation relative to the untreated control by 76%; alternating bifenthrin and phosmet (without sucrose) reduced infestation by 65%. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. The intensity of non-target site mechanisms influences the level of resistance of sourgrass to glyphosate

    Directory of Open Access Journals (Sweden)

    Flávia Regina da Costa

    2014-02-01

    Full Text Available Non-target site mechanisms are involved in the resistance of sourgrass (Digitaria insularis to glyphosate. Studies on the 14C-glyphosate absorption and translocation as well as the detection of glyphosate and its metabolites in sourgrass plants were carried out under controlled conditions to investigate if the differential response of resistant sourgrass biotypes (R1 and R2 is derived from the intensity of non-target site mechanisms involved in the resistance to glyphosate. Different pattern of absorption was observed between S (susceptible and R2 from 12 up to 48 hours after treatment with glyphosate (HAT, and between S and R1 just at 12 HAT. The initial difference in glyphosate absorption among the biotypes did not maintained at 96 HAT and afterwards. Smaller amount of herbicide left the treated leaf into the rest of shoot and roots in R2 (25% than in S (58% and R1 (52%. In addition, slight difference in glyphosate translocation was observed between S and R1. We found high percentage (81% of glyphosate in the S biotype up to 168 HAT, while just 44% and 2% of glyphosate was recovered from R1 and R2 plant tissues. In addition, high percentage of glyphosate metabolites was found in R2 (98% and R1 (56% biotypes, while a very low percentage (11% was found in the S biotype. As previous studies indicated resistant factors of 3.5 and 5.6 for R1 and R2, respectively, we conclude that the differential response of sourgrass biotypes is derived from the intensity of the non-target site mechanisms involved in the resistance to glyphosate.

  16. The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods.

    Directory of Open Access Journals (Sweden)

    Yanyan Guo

    Full Text Available Transgenic corn producing Cry1Ac toxins from Bacillus thuringiensis (Bt provides effective control of Asian corn borer, Ostrinia furnacalis (Guenée, and thus reduces insecticide applications. However, whether Bt corn exerts undesirable effects on non-target arthropods (NTAs is still controversial. We conducted a 2-yr study in Shangzhuang Agricultural Experiment Station to assess the potential impact of Bt corn on field population density, biodiversity, community composition and structure of NTAs. On each sampling date, the total abundance, Shannon's diversity index, Pielou's evenness index and Simpson's diversity index were not significantly affected by Bt corn as compared to non-Bt corn. The "sampling dates" had a significant effect on these indices, but no clear tendencies related to "Bt corn" or "sampling dates X corn variety" interaction were recorded. Principal response curve analysis of variance indicated that Bt corn did not alter the distribution of NTAs communities. Bray-Curtis dissimilarity and distance analysis showed that Cry1Ac toxin exposure did not increase community dissimilarities between Bt and non-Bt corn plots and that the evolution of non-target arthropod community was similar on the two corn varieties. The cultivation of Bt corn failed to show any detrimental evidence on the density of non-target herbivores, predators and parasitoids. The composition of herbivores, predators and parasitoids was identical in Bt and non-Bt corn plots. Taken together, results from the present work support that Bt corn producing Cry1Ac toxins does not adversely affect NTAs.

  17. The impact of a conditional cash transfer program on the utilization of non-targeted services: Evidence from Afghanistan.

    Science.gov (United States)

    Witvorapong, Nopphol; Foshanji, Abo Ismael

    2016-03-01

    While existing research suggests that health-related conditional cash transfer (CCT) programs have positive impacts on the utilization of CCT-targeted health services, little is known as to whether they also influence the utilization of non-targeted health services-defined as general health services for which program participants are not financially motivated. Based on a sample of 6649 households in a CCT program that took place in May 2009-June 2011 in Afghanistan, we evaluate the impact of the receipt of CCTs on the utilization of non-targeted health services both by women, who were direct beneficiaries of the program, and by members of their households. We estimate the outcomes of interest through four probit models, accounting for potential endogeneity of the CCT receipt and dealing with lack of credible exclusion restrictions in different ways. In comparison with the control group, the receipt of CCTs is found to be associated with an increase in the probability of utilizing non-targeted services among household members across regression models. The results are mixed, with regard to the utilization by women, suggesting that there exist non-economic barriers to health care, unique to women, that are not captured by the data. The results confirm the importance of accounting for direct as well as indirect effects in policy evaluation and suggest that future studies investigate more deeply the role of community health workers in removing non-economic barriers for Afghan women and the possibility of introducing an incentive structure to motivate them to contribute more actively to population health in Afghanistan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. The tick biocontrol agent Metarhizium brunneum (= M. anisopliae) (strain F52) does not reduce non-target arthropods.

    Science.gov (United States)

    Fischhoff, Ilya R; Keesing, Felicia; Ostfeld, Richard S

    2017-01-01

    Previous studies have found that Met52®, which contains the entomopathogenic fungus Metarhizium brunneum, is effective in reducing the abundance of Ixodes scapularis, the tick vector for the bacterium causing Lyme disease and for other tick-borne pathogens. Given widespread interest in effective, safe methods for controlling ticks, Met52 has the potential to be used at increasing scales. The non-target impacts of Met52, as applied for tick control, have not yet been assessed. A Before-After-Control-Impact experiment was conducted to assess the effects of Met52 on non-target arthropods in lawn and forest habitats typical of residential yards. Ground-dwelling arthropods were collected using bulk sampling of soil and litter, and pitfall sampling. Arthropods were sampled once before and twice after treatment of plots with either Met52 or water (control). Multivariate general linear models were used to jointly model the abundance of arthropod orders. For each sampling method and post-spray sampling occasion, Akaike Information Criterion values were used to compare the fits of two alternative models: one that included effects of period (before vs. after spray), habitat (lawn vs. forest), and treatment (Met52 vs. control), versus a nested null model that included effects of period, and habitat, but no treatment effect. The null model was consistently better supported by the data. Significant effects were found of period and habitat but not treatment. Retrospective power analysis indicated the study had 80% power to detect a 50% reduction in arthropod abundance, as measured by bulk samples taken before versus one week after treatment. The deployment of Met52 in suburban settings is unlikely to cause meaningful reductions in the abundance of non-target arthropods.

  19. The tick biocontrol agent Metarhizium brunneum (= M. anisopliae (strain F52 does not reduce non-target arthropods.

    Directory of Open Access Journals (Sweden)

    Ilya R Fischhoff

    Full Text Available Previous studies have found that Met52®, which contains the entomopathogenic fungus Metarhizium brunneum, is effective in reducing the abundance of Ixodes scapularis, the tick vector for the bacterium causing Lyme disease and for other tick-borne pathogens. Given widespread interest in effective, safe methods for controlling ticks, Met52 has the potential to be used at increasing scales. The non-target impacts of Met52, as applied for tick control, have not yet been assessed. A Before-After-Control-Impact experiment was conducted to assess the effects of Met52 on non-target arthropods in lawn and forest habitats typical of residential yards. Ground-dwelling arthropods were collected using bulk sampling of soil and litter, and pitfall sampling. Arthropods were sampled once before and twice after treatment of plots with either Met52 or water (control. Multivariate general linear models were used to jointly model the abundance of arthropod orders. For each sampling method and post-spray sampling occasion, Akaike Information Criterion values were used to compare the fits of two alternative models: one that included effects of period (before vs. after spray, habitat (lawn vs. forest, and treatment (Met52 vs. control, versus a nested null model that included effects of period, and habitat, but no treatment effect. The null model was consistently better supported by the data. Significant effects were found of period and habitat but not treatment. Retrospective power analysis indicated the study had 80% power to detect a 50% reduction in arthropod abundance, as measured by bulk samples taken before versus one week after treatment. The deployment of Met52 in suburban settings is unlikely to cause meaningful reductions in the abundance of non-target arthropods.

  20. The non-target bi-ovarian branches occlusion in fibroids embolization on resumption of menses and ovarian function

    International Nuclear Information System (INIS)

    Guo Wenbo; Yang Jianyong; Chen Wei; Zhuang Wenquan; Yao Shuzhong

    2005-01-01

    Objective: To evaluate the effect of the non-target bi-ovarian branches occlusion in fibroids embolization on resumption of menses and ovarian function. Methods: The patients with the non-target bi-ovarian branches occlusion in uterine fibroids embolization (UFE) were classified into two groups, one for lipiodol deposited in bi-ovarian areas (Group A) , another for non lipiodol deposited in ovarian areas or in single ovarian area (Group B of non lipiodol deposited in bi-ovarian areas). The statistical difference between the data of group A and group B were assessed with Fisher test. All UFE were performed with the mixture of lipiodol and pingyangmycin. The serum level of Follicle stimulating hormone (FSH), luteinizing hormone (LH) and estradiol (E2) were measured before UFE and 6 months after UFE. The statistical difference between the data of before and after UFE was assessed with t test. Results: Fifteen patients [age ranged 26-46 years, average (39.00 ± 5.62) years] had been followed up for an average (30.5±6.4) months (range 16-47 months). In 12 of 15, regular menses resumed after an average of (3.0 ±0.3) weeks (range 2-6 weeks). In 3 of 15 (20%), regular menses did not resume. The sexual hormone findings of menopause were found in three cases with amenorrhea after UFE. Amenorrhea was found in three cases with lipiodol deposited in bi-ovarian areas (Group A). Non-amenorrhea was found in the group of non-lipiodol deposited in bi-ovarian areas (Group B). There were significant statistical difference between Group A and Group B (P=0.002 19). Non amenorrhea was found in the patients aged over 45 years old. Three patients were found amenorrhea in the patients aged younger than 45 years old. There were no significant statistical difference between the serum level of FSH, LH and E2 before and 6 months after UFE (P>0.05). Conclusion: The incidence of amenorrhea is very high in the patients with lipiodol deposited in bi-ovarian areas when the bi-ovarian branches of

  1. Scientific Opinion addressing the state of the science on risk assessment of plant protection products for non-target arthropods

    DEFF Research Database (Denmark)

    EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues); Topping, Christopher John

    2015-01-01

    scheme is reviewed, taking into consideration recent workshops and progress in science. Proposals are made for specific protection goals which aim to protect important ecosystem services such as food web support, pest control and biodiversity. In order to address recovery and source–sink population...... dynamics, conducting a landscape-level risk assessment is suggested. A new risk assessment scheme is suggested which integrates modelling approaches. The main exposure routes for non-target arthropods are identified and proposals are made on how to integrate them in the risk assessment. The appropriateness...

  2. Drosophila olfactory memory: single genes to complex neural circuits.

    Science.gov (United States)

    Keene, Alex C; Waddell, Scott

    2007-05-01

    A central goal of neuroscience is to understand how neural circuits encode memory and guide behaviour. Studying simple, genetically tractable organisms, such as Drosophila melanogaster, can illuminate principles of neural circuit organization and function. Early genetic dissection of D. melanogaster olfactory memory focused on individual genes and molecules. These molecular tags subsequently revealed key neural circuits for memory. Recent advances in genetic technology have allowed us to manipulate and observe activity in these circuits, and even individual neurons, in live animals. The studies have transformed D. melanogaster from a useful organism for gene discovery to an ideal model to understand neural circuit function in memory.

  3. Curzerene, trans-β-elemenone, and γ-elemene as effective larvicides against Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus: toxicity on non-target aquatic predators.

    Science.gov (United States)

    Govindarajan, Marimuthu; Rajeswary, Mohan; Senthilmurugan, Sengamalai; Vijayan, Periasamy; Alharbi, Naiyf S; Kadaikunnan, Shine; Khaled, Jamal M; Benelli, Giovanni

    2018-04-01

    A wide number of studies dealing with mosquito control focus on toxicity screenings of whole plant essential oils, while limited efforts shed light on main molecules responsible of toxicity, as well as their mechanisms of action on non-target organisms. In this study, GC-MS shed light on main essential oil components extracted from leaves of the Suriname cherry Eugenia uniflora, i.e., curzerene (35.7%), trans-β-elemenone (11.5%), and γ-elemene (13.6%), testing them on Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus larvae. Non-target toxicity experiments were carried out on four species of aquatic larvivorous organisms, including fishes, backswimmers, and waterbugs. The essential oil from E. uniflora leaves tested on An. subpictus, Ae. Albopictus, and Cx. tritaeniorhynchus showed LC 50 of 31.08, 33.50, and 36.35 μg/ml, respectively. Curzerene, trans-β-elemenone, and γ-elemene were extremely toxic to An. subpictus (LC 50  = 4.14, 6.13, and 10.53 μg/ml), Ae. albopictus (LC 50  = 4.57, 6.74, and 11.29 μg/ml), and Cx. tritaeniorhynchus (LC 50  = 5.01, 7.32, and 12.18 μg/ml). The essential oil from E. uniflora leaves, curzerene, trans-β-elemenone, and γ-elemene showed low toxicity to larvivorous fishes, backswimmers, and waterbugs, with LC 50 ranging from 303.77 to 6765.56 μg/ml. Predator safety factor (PSF) ranged from 55.72 to 273.45. Overall, we believe that curzerene isolated from the essential oil from E. uniflora leaves can represent an ideal molecule to formulate novel mosquito larvicides, due to its extremely low LC 50 on all tested mosquito vectors (4.14-5.01 μg/ml), which far encompasses most of the botanical pesticides tested till now. Notably, the above-mentioned LC 50 did not damage the four aquatic predators tested in this study.

  4. Origin of meiotic nondisjunction in Drosophila females

    International Nuclear Information System (INIS)

    Grell, R.F.

    1978-01-01

    Meiotic nondisjunction can be induced by external agents, such as heat, radiation, and chemicals, and by internal genotypic alterations, namely, point mutations and chromosomal rearrangements. In many cases nondisjunction arises from a reduction or elimination of crossing-over, leading to the production of homologous univalents which fail to co-orient on the metaphase plate and to disjoin properly. In some organisms, e.g., Drosophila and perhaps man, distributive pairing [i.e., a post-exchange, size-dependent pairing] ensures the regular segregation of such homologous univalents. When a nonhomologous univalent is present, which falls within a size range permitting nonhomologous recognition and pairing, distributive nondisjunction of the homologues may follow. Examples of nondisjunction induced by inversion heterozygosity, translocation heterozygosity, chromosome fragments, radiation, heat, and recombination-defective mutants are presented

  5. Proteome reference map of Drosophila melanogaster head.

    Science.gov (United States)

    Lee, Tian-Ren; Huang, Shun-Hong; Lee, Chi-Ching; Lee, Hsiao-Yun; Chan, Hsin-Tzu; Lin, Kuo-Sen; Chan, Hong-Lin; Lyu, Ping-Chiang

    2012-06-01

    Drosophila melanogaster has been used as a genetic model organism to understand the fundamental molecular mechanisms in human biology including memory formation that has been reported involving protein synthesis and/or post-translational modification. In this study, we employed a proteomic platform based on fluorescent 2DE and MALDI-TOF MS to build a standard D. melanogaster head proteome map for proteome-proteome comparison. In order to facilitate the comparison, an interactive database has been constructed for systematically integrating and analyzing the proteomes from different conditions and further implicated to study human diseases related to D. melanogaster model. In summary, the fundamental head proteomic database and bioinformatic analysis will be useful for further elucidating the biological mechanisms such as memory formation and neurodegenerative diseases. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Comparative evaluation of the genomes of three common Drosophila-associated bacteria

    Directory of Open Access Journals (Sweden)

    Kristina Petkau

    2016-09-01

    Full Text Available Drosophila melanogaster is an excellent model to explore the molecular exchanges that occur between an animal intestine and associated microbes. Previous studies in Drosophila uncovered a sophisticated web of host responses to intestinal bacteria. The outcomes of these responses define critical events in the host, such as the establishment of immune responses, access to nutrients, and the rate of larval development. Despite our steady march towards illuminating the host machinery that responds to bacterial presence in the gut, there are significant gaps in our understanding of the microbial products that influence bacterial association with a fly host. We sequenced and characterized the genomes of three common Drosophila-associated microbes: Lactobacillus plantarum, Lactobacillus brevis and Acetobacter pasteurianus. For each species, we compared the genomes of Drosophila-associated strains to the genomes of strains isolated from alternative sources. We found that environmental Lactobacillus strains readily associated with adult Drosophila and were similar to fly isolates in terms of genome organization. In contrast, we identified a strain of A. pasteurianus that apparently fails to associate with adult Drosophila due to an inability to grow on fly nutrient food. Comparisons between association competent and incompetent A. pasteurianus strains identified a short list of candidate genes that may contribute to survival on fly medium. Many of the gene products unique to fly-associated strains have established roles in the stabilization of host-microbe interactions. These data add to a growing body of literature that examines the microbial perspective of host-microbe relationships.

  7. Combinatorial effect of maytansinol and radiation in Drosophila and human cancer cells

    Directory of Open Access Journals (Sweden)

    Anthony Edwards

    2011-07-01

    Combination therapy, in which two or more agents are applied, is more effective than single therapies for combating cancer. For this reason, combinations of chemotherapy with radiation are being explored in clinical trials, albeit with an empirical approach. We developed a screen to identify, from the onset, molecules that act in vivo in conjunction with radiation, using Drosophila as a model. Screens through two small molecule libraries from the NCI Developmental Therapeutics Program yielded microtubule poisons; this class of agents is known to enhance the effect of radiation in mammalian cancer models. Here we report an analysis of one microtubule depolymerizing agent, maytansinol isobutyrate (NSC292222; maytansinol, in Drosophila and in human cancer cells. We find that the effect of maytansinol is p53 dependent in Drosophila cells and human cancer cells, that maytansinol enhances the effect of radiation in both systems, and that the combinatorial effect of drug and radiation is additive. We also uncover a differential sensitivity to maytansinol between Drosophila cells and Drosophila larvae, which illustrates the value of studying cell behavior in the context of a whole organism. On the basis of these results, we propose that Drosophila might be a useful model for unbiased screens through new molecule libraries to find cancer drugs for combination therapy.

  8. Non-targeted and delayed effects of exposure to ionizing radiation: I. Radiation-induced genomic instability and bystander effects in vitro

    Science.gov (United States)

    Morgan, William F.

    2003-01-01

    A long-standing dogma in the radiation sciences is that energy from radiation must be deposited in the cell nucleus to elicit a biological effect. A number of non-targeted, delayed effects of ionizing radiation have been described that challenge this dogma and pose new challenges to evaluating potential hazards associated with radiation exposure. These effects include induced genomic instability and non-targeted bystander effects. The in vitro evidence for non-targeted effects in radiation biology will be reviewed, but the question as to how one extrapolates from these in vitro observations to the risk of radiation-induced adverse health effects such as cancer remains open.

  9. Assessing patient characteristics and radiation-induced non-targeted effects in vivo for high dose-rate (HDR) brachytherapy.

    Science.gov (United States)

    Pinho, Christine; Timotin, Emilia; Wong, Raimond; Sur, Ranjan K; Hayward, Joseph E; Farrell, Thomas J; Seymour, Colin; Mothersill, Carmel

    2015-01-01

    To test whether blood, urine, and tissue based colony-forming assays are a useful clinical detection tool for assessing fractionated treatment responses and non-targeted radiation effects in bystander cells. To assess patients' responses to radiation treatments, blood serum, urine, and an esophagus explant-based in vivo colony-forming assay were used from oesophageal carcinoma patients. These patients underwent three fractions of high dose rate (HDR) intraluminal brachytherapy (ILBT). Human keratinocyte reporters exposed to blood sera taken after the third fraction of brachytherapy had a significant increase in cloning efficiency compared to baseline samples (p fractions for the blood sera data only. Patient characteristics such as gender had no statistically significant effect (p > 0.05). Large variability was observed among the patients' tissue samples, these colony-forming assays showed no significant changes throughout fractionated brachytherapy (p > 0.05). Large inter-patient variability was found in the urine and tissue based assays, so these techniques were discontinued. However, the simple blood-based assay had much less variability. This technique may have future applications as a biological dosimeter to predict treatment outcome and assess non-targeted radiation effects.

  10. Extracellular matrix and its receptors in Drosophila neural development

    Science.gov (United States)

    Broadie, Kendal; Baumgartner, Stefan; Prokop, Andreas

    2011-01-01

    Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: 1) neural progenitor proliferation, 2) axonal growth and pathfinding and 3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions. PMID:21688401

  11. Drosophila DNA-Binding Proteins in Polycomb Repression

    Directory of Open Access Journals (Sweden)

    Maksim Erokhin

    2018-01-01

    Full Text Available The formation of individual gene expression patterns in different cell types is required during differentiation and development of multicellular organisms. Polycomb group (PcG proteins are key epigenetic regulators responsible for gene repression, and dysregulation of their activities leads to developmental abnormalities and diseases. PcG proteins were first identified in Drosophila, which still remains the most convenient system for studying PcG-dependent repression. In the Drosophila genome, these proteins bind to DNA regions called Polycomb response elements (PREs. A major role in the recruitment of PcG proteins to PREs is played by DNA-binding factors, several of which have been characterized in detail. However, current knowledge is insufficient for comprehensively describing the mechanism of this process. In this review, we summarize and discuss the available data on the role of DNA-binding proteins in PcG recruitment to chromatin.

  12. Conserved family of glycerol kinase loci in Drosophila melanogaster

    Science.gov (United States)

    Martinez Agosto, Julian A.; McCabe, Edward R.B.

    2009-01-01

    Glycerol kinase (GK) is an enzyme that catalyzes the formation of glycerol 3-phosphate from ATP and glycerol, the rate-limiting step in glycerol utilization. We analyzed the genome of the model organism Drosophila melanogaster and identified five GK orthologs, including two loci with sequence homology to the mammalian Xp21 GK protein. Using a combination of sequence analysis and evolutionary comparisons of orthologs between species, we characterized functional domains in the protein required for GK activity. Our findings include additional conserved domains that suggest novel nuclear and mitochondrial functions for glycerol kinase in apoptosis and transcriptional regulation. Investigation of GK function in Drosophila will inform us about the role of this enzyme in development and will provide us with a tool to examine genetic modifiers of human metabolic disorders. PMID:16545593

  13. Fluorescent visualization of macromolecules in Drosophila whole mounts.

    Science.gov (United States)

    Ramos, Ricardo Guelerman Pinheiro; Machado, Luciana Claudia Herculano; Moda, Livia Maria Rosatto

    2010-01-01

    The ability to determine the expression dynamics of individual genes "in situ" by visualizing the precise spatial and temporal distribution of their products in whole mounts by histochemical and immunocytochemical reactions has revolutionized our understanding of cellular processes. Drosophila developmental genetics was one of the fields that benefited most from these technologies, and a variety of fluorescent methods were specifically designed for investigating the localization of developmentally important proteins and cell markers during embryonic and post embryonic stages of this model organism. In this chapter we present detailed protocols for fluorescence immunocytochemistry of whole mount embryos, imaginal discs, pupal retinas, and salivary glands of Drosophila melanogaster, as well as methods for fluorescent visualization of specific subcellular structures in these tissues.

  14. 20180318 - Structure identification by Mass Spectrometry Non-Targeted Analysis using the US EPA’s CompTox Chemistry Dashboard (ACS Spring)

    Science.gov (United States)

    Identification of unknowns in mass spectrometry based non-targeted analyses (NTA) requires the integration of complementary pieces of data to arrive at a confident, consensus structure. Researchers use chemical reference databases, spectral matching, fragment prediction tools, r...

  15. Caffeine taste signaling in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Anthi A Apostolopoulou

    2016-08-01

    Full Text Available The Drosophila larva has a simple peripheral nervous system with a comparably small number of sensory neurons located externally at the head or internally along the pharynx to assess its chemical environment. It is assumed that larval taste coding occurs mainly via external organs (the dorsal, terminal and ventral organ. However, the contribution of the internal pharyngeal sensory organs has not been explored. Here we find that larvae require a single pharyngeal gustatory receptor neuron pair called D1, which is located in the dorsal pharyngeal sensilla, in order to avoid caffeine and to associate an odor with caffeine punishment. In contrast, caffeine-driven reduction in feeding in non-choice situations does not require D1. Hence, this work provides data on taste coding via different receptor neurons, depending on the behavioral context. Furthermore, we show that the larval pharyngeal system is involved in bitter tasting. Using ectopic expressions, we show that the caffeine receptor in neuron D1 requires the function of at least four receptor genes: the putative coreceptors Gr33a, Gr66a, the putative caffeine-specific receptor Gr93a, and yet unknown additional molecular component(s. This suggests that larval taste perception is more complex than previously assumed already at the sensory level. Taste information from different sensory organs located outside at the head or inside along the pharynx of the larva is assembled to trigger taste guided behaviours.

  16. Chemical composition, toxicity and non-target effects of Pinus kesiya essential oil: An eco-friendly and novel larvicide against malaria, dengue and lymphatic filariasis mosquito vectors.

    Science.gov (United States)

    Govindarajan, Marimuthu; Rajeswary, Mohan; Benelli, Giovanni

    2016-07-01

    Mosquitoes (Diptera: Culicidae) are vectors of important parasites and pathogens causing death, poverty and social disability worldwide, with special reference to tropical and subtropical countries. The overuse of synthetic insecticides to control mosquito vectors lead to resistance, adverse environmental effects and high operational costs. Therefore, the development of eco-friendly control tools is an important public health challenge. In this study, the mosquito larvicidal activity of Pinus kesiya leaf essential oil (EO) was evaluated against the malaria vector Anopheles stephensi, the dengue vector Aedes aegypti and the lymphatic filariasis vector Culex quinquefasciatus. The chemical composition of the EO was analyzed by gas chromatography-mass spectroscopy. GC-MS revealed that the P. kesiya EO contained 18 compounds. Major constituents were α-pinene, β-pinene, myrcene and germacrene D. In acute toxicity assays, the EO showed significant toxicity against early third-stage larvae of An. stephensi, Ae. aegypti and Cx. quinquefasciatus, with LC50 values of 52, 57, and 62µg/ml, respectively. Notably, the EO was safer towards several aquatic non-target organisms Anisops bouvieri, Diplonychus indicus and Gambusia affinis, with LC50 values ranging from 4135 to 8390µg/ml. Overall, this research adds basic knowledge to develop newer and safer natural larvicides from Pinaceae plants against malaria, dengue and filariasis mosquito vectors. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Toxicological evaluation of genetically modified cotton (Bollgard) and Dipel WP on the non-target soil mite Scheloribates praeincisus (Acari: Oribatida).

    Science.gov (United States)

    Oliveira, Anibal R; Castro, Thiago R; Capalbo, Deise M F; Delalibera, Italo

    2007-01-01

    Insecticides derived from the bacterium Bacillus thuringiensis (Bt) and plants genetically modified (GM) to express B. thuringiensis toxins are important alternatives for insect pest control worldwide. Risk assessment of B. thuringiensis toxins to non-target organisms has been extensively studied but few toxicological tests have considered soil invertebrates. Oribatid mites are one of the most diverse and abundant arthropod groups in the upper layers of soil and litter in natural and agricultural systems. These mites are exposed to the toxic compounds of GM crops or pesticides mainly when they feed on vegetal products incorporated in the soil. Although some effects of B. thuringiensis products on Acari have been reported, effects on oribatid mites are still unknown. This study investigated the effects of the ingestion of Bt cotton Bollgard and of the B. thuringiensis commercial product Dipel WP on the pantropical species Scheloribates praeincisus (Scheloribatidae). Ingestion of Bollgard and Dipel did not affect adult and immature survivorship and food consumption (estimated by number of fecal pellets produced daily) or developmental time of immature stages of S. praeincisus. These results indicate the safety of Bollgard and Dipel to S. praeincisus under field conditions where exposition is lower and other food sources besides leaves of Bt plants are available. The method for toxicological tests described here can be adapted to other species of Oribatida, consisting on a new option to risk assessment studies.

  18. Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps

    Science.gov (United States)

    Xie, J; Butler, S; Sanchez, G; Mateos, M

    2014-01-01

    Maternally transmitted associations between endosymbiotic bacteria and insects are diverse and widespread in nature. Owing to imperfect vertical transmission, many heritable microbes have evolved compensational mechanisms to enhance their persistence in host lineages, such as manipulating host reproduction and conferring fitness benefits to host. Symbiont-mediated defense against natural enemies of hosts is increasingly recognized as an important mechanism by which endosymbionts enhance host fitness. Members of the genus Spiroplasma associated with distantly related Drosophila hosts are known to engage in either reproductive parasitism (i.e., male killing) or defense against natural enemies (the parasitic wasp Leptopilina heterotoma and a nematode). A male-killing strain of Spiroplasma (strain Melanogaster Sex Ratio Organism (MSRO)) co-occurs with Wolbachia (strain wMel) in certain wild populations of the model organism Drosophila melanogaster. We examined the effects of Spiroplasma MSRO and Wolbachia wMel on Drosophila survival against parasitism by two common wasps, Leptopilina heterotoma and Leptopilina boulardi, that differ in their host ranges and host evasion strategies. The results indicate that Spiroplasma MSRO prevents successful development of both wasps, and confers a small, albeit significant, increase in larva-to-adult survival of flies subjected to wasp attacks. We modeled the conditions under which defense can contribute to Spiroplasma persistence. Wolbachia also confers a weak, but significant, survival advantage to flies attacked by L. heterotoma. The host protective effects exhibited by Spiroplasma and Wolbachia are additive and may provide the conditions for such cotransmitted symbionts to become mutualists. Occurrence of Spiroplasma-mediated protection against distinct parasitoids in divergent Drosophila hosts suggests a general protection mechanism. PMID:24281548

  19. Host species and environmental effects on bacterial communities associated with Drosophila in the laboratory and in the natural environment.

    Directory of Open Access Journals (Sweden)

    Fabian Staubach

    Full Text Available The fruit fly Drosophila is a classic model organism to study adaptation as well as the relationship between genetic variation and phenotypes. Although associated bacterial communities might be important for many aspects of Drosophila biology, knowledge about their diversity, composition, and factors shaping them is limited. We used 454-based sequencing of a variable region of the bacterial 16S ribosomal RNA gene to characterize the bacterial communities associated with wild and laboratory Drosophila isolates. In order to specifically investigate effects of food source and host species on bacterial communities, we analyzed samples from wild Drosophila melanogaster and D. simulans collected from a variety of natural substrates, as well as from adults and larvae of nine laboratory-reared Drosophila species. We find no evidence for host species effects in lab-reared flies; instead, lab of origin and stochastic effects, which could influence studies of Drosophila phenotypes, are pronounced. In contrast, the natural Drosophila-associated microbiota appears to be predominantly shaped by food substrate with an additional but smaller effect of host species identity. We identify a core member of this natural microbiota that belongs to the genus Gluconobacter and is common to all wild-caught flies in this study, but absent from the laboratory. This makes it a strong candidate for being part of what could be a natural D. melanogaster and D. simulans core microbiome. Furthermore, we were able to identify candidate pathogens in natural fly isolates.

  20. Quantifying host potentials: indexing postharvest fresh fruits for spotted wing Drosophila, Drosophila suzukii.

    Directory of Open Access Journals (Sweden)

    David E Bellamy

    Full Text Available Novel methodology is presented for indexing the relative potential of hosts to function as resources. A Host Potential Index (HPI was developed as a practical framework to express relative host potential based on combining results from one or more independent studies, such as those examining host selection, utilization, and physiological development of the organism resourcing the host. Several aspects of the HPI are addressed including: 1 model derivation; 2 influence of experimental design on establishing host rankings for a study type (no choice, two-choice, and multiple-choice; and, 3 variable selection and weighting associated with combining multiple studies. To demonstrate application of the HPI, results from the interactions of spotted wing drosophila (SWD, Drosophila suzukii Matsumura (Diptera: Drosophilidae, with seven "reported" hosts (blackberries, blueberries, sweet cherries, table grapes, peaches, raspberries, and strawberries in a postharvest scenario were analyzed. Four aspects of SWD-host interaction were examined: attraction to host volatiles; population-level oviposition performance; individual-level oviposition performance; and key developmental factors. Application of HPI methodology indicated that raspberries ( (meanHPIvaried  = 301.9±8.39; rank 1 of 7 have the greatest potential to serve as a postharvest host for SWD relative to the other fruit hosts, with grapes ( (meanHPIvaried  = 232.4±3.21; rank 7 of 7 having the least potential.

  1. Targeted and non-targeted drug screening in whole blood by UHPLC-TOF-MS with data-independent acquisition

    DEFF Research Database (Denmark)

    Mollerup, Christian Brinch; Dalsgaard, Petur Weihe; Mardal, Marie

    2017-01-01

    of peaks to inspect by three orders of magnitude, down to four peaks per DUID sample. The screening allowed for tentative identification of metabolites and drugs not included in the initial screening, and three drugs and thirteen metabolites were tentatively identified in the authentic DUID samples......High-resolution mass spectrometry (HRMS) is widely used for the drug screening of biological samples in clinical and forensic laboratories. With the continuous addition of new psychoactive substances (NPS), keeping such methods updated is challenging. HRMS allows for combined targeted and non......-targeted screening; first, peaks are identified by software algorithms, and identifications are based on reference standard data. Remaining unknown peaks are attempted identified with in silico and literature data. However, several thousand peaks remain where most are unidentifiable or uninteresting in drug...

  2. Genetics on the Fly: A Primer on the Drosophila Model System

    Science.gov (United States)

    Hales, Karen G.; Korey, Christopher A.; Larracuente, Amanda M.; Roberts, David M.

    2015-01-01

    Fruit flies of the genus Drosophila have been an attractive and effective genetic model organism since Thomas Hunt Morgan and colleagues made seminal discoveries with them a century ago. Work with Drosophila has enabled dramatic advances in cell and developmental biology, neurobiology and behavior, molecular biology, evolutionary and population genetics, and other fields. With more tissue types and observable behaviors than in other short-generation model organisms, and with vast genome data available for many species within the genus, the fly’s tractable complexity will continue to enable exciting opportunities to explore mechanisms of complex developmental programs, behaviors, and broader evolutionary questions. This primer describes the organism’s natural history, the features of sequenced genomes within the genus, the wide range of available genetic tools and online resources, the types of biological questions Drosophila can help address, and historical milestones. PMID:26564900

  3. A Drosophila wing spot test

    International Nuclear Information System (INIS)

    Ayaki, Toshikazu; Yoshikawa, Isao; Niikawa, Norio; Hoshi, Masaharu.

    1986-01-01

    A Drosophila wing spot test system was used to investigate the effects of low doses of X-rays, gamma rays, and both 2.3 and 14.1 MeV neutrons on somatic chromosome mutation (SCM) induction. The incidence of SCM was significantly increased with any type of radiation, with evident linear dose-response relationship within the range of 3 to 20 cGy. It was estimated that relative biological effectiveness value for SCM induction of 2.3 MeV neutrons to X-rays and gamma rays is much higher than that of 14.1 MeV neutrons to those photons (2.4 vs 8.0). The Drosophila wing spot test system seems to become a promising in vivo experimental method for higher animals in terms of the lack of necessity for a marvelously large number of materials required in conventional test system. (Namekawa, K.)

  4. Striking Plasticity of CRISPR-Cas9 and Key Role of Non-target DNA, as Revealed by Molecular Simulations.

    Science.gov (United States)

    Palermo, Giulia; Miao, Yinglong; Walker, Ross C; Jinek, Martin; McCammon, J Andrew

    2016-10-26

    The CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system recently emerged as a transformative genome-editing technology that is innovating basic bioscience and applied medicine and biotechnology. The endonuclease Cas9 associates with a guide RNA to match and cleave complementary sequences in double stranded DNA, forming an RNA:DNA hybrid and a displaced non-target DNA strand. Although extensive structural studies are ongoing, the conformational dynamics of Cas9 and its interplay with the nucleic acids during association and DNA cleavage are largely unclear. Here, by employing multi-microsecond time scale molecular dynamics, we reveal the conformational plasticity of Cas9 and identify key determinants that allow its large-scale conformational changes during nucleic acid binding and processing. We show how the "closure" of the protein, which accompanies nucleic acid binding, fundamentally relies on highly coupled and specific motions of the protein domains, collectively initiating the prominent conformational changes needed for nucleic acid association. We further reveal a key role of the non-target DNA during the process of activation of the nuclease HNH domain, showing how the nontarget DNA positioning triggers local conformational changes that favor the formation of a catalytically competent Cas9. Finally, a remarkable conformational plasticity is identified as an intrinsic property of the HNH domain, constituting a necessary element that allows for the HNH repositioning. These novel findings constitute a reference for future experimental studies aimed at a full characterization of the dynamic features of the CRISPR-Cas9 system, and-more importantly-call for novel structure engineering efforts that are of fundamental importance for the rational design of new genome-engineering applications.

  5. Studies on Drosophila radiosensitive strains

    International Nuclear Information System (INIS)

    Varentsova, E.P.; Zakharov, I.A.

    1976-01-01

    45 of radiosensitive strains of Drosophila melanogaster were isolated by Curly/Lobe technique after EMS treatment of Livadia population males. The lethality of non-Curly late larvae after gamma-irradiation (4000r) characterized radiosensitivity strains. Most of them exhibited higher frequency of the spontaneous dominant lethals (up to 69%). The males of 6 strains were semi-sterile. 5 of these strains exhibited higher frequency of X-chromosome non-disjunction

  6. Olfactory memory traces in Drosophila

    OpenAIRE

    Berry, Jacob; Krause, William C.; Davis, Ronald L.

    2008-01-01

    In Drosophila the fruit fly, coincident exposure to an odor and an aversive electric shock can produce robust behavioral memory. This behavioral memory is thought to be regulated by cellular memory traces within the central nervous system of the fly. These molecular, physiological or structural changes in neurons, induced by pairing odor and shock, regulate behavior by altering the neurons’ response to the learned environment. Recently, novel in vivo functional imaging techniques have allowed...

  7. 'Peer pressure' in larval Drosophila?

    Science.gov (United States)

    Niewalda, Thomas; Jeske, Ines; Michels, Birgit; Gerber, Bertram

    2014-06-06

    Understanding social behaviour requires a study case that is simple enough to be tractable, yet complex enough to remain interesting. Do larval Drosophila meet these requirements? In a broad sense, this question can refer to effects of the mere presence of other larvae on the behaviour of a target individual. Here we focused in a more strict sense on 'peer pressure', that is on the question of whether the behaviour of a target individual larva is affected by what a surrounding group of larvae is doing. We found that innate olfactory preference of a target individual was neither affected (i) by the level of innate olfactory preference in the surrounding group nor (ii) by the expression of learned olfactory preference in the group. Likewise, learned olfactory preference of a target individual was neither affected (iii) by the level of innate olfactory preference of the surrounding group nor (iv) by the learned olfactory preference the group was expressing. We conclude that larval Drosophila thus do not take note of specifically what surrounding larvae are doing. This implies that in a strict sense, and to the extent tested, there is no social interaction between larvae. These results validate widely used en mass approaches to the behaviour of larval Drosophila. © 2014. Published by The Company of Biologists Ltd.

  8. Quantification of Drosophila Grooming Behavior.

    Science.gov (United States)

    Barradale, Francesca; Sinha, Kairav; Lebestky, Tim

    2017-07-19

    Drosophila grooming behavior is a complex multi-step locomotor program that requires coordinated movement of both forelegs and hindlegs. Here we present a grooming assay protocol and novel chamber design that is cost-efficient and scalable for either small or large-scale studies of Drosophila grooming. Flies are dusted all over their body with Brilliant Yellow dye and given time to remove the dye from their bodies within the chamber. Flies are then deposited in a set volume of ethanol to solubilize the dye. The relative spectral absorbance of dye-ethanol samples for groomed versus ungroomed animals are measured and recorded. The protocol yields quantitative data of dye accumulation for individual flies, which can be easily averaged and compared across samples. This allows experimental designs to easily evaluate grooming ability for mutant animal studies or circuit manipulations. This efficient procedure is both versatile and scalable. We show work-flow of the protocol and comparative data between WT animals and mutant animals for the Drosophila type I Dopamine Receptor (DopR).

  9. Healthy aging – insights from Drosophila

    Directory of Open Access Journals (Sweden)

    Konstantin G Iliadi

    2012-04-01

    Full Text Available Human life expectancy has nearly doubled in the past century due, in part, to social and economic development, and a wide range of new medical technologies and treatments. As the number of elderly increase it becomes of vital importance to understand what factors contribute to healthy aging. Human longevity is a complex process that is affected by both environmental and genetic factors and interactions between them. Unfortunately, it is currently difficult to identify the role of genetic components in human longevity. In contrast, model organisms such as C. elegans, Drosophila and rodents have facilitated the search for specific genes that affect lifespan. Experimental evidence obtained from studies in model organisms suggests that mutations in a single gene may increase longevity and delay the onset of age-related symptoms including motor impairments, sexual and reproductive and immune dysfunction, cardiovascular disease and cognitive decline. Furthermore, the high degree of conservation between diverse species in the genes and pathways that regulate longevity suggests that work in model organisms can both expand our theoretical knowledge of aging and perhaps provide new therapeutic targets for the treatment of age-related disorders.

  10. Radioresistance and radiosensitivity in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Reguly, M.L.

    1983-01-01

    Studying the mechanisms controlling radioresistant in Drosophila the sensibility of four strains of Drosophila melanogaster to sex-linked recessive lethal mutations induced by 5kR Cobalt-60 gamma radiation and 0,006 M EMS or 0,25% of caffeine was determined. (M.A.C.) [pt

  11. The Drosophila melanogaster circadian pacemaker circuit

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Keywords. circadian rhythm; neuronal network; ion channel; behaviour; neurotransmitter; electrophysiology; Drosophila. Abstract. As an experimental model system, the fruit fly Drosophila melanogaster has been seminal in shaping our understanding of the circadian clockwork. The wealth of genetic tools ...

  12. Human Intellectual Disability Genes Form Conserved Functional Modules in Drosophila

    Science.gov (United States)

    Oortveld, Merel A. W.; Keerthikumar, Shivakumar; Oti, Martin; Nijhof, Bonnie; Fernandes, Ana Clara; Kochinke, Korinna; Castells-Nobau, Anna; van Engelen, Eva; Ellenkamp, Thijs; Eshuis, Lilian; Galy, Anne; van Bokhoven, Hans; Habermann, Bianca; Brunner, Han G.; Zweier, Christiane; Verstreken, Patrik; Huynen, Martijn A.; Schenck, Annette

    2013-01-01

    Intellectual Disability (ID) disorders, defined by an IQ below 70, are genetically and phenotypically highly heterogeneous. Identification of common molecular pathways underlying these disorders is crucial for understanding the molecular basis of cognition and for the development of therapeutic intervention strategies. To systematically establish their functional connectivity, we used transgenic RNAi to target 270 ID gene orthologs in the Drosophila eye. Assessment of neuronal function in behavioral and electrophysiological assays and multiparametric morphological analysis identified phenotypes associated with knockdown of 180 ID gene orthologs. Most of these genotype-phenotype associations were novel. For example, we uncovered 16 genes that are required for basal neurotransmission and have not previously been implicated in this process in any system or organism. ID gene orthologs with morphological eye phenotypes, in contrast to genes without phenotypes, are relatively highly expressed in the human nervous system and are enriched for neuronal functions, suggesting that eye phenotyping can distinguish different classes of ID genes. Indeed, grouping genes by Drosophila phenotype uncovered 26 connected functional modules. Novel links between ID genes successfully predicted that MYCN, PIGV and UPF3B regulate synapse development. Drosophila phenotype groups show, in addition to ID, significant phenotypic similarity also in humans, indicating that functional modules are conserved. The combined data indicate that ID disorders, despite their extreme genetic diversity, are caused by disruption of a limited number of highly connected functional modules. PMID:24204314

  13. Cooperativity, Specificity, and Evolutionary Stability of Polycomb Targeting in Drosophila

    Directory of Open Access Journals (Sweden)

    Bernd Schuettengruber

    2014-10-01

    Full Text Available Summary: Metazoan genomes are partitioned into modular chromosomal domains containing active or repressive chromatin. In flies, Polycomb group (PcG response elements (PREs recruit PHO and other DNA-binding factors and act as nucleation sites for the formation of Polycomb repressive domains. The sequence specificity of PREs is not well understood. Here, we use comparative epigenomics and transgenic assays to show that Drosophila domain organization and PRE specification are evolutionarily conserved despite significant cis-element divergence within Polycomb domains, whereas cis-element evolution is strongly correlated with transcription factor binding divergence outside of Polycomb domains. Cooperative interactions of PcG complexes and their recruiting factor PHO stabilize PHO recruitment to low-specificity sequences. Consistently, PHO recruitment to sites within Polycomb domains is stabilized by PRC1. These data suggest that cooperative rather than hierarchical interactions among low-affinity sequences, DNA-binding factors, and the Polycomb machinery are giving rise to specific and strongly conserved 3D structures in Drosophila. : Schuettengruber et al. present an extensive comparative epigenomics data set, providing new insights into cis-driven versus buffered evolution of Polycomb recruitment and Polycomb domain specificity. Using chromatin immunoprecipitation sequencing and transgenic assays, they demonstrate an extremely high conservation of Polycomb repressive domains in five Drosophila species. Using Hi-C and knockout experiments, they challenge the standard hierarchical Polycomb recruitment model and demonstrate that cooperative rather than hierarchical interactions among DNA motifs, transcription factors, and Polycomb group complexes define Polycomb domains.

  14. Heavy metals effect in Drosophila melanogaster germinal cells

    International Nuclear Information System (INIS)

    Rosa Duque de la, M.E.

    1984-01-01

    Heavy metals occur naturally and some of them are very important in cellular metabolism. Industrial development has increased metal concentration in the environment and in the living organisms tissues. This increase promotes the human risk to suffer teratogenesis, carcinogenesis and mutagenesis. Different biological systems have been used to proof the genetic effect of heavy metals including Drosophila. In the present work chromium, cadmium, lead, zinc and arsenic salts were administered to Drosophila females and males adults in order to determine the genetic effect produced by these compounds, in both femenine and masculine germinal cells. The mating system used (''Oster males'' and y 2 wsup(a)/y 2 wsup(a); e/e females) permited to determine among two succesive generations, the mutagenic effects produced by heavy metals in Drosophila. The salts administration to adult flies was made by injection. Non-disjunction, X-chromosome loss, and sex linked recessive lethals frequency was increased by heavy metals. It was observed a fertility disminution between F 1 descendants from individuals treated with the metalic salts. It was demonstrated that heavy metals can interact with genetic material at different levels in the two types of gametic cells to produce genetic damage. (author)

  15. Preference for and learning of amino acids in larval Drosophila

    Directory of Open Access Journals (Sweden)

    Nana Kudow

    2017-03-01

    Full Text Available Relative to other nutrients, less is known about how animals sense amino acids and how behaviour is organized accordingly. This is a significant gap in our knowledge because amino acids are required for protein synthesis − and hence for life as we know it. Choosing Drosophila larvae as a case study, we provide the first systematic analysis of both the preference behaviour for, and the learning of, all 20 canonical amino acids in Drosophila. We report that preference for individual amino acids differs according to the kind of amino acid, both in first-instar and in third-instar larvae. Our data suggest that this preference profile changes across larval instars, and that starvation during the third instar also alters this profile. Only aspartic acid turns out to be robustly attractive across all our experiments. The essentiality of amino acids does not appear to be a determinant of preference. Interestingly, although amino acids thus differ in their innate attractiveness, we find that all amino acids are equally rewarding. Similar discrepancies between innate attractiveness and reinforcing effect have previously been reported for other tastants, including sugars, bitter substances and salt. The present analyses will facilitate the ongoing search for the receptors, sensory neurons, and internal, homeostatic amino acid sensors in Drosophila.

  16. Electrophysiological Recordings from Lobula Plate Tangential Cells in Drosophila.

    Science.gov (United States)

    Mauss, Alex S; Borst, Alexander

    2016-01-01

    Drosophila has emerged as an important model organism for the study of the neural basis of behavior. Its main asset is the experimental accessibility of identified neurons by genetic manipulation and physiological recordings. Drosophila therefore offers the opportunity to reach an integrative understanding of the development and neural underpinnings of behavior at all processing stages, from sensing to motor control, in a single species. Here, we will provide an account of the procedures involved in recording the electrical potential of individual neurons in the visual system of adult Drosophila using the whole-cell patch-clamp method. To this end, animals are fixed to a holder and mounted below a recording chamber. The head capsule is cut open and the glial sheath covering the brain is ruptured by a combination of shearing and enzymatic digest. Neuronal somata are thus exposed and targeted by low-resistance patch electrodes. After formation of a high resistance seal, electrical access to the cell is gained by small current pulses and suction. Stable recordings of large neurons are feasible for >1 h and can be combined with controlled visual stimulation as well as genetic and pharmacological manipulation of upstream circuit elements to infer circuit function in great detail.

  17. Drosophila cell cycle under arrest: uncapped telomeres plead guilty.

    Science.gov (United States)

    Cenci, Giovanni

    2009-04-01

    Telomeres are specialized structures that protect chromosome ends from degradation and fusion events. In most organisms, telomeres consist of short, repetitive G-rich sequences added to chromosome ends by a reverse transcriptase with an internal RNA template, called telomerase. Specific DNA-binding protein complexes associate with telomeric sequences preventing chromosome ends from being recognized as DNA double strand breaks (DSBs). Telomeres that lose their cap activate the DNA damage response (DDR) likewise DSBs and, if inappropriately repaired, generate telomeric fusions, which eventually lead to genome instability. In Drosophila there is not telomerase, and telomere length is maintained by transposition of three specialized retroelements. However, fly telomeres are protected by multi protein complexes like their yeast and vertebrate counterparts; these complexes bind chromosome ends in a sequence-independent fashion and are required to prevent checkpoint activation and end-to-end fusion. Uncapped Drosophila telomeres elicit a DDR just as dysfunctional human telomeres. Most interestingly, uncapped Drosophila telomeres also activate the spindle assembly checkpoint (SAC) by recruiting the SAC kinase BubR1. BubR1 accumulations at chromosome ends trigger the SAC that inhibits the metaphase-to-anaphase transition. These findings, reviewed here, highlight an intriguing and unsuspected connection between telomeres and cell cycle regulation, providing a clue to understand human telomere function.

  18. Metabolomic Analysis Provides Insights on Paraquat-Induced Parkinson-Like Symptoms in Drosophila melanogaster.

    Science.gov (United States)

    Shukla, Arvind Kumar; Ratnasekhar, Ch; Pragya, Prakash; Chaouhan, Hitesh Singh; Patel, Devendra Kumar; Chowdhuri, Debapratim Kar; Mudiam, Mohana Krishna Reddy

    2016-01-01

    Paraquat (PQ) exposure causes degeneration of the dopaminergic neurons in an exposed organism while altered metabolism has a role in various neurodegenerative disorders. Therefore, the study presented here was conceived to depict the role of altered metabolism in PQ-induced Parkinson-like symptoms and to explore Drosophila as a potential model organism for such studies. Metabolic profile was generated in control and in flies that were fed PQ (5, 10, and 20 mM) in the diet for 12 and 24 h concurrent with assessment of indices of oxidative stress, dopaminergic neurodegeneration, and behavioral alteration. PQ was found to significantly alter 24 metabolites belonging to different biological pathways along with significant alterations in the above indices. In addition, PQ attenuated brain dopamine content in the exposed organism. The study demonstrates that PQ-induced alteration in the metabolites leads to oxidative stress and neurodegeneration in the exposed organism along with movement disorder, a phenotype typical of Parkinson-like symptoms. The study is relevant in the context of Drosophila and humans because similar alteration in the metabolic pathways has been observed in both PQ-exposed Drosophila and in postmortem samples of patients with Parkinsonism. Furthermore, this study provides advocacy towards the applicability of Drosophila as an alternate model organism for pre-screening of environmental chemicals for their neurodegenerative potential with altered metabolism.

  19. A Kinome RNAi Screen in Drosophila Identifies Novel Genes Interacting with Lgl, aPKC, and Crb Cell Polarity Genes in Epithelial Tissues

    NARCIS (Netherlands)

    Parsons, Linda M.; Grzeschik, Nicola A; Amaratunga, Kasun; Burke, Peter; Quinn, Leonie M; Richardson, Helena E

    2017-01-01

    In both Drosophila melanogaster and mammalian systems, epithelial structure and underlying cell polarity are essential for proper tissue morphogenesis and organ growth. Cell polarity interfaces with multiple cellular processes that are regulated by the phosphorylation status of large protein

  20. Hox gene regulation in the central nervous system of Drosophila

    Directory of Open Access Journals (Sweden)

    Maheshwar eGummalla

    2014-04-01

    Full Text Available Hox genes specify the structures that form along the anteroposterior (AP axis of bilateria. Within the genome, they often form clusters where, remarkably enough, their position within the clusters reflects the relative positions of the structures they specify along the AP axis. This correspondence between genomic organization and gene expression pattern has been conserved through evolution and provides a unique opportunity to study how chromosomal context affects gene regulation. In Drosophila, a general rule, often called posterior dominance, states that Hox genes specifying more posterior structures repress the expression of more anterior Hox genes. This rule explains the apparent spatial complementarity of Hox gene expression patterns in Drosophila. Here we review a noticeable exception to this rule where the more-posteriorly expressed Abd-B hox gene fails to repress the more-anterior abd-A gene in cells of the central nervous system (CNS. While Abd-B is required to repress ectopic expression of abd-A in the posterior epidermis, abd-A repression in the posterior CNS is accomplished by a different mechanism that involves a large 92kb long non-coding RNA (lncRNA encoded by the intergenic region separating abd-A and Abd-B (the iab8ncRNA. Dissection of this lncRNA revealed that abd-A is repressed by the lncRNA using two redundant mechanisms. The 1st mechanism is mediated by a microRNA (mir-iab-8 encoded by intronic sequence within the large iab8-ncRNA. Meanwhile, the second mechanism seems to involve transcriptional interference by the long iab-8 ncRNA on the abd-A promoter. Recent work demonstrating CNS-specific regulation of genes by ncRNAs in Drosophila, seem to highlight a potential role for the iab-8-ncRNA in the evolution of the Drosophila hox complexes

  1. Isolation and characterization of an insulin-degrading enzyme from Drosophila melanogaster

    International Nuclear Information System (INIS)

    Garcia, J.V.; Fenton, B.W.; Rosner, M.R.

    1988-01-01

    An insulin-degrading enzyme (IDE) from the cytoplasm of Drosophila Kc cells has been purified and characterized. The purified enzyme is a monomer with an s value of 7.2 S, an apparent K/sub m/ for porcine insulin of 3 μM, and a specific activity of 3.3 nmol of porcine insulin degraded/(min x mg). N-Terminal sequence analysis of the gel-purified enzyme gave a single, serine-rich sequence. The Drosophila IDE shares a number of properties in common with its mammalian counterpart. The enzyme could be specifically affinity-labeled with [ 125 I]insulin, has a molecular weight of 110K, and has a pI of 5.3. Although Drosophila Kc cells grow at room temperature, the optimal enzyme activity assay conditions parallel those of the mammalian IDE: 37 0 C and a pH range of 7-8. The Drosophila IDE activity, like the mammalian enzymes, is inhibited by bacitracin and sulfhydryl-specific reagents. Similarly, the Drosophila IDE activity is insensitive to glutathione as well as protease inhibitors such as aprotinin and leupeptin. Insulin-like growth factor II, equine insulin, and porcine insulin compete for degradation of [ 125 I]insulin at comparable concentrations (approximately 10 -6 M), whereas insulin-like growth factor I and the individual A and B chains of insulin are less effective. The high degree of evolutionary conservation between the Drosophila and mammalian IDE suggest an important role for this enzyme in the metabolism of insulin and also provides further evidence for the existence of a complete insulin-like system in invertebrate organisms such as Drosophila

  2. PLS-based and regularization-based methods for the selection of relevant variables in non-targeted metabolomics data

    Directory of Open Access Journals (Sweden)

    Renata Bujak

    2016-07-01

    Full Text Available Non-targeted metabolomics constitutes a part of systems biology and aims to determine many metabolites in complex biological samples. Datasets obtained in non-targeted metabolomics studies are multivariate and high-dimensional due to the sensitivity of mass spectrometry-based detection methods as well as complexity of biological matrices. Proper selection of variables which contribute into group classification is a crucial step, especially in metabolomics studies which are focused on searching for disease biomarker candidates. In the present study, three different statistical approaches were tested using two metabolomics datasets (RH and PH study. Orthogonal projections to latent structures-discriminant analysis (OPLS-DA without and with multiple testing correction as well as least absolute shrinkage and selection operator (LASSO were tested and compared. For the RH study, OPLS-DA model built without multiple testing correction, selected 46 and 218 variables based on VIP criteria using Pareto and UV scaling, respectively. In the case of the PH study, 217 and 320 variables were selected based on VIP criteria using Pareto and UV scaling, respectively. In the RH study, OPLS-DA model built with multiple testing correction, selected 4 and 19 variables as statistically significant in terms of Pareto and UV scaling, respectively. For PH study, 14 and 18 variables were selected based on VIP criteria in terms of Pareto and UV scaling, respectively. Additionally, the concept and fundaments of the least absolute shrinkage and selection operator (LASSO with bootstrap procedure evaluating reproducibility of results, was demonstrated. In the RH and PH study, the LASSO selected 14 and 4 variables with reproducibility between 99.3% and 100%. However, apart from the popularity of PLS-DA and OPLS-DA methods in metabolomics, it should be highlighted that they do not control type I or type II error, but only arbitrarily establish a cut-off value for PLS-DA loadings

  3. Using the Drosophila Melanogaster Genetics Reference Panel to Identify Toxicity Pathways for Toluene

    Science.gov (United States)

    Mechanistic information is needed to link effects of chemicals at molecular targets in high­ throughput screening assays to adverse outcomes in whole organisms. This study was designed to use the Drosophila Genetic Reference Panel (DGRP), a set of genetically well...

  4. Pervasive gene expression responses to a fluctuating diet in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Zandveld, Jelle; van den Heuvel, Joost; Mulder, Maarten

    2017-01-01

    Phenotypic plasticity is an important concept in life-history evolution, and most organisms, including Drosophila melanogaster, show a plastic life-history response to diet. However, little is known about how these life-history responses are mediated. In this study, we compared adult female flies...

  5. The effects of inbreeding and heat stress on male sterility in Drosophila melanogaster

    DEFF Research Database (Denmark)

    Pedersen, Louise Dybdahl; Pedersen, Asger Roer; Bijlsma, Kuke

    2011-01-01

    in benign and stressful environments using Drosophila melanogaster as a model organism. Male sterility was compared in 21 inbred lines and five non-inbred control lines at 25.0 and 29.0 °C. The effect of inbreeding on sterility was significant only at 29.0 °C. This stress-induced increase in sterility...

  6. The Hsp60C gene in the 25F cytogenetic region in Drosophila ...

    Indian Academy of Sciences (India)

    Unknown

    Earlier studies have shown that of the four genes (Hsp60A, Hsp60B, Hsp60C, Hsp60D genes) predicted to encode the conserved Hsp60 family chaperones in Drosophila melanogaster, the ..... C. Genomic organization and the predicted.

  7. Modelling the correlation between the activities of adjacent genes in drosophila

    NARCIS (Netherlands)

    Thygesen, Helene H.; Zwinderman, Aeilko H.

    2005-01-01

    Background: Correlation between the expression levels of genes which are located close to each other on the genome has been found in various organisms, including yeast, drosophila and humans. Since such a correlation could be explained by several biochemical, evolutionary, genetic and technological

  8. Pervasive gene expression responses to a fluctuating diet in Drosophila melanogaster

    NARCIS (Netherlands)

    Zandveld, Jelle; Heuvel, van den Joost; Mulder, Maarten; Brakefield, Paul M.; Kirkwood, Thomas B.L.; Shanley, Daryl P.; Zwaan, Bas J.

    2017-01-01

    Phenotypic plasticity is an important concept in life-history evolution, and most organisms, including Drosophila melanogaster, show a plastic life-history response to diet. However, little is known about how these life-history responses are mediated. In this study, we compared adult female flies

  9. Mapping the pericentric heterochromatin by comparative genomic hybridization analysis and chromosome deletions in Drosophila melanogaster

    OpenAIRE

    He, Bing; Caudy, Amy; Parsons, Lance; Rosebrock, Adam; Pane, Attilio; Raj, Sandeep; Wieschaus, Eric

    2012-01-01

    Heterochromatin represents a significant portion of eukaryotic genomes and has essential structural and regulatory functions. Its molecular organization is largely unknown due to difficulties in sequencing through and assembling repetitive sequences enriched in the heterochromatin. Here we developed a novel strategy using chromosomal rearrangements and embryonic phenotypes to position unmapped Drosophila melanogaster heterochromatic sequence to specific chromosomal regions. By excluding seque...

  10. Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila

    DEFF Research Database (Denmark)

    Bantignies, Frédéric; Roure, Virginie; Comet, Itys

    2011-01-01

    In Drosophila melanogaster, Hox genes are organized in an anterior and a posterior cluster, called Antennapedia complex and bithorax complex, located on the same chromosome arm and separated by 10 Mb of DNA. Both clusters are repressed by Polycomb group (PcG) proteins. Here, we show that genes...... of the two Hox complexes can interact within nuclear PcG bodies in tissues where they are corepressed. This colocalization increases during development and depends on PcG proteins. Hox gene contacts are conserved in the distantly related Drosophila virilis species and they are part of a large gene...

  11. Positive diversifying selection is a pervasive adaptive force throughout the Drosophila radiation

    DEFF Research Database (Denmark)

    Cicconardi, Francesco; Marcatili, Paolo; Arthofer, Wolfgang

    2017-01-01

    The growing genomic information on non-model organisms eases exploring the evolutionary history of biodiversity. This is particularly true for Drosophila flies, in which the number of sequenced species doubled recently. Because of its outstanding diversity of species, Drosophila has become one....... grimshawi, a strong putative signal of positive diversifying selection was found related to cell, morphological, neuronal, and sensorial development and function. A recurrent signal of positive diversifying selection was found on genes related to aging and lifespan, suggesting that selection had shaped...

  12. Spontaneous alternation: A potential gateway to spatial working memory in Drosophila.

    Science.gov (United States)

    Lewis, Sara A; Negelspach, David C; Kaladchibachi, Sevag; Cowen, Stephen L; Fernandez, Fabian

    2017-07-01

    Despite their ubiquity in biomedical research, Drosophila have yet to be widely employed as model organisms in psychology. Many complex human-like behaviors are observed in Drosophila, which exhibit elaborate displays of inter-male aggression and female courtship, self-medication with alcohol in response to stress, and even cultural transmission of social information. Here, we asked whether Drosophila can demonstrate behavioral indices of spatial working memory in a Y-maze, a classic test of memory function and novelty-seeking in rodents. Our data show that Drosophila, like rodents, alternate their visits among the three arms of a Y-maze and spontaneously favor entry into arms they have explored less recently versus ones they have just seen. These findings suggest that Drosophila possess some of the information-seeking and working memory facilities mammals depend on to navigate through space and might be relevant models for understanding human psychological phenomena such as curiosity. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. RNAi-Mediated Reverse Genetic Screen Identified Drosophila Chaperones Regulating Eye and Neuromuscular Junction Morphology

    Directory of Open Access Journals (Sweden)

    Sandeep Raut

    2017-07-01

    Full Text Available Accumulation of toxic proteins in neurons has been linked with the onset of neurodegenerative diseases, which in many cases are characterized by altered neuronal function and synapse loss. Molecular chaperones help protein folding and the resolubilization of unfolded proteins, thereby reducing the protein aggregation stress. While most of the chaperones are expressed in neurons, their functional relevance remains largely unknown. Here, using bioinformatics analysis, we identified 95 Drosophila chaperones and classified them into seven different classes. Ubiquitous actin5C-Gal4-mediated RNAi knockdown revealed that ∼50% of the chaperones are essential in Drosophila. Knocking down these genes in eyes revealed that ∼30% of the essential chaperones are crucial for eye development. Using neuron-specific knockdown, immunocytochemistry, and robust behavioral assays, we identified a new set of chaperones that play critical roles in the regulation of Drosophila NMJ structural organization. Together, our data present the first classification and comprehensive analysis of Drosophila chaperones. Our screen identified a new set of chaperones that regulate eye and NMJ morphogenesis. The outcome of the screen reported here provides a useful resource for further elucidating the role of individual chaperones in Drosophila eye morphogenesis and synaptic development.

  14. A novel mode of induction of the humoral innate immune response in Drosophila larvae

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kenmoku

    2017-03-01

    Full Text Available Drosophila adults have been utilized as a genetically tractable model organism to decipher the molecular mechanisms of humoral innate immune responses. In an effort to promote the utility of Drosophila larvae as an additional model system, in this study, we describe a novel aspect of an induction mechanism for innate immunity in these larvae. By using a fine tungsten needle created for manipulating semi-conductor devices, larvae were subjected to septic injury. However, although Toll pathway mutants were susceptible to infection with Gram-positive bacteria as had been shown for Drosophila adults, microbe clearance was not affected in the mutants. In addition, Drosophila larvae were found to be sensitive to mechanical stimuli with respect to the activation of a sterile humoral response. In particular, pinching with forceps to a degree that might cause minor damage to larval tissues could induce the expression of the antifungal peptide gene Drosomycin; notably, this induction was partially independent of the Toll and immune deficiency pathways. We therefore propose that Drosophila larvae might serve as a useful model to analyze the infectious and non-infectious inflammation that underlies various inflammatory diseases such as ischemia, atherosclerosis and cancer.

  15. Drosophila Protein Kinase CK2: Genetics, Regulatory Complexity and Emerging Roles during Development

    Directory of Open Access Journals (Sweden)

    Mohna Bandyopadhyay

    2016-12-01

    Full Text Available CK2 is a Ser/Thr protein kinase that is highly conserved amongst all eukaryotes. It is a well-known oncogenic kinase that regulates vital cell autonomous functions and animal development. Genetic studies in the fruit fly Drosophila are providing unique insights into the roles of CK2 in cell signaling, embryogenesis, organogenesis, neurogenesis, and the circadian clock, and are revealing hitherto unknown complexities in CK2 functions and regulation. Here, we review Drosophila CK2 with respect to its structure, subunit diversity, potential mechanisms of regulation, developmental abnormalities linked to mutations in the gene encoding CK2 subunits, and emerging roles in multiple aspects of eye development. We examine the Drosophila CK2 “interaction map” and the eye-specific “transcriptome” databases, which raise the prospect that this protein kinase has many additional targets in the developing eye. We discuss the possibility that CK2 functions during early retinal neurogenesis in Drosophila and mammals bear greater similarity than has been recognized, and that this conservation may extend to other developmental programs. Together, these studies underscore the immense power of the Drosophila model organism to provide new insights and avenues to further investigate developmentally relevant targets of this protein kinase.

  16. Drosophila tools and assays for the study of human diseases

    Directory of Open Access Journals (Sweden)

    Berrak Ugur

    2016-03-01

    Full Text Available Many of the internal organ systems of Drosophila melanogaster are functionally analogous to those in vertebrates, including humans. Although humans and flies differ greatly in terms of their gross morphological and cellular features, many of the molecular mechanisms that govern development and drive cellular and physiological processes are conserved between both organisms. The morphological differences are deceiving and have led researchers to undervalue the study of invertebrate organs in unraveling pathogenic mechanisms of diseases. In this review and accompanying poster, we highlight the physiological and molecular parallels between fly and human organs that validate the use of Drosophila to study the molecular pathogenesis underlying human diseases. We discuss assays that have been developed in flies to study the function of specific genes in the central nervous system, heart, liver and kidney, and provide examples of the use of these assays to address questions related to human diseases. These assays provide us with simple yet powerful tools to study the pathogenic mechanisms associated with human disease-causing genes.

  17. Toxicity of Insecticides on Various Life Stages of Two Tortricid Pests of Cranberries and on a Non-Target Predator

    Directory of Open Access Journals (Sweden)

    Cesar Rodriguez-Saona

    2016-04-01

    Full Text Available Laboratory and extended laboratory bioassays were conducted to determine the residual toxicities of various insecticides against two key pests of cranberries, Sparganothis sulfureana and Choristoneura parallela (Lepidoptera: Tortricidae, and their non-target effects on the predatory Orius insidiosus (Hemiptera: Anthocoridae. The effects of nine insecticides with different modes of action on S. sulfureana and Ch. parallela eggs, larvae, and adults were tested in the laboratory, while the efficacy of a post-bloom application on larval mortality and mass of these pests and on adult O. insidiosus was evaluated in extended laboratory experiments. The organophosphate chlorpyrifos and the spinosyn spinetoram provided long-lasting (seven-day control against all stages of both pests. The growth regulator methoxyfenozide and the diamides chlorantraniliprole and cyantraniliprole had strong (1–7 days larvicidal, particularly on young larvae, and growth inhibitory activity, but only the diamides were adulticidal. Among neonicotinoids, acetamiprid had stronger ovicidal and adulticidal activity than thiamethoxam, showing within-insecticide class differences in toxicities; however, both were weak on larvae. Lethality of novaluron and indoxacarb was inconsistent, varying depending on species and stage. Chlorpyrifos was most toxic to O. insidiosus. These results show species- and stage-specific toxicities, and greater compatibility with biological control, of the newer reduced-risk classes of insecticides than older chemistries.

  18. Differentiating signals to make biological sense - A guide through databases for MS-based non-targeted metabolomics.

    Science.gov (United States)

    Gil de la Fuente, Alberto; Grace Armitage, Emily; Otero, Abraham; Barbas, Coral; Godzien, Joanna

    2017-09-01

    Metabolite identification is one of the most challenging steps in metabolomics studies and reflects one of the greatest bottlenecks in the entire workflow. The success of this step determines the success of the entire research, therefore the quality at which annotations are given requires special attention. A variety of tools and resources are available to aid metabolite identification or annotation, offering different and often complementary functionalities. In preparation for this article, almost 50 databases were reviewed, from which 17 were selected for discussion, chosen for their online ESI-MS functionality. The general characteristics and functions of each database is discussed in turn, considering the advantages and limitations of each along with recommendations for optimal use of each tool, as derived from experiences encountered at the Centre for Metabolomics and Bioanalysis (CEMBIO) in Madrid. These databases were evaluated considering their utility in non-targeted metabolomics, including aspects such as identifier assignment, structural assignment and interpretation of results. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Toxicity of Insecticides on Various Life Stages of Two Tortricid Pests of Cranberries and on a Non-Target Predator.

    Science.gov (United States)

    Rodriguez-Saona, Cesar; Wanumen, Andrea Carolina; Salamanca, Jordano; Holdcraft, Robert; Kyryczenko-Roth, Vera

    2016-04-15

    Laboratory and extended laboratory bioassays were conducted to determine the residual toxicities of various insecticides against two key pests of cranberries, Sparganothis sulfureana and Choristoneura parallela (Lepidoptera: Tortricidae), and their non-target effects on the predatory Orius insidiosus (Hemiptera: Anthocoridae). The effects of nine insecticides with different modes of action on S. sulfureana and Ch. parallela eggs, larvae, and adults were tested in the laboratory, while the efficacy of a post-bloom application on larval mortality and mass of these pests and on adult O. insidiosus was evaluated in extended laboratory experiments. The organophosphate chlorpyrifos and the spinosyn spinetoram provided long-lasting (seven-day) control against all stages of both pests. The growth regulator methoxyfenozide and the diamides chlorantraniliprole and cyantraniliprole had strong (1-7 days) larvicidal, particularly on young larvae, and growth inhibitory activity, but only the diamides were adulticidal. Among neonicotinoids, acetamiprid had stronger ovicidal and adulticidal activity than thiamethoxam, showing within-insecticide class differences in toxicities; however, both were weak on larvae. Lethality of novaluron and indoxacarb was inconsistent, varying depending on species and stage. Chlorpyrifos was most toxic to O. insidiosus. These results show species- and stage-specific toxicities, and greater compatibility with biological control, of the newer reduced-risk classes of insecticides than older chemistries.

  20. The alpha-particle irradiator set up at the ISS for radiobiological studies on targeted and non-targeted effects

    International Nuclear Information System (INIS)

    Esposito, G.; Antonelli, F.; Belli, M.; Campa, A.; Simone, G.; Sorrentino, E.; Tabocchini, M.A.

    2008-01-01

    In this paper we describe the alpha-particle irradiator that has been set up at the Istituto Superiore di Sanita (ISS) for controlled exposure of cultured mammalian cells. It can be equipped with two different sources, namely 2'4'4'Cm and 2'4'1'Am, allowing irradiation at different dose-rates (typically 1-100 mGy/min). The irradiator has dimensions small enough to be inserted into a standard cell culture incubator to perform irradiation of cultured cells in physiological conditions. The dose uniformity is such that the variations in the irradiation area are less than ± 12% of the average dose value on different irradiation areas up to ∼ 25 cm'2. Moreover, in the framework of the FP6 Euratom Integrated Project Non-targeted effects of ionizing radiation (NOTE), Petri dishes were realized for housing permeable membrane insert(s) to be used in co-culture experiments. Aluminium shields were also realized for half shield irradiation experiments. The alpha-particle irradiator of the ISS has been successfully used for studying DNA damage, namely double strand breaks (DSB, as measured by the γ-H2AX assay), in directly hit and in bystander primary human fibroblasts [it

  1. Acute toxicity of chlorantraniliprole to non-target crayfish (Procambarus clarkii) associated with rice-crayfish cropping systems.

    Science.gov (United States)

    Barbee, Gary C; McClain, W Ray; Lanka, Srinivas K; Stout, Michael J

    2010-09-01

    Chlorantraniliprole, a novel anthranilic diamide insecticide, was recently introduced into the United States where rice-crayfish crop rotations are practiced to control rice water weevil (Lissorhoptrus oryzophilus Kuschel) infestations. Chlorantraniliprole has high margins of mammalian safety and excellent insecticidal efficacy, but its toxicity to non-target crayfish is uncertain. In this study, the acute toxicity of chlorantraniliprole to the red swamp crayfish Procambarus clarkii Girard was determined using aquatic and feeding assays. The aquatic 96 h median lethal toxicity (LC(50)) data indicate that technical-grade chlorantraniliprole is highly toxic (US EPA category) to crayfish with an LC(50) of 951 microg L(-1) (95% CL = 741-1118 microg L(-1)). A no observed effect concentration (NOEC) of 480 microg L(-1) was recorded. Neither the 36 day chronic feeding study, where crayfish fed on chlorantraniliprole-treated rice seed in aquaria, nor the 144 h acute feeding test, where crayfish fed on rice seeds treated with chlorantraniliprole, produced mortality or abnormal behavior. Chlorantraniliprole is three orders of magnitude less acutely toxic to P. clarkii than lambda-cyhalothrin and etofenprox, two pyrethroid insecticides also used in rice, and is less likely to cause acute crayfish toxicity in rice pond ecosystems. Based on acute toxicity data, the use of chlorantraniliprole should be more compatible with rice-crayfish crop rotations than pyrethroids. (c) 2010 Society of Chemical Industry.

  2. Death receptor pathways mediate targeted and non-targeted effects of ionizing radiations in breast cancer cells

    International Nuclear Information System (INIS)

    Luce, A.; Courtin, A.; Levalois, C.; Altmeyer-Morel, S.; Chevillard, S.; Lebeau, J.; Romeo, P.H.

    2009-01-01

    Delayed cell death by mitotic catastrophe is a frequent mode of solid tumor cell death after γ-irradiation, a widely used treatment of cancer. Whereas the mechanisms that underlie the early γ-irradiation-induced cell death are well documented, those that drive the delayed cell death are largely unknown. Here we show that the Fas, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and tumor necrosis factor (TNF)-α death receptor pathways mediate the delayed cell death observed after γ-irradiation of breast cancer cells. Early after irradiation, we observe the increased expression of Fas, TRAIL-R and TNF-R that first sensitizes cells to apoptosis. Later, the increased expression of FasL, TRAIL and TNF-α permit the apoptosis engagement linked to mitotic catastrophe. Treatments with TNF-α, TRAIL or anti-Fas antibody, early after radiation exposure, induce apoptosis, whereas the neutralization of the three death receptors pathways impairs the delayed cell death. We also show for the first time that irradiated breast cancer cells excrete soluble forms of the three ligands that can induce the death of sensitive bystander cells. Overall, these results define the molecular basis of the delayed cell death of irradiated cancer cells and identify the death receptors pathways as crucial actors in apoptosis induced by targeted as well as non-targeted effects of ionizing radiation. (authors)

  3. Two non-target recessive genes confer resistance to the anti-oomycete microtubule inhibitor zoxamide in Phytophthora capsici.

    Directory of Open Access Journals (Sweden)

    Yang Bi

    Full Text Available This study characterized isolates of P. capsici that had developed a novel mechanism of resistance to zoxamide, which altered the minimum inhibition concentration (MIC but not the EC50. Molecular analysis revealed that the β-tubulin gene of the resistant isolates contained no mutations and was expressed at the same level as in zoxamide-sensitive isolates. This suggested that P. capsici had developed a novel non-target-site-based resistance to zoxamide. Analysis of the segregation ratio of zoxamide-resistance in the sexual progeny of the sensitive isolates PCAS1 and PCAS2 indicated that the resistance to zoxamide was controlled by one or more recessive nuclear genes. Furthermore, the segregation of resistance in the F1, F2, and BC1 progeny was in accordance with the theoretical ratios of the χ(2 test (P>0.05, which suggested that the resistance to zoxamide was controlled by two recessive genes, and that resistance to zoxamide occurred when at least one pair of these alleles was homozygous. This implies that the risk of zoxamide-resistance in P. capsici is low to moderate. Nevertheless this potential for resistance should be monitored closely, especially if two compatible mating types co-exist in the same field.

  4. 3D Holographic Observatory for Long-term Monitoring of Complex Behaviors in Drosophila

    Science.gov (United States)

    Kumar, S. Santosh; Sun, Yaning; Zou, Sige; Hong, Jiarong

    2016-09-01

    Drosophila is an excellent model organism towards understanding the cognitive function, aging and neurodegeneration in humans. The effects of aging and other long-term dynamics on the behavior serve as important biomarkers in identifying such changes to the brain. In this regard, we are presenting a new imaging technique for lifetime monitoring of Drosophila in 3D at spatial and temporal resolutions capable of resolving the motion of limbs and wings using holographic principles. The developed system is capable of monitoring and extracting various behavioral parameters, such as ethograms and spatial distributions, from a group of flies simultaneously. This technique can image complicated leg and wing motions of flies at a resolution, which allows capturing specific landing responses from the same data set. Overall, this system provides a unique opportunity for high throughput screenings of behavioral changes in 3D over a long term in Drosophila.

  5. Identification of functional elements and regulatory circuits by Drosophila modENCODE.

    Science.gov (United States)

    Roy, Sushmita; Ernst, Jason; Kharchenko, Peter V; Kheradpour, Pouya; Negre, Nicolas; Eaton, Matthew L; Landolin, Jane M; Bristow, Christopher A; Ma, Lijia; Lin, Michael F; Washietl, Stefan; Arshinoff, Bradley I; Ay, Ferhat; Meyer, Patrick E; Robine, Nicolas; Washington, Nicole L; Di Stefano, Luisa; Berezikov, Eugene; Brown, Christopher D; Candeias, Rogerio; Carlson, Joseph W; Carr, Adrian; Jungreis, Irwin; Marbach, Daniel; Sealfon, Rachel; Tolstorukov, Michael Y; Will, Sebastian; Alekseyenko, Artyom A; Artieri, Carlo; Booth, Benjamin W; Brooks, Angela N; Dai, Qi; Davis, Carrie A; Duff, Michael O; Feng, Xin; Gorchakov, Andrey A; Gu, Tingting; Henikoff, Jorja G; Kapranov, Philipp; Li, Renhua; MacAlpine, Heather K; Malone, John; Minoda, Aki; Nordman, Jared; Okamura, Katsutomo; Perry, Marc; Powell, Sara K; Riddle, Nicole C; Sakai, Akiko; Samsonova, Anastasia; Sandler, Jeremy E; Schwartz, Yuri B; Sher, Noa; Spokony, Rebecca; Sturgill, David; van Baren, Marijke; Wan, Kenneth H; Yang, Li; Yu, Charles; Feingold, Elise; Good, Peter; Guyer, Mark; Lowdon, Rebecca; Ahmad, Kami; Andrews, Justen; Berger, Bonnie; Brenner, Steven E; Brent, Michael R; Cherbas, Lucy; Elgin, Sarah C R; Gingeras, Thomas R; Grossman, Robert; Hoskins, Roger A; Kaufman, Thomas C; Kent, William; Kuroda, Mitzi I; Orr-Weaver, Terry; Perrimon, Norbert; Pirrotta, Vincenzo; Posakony, James W; Ren, Bing; Russell, Steven; Cherbas, Peter; Graveley, Brenton R; Lewis, Suzanna; Micklem, Gos; Oliver, Brian; Park, Peter J; Celniker, Susan E; Henikoff, Steven; Karpen, Gary H; Lai, Eric C; MacAlpine, David M; Stein, Lincoln D; White, Kevin P; Kellis, Manolis

    2010-12-24

    To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.

  6. Multiple strategies of oxygen supply in Drosophila malignancies identify tracheogenesis as a novel cancer hallmark.

    Science.gov (United States)

    Grifoni, Daniela; Sollazzo, Manuela; Fontana, Elisabetta; Froldi, Francesca; Pession, Annalisa

    2015-03-12

    Angiogenesis is the term used to describe all the alterations in blood vessel growth induced by a tumour mass following hypoxic stress. The occurrence of multiple strategies of vessel recruitment favours drug resistance, greatly complicating the treatment of certain tumours. In Drosophila, oxygen is conveyed to the internal organs by the tracheal system, a closed tubular network whose role in cancer growth is so far unexplored. We found that, as observed in human cancers, Drosophila malignant cells suffer from oxygen shortage, release pro-tracheogenic factors, co-opt nearby vessels and get incorporated into the tracheal walls. We also found that the parallelisms observed in cellular behaviours are supported by genetic and molecular conservation. Finally, we identified a molecular circuitry associated with the differentiation of cancer cells into tracheal cells. In summary, our findings identify tracheogenesis as a novel cancer hallmark in Drosophila, further expanding the power of the fly model in cancer research.

  7. Genetic effects of organic mercury compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ramel, C

    1967-01-01

    Studies on the genetic and developmental effects of organic mercury compounds on lilies, drosophila, and ice were carried out. It was found that chromosomal and developmental abnormalities were correlated with the administration of mercury compounds.

  8. Maggot Instructor: Semi-Automated Analysis of Learning and Memory in Drosophila Larvae

    Directory of Open Access Journals (Sweden)

    Urte Tomasiunaite

    2018-06-01

    Full Text Available For several decades, Drosophila has been widely used as a suitable model organism to study the fundamental processes of associative olfactory learning and memory. More recently, this condition also became true for the Drosophila larva, which has become a focus for learning and memory studies based on a number of technical advances in the field of anatomical, molecular, and neuronal analyses. The ongoing efforts should be mentioned to reconstruct the complete connectome of the larval brain featuring a total of about 10,000 neurons and the development of neurogenic tools that allow individual manipulation of each neuron. By contrast, standardized behavioral assays that are commonly used to analyze learning and memory in Drosophila larvae exhibit no such technical development. Most commonly, a simple assay with Petri dishes and odor containers is used; in this method, the animals must be manually transferred in several steps. The behavioral approach is therefore labor-intensive and limits the capacity to conduct large-scale genetic screenings in small laboratories. To circumvent these limitations, we introduce a training device called the Maggot Instructor. This device allows automatic training up to 10 groups of larvae in parallel. To achieve such goal, we used fully automated, computer-controlled optogenetic activation of single olfactory neurons in combination with the application of electric shocks. We showed that Drosophila larvae trained with the Maggot Instructor establish an odor-specific memory, which is independent of handling and non-associative effects. The Maggot Instructor will allow to investigate the large collections of genetically modified larvae in a short period and with minimal human resources. Therefore, the Maggot Instructor should be able to help extensive behavioral experiments in Drosophila larvae to keep up with the current technical advancements. In the longer term, this condition will lead to a better understanding of

  9. Adaptive genic evolution in the Drosophila genomes

    DEFF Research Database (Denmark)

    Shapiro, Joshua A; Huang, Wei; Zhang, Chenhui

    2007-01-01

    and stable population. In this study, we sequenced 419 genes from 24 lines of Drosophila melanogaster and its close relatives. Together with data from Drosophila simulans, these data reveal the following. (i) Approximately 10% of the loci in regions of normal recombination are much less polymorphic at silent...... sites than expected, hinting at the action of selective sweeps. (ii) The level of polymorphism is negatively correlated with the rate of nonsynonymous divergence across loci. Thus, even under strict neutrality, the ratio of amino acid to silent nucleotide changes (A:S) between Drosophila species...

  10. Functions of the Drosophila JAK-STAT pathway

    Science.gov (United States)

    Amoyel, Marc; Bach, Erika A.

    2012-01-01

    JAK-STAT signaling has been proposed to act in numerous stem cells in a variety of organisms. Here we provide an overview of its roles in three well characterized stem cell populations in Drosophila, in the intestine, lymph gland and testis. In flies, there is a single JAK and a single STAT, which has made the genetic dissection of pathway function considerably easier and facilitated the analysis of communication between stem cells, their niches and offspring. Studies in flies have revealed roles for this pathway as diverse as regulating bona fide intrinsic self-renewal, integrating response to environmental cues that control quiescence and promoting mitogenic responses to stress. PMID:24058767

  11. Loss of Centrobin Enables Daughter Centrioles to Form Sensory Cilia in Drosophila.

    Science.gov (United States)

    Gottardo, Marco; Pollarolo, Giulia; Llamazares, Salud; Reina, Jose; Riparbelli, Maria G; Callaini, Giuliano; Gonzalez, Cayetano

    2015-08-31

    Sensory cilia are organelles that convey information to the cell from the extracellular environment. In vertebrates, ciliary dysfunction results in ciliopathies that in humans comprise a wide spectrum of developmental disorders. In Drosophila, sensory cilia are found only in the neurons of type I sensory organs, but ciliary dysfunction also has dramatic consequences in this organism because it impairs the mechanosensory properties of bristles and chaetae and leads to uncoordination, a crippling condition that causes lethality shortly after eclosion. The cilium is defined by the ciliary membrane, a protrusion of the cell membrane that envelops the core structure known as the axoneme, a microtubule array that extends along the cilium from the basal body. In vertebrates, basal body function requires centriolar distal and subdistal appendages and satellites. Because these structures are acquired through centriole maturation, only mother centrioles can serve as basal bodies. Here, we show that although centriole maturity traits are lacking in Drosophila, basal body fate is reserved to mother centrioles in Drosophila type I neurons. Moreover, we show that depletion of the daughter-centriole-specific protein Centrobin (CNB) enables daughter centrioles to dock on the cell membrane and to template an ectopic axoneme that, although structurally defective, protrudes out of the cell and is enveloped by a ciliary membrane. Conversely, basal body capability is inhibited in mother centrioles modified to carry CNB. These results reveal the crucial role of CNB in regulating basal body function in Drosophila ciliated sensory organs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Studies on Drosophila radiosensitivity strains

    International Nuclear Information System (INIS)

    Varentsova, E.R.; Sharygin, V.I.; Khromykh, Yu.U.

    1985-01-01

    Fertility of radiosensitive mutant drosophila female strain rad (2) 201 61 after irradiation and frequency of dominant lethal mutations (DLM), induced by γ-radiation for 0-5 h and 5-7 days, are investigated. It is shown, that oocytes of the mutant strain are more radiosensitive as compared with cells of mongrel flies as to criterion of DLM appearance over the period of maturing. Early oocytes of stages 2-7 are the most sensitive, i.e. at the stages, corresponding to the manifestation of previously established recombination-defective properties of mutations rad (2) 201 61 . It is also sown, that doses of γ-rays, exceeding 10 Gy produce a strong sterilizing effect on mutant females due to destruction and resorption of egg chambers, irradiated at the stages of previtellogenetic growth of oocytes. In females, carrying mutation of radiosensitivity there is no direct correlation betwen sensitivity of oocytes proper to DLM induction and sensitivity of egg folleicles to resorbing effect of γ-rays. The ways of possible involvement of mutant locus studied into genetic processes in various specialized cells of drosophila

  13. A potential role for Drosophila mucins in development and physiology.

    Directory of Open Access Journals (Sweden)

    Zulfeqhar A Syed

    Full Text Available Vital vertebrate organs are protected from the external environment by a barrier that to a large extent consists of mucins. These proteins are characterized by poorly conserved repeated sequences that are rich in prolines and potentially glycosylated threonines and serines (PTS. We have now used the characteristics of the PTS repeat domain to identify Drosophila mucins in a simple bioinformatics approach. Searching the predicted protein database for proteins with at least 4 repeats and a high ST content, more than 30 mucin-like proteins were identified, ranging from 300-23000 amino acids in length. We find that Drosophila mucins are present at all stages of the fly life cycle, and that their transcripts localize to selective organs analogous to sites of vertebrate mucin expression. The results could allow for addressing basic questions about human mucin-related diseases in this model system. Additionally, many of the mucins are expressed in selective tissues during embryogenesis, thus revealing new potential functions for mucins as apical matrix components during organ morphogenesis.

  14. Drosophila as an In Vivo Model for Human Neurodegenerative Disease

    Science.gov (United States)

    McGurk, Leeanne; Berson, Amit; Bonini, Nancy M.

    2015-01-01

    With the increase in the ageing population, neurodegenerative disease is devastating to families and poses a huge burden on society. The brain and spinal cord are extraordinarily complex: they consist of a highly organized network of neuronal and support cells that communicate in a highly specialized manner. One approach to tackling problems of such complexity is to address the scientific questions in simpler, yet analogous, systems. The fruit fly, Drosophila melanogaster, has been proven tremendously valuable as a model organism, enabling many major discoveries in neuroscientific disease research. The plethora of genetic tools available in Drosophila allows for exquisite targeted manipulation of the genome. Due to its relatively short lifespan, complex questions of brain function can be addressed more rapidly than in other model organisms, such as the mouse. Here we discuss features of the fly as a model for human neurodegenerative disease. There are many distinct fly models for a range of neurodegenerative diseases; we focus on select studies from models of polyglutamine disease and amyotrophic lateral sclerosis that illustrate the type and range of insights that can be gleaned. In discussion of these models, we underscore strengths of the fly in providing understanding into mechanisms and pathways, as a foundation for translational and therapeutic research. PMID:26447127

  15. The hemolymph proteome of fed and starved Drosophila larvae.

    Science.gov (United States)

    Handke, Björn; Poernbacher, Ingrid; Goetze, Sandra; Ahrens, Christian H; Omasits, Ulrich; Marty, Florian; Simigdala, Nikiana; Meyer, Imke; Wollscheid, Bernd; Brunner, Erich; Hafen, Ernst; Lehner, Christian F

    2013-01-01

    The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid) contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics.

  16. The hemolymph proteome of fed and starved Drosophila larvae.

    Directory of Open Access Journals (Sweden)

    Björn Handke

    Full Text Available The co-operation of specialized organ systems in complex multicellular organisms depends on effective chemical communication. Thus, body fluids (like blood, lymph or intraspinal fluid contain myriads of signaling mediators apart from metabolites. Moreover, these fluids are also of crucial importance for immune and wound responses. Compositional analyses of human body fluids are therefore of paramount diagnostic importance. Further improving their comprehensiveness should increase our understanding of inter-organ communication. In arthropods, which have trachea for gas exchange and an open circulatory system, the single dominating interstitial fluid is the hemolymph. Accordingly, a detailed analysis of hemolymph composition should provide an especially comprehensive picture of chemical communication and defense in animals. Therefore we used an extensive protein fractionation workflow in combination with a discovery-driven proteomic approach to map out the detectable protein composition of hemolymph isolated from Drosophila larvae. Combined mass spectrometric analysis revealed more than 700 proteins extending far beyond the previously known Drosophila hemolymph proteome. Moreover, by comparing hemolymph isolated from either fed or starved larvae, we provide initial provisional insights concerning compositional changes in response to nutritional state. Storage proteins in particular were observed to be strongly reduced by starvation. Our hemolymph proteome catalog provides a rich basis for data mining, as exemplified by our identification of potential novel cytokines, as well as for future quantitative analyses by targeted proteomics.

  17. Low doses and non-targeted effects in environmental radiation protection; where are we now and where should we go?

    Science.gov (United States)

    Mothersill, Carmel; Rusin, Andrej; Seymour, Colin

    2017-11-01

    The field of low dose radiobiology has advanced considerably in the last 30 years from small indications in the 1980's that all was not simple, to a paradigm shift which occurred during the 1990's, which severely dented the dose-driven models and DNA centric theories which had dominated until then. However while the science has evolved, the application of that science in environmental health protection has not. A reason for this appears to be the uncertainties regarding the shape of the low dose response curve, which lead regulators to adopt a precautionary approach to radiation protection. Radiation protection models assume a linear relationship between dose (i.e. energy deposition) and effect (in this case probability of an adverse DNA interaction leading to a mutation). This model does not consider non-targeted effects (NTE) such as bystander effects or delayed effects, which occur in progeny cells or offspring not directly receiving energy deposition from the dose. There is huge controversy concerning the role of NTE with some saying they reflect "biology" and that repair and homeostatic mechanisms sort out the apparent damage while others consider them to be a class of damage which increases the size of the target. One thing which has recently become apparent is that NTE may be very critical for modelling long-term effects at the level of the population rather than the individual. The issue is that NTE resulting from an acute high dose such as occurred after the A-bomb or Chernobyl occur in parallel with chronic effects induced by the continuing residual effects due to radiation dose decay. This means that if ambient radiation doses are measured for example 25 years after the Chernobyl accident, they only represent a portion of the dose effect because the contribution of NTE is not included. Copyright © 2017. Published by Elsevier Inc.

  18. Traces of Drosophila Memory

    Science.gov (United States)

    Davis, Ronald L.

    2012-01-01

    Summary Studies using functional cellullar imaging of living flies have identified six memory traces that form in the olfactory nervous system after conditioning with odors. These traces occur in distinct nodes of the olfactory nervous system, form and disappear across different windows of time, and are detected in the imaged neurons as increased calcium influx or synaptic release in response to the conditioned odor. Three traces form at, or near acquisition and co-exist with short-term behavioral memory. One trace forms with a delay after learning and co-exists with intermediate-term behavioral memory. Two traces form many hours after acquisition and co-exist with long-term behavioral memory. The transient memory traces may support behavior across the time-windows of their existence. The experimental approaches for dissecting memory formation in the fly, ranging from the molecular to the systems, make it an ideal system for dissecting the logic by which the nervous system organizes and stores different temporal forms of memory. PMID:21482352

  19. Functional Analysis of Drosophila NF1

    National Research Council Canada - National Science Library

    Bernards, Andre

    2005-01-01

    ...) for Ras, yet homozygous loss of a highly conserved Drosophila NF1 ortholog results in several phenotypes that are insensitive to manipulating Ras signal transduction, but rescued by increasing...

  20. The Drosophila bipectinata species complex: phylogenetic ...

    Indian Academy of Sciences (India)

    PARUL BANERJEE

    c Indian Academy of Sciences. RESEARCH ARTICLE. The Drosophila bipectinata species complex: phylogenetic relationship among different members based on chromosomal variations. PARUL BANERJEE and BASHISTH N. SINGH. ∗. Genetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi ...

  1. Drosophila melanogaster gene expression changes after spaceflight.

    Data.gov (United States)

    National Aeronautics and Space Administration — Gene expression levels were determined in 3rd instar and adult Drosophila melanogaster reared during spaceflight to elucidate the genetic and molecular mechanisms...

  2. Ecdysteroid receptors in Drosophila melanogaster adult females

    Science.gov (United States)

    Ecdysteroid receptors were identified and partially characterized from total cell extracts of whole animals and dissected tissues from Drosophila melanogaster adult females. Binding studies indicated the presence of two ecdysteroid binding components having high affinity and specificity consistent w...

  3. Transcriptional regulation of Drosophila gonad formation.

    Science.gov (United States)

    Tripathy, Ratna; Kunwar, Prabhat S; Sano, Hiroko; Renault, Andrew D

    2014-08-15

    The formation of the Drosophila embryonic gonad, involving the fusion of clusters of somatic gonadal precursor cells (SGPs) and their ensheathment of germ cells, provides a simple and genetically tractable model for the interplay between cells during organ formation. In a screen for mutants affecting gonad formation we identified a SGP cell autonomous role for Midline (Mid) and Longitudinals lacking (Lola). These transcriptional factors are required for multiple aspects of SGP behaviour including SGP cluster fusion, germ cell ensheathment and gonad compaction. The lola locus encodes more than 25 differentially spliced isoforms and we have identified an isoform specific requirement for lola in the gonad which is distinct from that in nervous system development. Mid and Lola work in parallel in gonad formation and surprisingly Mid overexpression in a lola background leads to additional SGPs at the expense of fat body cells. Our findings support the idea that although the transcription factors required by SGPs can ostensibly be assigned to those being required for either SGP specification or behaviour, they can also interact to impinge on both processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Assessing non-target effects and host feeding of the exotic parasitoid Apanteles taragamae, a potential biological control agent of the cowpea pod borer Maruca vitrata

    NARCIS (Netherlands)

    Dannon, A.E.; Tamo, M.; Huis, van A.; Dicke, M.

    2012-01-01

    Apanteles taragamae Viereck is a larval parasitoid introduced in Benin for classical biological control of the cowpea pod borer Maruca vitrata Fabricius. In the laboratory, we evaluated the effects of A. taragamae on non-target herbivore species, and on another parasitoid of M. vitrata, i.e. the

  5. The effect of antibiotics and diet on enterolactone concentration and metabolome studied by targeted and non-targeted LC-MS metabolomics

    DEFF Research Database (Denmark)

    Bolvig, Anne Katrine; Nørskov, Natalja; Hedemann, Mette Skou

    2017-01-01

    with lower levels of ENL. Here, we investigate the link between antibiotic use and lignan metabolism in pigs using LC-MS/MS. The effect of lignan intake and antibiotic use on the gut microbial community and the pig metabolome is studied by 16S rRNA sequencing and non-targeted LC-MS. Treatment...

  6. An open workflow to generate “MS Ready” structures and improve non-targeted mass spectrometry (ACS Fall 1 of 3)

    Science.gov (United States)

    High-throughput non-targeted analyses (NTA) rely on chemical reference databases for tentative identification of observed chemical features. Many of these databases and online resources incorporate chemical structure data not in a form that is readily observed by mass spectromet...

  7. Meta-Analysis of PECS with Individuals with ASD: Investigation of Targeted versus Non-Targeted Outcomes, Participant Characteristics, and Implementation Phase

    Science.gov (United States)

    Ganz, Jennifer B.; Davis, John L.; Lund, Emily M.; Goodwyn, Fara D.; Simpson, Richard L.

    2012-01-01

    The Picture Exchange Communication System (PECS) is a widely used picture/icon aided augmentative communication system designed for learners with autism and other developmental disorders. This meta-analysis analyzes the extant empirical literature for PECS relative to targeted (functional communication) and non-targeted concomitant outcomes…

  8. Organics.

    Science.gov (United States)

    Chian, Edward S. K.; DeWalle, Foppe B.

    1978-01-01

    Presents water analysis literature for 1978. This review is concerned with organics, and it covers: (1) detergents and surfactants; (2) aliphatic and aromatic hydrocarbons; (3) pesticides and chlorinated hydrocarbons; and (4) naturally occurring organics. A list of 208 references is also presented. (HM)

  9. Organizers.

    Science.gov (United States)

    Callison, Daniel

    2000-01-01

    Focuses on "organizers," tools or techniques that provide identification and classification along with possible relationships or connections among ideas, concepts, and issues. Discusses David Ausubel's research and ideas concerning advance organizers; the implications of Ausubel's theory to curriculum and teaching; "webbing," a…

  10. Characterization of Autophagic Responses in Drosophila melanogaster.

    Science.gov (United States)

    Xu, T; Kumar, S; Denton, D

    2017-01-01

    Drosophila is an excellent model system for studying autophagy during animal development due to the availability of genetic reagents and opportunity for in vivo cell biological analysis. The regulation and mechanism of autophagy are highly evolutionarily conserved and the role of autophagy has been characterized during various stages of Drosophila development as well as following starvation. Studies in Drosophila have revealed novel insights into the role of distinct components of the autophagy machinery. This chapter describes protocols for examining autophagy during Drosophila development. A crucial step in the induction of autophagy is the incorporation of Atg8a into the autophagosome. This can be measured as autophagic puncta using live fluorescent imaging, immunostaining, or immunoblot analysis of LC3/Atg8a processing. The level of autophagy can also be examined using other specific components of the autophagy pathway as markers detected by immunofluorescent imaging. Based on the distinct morphology of autophagy, it can also be examined by transmission electron microscopy. In addition, one of the advantages of using Drosophila as a model is the ability to undertake genetic analysis of individual components of the autophagy machinery. Current approaches that can be used to monitor autophagy, including the overall flux and individual steps in Drosophila melanogaster, will be discussed. © 2017 Elsevier Inc. All rights reserved.

  11. Effect of non-nutritive sugars to decrease the survivorship of spotted wing drosophila, Drosophila suzukii

    Science.gov (United States)

    In this study, we investigated the effects of non-nutritive sugars and sugar alcohols on the survivorship of spotted wing drosophila, Drosophila suzukii, and found erythritol and erythrose as potentially toxic to the fly. In a dose-dependent study, erythritol and erythrose significantly reduced fly ...

  12. New record for the invasive Spotted Wing Drosophila, Drosophila suzukii Matsumura (Diptera: Drosophilidae) in Anillaco, Argentina

    Science.gov (United States)

    The invasive Spotted Wing Drosophila (SWD), Drosophila suzukii Matsumura, is reported for the first time in La Rioja, Argentina. This represents a major range expansion for this species. The natural enemies of SWD, Leptopilina clavipes and Ganaspis hookeri were also collected with the SWD at the s...

  13. Cell adhesion in Drosophila: versatility of cadherin and integrin complexes during development

    OpenAIRE

    Bulgakova, Natalia A.; Klapholz, Benjamin; Brown, Nicholas H.

    2012-01-01

    We highlight recent progress in understanding cadherin and integrin function in the model organism Drosophila. New functions for these adhesion receptors continue to be discovered in this system, emphasising the importance of cell adhesion within the developing organism and showing that the requirement for cell adhesion changes between cell types. New ways to control adhesion have been discovered, including controlling the expression and recruitment of adhesion components, their posttranslati...

  14. Targeted Lipidomics in Drosophila melanogaster Identifies Novel 2-Monoacylglycerols and N-acyl Amides

    Science.gov (United States)

    Takacs, Sara M.; Stuart, Jordyn M.; Basnet, Arjun; Raboune, Siham; Widlanski, Theodore S.; Doherty, Patrick; Bradshaw, Heather B.

    2013-01-01

    Lipid metabolism is critical to coordinate organ development and physiology in response to tissue-autonomous signals and environmental cues. Changes to the availability and signaling of lipid mediators can limit competitiveness, adaptation to environmental stressors, and augment pathological processes. Two classes of lipids, the N-acyl amides and the 2-acyl glycerols, have emerged as important signaling molecules in a wide range of species with important signaling properties, though most of what is known about their cellular functions is from mammalian models. Therefore, expanding available knowledge on the repertoire of these lipids in invertebrates will provide additional avenues of research aimed at elucidating biosynthetic, metabolic, and signaling properties of these molecules. Drosophila melanogaster is a commonly used organism to study intercellular communication, including the functions of bioactive lipids. However, limited information is available on the molecular identity of lipids with putative biological activities in Drosophila. Here, we used a targeted lipidomics approach to identify putative signaling lipids in third instar Drosophila larvae, possessing particularly large lipid mass in their fat body. We identified 2-linoleoyl glycerol, 2-oleoyl glycerol, and 45 N-acyl amides in larval tissues, and validated our findings by the comparative analysis of Oregon-RS, Canton-S and w1118 strains. Data here suggest that Drosophila represent another model system to use for the study of 2-acyl glycerol and N-acyl amide signaling. PMID:23874457

  15. Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity.

    Science.gov (United States)

    Calap-Quintana, Pablo; González-Fernández, Javier; Sebastiá-Ortega, Noelia; Llorens, José Vicente; Moltó, María Dolores

    2017-07-06

    Iron, copper and zinc are transition metals essential for life because they are required in a multitude of biological processes. Organisms have evolved to acquire metals from nutrition and to maintain adequate levels of each metal to avoid damaging effects associated with its deficiency, excess or misplacement. Interestingly, the main components of metal homeostatic pathways are conserved, with many orthologues of the human metal-related genes having been identified and characterized in Drosophila melanogaster . Drosophila has gained appreciation as a useful model for studying human diseases, including those caused by mutations in pathways controlling cellular metal homeostasis. Flies have many advantages in the laboratory, such as a short life cycle, easy handling and inexpensive maintenance. Furthermore, they can be raised in a large number. In addition, flies are greatly appreciated because they offer a considerable number of genetic tools to address some of the unresolved questions concerning disease pathology, which in turn could contribute to our understanding of the metal metabolism and homeostasis. This review recapitulates the metabolism of the principal transition metals, namely iron, zinc and copper, in Drosophila and the utility of this organism as an experimental model to explore the role of metal dyshomeostasis in different human diseases. Finally, a summary of the contribution of Drosophila as a model for testing metal toxicity is provided.

  16. Prone versus supine positioning for whole and partial-breast radiotherapy: A comparison of non-target tissue dosimetry

    International Nuclear Information System (INIS)

    Kirby, Anna M.; Evans, Philip M.; Donovan, Ellen M.; Convery, Helen M.; Haviland, Joanna S.; Yarnold, John R.

    2010-01-01

    Purpose: To compare non-target tissue (including left-anterior-descending coronary-artery (LAD)) dosimetry of prone versus supine whole (WBI) and partial-breast irradiation (PBI). Methods and materials: Sixty-five post-lumpectomy breast cancer patients underwent CT-imaging supine and prone. On each dataset, the whole-breast clinical-target-volume (WB-CTV), partial-breast CTV (tumour-bed + 15 mm), ipsilateral-lung and chest-wall were outlined. Heart and LAD were outlined in left-sided cases (n = 30). Tangential-field WBI and PBI plans were generated for each position. Mean LAD, heart, and ipsilateral-lung doses (x mean ), maximum LAD (LAD max ) doses, and the volume of chest-wall receiving 50 Gy (V 50Gy ) were compared. Results: Two-hundred and sixty plans were generated. Prone positioning reduced heart and LAD doses in 19/30 WBI cases (median reduction in LAD mean = 6.2 Gy) and 7/30 PBI cases (median reduction in LAD max = 29.3 Gy) (no difference in 4/30 cases). However, prone positioning increased cardiac doses in 8/30 WBI (median increase in LAD mean = 9.5 Gy) and 19/30 PBI cases (median increase in LAD max = 22.9 Gy) (no difference in 3/30 cases). WB-CTV > 1000cm 3 was associated with improved cardiac dosimetry in the prone position for WBI (p = 0.04) and PBI (p = 0.04). Prone positioning reduced ipsilateral-lung mean in 65/65 WBI and 61/65 PBI cases, and chest-wall V 50Gy in all WBI cases. PBI reduced normal-tissue doses compared to WBI in all cases, regardless of the treatment position. Conclusions: In the context of tangential-field WBI and PBI, prone positioning is likely to benefit left-breast-affected women of larger breast volume, but to be detrimental in left-breast-affected women of smaller breast volume. Right-breast-affected women are likely to benefit from prone positioning regardless of breast volume.

  17. Identification of four Drosophila allatostatins as the cognate ligands for the Drosophila orphan receptor DAR-2

    DEFF Research Database (Denmark)

    Lenz, C; Williamson, M; Hansen, G N

    2001-01-01

    The allatostatins are generally inhibitory insect neuropeptides. The Drosophila orphan receptor DAR-2 is a G-protein-coupled receptor, having 47% amino acid residue identity with another Drosophila receptor, DAR-1 (which is also called dros. GPCR, or DGR) that was previously shown...... to be the receptor for an intrinsic Drosophila A-type (cockroach-type) allatostatin. Here, we have permanently expressed DAR-2 in CHO cells and found that it is the cognate receptor for four Drosophila A-type allatostatins, the drostatins-A1 to -A4. Of all the drostatins, drostatin-A4 (Thr...... weakly in the brain. The Drosophila larval gut also contains about 20-30 endocrine cells, expressing the gene for the drostatins-A1 to -A4. We suggest, therefore, that DAR-2 mediates an allatostatin (drostatin)-induced inhibition of gut motility. This is the first report on the permanent and functional...

  18. Organizations

    DEFF Research Database (Denmark)

    Hatch, Mary Jo

    and considers many more. Mary Jo Hatch introduces the concept of organizations by presenting definitions and ideas drawn from the a variety of subject areas including the physical sciences, economics, sociology, psychology, anthropology, literature, and the visual and performing arts. Drawing on examples from......Most of us recognize that organizations are everywhere. You meet them on every street corner in the form of families and shops, study in them, work for them, buy from them, pay taxes to them. But have you given much thought to where they came from, what they are today, and what they might become...... prehistory and everyday life, from the animal kingdom as well as from business, government, and other formal organizations, Hatch provides a lively and thought provoking introduction to the process of organization....

  19. Effect of Hawthorn on Drosophila Melanogaster Antioxidant-Related ...

    African Journals Online (AJOL)

    Results: The results indicate that hawthorn extract prolonged the life span of Drosophila, with 50 % survival time of 0.8 ... Drosophila's aging gene is highly similar to humans [4,5]. ..... reduces lipid peroxidation in senescence-accelerated mice .

  20. Gustatory Processing in Drosophila melanogaster.

    Science.gov (United States)

    Scott, Kristin

    2018-01-07

    The ability to identify nutrient-rich food and avoid toxic substances is essential for an animal's survival. Although olfaction and vision contribute to food detection, the gustatory system acts as a final checkpoint control for food acceptance or rejection. The vinegar fly Drosophila melanogaster tastes many of the same stimuli as mammals and provides an excellent model system for comparative studies of taste detection. The relative simplicity of the fly brain and behaviors, along with the molecular genetic and functional approaches available in this system, allow the examination of gustatory neural circuits from sensory input to motor output. This review discusses the molecules and cells that detect taste compounds in the periphery and the circuits that process taste information in the brain. These studies are providing insight into how the detection of taste compounds regulates feeding decisions.

  1. The Centrioles, Centrosomes, Basal Bodies, and Cilia of Drosophila melanogaster.

    Science.gov (United States)

    Lattao, Ramona; Kovács, Levente; Glover, David M

    2017-05-01

    Centrioles play a key role in the development of the fly. They are needed for the correct formation of centrosomes, the organelles at the poles of the spindle that can persist as microtubule organizing centers (MTOCs) into interphase. The ability to nucleate cytoplasmic microtubules (MTs) is a property of the surrounding pericentriolar material (PCM). The centriole has a dual life, existing not only as the core of the centrosome but also as the basal body, the structure that templates the formation of cilia and flagellae. Thus the structure and functions of the centriole, the centrosome, and the basal body have an impact upon many aspects of development and physiology that can readily be modeled in Drosophila Centrosomes are essential to give organization to the rapidly increasing numbers of nuclei in the syncytial embryo and for the spatially precise execution of cell division in numerous tissues, particularly during male meiosis. Although mitotic cell cycles can take place in the absence of centrosomes, this is an error-prone process that opens up the fly to developmental defects and the potential of tumor formation. Here, we review the structure and functions of the centriole, the centrosome, and the basal body in different tissues and cultured cells of Drosophila melanogaster , highlighting their contributions to different aspects of development and cell division. Copyright © 2017 Lattao et al.

  2. Hemolymph amino acid analysis of individual Drosophila larvae.

    Science.gov (United States)

    Piyankarage, Sujeewa C; Augustin, Hrvoje; Grosjean, Yael; Featherstone, David E; Shippy, Scott A

    2008-02-15

    One of the most widely used transgenic animal models in biology is Drosophila melanogaster, the fruit fly. Chemical information from this exceedingly small organism is usually accomplished by studying populations to attain sample volumes suitable for standard analysis methods. This paper describes a direct sampling technique capable of obtaining 50-300 nL of hemolymph from individual Drosophila larvae. Hemolymph sampling performed under mineral oil and in air at 30 s intervals up to 120 s after piercing larvae revealed that the effect of evaporation on amino acid concentrations is insignificant when the sample was collected within 60 s. Qualitative and quantitative amino acid analyses of obtained hemolymph were carried out in two optimized buffer conditions by capillary electrophoresis with laser-induced fluorescence detection after derivatizing with fluorescamine. Thirteen amino acids were identified from individual hemolymph samples of both wild-type (WT) control and the genderblind (gb) mutant larvae. The levels of glutamine, glutamate, and taurine in the gb hemolymph were significantly lower at 35%, 38%, and 57% of WT levels, respectively. The developed technique that samples only the hemolymph fluid is efficient and enables accurate organism-level chemical information while minimizing errors associated with possible sample contaminations, estimations, and effects of evaporation compared to the traditional hemolymph-sampling techniques.

  3. Single Nucleotide Polymorphism Markers for Genetic Mapping in Drosophila melanogaster

    OpenAIRE

    Hoskins, Roger A.; Phan, Alexander C.; Naeemuddin, Mohammed; Mapa, Felipa A.; Ruddy, David A.; Ryan, Jessica J.; Young, Lynn M.; Wells, Trent; Kopczynski, Casey; Ellis, Michael C.

    2001-01-01

    For nearly a century, genetic analysis in Drosophila melanogaster has been a powerful tool for analyzing gene function, yet Drosophila lacks the molecular genetic mapping tools that recently have revolutionized human, mouse, and plant genetics. Here, we describe the systematic characterization of a dense set of molecular markers in Drosophila by using a sequence tagged site-based physical map of the genome. We identify 474 biallelic markers in standard laboratory strains of Drosophila that sp...

  4. Non-target effects of a glyphosate-based herbicide on Common toad larvae (Bufo bufo, Amphibia) and associated algae are altered by temperature.

    Science.gov (United States)

    Baier, Fabian; Gruber, Edith; Hein, Thomas; Bondar-Kunze, Elisabeth; Ivanković, Marina; Mentler, Axel; Brühl, Carsten A; Spangl, Bernhard; Zaller, Johann G

    2016-01-01

    Glyphosate-based herbicides are the most widely used pesticides in agriculture, horticulture, municipalities and private gardens that can potentially contaminate nearby water bodies inhabited by amphibians and algae. Moreover, the development and diversity of these aquatic organisms could also be affected by human-induced climate change that might lead to more periods with extreme temperatures. However, to what extent non-target effects of these herbicides on amphibians or algae are altered by varying temperature is not well known. We studied effects of five concentrations of the glyphosate-based herbicide formulation Roundup PowerFlex (0, 1.5, 3, 4 mg acid equivalent glyphosate L -1 as a one time addition and a pulse treatment of totally 4 mg a.e. glyphosate L -1 ) on larval development of Common toads ( Bufo bufo , L.; Amphibia: Anura) and associated algae communities under two temperature regimes (15 vs. 20 °C). Herbicide contamination reduced tail growth (-8%), induced the occurrence of tail deformations (i.e. lacerated or crooked tails) and reduced algae diversity (-6%). Higher water temperature increased tadpole growth (tail and body length (tl/bl) +66%, length-to-width ratio +4%) and decreased algae diversity (-21%). No clear relation between herbicide concentrations and tadpole growth or algae density or diversity was observed. Interactive effects of herbicides and temperature affected growth parameters, tail deformation and tadpole mortality indicating that the herbicide effects are temperature-dependent. Remarkably, herbicide-temperature interactions resulted in deformed tails in 34% of all herbicide treated tadpoles at 15 °C whereas no tail deformations were observed for the herbicide-free control at 15 °C or any tadpole at 20 °C; herbicide-induced mortality was higher at 15 °C but lower at 20 °C. These herbicide- and temperature-induced changes may have decided effects on ecological interactions in freshwater ecosystems. Although no clear dose

  5. Non-target effects of a glyphosate-based herbicide on Common toad larvae (Bufo bufo, Amphibia and associated algae are altered by temperature

    Directory of Open Access Journals (Sweden)

    Fabian Baier

    2016-11-01

    Full Text Available Background Glyphosate-based herbicides are the most widely used pesticides in agriculture, horticulture, municipalities and private gardens that can potentially contaminate nearby water bodies inhabited by amphibians and algae. Moreover, the development and diversity of these aquatic organisms could also be affected by human-induced climate change that might lead to more periods with extreme temperatures. However, to what extent non-target effects of these herbicides on amphibians or algae are altered by varying temperature is not well known. Methods We studied effects of five concentrations of the glyphosate-based herbicide formulation Roundup PowerFlex (0, 1.5, 3, 4 mg acid equivalent glyphosate L−1 as a one time addition and a pulse treatment of totally 4 mg a.e. glyphosate L−1 on larval development of Common toads (Bufo bufo, L.; Amphibia: Anura and associated algae communities under two temperature regimes (15 vs. 20 °C. Results Herbicide contamination reduced tail growth (−8%, induced the occurrence of tail deformations (i.e. lacerated or crooked tails and reduced algae diversity (−6%. Higher water temperature increased tadpole growth (tail and body length (tl/bl +66%, length-to-width ratio +4% and decreased algae diversity (−21%. No clear relation between herbicide concentrations and tadpole growth or algae density or diversity was observed. Interactive effects of herbicides and temperature affected growth parameters, tail deformation and tadpole mortality indicating that the herbicide effects are temperature-dependent. Remarkably, herbicide-temperature interactions resulted in deformed tails in 34% of all herbicide treated tadpoles at 15 °C whereas no tail deformations were observed for the herbicide-free control at 15 °C or any tadpole at 20 °C; herbicide-induced mortality was higher at 15 °C but lower at 20 °C. Discussion These herbicide- and temperature-induced changes may have decided effects on ecological

  6. Strong dietary restrictions protect Drosophila against anoxia/reoxygenation injuries.

    Directory of Open Access Journals (Sweden)

    Paul Vigne

    Full Text Available Reoxygenation of ischemic tissues is a major factor that determines the severity of cardiovascular diseases. This paper describes the consequences of anoxia/reoxygenation (A/R stresses on Drosophila, a useful, anoxia tolerant, model organism.Newly emerged adult male flies were exposed to anoxic conditions (<1% O2 for 1 to 6 hours, reoxygenated and their survival was monitored.A/R stresses induced a transient increase in mortality which peaked at the time of reoxygenation. Then flies recovered low mortality rates similar to those of control flies. A/R induced mortality was strongly dependent on dietary conditions during the 48 h that preceded anoxia. Well fed flies were anoxia sensitive. Strong dietary restrictions and starvation conditions protected flies against A/R injuries. The tolerance to anoxia was associated to large decreases in glycogen, protein, and ATP contents. During anoxia, anoxia tolerant flies produced more lactate, less phosphate and they maintained more stable ATP levels than anoxia sensitive flies. Moderate dietary restrictions, which increased the longevity of normoxic flies, did not promote resistance to A/R stresses. Diet dependent A/R injuries were still observed in sigma loss of function mutants and they were insensitive to dietary rapamycin or resveratrol. AICAR (5-aminoimidazole-4-carboxamide-1-beta-D-ribose-furanoside, an activator AMP kinase decreased A/R injuries. Mutants in the insulin signalling pathway were more anoxia tolerant in a fed state.Long A/R stresses induce a transient increase in mortality in Drosophila. This mortality is highly dependent on dietary conditions prior to the stress. Strong dietary restrictions and starvation conditions protect flies against A/R injuries, probably by inducing a major remodelling of energy metabolism. The results also indicate that mechanistically different responses develop in response to dietary restrictions of different strengths. AMP kinase and the insulin signalling

  7. Conserved mechanisms of tumorigenesis in the Drosophila adult midgut.

    Directory of Open Access Journals (Sweden)

    Òscar Martorell

    Full Text Available Whereas the series of genetic events leading to colorectal cancer (CRC have been well established, the precise functions that these alterations play in tumor progression and how they disrupt intestinal homeostasis remain poorly characterized. Activation of the Wnt/Wg signaling pathway by a mutation in the gene APC is the most common trigger for CRC, inducing benign lesions that progress to carcinomas due to the accumulation of other genetic alterations. Among those, Ras mutations drive tumour progression in CRC, as well as in most epithelial cancers. As mammalian and Drosophila's intestines share many similarities, we decided to explore the alterations induced in the Drosophila midgut by the combined activation of the Wnt signaling pathway with gain of function of Ras signaling in the intestinal stem cells. Here we show that compound Apc-Ras clones, but not clones bearing the individual mutations, expand as aggressive intestinal tumor-like outgrowths. These lesions reproduce many of the human CRC hallmarks such as increased proliferation, blockade of cell differentiation and cell polarity and disrupted organ architecture. This process is followed by expression of tumoral markers present in human lesions. Finally, a metabolic behavioral assay shows that these flies suffer a progressive deterioration in intestinal homeostasis, providing a simple readout that could be used in screens for tumor modifiers or therapeutic compounds. Taken together, our results illustrate the conservation of the mechanisms of CRC tumorigenesis in Drosophila, providing an excellent model system to unravel the events that, upon mutation in Apc and Ras, lead to CRC initiation and progression.

  8. Carbon dioxide sensing modulates lifespan and physiology in Drosophila.

    Directory of Open Access Journals (Sweden)

    Peter C Poon

    Full Text Available For nearly all life forms, perceptual systems provide access to a host of environmental cues, including the availability of food and mates as well as the presence of disease and predators. Presumably, individuals use this information to assess the current and future states of the environment and to enact appropriate developmental, behavioral, and regulatory decisions. Recent work using the nematode worm, Caenorhabditis elegans, and the fruit fly, Drosophila melanogaster, has established that aging is subject to modulation through neurosensory systems and that this regulation is evolutionarily conserved. To date, sensory manipulations shown to impact Drosophila aging have involved general loss of function or manipulation of complex stimuli. We therefore know little about the specific inputs, sensors, or associated neural circuits that affect these life and death decisions. We find that a specialized population of olfactory neurons that express receptor Gr63a (a component of the olfactory receptor for gaseous phase CO(2 affects fly lifespan and physiology. Gr63a loss of function leads to extended lifespan, increased fat deposition, and enhanced resistance to some (but not all environmental stresses. Furthermore, we find that the reduced lifespan that accompanies exposure to odors from live yeast is dependent on Gr63a. Together these data implicate a specific sensory cue (CO(2 and its associated receptor as having the ability to modulate fly lifespan and alter organism stress response and physiology. Because Gr63a is expressed in a well-defined population of neurons, future work may now be directed at dissecting more complex neurosensory and neuroendocrine circuits that modulate aging in Drosophila.

  9. Carbon dioxide sensing modulates lifespan and physiology in Drosophila.

    Science.gov (United States)

    Poon, Peter C; Kuo, Tsung-Han; Linford, Nancy J; Roman, Gregg; Pletcher, Scott D

    2010-04-20

    For nearly all life forms, perceptual systems provide access to a host of environmental cues, including the availability of food and mates as well as the presence of disease and predators. Presumably, individuals use this information to assess the current and future states of the environment and to enact appropriate developmental, behavioral, and regulatory decisions. Recent work using the nematode worm, Caenorhabditis elegans, and the fruit fly, Drosophila melanogaster, has established that aging is subject to modulation through neurosensory systems and that this regulation is evolutionarily conserved. To date, sensory manipulations shown to impact Drosophila aging have involved general loss of function or manipulation of complex stimuli. We therefore know little about the specific inputs, sensors, or associated neural circuits that affect these life and death decisions. We find that a specialized population of olfactory neurons that express receptor Gr63a (a component of the olfactory receptor for gaseous phase CO(2)) affects fly lifespan and physiology. Gr63a loss of function leads to extended lifespan, increased fat deposition, and enhanced resistance to some (but not all) environmental stresses. Furthermore, we find that the reduced lifespan that accompanies exposure to odors from live yeast is dependent on Gr63a. Together these data implicate a specific sensory cue (CO(2)) and its associated receptor as having the ability to modulate fly lifespan and alter organism stress response and physiology. Because Gr63a is expressed in a well-defined population of neurons, future work may now be directed at dissecting more complex neurosensory and neuroendocrine circuits that modulate aging in Drosophila.

  10. Conserved mechanisms of tumorigenesis in the Drosophila adult midgut.

    Science.gov (United States)

    Martorell, Òscar; Merlos-Suárez, Anna; Campbell, Kyra; Barriga, Francisco M; Christov, Christo P; Miguel-Aliaga, Irene; Batlle, Eduard; Casanova, Jordi; Casali, Andreu

    2014-01-01

    Whereas the series of genetic events leading to colorectal cancer (CRC) have been well established, the precise functions that these alterations play in tumor progression and how they disrupt intestinal homeostasis remain poorly characterized. Activation of the Wnt/Wg signaling pathway by a mutation in the gene APC is the most common trigger for CRC, inducing benign lesions that progress to carcinomas due to the accumulation of other genetic alterations. Among those, Ras mutations drive tumour progression in CRC, as well as in most epithelial cancers. As mammalian and Drosophila's intestines share many similarities, we decided to explore the alterations induced in the Drosophila midgut by the combined activation of the Wnt signaling pathway with gain of function of Ras signaling in the intestinal stem cells. Here we show that compound Apc-Ras clones, but not clones bearing the individual mutations, expand as aggressive intestinal tumor-like outgrowths. These lesions reproduce many of the human CRC hallmarks such as increased proliferation, blockade of cell differentiation and cell polarity and disrupted organ architecture. This process is followed by expression of tumoral markers present in human lesions. Finally, a metabolic behavioral assay shows that these flies suffer a progressive deterioration in intestinal homeostasis, providing a simple readout that could be used in screens for tumor modifiers or therapeutic compounds. Taken together, our results illustrate the conservation of the mechanisms of CRC tumorigenesis in Drosophila, providing an excellent model system to unravel the events that, upon mutation in Apc and Ras, lead to CRC initiation and progression.

  11. Drosophila Courtship Conditioning As a Measure of Learning and Memory.

    Science.gov (United States)

    Koemans, Tom S; Oppitz, Cornelia; Donders, Rogier A T; van Bokhoven, Hans; Schenck, Annette; Keleman, Krystyna; Kramer, Jamie M

    2017-06-05

    Many insights into the molecular mechanisms underlying learning and memory have been elucidated through the use of simple behavioral assays in model organisms such as the fruit fly, Drosophila melanogaster. Drosophila is useful for understanding the basic neurobiology underlying cognitive deficits resulting from mutations in genes associated with human cognitive disorders, such as intellectual disability (ID) and autism. This work describes a methodology for testing learning and memory using a classic paradigm in Drosophila known as courtship conditioning. Male flies court females using a distinct pattern of easily recognizable behaviors. Premated females are not receptive to mating and will reject the male's copulation attempts. In response to this rejection, male flies reduce their courtship behavior. This learned reduction in courtship behavior is measured over time, serving as an indicator of learning and memory. The basic numerical output of this assay is the courtship index (CI), which is defined as the percentage of time that a male spends courting during a 10 min interval. The learning index (LI) is the relative reduction of CI in flies that have been exposed to a premated female compared to naïve flies with no previous social encounters. For the statistical comparison of LIs between genotypes, a randomization test with bootstrapping is used. To illustrate how the assay can be used to address the role of a gene relating to learning and memory, the pan-neuronal knockdown of Dihydroxyacetone phosphate acyltransferase (Dhap-at) was characterized here. The human ortholog of Dhap-at, glyceronephosphate O-acyltransferase (GNPT), is involved in rhizomelic chondrodysplasia punctata type 2, an autosomal-recessive syndrome characterized by severe ID. Using the courtship conditioning assay, it was determined that Dhap-at is required for long-term memory, but not for short-term memory. This result serves as a basis for further investigation of the underlying molecular

  12. Dystroglycan is required for polarizing the epithelial cells and the oocyte in Drosophila

    DEFF Research Database (Denmark)

    Deng, Wu-Min; Schneider, Martina; Frock, Richard

    2003-01-01

    The transmembrane protein Dystroglycan is a central element of the dystrophin-associated glycoprotein complex, which is involved in the pathogenesis of many forms of muscular dystrophy. Dystroglycan is a receptor for multiple extracellular matrix (ECM) molecules such as Laminin, agrin and perlecan......, and plays a role in linking the ECM to the actin cytoskeleton; however, how these interactions are regulated and their basic cellular functions are poorly understood. Using mosaic analysis and RNAi in the model organism Drosophila melanogaster, we show that Dystroglycan is required cell......, possibly by organizing the Laminin ECM. These data suggest that the primary function of Dystroglycan in oogenesis is to organize cellular polarity; and this study sets the stage for analyzing the Dystroglycan complex by using the power of Drosophila molecular genetics....

  13. Characterization of the effect of Cr(VI) on humoral innate immunity using Drosophila melanogaster.

    Science.gov (United States)

    Pragya, P; Shukla, A K; Murthy, R C; Abdin, M Z; Kar Chowdhuri, D

    2015-11-01

    With the advancement of human race, different anthropogenic activities have heaped the environment with chemicals that can cause alteration in the immune system of exposed organism. As a first line of barrier, the evolutionary conserved innate immunity is crucial for the health of an organism. However, there is paucity of information regarding in vivo assessment of the effect of environmental chemicals on innate immunity. Therefore, we examined the effect of a widely used environmental chemical, Cr(VI), on humoral innate immune response using Drosophila melanogaster. The adverse effect of Cr(VI) on host humoral response was characterized by decreased gene expression of antimicrobial peptides (AMPs) in the exposed organism. Concurrently, a significantly decreased transcription of humoral pathway receptors (Toll and PGRP) and triglyceride level along with inhibition of antioxidant enzyme activities were observed in exposed organism. This in turn weakened the immune response of exposed organism that was manifested by their reduced resistance against bacterial infection. In addition, overexpression of the components of humoral immunity particularly Diptericin benefits Drosophila from Cr(VI)-induced humoral immune-suppressive effect. To our knowledge, this is the first report regarding negative impact of an environmental chemical on humoral innate immune response of Drosophila along with subsequent protection by AMPs, which may provide novel insight into host-chemical interactions. Also, our data validate the utility and sensitivity of Drosophila as a model that could be used for screening the possible risk of environmental chemicals on innate immunity with minimum ethical concern that can be further extrapolated to higher organisms. © 2014 Wiley Periodicals, Inc.

  14. Non-targeted and delayed effects of exposure to ionizing radiation: II. Radiation-induced genomic instability and bystander effects in vivo, clastogenic factors and transgenerational effects

    Science.gov (United States)

    Morgan, William F.

    2003-01-01

    The goal of this review is to summarize the evidence for non-targeted and delayed effects of exposure to ionizing radiation in vivo. Currently, human health risks associated with radiation exposures are based primarily on the assumption that the detrimental effects of radiation occur in irradiated cells. Over the years a number of non-targeted effects of radiation exposure in vivo have been described that challenge this concept. These include radiation-induced genomic instability, bystander effects, clastogenic factors produced in plasma from irradiated individuals that can cause chromosomal damage when cultured with nonirradiated cells, and transgenerational effects of parental irradiation that can manifest in the progeny. These effects pose new challenges to evaluating the risk(s) associated with radiation exposure and understanding radiation-induced carcinogenesis.

  15. Gut-associated microbes of Drosophila melanogaster

    Science.gov (United States)

    Broderick, Nichole; Lemaitre, Bruno

    2012-01-01

    There is growing interest in using Drosophila melanogaster to elucidate mechanisms that underlie the complex relationships between a host and its microbiota. In addition to the many genetic resources and tools Drosophila provides, its associated microbiota is relatively simple (1–30 taxa), in contrast to the complex diversity associated with vertebrates (> 500 taxa). These attributes highlight the potential of this system to dissect the complex cellular and molecular interactions that occur between a host and its microbiota. In this review, we summarize what is known regarding the composition of gut-associated microbes of Drosophila and their impact on host physiology. We also discuss these interactions in the context of their natural history and ecology and describe some recent insights into mechanisms by which Drosophila and its gut microbiota interact. “Workers with Drosophila have been considered fortunate in that they deal with the first multicellular invertebrate to be cultured monoxenically (Delcourt and Guyenot, 1910); the first to be handled axenically on a semisynthetic diet (Guyenot, 1917); and the first to be grown on a defined diet (Schultz et al., 1946). This list of advantages is somewhat embarrassing, since it implies an interest in nutrition that, in reality, was only secondary. The very first studies were concerned with the reduction of variability in genetic experiments (Delcourt and Guyenot, 1910) and standardization of the nutritional environment.” -James Sang, 1959 Ann NY Acad 1 PMID:22572876

  16. DAMPAK APLIKASI INSEKTISIDA PERMETRIN TERHADAP HAMA PENGISAP BIJAIJ HELOPELTIS SPP. (HEMIPTERA: MIRIDAE DAN ARTROPODA NON-TARGET PADA PERTANAMAN KAKAO (THEOBROMA CACAO L.

    Directory of Open Access Journals (Sweden)

    Rosma Hasibuan

    2014-08-01

    Full Text Available Impact of Permethrin-Insecticide Application on Mirid Pest of Cocoa Helopeltis spp. (Hemiptera: Miridae and on Non-target  Arthropods in Cocoa Plantations (Theobroma cacao L.. Cocoa mirid bugs, Helopeltis spp., (Hemiptera: Miridae are the most important pest of cocoa in Indonesia. A field study was conducted to investigate the effect of permethrin on cocoa mirids and non-target arthropods at a cocoa plantation in specific place. A randomized complete block design was used in which each of four blocks consisted of 5 treatments (4 concentrations of permethrin; 50; 100; 200; and 250 ppm and control. The results indicated that the application of permethrin significantly increased the cocoa mirids mortaliiy throughout all sprayed cocoa trees (up to 100% 72 h after application. Even at 1 h after application, the percentage of Cocoa mirids mortality 29.2% - 53.9% on cocoa trees sprayed with permethrin at concentrations of 50 - 250 ppm was significantly higher than that on control plant (3.6%. At 72 h after treatments, application of permethrin at concentrations of 200 and 250 ppm caused a complete kill (mortalty of 100% in the test mirids. Meanwhile, ground cloths caught at least 22 fanilies of abore-ground arthropods that were found killed by permethrin applications. Moreover, the number of non-target arthropods killed by permethrin at concentrations of 100 - 250 ppm (27.3 - 85.3 individuals/ground cloth were signifcantly higher than that on control trees. These results demonstrated that despite high efficacy of permethrin in controlling of cocoa mirids (Hetopeltis spp., its application also had adverse effects on non-target arthropods incocoa plantations.

  17. Effects of seed mixture sowing with resistant and susceptible rice on population dynamics of target planthoppers and non-target stemborers and leaffolders.

    Science.gov (United States)

    Li, Zhuo; Wan, Guijun; Wang, Long; Parajulee, Megha N; Zhao, Zihua; Chen, Fajun

    2018-07-01

    The widespread planting of insect-resistant crops has caused a dramatic shift in agricultural landscapes, thus raising concerns about the potential impact on both target and non-target pests worldwide. In this study, we examined the potential effects of six seed mixture ratios of insect-resistance dominance [100% (R100), 95% (S05R95), 90% (S10R90), 80% (S20R80), 60% (S40R60), and 0% (S100)] on target and non-target pests in a 2-year field trial in southern China. The occurrence of the target pests Nilaparvata lugens and Sogatella furcifera decreased with an increase in the ratio of resistant rice, and mixture ratios with ≥90% resistant rice significantly increased the pest suppression efficiency, with the lowest occurrences of the non-target pests Sesamia inferens, Chilo suppressalis and Cnaphalocrocis medinalis for S100 and S10R90 seed mixture ratios. Furthermore, there were no significant differences in the 1000-grain dry weight and grain yield between R100 and other treatments with ≥80% resistant seeds in the mixture (S20R80, S10R90 and S05R95). S10R90 produced a good yield and provided the most effective control of both target and non-target pests, with the potential to significantly reduce the application of chemical pesticides for integrated pest management in paddy fields. It is further presumed that the strategy of seed mixture with resistant and susceptible rice would be advantageous for rice yield stability. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  18. Effects of seed mixture sowing with transgenic Bt rice and its parental line on the population dynamics of target stemborers and leafrollers, and non-target planthoppers.

    Science.gov (United States)

    Li, Zhuo; Li, Li-Kun; Liu, Bin; Wang, Long; Parajulee, Megha N; Chen, Fa-Jun

    2018-01-24

    The widespread planting of insect-resistant crops has caused a dramatic shift in agricultural landscapes, thus raising concerns about the potential impacts on both target and non-target pests. In this study, we examined the potential effects of intra-specific seed mixture sowing with transgenic Bt rice (Bt) and its parental non-transgenic line (Nt) (100% Bt rice [Bt 100 ], 5% Nt+95% Bt [Nt 05 Bt 95 ], 10% Nt+90% Bt [Nt 10 Bt 90 ], 20% Nt+80% Bt [Nt 20 Bt 80 ], 40% Nt+60% Bt [Nt 40 Bt 60 ] and 100% Nt rice [Nt 100 ]) on target and non-target pests in a 2-year field trial in southern China. The occurrence of target pests, Sesamia inferens, Chilo suppressalis and Cnaphalocrocis medinalis, decreased with the increased ratio of Bt rice, and the mixture ratios with more than 90% Bt rice (Bt 100 and Nt 05 Bt 95 ) significantly increased the pest suppression efficiency, with the lowest occurrences of non-target planthoppers, Nilaparvata lugens and Sogatella furcifera in Nt 100 and Nt 05 Bt 95 . Furthermore, there were no significant differences in 1000-grain dry weight and grain dry weight per 100 plants between Bt 100 and Nt 05 Bt 95 . Seed mixture sowing of Bt rice with ≤10% (especially 5%) of its parent line was sufficient to overcome potential compliance issues that exist with the use of block or structured refuge to provide most effective control of both target and non-target pests without compromising the grain yield. It is also expected that the strategy of seed mixture sowing with transgenic Bt rice and the non-transgenic parental line would provide rice yield stability while decreasing the insecticide use frequency in rice production. © 2018 Institute of Zoology, Chinese Academy of Sciences.

  19. Influence of eye size and beam entry angle on dose to non-targeted tissues of the eye during stereotactic x-ray radiosurgery of AMD

    International Nuclear Information System (INIS)

    Cantley, Justin L; Bolch, Wesley E; Hanlon, Justin; Chell, Erik; Lee, Choonsik; Smith, W Clay

    2013-01-01

    Age-related macular degeneration is a leading cause of vision loss for the elderly population of industrialized nations. The IRay® Radiotherapy System, developed by Oraya® Therapeutics, Inc., is a stereotactic low-voltage irradiation system designed to treat the wet form of the disease. The IRay System uses three robotically positioned 100 kVp collimated photon beams to deliver an absorbed dose of up to 24 Gy to the macula. The present study uses the Monte Carlo radiation transport code MCNPX to assess absorbed dose to six non-targeted tissues within the eye—total lens, radiosensitive tissues of the lens, optic nerve, distal tip of the central retinal artery, non-targeted portion of the retina, and the ciliary body-–all as a function of eye size and beam entry angle. The ocular axial length was ranged from 20 to 28 mm in 2 mm increments, with the polar entry angle of the delivery system varied from 18° to 34° in 2° increments. The resulting data showed insignificant variations in dose for all eye sizes. Slight variations in the dose to the optic nerve and the distal tip of the central retinal artery were noted as the polar beam angle changed. An increase in non-targeted retinal dose was noted as the entry angle increased, while the dose to the lens, sensitive volume of the lens, and ciliary body decreased as the treatment polar angle increased. Polar angles of 26° or greater resulted in no portion of the sensitive volume of the lens receiving an absorbed dose of 0.5 Gy or greater. All doses to non-targeted structures reported in this study were less than accepted thresholds for post-procedure complications. (paper)

  20. Influence of eye size and beam entry angle on dose to non-targeted tissues of the eye during stereotactic x-ray radiosurgery of AMD

    Science.gov (United States)

    Cantley, Justin L.; Hanlon, Justin; Chell, Erik; Lee, Choonsik; Smith, W. Clay; Bolch, Wesley E.

    2013-10-01

    Age-related macular degeneration is a leading cause of vision loss for the elderly population of industrialized nations. The IRay® Radiotherapy System, developed by Oraya® Therapeutics, Inc., is a stereotactic low-voltage irradiation system designed to treat the wet form of the disease. The IRay System uses three robotically positioned 100 kVp collimated photon beams to deliver an absorbed dose of up to 24 Gy to the macula. The present study uses the Monte Carlo radiation transport code MCNPX to assess absorbed dose to six non-targeted tissues within the eye—total lens, radiosensitive tissues of the lens, optic nerve, distal tip of the central retinal artery, non-targeted portion of the retina, and the ciliary body--all as a function of eye size and beam entry angle. The ocular axial length was ranged from 20 to 28 mm in 2 mm increments, with the polar entry angle of the delivery system varied from 18° to 34° in 2° increments. The resulting data showed insignificant variations in dose for all eye sizes. Slight variations in the dose to the optic nerve and the distal tip of the central retinal artery were noted as the polar beam angle changed. An increase in non-targeted retinal dose was noted as the entry angle increased, while the dose to the lens, sensitive volume of the lens, and ciliary body decreased as the treatment polar angle increased. Polar angles of 26° or greater resulted in no portion of the sensitive volume of the lens receiving an absorbed dose of 0.5 Gy or greater. All doses to non-targeted structures reported in this study were less than accepted thresholds for post-procedure complications.

  1. Field response of aboveground non-target arthropod community to transgenic Bt-Cry1Ab rice plant residues in postharvest seasons.

    Science.gov (United States)

    Bai, Yao-Yu; Yan, Rui-Hong; Ye, Gong-Yin; Huang, Fangneng; Wangila, David S; Wang, Jin-Jun; Cheng, Jia-An

    2012-10-01

    Risk assessments of ecological effects of transgenic rice expressing lepidoptera-Cry proteins from Bacillus thuringiensis (Bt) on non-target arthropods have primarily focused on rice plants during cropping season, whereas few studies have investigated the effects in postharvest periods. Harvested rice fallow fields provide a critical over-wintering habitat for arthropods in the Chinese rice ecosystems, particularly in the southern region of the country. During 2006-08, two independent field trials were conducted in Chongqing, China to investigate the effects of transgenic Cry1Ab rice residues on non-target arthropod communities. In each trial, pitfall traps were used to sample arthropods in field plots planted with one non-Bt variety and two Bt rice lines expressing the Cry1Ab protein. Aboveground arthropods in the trial plots during the postharvest season were abundant, while community densities varied significantly between the two trials. A total of 52,386 individual insects and spiders, representing 93 families, was captured in the two trials. Predominant arthropods sampled were detritivores, which accounted for 91.9% of the total captures. Other arthropods sampled included predators (4.2%), herbivores (3.2%), and parasitoids (0.7%). In general, there were no significant differences among non-Bt and Bt rice plots in all arthropod community-specific parameters for both trials, suggesting no adverse impact of the Bt rice plant residues on the aboveground non-target arthropod communities during the postharvest season. The results of this study provide additional evidence that Bt rice is safe to non-target arthropod communities in the Chinese rice ecosystems.

  2. Drosophila Wnt and STAT Define Apoptosis-Resistant Epithelial Cells for Tissue Regeneration after Irradiation.

    Directory of Open Access Journals (Sweden)

    Shilpi Verghese

    2016-09-01

    Full Text Available Drosophila melanogaster larvae irradiated with doses of ionizing radiation (IR that kill about half of the cells in larval imaginal discs still develop into viable adults. How surviving cells compensate for IR-induced cell death to produce organs of normal size and appearance remains an active area of investigation. We have identified a subpopulation of cells within the continuous epithelium of Drosophila larval wing discs that shows intrinsic resistance to IR- and drug-induced apoptosis. These cells reside in domains of high Wingless (Wg, Drosophila Wnt-1 and STAT92E (sole Drosophila signal transducer and activator of transcription [STAT] homolog activity and would normally form the hinge in the adult fly. Resistance to IR-induced apoptosis requires STAT and Wg and is mediated by transcriptional repression of the pro-apoptotic gene reaper. Lineage tracing experiments show that, following irradiation, apoptosis-resistant cells lose their identity and translocate to areas of the wing disc that suffered abundant cell death. Our findings provide a new paradigm for regeneration in which it is unnecessary to invoke special damage-resistant cell types such as stem cells. Instead, differences in gene expression within a population of genetically identical epithelial cells can create a subpopulation with greater resistance, which, following damage, survive, alter their fate, and help regenerate the tissue.

  3. Low-dose ionizing radiation alleviates Aβ42-induced defective phenotypes in Drosophila Alzheimer's disease models

    International Nuclear Information System (INIS)

    Hwang, SooJin; Jeong, Hae Min; Nam, Seon Young

    2017-01-01

    Alzheimer's disease (AD) is the most common neurodegenerative disease that is characterized by amyloid plaques, progressive neuronal loss, and gradual deterioration of memory. Amyloid imaging using positron emission tomography (PET) radiotracers have been developed and approved for clinical use in the evaluation of suspected neurodegenerative disease, including AD. Particularly, previous studies involving low-dose ionizing radiation on Aβ 42-treated mouse hippocampal neurons have suggested a potential role for low-dose ionizing radiation in the treatment of AD. However, associated in vivo studies involving the therapy effects of low-dose ionizing radiation on AD are still insufficient. As a powerful cell biological system, Drosophila AD models have been generated and established a useful model organism for study on the etiology of human AD. In this study, we investigated the hormesis effects of low-dose ionizing radiation on Drosophila AD models. Our results suggest that low-dose ionizing radiation have the beneficial effects on not only the Aβ42-induced developmental defective phenotypes but also motor defects in Drosophila AD models. These results might be due to a regulation of apoptosis, and provide insight into the hormesis effects of low-dose ionizing radiation. Our results suggest that low-dose ionizing radiation have the beneficial effects on not only the Aβ42-induced developmental defective phenotypes but also motor defects in Drosophila AD models. These results might be due to a regulation of apoptosis, and provide insight into the hormesis effects of low-dose ionizing radiation.

  4. Phenotypic plasticity in Drosophila cactophilic species: the effect of competition, density, and breeding sites.

    Science.gov (United States)

    Fanara, Juan Jose; Werenkraut, Victoria

    2017-08-01

    Changes in the environmental conditions experienced by naturally occurring populations are frequently accompanied by changes in adaptive traits allowing the organism to cope with environmental unpredictability. Phenotypic plasticity is a major aspect of adaptation and it has been involved in population dynamics of interacting species. In this study, phenotypic plasticity (i.e., environmental sensitivity) of morphological adaptive traits were analyzed in the cactophilic species Drosophila buzzatii and Drosophila koepferae (Diptera: Drosophilidae) considering the effect of crowding conditions (low and high density), type of competition (intraspecific and interspecific competition) and cacti hosts (Opuntia and Columnar cacti). All traits (wing length, wing width, thorax length, wing loading and wing aspect) showed significant variation for each environmental factor considered in both Drosophila species. The phenotypic plasticity pattern observed for each trait was different within and between these cactophilic Drosophila species depending on the environmental factor analyzed suggesting that body size-related traits respond almost independently to environmental heterogeneity. The effects of ecological factors analyzed in this study are discussed in order to elucidate the causal factors investigated (type of competition, crowding conditions and alternative host) affecting the election of the breeding site and/or the range of distribution of these cactophilic species. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  5. Origination of an X-linked testes chimeric gene by illegitimate recombination in Drosophila.

    Directory of Open Access Journals (Sweden)

    J Roman Arguello

    2006-05-01

    Full Text Available The formation of chimeric gene structures provides important routes by which novel proteins and functions are introduced into genomes. Signatures of these events have been identified in organisms from wide phylogenic distributions. However, the ability to characterize the early phases of these evolutionary processes has been difficult due to the ancient age of the genes or to the limitations of strictly computational approaches. While examples involving retrotransposition exist, our understanding of chimeric genes originating via illegitimate recombination is limited to speculations based on ancient genes or transfection experiments. Here we report a case of a young chimeric gene that has originated by illegitimate recombination in Drosophila. This gene was created within the last 2-3 million years, prior to the speciation of Drosophila simulans, Drosophila sechellia, and Drosophila mauritiana. The duplication, which involved the Bällchen gene on Chromosome 3R, was partial, removing substantial 3' coding sequence. Subsequent to the duplication onto the X chromosome, intergenic sequence was recruited into the protein-coding region creating a chimeric peptide with approximately 33 new amino acid residues. In addition, a novel intron-containing 5' UTR and novel 3' UTR evolved. We further found that this new X-linked gene has evolved testes-specific expression. Following speciation of the D. simulans complex, this novel gene evolved lineage-specifically with evidence for positive selection acting along the D. simulans branch.

  6. Adaptation to new nutritional environments: larval performance, foraging decisions, and adult oviposition choices in Drosophila suzukii.

    Science.gov (United States)

    Silva-Soares, Nuno F; Nogueira-Alves, A; Beldade, P; Mirth, Christen Kerry

    2017-06-07

    Understanding how species adapt to new niches is a central issue in evolutionary ecology. Nutrition is vital for the survival of all organisms and impacts species fitness and distribution. While most Drosophila species exploit rotting plant parts, some species have diversified to use ripe fruit, allowing earlier colonization. The decomposition of plant material is facilitated by yeast colonization and proliferation. These yeasts serve as the main protein source for Drosophila larvae. This dynamic rotting process entails changes in the nutritional composition of the food and other properties, and animals feeding on material at different stages of decay are expected to have behavioural and nutritional adaptations. We compared larval performance, feeding behaviour and adult oviposition site choice between the ripe fruit colonizer and invasive pest Drosophila suzukii, and a closely-related rotting fruit colonizer, Drosophila biarmipes. Through the manipulation of protein:carbohydrate ratios in artificial diets, we found that D. suzukii larvae perform better at lower protein concentrations and consume less protein rich diets relative to D. biarmipes. For adult oviposition, these species differed in preference for substrate hardness, but not for the substrate nutritional composition. Our findings highlight that rather than being an exclusive specialist on ripe fruit, D. suzukii's adaptation to use ripening fruit allow it to colonize a wider range of food substrates than D. biarmipes, which is limited to soft foods with higher protein concentrations. Our results underscore the importance of nutritional performance and feeding behaviours in the colonization of new food niches.

  7. Drosophila: An Emergent Model for Delineating Interactions between the Circadian Clock and Drugs of Abuse

    Directory of Open Access Journals (Sweden)

    Aliza K. De Nobrega

    2017-01-01

    Full Text Available Endogenous circadian oscillators orchestrate rhythms at the cellular, physiological, and behavioral levels across species to coordinate activity, for example, sleep/wake cycles, metabolism, and learning and memory, with predictable environmental cycles. The 21st century has seen a dramatic rise in the incidence of circadian and sleep disorders with globalization, technological advances, and the use of personal electronics. The circadian clock modulates alcohol- and drug-induced behaviors with circadian misalignment contributing to increased substance use and abuse. Invertebrate models, such as Drosophila melanogaster, have proven invaluable for the identification of genetic and molecular mechanisms underlying highly conserved processes including the circadian clock, drug tolerance, and reward systems. In this review, we highlight the contributions of Drosophila as a model system for understanding the bidirectional interactions between the circadian system and the drugs of abuse, alcohol and cocaine, and illustrate the highly conserved nature of these interactions between Drosophila and mammalian systems. Research in Drosophila provides mechanistic insights into the corresponding behaviors in higher organisms and can be used as a guide for targeted inquiries in mammals.

  8. Matrix metalloproteinase 2 is required for ovulation and corpus luteum formation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Lylah D Deady

    2015-02-01

    Full Text Available Ovulation is critical for successful reproduction and correlates with ovarian cancer risk, yet genetic studies of ovulation have been limited. It has long been thought that the mechanism controlling ovulation is highly divergent due to speciation and fast evolution. Using genetic tools available in Drosophila, we now report that ovulation in Drosophila strongly resembles mammalian ovulation at both the cellular and molecular levels. Just one of up to 32 mature follicles per ovary pair loses posterior follicle cells ("trimming" and protrudes into the oviduct, showing that a selection process prefigures ovulation. Follicle cells that remain after egg release form a "corpus luteum (CL" at the end of the ovariole, develop yellowish pigmentation, and express genes encoding steroid hormone biosynthetic enzymes that are required for full fertility. Finally, matrix metalloproteinase 2 (Mmp2, a type of protease thought to facilitate mammalian ovulation, is expressed in mature follicle and CL cells. Mmp2 activity is genetically required for trimming, ovulation and CL formation. Our studies provide new insights into the regulation of Drosophila ovulation and establish Drosophila as a model for genetically investigating ovulation in diverse organisms, including mammals.

  9. Drosophila growth cones: a genetically tractable platform for the analysis of axonal growth dynamics.

    Science.gov (United States)

    Sánchez-Soriano, Natalia; Gonçalves-Pimentel, Catarina; Beaven, Robin; Haessler, Ulrike; Ofner-Ziegenfuss, Lisa; Ballestrem, Christoph; Prokop, Andreas

    2010-01-01

    The formation of neuronal networks, during development and regeneration, requires outgrowth of axons along reproducible paths toward their appropriate postsynaptic target cells. Axonal extension occurs at growth cones (GCs) at the tips of axons. GC advance and navigation requires the activity of their cytoskeletal networks, comprising filamentous actin (F-actin) in lamellipodia and filopodia as well as dynamic microtubules (MTs) emanating from bundles of the axonal core. The molecular mechanisms governing these two cytoskeletal networks, their cross-talk, and their response to extracellular signaling cues are only partially understood, hindering our conceptual understanding of how regulated changes in GC behavior are controlled. Here, we introduce Drosophila GCs as a suitable model to address these mechanisms. Morphological and cytoskeletal readouts of Drosophila GCs are similar to those of other models, including mammals, as demonstrated here for MT and F-actin dynamics, axonal growth rates, filopodial structure and motility, organizational principles of MT networks, and subcellular marker localization. Therefore, we expect fundamental insights gained in Drosophila to be translatable into vertebrate biology. The advantage of the Drosophila model over others is its enormous amenability to combinatorial genetics as a powerful strategy to address the complexity of regulatory networks governing axonal growth. Thus, using pharmacological and genetic manipulations, we demonstrate a role of the actin cytoskeleton in a specific form of MT organization (loop formation), known to regulate GC pausing behavior. We demonstrate these events to be mediated by the actin-MT linking factor Short stop, thus identifying an essential molecular player in this context.

  10. Divergence times in Caenorhabditis and Drosophila inferred from direct estimates of the neutral mutation rate.

    Science.gov (United States)

    Cutter, Asher D

    2008-04-01

    Accurate inference of the dates of common ancestry among species forms a central problem in understanding the evolutionary history of organisms. Molecular estimates of divergence time rely on the molecular evolutionary prediction that neutral mutations and substitutions occur at the same constant rate in genomes of related species. This underlies the notion of a molecular clock. Most implementations of this idea depend on paleontological calibration to infer dates of common ancestry, but taxa with poor fossil records must rely on external, potentially inappropriate, calibration with distantly related species. The classic biological models Caenorhabditis and Drosophila are examples of such problem taxa. Here, I illustrate internal calibration in these groups with direct estimates of the mutation rate from contemporary populations that are corrected for interfering effects of selection on the assumption of neutrality of substitutions. Divergence times are inferred among 6 species each of Caenorhabditis and Drosophila, based on thousands of orthologous groups of genes. I propose that the 2 closest known species of Caenorhabditis shared a common ancestor <24 MYA (Caenorhabditis briggsae and Caenorhabditis sp. 5) and that Caenorhabditis elegans diverged from its closest known relatives <30 MYA, assuming that these species pass through at least 6 generations per year; these estimates are much more recent than reported previously with molecular clock calibrations from non-nematode phyla. Dates inferred for the common ancestor of Drosophila melanogaster and Drosophila simulans are roughly concordant with previous studies. These revised dates have important implications for rates of genome evolution and the origin of self-fertilization in Caenorhabditis.

  11. Recurrent Gene Duplication Leads to Diverse Repertoires of Centromeric Histones in Drosophila Species.

    Science.gov (United States)

    Kursel, Lisa E; Malik, Harmit S

    2017-06-01

    Despite their essential role in the process of chromosome segregation in most eukaryotes, centromeric histones show remarkable evolutionary lability. Not only have they been lost in multiple insect lineages, but they have also undergone gene duplication in multiple plant lineages. Based on detailed study of a handful of model organisms including Drosophila melanogaster, centromeric histone duplication is considered to be rare in animals. Using a detailed phylogenomic study, we find that Cid, the centromeric histone gene, has undergone at least four independent gene duplications during Drosophila evolution. We find duplicate Cid genes in D. eugracilis (Cid2), in the montium species subgroup (Cid3, Cid4) and in the entire Drosophila subgenus (Cid5). We show that Cid3, Cid4, and Cid5 all localize to centromeres in their respective species. Some Cid duplicates are primarily expressed in the male germline. With rare exceptions, Cid duplicates have been strictly retained after birth, suggesting that they perform nonredundant centromeric functions, independent from the ancestral Cid. Indeed, each duplicate encodes a distinct N-terminal tail, which may provide the basis for distinct protein-protein interactions. Finally, we show some Cid duplicates evolve under positive selection whereas others do not. Taken together, our results support the hypothesis that Drosophila Cid duplicates have subfunctionalized. Thus, these gene duplications provide an unprecedented opportunity to dissect the multiple roles of centromeric histones. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  12. Noninvasive analysis of microbiome dynamics in the fruit fly Drosophila melanogaster.

    Science.gov (United States)

    Fink, Christine; Staubach, Fabian; Kuenzel, Sven; Baines, John F; Roeder, Thomas

    2013-11-01

    The diversity and structure of the intestinal microbial community has a strong influence on life history. To understand how hosts and microbes interact, model organisms with comparatively simple microbial communities, such as the fruit fly (Drosophila melanogaster), offer key advantages. However, studies of the Drosophila microbiome are limited to a single point in time, because flies are typically sacrificed for DNA extraction. In order to test whether noninvasive approaches, such as sampling of fly feces, could be a means to assess fly-associated communities over time on the same cohort of flies, we compared the microbial communities of fly feces, dissected fly intestines, and whole flies across three different Drosophila strains. Bacterial species identified in either whole flies or isolated intestines were reproducibly found in feces samples. Although the bacterial communities of feces and intestinal samples were not identical, they shared similarities and obviously the same origin. In contrast to material from whole flies and intestines, feces samples were not compromised by Wolbachia spp. infections, which are widespread in laboratory and wild strains. In a proof-of-principle experiment, we showed that simple nutritional interventions, such as a high-fat diet or short-term starvation, had drastic and long-lasting effects on the micobiome. Thus, the analysis of feces can supplement the toolbox for microbiome studies in Drosophila, unleashing the full potential of such studies in time course experiments where multiple samples from single populations are obtained during aging, development, or experimental manipulations.

  13. Pharmacodynamic study on insomnia-curing effects of Shuangxia Decoction in Drosophila melanogaster.

    Science.gov (United States)

    Zhang, Zhi-Qian; Degejin; Geng, Di; Zhang, Qi; Tian, Yan; Xi, Yuan; Wang, Wen-Qi; Tang, Hua-Qi; Xu, Bing; Lin, Hong-Ying; Sun, Yi-Kun

    2016-09-01

    The present study aimed to establish a pharmacodynamic method using the pySolo software to explore the influence of freeze-dried powders of Shuangxia Decoction (SXD) on the sleep of normal Drosophila melanogaster and the Drosophila melanogaster whose sleep was divested by light. The dose-effect and the time-effect relationships of SXD on sleep were examined. The effect-onset concentration of SXD was 0.25%, the plateau appeared at the concentration of 2.5% and the total sleep time showed a downtrend when the concentration was greater than 2.5%. The sleep time was the longest on the fourth day after SXD was given. The fruit fly sleep deprivation model was repeated by light stimulation at night. The middle dosage group (2.5%) had the best insomnia-curing effect. In conclusion, using the pySolo software, an approach for the pharmacodynamics study was established with Drosophila melanogaster as a model organism to determine the insomnia-curing effects of the traditional Chinese medicine (TCM). Our results demonstrated the reliability of this method. The freeze-dried powders of SXD could effectively improve the sleep quality of Drosophila melanogaster. Copyright © 2016 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  14. Altered Gravity Induces Oxidative Stress in Drosophila Melanogaster

    Science.gov (United States)

    Bhattacharya, Sharmila; Hosamani, Ravikumar

    2015-01-01

    Altered gravity environments can induce increased oxidative stress in biological systems. Microarray data from our previous spaceflight experiment (FIT experiment on STS-121) indicated significant changes in the expression of oxidative stress genes in adult fruit flies after spaceflight. Currently, our lab is focused on elucidating the role of hypergravity-induced oxidative stress and its impact on the nervous system in Drosophila melanogaster. Biochemical, molecular, and genetic approaches were combined to study this effect on the ground. Adult flies (2-3 days old) exposed to acute hypergravity (3g, for 1 hour and 2 hours) showed significantly elevated levels of Reactive Oxygen Species (ROS) in fly brains compared to control samples. This data was supported by significant changes in mRNA expression of specific oxidative stress and antioxidant defense related genes. As anticipated, a stress-resistant mutant line, Indy302, was less vulnerable to hypergravity-induced oxidative stress compared to wild-type flies. Survival curves were generated to study the combined effect of hypergravity and pro-oxidant treatment. Interestingly, many of the oxidative stress changes that were measured in flies showed sex specific differences. Collectively, our data demonstrate that altered gravity significantly induces oxidative stress in Drosophila, and that one of the organs where this effect is evident is the brain.

  15. Candidate glutamatergic neurons in the visual system of Drosophila.

    Directory of Open Access Journals (Sweden)

    Shamprasad Varija Raghu

    Full Text Available The visual system of Drosophila contains approximately 60,000 neurons that are organized in parallel, retinotopically arranged columns. A large number of these neurons have been characterized in great anatomical detail. However, studies providing direct evidence for synaptic signaling and the neurotransmitter used by individual neurons are relatively sparse. Here we present a first layout of neurons in the Drosophila visual system that likely release glutamate as their major neurotransmitter. We identified 33 different types of neurons of the lamina, medulla, lobula and lobula plate. Based on the previous Golgi-staining analysis, the identified neurons are further classified into 16 major subgroups representing lamina monopolar (L, transmedullary (Tm, transmedullary Y (TmY, Y, medulla intrinsic (Mi, Mt, Pm, Dm, Mi Am, bushy T (T, translobula plate (Tlp, lobula intrinsic (Lcn, Lt, Li, lobula plate tangential (LPTCs and lobula plate intrinsic (LPi cell types. In addition, we found 11 cell types that were not described by the previous Golgi analysis. This classification of candidate glutamatergic neurons fosters the future neurogenetic dissection of information processing in circuits of the fly visual system.

  16. Drosophila comet assay: insights, uses, and future perspectives

    Science.gov (United States)

    Gaivão, Isabel; Sierra, L. María

    2014-01-01

    The comet assay, a very useful tool in genotoxicity and DNA repair testing, is being applied to Drosophila melanogaster since around 15 years ago, by several research groups. This organism is a valuable model for all kind of processes related to human health, including DNA damage response. The assay has been performed mainly in vivo using different larvae cell types (from brain, midgut, hemolymph, and imaginal disk), but also in vitro with the S2 cell line. Since its first application, it has been used to analyze the genotoxicity and action mechanisms of different chemicals, demonstrating good sensitivity and proving its usefulness. Moreover, it is the only assay that can be used to analyze DNA repair in somatic cells in vivo, comparing the effects of chemicals in different repair strains, and to quantitate repair activities in vitro. Additionally, the comet assay in Drosophila, in vivo and in vitro, has been applied to study the influence of protein overexpression on genome integrity and degradation. Although the assay is well established, it could benefit from some research to determine optimal experimental design to standardize it, and then to allow comparisons among laboratories independently of the chosen cell type. PMID:25221574

  17. Carbon nanopipette electrodes for dopamine detection in Drosophila.

    Science.gov (United States)

    Rees, Hillary R; Anderson, Sean E; Privman, Eve; Bau, Haim H; Venton, B Jill

    2015-04-07

    Small, robust, sensitive electrodes are desired for in vivo neurotransmitter measurements. Carbon nanopipettes have been previously manufactured and used for single-cell drug delivery and electrophysiological measurements. Here, a modified fabrication procedure was developed to produce batches of solid carbon nanopipette electrodes (CNPEs) with ∼250 nm diameter tips, and controllable lengths of exposed carbon, ranging from 5 to 175 μm. The electrochemical properties of CNPEs were characterized with fast-scan cyclic voltammetry (FSCV) for the first time. CNPEs were used to detect the electroactive neurotransmitters dopamine, serotonin, and octopamine. CNPEs were significantly more sensitive for serotonin detection than traditional carbon-fiber microelectrodes (CFMEs). Similar to CFMEs, CNPEs have a linear response for dopamine concentrations ranging from 0.1 to 10 μM and a limit of detection of 25 ± 5 nM. Recordings with CNPEs were stable for over 3 h when the applied triangle waveform was scanned between -0.4 and +1.3 V vs Ag/AgCl/Cl(-) at 400 V/s. CNPEs were used to detect endogenous dopamine release in Drosophila larvae using optogenetics, which verified the utility of CNPEs for in vivo neuroscience studies. CNPEs are advantageous because they are 1 order of magnitude smaller in diameter than typical CFMEs and have a sharp, tunable geometry that facilitates penetration and implantation for localized measurements in distinct regions of small organisms, such as the Drosophila brain.

  18. Chromosomal localization of microsatellite loci in Drosophila mediopunctata

    Directory of Open Access Journals (Sweden)

    Renato Cavasini

    2015-03-01

    Full Text Available Drosophila mediopunctata has been used as a model organism for genetics and evolutionary studies in the last three decades. A linkage map with 48 microsatellite loci recently published for this species showed five syntenic groups, which had their homology determined to Drosophila melanogaster chromosomes. Then, by inference, each of the groups was associated with one of the five major chromosomes of D. mediopunctata. Our objective was to carry out a genetic (chromosomal analysis to increase the number of available loci with known chromosomal location. We made a simultaneous analysis of visible mutant phenotypes and microsatellite genotypes in a backcross of a standard strain and a mutant strain, which had each major autosome marked. Hence, we could establish the chromosomal location of seventeen loci; including one from each of the five major linkage groups previously published, and twelve new loci. Our results were congruent with the previous location and they open new possibilities to future work integrating microsatellites, chromosomal inversions, and genetic determinants of physiological and morphological variation.

  19. Molecular genetics of cancer and tumorigenesis: Drosophila models

    Institute of Scientific and Technical Information of China (English)

    Wu-Min Deng

    2011-01-01

    Why do some cells not respond to normal control of cell division and become tumorous? Which signals trigger some tumor cells to migrate and colonize other tissues? What genetic factors are responsible for tumorigenesis and cancer development? What environmental factors play a role in cancer formation and progression? In how many ways can our bodies prevent and restrict the growth of cancerous cells?How can we identify and deliver effective drugs to fight cancer? In the fight against cancer,which kills more people than any other disease,these and other questions have long interested researchers from a diverse range of fields.To answer these questions and to fight cancer more effectively,we must increase our understanding of basic cancer biology.Model organisms,including the fruit fly Drosophila melanogaster,have played instrumental roles in our understanding of this devastating disease and the search for effective cures.Drosophila and its highly effective,easy-touse,and ever-expanding genetic tools have contributed toand enriched our knowledge of cancer and tumor formation tremendously.

  20. Apoptosis in Drosophila: which role for mitochondria?

    Science.gov (United States)

    Clavier, Amandine; Rincheval-Arnold, Aurore; Colin, Jessie; Mignotte, Bernard; Guénal, Isabelle

    2016-03-01

    It is now well established that the mitochondrion is a central regulator of mammalian cell apoptosis. However, the importance of this organelle in non-mammalian apoptosis has long been regarded as minor, mainly because of the absence of a crucial role for cytochrome c in caspase activation. Recent results indicate that the control of caspase activation and cell death in Drosophila occurs at the mitochondrial level. Numerous proteins, including RHG proteins and proteins of the Bcl-2 family that are key regulators of Drosophila apoptosis, constitutively or transiently localize in mitochondria. These proteins participate in the cell death process at different levels such as degradation of Diap1, a Drosophila IAP, production of mitochondrial reactive oxygen species or stimulation of the mitochondrial fission machinery. Here, we review these mitochondrial events that might have their counterpart in human.

  1. La conducta de larvas de Drosophila (Diptera; Drosophilidae: su etología, desarrollo, genética y evolución The behavior of Drosophila larvae: their ethology, development, genetics and evolution

    Directory of Open Access Journals (Sweden)

    RAÚL GODOY-HERRERA

    2001-03-01

    Full Text Available Este trabajo, en honor al Profesor Doctor Danko Brncic Juricic (Q.E.P.D., es una revisión de nuestras contribuciones sobre la etología, desarrollo, genética y evolución de patrones de conducta de larvas de Drosophila. Se discute el desarrollo de conductas larvales de forrajeo y sus bases hereditarias. También se discuten estrategias de investigación dirigidas a entender las relaciones entre genotipo y conducta durante el desarrollo de los organismos. Se relacionan patrones de desarrollo de conductas larvales con la filogenia de las especies del grupo mesophragmatica de Drosophila. Finalmente, se distingue entre evolución de elementos de conducta simple y evolución de conductas complejasThis is a review about our contributions in ethology, development, genetics, and evolution of larval behavioral patterns of Drosophila in honor of the late Professor Doctor Danko Brncic Juricic. The developmental behavioral genetics of larval foraging and pupation of Drosophila are discussed. It is also emphasized the importance of research strategies lead to understand properly the relationships between genotype and behavior during development of the organisms. Finally, a comparison between phylogenetic relationships of six Drosophila species of the mesophragmatica group and their developmental patterns of larval behaviors is provided

  2. Microwave effects in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Dardalhon, M.; Averbeck, D.; Berteaud, A.J.

    1979-01-01

    Experiments were set up to investigate the effects of open space microwave irradiation of the millimeter (73 GHz) and the centimeter (17 GHz) range in Drosophila melanogaster. We used the wild type strain Paris and the strain delta carrying melanitic tumors in the 3rd larval stage, in the pupae and the adults. The power densities were up to 100mW.cm -2 for 73 GHz and about 60 mW.cm -2 for microwaves at 17 GHz. After 2h exposure to microwaves of 17 GHz or 73 GHz the hatching of the irradiated eggs and their development were normal. In a few cases there was a tendency towards a diminution of the survival of eggs treated at different stages, of larvae treated in the stages 1, 2 and 3 and of treated pupae. However, this was not always statistically significant. The microwave treatment did not induce teratological changes in the adults. A statistical analysis brought about slight diminutions in the incidence and multiplicity of tumors in adult flies. When wild type females were exposed to microwaves of 17 GHz for 16 or 21 h and crossed with untreated males we observed a marked increase in fertility as compared to untreated samples. The viability and tumor incidence in the offspring was not affected. Similar results were obtained when microwaves treated males were crossed with untreated females

  3. Olfactory memory traces in Drosophila.

    Science.gov (United States)

    Berry, Jacob; Krause, William C; Davis, Ronald L

    2008-01-01

    In Drosophila, the fruit fly, coincident exposure to an odor and an aversive electric shock can produce robust behavioral memory. This behavioral memory is thought to be regulated by cellular memory traces within the central nervous system of the fly. These molecular, physiological, or structural changes in neurons, induced by pairing odor and shock, regulate behavior by altering the neurons' response to the learned environment. Recently, novel in vivo functional imaging techniques have allowed researchers to observe cellular memory traces in intact animals. These investigations have revealed interesting temporal and spatial dynamics of cellular memory traces. First, a short-term cellular memory trace was discovered that exists in the antennal lobe, an early site of olfactory processing. This trace represents the recruitment of new synaptic activity into the odor representation and forms for only a short period of time just after training. Second, an intermediate-term cellular memory trace was found in the dorsal paired medial neuron, a neuron thought to play a role in stabilizing olfactory memories. Finally, a long-term protein synthesis-dependent cellular memory trace was discovered in the mushroom bodies, a structure long implicated in olfactory learning and memory. Therefore, it appears that aversive olfactory associations are encoded by multiple cellular memory traces that occur in different regions of the brain with different temporal domains.

  4. Rhizoxin analogs, orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf-5 to Drosophila melanogaster

    Science.gov (United States)

    Pseudomonas protegens strain Pf-5 is a soil bacterium that was first described for its activity in biological control of plant diseases and has since been shown to be lethal to certain insects. Among these is the fruit fly Drosophila melanogaster, a well-established model organism for studies evalu...

  5. Drosophila Studies on Autism Spectrum Disorders

    Institute of Scientific and Technical Information of China (English)

    Yao Tian; Zi Chao Zhang; Junhai Han

    2017-01-01

    In the past decade,numerous genes associated with autism spectrum disorders (ASDs) have been identified.These genes encode key regulators of synaptogenesis,synaptic function,and synaptic plasticity.Drosophila is a prominent model system for ASD studies to define novel genes linked to ASDs and decipher their molecular roles in synaptogenesis,synaptic function,synaptic plasticity,and neural circuit assembly and consolidation.Here,we review Drosophila studies on ASD genes that regulate synaptogenesis,synaptic function,and synaptic plasticity through modulating chromatin remodeling,transcription,protein synthesis and degradation,cytoskeleton dynamics,and synaptic scaffolding.

  6. REDfly: a Regulatory Element Database for Drosophila.

    Science.gov (United States)

    Gallo, Steven M; Li, Long; Hu, Zihua; Halfon, Marc S

    2006-02-01

    Bioinformatics studies of transcriptional regulation in the metazoa are significantly hindered by the absence of readily available data on large numbers of transcriptional cis-regulatory modules (CRMs). Even the richly annotated Drosophila melanogaster genome lacks extensive CRM information. We therefore present here a database of Drosophila CRMs curated from the literature complete with both DNA sequence and a searchable description of the gene expression pattern regulated by each CRM. This resource should greatly facilitate the development of computational approaches to CRM discovery as well as bioinformatics analyses of regulatory sequence properties and evolution.

  7. An integrated optical coherence microscopy imaging and optical stimulation system for optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    Science.gov (United States)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    Electrical stimulation is the clinical standard for cardiac pacing. Although highly effective in controlling cardiac rhythm, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its applications. Optogenetic pacing of the heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids the shortcomings in electrical stimulation. Drosophila melanogaster, which is a powerful model organism with orthologs of nearly 75% of human disease genes, has not been studied for optogenetic pacing in the heart. Here, we developed a non-invasive integrated optical pacing and optical coherence microscopy (OCM) imaging system to control the heart rhythm of Drosophila at different developmental stages using light. The OCM system is capable of providing high imaging speed (130 frames/s) and ultrahigh imaging resolutions (1.5 μm and 3.9 μm for axial and transverse resolutions, respectively). A light-sensitive pacemaker was developed in Drosophila by specifically expressing the light-gated cation channel, channelrhodopsin-2 (ChR2) in transgenic Drosophila heart. We achieved non-invasive and specific optical control of the Drosophila heart rhythm throughout the fly's life cycle (larva, pupa, and adult) by stimulating the heart with 475 nm pulsed laser light. Heart response to stimulation pulses was monitored non-invasively with OCM. This integrated non-invasive optogenetic control and in vivo imaging technique provides a novel platform for performing research studies in developmental cardiology.

  8. Drosophila CTCF tandemly aligns with other insulator proteins at the borders of H3K27me3 domains.

    Science.gov (United States)

    Van Bortle, Kevin; Ramos, Edward; Takenaka, Naomi; Yang, Jingping; Wahi, Jessica E; Corces, Victor G

    2012-11-01

    Several multiprotein DNA complexes capable of insulator activity have been identified in Drosophila melanogaster, yet only CTCF, a highly conserved zinc finger protein, and the transcription factor TFIIIC have been shown to function in mammals. CTCF is involved in diverse nuclear activities, and recent studies suggest that the proteins with which it associates and the DNA sequences that it targets may underlie these various roles. Here we show that the Drosophila homolog of CTCF (dCTCF) aligns in the genome with other Drosophila insulator proteins such as Suppressor of Hairy wing [SU(HW)] and Boundary Element Associated Factor of 32 kDa (BEAF-32) at the borders of H3K27me3 domains, which are also enriched for associated insulator proteins and additional cofactors. RNAi depletion of dCTCF and combinatorial knockdown of gene expression for other Drosophila insulator proteins leads to a reduction in H3K27me3 levels within repressed domains, suggesting that insulators are important for the maintenance of appropriate repressive chromatin structure in Polycomb (Pc) domains. These results shed new insights into the roles of insulators in chromatin domain organization and support recent models suggesting that insulators underlie interactions important for Pc-mediated repression. We reveal an important relationship between dCTCF and other Drosophila insulator proteins and speculate that vertebrate CTCF may also align with other nuclear proteins to accomplish similar functions.

  9. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation

    DEFF Research Database (Denmark)

    Weinert, Brian T; Wagner, Sebastian A; Horn, Heiko

    2011-01-01

    Posttranslational modification of proteins by acetylation and phosphorylation regulates most cellular processes in living organisms. Surprisingly, the evolutionary conservation of phosphorylated serine and threonine residues is only marginally higher than that of unmodified serines and threonines....... With high-resolution mass spectrometry, we identified 1981 lysine acetylation sites in the proteome of Drosophila melanogaster. We used data sets of experimentally identified acetylation and phosphorylation sites in Drosophila and humans to analyze the evolutionary conservation of these modification sites...... between flies and humans. Site-level conservation analysis revealed that acetylation sites are highly conserved, significantly more so than phosphorylation sites. Furthermore, comparison of lysine conservation in Drosophila and humans with that in nematodes and zebrafish revealed that acetylated lysines...

  10. Centrosome and microtubule instability in aging Drosophila cells

    Science.gov (United States)

    Schatten, H.; Chakrabarti, A.; Hedrick, J.

    1999-01-01

    Several cytoskeletal changes are associated with aging which includes alterations in muscle structure leading to muscular atrophy, and weakening of the microtubule network which affects cellular secretion and maintenance of cell shape. Weakening of the microtubule network during meiosis in aging oocytes can result in aneuploidy or trisomic zygotes with increasing maternal age. Imbalances of cytoskeletal organization can lead to disease such as Alzheimer's, muscular disorders, and cancer. Because many cytoskeletal diseases are related to age we investigated the effects of aging on microtubule organization in cell cultures of the Drosophila cell model system (Schneider S-1 and Kc23 cell lines). This cell model is increasingly being used as an alternative system to mammalian cell cultures. Drosophila cells are amenable to genetic manipulations and can be used to identify and manipulate genes which are involved in the aging processes. Immunofluorescence, scanning, and transmission electron microscopy were employed for the analysis of microtubule organizing centers (centrosomes) and microtubules at various times after subculturing cells in fresh medium. Our results reveal that centrosomes and the microtubule network becomes significantly affected in aging cells after 5 days of subculture. At 5-14 days of subculture, 1% abnormal out of 3% mitoses were noted which were clearly distinguishable from freshly subcultured control cells in which 3% of cells undergo normal mitosis with bipolar configurations. Microtubules are also affected in the midbody during cell division. The midbody in aging cells becomes up to 10 times longer when compared with midbodies in freshly subcultured cells. During interphase, microtubules are often disrupted and disorganized, which may indicate improper function related to transport of cell organelles along microtubules. These results are likely to help explain some cytoskeletal disorders and diseases related to aging.

  11. History and Structure of Sub-Saharan Populations of Drosophila melanogaster

    OpenAIRE

    Pool, John E.; Aquadro, Charles F.

    2006-01-01

    Drosophila melanogaster is an important model organism in evolutionary genetics, yet little is known about the population structure and the demographic history of this species within sub-Saharan Africa, which is thought to contain its ancestral range. We surveyed nucleotide variation at four 1-kb fragments in 240 individual lines representing 21 sub-Saharan and 4 Palearctic population samples of D. melanogaster. In agreement with recent studies, we find a small but significant level of geneti...

  12. Drosophila melanogaster as a model system for assessing development under conditions of microgravity

    Science.gov (United States)

    Abbott, M. K.; Hilgenfeld, R. B.; Denell, R. E.; Spooner, B. S. (Principal Investigator)

    1992-01-01

    More is known about the regulation of early developmental events in Drosophila than any other animal. In addition, its size and short life cycle make it a facile experimental system. Since developmental perturbations have been demonstrated when both oogenesis and embryogenesis occur in the space environment, there is a strong rationale for using this organism for the elucidation of specific gravity-sensitive developmental events.

  13. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila

    Science.gov (United States)

    Smukowski Heil, Caiti S.; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A.F.

    2015-01-01

    Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human–chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms. PMID:26430062

  14. Recombining without Hotspots: A Comprehensive Evolutionary Portrait of Recombination in Two Closely Related Species of Drosophila.

    Science.gov (United States)

    Smukowski Heil, Caiti S; Ellison, Chris; Dubin, Matthew; Noor, Mohamed A F

    2015-10-01

    Meiotic recombination rate varies across the genome within and between individuals, populations, and species in virtually all taxa studied. In almost every species, this variation takes the form of discrete recombination hotspots, determined in some mammals by a protein called PRDM9. Hotspots and their determinants have a profound effect on the genomic landscape, and share certain features that extend across the tree of life. Drosophila, in contrast, are anomalous in their absence of hotspots, PRDM9, and other species-specific differences in the determination of recombination. To better understand the evolution of meiosis and general patterns of recombination across diverse taxa, we present a truly comprehensive portrait of recombination across time, combining recently published cross-based contemporary recombination estimates from each of two sister species with newly obtained linkage-disequilibrium-based historic estimates of recombination from both of these species. Using Drosophila pseudoobscura and Drosophila miranda as a model system, we compare recombination rate between species at multiple scales, and we suggest that Drosophila replicate the pattern seen in human-chimpanzee in which recombination rate is conserved at broad scales. We also find evidence of a species-wide recombination modifier(s), resulting in both a present and historic genome-wide elevation of recombination rates in D. miranda, and identify broad scale effects on recombination from the presence of an inversion. Finally, we reveal an unprecedented view of the distribution of recombination in D. pseudoobscura, illustrating patterns of linked selection and where recombination is taking place. Overall, by combining these estimation approaches, we highlight key similarities and differences in recombination between Drosophila and other organisms. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Attractive toxic sugar baits: Control of mosquitoes with the low risk active ingredient dinotefuran and potential impacts on non-target organisms in Morocco

    Science.gov (United States)

    We evaluated the efficacy of ATSB in the laboratory and the field with the low risk active ingredient dinotefuran against mosquito populations. Assays indicated that dinotefuran in solution with the sugar baits was ingested and resulted in high mortality of female Culex quinquefasciatus and Aedes a...

  16. Can interactions between Bt proteins be predicted and how should effects on non-target organisms of GM crops with multiple Bt Proteins be assessed?

    NARCIS (Netherlands)

    Schrijver, De A.; Clercq, de P.; Booij, K.; Maagd, de R.A.; Frankenhuyzen, van K.

    2014-01-01

    Genes expressing Bacillus thuringiensis (Bt) toxins have been incorporated into genetically modified (GM) plants to render these resistant to certain insect pests. Of particular interest have been the genes encoding Cry (Crystal) proteins, but also the gene encoding the vegetative insecticidal

  17. The power of statistical tests using field trial count data of non-target organisms in enviromental risk assessment of genetically modified plants

    NARCIS (Netherlands)

    Voet, van der H.; Goedhart, P.W.

    2015-01-01

    Publications on power analyses for field trial count data comparing transgenic and conventional crops have reported widely varying requirements for the replication needed to obtain statistical tests with adequate power. These studies are critically reviewed and complemented with a new simulation

  18. Using FlyBase, a Database of Drosophila Genes and Genomes.

    Science.gov (United States)

    Marygold, Steven J; Crosby, Madeline A; Goodman, Joshua L

    2016-01-01

    For nearly 25 years, FlyBase (flybase.org) has provided a freely available online database of biological information about Drosophila species, focusing on the model organism D. melanogaster. The need for a centralized, integrated view of Drosophila research has never been greater as advances in genomic, proteomic, and high-throughput technologies add to the quantity and diversity of available data and resources.FlyBase has taken several approaches to respond to these changes in the research landscape. Novel report pages have been generated for new reagent types and physical interaction data; Drosophila models of human disease are now represented and showcased in dedicated Human Disease Model Reports; other integrated reports have been established that bring together related genes, datasets, or reagents; Gene Reports have been revised to improve access to new data types and to highlight functional data; links to external sites have been organized and expanded; and new tools have been developed to display and interrogate all these data, including improved batch processing and bulk file availability. In addition, several new community initiatives have served to enhance interactions between researchers and FlyBase, resulting in direct user contributions and improved feedback.This chapter provides an overview of the data content, organization, and available tools within FlyBase, focusing on recent improvements. We hope it serves as a guide for our diverse user base, enabling efficient and effective exploration of the database and thereby accelerating research discoveries.

  19. Azadirachtin impact on mate choice, female sexual receptivity and male activity in Drosophila melanogaster (Diptera: Drosophilidae).

    Science.gov (United States)

    Aribi, N; Oulhaci, M C; Kilani-Morakchi, S; Sandoz, J C; Kaiser, L; Denis, B; Joly, D

    2017-11-01

    Azadirachtin, a neem compound (Azadirachta indica) with medical and anti-insect properties, is one the most successful botanical pesticides in agricultural use. However, its controversial impact on non-targeted species and its mechanism of action need to be clarified. In addition, Azadirachtin impact on pre- and post-mating traits remains largely undocumented. The current study examined the effects of Azadirachtin on Drosophila melanogaster as a non-target and model species. Azadirachtin was applied topically at its LD 50 (0.63μg) on the day of adult emergence and its effect was evaluated on several traits of reproductive behavior: mate choice, male activity, female sexual receptivity, sperm storage and female sterility. In choice and no choice conditions, only male treatment reduced mating probability. Female treatment impaired mating probability only when males had the choice. Males' mating ability may have been impaired by an effect of the treatment on their mobility. Such an effect was observed in the actimeter, which revealed that treated males were less active than untreated ones, and this effect persisted over 8days. Azadirachtin treatment had, however, no effect on the nycthemeral rhythm of those males. Even when mating occurred, Azadirachtin treatment impaired post-mating responses especially when females or both sexes were treated: remating probability increases and female fertility (presence of larvae) decreases. No impairment was observed on the efficiency of mating, evaluated by the presence of sperm in the spermatheca or the ventral receptacle. Male treatment only had no significant effect on these post-mating responses. These findings provide clear evidence that Azadirachtin alters the reproductive behavior of both sexes in D. melanogaster via mating and post-mating processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Genetic changeover in Drosophila populations

    International Nuclear Information System (INIS)

    Wallace, B.

    1986-01-01

    Three populations of Drosophila melanogaster that were daughter populations of two others with histories of high, continuous radiation exposure [population 5 (irradiated, small population size) gave rise to populations 17 (small) and 18 (large); population 6 (irradiated, large population size) gave rise to population 19 (large)] were maintained for 1 year with no radiation exposure. The frequency with which random combinations of second chromosomes taken from population 19 proved to be lethal changed abruptly after about 8 months, thus revealing the origin of a selectively favored element in that population. (This element may or may not have been the cause of the lethality.) A comparison of the loss of lethals in populations 17 and 18 with a loss that occurred concurrently in the still-irradiated population 5 suggests that a second, selectively favored element had arisen in that population just before populations 17 and 18 were split off. This element was on a nonlethal chromosome. The result in population 5 was the elimination of many lethals from that population, followed by a subsequent increase as mutations occurred in the favored nonlethal chromosome. Populations 17 and 18, with no radiation exposure, underwent a loss of lethals with no subsequent increase. The events described here, as well as others to be described elsewhere, suggest that populations may be subject to episodic periods of rapid gene frequency changes that occur under intense selection pressure. In the instances in which the changeover was revealed by the elimination of preexisting lethals, earlier lethal frequencies were reduced by approximately one-half; the selectively favored elements appear, then, to be favored in the heterozygous--not homozygous--condition

  1. Drosophila melanogaster deoxyribonucleoside kinase activates gemcitabine

    DEFF Research Database (Denmark)

    Knecht, Wolfgang; Mikkelsen, N.E.; Clausen, A.R.

    2009-01-01

    Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2 angstrom resolution...

  2. Functional Neuroanatomy of "Drosophila" Olfactory Memory Formation

    Science.gov (United States)

    Guven-Ozkan, Tugba; Davis, Ronald L.

    2014-01-01

    New approaches, techniques and tools invented over the last decade and a half have revolutionized the functional dissection of neural circuitry underlying "Drosophila" learning. The new methodologies have been used aggressively by researchers attempting to answer three critical questions about olfactory memories formed with appetitive…

  3. Second-Order Conditioning in "Drosophila"

    Science.gov (United States)

    Tabone, Christopher J.; de Belle, J. Steven

    2011-01-01

    Associative conditioning in "Drosophila melanogaster" has been well documented for several decades. However, most studies report only simple associations of conditioned stimuli (CS, e.g., odor) with unconditioned stimuli (US, e.g., electric shock) to measure learning or establish memory. Here we describe a straightforward second-order conditioning…

  4. Behavioural reproductive isolation and speciation in Drosophila

    Indian Academy of Sciences (India)

    In the genus Drosophila, the phenomenon of behavioural reproductive isolation, which is an important type of premating (prezygotic) reproductive isolating mechanisms, has been extensively studied and interesting data have been documented. In many cases incomplete sexual isolation has been observed and the pattern ...

  5. Radiation effects on the drosophila melanogaster genoma

    International Nuclear Information System (INIS)

    Arceo-Maldonado, C.

    1989-01-01

    When DNA of living beings has been damaged, the cells show different responses depending on their physiological state. Repair mechanisms can be classified into two groups: constitutive which are always present in the cells and inductible, which must be stimulated to show themselves. It is suggested that a repair mechanism exists in the drosophila ovules which act upon the damage present in mature spermatozoids. Our aim is to verify whether or not a radiation dosis applied to the female drosophila will modify the frequency of individuals which have lost the paternal sex chromosomes. YW/YW virgin females and XEZ males and fbb-/bS Y y + y were mated for two days in order to collect radiation treated spermatozoids. The results were consistent as to the parameters being evaluated and lead one to suppose that the radiation applied to the female drosophila produced some changes in the ovule metabolism which reduced the frequency of individuals with lost chromosomes. It is believed that ionizing radiation interferes with the repair mechanisms that are existent and constitutive, retarding and hindering the restoration of chromosome fragments and this brings about death of the zygote or death of the eggs which lessens the frequencies of individuals carriers of chromosomic aberrations. Ionizing radiations applied to the female drosophila modifies the frequency of loss of patternal chromosomes and comes about when the radiation dose to the female is 700 rad. (Author)

  6. Low-resolution structure of Drosophila translin

    Science.gov (United States)

    Kumar, Vinay; Gupta, Gagan D.

    2012-01-01

    Crystals of native Drosophila melanogaster translin diffracted to 7 Å resolution. Reductive methylation of the protein improved crystal quality. The native and methylated proteins showed similar profiles in size-exclusion chromatography analyses but the methylated protein displayed reduced DNA-binding activity. Crystals of the methylated protein diffracted to 4.2 Å resolution at BM14 of the ESRF synchrotron. Crystals with 49% solvent content belonged to monoclinic space group P21 with eight protomers in the asymmetric unit. Only 2% of low-resolution structures with similar low percentage solvent content were found in the PDB. The crystal structure, solved by molecular replacement method, refined to Rwork (Rfree) of 0.24 (0.29) with excellent stereochemistry. The crystal structure clearly shows that drosophila protein exists as an octamer, and not as a decamer as expected from gel-filtration elution profiles. The similar octameric quaternary fold in translin orthologs and in translin–TRAX complexes suggests an up-down dimer as the basic structural subunit of translin-like proteins. The drosophila oligomer displays asymmetric assembly and increased radius of gyration that accounts for the observed differences between the elution profiles of human and drosophila proteins on gel-filtration columns. This study demonstrates clearly that low-resolution X-ray structure can be useful in understanding complex biological oligomers. PMID:23650579

  7. Biological effects of radon in Drosophila

    International Nuclear Information System (INIS)

    Pimentel P, A.E.; Tavera D, L.; Cruces M, M.P.; Arceo M, C.; Rosa D, M.E. de la

    1992-04-01

    The main objective of this investigation, is to study the biological effects of the Radon-222 at low dose in 'Drosophila melanogaster'. It is necessary to mention that these effects will analyze from the genetic point of view for: 1) To evaluate in which form the Radon-222 to low dose it influences in some genetic components of the adaptation in Drosophila, such as: fecundity, viability egg-adult and sex proportion. 2) To evaluate which is the genetic effect that induces the Radon to low dose by means of the SMART technique in Drosophila melanogaster, and this way to try of to identify which is the possible mechanism that causes the genetic damage to somatic level. The carried out investigation was divided in three stages: 1. Tests to the vacuum resistance. 2. Test of somatic mutation, and 3. Determination of the presence of radon daughters on the adult of Drosophila. It is necessary to point out that all the experiments were made by triplicate and in each one of them was placed detectors in preset places. Those obtained results are presented inside the 4 charts included in the present work. (Author)

  8. Radioresistance and radiosensitivity in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Reguly, M.L.; Marques, E.K.

    1987-01-01

    The mechanisms of radioresistance in Drosophila are studied. The mutagenic effects of 5KR of 60 Cobalt gamma radiation and of 0,006M dose of ethyl methanesulfonate (EMS) on four D. Melanogaster strains (RC 1 , CO 3 , BUE and LEN) are investigated. (M.A.C.) [pt

  9. The Drosophila bipectinata species complex: phylogenetic ...

    Indian Academy of Sciences (India)

    [Banerjee P. and Singh B. N. 2017 The Drosophila bipectinata species complex: phylogenetic relationship among different members based on chromosomal variations. J. Genet. 96, 97–107]. Introduction ..... loops touch the chromocenter and in our microphotograph. (depicting both the arms) too, the involvement of chromo-.

  10. Combined influence of Bt rice and rice dwarf virus on biological parameters of a non-target herbivore, Nephotettix cincticeps (Uhler (Hemiptera: Cicadellidae.

    Directory of Open Access Journals (Sweden)

    Qianjin Wang

    Full Text Available The advent of genetically modified (GM Bt rice creates the possibility of interactions among Bt crops, crop pathogens and non-target herbivores. In particular, information on how pathogen-infected Bt-expressing plants will influence non-target herbivores is necessary to predict the sustainability of GM cropping systems. Laboratory bioassays were conducted to evaluate the potential combined impacts of rice dwarf virus (RDV and two Bt rice lines, T1C-19 (Cry1C and T2A-1 (Cry2A, on non-target green rice leafhopper (GRLH, Nephotettix cincticeps (Uhler (Hemiptera: Cicadellidae. In the first experiment, GRLHs feeding preference tests on Bt rice lines compared to a parental control rice line, MH63, were conducted. As rice plants were uninfected with RDV, GRLHs generally preferred the control MH63 line over the two Bt lines during the initial 8 h, with no significant preference during the following 64 h. As rice plants were infected with RDV, there were no clear preferences between the Bt rice lines and the control MH63 line. In the second experiment, we assessed the combined influence of RDV-infection status and Bt rice lines on GRLH biological parameters. Egg duration, adult weights, and male adult longevity were significantly affected on RDV-infected Bt rice. Other parameters, egg hatching rate, nymph survival and fecundity were not significantly influenced. We infer that interaction effect among two testing Bt rice lines and RDV will not lead to enlarged pest populations, thus demonstrating that growing these two Bt rice lines will poses negligible risk to GRLH in sustainable rice agroecosystems. Long-term field experiments to monitor the population dynamics of GRLHs at large scale need to be carried out to confirm the current results.

  11. Combined influence of Bt rice and rice dwarf virus on biological parameters of a non-target herbivore, Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae).

    Science.gov (United States)

    Wang, Qianjin; Han, Naishun; Dang, Cong; Lu, Zengbin; Wang, Fang; Yao, Hongwei; Peng, Yufa; Stanley, David; Ye, Gongyin

    2017-01-01

    The advent of genetically modified (GM) Bt rice creates the possibility of interactions among Bt crops, crop pathogens and non-target herbivores. In particular, information on how pathogen-infected Bt-expressing plants will influence non-target herbivores is necessary to predict the sustainability of GM cropping systems. Laboratory bioassays were conducted to evaluate the potential combined impacts of rice dwarf virus (RDV) and two Bt rice lines, T1C-19 (Cry1C) and T2A-1 (Cry2A), on non-target green rice leafhopper (GRLH), Nephotettix cincticeps (Uhler) (Hemiptera: Cicadellidae). In the first experiment, GRLHs feeding preference tests on Bt rice lines compared to a parental control rice line, MH63, were conducted. As rice plants were uninfected with RDV, GRLHs generally preferred the control MH63 line over the two Bt lines during the initial 8 h, with no significant preference during the following 64 h. As rice plants were infected with RDV, there were no clear preferences between the Bt rice lines and the control MH63 line. In the second experiment, we assessed the combined influence of RDV-infection status and Bt rice lines on GRLH biological parameters. Egg duration, adult weights, and male adult longevity were significantly affected on RDV-infected Bt rice. Other parameters, egg hatching rate, nymph survival and fecundity were not significantly influenced. We infer that interaction effect among two testing Bt rice lines and RDV will not lead to enlarged pest populations, thus demonstrating that growing these two Bt rice lines will poses negligible risk to GRLH in sustainable rice agroecosystems. Long-term field experiments to monitor the population dynamics of GRLHs at large scale need to be carried out to confirm the current results.

  12. Impact of transgenic soybean expressing Cry1Ac and Cry1F proteins on the non-target arthropod community associated with soybean in Brazil.

    Science.gov (United States)

    Marques, Luiz H; Santos, Antonio C; Castro, Boris A; Storer, Nicholas P; Babcock, Jonathan M; Lepping, Miles D; Sa, Verissimo; Moscardini, Valéria F; Rule, Dwain M; Fernandes, Odair A

    2018-01-01

    Field-scale studies that examine the potential for adverse effects of Bt crop technology on non-target arthropods may supplement data from laboratory studies to support an environmental risk assessment. A three year field study was conducted in Brazil to evaluate potential for adverse effects of cultivating soybean event DAS-81419-2 that produces the Cry1Ac and Cry1F proteins. To do so, we examined the diversity and abundance of non-target arthropods (NTAs) in Bt soybean in comparison with its non-Bt near isoline, with and without conventional insecticide applications, in three Brazilian soybean producing regions. Non-target arthropod abundance was surveyed using Moericke traps (yellow pan) and pitfall trapping. Total abundance (N), richness (S), Shannon-Wiener (H'), Simpson's (D) and Pielou's evenness (J) values for arthropod samples were calculated for each treatment and sampling period (soybean growth stages). A faunistic analysis was used to select the most representative NTAs which were used to describe the NTA community structure associated with soybean, and to test for effects due to the treatments effects via application of the Principal Response Curve (PRC) method. Across all years and sites, a total of 254,054 individuals from 190 taxa were collected by Moericke traps, while 29,813 individuals from 100 taxa were collected using pitfall traps. Across sites and sampling dates, the abundance and diversity measurements of representative NTAs were not significantly affected by Bt soybean as compared with non-sprayed non-Bt soybean. Similarly, community analyses and repeated measures ANOVA, when applicable, indicated that neither Bt soybean nor insecticide sprays altered the structure of the NTA communities under study. These results support the conclusion that transgenic soybean event DAS-81419-2 producing Cry1Ac and Cry1F toxins does not adversely affect the NTA community associated with soybean.

  13. Development of a two photon microscope for tracking Drosophila larvae

    Science.gov (United States)

    Karagyozov, Doycho; Mihovilovic Skanata, Mirna; Gershow, Marc

    Current in vivo methods for measuring neural activity in Drosophila larva require immobilization of the animal. Although we can record neural signals while stimulating the sensory organs, we cannot read the behavioral output because we have prevented the animal from moving. Many research questions cannot be answered without observation of neural activity in behaving (freely-moving) animals. We incorporated a Tunable Acoustic Gradient (TAG) lens into a two-photon microscope to achieve a 70kHz axial scan rate, enabling volumetric imaging at tens of hertz. We then implemented a tracking algorithm based on a Kalman filter to maintain the neurons of interest in the field of view and in focus during the rapid three dimensional motion of a free larva. Preliminary results show successful tracking of a neuron moving at speeds reaching 500 μm/s. NIH Grant 1DP2EB022359 and NSF Grant PHY-1455015.

  14. Human pathogenic bacteria, fungi, and viruses in Drosophila

    Science.gov (United States)

    Panayidou, Stavria; Ioannidou, Eleni; Apidianakis, Yiorgos

    2014-01-01

    Drosophila has been the invertebrate model organism of choice for the study of innate immune responses during the past few decades. Many Drosophila–microbe interaction studies have helped to define innate immunity pathways, and significant effort has been made lately to decipher mechanisms of microbial pathogenesis. Here we catalog 68 bacterial, fungal, and viral species studied in flies, 43 of which are relevant to human health. We discuss studies of human pathogens in flies revealing not only the elicitation and avoidance of immune response but also mechanisms of tolerance, host tissue homeostasis, regeneration, and predisposition to cancer. Prominent among those is the emerging pattern of intestinal regeneration as a defense response induced by pathogenic and innocuous bacteria. Immunopathology mechanisms and many microbial virulence factors have been elucidated, but their relevance to human health conventionally necessitates validation in mammalian models of infection. PMID:24398387

  15. Assessing Pseudomonas virulence with a nonmammalian host: Drosophila melanogaster.

    Science.gov (United States)

    Haller, Samantha; Limmer, Stefanie; Ferrandon, Dominique

    2014-01-01

    Drosophila melanogaster flies represent an interesting model to study host-pathogen interactions as: (1) they are cheap and easy to raise rapidly and do not bring up ethical issues, (2) available genetic tools are highly sophisticated, for instance allowing tissue-specific alteration of gene expression, e.g., of immune genes, (3) they have a relatively complex organization, with distinct digestive tract and body cavity in which local or systemic infections, respectively, take place, (4) a medium throughput can be achieved in genetic screens, for instance looking for Pseudomonas aeruginosa mutants with altered virulence. We present here the techniques used to investigate host-pathogen relationships, namely the two major models of infections as well as the relevant parameters used to monitor the infection (survival, bacterial titer, induction of host immune response).

  16. [Double-ambient CO2 concentration affects the growth, development and sucking behavior of non-target brown plant hopper Nilaparvata lugens fed on transgenic Bt rice.

    Science.gov (United States)

    Lu, Yong Qing; Dai, Yang; Yu, Xiu Ying; Yu, Fu-Lan; Jiang, Shou Lin; Zhou, Zong Yuan; Chen, Fa Jun

    2018-02-01

    In recent years, the two issues of climate change including elevated CO 2 etc., and resistance of transgenic Bt crops against non-target insect pests have received widespread attention. Elevated CO 2 can affect the herbivorous insects. To date, there is no consensus about the effect of elevated CO 2 on the suck-feeding insect pests (non-target insect pests of transgenic Bt crops). Its effects on the suck-feeding behavior have rarely been reported. In this study, CO 2 levels were set up in artificial climate chamber to examined the effects of ambient (400 μL·L -1 ) and double-ambient (800 μL·L -1 ) CO 2 levels on the suck-feeding behavior, growth, development, and reproduction of the non-target insect pest of transgenic Bt rice, brown planthopper, Nilaparvata lugens. The results showed that CO 2 level significantly affected the egg and nymph duration, longevity and body mass of adults, and feeding behavior of the 4th and 5th instar nymphs, while had no effect on the fecundity of N. lugens. The duration of eggs and nymphs, and the longevity of female adults were significantly shortened by 4.0%, 4.2% and 6.6% respectively, the proportion of the macropterous adults was significantly increased by 11.6%, and the body mass of newly hatched female adults was significantly decreased by 2.2% by elevated CO 2 . In addition, elevated CO 2 significantly enhanced the stylet puncturing efficiency of the 4th and 5th instar nymphs of N. lugens. The duration ofphloem ingestion of the N4b waveform was significantly prolonged by 60.0% and 50.1%, and the frequency significantly was increased by 230.0% and 155.9% for the 4th and 5th instar nymphs of N. lugens by elevated CO 2 , respectively. It was concluded that double-ambient CO 2 could promote the growth and development of N. lugens through enhancing its suck-feeding, shorten the generation life-span and increase the macropertous adults' proportion of N. lugens. Thus, it could result in the occurrence of non-target rice

  17. Effects of herbicides on non-target plants: How do effects in standard plant tests relate to effects in natural habitats?

    DEFF Research Database (Denmark)

    Strandberg, Beate; Bruus, Marianne; Kjær, Christian

    areas where risk assessment seems to be insufficient. The most extensive conclusion is that seed production is a more sensible end-point for risk assessment of herbicides than the currently used end-point biomass. Crop species, in general, were not less sensitive to herbicides than non-target species......The report presents the results on effects of herbicides on plants found in natural habitats within the agricultural land. Furthermore, it evaluates whether the current risk assessment of herbicides represents an adequate safeguard for protection of these species and habitats. We found several....... Finally, we found that interactions between species are important for their responses to herbicides....

  18. A Miniaturized Video System for Monitoring Drosophila Behavior

    Science.gov (United States)

    Bhattacharya, Sharmila; Inan, Omer; Kovacs, Gregory; Etemadi, Mozziyar; Sanchez, Max; Marcu, Oana

    2011-01-01

    Long-term spaceflight may induce a variety of harmful effects in astronauts, resulting in altered motor and cognitive behavior. The stresses experienced by humans in space - most significantly weightlessness (microgravity) and cosmic radiation - are difficult to accurately simulate on Earth. In fact, prolonged and concomitant exposure to microgravity and cosmic radiation can only be studied in space. Behavioral studies in space have focused on model organisms, including Drosophila melanogaster. Drosophila is often used due to its short life span and generational cycle, small size, and ease of maintenance. Additionally, the well-characterized genetics of Drosophila behavior on Earth can be applied to the analysis of results from spaceflights, provided that the behavior in space is accurately recorded. In 2001, the BioExplorer project introduced a low-cost option for researchers: the small satellite. While this approach enabled multiple inexpensive launches of biological experiments, it also imposed stringent restrictions on the monitoring systems in terms of size, mass, data bandwidth, and power consumption. Suggested parameters for size are on the order of 100 mm3 and 1 kg mass for the entire payload. For Drosophila behavioral studies, these engineering requirements are not met by commercially available systems. One system that does meet many requirements for behavioral studies in space is the actimeter. Actimeters use infrared light gates to track the number of times a fly crosses a boundary within a small container (3x3x40 mm). Unfortunately, the apparatus needed to monitor several flies at once would be larger than the capacity of the small satellite. A system is presented, which expands on the actimeter approach to achieve a highly compact, low-power, ultra-low bandwidth solution for simultaneous monitoring of the behavior of multiple flies in space. This also provides a simple, inexpensive alternative to the current systems for monitoring Drosophila

  19. Drosophila increase exploration after visually detecting predators.

    Directory of Open Access Journals (Sweden)

    Miguel de la Flor

    Full Text Available Novel stimuli elicit behaviors that are collectively known as specific exploration. These behaviors allow the animal to become more familiar with the novel objects within its environment. Specific exploration is frequently suppressed by defensive reactions to predator cues. Herein, we examine if this suppression occurs in Drosophila melanogaster by measuring the response of these flies to wild harvested predators. The flies used in our experiments have been cultured and had not lived under predator threat for multiple decades. In a circular arena with centrally-caged predators, wild type Drosophila actively avoided the pantropical jumping spider, Plexippus paykulli, and the Texas unicorn mantis, Phyllovates chlorophaena, indicating an innate defensive reaction to these predators. Interestingly, wild type Drosophila males also avoided a centrally-caged mock spider, and the avoidance of the mock spider became exaggerated when it was made to move within the cage. Visually impaired Drosophila failed to detect and avoid the Plexippus paykulli and the moving mock spider, while the broadly anosmic orco2 mutants were fully capable of detecting and avoiding Plexippus paykulli, indicating that these flies principally relied upon vison to perceive the predator stimuli. During early exploration of the arena, exploratory activity increased in the presence of Plexippus paykulli and the moving mock spider. The elevated activity induced by Plexippus paykulli disappeared after the fly had finished exploring, suggesting the flies were capable of habituating the predator cues. Taken together, these results indicate that despite being isolated from predators for decades Drosophila will visually detect these predators, retain innate defensive behaviors, respond by increasing exploratory activity in the arena rather than suppressing activity, and may habituate to normal predator cues.

  20. Optogenetic pacing in Drosophila melanogaster (Conference Presentation)

    Science.gov (United States)

    Alex, Aneesh; Li, Airong; Men, Jing; Jerwick, Jason; Tanzi, Rudolph E.; Zhou, Chao

    2016-03-01

    A non-invasive, contact-less cardiac pacing technology can be a powerful tool in basic cardiac research and in clinics. Currently, electrical pacing is the gold standard for cardiac pacing. Although highly effective in controlling the cardiac function, the invasive nature, non-specificity to cardiac tissues and possible tissue damage limits its capabilities. Optical pacing of heart is a promising alternative, which is non-invasive and more specific, has high spatial and temporal precision, and avoids shortcomings in electrical stimulation. Optical coherence tomography has been proved to be an effective technique in non-invasive imaging in vivo with ultrahigh resolution and imaging speed. In the last several years, non-invasive specific optical pacing in animal hearts has been reported in quail, zebrafish, and rabbit models. However, Drosophila Melanogaster, which is a significant model with orthologs of 75% of human disease genes, has rarely been studied concerning their optical pacing in heart. Here, we combined optogenetic control of Drosophila heartbeat with optical coherence microscopy (OCM) technique for the first time. The light-gated cation channel, channelrhodopsin-2 (ChR2) was specifically expressed by transgene as a pacemaker in drosophila heart. By stimulating the pacemaker with 472 nm pulsed laser light at different frequencies, we achieved non-invasive and more specific optical control of the Drosophila heart rhythm, which demonstrates the wide potential of optical pacing for studying cardiac dynamics and development. Imaging capability of our customized OCM system was also involved to observe the pacing effect visually. No tissue damage was found after long exposure to laser pulses, which proved the safety of optogenetic control of Drosophila heart.

  1. Drosophila homologues of adenomatous polyposis coli (APC) and the formin diaphanous collaborate by a conserved mechanism to stimulate actin filament assembly.

    Science.gov (United States)

    Jaiswal, Richa; Stepanik, Vince; Rankova, Aneliya; Molinar, Olivia; Goode, Bruce L; McCartney, Brooke M

    2013-05-10

    Vertebrate APC collaborates with Dia through its Basic domain to assemble actin filaments. Despite limited sequence homology between the vertebrate and Drosophila APC Basic domains, Drosophila APC1 collaborates with Dia to stimulate actin assembly in vitro. The mechanism of actin assembly is highly conserved over evolution. APC-Dia collaborations may be crucial in a wide range of animal cells. Adenomatous polyposis coli (APC) is a large multidomain protein that regulates the cytoskeleton. Recently, it was shown that vertebrate APC through its Basic domain directly collaborates with the formin mDia1 to stimulate actin filament assembly in the presence of nucleation barriers. However, it has been unclear whether these activities extend to homologues of APC and Dia in other organisms. Drosophila APC and Dia are each required to promote actin furrow formation in the syncytial embryo, suggesting a potential collaboration in actin assembly, but low sequence homology between the Basic domains of Drosophila and vertebrate APC has left their functional and mechanistic parallels uncertain. To address this question, we purified Drosophila APC1 and Dia and determined their individual and combined effects on actin assembly using both bulk fluorescence assays and total internal reflection fluorescence microscopy. Our data show that APC1, similar to its vertebrate homologue, bound to actin monomers and nucleated and bundled filaments. Further, Drosophila Dia nucleated actin assembly and protected growing filament barbed ends from capping protein. Drosophila APC1 and Dia directly interacted and collaborated to promote actin assembly in the combined presence of profilin and capping protein. Thus, despite limited sequence homology, Drosophila and vertebrate APCs exhibit highly related activities and mechanisms and directly collaborate with formins. These results suggest that APC-Dia interactions in actin assembly are conserved and may underlie important in vivo functions in a broad

  2. Life span extension and neuronal cell protection by Drosophila nicotinamidase.

    Science.gov (United States)

    Balan, Vitaly; Miller, Gregory S; Kaplun, Ludmila; Balan, Karina; Chong, Zhao-Zhong; Li, Faqi; Kaplun, Alexander; VanBerkum, Mark F A; Arking, Robert; Freeman, D Carl; Maiese, Kenneth; Tzivion, Guri

    2008-10-10

    The life span of model organisms can be modulated by environmental conditions that influence cellular metabolism, oxidation, or DNA integrity. The yeast nicotinamidase gene pnc1 was identified as a key transcriptional target and mediator of calorie restriction and stress-induced life span extension. PNC1 is thought to exert its effect on yeast life span by modulating cellular nicotinamide and NAD levels, resulting in increased activity of Sir2 family class III histone deacetylases. In Caenorhabditis elegans, knockdown of a pnc1 homolog was shown recently to shorten the worm life span, whereas its overexpression increased survival under conditions of oxidative stress. The function and regulation of nicotinamidases in higher organisms has not been determined. Here, we report the identification and biochemical characterization of the Drosophila nicotinamidase, D-NAAM, and demonstrate that its overexpression significantly increases median and maximal fly life span. The life span extension was reversed in Sir2 mutant flies, suggesting Sir2 dependence. Testing for physiological effectors of D-NAAM in Drosophila S2 cells, we identified oxidative stress as a primary regulator, both at the transcription level and protein activity. In contrast to the yeast model, stress factors such as high osmolarity and heat shock, calorie restriction, or inhibitors of TOR and phosphatidylinositol 3-kinase pathways do not appear to regulate D-NAAM in S2 cells. Interestingly, the expression of D-NAAM in human neuronal cells conferred protection from oxidative stress-induced cell death in a sirtuin-dependent manner. Together, our findings establish a life span extending the ability of nicotinamidase in flies and offer a role for nicotinamide-modulating genes in oxidative stress regulated pathways influencing longevity and neuronal cell survival.

  3. Experimental evidence for nutrition regulated stress resistance in Drosophila ananassae.

    Directory of Open Access Journals (Sweden)

    Seema Sisodia

    Full Text Available The amount and quality of nutrients consumed by organisms have a strong impact on stress resistance, life-history traits and reproduction. The balance between energy acquisition and expenditure is crucial to the survival and reproductive success of animals. The ability of organisms to adjust their development, physiology or behavior in response to environmental conditions, called phenotypic plasticity, is a defining property of life. One of the most familiar and important examples of phenotypic plasticity is the response of stress tolerance and reproduction to changes in developmental nutrition. Larval nutrition may affect a range of different life-history traits as well as responses to environmental stress in adult.Here we investigate the effect of larval nutrition on desiccation, starvation, chill-coma recovery, heat resistance as well as egg to adult viability, egg production and ovariole number in Drosophila ananassae. We raised larvae on either protein rich diet or carbohydrate rich diet. We found that flies consuming protein rich diet have higher desiccation and heat shock resistance whereas flies developed on carbohydrate rich diet have higher starvation and cold resistance. Egg production was higher in females developed on protein rich diet and we also found trade-off between egg production and Egg to adult viability of the flies. Viability was higher in carbohydrate rich diet. However, sex specific viability was found in different nutritional regimes. Higher Egg production might be due to higher ovariole number in females of protein rich diet.Thus, Drosophila ananassae adapts different stress tolerance and life-history strategies according to the quality of the available diet, which are correlated with phenotypic adjustment at anatomical and physiological levels.

  4. Experimental evidence for nutrition regulated stress resistance in Drosophila ananassae.

    Science.gov (United States)

    Sisodia, Seema; Singh, Bashisth N

    2012-01-01

    The amount and quality of nutrients consumed by organisms have a strong impact on stress resistance, life-history traits and reproduction. The balance between energy acquisition and expenditure is crucial to the survival and reproductive success of animals. The ability of organisms to adjust their development, physiology or behavior in response to environmental conditions, called phenotypic plasticity, is a defining property of life. One of the most familiar and important examples of phenotypic plasticity is the response of stress tolerance and reproduction to changes in developmental nutrition. Larval nutrition may affect a range of different life-history traits as well as responses to environmental stress in adult. Here we investigate the effect of larval nutrition on desiccation, starvation, chill-coma recovery, heat resistance as well as egg to adult viability, egg production and ovariole number in Drosophila ananassae. We raised larvae on either protein rich diet or carbohydrate rich diet. We found that flies consuming protein rich diet have higher desiccation and heat shock resistance whereas flies developed on carbohydrate rich diet have higher starvation and cold resistance. Egg production was higher in females developed on protein rich diet and we also found trade-off between egg production and Egg to adult viability of the flies. Viability was higher in carbohydrate rich diet. However, sex specific viability was found in different nutritional regimes. Higher Egg production might be due to higher ovariole number in females of protein rich diet. Thus, Drosophila ananassae adapts different stress tolerance and life-history strategies according to the quality of the available diet, which are correlated with phenotypic adjustment at anatomical and physiological levels.

  5. Early Olfactory Processing in Drosophila: Mechanisms and Principles

    OpenAIRE

    Wilson, Rachel I.

    2013-01-01

    In the olfactory system of Drosophila melanogaster, it is relatively straightforward to make in vivo measurements of activity in neurons corresponding to targeted processing. This, together with the numerical simplicity of the Drosophila olfactory system, has produced rapid gains in our understanding of Drosophila olfaction. This review summarizes the neurophysiology of the first two layers of this system: the peripheral olfactory receptor neurons and their postsynaptic targets in the antenna...

  6. Impact of pesticides on plant growth promotion of Vigna radiata and non-target microbes: comparison between chemical- and bio-pesticides.

    Science.gov (United States)

    Gupta, Sukriti; Gupta, Rashi; Sharma, Shilpi

    2014-08-01

    To compare the target and non-target effects of two chemical-pesticides (chlorpyrifos and endosulfan) with that of a bio-pesticide (azadirachtin), Vigna radiata (mung bean) was grown in a randomized pot experiment with recommended and higher application rates of pesticides. Colony counts enumerating specific microbial populations, viz. fungi, Pseudomonas, nitrogen-fixing bacteria, and phosphate-solubilizing microorganisms, were performed. In addition, several plant growth parameters such as root and shoot lengths were also monitored. It was observed that the pesticides exerted a suppressive effect on different microbial communities under study in the initial 30 days period. The bacterial and fungal populations in chlorpyrifos treated plants increased thereafter. Endosulfan resulted in enhancement of fungi and nitrogen-fixing bacteria, although phosphate-solubilizing microorganisms were suppressed at higher application rates. Azadirachtin, which is gaining popularity owing to its biological origin, did not result in enhancement of any microbial populations; on the other hand, it had a deleterious effect on phosphate-solubilizing bacteria. This study is the first to evaluate the non-target effects of pesticides with a comparison between chemical- and bio-pesticides, and also stresses the importance of critical investigation of bio-pesticides before their wide spread application in agriculture.

  7. Identification of the Geographic Origin of Parmigiano Reggiano (P.D.O.) Cheeses Deploying Non-Targeted Mass Spectrometry and Chemometrics.

    Science.gov (United States)

    Popping, Bert; De Dominicis, Emiliano; Dante, Mario; Nocetti, Marco

    2017-02-16

    Parmigiano Reggiano is an Italian product with a protected designation of origin (P.D.O.). It is an aged hard cheese made from raw milk. P.D.O. products are protected by European regulations. Approximately 3 million wheels are produced each year, and the product attracts a relevant premium price due to its quality and all around the world well known typicity. Due to the high demand that exceeds the production, several fraudulent products can be found on the market. The rate of fraud is estimated between 20% and 40%, the latter predominantly in the grated form. We have developed a non-target method based on Liquid Chomatography-High Resolution Mass Spectrometry (LC-HRMS) that allows the discrimination of Parmigiano Reggiano from non-authentic products with milk from different geographical origins or products, where other aspects of the production process do not comply with the rules laid down in the production specifications for Parmeggiano Reggiano. Based on a database created with authentic samples provided by the Consortium of Parmigiano Reggiano Cheese, a reliable classification model was built. The overall classification capabilities of this non-targeted method was verified on 32 grated cheese samples. The classification was 87.5% accurate.

  8. Application of a multivariate analysis method for non-target screening detection of persistent transformation products during the cork boiling wastewater treatment.

    Science.gov (United States)

    Ponce-Robles, L; Oller, I; Agüera, A; Trinidad-Lozano, M J; Yuste, F J; Malato, S; Perez-Estrada, L A

    2018-08-15

    Cork boiling wastewater is a very complex mixture of naturally occurring compounds leached and partially oxidized during the boiling cycles. The effluent generated is recalcitrant and could cause a significant environmental impact. Moreover, if this untreated industrial wastewater enters a municipal wastewater treatment plant it could hamper or reduce the efficiency of most activated sludge degradation processes. Despite the efforts to treat the cork boiling wastewater for reusing purposes, is still not well-known how safe these compounds (original compounds and oxidation by-products) will be. The purpose of this work was to apply an HPLC-high resolution mass spectrometry method and subsequent non-target screening using a multivariate analysis method (PCA), to explore relationships between samples (treatments) and spectral features (masses or compounds) that could indicate changes in formation, degradation or polarity, during coagulation/flocculation (C/F) and photo-Fenton (PhF). Although, most of the signal intensities were reduced after the treatment line, 16 and 4 new peaks were detected to be formed after C/F and PhF processes respectively. The use of this non-target approach showed to be an effective strategy to explore, classify and detect transformation products during the treatment of an unknown complex mixture. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Vaginally administered PEGylated LIF antagonist blocked embryo implantation and eliminated non-target effects on bone in mice.

    Directory of Open Access Journals (Sweden)

    Ellen Menkhorst

    Full Text Available Female-controlled contraception/HIV prevention is critical to address health issues associated with gender inequality. Therefore, a contraceptive which can be administered in tandem with a microbicide to inhibit sexually transmitted infections, is desirable. Uterine leukemia inhibitory factor (LIF is obligatory for blastocyst implantation in mice and associated with infertility in women. We aimed to determine whether a PEGylated LIF inhibitor (PEGLA was an effective contraceptive following vaginal delivery and to identify non-uterine targets of PEGLA in mice.Vaginally-applied (125I-PEGLA accumulated in blood more slowly (30 min vs 10 min and showed reduced tissue and blood retention (24 h vs 96 h compared to intraperitoneal injection in mice. Vaginally-applied PEGLA blocked implantation. PEGLA administered by intraperitoneal injection inhibited bone remodelling whereas vaginally-applied PEGLA had no effect on bone. Further, PEGLA had no effect in an animal model of multiple sclerosis, experimental auto-immune encephalomyelitis, suggesting PEGLA cannot target the central nervous system.Vaginally-administered PEGLA is a promising non-hormonal contraceptive, one which could be delivered alone, or in tandem with a microbicide. Vaginal application reduced the total dose of PEGLA required to block implantation and eliminated the systemic effect on bone, showing the vagina is a promising site of administration for larger drugs which target organs within the reproductive tract.

  10. Ecotoxicological impact of Zequanox®, a novel biocide, on selected non-target Irish aquatic species.

    Science.gov (United States)

    Meehan, Sara; Shannon, Adam; Gruber, Bridget; Rackl, Sarahann M; Lucy, Frances E

    2014-09-01

    Effective, species-specific zebra mussel control is needed urgently for Ireland׳s freshwater bodies, which became infested with non-native zebra mussels in the 1990s. Zequanox®, a newly commercialized product for zebra and quagga mussel control, is composed of dead Pseudomonas fluorescens CL 145A cells. This paper describes ecotoxicology tests on three representative native Irish freshwater species: Anodonta (duck mussel), Chironomus plumosus (non-biting midge), and Austropotamobius pallipes (white-clawed crayfish). The species were exposed to Zequanox in a 72-h static renewal toxicity test at concentrations of 100-750mg active ingredient per liter (mga.i./L). Water quality parameters were measured every 12-24h before and after water and product renewal. After 72h, endpoints were reported as LC10, LC50, and LC100. The LC50 values derived were (1) Anodonta: ≥500mga.i./L (2) C. plumosus: 1075mga.i./L, and (3) A. pallipes: ≥750mga.i./L. These results demonstrate that Zequanox does not negatively affect these organisms at the concentration required for >80percent zebra mussel mortality (150mg a.i/L) and the maximum allowable treatment concentration in the United Sates (200mga.i./L). They also show the overall species-specificity of Zequanox, and support its use in commercial facilities and open waters. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Oral intake of zirconia nanoparticle alters neuronal development and behaviour of Drosophila melanogaster

    Science.gov (United States)

    Mishra, Monalisa; Sabat, Debabrat; Ekka, Basanti; Sahu, Swetapadma; P, Unnikannan; Dash, Priyabrat

    2017-08-01

    Zirconia nanoparticles (ZrO2 NPs) have been extensively used in teeth and bone implants and thus get a chance to interact with the physiological system. The current study investigated the oral administration of various concentrations of ZrO2 NPs synthesized by the hydrothermal method (0.25 to 5.0 mg L-1) on Drosophila physiology and behaviour. The size of the currently studied nanoparticle varies from 10 to 12 nm. ZrO2 NPs accumulated within the gut in a concentration-dependent manner and generate reactive oxygen species (ROS) only at 2.5 and 5.0 mg L-1 concentrations. ROS was detected by nitroblue tetrazolium (NBT) assay and 2',7'-dichlorofluorescein http://www.ncbi.nlm.nih.gov/pubmed/20370560 (H2DCF) staining. The ROS toxicity alters the larval gut structure as revealed by DAPI staining. The NP stress of larvae affects the Drosophila development by distressing pupa count and varying the phenotypic changes in sensory organs (eye, thorax bristle, wings). Besides phenotypic changes, flawed climbing behaviour against gravity was seen in ZrO2 NP-treated flies. All together, for the first time, we have reported that a ROS-mediated ZrO2 NP toxicity alters neuronal development and functioning using Drosophila as a model organism. [Figure not available: see fulltext.

  12. Ulysses transposable element of Drosophila shows high structural similarities to functional domains of retroviruses.

    Science.gov (United States)

    Evgen'ev, M B; Corces, V G; Lankenau, D H

    1992-06-05

    We have determined the DNA structure of the Ulysses transposable element of Drosophila virilis and found that this transposon is 10,653 bp and is flanked by two unusually large direct repeats 2136 bp long. Ulysses shows the characteristic organization of LTR-containing retrotransposons, with matrix and capsid protein domains encoded in the first open reading frame. In addition, Ulysses contains protease, reverse transcriptase, RNase H and integrase domains encoded in the second open reading frame. Ulysses lacks a third open reading frame present in some retrotransposons that could encode an env-like protein. A dendrogram analysis based on multiple alignments of the protease, reverse transcriptase, RNase H, integrase and tRNA primer binding site of all known Drosophila LTR-containing retrotransposon sequences establishes a phylogenetic relationship of Ulysses to other retrotransposons and suggests that Ulysses belongs to a new family of this type of elements.

  13. Toxic effect of visible light on Drosophila lifespan depending upon diet protein content.

    Science.gov (United States)

    Shen, Jie; Zhu, Xiang; Gu, Yitian; Zhang, Chiqian; Huang, Jiahong; Qing, Xiao

    2018-03-01

    We investigated the toxic effect of visible light on Drosophila lifespan in both sexes. The toxic effect of ultraviolet (UV) light on organisms is well known. However, the effects of illumination with visible light remain unclear. Here, we found that visible light could be toxic to Drosophila survival, depending on the protein content in diet. In addition, further analysis revealed significant interaction between light and sex, and showed that strong light shortened life span by causing opposite direction changes in mortality rate parameters in females versus males. Our findings suggest that photoageing may be a general phenomenon, and support the theory of sexual antagonistic pleiotropy in aging intervention. The results caution that exposure to visible light could be hazardous to life span and suggest that identification of the underlying mechanism would allow better understanding of aging intervention.

  14. The role of apoptotic cell death in Drosophila melanogaster radioinduced aging

    International Nuclear Information System (INIS)

    Moskalev, A.A.; Zajnullin, V.G.

    2001-01-01

    The attempt is made to estimate a role of programmed cell death (apoptosis) in radioinduced life span alteration and aging. It was shown with the use of mutant Drosophila melanogaster laboratory strains that the dysfunction of a reaper-dependent apoptosis pathway together with the action of ionizing radiation and/or apoptosis inductor etoposide could to lead to change of life span and a pace of aging. In Drosophila strain with defect of proapoptosis gene reaper the increase of life span after irradiation and etoposide treatment was observed. At the same time the strain with overexpression of a protease dcp-1 gene and the strain with the defect of antiapoptosis diap-1/th gene decreased the life span after irradiation and etoposide treatment. The obtained facts are discussed from a position of participation of apoptosis deregulation in radioinduced and natural aging of whole organisms [ru

  15. Low-dose radiation induces drosophila innate immunity through toll pathway activation

    International Nuclear Information System (INIS)

    Seong, Ki Moon; Kim, Cha Soon; Lee, Byung-Sub; Nam, Seon Young; Yang, Kwang Hee; Kim, Ji-Young; Jin, Young-Woo; Park, Joong-Jean; Min, Kyung-Jin

    2012-01-01

    Numerous studies report that exposing certain organisms to low-dose radiation induces beneficial effects on lifespan, tumorigenesis, and immunity. By analyzing survival after bacterial infection and antimicrobial peptide gene expression in irradiated flies, we demonstrate that low-dose irradiation of Drosophila enhances innate immunity. Low-dose irradiation of flies significantly increased resistance against gram-positive and gram-negative bacterial infections, as well as expression of several antimicrobial peptide genes. Additionally, low-dose irradiation also resulted in a specific increase in expression of key proteins of the Toll signaling pathway and phosphorylated forms of p38 and N-terminal kinase (JNK). These results indicate that innate immunity is activated after low-dose irradiation through Toll signaling pathway in Drosophila. (author)

  16. Effects of cadmium on development time and prepupal puffing pattern of Drosophila melanogaster

    Energy Technology Data Exchange (ETDEWEB)

    Sorsa, M; Pfeifer, S

    1973-01-01

    Up until now very few investigations have been made to test the possible genetic effects of cadmium. Since ionic cadmium reacts with sulfhydryl groups, its cytogenetic mode of action most probably is connected with - either directly or indirectly - the formation and functioning of the mitotic apparatus. Evidence of this type of mutagenicity has been obtained in plant material. However, results with Drosophila have not as yet revealed a significant increase of mutation frequency after treatment with cadmium. In the present investigation the authors have been testing the possible effect of cadmium on the primary gene action observable in the specific sequence of salivary chromosome puffs of Drosophila. The results are compared with earlier data of the effects of organic mercurials on the prepupal puffs of D. melanogaster. 8 references, 3 figures, 1 table.

  17. Analysis of Neurotransmitter Tissue Content of Drosophila melanogaster in Different Life Stages

    Science.gov (United States)

    2015-01-01

    Drosophila melanogaster is a widely used model organism for studying neurological diseases with similar neurotransmission to mammals. While both larva and adult Drosophila have central nervous systems, not much is known about how neurotransmitter tissue content changes through development. In this study, we quantified tyramine, serotonin, octopamine, and dopamine in larval, pupal, and adult fly brains using capillary electrophoresis coupled to fast-scan cyclic voltammetry. Tyramine and octopamine content varied between life stages, with almost no octopamine being present in the pupa, while tyramine levels in the pupa were very high. Adult females had significantly higher dopamine content than males, but no other neurotransmitters were dependent on sex in the adult. Understanding the tissue content of different life stages will be beneficial for future work comparing the effects of diseases on tissue content throughout development. PMID:25437353

  18. A specific primed immune response in Drosophila is dependent on phagocytes.

    Directory of Open Access Journals (Sweden)

    Linh N Pham

    2007-03-01

    Full Text Available Drosophila melanogaster, like other invertebrates, relies solely on its innate immune response to fight invading microbes; by definition, innate immunity lacks adaptive characteristics. However, we show here that priming Drosophila with a sublethal dose of Streptococcus pneumoniae protects against an otherwise-lethal second challenge of S. pneumoniae. This protective effect exhibits coarse specificity for S. pneumoniae and persists for the life of the fly. Although not all microbial challenges induced this specific primed response, we find that a similar specific protection can be elicited by Beauveria bassiana, a natural fly pathogen. To characterize this primed response, we focused on S. pneumoniae-induced protection. The mechanism underlying this protective effect requires phagocytes and the Toll pathway. However, activation of the Toll pathway is not sufficient for priming-induced protection. This work contradicts the paradigm that insect immune responses cannot adapt and will promote the search for similar responses overlooked in organisms with an adaptive immune response.

  19. The Drosophila small GTPase Rac2 is required for normal feeding and mating behaviour.

    Science.gov (United States)

    Goergen, Philip; Kasagiannis, Anna; Schiöth, Helgi B; Williams, Michael J

    2014-03-01

    All multicellular organisms require the ability to regulate bodily processes in order to maintain a stable condition, which necessitates fluctuations in internal metabolics, as well as modifications of outward behaviour. Understanding the genetics behind this modulation is important as a general model for the metabolic modification of behaviour. This study demonstrates that the activity of the small GTPase Rac2 is required in Drosophila for the proper regulation of lipid storage and feeding behaviour, as well as aggression and mating behaviours. Rac2 mutant males and females are susceptible to starvation and contain considerably less lipids than controls. Furthermore, Rac2 mutants also have disrupted feeding behaviour, eating fewer but larger meals than controls. Intriguingly, Rac2 mutant males rarely initiate aggressive behaviour and display significantly increased levels of courtship behaviour towards other males and mated females. From these results we conclude that Rac2 has a central role in regulating the Drosophila homeostatic system.

  20. Induction of aversive learning through thermogenetic activation of Kenyon cell ensembles in Drosophila

    Directory of Open Access Journals (Sweden)

    David eVasmer

    2014-05-01

    Full Text Available Drosophila represents a model organism to analyze neuronal mechanisms underlying learning and memory. Kenyon cells of the Drosophila mushroom body are required for associative odor learning and memory retrieval. But is the mushroom body sufficient to acquire and retrieve an associative memory? To answer this question we have conceived an experimental approach to bypass olfactory sensory input and to thermogenetically activate sparse and random ensembles of Kenyon cells directly. We found that if the artifical activation of Kenyon cell ensembles coincides with a salient, aversive stimulus learning was induced The animals adjusted their behavior in a subsequent test situation and actively avoided reactivation of these Kenyon cells. Our results show that Kenyon cell activity in coincidence with a salient aversive stimulus can suffice to form an associative memory. Memory retrieval is characterized by a closed feedback loop between a behavioral action and the reactivation of sparse ensembles of Kenyon cells.