WorldWideScience

Sample records for non-standard decoherence effects

  1. Non-Markovian decoherent quantum walks

    International Nuclear Information System (INIS)

    Xue Peng; Zhang Yong-Sheng

    2013-01-01

    Quantum walks act in obviously different ways from their classical counterparts, but decoherence will lessen and close this gap between them. To understand this process, it is necessary to investigate the evolution of quantum walks under different decoherence situations. In this article, we study a non-Markovian decoherent quantum walk on a line. In a short time regime, the behavior of the walk deviates from both ideal quantum walks and classical random walks. The position variance as a measure of the quantum walk collapses and revives for a short time, and tends to have a linear relation with time. That is, the walker's behavior shows a diffusive spread over a long time limit, which is caused by non-Markovian dephasing affecting the quantum correlations between the quantum walker and his coin. We also study both quantum discord and measurement-induced disturbance as measures of the quantum correlations, and observe both collapse and revival in the short time regime, and the tendency to be zero in the long time limit. Therefore, quantum walks with non-Markovian decoherence tend to have diffusive spreading behavior over long time limits, while in the short time regime they oscillate between ballistic and diffusive spreading behavior, and the quantum correlation collapses and revives due to the memory effect

  2. Probing nonstandard decoherence effects with solar and KamLAND neutrinos

    International Nuclear Information System (INIS)

    Fogli, G. L.; Lisi, E.; Marrone, A.; Montanino, D.; Palazzo, A.

    2007-01-01

    It has been speculated that quantum-gravity might induce a foamy space-time structure at small scales, randomly perturbing the propagation phases of free-streaming particles (such as kaons, neutrons, or neutrinos). Particle interferometry might then reveal nonstandard decoherence effects, in addition to standard ones (due to, e.g., finite source size and detector resolution.) In this work we discuss the phenomenology of such nonstandard effects in the propagation of electron neutrinos in the Sun and in the long-baseline reactor experiment KamLAND, which jointly provide us with the best available probes of decoherence at neutrino energies E∼few MeV. In the solar neutrino case, by means of a perturbative approach, decoherence is shown to modify the standard (adiabatic) propagation in matter through a calculable damping factor. By assuming a power-law dependence of decoherence effects in the energy domain (E n with n=0, ±1, ±2), theoretical predictions for two-family neutrino mixing are compared with the data and discussed. We find that neither solar nor KamLAND data show evidence in favor of nonstandard decoherence effects, whose characteristic parameter γ 0 can thus be significantly constrained. In the ''Lorentz-invariant'' case n=-1, we obtain the upper limit γ 0 -26 GeV at 95% C.L. In the specific case n=-2, the constraints can also be interpreted as bounds on possible matter density fluctuations in the Sun, which we improve by a factor of ∼2 with respect to previous analyses

  3. Non-exponential decoherence of radio-frequency resonance rotation of spin in storage rings

    Science.gov (United States)

    Saleev, A.; Nikolaev, N. N.; Rathmann, F.; Hinder, F.; Pretz, J.; Rosenthal, M.

    2017-08-01

    Precision experiments, such as the search for electric dipole moments of charged particles using radio-frequency spin rotators in storage rings, demand for maintaining the exact spin resonance condition for several thousand seconds. Synchrotron oscillations in the stored beam modulate the spin tune of off-central particles, moving it off the perfect resonance condition set for central particles on the reference orbit. Here, we report an analytic description of how synchrotron oscillations lead to non-exponential decoherence of the radio-frequency resonance driven up-down spin rotations. This non-exponential decoherence is shown to be accompanied by a nontrivial walk of the spin phase. We also comment on sensitivity of the decoherence rate to the harmonics of the radio-frequency spin rotator and a possibility to check predictions of decoherence-free magic energies.

  4. Decoherence of Topological Qubit in Linear Motions: Decoherence Impedance, Anti-Unruh and Information Backflow

    Science.gov (United States)

    Liu, Pei-Hua; Lin, Feng-Li

    2017-08-01

    In this work we study the decoherence of topological qubits in linear motions. The topological qubit is made of two spatially-separated Majorana zero modes which are the edge excitations of Kitaev chain [1]. In a previous work [2], it was shown by one of us and his collaborators that the decoherence of topological qubit is exactly solvable, moreover, topological qubit is robust against decoherence in the super-Ohmic environments. We extend the setup of [2] to consider the effect of motions on the decoherence of the topological qubits. Our results show the thermalization as expected by Unruh effect. Besides, we also find the so-called “anti-Unruh” phenomena which shows the rate of decoherence is anti-correlated with the acceleration in short-time scale. Moreover, we modulate the motion patterns of each Majorana modes and find information backflow and the preservation of coherence even with nonzero accelerations. This is the characteristics of the underlying non-Markovian reduced dynamics. We conclude that he topological qubit is in general more robust against decoherence than the usual qubits, and can be take into serious consideration for realistic implementation to have robust quantum computation and communication. This talk is based on our work in [3].

  5. Quantum arrival time formula from decoherent histories

    International Nuclear Information System (INIS)

    Halliwell, J.J.; Yearsley, J.M.

    2009-01-01

    We use the decoherent histories approach to quantum mechanics to compute the probability for a wave packet to cross the origin during a given time interval. We define class operators (sums of strings of projectors) characterizing quantum-mechanical crossing and simplify them using a semiclassical approximation. Using these class operators we find that histories crossing the origin during different time intervals are approximately decoherent for a variety of initial states. Probabilities may therefore be assigned and coincide with the flux of the wave packet (the standard semiclassical formula), and are positive. The known initial states for which the flux is negative (backflow states) are shown to correspond to non-decoherent sets of histories, so probabilities may not be assigned.

  6. Continuous quantum error correction for non-Markovian decoherence

    International Nuclear Information System (INIS)

    Oreshkov, Ognyan; Brun, Todd A.

    2007-01-01

    We study the effect of continuous quantum error correction in the case where each qubit in a codeword is subject to a general Hamiltonian interaction with an independent bath. We first consider the scheme in the case of a trivial single-qubit code, which provides useful insights into the workings of continuous error correction and the difference between Markovian and non-Markovian decoherence. We then study the model of a bit-flip code with each qubit coupled to an independent bath qubit and subject to continuous correction, and find its solution. We show that for sufficiently large error-correction rates, the encoded state approximately follows an evolution of the type of a single decohering qubit, but with an effectively decreased coupling constant. The factor by which the coupling constant is decreased scales quadratically with the error-correction rate. This is compared to the case of Markovian noise, where the decoherence rate is effectively decreased by a factor which scales only linearly with the rate of error correction. The quadratic enhancement depends on the existence of a Zeno regime in the Hamiltonian evolution which is absent in purely Markovian dynamics. We analyze the range of validity of this result and identify two relevant time scales. Finally, we extend the result to more general codes and argue that the performance of continuous error correction will exhibit the same qualitative characteristics

  7. Decoherence recuperating fast environmental dynamics

    International Nuclear Information System (INIS)

    Cetinbas, Murat

    2010-01-01

    We examine the exact internal decoherence dynamics of a qubit in an isolated Josephson charge-qubit quantum computer in the presence of one- and two-body static internal imperfections. By help of open system dynamics quantifiers, i.e. purity, fidelity, covariance and Loschmidt echo, we distinguish between non-unitary and unitary components of internal decoherence dynamics and show that the non-unitary component consists of two processes: system-environment entanglement and incoherence. Our results indicate that the incoherence process is the major source of internal decoherence rather than system-environment entanglement. We find that strong one-body intra-environmental interactions, which generate fast environmental dynamics, result in a rapid suppression of decoherence induced by both system-environment entanglement and incoherence processes. We explain the mechanisms of suppression of decoherence for these two processes and discuss our results.

  8. Decoherence and Multipartite Entanglement of Non-Inertial Observers

    International Nuclear Information System (INIS)

    Ramzan, M.

    2012-01-01

    The decoherence effect on multipartite entanglement in non-inertial frames is investigated. The GHZ state is considered to be shared between partners with one partner in the inertial frame whereas the other two are in accelerated frames. One-tangle and π-tangles are used to quantify the entanglement of the multipartite system influenced by phase damping and phase flip channels. It is seen that for the phase damping channel, entanglement sudden death (ESD) occurs for p > 0.5 in the infinite acceleration limit. On the other hand, in the case of the phase flip channel, ESD behavior occurs at p = 0.5. It is also seen that entanglement sudden birth (ESB) occurs in the case of phase flip channel just after ESD, i.e. p > 0.5. Furthermore, it is seen that the effect of the environment on multipartite entanglement is much stronger than that of the acceleration of non-inertial frames. (general)

  9. Disorder and decoherence in coined quantum walks

    International Nuclear Information System (INIS)

    Zhang Rong; Qin Hao; Tang Bao; Xue Peng

    2013-01-01

    This article aims to provide a review on quantum walks. Starting form a basic idea of discrete-time quantum walks, we will review the impact of disorder and decoherence on the properties of quantum walks. The evolution of the standard quantum walks is deterministic and disorder introduces randomness to the whole system and change interference pattern leading to the localization effect. Whereas, decoherence plays the role of transmitting quantum walks to classical random walks. (topical review - quantum information)

  10. Quantum prisoner dilemma under decoherence

    International Nuclear Information System (INIS)

    Chen, L.K.; Ang, Huiling; Kiang, D.; Kwek, L.C.; Lo, C.F.

    2003-01-01

    It has recently been established that quantum strategies are superior to classical ones for games such as the prisoner's dilemma. However, quantum states are subject to decoherence. In this Letter, we investigate the effects of decoherence on a quantum game, namely the prisoner dilemma, through three prototype decoherence channels. We show that in the case of prisoner dilemma, the Nash equilibria are not changed by the effects of decoherence for maximally entangled states

  11. Decoherence in quantum gravity: issues and critiques

    Energy Technology Data Exchange (ETDEWEB)

    Anastopoulos, C [Department of Physics, University of Patras, 26500 Patras (Greece); Hu, B L [Department of Physics, University of Maryland, College Park, Maryland 20742-4111 (United States)

    2007-05-15

    An increasing number of papers have appeared in recent years on decoherence in quantum gravity at the Planck energy. We discuss the meaning of decoherence in quantum gravity starting from the common notion that quantum gravity is a theory for the microscopic structures of spacetime, and invoking some generic features of quantum decoherence from the open systems viewpoint. We dwell on a range of issues bearing on this process including the relation between statistical and quantum, noise from effective field theory, the meaning of stochasticity, the origin of non-unitarity and the nature of nonlocality in this and related contexts. To expound these issues we critique on two representative theories: One claims that decoherence in quantum gravity scale leads to the violation of CPT symmetry at sub-Planckian energy which is used to explain today's particle phenomenology. The other uses this process in place with the Brownian motion model to prove that spacetime foam behaves like a thermal bath. A companion paper will deal with intrinsic and fundamental decoherence which also bear on issues in classical and quantum gravity.

  12. Decoherence in quantum gravity: issues and critiques

    International Nuclear Information System (INIS)

    Anastopoulos, C; Hu, B L

    2007-01-01

    An increasing number of papers have appeared in recent years on decoherence in quantum gravity at the Planck energy. We discuss the meaning of decoherence in quantum gravity starting from the common notion that quantum gravity is a theory for the microscopic structures of spacetime, and invoking some generic features of quantum decoherence from the open systems viewpoint. We dwell on a range of issues bearing on this process including the relation between statistical and quantum, noise from effective field theory, the meaning of stochasticity, the origin of non-unitarity and the nature of nonlocality in this and related contexts. To expound these issues we critique on two representative theories: One claims that decoherence in quantum gravity scale leads to the violation of CPT symmetry at sub-Planckian energy which is used to explain today's particle phenomenology. The other uses this process in place with the Brownian motion model to prove that spacetime foam behaves like a thermal bath. A companion paper will deal with intrinsic and fundamental decoherence which also bear on issues in classical and quantum gravity

  13. Modeling decoherence with qubits

    Science.gov (United States)

    Heusler, Stefan; Dür, Wolfgang

    2018-03-01

    Quantum effects like the superposition principle contradict our experience of daily life. Decoherence can be viewed as a possible explanation why we do not observe quantum superposition states in the macroscopic world. In this article, we use the qubit ansatz to discuss decoherence in the simplest possible model system and propose a visualization for the microscopic origin of decoherence, and the emergence of a so-called pointer basis. Finally, we discuss the possibility of ‘macroscopic’ quantum effects.

  14. Decoherence Effects on Multiplayer Cooperative Quantum Games

    International Nuclear Information System (INIS)

    Khan, Salman; Ramzan, M.; Khan, M. Khalid.

    2011-01-01

    We study the behavior of cooperative multiplayer quantum games [Q. Chen, Y. Wang, J.T. Liu, and K.L. Wang, Phys. Lett. A 327 (2004) 98; A.P. Flitney and L.C.L. Hollenberg, Quantum Inf. Comput. 7 (2007) 111] in the presence of decoherence using different quantum channels such as amplitude damping, depolarizing and phase damping. It is seen that the outcomes of the games for the two damping channels with maximum values of decoherence reduce to same value. However, in comparison to phase damping channel, the payoffs of cooperators are strongly damped under the influence amplitude damping channel for the lower values of decoherence parameter. In the case of depolarizing channel, the game is a no-payoff game irrespective of the degree of entanglement in the initial state for the larger values of decoherence parameter. The decoherence gets the cooperators worse off. (general)

  15. Quantum decoherence of phonons in Bose-Einstein condensates

    Science.gov (United States)

    Howl, Richard; Sabín, Carlos; Hackermüller, Lucia; Fuentes, Ivette

    2018-01-01

    We apply modern techniques from quantum optics and quantum information science to Bose-Einstein condensates (BECs) in order to study, for the first time, the quantum decoherence of phonons of isolated BECs. In the last few years, major advances in the manipulation and control of phonons have highlighted their potential as carriers of quantum information in quantum technologies, particularly in quantum processing and quantum communication. Although most of these studies have focused on trapped ion and crystalline systems, another promising system that has remained relatively unexplored is BECs. The potential benefits in using this system have been emphasized recently with proposals of relativistic quantum devices that exploit quantum states of phonons in BECs to achieve, in principle, superior performance over standard non-relativistic devices. Quantum decoherence is often the limiting factor in the practical realization of quantum technologies, but here we show that quantum decoherence of phonons is not expected to heavily constrain the performance of these proposed relativistic quantum devices.

  16. Decoherence suppression of tripartite entanglement in non-Markovian environments by using weak measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Zhi-yong [School of Physics & Material Science, Anhui University, Hefei 230039 (China); School of Physics & Electronic Engineering, Fuyang Normal University, Fuyang 236037 (China); He, Juan, E-mail: juanhe78@163.com [School of Physics & Electronic Engineering, Fuyang Normal University, Fuyang 236037 (China); Ye, Liu, E-mail: yeliu@ahu.edu.cn [School of Physics & Material Science, Anhui University, Hefei 230039 (China)

    2017-02-15

    A feasible scheme for protecting the Greenberger–Horne–Zeilinger (GHZ) entanglement state in non-Markovian environments is proposed. It consists of prior weak measurement on each qubit before the interaction with decoherence environments followed by post quantum measurement reversals. It is shown that both the fidelity and concurrence of the GHZ state can be effectively improved. Meanwhile, we also verified that our scenario can enhance tripartite nonlocality remarkably. In addition, the result indicates that the larger the weak measurement strength, the better the effectiveness of the scheme with the lower success probability.

  17. Quantum control limited by quantum decoherence

    International Nuclear Information System (INIS)

    Xue, Fei; Sun, C. P.; Yu, S. X.

    2006-01-01

    We describe quantum controllability under the influences of the quantum decoherence induced by the quantum control itself. It is shown that, when the controller is considered as a quantum system, it will entangle with its controlled system and then cause quantum decoherence in the controlled system. In competition with this induced decoherence, the controllability will be limited by some uncertainty relation in a well-armed quantum control process. In association with the phase uncertainty and the standard quantum limit, a general model is studied to demonstrate the possibility of realizing a decoherence-free quantum control with a finite energy within a finite time. It is also shown that if the operations of quantum control are to be determined by the initial state of the controller, then due to the decoherence which results from the quantum control itself, there exists a low bound for quantum controllability

  18. The effect of chromatic decoherence on transverse injection oscillation damping

    International Nuclear Information System (INIS)

    Jackson, G.P.

    1993-01-01

    In order to eliminate or reduce transverse emittance growth during transfers between accelerators, transverse damper systems are used to eliminate residual dipole oscillations before phase space dilution takes place. In transfers where the target accelerator has high chromaticity or the beam has a large momentum spread, phase space dilution due to chromatic decoherence can take place on a scale short compared to the damping time of the transverse injection oscillation damper. The effect of the damper on the beam phase space is not clear while the coherent oscillation is suppressed by this decoherence. The purpose of this paper is to quantify the effectiveness of dampers at eliminating emittance blowup at transfers in the presence of chromatic decoherence

  19. Decoherence control in different environments

    International Nuclear Information System (INIS)

    Paavola, J.; Maniscalco, S.

    2010-01-01

    We investigate two techniques for controlling decoherence, focusing on the crucial role played by the environmental spectrum. We show how environments with different spectra lead to very different dynamical behaviors. Our study clearly proves that such differences must be taken into account when designing decoherence control schemes. The two techniques we consider are reservoir engineering and quantum Zeno control. We focus on a quantum harmonic oscillator initially prepared in a nonclassical state and derive analytically its non-Markovian dynamics in the presence of different bosonic thermal environments. On the one hand, we show how, by modifying the spectrum of the environment, it is possible to prolong or reduce the life of a Schroedinger cat state. On the other hand, we study the effect of nonselective energy measurements on the degradation of quantumness of initial Fock states. In this latter case, we see that the crossover between quantum Zeno and anti-Zeno effects, discussed by Maniscalco et al. [Phys. Rev. Lett. 97, 130402 (2006)], is highly sensitive to the details of the spectrum. In particular, for certain types of spectra, even very small variations of the system frequency may cause a measurement-induced acceleration of decoherence rather than its inhibition.

  20. Gravitational decoherence

    International Nuclear Information System (INIS)

    Bassi, Angelo; Großardt, André; Ulbricht, Hendrik

    2017-01-01

    We discuss effects of loss of coherence in low energy quantum systems caused by or related to gravitation, referred to as gravitational decoherence. These effects, resulting from random metric fluctuations, for instance, promise to be accessible by relatively inexpensive table-top experiments, way before the scales where true quantum gravity effects become important. Therefore, they can provide a first experimental view on gravity in the quantum regime. We will survey models of decoherence induced both by classical and quantum gravitational fluctuations; it will be manifest that a clear understanding of gravitational decoherence is still lacking. Next we will review models where quantum theory is modified, under the assumption that gravity causes the collapse of the wave functions, when systems are large enough. These models challenge the quantum-gravity interplay, and can be tested experimentally. In the last part we have a look at the state of the art of experimental research. We will review efforts aiming at more and more accurate measurements of gravity ( G and g ) and ideas for measuring conventional and unconventional gravity effects on nonrelativistic quantum systems. (topical review)

  1. Decoherence of topological qubit in linear and circular motions: decoherence impedance, anti-Unruh and information backflow

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pei-Hua; Lin, Feng-Li [Department of Physics, National Taiwan Normal University,No. 88, Sec. 4, Ting-Chou Rd., Taipei 116, Taiwan (China)

    2016-07-18

    In this paper, we consider the decoherence patterns of a topological qubit made of two Majorana zero modes in the generic linear and circular motions in the Minkowski spacetime. We show that the reduced dynamics is exact without Markov approximation. Our results imply that the acceleration will cause thermalization as expected by Unruh effect. However, for the short-time scale, we find the rate of decoherence is anti-correlated with the acceleration, as kind of decoherence impedance. This is in fact related to the “anti-Unruh' phenomenon previously found by studying the transition probability of Unruh-DeWitt detector. We also obtain the information backflow by some time modulations of coupling constant or acceleration, which is a characteristic of the underlying non-Markovian reduced dynamics. Moreover, by exploiting the nonlocal nature of the topological qubit, we find that some incoherent accelerations of the constituent Majorana zero modes can preserve the coherence instead of thermalizing it.

  2. Enhancement of geometric phase by frustration of decoherence: A Parrondo-like effect

    Science.gov (United States)

    Banerjee, Subhashish; Chandrashekar, C. M.; Pati, Arun K.

    2013-04-01

    Geometric phase plays an important role in evolution of pure or mixed quantum states. However, when a system undergoes decoherence the development of geometric phase may be inhibited. Here we show that when a quantum system interacts with two competing environments there can be enhancement of geometric phase. This effect is akin to a Parrondo-like effect on the geometric phase which results from quantum frustration of decoherence. Our result suggests that the mechanism of two competing decoherence can be useful in fault-tolerant holonomic quantum computation.

  3. Entanglement Evolution of Three-Qubit States under Local Decoherence

    International Nuclear Information System (INIS)

    Ma Xiaosan; Liu Gaosheng; Wang Anmin

    2010-01-01

    By using negativity as entanglement measure, we have investigated the effect of local decoherence from a non-Markovian environment on the time evolution of entanglement of three-qubit states including the GHZ state, the W state, and the Werner state. From the results, we find that the entanglement dynamics depends not only on the coupling strengths but also on the specific states of concern. Specifically, the entanglement takes different behaviors under weak or strong coupling and it varies with the quantum states under study. The entanglement of the GHZ state and the Werner state can be destroyed completely by the local decoherence, while the entanglement of the W state can survive through the local decoherence partially. (general)

  4. Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems with applications to quantum information theory of continuous variable systems

    International Nuclear Information System (INIS)

    Hoerhammer, C.

    2007-01-01

    In this thesis, non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems are studied. In particular, applications to quantum information theory of continuous variable systems are considered. The non-Markovian dynamics are described by the Hu-Paz-Zhang master equation of quantum Brownian motion. In this context the focus is on non-Markovian effects on decoherence and separability time scales of various single- mode and two-mode continuous variable states. It is verified that moderate non-Markovian influences slow down the decay of interference fringes and quantum correlations, while strong non-Markovian effects resulting from an out-of-resonance bath can even accelerate the loss of coherence, compared to predictions of Markovian approximations. Qualitatively different scenarios including exponential, Gaussian or algebraic decay of the decoherence function are analyzed. It is shown that partial recurrence of coherence can occur in case of non-Lindblad-type dynamics. The time evolution of quantum correlations of entangled two-mode continuous variable states is examined in single-reservoir and two-reservoir models, representing noisy correlated or uncorrelated non-Markovian quantum channels. For this purpose the model of quantum Brownian motion is extended. Various separability criteria for Gaussian and non-Gaussian continuous variable systems are applied. In both types of reservoir models moderate non-Markovian effects prolong the separability time scales. However, in these models the properties of the stationary state may differ. In the two-reservoir model the initial entanglement is completely lost and both modes are finally uncorrelated. In a common reservoir both modes interact indirectly via the coupling to the same bath variables. Therefore, new quantum correlations may emerge between the two modes. Below a critical bath temperature entanglement is preserved even in the steady state. A separability criterion is derived, which depends

  5. Exploration of possible quantum gravity effects with neutrinos I: Decoherence in neutrino oscillations experiments

    International Nuclear Information System (INIS)

    Sakharov, Alexander; Mavromatos, Nick; Sarkar, Sarben; Meregaglia, Anselmo; Rubbia, Andre

    2009-01-01

    Quantum gravity may involve models with stochastic fluctuations of the associated metric field, around some fixed background value. Such stochastic models of gravity may induce decoherence for matter propagating in such fluctuating space time. In most cases, this leads to fewer neutrinos of all active flavours being detected in a long baseline experiment as compared to three-flavour standard neutrino oscillations. We discuss the potential of the CNGS and J-PARC beams in constraining models of quantum-gravity induced decoherence using neutrino oscillations as a probe. We use as much as possible model-independent parameterizations, even though they are motivated by specific microscopic models, for fits to the expected experimental data which yield bounds on quantum-gravity decoherence parameters.

  6. Decoherence in adiabatic quantum computation

    Science.gov (United States)

    Albash, Tameem; Lidar, Daniel A.

    2015-06-01

    Recent experiments with increasingly larger numbers of qubits have sparked renewed interest in adiabatic quantum computation, and in particular quantum annealing. A central question that is repeatedly asked is whether quantum features of the evolution can survive over the long time scales used for quantum annealing relative to standard measures of the decoherence time. We reconsider the role of decoherence in adiabatic quantum computation and quantum annealing using the adiabatic quantum master-equation formalism. We restrict ourselves to the weak-coupling and singular-coupling limits, which correspond to decoherence in the energy eigenbasis and in the computational basis, respectively. We demonstrate that decoherence in the instantaneous energy eigenbasis does not necessarily detrimentally affect adiabatic quantum computation, and in particular that a short single-qubit T2 time need not imply adverse consequences for the success of the quantum adiabatic algorithm. We further demonstrate that boundary cancellation methods, designed to improve the fidelity of adiabatic quantum computing in the closed-system setting, remain beneficial in the open-system setting. To address the high computational cost of master-equation simulations, we also demonstrate that a quantum Monte Carlo algorithm that explicitly accounts for a thermal bosonic bath can be used to interpolate between classical and quantum annealing. Our study highlights and clarifies the significantly different role played by decoherence in the adiabatic and circuit models of quantum computing.

  7. Dynamics of tripartite quantum correlations and decoherence in flux qubit systems under local and non-local static noise

    Science.gov (United States)

    Arthur, Tsamouo Tsokeng; Martin, Tchoffo; Fai, Lukong Cornelius

    2018-06-01

    We investigate the dynamics of entanglement, decoherence and quantum discord in a system of three non-interacting superconducting flux qubits (fqubits) initially prepared in a Greenberger-Horne-Zeilinger (GHZ) state and subject to static noise in different, bipartite and common environments, since it is recognized that different noise configurations generally lead to completely different dynamical behavior of physical systems. The noise is modeled by randomizing the single fqubit transition amplitude. Decoherence and quantum correlations dynamics are strongly affected by the purity of the initial state, type of system-environment interaction and the system-environment coupling strength. Specifically, quantum correlations can persist when the fqubits are commonly coupled to a noise source, and reaches a saturation value respective to the purity of the initial state. As the number of decoherence channels increases (bipartite and different environments), decoherence becomes stronger against quantum correlations that decay faster, exhibiting sudden death and revival phenomena. The residual entanglement can be successfully detected by means of suitable entanglement witness, and we derive a necessary condition for entanglement detection related to the tunable and non-degenerated energy levels of fqubits. In accordance with the current literature, our results further suggest the efficiency of fqubits over ordinary ones, as far as the preservation of quantum correlations needed for quantum processing purposes is concerned.

  8. Decoherent histories analysis of minisuperspace quantum cosmology

    International Nuclear Information System (INIS)

    Halliwell, J J

    2011-01-01

    Recent results on the decoherent histories quantization of simple cosmological models (minisuperspace models) are described. The most important issue is the construction, from the wave function, of a probability distribution answering various questions of physical interest, such as the probability of the system entering a given region of configuration space at any stage in its entire history. A standard but heuristic procedure is to use the flux of (components of) the wave function in a WKB approximation as the probability. This gives sensible semiclassical results but lacks an underlying operator formalism. Here, we supply the underlying formalism by deriving probability distributions linked to the Wheeler-DeWitt equation using the decoherent histories approach to quantum theory, building on the generalized quantum mechanics formalism developed by Hartle. The key step is the construction of class operators characterizing questions of physical interest. Taking advantage of a recent decoherent histories analysis of the arrival time problem in non-relativistic quantum mechanics, we show that the appropriate class operators in quantum cosmology are readily constructed using a complex potential. The class operator for not entering a region of configuration space is given by the S-matrix for scattering off a complex potential localized in that region. We thus derive the class operators for entering one or more regions in configuration space. The class operators commute with the Hamiltonian, have a sensible classical limit and are closely related to an intersection number operator. The corresponding probabilities coincide, in a semiclassical approximation, with standard heuristic procedures.

  9. Decoherent histories analysis of minisuperspace quantum cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Halliwell, J J, E-mail: j.halliwell@imperial.ac.uk [Blackett Laboratory Imperial College London SW7 2BZ (United Kingdom)

    2011-07-08

    Recent results on the decoherent histories quantization of simple cosmological models (minisuperspace models) are described. The most important issue is the construction, from the wave function, of a probability distribution answering various questions of physical interest, such as the probability of the system entering a given region of configuration space at any stage in its entire history. A standard but heuristic procedure is to use the flux of (components of) the wave function in a WKB approximation as the probability. This gives sensible semiclassical results but lacks an underlying operator formalism. Here, we supply the underlying formalism by deriving probability distributions linked to the Wheeler-DeWitt equation using the decoherent histories approach to quantum theory, building on the generalized quantum mechanics formalism developed by Hartle. The key step is the construction of class operators characterizing questions of physical interest. Taking advantage of a recent decoherent histories analysis of the arrival time problem in non-relativistic quantum mechanics, we show that the appropriate class operators in quantum cosmology are readily constructed using a complex potential. The class operator for not entering a region of configuration space is given by the S-matrix for scattering off a complex potential localized in that region. We thus derive the class operators for entering one or more regions in configuration space. The class operators commute with the Hamiltonian, have a sensible classical limit and are closely related to an intersection number operator. The corresponding probabilities coincide, in a semiclassical approximation, with standard heuristic procedures.

  10. Neutrino induced decoherence and variation in nuclear decay rates

    International Nuclear Information System (INIS)

    Singleton, Douglas; Inan, Nader; Chiao, Raymond Y.

    2015-01-01

    Recent work has proposed that the interaction between ordinary matter and a stochastic gravitational background can lead to the decoherence of large aggregates of ordinary matter. In this work we point out that these arguments can be carried over to a stochastic neutrino background but with the Planck scale of the gravitational decoherence replaced by the weak scale. This implies that it might be possible to observe such neutrino induced decoherence on a small, microscopic system rather than a macroscopic system as is the case for gravitationally induced decoherence. In particular we suggest that neutrino decoherence could be linked with observed variations in the decay rates of certain nuclei. Finally we point out that this proposed neutrino induced decoherence can be considered the complement of the Mikheev–Smirnov–Wolfenstein (MSW) effect. - Highlights: • Review of decoherence arguments for matter moving in a stochastic gravitational background. • Application of these decoherence arguments to neutrinos and the weak interaction scale. • Suggestions of a connection between neutrino decoherence and variable nuclear decay rates. • Connection of neutron decoherence as the inverse of the MSW effect

  11. Gravitational Field effects on the Decoherence Process and the Quantum Speed Limit.

    Science.gov (United States)

    Dehdashti, Sh; Avazzadeh, Z; Xu, Z; Shen, J Q; Mirza, B; Wang, H

    2017-11-08

    In this paper we use spinor transformations under local Lorentz transformations to investigate the curvature effect on the quantum-to-classical transition, described in terms of the decoherence process and of the quantum speed limit. We find that gravitational fields (introduced adopting the Schwarzschild and anti-de Sitter geometries) affect both the decoherence process and the quantum speed limit of a quantum particle with spin-1/2. In addition, as a tangible example, we study the effect of the Earth's gravitational field, characterized by the Rindler space-time, on the same particle. We find that the effect of the Earth's gravitational field on the decoherence process and quantum speed limit is very small, except when the mean speed of the quantum particle is comparable to the speed of light.

  12. Quantum games with decoherence

    International Nuclear Information System (INIS)

    Flitney, A P; Abbott, D

    2005-01-01

    A protocol for considering decoherence in quantum games is presented. Results for two-player, two-strategy quantum games subject to decoherence are derived and some specific examples are given. Decoherence in other types of quantum games is also considered. As expected, the advantage that a quantum player achieves over a player restricted to classical strategies is diminished for increasing decoherence but only vanishes in the limit of maximum decoherence

  13. Decoherence, matter effect, and neutrino hierarchy signature in long baseline experiments

    Science.gov (United States)

    Coelho, João A. B.; Mann, W. Anthony

    2017-11-01

    Environmental decoherence of oscillating neutrinos of strength Γ =(2.3 ±1.1 )×10-23 GeV can explain how maximal θ23 mixing observed at 295 km by T2K appears to be nonmaximal at longer baselines. As shown recently by R. Oliveira, the Mikheyev-Smirnov-Wolfenstein matter effect for neutrinos is altered by decoherence: in normal (inverted) mass hierarchy, a resonant enhancement of νμ(ν¯ μ)→νe(ν¯ e) occurs for 6 decoherence at the rated strength may be detectable as an excess of charged-current νe events in the full νμ exposures of MINOS + and OPERA.

  14. Effect of decoherence on fidelity in teleportation using entangled coherent states

    International Nuclear Information System (INIS)

    Prakash, H; Chandra, N; Prakash, R; Shivani

    2007-01-01

    A scheme of teleporting a superposition of coherent states (α) and ( - α) using a beam splitter and two phase shifters was proposed by van Enk and Hirota (2001 Phys. Rev. A 64 022313). The authors concluded that the probability for successful teleportation is 1/2. In this paper, it is shown that the authors' scheme can be altered slightly so as to obtain an almost perfect teleportation for an appreciable value of (α) 2 . For (α) 2 = 5, the minimum of average fidelity, which is the minimum of the sum of the product of probability of occurrence of any case, and the corresponding fidelity is less than 1 by a quantity ∼10 -4 . We also discuss the effect of decoherence on teleportation fidelity. We find that if no photons are counted in both final outputs, the minimum assured fidelity is still non-zero except when there is no decoherence and the information is an even coherent state. For non-zero photon counts, minimum assured fidelity decreases with an increase in (α) 2 for low noise. For high noise, however, it increases, attains a maximum value and then decreases with (α) 2 . The average fidelity depends appreciably on the information for low values of (α) 2 only

  15. Decoherence effect in neutrinos produced in microquasar jets

    Science.gov (United States)

    Mosquera, M. E.; Civitarese, O.

    2018-04-01

    We study the effect of decoherence upon the neutrino spectra produced in microquasar jets. In order to analyse the precession of the polarization vector of neutrinos we have calculated its time evolution by solving the corresponding equations of motion, and by assuming two different scenarios, namely: (i) the mixing between two active neutrinos, and (ii) the mixing between one active and one sterile neutrino. The results of the calculations corresponding to these scenarios show that the onset of decoherence does not depends on the activation of neutrino-neutrino interactions when realistic values of the coupling are used in the calculations. We discuss also the case of neutrinos produced in windy microquasars and compare the results which those obtained with more conventional models of microquasars.

  16. Non-local correlations via Wigner-Yanase skew information in two SC-qubit having mutual interaction under phase decoherence

    Science.gov (United States)

    Mohamed, Abdel-Baset A.

    2017-10-01

    An analytical solution of the master equation that describes a superconducting cavity containing two coupled superconducting charge qubits is obtained. Quantum-mechanical correlations based on Wigner-Yanase skew information, as local quantum uncertainty and uncertainty-induced quantum non-locality, are compared to the concurrence under the effects of the phase decoherence. Local quantum uncertainty exhibits sudden changes during its time evolution and revival process. Sudden death and sudden birth occur only for entanglement, depending on the initial state of the two coupled charge qubits, while the correlations of skew information does not vanish. The quantum correlations of skew information are found to be sensitive to the dephasing rate, the photons number in the cavity, the interaction strength between the two qubits, and the qubit distribution angle of the initial state. With a proper initial state, the stationary correlation of the skew information has a non-zero stationary value for a long time interval under the phase decoherence, that it may be useful in quantum information and computation processes.

  17. Decoherence in optimized quantum random-walk search algorithm

    International Nuclear Information System (INIS)

    Zhang Yu-Chao; Bao Wan-Su; Wang Xiang; Fu Xiang-Qun

    2015-01-01

    This paper investigates the effects of decoherence generated by broken-link-type noise in the hypercube on an optimized quantum random-walk search algorithm. When the hypercube occurs with random broken links, the optimized quantum random-walk search algorithm with decoherence is depicted through defining the shift operator which includes the possibility of broken links. For a given database size, we obtain the maximum success rate of the algorithm and the required number of iterations through numerical simulations and analysis when the algorithm is in the presence of decoherence. Then the computational complexity of the algorithm with decoherence is obtained. The results show that the ultimate effect of broken-link-type decoherence on the optimized quantum random-walk search algorithm is negative. (paper)

  18. Decoherence and the Appearance of a Classical World in Quantum Theory

    International Nuclear Information System (INIS)

    Alicki, R

    2004-01-01

    In the last decade decoherence has become a very popular topic mainly due to the progress in experimental techniques which allow monitoring of the process of decoherence for single microscopic or mesoscopic systems. The other motivation is the rapid development of quantum information and quantum computation theory where decoherence is the main obstacle in the implementation of bold theoretical ideas. All that makes the second improved and extended edition of this book very timely. Despite the enormous efforts of many authors decoherence with its consequences still remains a rather controversial subject. It touches on, namely, the notoriously confusing issues of quantum measurement theory and interpretation of quantum mechanics. The existence of different points of view is reflected by the structure and content of the book. The first three authors (Joos, Zeh and Kiefer) accept the standard formalism of quantum mechanics but seem to reject orthodox Copenhagen interpretation, Giulini and Kupsch stick to both while Stamatescu discusses models which go beyond the standard quantum theory. Fortunately, most of the presented results are independent of the interpretation and the mathematical formalism is common for the (meta)physically different approaches. After a short introduction by Joos followed by a more detailed review of the basic concepts by Zeh, chapter 3 (the longest chapter) by Joos is devoted to the environmental decoherence. Here the author considers mostly rather 'down to earth' and well-motivated mechanisms of decoherence through collisions with atoms or molecules and the processes of emission, absorption and scattering of photons. The issues of decoherence induced superselection rules and localization of objects including the possible explanation of the molecular structure are discussed in details. Many other topics are also reviewed in this chapter, e.g., the so-called Zeno effect, relationships between quantum chaos and decoherence, the role of

  19. Decoherence patterns of topological qubits from Majorana modes

    International Nuclear Information System (INIS)

    Ho, Shih-Hao; Chao, Sung-Po; Chou, Chung-Hsien; Lin, Feng-Li

    2014-01-01

    We investigate the decoherence patterns of topological qubits in contact with the environment using a novel way of deriving the open system dynamics, rather than using the Feynman–Vernon approach. Each topological qubit is made up of two Majorana modes of a 1D Kitaev chain. These two Majorana modes interact with the environment in an incoherent way which yields peculiar decoherence patterns of the topological qubit. More specifically, we consider the open system dynamics of topological qubits which are weakly coupled to fermionic/bosonic Ohmic-like environments. We find atypical patterns of quantum decoherence. In contrast to the case for non-topological qubits—which always decohere completely in all Ohmic-like environments—topological qubits decohere completely in Ohmic and sub-Ohmic environments but not in super-Ohmic ones. Moreover, we find that the fermion parities of the topological qubits, though they cannot prevent the qubit states from exhibiting decoherence in sub-Ohmic environments, can prevent thermalization turning the state into a Gibbs state. We also study the cases in which each Majorana mode can couple to different Ohmic-like environments, and the time dependence of concurrence for two topological qubits. (paper)

  20. Three-player quantum Kolkata restaurant problem under decoherence

    Science.gov (United States)

    Ramzan, M.

    2013-01-01

    Effect of quantum decoherence in a three-player quantum Kolkata restaurant problem is investigated using tripartite entangled qutrit states. Different qutrit channels such as, amplitude damping, depolarizing, phase damping, trit-phase flip and phase flip channels are considered to analyze the behaviour of players payoffs. It is seen that Alice's payoff is heavily influenced by the amplitude damping channel as compared to the depolarizing and flipping channels. However, for higher level of decoherence, Alice's payoff is strongly affected by depolarizing noise. Whereas the behaviour of phase damping channel is symmetrical around 50% decoherence. It is also seen that for maximum decoherence ( p = 1), the influence of amplitude damping channel dominates over depolarizing and flipping channels. Whereas, phase damping channel has no effect on the Alice's payoff. Therefore, the problem becomes noiseless at maximum decoherence in case of phase damping channel. Furthermore, the Nash equilibrium of the problem does not change under decoherence.

  1. Quantifying decoherence in continuous variable systems

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, A [Dipartimento di Fisica ' ER Caianiello' , Universita di Salerno, INFM UdR Salerno, INFN Sezione Napoli, Gruppo Collegato Salerno, Via S Allende, 84081 Baronissi, SA (Italy); Paris, M G A [Dipartimento di Fisica and INFM, Universita di Milano, Milan (Italy); Illuminati, F [Dipartimento di Fisica ' ER Caianiello' , Universita di Salerno, INFM UdR Salerno, INFN Sezione Napoli, Gruppo Collegato Salerno, Via S Allende, 84081 Baronissi, SA (Italy); De Siena, S [Dipartimento di Fisica ' ER Caianiello' , Universita di Salerno, INFM UdR Salerno, INFN Sezione Napoli, Gruppo Collegato Salerno, Via S Allende, 84081 Baronissi, SA (Italy)

    2005-04-01

    We present a detailed report on the decoherence of quantum states of continuous variable systems under the action of a quantum optical master equation resulting from the interaction with general Gaussian uncorrelated environments. The rate of decoherence is quantified by relating it to the decay rates of various, complementary measures of the quantum nature of a state, such as the purity, some non-classicality indicators in phase space, and, for two-mode states, entanglement measures and total correlations between the modes. Different sets of physically relevant initial configurations are considered, including one- and two-mode Gaussian states, number states, and coherent superpositions. Our analysis shows that, generally, the use of initially squeezed configurations does not help to preserve the coherence of Gaussian states, whereas it can be effective in protecting coherent superpositions of both number states and Gaussian wavepackets. (review article)

  2. Quantifying decoherence in continuous variable systems

    International Nuclear Information System (INIS)

    Serafini, A; Paris, M G A; Illuminati, F; De Siena, S

    2005-01-01

    We present a detailed report on the decoherence of quantum states of continuous variable systems under the action of a quantum optical master equation resulting from the interaction with general Gaussian uncorrelated environments. The rate of decoherence is quantified by relating it to the decay rates of various, complementary measures of the quantum nature of a state, such as the purity, some non-classicality indicators in phase space, and, for two-mode states, entanglement measures and total correlations between the modes. Different sets of physically relevant initial configurations are considered, including one- and two-mode Gaussian states, number states, and coherent superpositions. Our analysis shows that, generally, the use of initially squeezed configurations does not help to preserve the coherence of Gaussian states, whereas it can be effective in protecting coherent superpositions of both number states and Gaussian wavepackets. (review article)

  3. How biological microtubules may avoid decoherence

    International Nuclear Information System (INIS)

    Hameroff, S.

    2005-01-01

    Full text: Entangled superpositions persisting for hundreds of milliseconds in protein assemblies such as microtubules (MTs) are proposed in biological functions, e.g. quantum computation relevant to consciousness in the Penrose-Hameroff 'Orch OR' model. Cylindrical polymers of the protein tubulin, MTs organize cell activities. The obvious question is how biological quantum states could avoid decoherence, e.g. in the brain at 37.6 degrees centigrade. Screening/sheelding: tubulin protein states/functions are governed by van der Waals London forces, quantum interactions among clouds of delocalizable electrons in nonpolar 'hydrophobic' intra-protein pockets screened from external van der Waals thermal interactions. Such pockets include amino acid resonance structures benzene and indole rings. (Anesthetic gases erase consciousness solely by interfering with London forces in hydrophobic pockets in various brain proteins). Hence tubulin states may act as superpositioned qubits also shielded at the MT level by counter-ion Debye plasma layers (due to charged C-termini tails on tubulin) and by water-ordering actin gels which embed MTs in a quasi-solid. Biological systems may also exploit thermodynamic gradients to give extremely low effective temperatures. Decoherence free subspaces: paradoxically, a system coupled strongly to its environment through certain degrees of freedom can effectively 'freeze' other degrees of freedom (quantum Zeno effect), enabling coherent superpositions and entanglement to persist. Metabolic energy supplied to MT collective dynamics (e.g. Froehlich coherence) can cause Bose-Einstein condenzation and counter decoherence as lasers avoid decoherence at room temperature. Topological quantum error correction: MT lattice structure reveals various helical winding paths through adjacent tubulins which follow the Fibonacci series. Propagation/interactions of quasi-particles along these paths may process information. As proposed by Kitaev (1997), various

  4. Applications of the Decoherence Formalism

    Science.gov (United States)

    Brun, Todd Andrew

    In this work the decoherence formalism of quantum mechanics is explored and applied to a number of interesting problems in quantum physics. The boundary between quantum and classical physics is examined, and demonstration made that quantum histories corresponding to classical equations of motion become more probable for a broad class of models, including linear and nonlinear models of Brownian motion. The link between noise, dissipation, and decoherence is studied. This work is then applied to systems which classically exhibit dissipative chaotic dynamics. A theory is explicated for treating these systems, and the ideas are applied to a particular model of the forced, damped Duffing oscillator, which is chaotic for certain parameter values. Differences between classical and quantum chaos are examined, particularly differences arising in the structure of fractal strange attractors, and the conceptual difficulties in framing standard notions of chaos in a quantum system. A brief discussion of previous work on quantum chaos is included, and the differences between Hamiltonian and dissipative chaos pointed out; a somewhat different interpretation of quantum chaos from the standard one is suggested. A class of histories for quantum systems, in phase space rather than configuration space, is studied. Different ways of representing projections in phase space are discussed, and expressions for the probability of phase space histories are derived; conditions for such histories to decohere are also estimated in the semiclassical limit.

  5. Uhlmann's geometric phase in presence of isotropic decoherence

    International Nuclear Information System (INIS)

    Tidstroem, Jonas; Sjoeqvist, Erik

    2003-01-01

    Uhlmann's mixed state geometric phase [Rep. Math. Phys. 24, 229 (1986)] is analyzed in the case of a qubit affected by isotropic decoherence treated in the Markovian approximation. It is demonstrated that this phase decreases rapidly with increasing decoherence rate and that it is most fragile to weak decoherence for pure or nearly pure initial states. In the unitary case, we compare Uhlmann's geometric phase for mixed states with that occurring in standard Mach-Zehnder interferometry [Phys. Rev. Lett. 85, 2845 (2000)] and show that the latter is more robust to reduction in the length of the Bloch vector. We also describe how Uhlmann's geometric phase in the present case could in principle be realized experimentally

  6. Decoherence and Landau-Damping

    Energy Technology Data Exchange (ETDEWEB)

    Ng, K.Y.; /Fermilab

    2005-12-01

    The terminologies, decoherence and Landau damping, are often used concerning the damping of a collective instability. This article revisits the difference and relation between decoherence and Landau damping. A model is given to demonstrate how Landau damping affects the rate of damping coming from decoherence.

  7. Decoherence suppression of excitons by bang-bang control

    International Nuclear Information System (INIS)

    Kishimoto, T.; Hasegawa, A.; Mitsumori, Y.; Ishi-Hayase, J.; Sasaki, M.; Minami, F.

    2007-01-01

    We report the demonstration of decoherence control of excitons on a layered compound semiconductor GaSe by using successive three femtosecond pulses, i.e., the six-wave mixing configuration. The second pulse acts as a π pulse which reverses the time evolution of non-Markovian dynamics. By changing the pulse interval conditions, we confirmed for the first time the suppression of exciton decoherence by π pulse irradiation

  8. Lessons on electronic decoherence in molecules from exact modeling

    Science.gov (United States)

    Hu, Wenxiang; Gu, Bing; Franco, Ignacio

    2018-04-01

    Electronic decoherence processes in molecules and materials are usually thought and modeled via schemes for the system-bath evolution in which the bath is treated either implicitly or approximately. Here we present computations of the electronic decoherence dynamics of a model many-body molecular system described by the Su-Schrieffer-Heeger Hamiltonian with Hubbard electron-electron interactions using an exact method in which both electronic and nuclear degrees of freedom are taken into account explicitly and fully quantum mechanically. To represent the electron-nuclear Hamiltonian in matrix form and propagate the dynamics, the computations employ the Jordan-Wigner transformation for the fermionic creation/annihilation operators and the discrete variable representation for the nuclear operators. The simulations offer a standard for electronic decoherence that can be used to test approximations. They also provide a useful platform to answer fundamental questions about electronic decoherence that cannot be addressed through approximate or implicit schemes. Specifically, through simulations, we isolate basic mechanisms for electronic coherence loss and demonstrate that electronic decoherence is possible even for one-dimensional nuclear bath. Furthermore, we show that (i) decreasing the mass of the bath generally leads to faster electronic decoherence; (ii) electron-electron interactions strongly affect the electronic decoherence when the electron-nuclear dynamics is not pure-dephasing; (iii) classical bath models with initial conditions sampled from the Wigner distribution accurately capture the short-time electronic decoherence dynamics; (iv) model separable initial superpositions often used to understand decoherence after photoexcitation are only relevant in experiments that employ delta-like laser pulses to initiate the dynamics. These insights can be employed to interpret and properly model coherence phenomena in molecules.

  9. Decoherence in qubits due to low-frequency noise

    International Nuclear Information System (INIS)

    Bergli, J; Galperin, Y M; Altshuler, B L

    2009-01-01

    The efficiency of the future devices for quantum information processing will be limited mostly by the finite decoherence rates of the qubits. Recently, substantial progress was achieved in enhancing the time within which a solid-state qubit demonstrates coherent dynamics. This progress is based mostly on a successful isolation of the qubits from external decoherence sources. Under these conditions, the material-inherent sources of noise start to play a crucial role. In most cases, the noise that the quantum device demonstrates has a 1/f spectrum. This suggests that the environment that destroys the phase coherence of the qubit can be thought of as a system of two-state fluctuators, which experience random hops between their states. In this short review, the current state of the theory of the decoherence due to the qubit interaction with the fluctuators is discussed. The effect of such an environment on two different protocols of the qubit manipulations, free induction and echo signal, is described. It turns out that in many important cases the noise produced by the fluctuators is non-Gaussian. Consequently, the results of the interaction of the qubit with the fluctuators are not determined by the pair correlation function alone. We describe the effect of the fluctuators using the so-called spin-fluctuator model. Being quite realistic, this model allows one to exactly evaluate the qubit dynamics in the presence of one fluctuator. This solution is found, and its features, including non-Gaussian effects, are analyzed in detail. We extend this consideration to systems of large numbers of fluctuators, which interact with the qubit and lead to the 1/f noise. We discuss existing experiments on the Josephson qubit manipulation and try to identify non-Gaussian behavior.

  10. A brief status of non-standard neutrino interactions

    International Nuclear Information System (INIS)

    Ohlsson, Tommy

    2013-01-01

    In this plenary talk, we review the status of non-standard neutrino interactions (NSIs). First, we give a brief introduction to neutrino flavor transitions with NSIs based on the standard paradigm of neutrino oscillations. Then, we discuss alternative scenarios for neutrino flavor transitions such as neutrino decoherence, neutrino decay, and NSIs. Second, we investigate NSIs with three neutrino flavors. In general, we introduce production and detection NSIs, including the so-called zero-distance effect, and matter NSIs. In addition, we study mappings and approximate formulas for NSIs. Third, we present a brief account of theoretical models for NSIs. Fourth and most important, we investigate in detail the phenomenology of NSIs based on different types of data from neutrino experiments. Fifth, we give some phenomenological bounds on both matter and production/detection NSIs as well as we present sensitivity and discovery reach of NSIs at future experiments. Finally, we present a summary and state our conclusions

  11. Theory of decoherence in Bose-Einstein condensate interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Dalton, B J [ARC Centre for Quantum-Atom Optics and Centre for Atom Optics and Ultrafast Spectroscopy, Swinburne University of Technology, Melbourne, Victoria 3122 (Australia)

    2007-05-15

    A full treatment of decoherence and dephasing effects in BEC interferometry has been developed based on using quantum correlation functions for treating interferometric effects. The BEC is described via a phase space distribution functional of the Wigner type for the condensate modes and the positive P type for the non-condensate modes. Ito equations for stochastic condensate and non-condensate field functions replace the functional Fokker-Planck equation for the distribution functional and stochastic averages of field function products determine the quantum correlation functions.

  12. Quantum coherence phenomena in semiconductor quantum dots: quantum interference, decoherence and Rabi oscillation

    International Nuclear Information System (INIS)

    Htoon, H.; Shih, C.K.; Takagahara, T.

    2003-01-01

    We performed extensive studies on quantum decoherence processes of excitons trapped in the various excited states of SAQDs. Energy level structure and dephasing times of excited states were first determined by conducting photoluminescence excitation spectroscopy and wave-packet interferometry on a large number of individual SAQDs. This large statistical basis allows us to extract the correlation between the energy level structure and dephasing times. The major decoherence mechanisms and their active regime were identified from this correlation. A significant suppression of decoherence was also observed in some of the energetically isolated excited states, providing an experimental evidence for the theoretical prediction, known as 'phonon bottleneck effect'. Furthermore, we observed the direct experimental evidence of Rabi oscillation in these excited states with long decoherence times. In addition, a new type of quantum interference (QI) phenomenon was discovered in the wave-packet interferometry experiments performed in the strong excitation regime where the non-linear effects of Rabi oscillation become important. Detailed theoretical investigations attribute this phenomenon to the coherent dynamics resulting from the interplay of Rabi oscillation and QI

  13. Revisiting the quantum decoherence scenario as an explanation for the LSND anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Bakhti, Pouya; Farzan, Yasaman [Institute for research in fundamental sciences (IPM),PO Box 19395-5531, Tehran (Iran, Islamic Republic of); Schwetz, Thomas [Oskar Klein Centre for Cosmoparticle Physics,Department of Physics, Stockholm University,SE-10691 Stockholm (Sweden)

    2015-05-04

    We propose an explanation for the LSND anomaly based on quantum decoherence, postulating an exponential behavior for the decoherence parameters as a function of the neutrino energy. Within this ansatz decoherence effects are suppressed for neutrino energies above 200 MeV as well as around and below few MeV, restricting deviations from standard three-flavour oscillations only to the LSND energy range of 20–50 MeV. The scenario is consistent with the global data on neutrino oscillations, alleviates the tension between LSND and KARMEN, and predicts a null-result for MiniBooNE. No sterile neutrinos are introduced, conflict with cosmology is avoided, and no tension between short-baseline appearance and disappearance data arises. The proposal can be tested at planned reactor experiments with baselines of around 50 km, such as JUNO or RENO-50.

  14. Revisiting the quantum decoherence scenario as an explanation for the LSND anomaly

    International Nuclear Information System (INIS)

    Bakhti, Pouya; Farzan, Yasaman; Schwetz, Thomas

    2015-01-01

    We propose an explanation for the LSND anomaly based on quantum decoherence, postulating an exponential behavior for the decoherence parameters as a function of the neutrino energy. Within this ansatz decoherence effects are suppressed for neutrino energies above 200 MeV as well as around and below few MeV, restricting deviations from standard three-flavour oscillations only to the LSND energy range of 20–50 MeV. The scenario is consistent with the global data on neutrino oscillations, alleviates the tension between LSND and KARMEN, and predicts a null-result for MiniBooNE. No sterile neutrinos are introduced, conflict with cosmology is avoided, and no tension between short-baseline appearance and disappearance data arises. The proposal can be tested at planned reactor experiments with baselines of around 50 km, such as JUNO or RENO-50.

  15. Minimum decoherence cat-like states in Gaussian noisy channels

    Energy Technology Data Exchange (ETDEWEB)

    Serafini, A [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno, INFM UdR Salerno, INFN Sezione Napoli, G C Salerno, Via S Allende, 84081 Baronissi, SA (Italy); De Siena, S [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno, INFM UdR Salerno, INFN Sezione Napoli, G C Salerno, Via S Allende, 84081 Baronissi, SA (Italy); Illuminati, F [Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno, INFM UdR Salerno, INFN Sezione Napoli, G C Salerno, Via S Allende, 84081 Baronissi, SA (Italy); Paris, M G A [ISIS ' A Sorbelli' , I-41026 Pavullo nel Frignano, MO (Italy)

    2004-06-01

    We address the evolution of cat-like states in general Gaussian noisy channels, by considering superpositions of coherent and squeezed coherent states coupled to an arbitrarily squeezed bath. The phase space dynamics is solved and decoherence is studied, keeping track of the purity of the evolving state. The influence of the choice of the state and channel parameters on purity is discussed and optimal working regimes that minimize the decoherence rate are determined. In particular, we show that squeezing the bath to protect a non-squeezed cat state against decoherence is equivalent to orthogonally squeezing the initial cat state while letting the bath be phase insensitive.

  16. Minimum decoherence cat-like states in Gaussian noisy channels

    International Nuclear Information System (INIS)

    Serafini, A; De Siena, S; Illuminati, F; Paris, M G A

    2004-01-01

    We address the evolution of cat-like states in general Gaussian noisy channels, by considering superpositions of coherent and squeezed coherent states coupled to an arbitrarily squeezed bath. The phase space dynamics is solved and decoherence is studied, keeping track of the purity of the evolving state. The influence of the choice of the state and channel parameters on purity is discussed and optimal working regimes that minimize the decoherence rate are determined. In particular, we show that squeezing the bath to protect a non-squeezed cat state against decoherence is equivalent to orthogonally squeezing the initial cat state while letting the bath be phase insensitive

  17. Teleportation of the one-qubit state in decoherence environments

    Energy Technology Data Exchange (ETDEWEB)

    Hu Mingliang, E-mail: mingliang0301@xupt.edu.cn, E-mail: mingliang0301@163.com [School of Science, Xi' an University of Posts and Telecommunications, Xi' an 710061 (China)

    2011-01-28

    We study standard quantum teleportation of a one-qubit state for the situation in which the channel is subject to decoherence, and where the evolution of the channel state is ruled by a master equation in the Lindblad form. A detailed calculation reveals that the quality of teleportation is determined by both the entanglement and the purity of the channel state, and only the optimal matching of them ensures the highest fidelity of standard quantum teleportation. Also our results demonstrated that the decoherence induces distortion of the Bloch sphere for the output state with different rates in different directions, which implies that different input states will be teleported with different fidelities.

  18. Instantaneous and dynamical decoherence

    Science.gov (United States)

    Polonyi, Janos

    2018-04-01

    Two manifestations of decoherence, called instantaneous and dynamical, are investigated. The former reflects the suppression of the interference between the components of the current state while the latter reflects that within the initial state. These types of decoherence are computed in the case of the Brownian motion and the harmonic and anharmonic oscillators within the semiclassical approximation. A remarkable phenomenon, namely the opposite orientation of the time arrow of the dynamical variables compared to that of the quantum fluctuations generates a double exponential time dependence of the dynamical decoherence in the presence of a harmonic force. For the weakly anharmonic oscillator the dynamical decoherence is found to depend in a singular way on the amount of the anharmonicity.

  19. Decoherence and the quantum-to-classical transition

    CERN Document Server

    Schlosshauer, Maximilian

    2007-01-01

    The ultimate introduction, textbook, and reference on decoherence and the quantum-to-classical transition. This detailed but accessible text describes the concepts, formalism, interpretation, and experimental observation of decoherence and explains how decoherence is responsible for the emergence, from the realm of quantum mechanics, of the classical world of our experience. Topics include: • Foundational problems at the quantum–classical border; • The role of the environment and entanglement; • Environment-induced loss of coherence and superselection; • Scattering-induced decoherence and spatial localization; • Master equations; • Decoherence models; • Experimental realization of "Schrödinger kittens" and their decoherence; • Quantum computing, quantum error correction, and decoherence-free subspaces; • Implications of decoherence for interpretations of quantum mechanics and for the "measurement problem"; • Decoherence in the brain. Written in a lucid and concise style that is accessib...

  20. Quantum irreversible decoherence behaviour in open quantum systems with few degrees of freedom: application to 1H NMR reversion experiments in nematic liquid crystals.

    Science.gov (United States)

    Segnorile, H H; Zamar, R C

    2013-10-21

    An experimental study of NMR spin decoherence in nematic liquid crystals is presented. Decoherence dynamics can be put in evidence by means of refocusing experiments of the dipolar interactions. The experimental technique used in this work is based on the MREV8 pulse sequence. The aim of the work is to detect the main features of the irreversible quantum decoherence in liquid crystals, on the basis of the theory presented by the authors recently. The focus is laid on experimentally probing the eigen-selection process in the intermediate time scale, between quantum interference of a closed system and thermalization, as a signature of the quantum spin decoherence of the open quantum system, as well as on quantifying the effects of non-idealities as possible sources of signal decays which could mask the intrinsic decoherence. In order to contrast experiment and theory, the theory was adapted to obtain the decoherence function corresponding to the MREV8 reversion experiments. Non-idealities of the experimental setting, like external field inhomogeneity, pulse misadjustments, and the presence of non-reverted spin interaction terms are analysed in detail within this framework, and their effects on the observed signal decay are numerically estimated. It is found that though all these non-idealities could in principle affect the evolution of the spin dynamics, their influence can be mitigated and they do not present the characteristic behaviour of the irreversible spin decoherence. As unique characteristic of decoherence, the experimental results clearly show the occurrence of eigen-selectivity in the intermediate timescale, in complete agreement with the theoretical predictions. We conclude that the eigen-selection effect is the fingerprint of decoherence associated with a quantum open spin system in liquid crystals. Besides, these features of the results account for the quasi-equilibrium states of the spin system, which were observed previously in these mesophases, and

  1. Decoherence and the quantum-to-classical transition

    International Nuclear Information System (INIS)

    Schlosshauer, M.A.

    2007-01-01

    The ultimate introduction, textbook, and reference on decoherence and the quantum-to-classical transition. This detailed but accessible text describes the concepts, formalism, interpretation, and experimental observation of decoherence and explains how decoherence is responsible for the emergence, from the realm of quantum mechanics, of the classical world of our experience. Topics include: - Foundational problems at the quantum-classical border; - The role of the environment and entanglement; - Environment-induced loss of coherence and superselection; - Scattering-induced decoherence and spatial localization; - Master equations; - Decoherence models; - Experimental realization of ''Schroedinger's kittens'' and their decoherence; - Quantum computing, quantum error correction, and decoherence-free subspaces; - Implications of decoherence for interpretations of quantum mechanics and for the ''measurement problem''; - Decoherence in the brain. Written in a lucid and concise style that is accessible to all readers with a basic knowledge of quantum mechanics, this stimulating book tells the ''classical from quantum'' story in a comprehensive and coherent manner that brings together the foundational, technical, and experimental aspects of decoherence. It will be an indispensable resource for newcomers and experts alike. (orig.)

  2. The off-resonant aspects of decoherence and a critique of the two-level approximation

    International Nuclear Information System (INIS)

    Savran, Kerim; Hakioglu, T; Mese, E; Sevincli, Haldun

    2006-01-01

    Conditions in favour of a realistic multilevelled description of a decohering quantum system are examined. In this regard the first crucial observation is that the thermal effects, contrary to the conventional belief, play a minor role at low temperatures in the decoherence properties. The system-environment coupling and the environmental energy spectrum dominantly affect the decoherence. In particular, zero temperature quantum fluctuations or non-equilibrium sources can be present and influential on the decoherence rates in a wide energy range allowed by the spectrum of the environment. A crucial observation against the validity of the two-level approximation is that the decoherence rates are found to be dominated not by the long time resonant but the short time off-resonant processes. This observation is demonstrated in two stages. Firstly, our zero temperature numerical results reveal that the calculated short time decoherence rates are Gaussian-like (the time dependence of the density matrix is led by the second time derivative at t = 0). Exact analytical results are also permitted in the short time limit, which, consistent with our numerical results, reveal that this specific Gaussian-like behaviour is a property of the non-Markovian correlations in the environment. These Gaussian-like rates have no dependence on any spectral parameter (position and the width of the spectrum) except, in totality, the spectral area itself. The dependence on the spectral area is a power law. Furthermore, the Gaussian-like character at short times is independent of the number of levels (N), but the numerical value of the decoherence rates is a monotonic function of N. In this context, we demonstrate that leakage, as a characteristic multilevel effect, is dominated by the non-resonant processes. The long time behaviour of decoherence is also examined. Since our spectral model allows Markovian environmental correlations at long times, the decoherence rates in this regime become

  3. Exact wave packet decoherence dynamics in a discrete spectrum environment

    International Nuclear Information System (INIS)

    Tu, Matisse W Y; Zhang Weimin

    2008-01-01

    We find an exact analytical solution of the reduced density matrix from the Feynman-Vernon influence functional theory for a wave packet in an environment containing a few discrete modes. We obtain two intrinsic energy scales relating to the time scales of the system and the environment. The different relationship between these two scales alters the overall form of the solution of the system. We also introduce a decoherence measure for a single wave packet which is defined as the ratio of Schroedinger uncertainty over the delocalization extension of the wave packet and characterizes the time-evolution behaviour of the off-diagonal reduced density matrix element. We utilize the exact solution and the decoherence measure to study the wave packet decoherence dynamics. We further demonstrate how the dynamical diffusion of the wave packet leads to non-Markovian decoherence in such a microscopic environment.

  4. Decoherence in open quantum systems

    International Nuclear Information System (INIS)

    Isar, A.

    2005-01-01

    In the framework of the Lindblad theory for open quantum systems we determine the degree of quantum decoherence of a harmonic oscillator interacting with a thermal bath. In the present paper we have studied QD with the Markovian equation of Lindblad in order to understand the quantum to classical transition for a system consisting of an one-dimensional harmonic oscillator in interaction with a thermal bath in the framework of the theory of open quantum systems based on quantum dynamical semigroups. The role of QD became relevant in many interesting physical problems from field theory, atomic physics, quantum optics and quantum information processing, to which we can add material science, heavy ion collisions, quantum gravity and cosmology, condensed matter physics. Just to mention only a few of them: to understand the way in which QD enhances the quantum to classical transition of density fluctuations; to study systems of trapped and cold atoms (or ions) which may offer the possibility of engineering the environment, like trapped atoms inside cavities, relation between decoherence and other cavity QED effects (such as Casimir effect); on mesoscopic scale, decoherence in the context of Bose-Einstein condensation. In many cases physicists are interested in understanding the specific causes of QD just because they want to prevent decoherence from damaging quantum states and to protect the information stored in quantum states from the degrading effect of the interaction with the environment. Thus, decoherence is responsible for washing out the quantum interference effects which are desirable to be seen as signals in some experiments. QD has a negative influence on many areas relying upon quantum coherence effects, such as quantum computation and quantum control of atomic and molecular processes. The physics of information and computation is such a case, where decoherence is an obvious major obstacle in the implementation of information-processing hardware that takes

  5. Cooperative spin decoherence and population transfer

    International Nuclear Information System (INIS)

    Genes, C.; Berman, P. R.

    2006-01-01

    An ensemble of multilevel atoms is a good candidate for a quantum information storage device. The information is encrypted in the collective ground state atomic coherence, which, in the absence of external excitation, is decoupled from the vacuum and therefore decoherence free. However, in the process of manipulation of atoms with light pulses (writing, reading), one inadvertently introduces a coupling to the environment, i.e., a source of decoherence. The dissipation process is often treated as an independent process for each atom in the ensemble, an approach which fails at large atomic optical depths where cooperative effects must be taken into account. In this paper, the cooperative behavior of spin decoherence and population transfer for a system of two, driven multilevel atoms is studied. Not surprisingly, an enhancement in the decoherence rate is found, when the atoms are separated by a distance that is small compared to an optical wavelength; however, it is found that this rate increases even further for somewhat larger separations for atoms aligned along the direction of the driving field's propagation vector. A treatment of the cooperative modification of optical pumping rates and an effect of polarization swapping between atoms is also discussed, lending additional insight into the origin of the collective decay

  6. Experimental decoherence in molecule interferometry

    International Nuclear Information System (INIS)

    Hackermueller, L.; Hornberger, K.; Stibor, A.; Zeilinger, A.; Arndt, M.; Kiesewetter, G.

    2005-01-01

    Full text: We present three mechanisms of decoherence that occur quite naturally in matter wave interferometer with large molecules. One way molecules can lose coherence is through collision with background gas particles. We observe a loss of contrast with increasing background pressure for various types of gases. We can understand this phenomenon quantitatively with a new model for collisional decoherence which corrects older models by a factor of 2 π;. The second experiment studies the thermal emission of photons related to the high internal energy of the interfering molecules. When sufficiently many or sufficiently short photons are emitted inside the interferometer, the fringe contrast is lost. We can continuously vary the temperature of the molecules and compare the loss of contrast with a model based on decoherence theory. Again we find good quantitative agreement. A third mechanism that influences our interference pattern is dephasing due to vibrations of the interference gratings. By adding additional vibrations we study this effect in more detail. (author)

  7. Decoherence in Neutrino Propagation Through Matter, and Bounds from IceCube/DeepCore

    Energy Technology Data Exchange (ETDEWEB)

    Coloma, Pilar [Fermilab; Lopez-Pavon, Jacobo [CERN; Martinez-Soler, Ivan [Madrid, IFT; Nunokawa, Hiroshi [Rio de Janeiro, Pont. U. Catol.

    2018-03-12

    We revisit neutrino oscillations in matter considering the open quantum system framework which allows to introduce possible decoherence effects generated by New Physics in a phenomenological manner. We assume that the decoherence parameters $\\gamma_{ij}$ may depend on the neutrino energy, as $\\gamma_{ij}=\\gamma_{ij}^{0}(E/\\text{GeV})^n$ $(n = 0,\\pm1,\\pm2) $. The case of non-uniform matter is studied in detail, both within the adiabatic approximation and in the more general non-adiabatic case. In particular, we develop a consistent formalism to study the non-adiabatic case dividing the matter profile into an arbitrary number of layers of constant densities. This formalism is then applied to explore the sensitivity of IceCube and DeepCore to this type of effects. Our study is the first atmospheric neutrino analysis where a consistent treatment of the matter effects in the three-neutrino case is performed in presence of decoherence. We show that matter effects are indeed extremely relevant in this context. We find that IceCube is able to considerably improve over current bounds in the solar sector ($\\gamma_{21}$) and in the atmospheric sector ($\\gamma_{31}$ and $\\gamma_{32}$) for $n=0,1,2$ and, in particular, by several orders of magnitude (between 3 and 9) for the $n=1,2$ cases. For $n=0$ we find $\\gamma_{32},\\gamma_{31}< 4.0\\cdot10^{-24} (1.3\\cdot10^{-24})$ GeV and $\\gamma_{21}<1.3\\cdot10^{-24} (4.1\\cdot10^{-24})$ GeV, for normal (inverted) mass ordering.

  8. Environment-induced decoherence and the transition from quantum to classical

    International Nuclear Information System (INIS)

    Paz, J.P.; Zurek, W.H.

    2001-01-01

    We study dynamics of quantum open systems, paying special attention to these aspects of their evolution which are relevant to the transition from quantum to classical. We begin with a discussion of the conditional dynamics of simple systems. The resulting models are straightforward but suffice to illustrate basic physical ideas behind quantum measurements and decoherence. To discuss decoherence and environment-induced superselection (einselection) in a more general setting, we sketch perturbative as well as exact derivations of several master equations valid for various systems. Using these equations we study einselection employing the general strategy of the predictability sieve. Assumptions that are usually made in the discussion of decoherence are critically reexamined along with the 'standard lore' to which they lead. Restoration of quantum-classical correspondence in systems that are classically chaotic is discussed. The dynamical second law - it is shown - can be traced to the same phenomena that allow for the restoration of the correspondence principle in de-cohering chaotic systems (where it is otherwise lost on a very short time-scale). Quantum error correction is discussed as an example of an anti-decoherence strategy. Implications of decoherence and einselection for the interpretation of quantum theory are briefly pointed out. (authors)

  9. Decoherence in quantum cosmology

    International Nuclear Information System (INIS)

    Halliwell, J.J.

    1989-01-01

    We discuss the manner in which the gravitational field becomes classical in quantum cosmology. This involves two steps. First, one must show that the quantum state of the gravitational field becomes strongly peaked about a set of classical configurations. Second, one must show that the system is in one of a number of states of a relatively permanent nature that have negligible interference with each other. This second step involves decoherence---destruction of the off-diagonal terms in the density matrix, representing interference. To introduce the notion of decoherence, we discuss it in the context of the quantum theory of measurement, following the environment-induced superselection approach of Zurek. We then go on to discuss the application of these ideas to quantum cosmology. We show, in a simple homogeneous isotropic model, that the density matrix of the Universe will decohere if the long-wavelength modes of an inhomogeneous massless scalar field are traced out. These modes effectively act as an environment which continuously ''monitors'' the scale factor. The coherence width is very small except in the neighborhood of a classical bounce. This means that one cannot really say that a classical solution bounces because the notion of classical spacetime does not apply. The coherence width decreases as the scale factor increases, which has implications for the arrow of time. We also show, using decoherence arguments, that the WKB component of the wave function of the Universe which represents expanding universes has negligible interference with the collapsing component. This justifies the usual assumption that they may be treated separately

  10. Quantum decoherence with holography

    International Nuclear Information System (INIS)

    Ho, Shih-Hao; Li, Wei; Lin, Feng-Li; Ning, Bo

    2014-01-01

    Quantum decoherence is the loss of a system’s purity due to its interaction with the surrounding environment. Via the AdS/CFT correspondence, we study how a system decoheres when its environment is a strongly-coupled theory. In the Feynman-Vernon formalism, we compute the influence functional holographically by relating it to the generating function of Schwinger-Keldysh propagators and thereby obtain the dynamics of the system’s density matrix. We present two exactly solvable examples: (1) a straight string in a BTZ black hole and (2) a scalar probe in AdS 5 . We prepare an initial state that mimics Schrödinger’s cat and identify different stages of its decoherence process using the time-scaling behaviors of Rényi entropy. We also relate decoherence to local quantum quenches, and by comparing the time evolution behaviors of the Wigner function and Rényi entropy we demonstrate that the relaxation of local quantum excitations leads to the collapse of its wave-function

  11. Chaos, decoherence and quantum cosmology

    International Nuclear Information System (INIS)

    Calzetta, Esteban

    2012-01-01

    In this topical review we discuss the connections between chaos, decoherence and quantum cosmology. We understand chaos as classical chaos in systems with a finite number of degrees of freedom, decoherence as environment induced decoherence and quantum cosmology as the theory of the Wheeler-DeWitt equation or else the consistent history formulation thereof, first in mini super spaces and later through its extension to midi super spaces. The overall conclusion is that consideration of decoherence is necessary (and probably sufficient) to sustain an interpretation of quantum cosmology based on the wavefunction of the Universe adopting a Wentzel-Kramers-Brillouin form for large Universes, but a definitive account of the semiclassical transition in classically chaotic cosmological models is not available in the literature yet. (topical review)

  12. Decoherence in a scalable adiabatic quantum computer

    International Nuclear Information System (INIS)

    Ashhab, S.; Johansson, J. R.; Nori, Franco

    2006-01-01

    We consider the effects of decoherence on Landau-Zener crossings encountered in a large-scale adiabatic-quantum-computing setup. We analyze the dependence of the success probability--i.e., the probability for the system to end up in its new ground state--on the noise amplitude and correlation time. We determine the optimal sweep rate that is required to maximize the success probability. We then discuss the scaling of decoherence effects with increasing system size. We find that those effects can be important for large systems, even if they are small for each of the small building blocks

  13. Bohmian histories and decoherent histories

    International Nuclear Information System (INIS)

    Hartle, James B.

    2004-01-01

    The predictions of the Bohmian and the decoherent (or consistent) histories formulations of the quantum mechanics of a closed system are compared for histories--sequences of alternatives at a series of times. For certain kinds of histories, Bohmian mechanics and decoherent histories may both be formulated in the same mathematical framework within which they can be compared. In that framework, Bohmian mechanics and decoherent histories represent a given history by different operators. Their predictions for the probabilities of histories of a closed system therefore generally differ. However, in an idealized model of measurement, the predictions of Bohmian mechanics and decoherent histories coincide for the probabilities of records of measurement outcomes. The formulations are thus difficult to distinguish experimentally. They may differ in their accounts of the past history of the Universe in quantum cosmology

  14. How decoherence affects the probability of slow-roll eternal inflation

    Science.gov (United States)

    Boddy, Kimberly K.; Carroll, Sean M.; Pollack, Jason

    2017-07-01

    Slow-roll inflation can become eternal if the quantum variance of the inflaton field around its slowly rolling classical trajectory is converted into a distribution of classical spacetimes inflating at different rates, and if the variance is large enough compared to the rate of classical rolling that the probability of an increased rate of expansion is sufficiently high. Both of these criteria depend sensitively on whether and how perturbation modes of the inflaton interact and decohere. Decoherence is inevitable as a result of gravitationally sourced interactions whose strength are proportional to the slow-roll parameters. However, the weakness of these interactions means that decoherence is typically delayed until several Hubble times after modes grow beyond the Hubble scale. We present perturbative evidence that decoherence of long-wavelength inflaton modes indeed leads to an ensemble of classical spacetimes with differing cosmological evolutions. We introduce the notion of per-branch observables—expectation values with respect to the different decohered branches of the wave function—and show that the evolution of modes on individual branches varies from branch to branch. Thus, single-field slow-roll inflation fulfills the quantum-mechanical criteria required for the validity of the standard picture of eternal inflation. For a given potential, the delayed decoherence can lead to slight quantitative adjustments to the regime in which the inflaton undergoes eternal inflation.

  15. Microscopic theory of indistinguishable single-photon emission from a quantum dot coupled to a cavity: The role of non-Markovian phonon-induced decoherence

    DEFF Research Database (Denmark)

    Nielsen, Per Kær; Lodahl, Peter; Jauho, Antti-Pekka

    2013-01-01

    We study the fundamental limit on single-photon indistinguishability imposed by decoherence due to phonon interactions in semiconductor quantum dot-cavity quantum electrodynamics systems. Employing an exact diagonalization approach we find large differences compared to standard methods...

  16. In-medium jet evolution: interplay between broadening and decoherence effects

    CERN Document Server

    Apolinário, Liliana; Milhano, Guilherme; Salgado, Carlos A.

    2016-01-01

    The description of the modifications of the coherence pattern in a parton shower, in the presence of a QGP, has been actively addressed in recent studies. Among the several achievements, finite energy corrections, transverse momentum broadening due to medium interactions and interference effects between successive emissions have been extensively improved as they seem to be essential features for a correct description of the results obtained in heavy-ion collisions. In this work, based on the insights of our previous work [1], we explore the physical interplay between broadening and decoherence, by generalising previous studies of medium-modifications of the antenna spectrum [2, 3, 4] - so far restricted to the case where transverse motion is neglected. The result allow us to identify two quantities controlling the decoherence of a medium modified shower that can be used as building blocks for a successful future generation of jet quenching Monte Carlo simulators: a generalisation of the $\\Delta_{med}$ paramet...

  17. Universal decoherence in solids.

    Science.gov (United States)

    Chudnovsky, Eugene M

    2004-03-26

    Symmetry implications for the decoherence of quantum oscillations of a two-state system in a solid are studied. When the oscillation frequency is small compared to the Debye frequency, the universal lower bound on the decoherence due to the atomic environment is derived in terms of the macroscopic parameters of the solid, with no unknown interaction constants.

  18. Robust control of decoherence in realistic one-qubit quantum gates

    International Nuclear Information System (INIS)

    Protopopescu, V; Perez, R; D'Helon, C; Schmulen, J

    2003-01-01

    We present an open-loop (bang-bang) scheme to control decoherence in a generic one-qubit quantum gate and implement it in a realistic simulation. The system is consistently described within the spin-boson model, with interactions accounting for both adiabatic and thermal decoherence. The external control is included from the beginning in the Hamiltonian as an independent interaction term. After tracing out the environment modes, reduced equations are obtained for the two-level system in which the effects of both decoherence and external control appear explicitly. The controls are determined exactly from the condition to eliminate decoherence, i.e. to restore unitarity. Numerical simulations show excellent performance and robustness of the proposed control scheme

  19. Suppressing decoherence by preparing the environment

    International Nuclear Information System (INIS)

    Landon-Cardinal, Olivier; MacKenzie, Richard

    2013-01-01

    To protect a quantum system from decoherence due to interaction with its environment, we investigate the existence of initial states of the environment allowing for decoherence-free evolution of the system. For a class of models in which a two-state system and a dynamical environment interact through a Hamiltonian restricted to be a tensor product, we prove that such states exist if and only if the interaction and self-evolution Hamiltonians of the environment share an eigenstate. If decoherence by state preparation is not possible, we show that initial states minimizing decoherence result from a delicate compromise between the environment and interaction dynamics

  20. Universal mechanisms of decoherence of qubit states in a SQUID

    Science.gov (United States)

    Kuklov, A. B.; Chudnovsky, E. M.

    2003-03-01

    Fundamental conservation laws mandate parameter-free generic mechanisms of decoherence of quantum oscillations of the superconducting current in a SQUID [1]. The very fact that the current flows with respect to the ion lattice is shown to result in a decoherence via emission of the transverse sound at the oscillation frequency. For SQUIDs larger than the wavelength of the phonons, this effect can significantly limit the quality factor. The decohering effects of the external mechanical and magnetic noise are shown to be proportional to the total magnetic moment of the SQUID, making small SQUIDs less susceptible to the noise than large SQUIDs. Decoherence due to the emission of photons into the open space and in the presence of the metal shielding has been studied as well. Suggestions of experimental setups with low decoherence have been made. [1] E. M. Chudnovsky and A. B. Kuklov, arXiv:cond-mat/0211246.

  1. Relevance of induced gauge interactions in decoherence

    International Nuclear Information System (INIS)

    Datta, D.P.

    1994-07-01

    Decoherence in quantum cosmology is shown to occur naturally in the presence of induced geometric gauge interactions associated with particle production. A new ''gauge'' - variant form of the semiclassical Einstein equations is also presented which makes the non-gravitating character of the vacuum polarization energy explicit. (author). 20 refs

  2. Dual-probe decoherence microscopy: probing pockets of coherence in a decohering environment

    International Nuclear Information System (INIS)

    Jeske, Jan; Cole, Jared H; Müller, Clemens; Marthaler, Michael; Schön, Gerd

    2012-01-01

    We study the use of a pair of qubits as a decoherence probe of a nontrivial environment. This dual-probe configuration is modelled by three two-level systems (TLSs), which are coupled in a chain in which the middle system represents an environmental TLS. This TLS resides within the environment of the qubits and therefore its coupling to perturbing fluctuations (i.e. its decoherence) is assumed much stronger than the decoherence acting on the probe qubits. We study the evolution of such a tripartite system including the appearance of a decoherence-free state (dark state) and non-Markovian behaviour. We find that all parameters of this TLS can be obtained from measurements of one of the probe qubits. Furthermore, we show the advantages of two qubits in probing environments and the new dynamics imposed by a TLS that couples to two qubits at once. (paper)

  3. The Measurement Problem: Decoherence and Convivial Solipsism

    Science.gov (United States)

    Zwirn, Hervé

    2016-06-01

    The problem of measurement is often considered an inconsistency inside the quantum formalism. Many attempts to solve (or to dissolve) it have been made since the inception of quantum mechanics. The form of these attempts depends on the philosophical position that their authors endorse. I will review some of them and analyze their relevance. The phenomenon of decoherence is often presented as a solution lying inside the pure quantum formalism and not demanding any particular philosophical assumption. Nevertheless, a widely debated question is to decide between two different interpretations. The first one is to consider that the decoherence process has the effect to actually project a superposed state into one of its classically interpretable component, hence doing the same job as the reduction postulate. For the second one, decoherence is only a way to show why no macroscopic superposed state can be observed, so explaining the classical appearance of the macroscopic world, while the quantum entanglement between the system, the apparatus and the environment never disappears. In this case, explaining why only one single definite outcome is observed remains to do. In this paper, I examine the arguments that have been given for and against both interpretations and defend a new position, the "Convivial Solipsism", according to which the outcome that is observed is relative to the observer, different but in close parallel to the Everett's interpretation and sharing also some similarities with Rovelli's relational interpretation and Quantum Bayesianism. I also show how "Convivial Solipsism" can help getting a new standpoint about the EPR paradox providing a way out of the seemingly unavoidable non-locality of quantum mechanics.

  4. Photon Subtraction by Many-Body Decoherence

    DEFF Research Database (Denmark)

    Murray, C. R.; Mirgorodskiy, I.; Tresp, C.

    2018-01-01

    We experimentally and theoretically investigate the scattering of a photonic quantum field from another stored in a strongly interacting atomic Rydberg ensemble. Considering the many-body limit of this problem, we derive an exact solution to the scattering-induced spatial decoherence of multiple...... stored photons, allowing for a rigorous understanding of the underlying dissipative quantum dynamics. Combined with our experiments, this analysis reveals a correlated coherence-protection process in which the scattering from one excitation can shield all others from spatial decoherence. We discuss how...... this effect can be used to manipulate light at the quantum level, providing a robust mechanism for single-photon subtraction, and experimentally demonstrate this capability....

  5. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction.

    Science.gov (United States)

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2015-10-21

    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability.

  6. Dynamical decoherence control of multi-partite systems

    International Nuclear Information System (INIS)

    Gordon, Goren

    2009-01-01

    A unified theory is given of dynamically modified decay and decoherence of field-driven multipartite systems. When this universal framework is applied to two-level systems or qubits experiencing either amplitude or phase noise due to their coupling to a thermal bath, it results in completely analogous formulae for the modified decoherence rates in both cases. The spectral representation of the modified decoherence rates underscores the main insight derived from this approach, namely, that the decoherence rate is the spectral overlap of the noise and modulation spectra. This allows us to come up with general recipes for modulation schemes for the optimal reduction of decoherence under realistic constraints. An extension of the treatment to multilevel and multipartite systems exploits intra-system symmetries to dynamically protect multipartite entangled states. Another corollary of this treatment is that entanglement, which is very susceptible to noise and can die, i.e., vanish at finite times, can be resuscitated by appropriate modulations prescribed by our universal formalism. This dynamical decoherence control is also shown to be advantageous in quantum computation setups, where control fields are applied concurrently with the gate operations to increase the gate fidelity. (phd tutorial)

  7. New perspectives on phenomenological decoherence

    International Nuclear Information System (INIS)

    Melo, Fernando Vaz de; Guzzo, Marcelo Moraes; Peres, Orlando Luis Goulart

    2001-01-01

    Decoherence showed to be a powerful tool in helping to solve the atmospheric Neutrino problem. However a complete analysis was not yet done. In this work we present all the possibilities concerning phenomenological decoherence linked to Neutrino 'problem'. Its possibilities and differences are stressed out in a effort to clarify the whole phenomena. (author)

  8. Quantum Darwinism, Decoherence, and the Randomness of Quantum Jumps

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, Wojciech H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-06-05

    Tracing flows of information in our quantum Universe explains why we see the world as classical. Quantum principle of superposition decrees every combination of quantum states a legal quantum state. This is at odds with our experience. Decoherence selects preferred pointer states that survive interaction with the environment. They are localized and effectively classical. They persist while their superpositions decohere. Here we consider emergence of `the classical' starting at a more fundamental pre-decoherence level, tracing the origin of preferred pointer states and deducing their probabilities from the core quantum postulates. We also explore role of the environment as medium through which observers acquire information. This mode of information transfer leads to perception of objective classical reality.

  9. Slowing Quantum Decoherence by Squeezing in Phase Space

    Science.gov (United States)

    Le Jeannic, H.; Cavaillès, A.; Huang, K.; Filip, R.; Laurat, J.

    2018-02-01

    Non-Gaussian states, and specifically the paradigmatic cat state, are well known to be very sensitive to losses. When propagating through damping channels, these states quickly lose their nonclassical features and the associated negative oscillations of their Wigner function. However, by squeezing the superposition states, the decoherence process can be qualitatively changed and substantially slowed down. Here, as a first example, we experimentally observe the reduced decoherence of squeezed optical coherent-state superpositions through a lossy channel. To quantify the robustness of states, we introduce a combination of a decaying value and a rate of decay of the Wigner function negativity. This work, which uses squeezing as an ancillary Gaussian resource, opens new possibilities to protect and manipulate quantum superpositions in phase space.

  10. Decoherence of Flux Qubits Coupled to Electronic Circuits

    NARCIS (Netherlands)

    Wilhelm, F.K.; Storcz, M.J.; van der Wal, C.H.; Harmans, C.J.P.M.; Mooij, J.E.

    2003-01-01

    On the way to solid-state quantum computing, overcoming decoherence is the central issue. In this contribution, we discuss the modeling of decoherence of a superonducting flux qubit coupled to dissipative electronic circuitry. We discuss its impact on single qubit decoherence rates and on the

  11. Probing models of quantum decoherence in particle physics and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatos, Nikolaos E; Sarkar, Sarben [King' s College London, Department of Physics, Theoretical Physics, Strand London WC2R 2LS (United Kingdom)

    2007-05-15

    In this review we discuss the string theoretical motivations for induced decoherence and deviations from ordinary quantum-mechanical behaviour; this leads to intrinsic CPT violation in the context of an extended class of quantum-gravity models. We proceed to a description of precision tests of CPT symmetry and quantum mechanics using mainly neutral kaons and neutrinos. We emphasize the possibly unique role of neutral meson factories in providing tests of models where the quantum-mechanical CPT operator is not well-defined, leading to modifications of Einstein-Podolsky-Rosen particle correlators. Finally, we discuss experimental probes of decoherence in cosmology, including studies of dissipative relaxation models of dark energy in non-critical (non-equilibrium) string theory and the associated modifications of the Boltzmann equation for the evolution of species abundances.

  12. Exact decoherence dynamics of a single-mode optical field

    International Nuclear Information System (INIS)

    An, J.-H.; Yeo Ye; Oh, C.H.

    2009-01-01

    We apply the influence-functional method of Feynman and Vernon to the study of a single-mode optical field that interacts with an environment at zero temperature. Using the coherent-state formalism of the path integral, we derive a generalized master equation for the single-mode optical field. Our analysis explicitly shows how non-Markovian effects manifest in the exact decoherence dynamics for different environmental correlation time scales. Remarkably, when these are equal to or greater than the time scale for significant change in the system, the interplay between the backaction-induced coherent oscillation and the dissipative effect of the environment causes the non-Markovian effect to have a significant impact not only on the short-time behavior but also on the long-time steady-state behavior of the system.

  13. Intrinsic decoherence theory applied to single C{sub 60} solid state transistors: Robustness in the transmission regimen

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.C., E-mail: cflores@uta.cl

    2016-03-06

    In relation to a given Hamiltonian and intrinsic decoherence, there are subspaces for which coherence remains robust. Robustness can be classified by the parameter ratios (integer, rational or irrational numbers) defining each subspace. Of particular novelty in this work is application to the single-C{sub 60} transistor where coherence becomes robust in the tunnel transmission regime. In this case, the intrinsic-decoherence parameter defining the theory is explicitly evaluated in good agreement with experimental data. Many of these results are expected to hold for standard quantum dots and mesoscopic devices. - Highlights: • Intrinsic decoherence and transport (mesoscopic). • Robustness condition face to decoherence. • Application to the single C{sub 60} solid state transistor. • Parameter determination based on experiments. • Other cases of robustness.

  14. Quantum decoherence and interlevel relations

    Science.gov (United States)

    Crull, Elise M.

    Quantum decoherence is a dynamical process whereby a system's phase relations become delocalized due to interaction and subsequent entanglement with its environment. This delocalization, or decoherence, forces the quantum system into a state that is apparently classical (or apparently an eigenstate) by prodigiously suppressing features that typically give rise to so-called quantum behavior. Thus it has been frequently proposed by physicists and philosophers alike that decoherence explains the dynamical transition from quantum behavior to classical behavior. Statements like this assume the existence of distinct realms, however, and the present thesis is an exploration of the metaphysical consequences of quantum decoherence motivated by the question of the quantum-to-classical transition and interlevel relations: if there are in-principle "classical" and "quantum" levels, what are the relations between them? And if there are no such levels, what follows? Importantly, the following philosophical investigations are carried out by intentionally leaving aside the measurement problem and concerns about particular interpretations of quantum mechanics. Good philosophical work, it is argued, can be done without adopting a specific interpretational framework and without recourse to the measurement problem. After introducing the physics of decoherence and exploring the four canonical models applied to system-environment interactions, it is argued that, ontologically speaking, there exist no levels. This claim---called the "nontological thesis"---exposes as ill-posed questions regarding the transition from the quantum regime to the classical regime and reveals the inappropriateness of interlevel relations (like reduction, supervenience and emergence) operating within metaphysical frameworks. The nontological thesis has further important consequences regarding intralevel relations: not only are there no meaningful ways to carve the world into levels, but there are no meaningful

  15. Measuring and slowing decoherence in Electromagnetically induced transparency medium

    International Nuclear Information System (INIS)

    Shuker, M.; Firstenberg, O.; Sagi, Y.; Ben-Kish, A.; Fisher, A.; Ron, A.; Davidson, N.

    2005-01-01

    Full Text:Electromagnetically induced transparency is a unique light-matter interaction that exhibits extremely narrow-band spectroscopic features along with low absorption. Recent interest in this phenomenon is driven by its possible applications in quantum information (slow light, storage of light), atomic clocks and precise magnetometers. The Electromagnetically induced transparency phenomenon takes place when an atomic ensemble is driven to a coherent superposition of its ground state sub-levels by two phase-coherent radiation fields. A key parameter of the Electromagnetically induced transparency medium, that limits its applicability, is the coherence lifetime of this superposition (decoherence rate). We have developed a simple technique to measure decay rates within the ground state of an atomic ensemble, and specifically the decoherence rate of the Electromagnetically induced transparency coherent superposition. Detailed measurements were performed in a Rubidium vapor cell at 60 - 80 with 30 Torr of Neon buffer gas. We have found that the Electromagnetically induced transparency decoherence is dominated by spin-exchange collisions between Rubidium atoms. We discuss the sensitivity of various quantum states of the atomic ensemble to spin exchange decoherence, and find a set of quantum states that minimize this effect. Finally, we demonstrate a unique quantum state which is both insensitive to spin exchange decoherence and constitutes an Electromagnetically induced transparency state of the medium

  16. Radiation damping and decoherence in quantum electrodynamics

    International Nuclear Information System (INIS)

    Breuer, H.P.

    2000-01-01

    The processes of radiation damping and decoherence in quantum electrodynamics are studied from an open system's point of view. Employing functional techniques of field theory, the degrees of freedom of the radiation field are eliminated to obtain the influence phase functional which describes the reduced dynamics of the matter variables. The general theory is applied to the dynamics of a single electron in the radiation field. From a study of the wave packet dynamics a quantitative measure for the degree of decoherence, the decoherence function, is deduced. The latter is shown to describe the emergence of decoherence through the emission of bremsstrahlung caused by the relative motion of interfering wave packets. It is argued that this mechanism is the most fundamental process in quantum electrodynamics leading to the destruction of coherence, since it dominates for short times and because it is at work even in the electromagnetic field vacuum at zero temperature. It turns out that decoherence trough bremsstrahlung is very small for single electrons but extremely large for superpositions of many-particle states. (orig.)

  17. Decoherence-induced transition from photon correlation to anti-correlation

    International Nuclear Information System (INIS)

    Xu, Q

    2014-01-01

    Decoherence tends to induce the quantum-to-classical transition, which leads to a crucial obstacle in the realization of reliable quantum information processing. Counterintuitively, we propose that the decoherence due to phase decay brings about the switch from photon correlation to anti-correlation. Stronger decoherence also gives rise to an enhancement of the transition from photon correlation to anti-correlation. This breaks the conventional correlation of strong decoherence with fast decorrelation. (letters)

  18. Quantum simulation with natural decoherence

    International Nuclear Information System (INIS)

    Tseng, C. H.; Somaroo, S.; Sharf, Y.; Knill, E.; Laflamme, R.; Havel, T. F.; Cory, D. G.

    2000-01-01

    A quantum system may be efficiently simulated by a quantum information processor as suggested by Feynman and developed by Lloyd, Wiesner, and Zalka. Within the limits of the experimental implementation, simulation permits the design and control of the kinematic and dynamic parameters of a quantum system. Extension to the inclusion of the effects of decoherence, if approached from a full quantum-mechanical treatment of the system and the environment, or from a semiclassical fluctuating field treatment (Langevin), requires the difficult access to dynamics on the time scale of the environment correlation time. Alternatively, a quantum-statistical approach may be taken which exploits the natural decoherence of the experimental system, and requires a more modest control of the dynamics. This is illustrated for quantum simulations of a four-level quantum system by a two-spin NMR ensemble quantum information processor. (c) 2000 The American Physical Society

  19. Decoherence in two-dimensional quantum walks

    International Nuclear Information System (INIS)

    Oliveira, A. C.; Portugal, R.; Donangelo, R.

    2006-01-01

    We analyze the decoherence in quantum walks in two-dimensional lattices generated by broken-link-type noise. In this type of decoherence, the links of the lattice are randomly broken with some given constant probability. We obtain the evolution equation for a quantum walker moving on two-dimensional (2D) lattices subject to this noise, and we point out how to generalize for lattices in more dimensions. In the nonsymmetric case, when the probability of breaking links in one direction is different from the probability in the perpendicular direction, we have obtained a nontrivial result. If one fixes the link-breaking probability in one direction, and gradually increases the probability in the other direction from 0 to 1, the decoherence initially increases until it reaches a maximum value, and then it decreases. This means that, in some cases, one can increase the noise level and still obtain more coherence. Physically, this can be explained as a transition from a decoherent 2D walk to a coherent 1D walk

  20. Unveiling the decoherence effect of noise on the entropic uncertainty relation and its control by partially collapsed operations

    Science.gov (United States)

    Chen, Min-Nan; Sun, Wen-Yang; Huang, Ai-Jun; Ming, Fei; Wang, Dong; Ye, Liu

    2018-01-01

    In this work, we investigate the dynamics of quantum-memory-assisted entropic uncertainty relations under open systems, and how to steer the uncertainty under different types of decoherence. Specifically, we develop the dynamical behaviors of the uncertainty of interest under two typical categories of noise; bit flipping and depolarizing channels. It has been shown that the measurement uncertainty firstly increases and then decreases with the growth of the decoherence strength in bit flipping channels. In contrast, the uncertainty monotonically increases with the increase of the decoherence strength in depolarizing channels. Notably, and to a large degree, it is shown that the uncertainty depends on both the systematic quantum correlation and the minimal conditional entropy of the observed subsystem. Moreover, we present a possible physical interpretation for these distinctive behaviors of the uncertainty within such scenarios. Furthermore, we propose a simple and effective strategy to reduce the entropic uncertainty by means of a partially collapsed operation—quantum weak measurement. Therefore, our investigations might offer an insight into the dynamics of the measurment uncertainty under decoherence, and be of importance to quantum precision measurement in open systems.

  1. Decoherence of histories and hydrodynamic equations for a linear oscillator chain

    International Nuclear Information System (INIS)

    Halliwell, J.J.

    2003-01-01

    We investigate the decoherence of histories of local densities for linear oscillators models. It is shown that histories of local number, momentum and energy density are approximately decoherent, when coarse grained over sufficiently large volumes. Decoherence arises directly from the proximity of these variables to exactly conserved quantities (which are exactly decoherent), and not from environmentally induced decoherence. We discuss the approach to local equilibrium and the subsequent emergence of hydrodynamic equations for the local densities

  2. Energy loss and (de)coherence effects beyond eikonal approximation

    CERN Document Server

    Apolinário, Liliana; Milhano, Guilherme; Salgado, Carlos A.

    2014-01-01

    The parton branching process is known to be modified in the presence of a medium. Colour decoherence processes are known to determine the process of energy loss when the density of the medium is large enough to break the correlations between partons emitted from the same parent. In order to improve existing calculations that consider eikonal trajectories for both the emitter and the hardest emitted parton, we provide in this work, the calculation of all finite energy corrections for the gluon radiation off a quark in a QCD medium that exist in the small angle approximation and for static scattering centres. Using the path integral formalism, all particles are allowed to undergo Brownian motion in the transverse plane and the offspring allowed to carry an arbitrary fraction of the initial energy. The result is a general expression that contains both coherence and decoherence regimes that are controlled by the density of the medium and by the amount of broadening that each parton acquires independently.

  3. Decoherence in large NMR quantum registers

    International Nuclear Information System (INIS)

    Krojanski, Hans Georg; Suter, Dieter

    2006-01-01

    Decoherence causes the decay of the quantum information that is stored in highly correlated states during quantum computation. It is thus a limiting factor for all implementations of a quantum computer. Because a scalable quantum computer with hundreds or thousands of qubits is not available yet, experimental data about decoherence rates was restricted to small quantum registers. With solid state nuclear magnetic resonance we create highly correlated multiqubit states that serve as a model quantum register and measure their decay. By measuring the decay as a function of the system size, we determined the scaling of the decoherence rate with the number of qubits. Using the same system, we also used decoupling techniques to reduce the coupling between system and environment and thereby the decoherence rate by more than an order of magnitude, independent of the system size. For the free decay as well as for the decoupled case, we found a relatively weak scaling with system size, which could be fitted to a power law ∝K p with an exponent p≅1/2. This raises the prospect for large-scale quantum computation

  4. Sub-exponential spin-boson decoherence in a finite bath

    International Nuclear Information System (INIS)

    Wong, V.; Gruebele, M.

    2002-01-01

    We investigate the decoherence of a two-level system coupled to harmonic baths of 4-21 degrees of freedom, to baths with internal anharmonic couplings, and to baths with an additional 'solvent shell' (modes coupled to other bath modes, but not to the system). The discrete spectral densities are chosen to mimic the highly fluctuating spectral densities computed for real systems such as proteins. System decoherence is computed by exact quantum dynamics. With realistic parameter choices (finite temperature, reasonably large couplings), sub-exponential decoherence of the two-level system is observed. Empirically, the time-dependence of decoherence can be fitted by power laws with small exponents. Intrabath anharmonic couplings are more effective at smoothing the spectral density and restoring exponential dynamics, than additional bath modes or solvent shells. We conclude that at high temperature, the most important physical basis for exponential decays is anharmonicity of those few bath modes interacting most strongly with the system, not a large number of oscillators interacting with the system. We relate the current numerical simulations to models of anharmonically coupled oscillators, which also predict power law dynamics. The potential utility of power law decays in quantum computation and condensed phase coherent control are also discussed

  5. Can We Advance Macroscopic Quantum Systems Outside the Framework of Complex Decoherence Theory?

    Science.gov (United States)

    Brezinski, Mark E; Rupnick, Maria

    2016-01-01

    Macroscopic quantum systems (MQS) are macroscopic systems driven by quantum rather than classical mechanics, a long studied area with minimal success till recently. Harnessing the benefits of quantum mechanics on a macroscopic level would revolutionize fields ranging from telecommunication to biology, the latter focused on here for reasons discussed. Contrary to misconceptions, there are no known physical laws that prevent the development of MQS. Instead, they are generally believed universally lost in complex systems from environmental entanglements (decoherence). But we argue success is achievable MQS with decoherence compensation developed, naturally or artificially, from top-down rather current reductionist approaches. This paper advances the MQS field by a complex systems approach to decoherence. First, why complex system decoherence approaches (top-down) are needed is discussed. Specifically, complex adaptive systems (CAS) are not amenable to reductionist models (and their master equations) because of emergent behaviour, approximation failures, not accounting for quantum compensatory mechanisms, ignoring path integrals, and the subentity problem. In addition, since MQS must exist within the context of the classical world, where rapid decoherence and prolonged coherence are both needed. Nature has already demonstrated this for quantum subsystems such as photosynthesis and magnetoreception. Second, we perform a preliminary study that illustrates a top-down approach to potential MQS. In summary, reductionist arguments against MQS are not justifiable. It is more likely they are not easily detectable in large intact classical systems or have been destroyed by reductionist experimental set-ups. This complex systems decoherence approach, using top down investigations, is critical to paradigm shifts in MQS research both in biological and non-biological systems. PMID:29200743

  6. Non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems with applications to quantum information theory of continuous variable systems; Nicht-Markovsche Dynamik, Dekohaerenz und Verschraenkung in dissipativen Quantensystemen mit Anwendung in der Quanteninformationstheorie von Systemen kontinuierlicher Variablen

    Energy Technology Data Exchange (ETDEWEB)

    Hoerhammer, C.

    2007-11-26

    In this thesis, non-Markovian dynamics, decoherence and entanglement in dissipative quantum systems are studied. In particular, applications to quantum information theory of continuous variable systems are considered. The non-Markovian dynamics are described by the Hu-Paz-Zhang master equation of quantum Brownian motion. In this context the focus is on non-Markovian effects on decoherence and separability time scales of various single- mode and two-mode continuous variable states. It is verified that moderate non-Markovian influences slow down the decay of interference fringes and quantum correlations, while strong non-Markovian effects resulting from an out-of-resonance bath can even accelerate the loss of coherence, compared to predictions of Markovian approximations. Qualitatively different scenarios including exponential, Gaussian or algebraic decay of the decoherence function are analyzed. It is shown that partial recurrence of coherence can occur in case of non-Lindblad-type dynamics. The time evolution of quantum correlations of entangled two-mode continuous variable states is examined in single-reservoir and two-reservoir models, representing noisy correlated or uncorrelated non-Markovian quantum channels. For this purpose the model of quantum Brownian motion is extended. Various separability criteria for Gaussian and non-Gaussian continuous variable systems are applied. In both types of reservoir models moderate non-Markovian effects prolong the separability time scales. However, in these models the properties of the stationary state may differ. In the two-reservoir model the initial entanglement is completely lost and both modes are finally uncorrelated. In a common reservoir both modes interact indirectly via the coupling to the same bath variables. Therefore, new quantum correlations may emerge between the two modes. Below a critical bath temperature entanglement is preserved even in the steady state. A separability criterion is derived, which depends

  7. Quantum mechanics of history: The decoherence functional in quantum mechanics

    International Nuclear Information System (INIS)

    Dowker, H.F.; Halliwell, J.J.

    1992-01-01

    We study a formulation of quantum mechanics in which the central notion is that of a quantum-mechanical history---a sequence of events at a succession of times. The primary aim is to identify sets of ''decoherent'' (or ''consistent'') histories for the system. These are quantum-mechanical histories suffering negligible interference with each other, and, therefore, to which probabilities may be assigned. These histories may be found for a given system using the so-called decoherence functional. When the decoherence functional is exactly diagonal, probabilities may be assigned to the histories, and all probability sum rules are satisfied exactly. We propose a condition for approximate decoherence, and argue that it implies that most probability sum rules will be satisfied to approximately the same degree. We also derive an inequality bounding the size of the off-diagonal terms of the decoherence functional. We calculate the decoherence functional for some simple one-dimensional systems, with a variety of initial states. For these systems, we explore the extent to which decoherence is produced using two different types of coarse graining. The first type of coarse graining involves imprecise specification of the particle's position. The second involves coupling the particle to a thermal bath of harmonic oscillators and ignoring the details of the bath (the Caldeira-Leggett model). We argue that both types of coarse graining are necessary in general. We explicitly exhibit the degree of decoherence as a function of the temperature of the bath, and of the width to within which the particle's position is specified. We study the diagonal elements of the decoherence functional, representing the probabilities for the possible histories of the system

  8. Correlation-induced suppression of decoherence in capacitively coupled Cooper-pair boxes

    Science.gov (United States)

    Hu, Xuedong; You, J. Q.; Nori, Franco

    2005-03-01

    Charge fluctuations from gate bias and background traps severely limit the performance of a charge qubit in a Cooper-pair box (CPB). Here we discuss an encoding approachootnotetextJ.Q. You, X.Hu, and F. Nori, cond-mat/0407423. to control the decoherence effects of these charge fluctuations using two strongly capacitively coupled CPBs. This coupled-box system has a low-decoherence subspace of two states, for which we calculate the dephasing and relaxation rates using a master equation approach. Our results show that the inter-box Coulomb correlation can significantly suppress decoherence of this two-level system by reducing the strength of the system-environment interaction, making it a promising candidate as a logical qubit, encoded using two CPBs.

  9. Highly Nonclassical Quantum States and Environment Induced Decoherence

    Science.gov (United States)

    Foldi, Peter

    2004-06-01

    In this thesis concrete quantum systems are investigated in the framework of the environment induced decoherence. The focus is on the dynamics of highly nonclassical quantum states, the Wigner function of which are negative over some regions of their domains. One of the chosen physical systems is a diatomic molecule, where the potential energy of the nuclei is an anharmonic function of their distance. A system of two-level atoms, which can be important from the viewpoint of quantum information technology, is also investigated. A method is described that is valid in both systems and can determine the characteristic time of the decoherence in a dynamical way. The direction of the decoherence and its relation to energy dissipation is also studied. Finally, a scheme is proposed that can prepare decoherence-free states using the experimental techniques presently available.

  10. Decoherence, fluctuations and Wigner function in neutron optics

    OpenAIRE

    Facchi, P.; Mariano, A.; Pascazio, S.; Suda, M.

    2002-01-01

    We analyze the coherence properties of neutron wave packets, after they have interacted with a phase shifter undergoing different kinds of statistical fluctuations. We give a quantitative (and operational) definition of decoherence and compare it to the standard deviation of the distribution of the phase shifts. We find that in some cases the neutron ensemble is more coherent, even though it has interacted with a wider (i.e. more disordered) distribution of shifts. This feature is independent...

  11. Spin entanglement, decoherence and Bohm's EPR paradox.

    Science.gov (United States)

    Cavalcanti, E G; Drummond, P D; Bachor, H A; Reid, M D

    2009-10-12

    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies eta > 1/3 and eta > 2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons.

  12. Decoherence assisting a measurement-driven quantum evolution process

    International Nuclear Information System (INIS)

    Roa, Luis; Olivares-Renteria, G. A.

    2006-01-01

    We study the problem of driving an unknown initial mixed quantum state onto a known pure state without using unitary transformations. This can be achieved, in an efficient manner, with the help of sequential measurements on at least two unbiased bases. However here we found that, when the system is affected by a decoherence mechanism, only one observable is required in order to achieve the same goal. In this way the decoherence can assist the process. We show that, depending on the sort of decoherence, the process can converge faster or slower than the method implemented by means of two complementary observables

  13. A simple necessary decoherence condition for a set of histories

    International Nuclear Information System (INIS)

    Scherer, Artur; Soklakov, Andrei N.; Schack, Ruediger

    2004-01-01

    Within the decoherent histories formulation of quantum mechanics, we investigate necessary conditions for decoherence of arbitrarily long histories. We prove that fine-grained histories of arbitrary length decohere for all classical initial states if and only if the unitary evolution preserves classicality of states (using a natural formal definition of classicality). We give a counterexample showing that this equivalence does not hold for coarse-grained histories

  14. A general theoretical framework for decoherence in open and closed systems

    International Nuclear Information System (INIS)

    Castagnino, Mario; Fortin, Sebastian; Laura, Roberto; Lombardi, Olimpia

    2008-01-01

    A general theoretical framework for decoherence is proposed, which encompasses formalisms originally devised to deal just with open or closed systems. The conditions for decoherence are clearly stated and the relaxation and decoherence times are compared. Finally, the spin-bath model is developed in detail from the new perspective

  15. Effects of non-standard interactions in the MINOS experiment

    International Nuclear Information System (INIS)

    Blennow, Mattias; Ohlsson, Tommy; Skrotzki, Julian

    2008-01-01

    We investigate the effects of non-standard interactions on the determination of the neutrino oscillation parameters Δm 31 2 , θ 23 , and θ 13 in the MINOS experiment. We show that adding non-standard interactions to the analysis lead to an extension of the allowed parameter space to larger values of Δm 31 2 and smaller θ 23 , and basically removes all predictability for θ 13 . In addition, we discuss the sensitivities to the non-standard interaction parameters of the MINOS experiment alone. In particular, we examine the degeneracy between θ 13 and the non-standard interaction parameter ε eτ . We find that this degeneracy is responsible for the removal of the θ 13 predictability and that the possible bound on |ε eτ | is competitive with direct bounds only if a more stringent external bound on θ 13 is applied

  16. Decoherence and infrared divergence

    Indian Academy of Sciences (India)

    and of quantum field theory provides only a few superselection rules, the most ... have been successfully used to construct heat bath models [5], and for ..... [11] J Kupsch, in Decoherence: theoretical, experimental, and conceptual problems.

  17. Adiabatic evolution of decoherence-free subspaces and its shortcuts

    Science.gov (United States)

    Wu, S. L.; Huang, X. L.; Li, H.; Yi, X. X.

    2017-10-01

    The adiabatic theorem and shortcuts to adiabaticity for time-dependent open quantum systems are explored in this paper. Starting from the definition of dynamical stable decoherence-free subspace, we show that, under a compact adiabatic condition, the quantum state remains in the time-dependent decoherence-free subspace with an extremely high purity, even though the dynamics of the open quantum system may not be adiabatic. The adiabatic condition mentioned here in the adiabatic theorem for open systems is very similar to that for closed quantum systems, except that the operators required to change slowly are the Lindblad operators. We also show that the adiabatic evolution of decoherence-free subspaces depends on the existence of instantaneous decoherence-free subspaces, which requires that the Hamiltonian of open quantum systems be engineered according to the incoherent control protocol. In addition, shortcuts to adiabaticity for adiabatic decoherence-free subspaces are also presented based on the transitionless quantum driving method. Finally, we provide an example that consists of a two-level system coupled to a broadband squeezed vacuum field to show our theory. Our approach employs Markovian master equations and the theory can apply to finite-dimensional quantum open systems.

  18. Solitons and decoherence in left-handed metamaterials

    International Nuclear Information System (INIS)

    Marklund, Mattias; Shukla, Padma K.; Stenflo, Lennart; Brodin, Gert

    2005-01-01

    We present exact electromagnetic solitary pulses that can be experimentally obtained within nonlinear left-handed metamaterials. The effect of pulse decoherence on the modulation instability of partially incoherent electromagnetic waves is also investigated. The results may contribute to a better understanding of nonlinear electromagnetic pulse propagation in media with negative index of refraction

  19. Decoherence bypass of macroscopic superpositions in quantum measurement

    International Nuclear Information System (INIS)

    Spehner, Dominique; Haake, Fritz

    2008-01-01

    We study a class of quantum measurement models. A microscopic object is entangled with a macroscopic pointer such that a distinct pointer position is tied to each eigenvalue of the measured object observable. Those different pointer positions mutually decohere under the influence of an environment. Overcoming limitations of previous approaches we (i) cope with initial correlations between pointer and environment by considering them initially in a metastable local thermal equilibrium, (ii) allow for object-pointer entanglement and environment-induced decoherence of distinct pointer readouts to proceed simultaneously, such that mixtures of macroscopically distinct object-pointer product states arise without intervening macroscopic superpositions, and (iii) go beyond the Markovian treatment of decoherence. (fast track communication)

  20. The effect of large decoherence on mixing time in continuous-time quantum walks on long-range interacting cycles

    Energy Technology Data Exchange (ETDEWEB)

    Salimi, S; Radgohar, R, E-mail: shsalimi@uok.ac.i, E-mail: r.radgohar@uok.ac.i [Faculty of Science, Department of Physics, University of Kurdistan, Pasdaran Ave, Sanandaj (Iran, Islamic Republic of)

    2010-01-28

    In this paper, we consider decoherence in continuous-time quantum walks on long-range interacting cycles (LRICs), which are the extensions of the cycle graphs. For this purpose, we use Gurvitz's model and assume that every node is monitored by the corresponding point-contact induced by the decoherence process. Then, we focus on large rates of decoherence and calculate the probability distribution analytically and obtain the lower and upper bounds of the mixing time. Our results prove that the mixing time is proportional to the rate of decoherence and the inverse of the square of the distance parameter (m). This shows that the mixing time decreases with increasing range of interaction. Also, what we obtain for m = 0 is in agreement with Fedichkin, Solenov and Tamon's results [48] for cycle, and we see that the mixing time of CTQWs on cycle improves with adding interacting edges.

  1. Influence of Non-Uniform Magnetic Field on Quantum Teleportation in Heisenberg XY Model

    Institute of Scientific and Technical Information of China (English)

    SHAO Bin; YANG Tie-jian; ZHAO Yue-hong; ZOU Jian

    2007-01-01

    By considering the intrinsic decoherence, the validity of quantum teleportation of a two-qubit 1D Heisenberg XY chain in a non-uniform external magnetic field is studied. The fidelity as the measurement of a possible quantum teleportation is calculated and the effects of the non-uniform magnetic field and the intrinsic decoherence are discussed. It is found that anti-parallel magnetic field is more favorable for teleportation and the fidelity is suppressed by the intrinsic decoherence.

  2. Decoherence control in open quantum systems via classical feedback

    International Nuclear Information System (INIS)

    Ganesan, Narayan; Tarn, Tzyh-Jong

    2007-01-01

    In this work we propose a strategy using techniques from systems theory to completely eliminate decoherence and also provide conditions under which it can be done. A construction employing an auxiliary system, the bait, which is instrumental to decoupling the system from the environment is presented. Our approach to decoherence control in contrast to other approaches in the literature involves the bilinear input affine model of quantum control system which lends itself to various techniques from classical control theory, but with nontrivial modifications to the quantum regime. The elegance of this approach yields interesting results on open loop decouplability and decoherence free subspaces. Additionally, the feedback control of decoherence may be related to disturbance decoupling for classical input affine systems, which entails careful application of the methods by avoiding all the quantum mechanical pitfalls. In the process of calculating a suitable feedback the system must be restructured due to its tensorial nature of interaction with the environment, which is unique to quantum systems. In the subsequent section we discuss a general information extraction scheme to gain knowledge of the state and the amount of decoherence based on indirect continuous measurement. The analysis of continuous measurement on a decohering quantum system has not been extensively studied before. Finally, a methodology to synthesize feedback parameters itself is given, that technology permitting, could be implemented for practical 2-qubit systems to perform decoherence free quantum computing. The results obtained are qualitatively different and superior to the ones obtained via master equations

  3. Decoherence dynamics of a charge qubit coupled to the noise bath

    International Nuclear Information System (INIS)

    Yang Qin-Ying; Liang Bao-Long; Wang Ji-Suo

    2013-01-01

    By virtue of the canonical quantization method, we present a quantization scheme for a charge qubit based on the superconducting quantum interference device (SQUID), taking the self-inductance of the loop into account. Under reasonable short-time approximation, we study the effect of decoherence in the ohmic case by employing the response function and the norm. It is confirmed that the decoherence time, which depends on the parameters of the circuit components, the coupling strength, and the temperature, can be as low as several picoseconds, so there is enough time to record the information

  4. Decoherence of quantum fields: Pointer states and predictability

    International Nuclear Information System (INIS)

    Anglin, J.R.; Zurek, W.H.

    1996-01-01

    We study environmentally induced decoherence of an electromagnetic field in a homogeneous, linear, dielectric medium. We derive an independent oscillator model for such an environment, which is sufficiently realistic to encompass essentially all linear physical optics. Applying the open-quote open-quote predictability sieve close-quote close-quote to the quantum field, and introducing the concept of a open-quote open-quote quantum halo,close-quote close-quote we recover the familiar dichotomy between background field configurations and photon excitations around them. We are then able to explain why a typical linear environment for the electromagnetic field will effectively render the former classically distinct, but leave the latter fully quantum mechanical. Finally, we suggest how and why quantum matter fields should suffer a very different form of decoherence. copyright 1996 The American Physical Society

  5. Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence

    Institute of Scientific and Technical Information of China (English)

    Zhang Jian; Shao Bin; Zou Jian

    2009-01-01

    In this paper,we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling.We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially.The effects of the field squeezing factor,the two-level atomic transition frequency,the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed.Without intrinsic decoherence,the increase of field squeezing factor can break the entropy squeezing.The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing.The influence of the second field frequency is complicated.With the intrinsic decoherence taken into consideration,the results show that the stronger the intrinsic decoherence is,the more quickly the entropy squeezing will disappear.The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing.

  6. Entropy squeezing for a two-level atom in two-mode Raman coupled model with intrinsic decoherence

    International Nuclear Information System (INIS)

    Jian, Zhang; Bin, Shao; Jian, Zou

    2009-01-01

    In this paper, we investigate the entropy squeezing for a two-level atom interacting with two quantized fields through Raman coupling. We obtain the dynamical evolution of the total system under the influence of intrinsic decoherence when the two quantized fields are prepared in a two-mode squeezing vacuum state initially. The effects of the field squeezing factor, the two-level atomic transition frequency, the second field frequency and the intrinsic decoherence on the entropy squeezing are discussed. Without intrinsic decoherence, the increase of field squeezing factor can break the entropy squeezing. The two-level atomic transition frequency changes only the period of oscillation but not the strength of entropy squeezing. The influence of the second field frequency is complicated. With the intrinsic decoherence taken into consideration, the results show that the stronger the intrinsic decoherence is, the more quickly the entropy squeezing will disappear. The increase of the atomic transition frequency can hasten the disappearance of entropy squeezing. (classical areas of phenomenology)

  7. The role of positronium decoherence in positron annihilation in matter

    International Nuclear Information System (INIS)

    Pietrow, M.; Slomski, P.

    2011-01-01

    A small difference between the energies of the para-positronium (p-Ps) and ortho-positronium (o-Ps) states suggests the possibility of the superposition of p-Ps and o-Ps during the formation of positronium (Ps) from pre-Ps, terminating its migration in the matter in a void. It is shown that such a superposition decoheres in the basis of p-Ps and o-Ps. The decoherence time scale estimated here motivates a correction in the precise analysis of the positron annihilation lifetime spectra. More generally, the superposited Ps state should contribute to the theory of the evolution of positronium in matter. -- Highlights: → Decoherence time decrease exponentially with the number of e - interacting with Ps. → Time scale of the decoherence motivates correction in decomposition of PALS spectra. → We showed the way of modification for formulas used for PALS spectra decomposition. → The superposited Ps should contribute to the positronium in matter evolution theory. → We examined the magnetisation influence to be expected on the process of decoherence.

  8. Dynamics of entanglement under decoherence in noninertial frames

    International Nuclear Information System (INIS)

    Shi Jia-Dong; Wu Tao; Song Xue-Ke; Ye Liu

    2014-01-01

    In this paper, we investigate the entanglement dynamics of a two-qubit entangled state coupled with its noisy environment, and plan to utilize weak measurement and quantum reversal measurement to study the entanglement dynamics under different decoherence channels in noninertial frames. Through the calculations and analyses, it is shown that the weak measurement can prevent entanglement from coupling to the amplitude damping channel, while the system is under the phase damping and flip channels. This protection protocol cannot prevent entanglement but will accelerate the death of entanglement. In addition, if the system is in the noninertial reference frame, then the effect of weak measurement will be weakened for the amplitude damping channel. Nevertheless, for other decoherence channels, the Unruh effect does not affect the quantum weak measurement, the only exception is that the maximum value of entanglement is reduced to √2/2 of the original value in the inertial frames. (general)

  9. Approaches to open quantum systems: Decoherence, localisation and all that

    International Nuclear Information System (INIS)

    Yu Ting

    1998-01-01

    This thesis is mainly concerned with issues in quantum open systems and the foundations of quantum theory. Chapter I introduces the aim, background and main results which take place in the following chapters. Chapters II and III are used to study and compare the decoherent histories approach, the environment-induced decoherence and the localisation properties of the solutions to the stochastic Schrodinger equation in quantum jump simulation and quantum state diffusion approaches, for a quantum two-level system model. We show, in particular, that there is a close connection between the decoherent histories and the quantum jump simulation, complementing a connection with the quantum state diffusion approach noted earlier by Diosi, Gisin, Halliwell and Percival. In the case of the decoherent histories analysis, the degree of approximate decoherence is discussed in detail. As by-product, by using the von Neumann entropy, we also discuss the predictability and its relation to the upper bounds of degree of decoherence. In Chapter IV, we give an alternative and elementary derivation of the Hu-Paz-Ghang master equation for quantum Brownian motion in a general environment, which involves tracing the evolution equation for the Wigner function. We also discuss the master equation in some special cases. This master equation provides a very useful tool to study the decoherence of a quantum system due to the interaction with its environment. In Chapter V, a derivation of the parameter-based uncertainty relation between position and momentum is given. This uncertainty relation can be regarded as an exact counterpart of the time-energy uncertainty relation. The final chapter is a rather brief summary of the thesis. (author)

  10. Mechanisms of decoherence in electron microscopy.

    Science.gov (United States)

    Howie, A

    2011-06-01

    The understanding and where possible the minimisation of decoherence mechanisms in electron microscopy were first studied in plasmon loss, diffraction contrast images but are of even more acute relevance in high resolution TEM phase contrast imaging and electron holography. With the development of phase retrieval techniques they merit further attention particularly when their effect cannot be eliminated by currently available energy filters. The roles of electronic excitation, thermal diffuse scattering, transition radiation and bremsstrahlung are examined here not only in the specimen but also in the electron optical column. Terahertz-range aloof beam electronic excitation appears to account satisfactorily for recent observations of decoherence in electron holography. An apparent low frequency divergence can emerge for the calculated classical bremsstrahlung event probability but can be ignored for photon wavelengths exceeding the required coherence distance or path lengths in the equipment. Most bremsstrahlung event probabilities are negligibly important except possibly in large-angle bending magnets or mandolin systems. A more reliable procedure for subtracting thermal diffuse scattering from diffraction pattern intensities is proposed. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Mechanisms of decoherence in electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Howie, A., E-mail: ah30@cam.ac.uk [Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2011-06-15

    The understanding and where possible the minimisation of decoherence mechanisms in electron microscopy were first studied in plasmon loss, diffraction contrast images but are of even more acute relevance in high resolution TEM phase contrast imaging and electron holography. With the development of phase retrieval techniques they merit further attention particularly when their effect cannot be eliminated by currently available energy filters. The roles of electronic excitation, thermal diffuse scattering, transition radiation and bremsstrahlung are examined here not only in the specimen but also in the electron optical column. Terahertz-range aloof beam electronic excitation appears to account satisfactorily for recent observations of decoherence in electron holography. An apparent low frequency divergence can emerge for the calculated classical bremsstrahlung event probability but can be ignored for photon wavelengths exceeding the required coherence distance or path lengths in the equipment. Most bremsstrahlung event probabilities are negligibly important except possibly in large-angle bending magnets or mandolin systems. A more reliable procedure for subtracting thermal diffuse scattering from diffraction pattern intensities is proposed.

  12. Mechanisms of decoherence in electron microscopy

    International Nuclear Information System (INIS)

    Howie, A.

    2011-01-01

    The understanding and where possible the minimisation of decoherence mechanisms in electron microscopy were first studied in plasmon loss, diffraction contrast images but are of even more acute relevance in high resolution TEM phase contrast imaging and electron holography. With the development of phase retrieval techniques they merit further attention particularly when their effect cannot be eliminated by currently available energy filters. The roles of electronic excitation, thermal diffuse scattering, transition radiation and bremsstrahlung are examined here not only in the specimen but also in the electron optical column. Terahertz-range aloof beam electronic excitation appears to account satisfactorily for recent observations of decoherence in electron holography. An apparent low frequency divergence can emerge for the calculated classical bremsstrahlung event probability but can be ignored for photon wavelengths exceeding the required coherence distance or path lengths in the equipment. Most bremsstrahlung event probabilities are negligibly important except possibly in large-angle bending magnets or mandolin systems. A more reliable procedure for subtracting thermal diffuse scattering from diffraction pattern intensities is proposed.

  13. Decoherence in a double-slit quantum eraser

    International Nuclear Information System (INIS)

    Torres-Ruiz, F. A.; Lima, G.; Delgado, A.; Saavedra, C.; Padua, S.

    2010-01-01

    We study and experimentally implement a double-slit quantum eraser in the presence of a controlled decoherence mechanism. A two-photon state, produced in a spontaneous parametric down-conversion process, is prepared in a maximally entangled polarization state. A birefringent double slit is illuminated by one of the down-converted photons, and it acts as a single-photon two-qubits controlled-not gate that couples the polarization with the transversal momentum of these photons. The other photon, which acts as a which-path marker, is sent through a Mach-Zehnder-like interferometer. When the interferometer is partially unbalanced, it behaves as a controlled source of decoherence for polarization states of down-converted photons. We show the transition from wavelike to particle-like behavior of the signal photons crossing the double slit as a function of the decoherence parameter, which depends on the length path difference at the interferometer.

  14. Dissipation and decoherence in Brownian motion

    Energy Technology Data Exchange (ETDEWEB)

    Bellomo, Bruno [Dipartimento di Scienze Fisiche ed Astronomiche dell' Universita di Palermo, Via Archirafi, 36, 90123 Palermo (Italy); Barnett, Stephen M [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Jeffers, John [Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2007-05-15

    We consider the evolution of a Brownian particle described by a measurement-based master equation. We derive the solution to this equation for general initial conditions and apply it to a Gaussian initial state. We analyse the effects of the diffusive terms, present in the master equation, and describe how these modify uncertainties and coherence length. This allows us to model dissipation and decoherence in quantum Brownian motion.

  15. Decoherence control in quantum computing with simple chirped ...

    Indian Academy of Sciences (India)

    We show how the use of optimally shaped pulses to guide the time evolution of a system ('coherent control') can be an effective approach towards quantum computation logic. We demonstrate this with selective control of decoherence for a multilevel system with a simple linearly chirped pulse. We use a multiphoton ...

  16. Effect of the time-dependent coupling on a superconducting qubit-field system under decoherence: Entanglement and Wehrl entropy

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Khalek, S., E-mail: sayedquantum@yahoo.co.uk [Mathematics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare-Trieste (Italy); Berrada, K. [The Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, Miramare-Trieste (Italy); Al Imam Mohammad Ibn Saud Islamic University (IMSIU), College of Science, Department of Physics, Riyadh (Saudi Arabia); Eleuch, H. [Department of Physics, McGill University, 3600 rue University, Montreal, QC, H3A 2T8 (Canada); Department of Physics, Université de Montréal, 2900 boul. douard-Montpetit, Montreal, QC, H3T 1J4 (Canada)

    2015-10-15

    The dynamics of a superconducting (SC) qubit interacting with a field under decoherence with and without time-dependent coupling effect is analyzed. Quantum features like the collapse–revivals for the dynamics of population inversion, sudden birth and sudden death of entanglement, and statistical properties are investigated under the phase damping effect. Analytic results for certain parametric conditions are obtained. We analyze the influence of decoherence on the negativity and Wehrl entropy for different values of the physical parameters. We also explore an interesting relation between the SC-field entanglement and Wehrl entropy behavior during the time evolution. We show that the amount of SC-field entanglement can be enhanced as the field tends to be more classical. The studied model of SC-field system with the time-dependent coupling has high practical importance due to their experimental accessibility which may open new perspectives in different tasks of quantum formation processing.

  17. Entangled states decoherence in coupled molecular spin clusters

    Science.gov (United States)

    Troiani, Filippo; Szallas, Attila; Bellini, Valerio; Affronte, Marco

    2010-03-01

    Localized electron spins in solid-state systems are widely investigated as potential building blocks of quantum devices and computers. While most efforts in the field have been focused on semiconductor low-dimensional structures, molecular antiferromagnets were recently recognized as alternative implementations of effective few-level spin systems. Heterometallic, Cr-based spin rings behave as effective spin-1/2 systems at low temperature and show long decoherence times [1]; besides, they can be chemically linked and magnetically coupled in a controllable fascion [2]. Here, we theoretically investigate the decoherence of the Bell states in such ring dimers, resulting from hyperfine interactions with nuclear spins. Based on a microscopic description of the molecules [3], we simulate the effect of inhomogeneous broadening, spectral diffusion and electron-nuclear entanglement on the electron-spin coherence, estimating the role of the different nuclei (and of possible chemical substitutions), as well as the effect of simple spin-echo sequences. References: [1] F. Troiani, et al., Phys. Rev. Lett. 94, 207208 (2005). [2] G. A. Timco, S: Carretta, F. Troiani et al., Nature Nanotech. 4, 173 (2009). [3] F. Troiani, V. Bellini, and M. Affronte, Phys. Rev. B 77, 054428 (2008).

  18. Quantum Computing in Decoherence-Free Subspace Constructed by Triangulation

    OpenAIRE

    Bi, Qiao; Guo, Liu; Ruda, H. E.

    2010-01-01

    A formalism for quantum computing in decoherence-free subspaces is presented. The constructed subspaces are partial triangulated to an index related to environment. The quantum states in the subspaces are just projected states which are ruled by a subdynamic kinetic equation. These projected states can be used to perform ideal quantum logical operations without decoherence.

  19. Decoherence dynamics in interferometry with one-dimensional bose-einstein condensates

    DEFF Research Database (Denmark)

    Schumm, Thorsten; Hofferberth, Sebastian; Schmiedmayer, Jörg

    2007-01-01

    in the interference pattern and allow a quantization of the decoherence process with time. For the uncoupled system we ultimately recover individual phase fluctuating condensates, whereas finite tunnel coupling counteracts the decoherence and leads to an equilibrium characterized by a finite coherence length...

  20. Quantum Computing in Decoherence-Free Subspace Constructed by Triangulation

    Directory of Open Access Journals (Sweden)

    Qiao Bi

    2010-01-01

    Full Text Available A formalism for quantum computing in decoherence-free subspaces is presented. The constructed subspaces are partial triangulated to an index related to environment. The quantum states in the subspaces are just projected states which are ruled by a subdynamic kinetic equation. These projected states can be used to perform ideal quantum logical operations without decoherence.

  1. Quantum transition and decoherence of levitating polaron on helium film thickness under an electromagnetic field

    Science.gov (United States)

    Kenfack, S. C.; Fotue, A. J.; Fobasso, M. F. C.; Djomou, J.-R. D.; Tiotsop, M.; Ngouana, K. S. L.; Fai, L. C.

    2017-12-01

    We have studied the transition probability and decoherence time of levitating polaron in helium film thickness. By using a variational method of Pekar type, the ground and the first excited states of polaron are calculated above the liquid-helium film placed on the polar substrate. It is shown that the polaron transits from the ground to the excited state in the presence of an external electromagnetic field in the plane. We have seen that, in the helium film, the effects of the magnetic and electric fields on the polaron are opposite. It is also shown that the energy, transition probability and decoherence time of the polaron depend sensitively on the helium film thickness. We found that decoherence time decreases as a function of increasing electron-phonon coupling strength and the helium film thickness. It is seen that the film thickness can be considered as a new confinement in our system and can be adjusted in order to reduce decoherence.

  2. Experimental Evidence for Quantum Interference and Vibrationally Induced Decoherence in Single-Molecule Junctions

    Science.gov (United States)

    Ballmann, Stefan; Härtle, Rainer; Coto, Pedro B.; Elbing, Mark; Mayor, Marcel; Bryce, Martin R.; Thoss, Michael; Weber, Heiko B.

    2012-08-01

    We analyze quantum interference and decoherence effects in single-molecule junctions both experimentally and theoretically by means of the mechanically controlled break junction technique and density-functional theory. We consider the case where interference is provided by overlapping quasidegenerate states. Decoherence mechanisms arising from electronic-vibrational coupling strongly affect the electrical current flowing through a single-molecule contact and can be controlled by temperature variation. Our findings underline the universal relevance of vibrations for understanding charge transport through molecular junctions.

  3. Local decoherence-resistant quantum states of large systems

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Utkarsh; Sen, Aditi; Sen, Ujjwal, E-mail: ujjwal@hri.res.in

    2015-02-06

    We identify an effectively decoherence-free class of quantum states, each of which consists of a “minuscule” and a “large” sector, against local noise. In particular, the content of entanglement and other quantum correlations in the minuscule to large partition is independent of the number of particles in their large sectors, when all the particles suffer passage through local amplitude and phase damping channels. The states of the large sectors are distinct in terms of markedly different amounts of violation of Bell inequality. In case the large sector is macroscopic, such states are akin to the Schrödinger cat. - Highlights: • We identify an effectively decoherence-free class of quantum states of large systems. • We work with local noise models. • Decay of entanglement as well as information-theoretic quantum correlations considered. • The states are of the form of the Schrödinger cats, with minuscule and large sectors. • The states of the large sector are distinguishable by their violation of Bell inequality.

  4. Decoherence by engineered quantum baths

    Energy Technology Data Exchange (ETDEWEB)

    Rossini, Davide [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Calarco, Tommaso [Dipartimento di Fisica, Universita di Trento and BEC-CNR-INFM, I-38050 Povo (Italy); Giovannetti, Vittorio [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Montangero, Simone [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy); Fazio, Rosario [NEST-CNR-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa (Italy)

    2007-07-13

    Optical lattices can be used to simulate quantum baths and hence they can be of fundamental help to study, in a controlled way, the emergence of decoherence in quantum systems. Here we show how to implement a pure dephasing model for a two-level system coupled to an interacting spin bath. In this scheme it is possible to implement a large variety of spin environments embracing Ising, XY and Heisenberg universality classes. After having introduced the model, we calculate exactly the decoherence for the Ising and the XY spin bath model. We find universal features depending on the critical behaviour of the spin bath, both in the short- and long-time limits. The rich scenario that emerges can be tested experimentally and can be of importance for the understanding of the coherence loss in open quantum systems.

  5. Effects of Ultrafast Molecular Rotation on Collisional Decoherence

    Science.gov (United States)

    Milner, Alexander A.; Korobenko, Aleksey; Hepburn, John W.; Milner, Valery

    2014-07-01

    Using an optical centrifuge to control molecular rotation in an extremely broad range of angular momenta, we study coherent rotational dynamics of nitrogen molecules in the presence of collisions. We cover the range of rotational quantum numbers between J=8 and J =66 at room temperature and study a crossover between the adiabatic and nonadiabatic regimes of rotational relaxation, which cannot be easily accessed by thermal means. We demonstrate that the rate of rotational decoherence changes by more than an order of magnitude in this range of J values and show that its dependence on J can be described by a simplified scaling law.

  6. Measuring and analyzing excitation-induced decoherence in rare-earth-doped optical materials

    International Nuclear Information System (INIS)

    Thiel, C W; Macfarlane, R M; Cone, R L; Sun, Y; Böttger, T; Sinclair, N; Tittel, W

    2014-01-01

    A method is introduced for quantitatively analyzing photon echo decay measurements to characterize excitation-induced decoherence resulting from the phenomenon of instantaneous spectral diffusion. Detailed analysis is presented that allows fundamental material properties to be extracted that predict and describe excitation-induced decoherence for a broad range of measurements, applications and experimental conditions. Motivated by the need for a method that enables systematic studies of ultra-low decoherence systems and direct comparison of properties between optical materials, this approach employs simple techniques and analytical expressions that avoid the need for difficult to measure and often unknown material parameters or numerical simulations. This measurement and analysis approach is demonstrated for the 3 H 6 to 3 H 4 optical transition of three thulium-doped crystals, Tm 3+ :YAG, Tm 3+ :LiNbO 3 and Tm 3+ :YGG, that are currently employed in quantum information and classical signal processing demonstrations where minimizing decoherence is essential to achieve high efficiencies and large signal bandwidths. These new results reveal more than two orders of magnitude variation in sensitivity to excitation-induced decoherence among the materials studied and establish that the Tm 3+ :YGG system offers the longest optical coherence lifetimes and the lowest levels of excitation-induced decoherence yet observed for any known thulium-doped material. (paper)

  7. Decoherence in quantum lossy systems: superoperator and matrix techniques

    Science.gov (United States)

    Yazdanpanah, Navid; Tavassoly, Mohammad Kazem; Moya-Cessa, Hector Manuel

    2017-06-01

    Due to the unavoidably dissipative interaction between quantum systems with their environments, the decoherence flows inevitably into the systems. Therefore, to achieve a better understanding on how decoherence affects on the damped systems, a fundamental investigation of master equation seems to be required. In this regard, finding out the missed information which has been lost due to irreversibly of the dissipative systems, is also of practical importance in quantum information science. Motivating by these facts, in this work we want to use superoperator and matrix techniques, by which we are able to illustrate two methods to obtain the explicit form of density operators corresponding to damped systems at arbitrary temperature T ≥ 0. To establish the potential abilities of the suggested methods, we apply them to deduce the density operator of some practical well-known quantum systems. Using the superoperator techniques, at first we obtain the density operator of a damped system which includes a qubit interacting with a single-mode quantized field within an optical cavity. As the second system, we study the decoherence of a quantized field within an optical damped cavity. We also use our proposed matrix method to study the decoherence of a system which includes two qubits in the interaction with each other via dipole-dipole interaction and at the same time with a quantized field in a lossy cavity. The influences of dissipation on the decoherence of dynamical properties of these systems are also numerically investigated. At last, the advantages of the proposed superoperator techniques in comparison with matrix method are explained.

  8. Surface state decoherence in loop quantum gravity, a first toy model

    International Nuclear Information System (INIS)

    Feller, Alexandre; Livine, Etera R

    2017-01-01

    The quantum-to-classical transition through decoherence is a major facet of the semi-classical analysis of quantum models that are supposed to admit a classical regime, as quantum gravity should be. A particular problem of interest is the decoherence of black hole horizons and holographic screens induced by the bulk-boundary coupling with interior degrees of freedom. Here in this paper we present a first toy-model, in the context of loop quantum gravity, for the dynamics of a surface geometry as an open quantum system. We discuss the resulting decoherence and recoherence and compare the exact density matrix evolution to the commonly used master equation approximation à la Lindblad underlining its merits and limitations. The prospect of this study is to have a clearer understanding of the boundary decoherence of black hole horizons seen by outside observers. (paper)

  9. Preservation of a lower bound of quantum secret key rate in the presence of decoherence

    Energy Technology Data Exchange (ETDEWEB)

    Datta, Shounak, E-mail: shounak.datta@bose.res.in; Goswami, Suchetana, E-mail: suchetana.goswami@bose.res.in; Pramanik, Tanumoy, E-mail: tanu.pram99@bose.res.in; Majumdar, A.S., E-mail: archan@bose.res.in

    2017-03-11

    It is well known that the interaction of quantum systems with the environment reduces the inherent quantum correlations. Under special circumstances the effect of decoherence can be reversed, for example, the interaction modelled by an amplitude damping channel can boost the teleportation fidelity from the classical to the quantum region for a bipartite quantum state. Here, we first show that this phenomenon fails to preserve the quantum secret key rate derived under individual attack. We further show that the technique of weak measurement can be used to slow down the process of decoherence, thereby helping to preserve the quantum secret key rate when one or both systems are interacting with the environment via an amplitude damping channel. Most interestingly, in certain cases weak measurement with post-selection where one considers both success and failure of the technique is shown to be more useful than without it when both systems interact with the environment. - Highlights: • In general, decoherence has negative effect on the steerability and quantum secret key rate of a bipartite state. • Quantum key rate can be preserved against the effect of decoherence using the technique of weak measurement. • The technique of weak measurements includes a weak measurement and its reversal. • For some strength of weak measurement and environmental interaction, the average secret key rate is improved.

  10. Preservation of a lower bound of quantum secret key rate in the presence of decoherence

    International Nuclear Information System (INIS)

    Datta, Shounak; Goswami, Suchetana; Pramanik, Tanumoy; Majumdar, A.S.

    2017-01-01

    It is well known that the interaction of quantum systems with the environment reduces the inherent quantum correlations. Under special circumstances the effect of decoherence can be reversed, for example, the interaction modelled by an amplitude damping channel can boost the teleportation fidelity from the classical to the quantum region for a bipartite quantum state. Here, we first show that this phenomenon fails to preserve the quantum secret key rate derived under individual attack. We further show that the technique of weak measurement can be used to slow down the process of decoherence, thereby helping to preserve the quantum secret key rate when one or both systems are interacting with the environment via an amplitude damping channel. Most interestingly, in certain cases weak measurement with post-selection where one considers both success and failure of the technique is shown to be more useful than without it when both systems interact with the environment. - Highlights: • In general, decoherence has negative effect on the steerability and quantum secret key rate of a bipartite state. • Quantum key rate can be preserved against the effect of decoherence using the technique of weak measurement. • The technique of weak measurements includes a weak measurement and its reversal. • For some strength of weak measurement and environmental interaction, the average secret key rate is improved.

  11. Photoinduced localization and decoherence in inversion symmetric molecules

    Energy Technology Data Exchange (ETDEWEB)

    Langer, Burkhard, E-mail: langer@gpta.de [Physikalische und Theoretische Chemie, Freie Universitaet Berlin, Takustrasse 3, D-14195 Berlin (Germany); Ueda, Kiyoshi [Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577 (Japan); Al-Dossary, Omar M. [Physics Department, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Becker, Uwe [Physics Department, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin (Germany)

    2011-04-15

    Coherence of particles in form of matter waves is one of the basic properties of nature which distinguishes classical from quantum behavior. This is a direct consequence of the particle-wave dualism. It is the wave-like nature, which gives rise to coherence, whereas particle-like behavior results from decoherence. If two quantum objects are coherently coupled with respect to a particular variable, even over long distances, one speaks of entanglement. The study of entanglement is nowadays one of the most exciting research fields in physics with enormous impact on the most innovative development in information technology, the development of a future quantum computer. The loss of coherence by decoherence processes may occur due to momentum kicks or thermal heating. In this paper we report on a further decoherence process which occurs in dissociating inversion symmetric molecules due to the superposition of orthogonal symmetry states in the excitation along with freezing of the electron tunneling process afterwards.

  12. Effect of Noise on the Decoherence of a Central Electron Spin Coupled to an Antiferromagnetic Spin Bath

    Directory of Open Access Journals (Sweden)

    G. C. Fouokeng

    2014-01-01

    Full Text Available We analyze the influence of a two-state autocorrelated noise on the decoherence and on the tunneling Landau-Zener (LZ transitions during a two-level crossing of a central electron spin (CES coupled to a one dimensional anisotropic-antiferomagnetic spin, driven by a time-dependent global external magnetic field. The energy splitting of the coupled spin system is found through an approach that computes the noise-averaged frequency. At low magnetic field intensity, the decoherence (or entangled state of a coupled spin system is dominated by the noise intensity. The effects of the magnetic field pulse and the spin gap antiferromagnetic material used suggest to us that they may be used as tools for the direct observation of the tunneling splitting through the LZ transitions in the sudden limit. We found that the dynamical frequencies display basin-like behavior decay with time, with the birth of entanglement, while the LZ transition probability shows Gaussian shape.

  13. Quantum dissipative dynamics and decoherence of dimers on helium droplets

    International Nuclear Information System (INIS)

    Schlesinger, Martin

    2011-01-01

    In this thesis, quantum dynamical simulations are performed in order to describe the vibrational motion of diatomic molecules in a highly quantum environment, so-called helium droplets. We aim to reproduce and explain experimental findings which were obtained from dimers on helium droplets. Nanometer-sized helium droplets contain several thousands of 4 He atoms. They serve as a host for embedded atoms or molecules and provide an ultracold ''refrigerator'' for them. Spectroscopy of molecules in or on these droplets reveals information on both the molecule and the helium environment. The droplets are known to be in the superfluid He II phase. Superfluidity in nanoscale systems is a steadily growing field of research. Spectra obtained from full quantum simulations for the unperturbed dimer show deviations from measurements with dimers on helium droplets. These deviations result from the influence of the helium environment on the dimer dynamics. In this work, a well-established quantum optical master equation is used in order to describe the dimer dynamics effectively. The master equation allows to describe damping fully quantum mechanically. By employing that equation in the quantum dynamical simulation, one can study the role of dissipation and decoherence in dimers on helium droplets. The effective description allows to explain experiments with Rb 2 dimers on helium droplets. Here, we identify vibrational damping and associated decoherence as the main explanation for the experimental results. The relation between decoherence and dissipation in Morse-like systems at zero temperature is studied in more detail. The dissipative model is also used to investigate experiments with K 2 dimers on helium droplets. However, by comparing numerical simulations with experimental data, one finds that further mechanisms are active. Here, a good agreement is obtained through accounting for rapid desorption of dimers. We find that decoherence occurs in the electronic manifold of the

  14. Loschmidt echo in many-spin systems: a quest for intrinsic decoherence and emergent irreversibility

    Science.gov (United States)

    Zangara, Pablo R.; Pastawski, Horacio M.

    2017-03-01

    If a magnetic polarization excess is locally injected in a crystal of interacting spins in thermal equilibrium, this ‘excitation’ would spread as consequence of spin-spin interactions. Such an apparently irreversible process is known as spin diffusion and it can lead the system back to ‘equilibrium’. Even so, a unitary quantum dynamics would ensure a precise memory of the non-equilibrium initial condition. Then, if at a certain time, say t/2, an experimental protocol reverses the many-body dynamics by changing the sign of the effective Hamiltonian, it would drive the system back to the initial non-equilibrium state at time t. As a matter of fact, the reversal is always perturbed by small experimental imperfections and/or uncontrolled internal or environmental degrees of freedom. This limits the amount of signal M(t) recovered locally at time t. The degradation of M(t) accounts for these perturbations, which can also be seen as the sources of decoherence. This general idea defines the Loschmidt echo (LE), which embodies the various time-reversal procedures implemented in nuclear magnetic resonance. Here, we present an invitation to the study of the LE following the pathway induced by the experiments. With such a purpose, we provide a historical and conceptual overview that briefly revisits selected phenomena that underlie the LE dynamics including chaos, decoherence, localization and equilibration. This guiding thread ultimately leads us to the discussion of decoherence and irreversibility as an emergent phenomenon. In addition, we introduce the LE formalism by means of spin-spin correlation functions in a manner suitable for presentation in a broad scope physics journal. Last, but not least, we present new results that could trigger new experiments and theoretical ideas. In particular, we propose to transform an initially localized excitation into a more complex initial state, enabling a dynamically prepared LE. This induces a global definition of the LE in

  15. Energy barrier to decoherence

    International Nuclear Information System (INIS)

    Mizel, Ari; Mitchell, M. W.; Cohen, Marvin L.

    2001-01-01

    We propose a ground-state approach to realizing quantum computers. This scheme is time-independent and inherently defends against decoherence by possessing an energy barrier to excitation. We prove that our time-independent qubits can perform the same algorithms as their time-dependent counterparts. Advantages and disadvantages of the time-independent approach are described. A model involving quantum dots is provided for illustration

  16. Status of conversion of DOE standards to non-Government standards

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, H.L.

    1992-07-01

    One major goal of the DOE Technical Standards Program is to convert existing DOE standards into non-Government standards (NGS's) where possible. This means that a DOE standard may form the basis for a standards-writing committee to produce a standard in the same subject area using the non-Government standards consensus process. This report is a summary of the activities that have evolved to effect conversion of DOE standards to NGSs, and the status of current conversion activities. In some cases, all requirements in a DOE standard will not be incorporated into the published non-Government standard because these requirements may be considered too restrictive or too specific for broader application by private industry. If requirements in a DOE standard are not incorporated in a non-Government standard and the requirements are considered necessary for DOE program applications, the DOE standard will be revised and issued as a supplement to the non-Government standard. The DOE standard will contain only those necessary requirements not reflected by the non-Government standard. Therefore, while complete conversion of DOE standards may not always be realized, the Department's technical standards policy as stated in Order 1300.2A has been fully supported in attempting to make maximum use of the non-Government standard.

  17. Status of conversion of DOE standards to non-Government standards

    Energy Technology Data Exchange (ETDEWEB)

    Moseley, H.L.

    1992-07-01

    One major goal of the DOE Technical Standards Program is to convert existing DOE standards into non-Government standards (NGS`s) where possible. This means that a DOE standard may form the basis for a standards-writing committee to produce a standard in the same subject area using the non-Government standards consensus process. This report is a summary of the activities that have evolved to effect conversion of DOE standards to NGSs, and the status of current conversion activities. In some cases, all requirements in a DOE standard will not be incorporated into the published non-Government standard because these requirements may be considered too restrictive or too specific for broader application by private industry. If requirements in a DOE standard are not incorporated in a non-Government standard and the requirements are considered necessary for DOE program applications, the DOE standard will be revised and issued as a supplement to the non-Government standard. The DOE standard will contain only those necessary requirements not reflected by the non-Government standard. Therefore, while complete conversion of DOE standards may not always be realized, the Department`s technical standards policy as stated in Order 1300.2A has been fully supported in attempting to make maximum use of the non-Government standard.

  18. Macroscopic tunneling, decoherence and noise-induced activation

    Energy Technology Data Exchange (ETDEWEB)

    Lombardo, Fernando C; Monteoliva, Diana; Villar, Paula I [Departamento de Fisica Juan Jose Giambiagi, Facultad de Ciencias Exactas y Naturales, UBA, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)

    2007-05-15

    We study the effects of the environment at zero temperature on tunneling in an open system described by a static double-well potential. We show that the evolution of the system in an initial Schroedinger cat state, can be summarized in terms of three main physical phenomena, namely decoherence, quantum tunneling and noise-induced activation. Using large-scale numerical simulations, we obtain a detailed picture of the main stages of the evolution and of the relevant dynamical processes.

  19. Spin entanglement, decoherence and Bohm's EPR paradox

    OpenAIRE

    Cavalcanti, E. G.; Drummond, P. D.; Bachor, H. A.; Reid, M. D.

    2007-01-01

    We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with cu...

  20. Jets in QCD media: From color coherence to decoherence

    International Nuclear Information System (INIS)

    Mehtar-Tani, Yacine; Salgado, Carlos A.; Tywoniuk, Konrad

    2012-01-01

    We investigate soft gluon radiation off a quark-antiquark antenna in both color singlet and octet configurations traversing a dense medium. We demonstrate that, in both cases, multiple scatterings lead to a gradual decoherence of the antenna radiation as a function of the medium density. In particular, in the limit of a completely opaque medium, total decoherence is obtained, i.e., the quark and the antiquark radiate as independent emitters in vacuum, thus losing memory of their origin.

  1. Decoherence and back reaction: The origin of the semiclassical Einstein equations

    International Nuclear Information System (INIS)

    Paz, J.P.; Sinha, S.

    1991-01-01

    Two basic properties defining classical behavior are ''decoherence'' and ''correlations between coordinates and momenta.'' We study how the correlations that define the semiclassical decohering histories of the relevant cosmological variables are affected by the interaction with an environment formed by unobserved (''irrelevant'') degrees of freedom. For some quantum cosmological models we analyze under what conditions the semiclassical coarse-grained histories obey the so-called semiclassical Einstein's equations (i.e., G μν =κ left-angle T μν right-angle). These equations are shown to be valid only as a description of adiabatic regions of histories for which the interference effects have been suppressed. We also discuss the problem related to the existence of divergences in the decoherence factor of various quantum cosmological models

  2. Generic mechanisms of decoherence of quantum oscillations in magnetic double-well systems

    International Nuclear Information System (INIS)

    Chudnovsky, Eugene M.

    2004-01-01

    Fundamental conservation laws mandate parameter-free generic mechanisms of decoherence of quantum oscillations in double-well systems. We consider two examples: tunneling of the magnetic moment in nanomagnets and tunneling between macroscopic current states in SQUIDs. In both cases the decoherence occurs via emission of phonons and photons at the oscillation frequency. We also show that in a system of identical qubits the decoherence greatly increases due to the superradiance of electromagnetic and sound waves. Our findings have important implications for building elements of quantum computers based upon nanomagnets and SQUIDs

  3. Generic mechanisms of decoherence of quantum oscillations in magnetic double-well systems

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, Eugene M. E-mail: chudnov@lehman.cuny.edu

    2004-05-01

    Fundamental conservation laws mandate parameter-free generic mechanisms of decoherence of quantum oscillations in double-well systems. We consider two examples: tunneling of the magnetic moment in nanomagnets and tunneling between macroscopic current states in SQUIDs. In both cases the decoherence occurs via emission of phonons and photons at the oscillation frequency. We also show that in a system of identical qubits the decoherence greatly increases due to the superradiance of electromagnetic and sound waves. Our findings have important implications for building elements of quantum computers based upon nanomagnets and SQUIDs.

  4. Principles of control for decoherence-free subsystems.

    Science.gov (United States)

    Cappellaro, P; Hodges, J S; Havel, T F; Cory, D G

    2006-07-28

    Decoherence-free subsystems (DFSs) are a powerful means of protecting quantum information against noise with known symmetry properties. Although Hamiltonians that can implement a universal set of logic gates on DFS encoded qubits without ever leaving the protected subsystem theoretically exist, the natural Hamiltonians that are available in specific implementations do not necessarily have this property. Here we describe some of the principles that can be used in such cases to operate on encoded qubits without losing the protection offered by the DFSs. In particular, we show how dynamical decoupling can be used to control decoherence during the unavoidable excursions outside of the DFS. By means of cumulant expansions, we show how the fidelity of quantum gates implemented by this method on a simple two physical qubit DFS depends on the correlation time of the noise responsible for decoherence. We further show by means of numerical simulations how our previously introduced "strongly modulating pulses" for NMR quantum information processing can permit high-fidelity operations on multiple DFS encoded qubits in practice, provided that the rate at which the system can be modulated is fast compared to the correlation time of the noise. The principles thereby illustrated are expected to be broadly applicable to many implementations of quantum information processors based on DFS encoded qubits.

  5. Decoherence and Fidelity in Teleportation of Coherent Photon-Added Two-Mode Squeezed Thermal States

    Science.gov (United States)

    Li, Heng-Mei; Yuan, Hong-Chun; Wan, Zhi-Long; Wang, Zhen

    2018-04-01

    We theoretically introduce a kind of non-Gaussian entangled resources, i.e., coherent photon-added two-mode squeezed thermal states (CPA-TMSTS), by successively performing coherent photon addition operation to the two-mode squeezed thermal states. The normalization factor related to bivariate Hermite polynomials is obtained. Based upon it, the nonclassicality and decoherence process are analyzed by virtue of the Wigner function. It is shown that the coherent photon addition operation is an effective way in generating partial negative values of Wigner function, which clearly manifests the nonclassicality and non-Gaussianity of the target states. Additionally, the fidelity in teleporting coherent states using CPA-TMSTS as entangled resource is quantified both analytically and numerically. It is found that the CPA-TMSTS is an entangled resource of high-efficiency and high-fidelity in quantum teleportation.

  6. Entropy Squeezing in Coupled Field-Superconducting Charge Qubit with Intrinsic Decoherence

    Institute of Scientific and Technical Information of China (English)

    YAN Xue-Qun; SHAO Bin; ZOU Jian

    2007-01-01

    We investigate the entropy squeezing in the system of a superconducting charge qubit coupled to a single mode field. We find an exact solution of the Milburn equation for the system and discuss the influence of intrinsic decoherence on entropy squeezing. As a comparison, we also consider the variance squeezing. Our results show that in the absence of the intrinsic decoherence both entropy and variance squeezings have the same periodic properties of time,and occur at the same range of time. However, when the intrinsic decoherence is considered, we find that as the time going on the entropy squeezing disappears fast than the variance squeezing, there exists a range of time where entropy squeezing can occur but variance squeezing cannot.

  7. Jets in QCD Media: Onset of Color Decoherence

    International Nuclear Information System (INIS)

    Mehtar-Tani, Y.; Salgado, C.A.; Tywoniuk, K.

    2011-01-01

    We report on recent studies of the phenomenon of color decoherence of jets in QCD media. The effect is most clearly observed in the radiation pattern of a quark-antiquark antenna, created in the same quantum state, traversing a dense color deconfined plasma. Multiple scattering with the medium color charges gradually destroys the coherence of the antenna. In the limit of opaque media this ultimately leads to independent radiation off the antenna constituents. Accordingly, radiation off the total charge vanishes implying a memory loss effect induced by the medium. (authors)

  8. Decoherence in Nearly-Isolated Quantum Dots

    DEFF Research Database (Denmark)

    Folk, J.; M. Marcus, C.; Harris jr, J.

    2000-01-01

    Decoherence in nearly-isolated GaAs quantum dots is investigated using the change in average Coulomb blockade peak height upon breaking time-reversal symmetry. The normalized change in average peak height approaches the predicted universal value of 1/4 at temperatures well below the single...

  9. Preparation of three- and four-qubit decoherence-free states via Zeno-like measurements

    International Nuclear Information System (INIS)

    Shao, Xiao-Qiang; Zhang, Shou; Zhao, Yong-Fang; Chen, Li; Yeon, Kyu-Hwang

    2010-01-01

    Enlightened by the idea of purification through Zeno-like measurements (Nakazato et al 2003 Phys. Rev. Lett. 90 060401), we propose a scheme for generating three- and four-qubit decoherence-free states with respect to collective amplitude damping. The whole system is in a star configuration of a spin network and the outer spin qubits construct the decoherence-free state via measuring the state of central spin qubit at intervals of τ repeatedly. An interesting feature is found: namely, that in order to prepare the three-qubit decoherence-free state successfully, the value of τ for the projected time-evolution operator must be set definitely, while this restrictive condition is relaxed for achieving the four-qubit decoherence-free state. The simulation results reveal that the fidelity approaches one asymptotically, and the corresponding success probability reaches a stable value by increasing the number of measurements N.

  10. Reconciling results of LSND, MiniBooNE and other experiments with soft decoherence

    CERN Document Server

    Farzan, Yasaman; Smirnov, Alexei Yu

    2008-01-01

    We propose an explanation of the LSND signal via quantum-decoherence of the mass states, which leads to damping of the interference terms in the oscillation probabilities. The decoherence parameters as well as their energy dependence are chosen in such a way that the damping affects only oscillations with the large (atmospheric) $\\Delta m^2$ and rapidly decreases with the neutrino energy. This allows us to reconcile the positive LSND signal with MiniBooNE and other null-result experiments. The standard explanations of solar, atmospheric, KamLAND and MINOS data are not affected. No new particles, and in particular, no sterile neutrinos are needed. The LSND signal is controlled by the 1-3 mixing angle $\\theta_{13}$ and, depending on the degree of damping, yields $0.0014 < \\sin^2\\theta_{13} < 0.034$ at $3\\sigma$. The scenario can be tested at upcoming $\\theta_{13}$ searches: while the comparison of near and far detector measurements at reactors should lead to a null-result a positive signal for $\\theta_{13...

  11. Non-standard interaction effects at reactor neutrino experiments

    International Nuclear Information System (INIS)

    Ohlsson, Tommy; Zhang, He

    2009-01-01

    We study non-standard interactions (NSIs) at reactor neutrino experiments, and in particular, the mimicking effects on θ 13 . We present generic formulas for oscillation probabilities including NSIs from sources and detectors. Instructive mappings between the fundamental leptonic mixing parameters and the effective leptonic mixing parameters are established. In addition, NSI corrections to the mixing angles θ 13 and θ 12 are discussed in detailed. Finally, we show that, even for a vanishing θ 13 , an oscillation phenomenon may still be observed in future short baseline reactor neutrino experiments, such as Double Chooz and Daya Bay, due to the existences of NSIs

  12. Spatial correlation in matter-wave interference as a measure of decoherence, dephasing, and entropy

    Science.gov (United States)

    Chen, Zilin; Beierle, Peter; Batelaan, Herman

    2018-04-01

    The loss of contrast in double-slit electron diffraction due to dephasing and decoherence processes is studied. It is shown that the spatial intensity correlation function of diffraction patterns can be used to distinguish between dephasing and decoherence. This establishes a measure of time reversibility that does not require the determination of coherence terms of the density matrix, while von Neumann entropy, another measure of time reversibility, does require coherence terms. This technique is exciting in view of the need to understand and control the detrimental experimental effect of contrast loss and for fundamental studies on the transition from the classical to the quantum regime.

  13. Probabilities in quantum cosmological models: A decoherent histories analysis using a complex potential

    International Nuclear Information System (INIS)

    Halliwell, J. J.

    2009-01-01

    In the quantization of simple cosmological models (minisuperspace models) described by the Wheeler-DeWitt equation, an important step is the construction, from the wave function, of a probability distribution answering various questions of physical interest, such as the probability of the system entering a given region of configuration space at any stage in its entire history. A standard but heuristic procedure is to use the flux of (components of) the wave function in a WKB approximation. This gives sensible semiclassical results but lacks an underlying operator formalism. In this paper, we address the issue of constructing probability distributions linked to the Wheeler-DeWitt equation using the decoherent histories approach to quantum theory. The key step is the construction of class operators characterizing questions of physical interest. Taking advantage of a recent decoherent histories analysis of the arrival time problem in nonrelativistic quantum mechanics, we show that the appropriate class operators in quantum cosmology are readily constructed using a complex potential. The class operator for not entering a region of configuration space is given by the S matrix for scattering off a complex potential localized in that region. We thus derive the class operators for entering one or more regions in configuration space. The class operators commute with the Hamiltonian, have a sensible classical limit, and are closely related to an intersection number operator. The definitions of class operators given here handle the key case in which the underlying classical system has multiple crossings of the boundaries of the regions of interest. We show that oscillatory WKB solutions to the Wheeler-DeWitt equation give approximate decoherence of histories, as do superpositions of WKB solutions, as long as the regions of configuration space are sufficiently large. The corresponding probabilities coincide, in a semiclassical approximation, with standard heuristic procedures

  14. Entanglement and Teleportation of Pair Cat States in Amplitude Decoherence Channel

    International Nuclear Information System (INIS)

    Xu Hangshi; Xu Jingbo

    2009-01-01

    The dynamic behavior of the entanglement for the pair cat states in the amplitude decoherence channel is studied by adopting the entanglement of formation determined by the concurrence. Then, we consider the teleportation by using joint measurements of the photon-number sum and phase difference with the pair cat states as an entangle resource and discuss the influence of amplitude decoherence on the mean fidelity of the teleportation.

  15. Spontaneous decoherence of coupled harmonic oscillators confined in a ring

    Science.gov (United States)

    Gong, ZhiRui; Zhang, ZhenWei; Xu, DaZhi; Zhao, Nan; Sun, ChangPu

    2018-04-01

    We study the spontaneous decoherence of coupled harmonic oscillators confined in a ring container, where the nearest-neighbor harmonic potentials are taken into consideration. Without any external symmetry-breaking field or surrounding environment, the quantum superposition state prepared in the relative degrees of freedom gradually loses its quantum coherence spontaneously. This spontaneous decoherence is interpreted by the gauge couplings between the center-of-mass and the relative degrees of freedoms, which actually originate from the symmetries of the ring geometry and the corresponding nontrivial boundary conditions. In particular, such spontaneous decoherence does not occur at all at the thermodynamic limit because the nontrivial boundary conditions become the trivial Born-von Karman boundary conditions when the perimeter of the ring container tends to infinity. Our investigation shows that a thermal macroscopic object with certain symmetries has a chance for its quantum properties to degrade even without applying an external symmetry-breaking field or surrounding environment.

  16. Revival and robustness of Bures distance discord under decoherence channels

    International Nuclear Information System (INIS)

    Shi, Jia-dong; Wang, Dong; Ma, Yang-cheng; Ye, Liu

    2016-01-01

    In this paper, we demonstrate the revival and robustness of Bures distance discord in comparison with entanglement under local decoherent evolutions. The results show that in depolarizing channel Bures distance discord revives after a dark point of time, while entanglement will damp into death without revival. In addition, in hybrid channel the declining initial condition can enable Bures distance discord to decay more smoothly within a limited time, but speed up the death of entanglement. In this sense, Bures distance discord is typically more robust against decoherence than entanglement. Furthermore, we also provide a geometric interpretation concerning these phenomena. - Highlights: • Bures distance discord is more robust against decoherence than entanglement. • Bures distance discord revives after a dark point of time, while entanglement damps to death. • The initial condition enables Bures distance discord to damp smoothly, but it speeds up the death of entanglement. • A geometric interpretation concerning these phenomena has been provided.

  17. Decoherence can relax cosmic acceleration

    International Nuclear Information System (INIS)

    Markkanen, Tommi

    2016-01-01

    In this work we investigate the semi-classical backreaction for a quantised conformal scalar field and classical vacuum energy. In contrast to the usual approximation of a closed system, our analysis includes an environmental sector such that a quantum-to-classical transition can take place. We show that when the system decoheres into a mixed state with particle number as the classical observable de Sitter space is destabilized, which is observable as a gradually decreasing Hubble rate. In particular we show that at late times this mechanism can drive the curvature of the Universe to zero and has an interpretation as the decay of the vacuum energy demonstrating that quantum effects can be relevant for the fate of the Universe.

  18. Decoherence can relax cosmic acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, Tommi [Department of Physics, King’s College London,Strand, London WC2R 2LS (United Kingdom)

    2016-11-11

    In this work we investigate the semi-classical backreaction for a quantised conformal scalar field and classical vacuum energy. In contrast to the usual approximation of a closed system, our analysis includes an environmental sector such that a quantum-to-classical transition can take place. We show that when the system decoheres into a mixed state with particle number as the classical observable de Sitter space is destabilized, which is observable as a gradually decreasing Hubble rate. In particular we show that at late times this mechanism can drive the curvature of the Universe to zero and has an interpretation as the decay of the vacuum energy demonstrating that quantum effects can be relevant for the fate of the Universe.

  19. Decoherence and absorption of Er3+:KTiOPO4 (KTP) at 1.5 μm

    International Nuclear Information System (INIS)

    Böttger, Thomas; Thiel, C.W.; Sun, Y.; Macfarlane, R.M.; Cone, R.L.

    2016-01-01

    We present results of laser absorption spectroscopy and two-pulse photon echo decoherence measurements on the lowest 4 I 15/2 to lowest 4 I 13/2 transition in Er 3+ : KTiOPO 4 (KTP—potassium titanyl phosphate) for the optical transition located at 1537.238 nm. This transition was found to have an inhomogeneous absorption linewidth of 950 MHz and pronounced polarization dependence. Two-pulse photon echo decay measurements as a function of applied magnetic field strength at 1.9 K revealed a narrow homogeneous linewidth of 2.5 kHz at 0.2 T that increased to 5.8 kHz at 1.2 T and then decreased to 1.6 kHz at 4.5 T. This behavior was successfully described by decoherence due to Er 3+ –Er 3+ magnetic dipole interactions. Significant superhyperfine coupling of Er 3+ spins to the nuclear moments of ions in the host lattice was observed, modulating the photon echo decay at low magnetic fields and limiting the effective homogenous linewidth at high fields. Combined with the well-established potential of KTP for fabrication of high-quality optical waveguides and integrated non-linear frequency conversion, our results suggest that Er 3+ :KTP is a promising material system for practical spectral hole burning, signal processing, and quantum information applications. - Highlights: • Bulk Er 3+ :KTP has dominant Er 3+ site at 1537.238 nm with Γ inh of 950 MHz and T 1 of 16.9 ms. • Two-pulse photon echoes revealed magnetic field dependent kHz-wide homogeneous linewidth. • Decoherence modeled using direct-phonon driven Er 3+ –Er 3+ magnetic dipole-dipole interactions. • Evidence of superhyperfine coupling of Er 3+ spins to nuclear moments of host ions. • Er 3+ :KTP is a promising material system for quantum memory and signal processing applications.

  20. Decoherence of superposition states in trapped ions

    CSIR Research Space (South Africa)

    Uys, H

    2010-09-01

    Full Text Available This paper investigates the decoherence of superpositions of hyperfine states of 9Be+ ions due to spontaneous scattering of off-resonant light. It was found that, contrary to conventional wisdom, elastic Raleigh scattering can have major...

  1. Decoherence and quantum measurements

    CERN Document Server

    Namiki, Mikio; Pascazio, Saverio

    1997-01-01

    The quantum measurement problem is one of the most fascinating and challenging topics in physics both theoretically and experimentally. It involves deep questions and the use of very sophisticated and elegant techniques. After analyzing the fundamental principles of quantum mechanics and of the Copenhagen interpretation, this book reviews the most important approaches to the measurement problem and rigorously reformulates the "collapse of the wave function" by measurement, as a dephasing process quantitatively characterized by an order parameter (called the decoherence parameter), according to

  2. Phonon-induced dissipation and decoherence in solid-state quantum devices: Markovian versus non-Markovian treatments

    Science.gov (United States)

    Iotti, Rita Claudia; Rossi, Fausto

    2017-12-01

    Microscopic modeling of electronic phase coherence versus energy dissipation plays a crucial role in the design and optimization of new-generation electronic quantum nanodevices, like quantum-cascade light sources and quantum logic gates; in this context, non-Markovian density-matrix approaches are widely used simulation strategies. Here we show that such methods, along with valuable virtues, in some circumstances may exhibit potential limitations that need to be taken into account for a reliable description of quantum materials and related devices. More specifically, extending the analysis recently proposed in [EPL 112, 67005 (2015)] to high temperatures and degenerate conditions, we show that the usual mean-field treatment - employed to derive quantum-kinetic equations - in some cases may lead to anomalous results, characterized by decoherence suppression and positivity violations. By means of a simple two-level model, we show that such unexpected behaviors may affect zero-dimensional electronic systems coupled to dispersionless phonon modes, while such anomalies are expected to play a negligible role in nanosystems with higher dimensionality; these limitations are found to be significant in the low-density and low-temperature limit, while in the degenerate and/or finite-temperature regime - typical of many state-of-the-art quantum devices - their impact is strongly reduced.

  3. Metastable decoherence-free subspaces and electromagnetically induced transparency in interacting many-body systems

    DEFF Research Database (Denmark)

    Macieszczak, Katarzyna; Zhou, Yanli; Hofferberth, Sebastian

    2017-01-01

    to stationarity this leads to a slow dynamics, which renders the typical assumption of fast relaxation invalid. We derive analytically the effective nonequilibrium dynamics in the decoherence-free subspace, which features coherent and dissipative two-body interactions. We discuss the use of this scenario...

  4. Multiparticle entanglement under the influence of decoherence

    NARCIS (Netherlands)

    Gühne, O.; Bodoky, F.; Blaauboer, M.

    2008-01-01

    We present a method to determine the decay of multiparticle quantum correlations as quantified by the geometric measure of entanglement under the influence of decoherence. With this, we compare the robustness of entanglement in Greenberger-Horne-Zeilinger (GHZ), cluster, W, and Dicke states of four

  5. Spin boson models for quantum decoherence of electronic excitations of biomolecules and quantum dots in a solvent

    International Nuclear Information System (INIS)

    Gilmore, Joel; McKenzie, Ross H

    2005-01-01

    We give a theoretical treatment of the interaction of electronic excitations (excitons) in biomolecules and quantum dots with the surrounding polar solvent. Significant quantum decoherence occurs due to the interaction of the electric dipole moment of the solute with the fluctuating electric dipole moments of the individual molecules in the solvent. We introduce spin boson models which could be used to describe the effects of decoherence on the quantum dynamics of biomolecules which undergo light-induced conformational change and on biomolecules or quantum dots which are coupled by Foerster resonant energy transfer

  6. Ehrenfest dynamics is purity non-preserving: A necessary ingredient for decoherence

    International Nuclear Information System (INIS)

    Alonso, J. L.; Clemente-Gallardo, J.; Cuchí, J. C.

    2012-01-01

    We discuss the evolution of purity in mixed quantum/classical approaches to electronic nonadiabatic dynamics in the context of the Ehrenfest model. As it is impossible to exactly determine initial conditions for a realistic system, we choose to work in the statistical Ehrenfest formalism that we introduced in Alonso et al. [J. Phys. A: Math. Theor. 44, 396004 (2011)]. From it, we develop a new framework to determine exactly the change in the purity of the quantum subsystem along with the evolution of a statistical Ehrenfest system. In a simple case, we verify how and to which extent Ehrenfest statistical dynamics makes a system with more than one classical trajectory, and an initial quantum pure state become a quantum mixed one. We prove this numerically showing how the evolution of purity depends on time, on the dimension of the quantum state space D, and on the number of classical trajectories N of the initial distribution. The results in this work open new perspectives for studying decoherence with Ehrenfest dynamics.

  7. Non-standard perturbative methods for the effective potential in λφ4 QFT

    International Nuclear Information System (INIS)

    Okopinska, A.

    1986-07-01

    The effective potential in scalar QFT is calculated in the non-standard perturbative methods and compared with the conventional loop expansion. In the space time dimensions 0 and 1 the results are compared with the ''exact'' effective potential obtained numerically. In 4 dimensions we show that λφ 4 theory is non-interacting. (author)

  8. Decoherence control in quantum computing with simple chirped ...

    Indian Academy of Sciences (India)

    strate this with selective control of decoherence for a multilevel system with a simple ... The concept of quantum computer (QC) has attracted considerable attention ... as intramolecular vibrational relaxation (IVR), which is the most important ...

  9. Decoherence and discrete symmetries in deformed relativistic kinematics

    Science.gov (United States)

    Arzano, Michele

    2018-01-01

    Models of deformed Poincaré symmetries based on group valued momenta have long been studied as effective modifications of relativistic kinematics possibly capturing quantum gravity effects. In this contribution we show how they naturally lead to a generalized quantum time evolution of the type proposed to model fundamental decoherence for quantum systems in the presence of an evaporating black hole. The same structures which determine such generalized evolution also lead to a modification of the action of discrete symmetries and of the CPT operator. These features can in principle be used to put phenomenological constraints on models of deformed relativistic symmetries using precision measurements of neutral kaons.

  10. Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions

    CERN Document Server

    Blennow, Mattias; Fernandez-Martinez, Enrique; Hernandez-Garcia, Josu; Lopez-Pavon, Jacobo

    2017-04-27

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formal- ism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at the far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near-future facilities taking the DUNE proposal as a bench- mark. We conclude that non-unitarity effects ...

  11. Particle trapping induced by the interplay between coherence and decoherence

    International Nuclear Information System (INIS)

    Yi Sangyong; Choi, Mahn-Soo; Kim, Sang Wook

    2009-01-01

    We propose a novel scheme to trap a particle based on a delicate interplay between coherence and decoherence. If the decoherence occurs as a particle is located in the scattering region and subsequently the appropriate destructive interference takes place, the particle can be trapped in the scattering area. We consider two possible experimental realizations of such trapping: a ring attached to a single lead and a ring attached to two leads. Our scheme has nothing to do with a quasi-bound state of the system, but has a close analogy with the weak localization phenomena in disordered conductors.

  12. Expedited Holonomic Quantum Computation via Net Zero-Energy-Cost Control in Decoherence-Free Subspace.

    Science.gov (United States)

    Pyshkin, P V; Luo, Da-Wei; Jing, Jun; You, J Q; Wu, Lian-Ao

    2016-11-25

    Holonomic quantum computation (HQC) may not show its full potential in quantum speedup due to the prerequisite of a long coherent runtime imposed by the adiabatic condition. Here we show that the conventional HQC can be dramatically accelerated by using external control fields, of which the effectiveness is exclusively determined by the integral of the control fields in the time domain. This control scheme can be realized with net zero energy cost and it is fault-tolerant against fluctuation and noise, significantly relaxing the experimental constraints. We demonstrate how to realize the scheme via decoherence-free subspaces. In this way we unify quantum robustness merits of this fault-tolerant control scheme, the conventional HQC and decoherence-free subspace, and propose an expedited holonomic quantum computation protocol.

  13. Decoherence, determinism and chaos

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1994-01-01

    The author claims by now to have made his case that modern work on fractals and chaos theory has already removed the presumption that classical physics is 'deterministic'. Further, he claims that in so far as classical relativistic field theory (i.e. electromagnetism and gravitation) are scale invariant, they are self-consistent only if the idea of 'test-particle' is introduced from outside the theory. Einstein spent the last years of his life trying to use singularities in the metric as 'particles' or to get them out of the non-linearities in a grand unified theory -- in vain. So classical physics in this sense cannot be the fundamental theory. However, the author claims to have shown that if he introduces a 'scale invariance bounded from below' by measurement accuracy, then Tanimura's generalization of the Feynman proof as reconstructed by Dyson allows him to make a consistent classical theory for decoherent sources sinks. Restoring coherence to classical physics via relativistic action-at-a distance is left as a task for the future. Relativistic quantum mechanics, properly reconstructed from a finite and discrete basis, emerges in much better shape. The concept of 'particles has to be replaced by NO-YES particulate events, and particle-antiparticle pair creation and annihilation properly formulated

  14. Measurement of the decoherence function with the MACRO detector at Gran Sasso

    International Nuclear Information System (INIS)

    Ahlen, S.; Ambrosio, M.; Antolini, R.; Auriemma, G.; Baldini, A.; Barbarino, G.C.; Barish, B.C.; Battistoni, G.; Bellotti, R.; Bemporad, C.; Bernardini, P.; Bilokon, H.; Bisi, V.; Bloise, C.; Bussino, S.; Cafagna, F.; Calicchio, M.; Campana, D.; Campana, P.; Carboni, M.; Cecchini, S.; Cei, F.; Chiarella, V.; Chiera, C.; Cobis, A.; Cormack, R.; Corona, A.; Coutu, S.; DeCataldo, G.; Dekhussi, H.; DeMarzo, C.; De Vincenzi, M.; Di Credico, A.; Diehl, E.; Erriquez, O.; Favuzzi, C.; Ficenec, D.; Forti, C.; Foti, L.; Fusco, P.; Giacomelli, G.; Giannini, G.; Giglietto, N.; Giubellino, P.; Grassi, M.; Green, P.; Grillo, A.; Guarino, F.; Gustavino, C.; Habig, A.; Heinz, R.; Hong, J.T.; Iarocci, E.; Katsavounidis, E.; Kearns, E.; Klein, S.; Kyriazopoulou, S.; Lamanna, E.; Lane, C.; Lee, C.; Levin, D.S.; Lipari, P.; Liu, G.; Liu, R.; Longo, M.J.; Ludlam, G.; Mancarella, G.; Mandrioli, G.; Margiotta-Neri, A.; Marin, A.; Marini, A.; Martello, D.; Marzari Chiesa, A.; Masera, M.; Matteuzzi, P.; Michael, D.G.; Miller, L.; Monacelli, P.; Monteno, M.; Mufson, S.; Musser, J.; Nutter, S.; Okada, C.; Osteria, G.; Palamara, O.; Parlati, S.; Patera, V.; Patrizii, L.; Pazzi, R.; Peck, C.W.; Petrakis, J.; Petrera, S.; Pignatano, N.D.; Pistilli, P.; Predieri, F.; Ramello, L.; Reynoldson, J.; Ronga, F.; Rosa, G.; Satriano, C.; Satta, L.; Scapparone, E.; Scholberg, K.; Sciubba, A.; Serra Lugaresi, P.; Severi, M.; Sitta, M.; Spinelli, P.; Spinetti, M.; Spurio, M.; Steele, J.; Steinberg, R.; Stone, J.L.; Sulak, L.R.; Surdo, A.; Tarle, G.; Togo, V.; Valente, V.; Walter, C.W.; Webb, R.; Worstell, W.

    1992-01-01

    A measurement of the underground muon decoherence function has been performed using the multiple muon events collected by the MACRO detector at the Gran Sasso National Laboratory. A detector-independent analysis is presented for different zenith regions and rock depths; this allows direct comparison with any model of hadronic interactions. The measured decoherence function is compared with the predictions of a Monte Carlo simulation based on data taken by recent collider experiments

  15. The measurement problem in quantum mechanics: approximation to the phenomenon of decoherence by operational identities

    International Nuclear Information System (INIS)

    Usera, J.I.

    1996-01-01

    An approach based on bits and pieces of standard wisdom plus and operational quantum mechanical identity deduced by the author is presented here in order to convey arguments concerning the quantum theory of measurement and which betray a flavor against completive claims for quantum mechanics. Special emphasis is put on the phenomenon of decoherence. This phenomenon (which is experimentally verifiable) finds natural room within the formalism while the wave function collapse (which is not) is precluded. (Author)

  16. Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles

    International Nuclear Information System (INIS)

    Grace, Matthew; Brif, Constantin; Rabitz, Herschel; Walmsley, Ian A; Kosut, Robert L; Lidar, Daniel A

    2007-01-01

    Methods of optimal control are applied to a model system of interacting two-level particles (e.g., spin-half atomic nuclei or electrons or two-level atoms) to produce high-fidelity quantum gates while simultaneously negating the detrimental effect of decoherence. One set of particles functions as the quantum information processor, whose evolution is controlled by a time-dependent external field. The other particles are not directly controlled and serve as an effective environment, coupling to which is the source of decoherence. The control objective is to generate target one- and two-qubit unitary gates in the presence of strong environmentally-induced decoherence and under physically motivated restrictions on the control field. The quantum-gate fidelity, expressed in terms of a novel state-independent distance measure, is maximized with respect to the control field using combined genetic and gradient algorithms. The resulting high-fidelity gates demonstrate the feasibility of precisely guiding the quantum evolution via optimal control, even when the system complexity is exacerbated by environmental coupling. It is found that the gate duration has an important effect on the control mechanism and resulting fidelity. An analysis of the sensitivity of the gate performance to random variations in the system parameters reveals a significant degree of robustness attained by the optimal control solutions

  17. On reduction of the wave-packet, decoherence, irreversibility and the second law of thermodynamics

    International Nuclear Information System (INIS)

    Narnhofer, H.; Wreszinski, W.F.

    2014-01-01

    We prove a quantum version of the second law of thermodynamics: the (quantum) Boltzmann entropy increases if the initial (zero time) density matrix decoheres, a condition generally satisfied in Nature. It is illustrated by a model of wave-packet reduction, the Coleman–Hepp model, along the framework introduced by Sewell (2005) in his approach to the quantum measurement problem. Further models illustrate the monotonic-versus-non-monotonic behavior of the quantum Boltzmann entropy in time. As a last closely related topic, decoherence, which was shown by Narnhofer and Thirring (1999) to enforce macroscopic purity in the case of quantum K systems, is analyzed within a different class of quantum chaotic systems, viz. the quantum Anosov models as defined by Emch, Narnhofer, Sewell and Thirring (1994). A review of the concept of quantum Boltzmann entropy, as well as of some of the rigorous approaches to the quantum measurement problem within the framework of Schrödinger dynamics, is given, together with an overview of the C* algebra approach, which encompasses the relevant notions and definitions in a comprehensive way

  18. Decoherence in the Kane quantum computer

    International Nuclear Information System (INIS)

    Fowler, A.G.; Wellard, C.J.; Hollenberg, L.C.L.

    2002-01-01

    Full text: The Kane design for a quantum computer in the solid-state has recently received a great deal of attention, and is the main area of study in the Special Research Centre for Quantum Computer Technology. In this paper, the adiabatic CNOT gate, as proposed by Goan and Milburn, is simulated exactly for a range of pulse sequence profiles. In the absence of de-phasing, the CNOT gate operation time (semi-optimized) was found to be 26 micro-seconds with error probability of 5 x 10 -5 . Simulation of the CNOT gate in the presence of a coherence destroying environmental coupling as well as gate noise was subsequently carried out for a range of de-coherence rates, and the effect on gate fidelity determined

  19. Long-distance quantum communication. Decoherence-avoiding mechanisms

    International Nuclear Information System (INIS)

    Kolb Bernardes, Nadja

    2012-01-01

    Entanglement is the essence of most quantum information processes. For instance, it is used as a resource for quantum teleportation or perfectly secure classical communication. Unfortunately, inevitable noise in the quantum channel will typically affect the distribution of entanglement. Owing to fundamental principles, common procedures used in classical communication, such as amplification, cannot be applied. Therefore, the fidelity and rate of transmission will be limited by the length of the channel. Quantum repeaters were proposed to avoid the exponential decay with the distance and to permit long-distance quantum communication. Long-distance quantum communication constitutes the framework for the results presented in this thesis. The main question addressed in this thesis is how the performance of quantum repeaters are affected by various sources of decoherence. Moreover, what can be done against decoherence to improve the performance of the repeater. We are especially interested in the so-called hybrid quantum repeater; however, many of the results presented here are sufficiently general and may be applied to other systems as well. First, we present a detailed entanglement generation rate analysis for the quantum repeater. In contrast to what is commonly found in the literature, our analysis is general and analytical. Moreover, various sources of errors are considered, such as imperfect local two-qubit operations and imperfect memories, making it possible to determine the requirements for memory decoherence times. More specifically, we apply our formulae in the context of a hybrid quantum repeater and we show that in a possible experimental scenario, our hybrid system can create near-maximally entangled pairs over a distance of 1280 km at rates of the order of 100 Hz. Furthermore, aiming to protect the system against different types of errors, we analyze the hybrid quantum repeater when supplemented by quantum error correction. We propose a scheme for

  20. Long-distance quantum communication. Decoherence-avoiding mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Kolb Bernardes, Nadja

    2012-12-17

    Entanglement is the essence of most quantum information processes. For instance, it is used as a resource for quantum teleportation or perfectly secure classical communication. Unfortunately, inevitable noise in the quantum channel will typically affect the distribution of entanglement. Owing to fundamental principles, common procedures used in classical communication, such as amplification, cannot be applied. Therefore, the fidelity and rate of transmission will be limited by the length of the channel. Quantum repeaters were proposed to avoid the exponential decay with the distance and to permit long-distance quantum communication. Long-distance quantum communication constitutes the framework for the results presented in this thesis. The main question addressed in this thesis is how the performance of quantum repeaters are affected by various sources of decoherence. Moreover, what can be done against decoherence to improve the performance of the repeater. We are especially interested in the so-called hybrid quantum repeater; however, many of the results presented here are sufficiently general and may be applied to other systems as well. First, we present a detailed entanglement generation rate analysis for the quantum repeater. In contrast to what is commonly found in the literature, our analysis is general and analytical. Moreover, various sources of errors are considered, such as imperfect local two-qubit operations and imperfect memories, making it possible to determine the requirements for memory decoherence times. More specifically, we apply our formulae in the context of a hybrid quantum repeater and we show that in a possible experimental scenario, our hybrid system can create near-maximally entangled pairs over a distance of 1280 km at rates of the order of 100 Hz. Furthermore, aiming to protect the system against different types of errors, we analyze the hybrid quantum repeater when supplemented by quantum error correction. We propose a scheme for

  1. Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics.

    Science.gov (United States)

    Kockum, Anton Frisk; Johansson, Göran; Nori, Franco

    2018-04-06

    In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2^{N} states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.

  2. Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics

    Science.gov (United States)

    Kockum, Anton Frisk; Johansson, Göran; Nori, Franco

    2018-04-01

    In quantum-optics experiments with both natural and artificial atoms, the atoms are usually small enough that they can be approximated as pointlike compared to the wavelength of the electromagnetic radiation with which they interact. However, superconducting qubits coupled to a meandering transmission line, or to surface acoustic waves, can realize "giant artificial atoms" that couple to a bosonic field at several points which are wavelengths apart. Here, we study setups with multiple giant atoms coupled at multiple points to a one-dimensional (1D) waveguide. We show that the giant atoms can be protected from decohering through the waveguide, but still have exchange interactions mediated by the waveguide. Unlike in decoherence-free subspaces, here the entire multiatom Hilbert space (2N states for N atoms) is protected from decoherence. This is not possible with "small" atoms. We further show how this decoherence-free interaction can be designed in setups with multiple atoms to implement, e.g., a 1D chain of atoms with nearest-neighbor couplings or a collection of atoms with all-to-all connectivity. This may have important applications in quantum simulation and quantum computing.

  3. Spin geometry of entangled qubits under bilocal decoherence modes

    International Nuclear Information System (INIS)

    Durstberger, Katharina

    2008-01-01

    The Lindblad generators of the master equation define which kind of decoherence happens in an open quantum system. We are working with a two qubit system and choose the generators to be projection operators on the eigenstates of the system and unitary bilocal rotations of them. The resulting decoherence modes are studied in detail. Besides the general solutions we investigate the special case of maximally entangled states-the Bell singlet states. The results are depicted in the so-called spin geometry picture which allows to illustrate the evolution of the (nonlocal) correlations stored in a certain state. The question for which conditions the path traced out in the geometric picture depends only on the relative angle between the bilocal rotations is addressed

  4. Decoherence as a way to measure extremely soft collisions with dark matter

    Science.gov (United States)

    Riedel, C. Jess; Yavin, Itay

    2017-07-01

    A new frontier in the search for dark matter (DM) is based on the idea of detecting the decoherence caused by DM scattering against a mesoscopic superposition of normal matter. Such superpositions are uniquely sensitive to very small momentum transfers from new particles and forces, especially DM with a mass below 100 MeV. Here we investigate what sorts of dark sectors are inaccessible with existing methods but would induce noticeable decoherence in the next generation of matter interferometers. We show that very soft but medium range (0.1 nm - 1 μ m ) elastic interactions between nuclei and DM are particularly suitable. We construct toy models for such interactions, discuss existing constraints, and delineate the expected sensitivity of forthcoming experiments. The first hints of DM in these devices would appear as small variations in the anomalous decoherence rate with a period of one sidereal day. This is a generic signature of interstellar sources of decoherence, clearly distinguishing it from terrestrial backgrounds. The OTIMA experiment under development in Vienna will begin to probe Earth-thermalizing DM once sidereal variations in the background decoherence rate are pushed below one part in a hundred for superposed 5-nm gold nanoparticles. The proposals by Bateman et al. and Geraci et al. could be similarly sensitive although they would require at least a month of data taking. DM that is absorbed or elastically reflected by the Earth, and so avoids a greenhouse density enhancement, would not be detectable by those three experiments. On the other hand, the aggressive proposals of the MAQRO collaboration and Pino et al. would immediately open up many orders of magnitude in DM mass, interaction range, and coupling strength, regardless of how DM behaves in bulk matter.

  5. Entanglement, decoherence and thermal relaxation in exactly solvable models

    International Nuclear Information System (INIS)

    Lychkovskiy, Oleg

    2011-01-01

    Exactly solvable models provide an opportunity to study different aspects of reduced quantum dynamics in detail. We consider the reduced dynamics of a single spin in finite XX and XY spin 1/2 chains. First we introduce a general expression describing the evolution of the reduced density matrix. This expression proves to be tractable when the combined closed system (i.e. open system plus environment) is integrable. Then we focus on comparing decoherence and thermalization timescales in the XX chain. We find that for a single spin these timescales are comparable, in contrast to what should be expected for a macroscopic body. This indicates that the process of quantum relaxation of a system with few accessible states can not be separated in two distinct stages - decoherence and thermalization. Finally, we turn to finite-size effects in the time evolution of a single spin in the XY chain. We observe three consecutive stages of the evolution: regular evolution, partial revivals, irregular (apparently chaotic) evolution. The duration of the regular stage is proportional to the number of spins in the chain. We observe a 'quiet and cold period' in the end of the regular stage, which breaks up abruptly at some threshold time.

  6. Decoherence approach to energy transfer and work done by slowly driven systems

    Science.gov (United States)

    Wang, Wen-ge

    2018-01-01

    A main problem, which is met when computing the energy transfer of or work done by a quantum system, comes from the fact that the system may lie in states with coherence in its energy eigenstates. As is well known, when the so-called environment-induced decoherence has happened with respect to a preferred basis given by the energy basis, no coherence exists among the energy basis and the energy change of the system can be computed in a definite way. I argue that one may make use of this property, in the search for an appropriate definition of quantum work for a total system that does not include any measuring apparatus. To show how this idea may work, in this paper, I study decoherence properties of a generic slowly driven system, which is weakly coupled to a huge environment whose main body is a complex quantum system. It is shown that decoherence may generically happen for such a system.

  7. An efficient solution to the decoherence enhanced trivial crossing problem in surface hopping

    Science.gov (United States)

    Bai, Xin; Qiu, Jing; Wang, Linjun

    2018-03-01

    We provide an in-depth investigation of the time interval convergence when both trivial crossing and decoherence corrections are applied to Tully's fewest switches surface hopping (FSSH) algorithm. Using one force-based and one energy-based decoherence strategies as examples, we show decoherence corrections intrinsically enhance the trivial crossing problem. We propose a restricted decoherence (RD) strategy and incorporate it into the self-consistent (SC) fewest switches surface hopping algorithm [L. Wang and O. V. Prezhdo, J. Phys. Chem. Lett. 5, 713 (2014)]. The resulting SC-FSSH-RD approach is applied to general Hamiltonians with different electronic couplings and electron-phonon couplings to mimic charge transport in tens to hundreds of molecules. In all cases, SC-FSSH-RD allows us to use a large time interval of 0.1 fs for convergence and the simulation time is reduced by over one order of magnitude. Both the band and hopping mechanisms of charge transport have been captured perfectly. SC-FSSH-RD makes surface hops in the adiabatic representation and can be implemented in both diabatic and locally diabatic representations for wave function propagation. SC-FSSH-RD can potentially describe general nonadiabatic dynamics of electrons and excitons in organics and other materials.

  8. The Problem of Time in Quantum Cosmology: A Decoherent Histories View

    International Nuclear Information System (INIS)

    Christodoulakis, Theodosios; Wallden, Petros

    2011-01-01

    The problem of time in quantum gravity arises due to the diffeomorphisms invariance of the theory and appears via the Hamiltonian constraint, in the canonical quantizations. There is a need for a description where one can ask some timeless questions that still encode some sense of temporality. The decoherent histories approach to quantum theory, already at the kinematical level admits an internal time. Several alternative proposals for resolving the problem of time via the decoherent histories, exist, and in this contribution we focus on one particular and examine how it manifests itself at some simple cosmological models.

  9. Surface hopping, transition state theory, and decoherence. II. Thermal rate constants and detailed balance

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Amber; Subotnik, Joseph E., E-mail: subotnik@sas.upenn.edu [Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104 (United States)

    2015-10-07

    We investigate a simple approach to compute a non-adiabatic thermal rate constant using the fewest switches surface hopping (FSSH) dynamics. We study the effects of both decoherence (using our augmented-FSSH (A-FSSH) algorithm) and forbidden hops over a large range of parameters, including high and low friction regimes, and weak and strong electronic coupling regimes. Furthermore, when possible, we benchmark our results against exact hierarchy equations of motion results, where we usually find a maximum error of roughly a factor of two (at reasonably large temperatures). In agreement with Hammes-Schiffer and Tully, we find that a merger of transition state theory and surface hopping can be both accurate and efficient when performed correctly. We further show that detailed balance is followed approximately by A-FSSH dynamics.

  10. Suppression and enhancement of decoherence in an atomic Josephson junction

    Science.gov (United States)

    Japha, Yonathan; Zhou, Shuyu; Keil, Mark; Folman, Ron; Henkel, Carsten; Vardi, Amichay

    2016-05-01

    We investigate the role of interatomic interactions when a Bose gas, in a double-well potential with a finite tunneling probability (a ‘Bose-Josephson junction’), is exposed to external noise. We examine the rate of decoherence of a system initially in its ground state with equal probability amplitudes in both sites. The noise may induce two kinds of effects: firstly, random shifts in the relative phase or number difference between the two wells and secondly, loss of atoms from the trap. The effects of induced phase fluctuations are mitigated by atom-atom interactions and tunneling, such that the dephasing rate may be suppressed by half its single-atom value. Random fluctuations may also be induced in the population difference between the wells, in which case atom-atom interactions considerably enhance the decoherence rate. A similar scenario is predicted for the case of atom loss, even if the loss rates from the two sites are equal. We find that if the initial state is number-squeezed due to interactions, then the loss process induces population fluctuations that reduce the coherence across the junction. We examine the parameters relevant for these effects in a typical atom chip device, using a simple model of the trapping potential, experimental data, and the theory of magnetic field fluctuations near metallic conductors. These results provide a framework for mapping the dynamical range of barriers engineered for specific applications and set the stage for more complex atom circuits (‘atomtronics’).

  11. Experimental fault-tolerant quantum cryptography in a decoherence-free subspace

    International Nuclear Information System (INIS)

    Zhang Qiang; Pan Jianwei; Yin Juan; Chen Tengyun; Lu Shan; Zhang Jun; Li Xiaoqiang; Yang Tao; Wang Xiangbin

    2006-01-01

    We experimentally implement a fault-tolerant quantum key distribution protocol with two photons in a decoherence-free subspace [Phys. Rev. A 72, 050304(R) (2005)]. It is demonstrated that our protocol can yield a good key rate even with a large bit-flip error rate caused by collective rotation, while the usual realization of the Bennett-Brassard 1984 protocol cannot produce any secure final key given the same channel. Since the experiment is performed in polarization space and does not need the calibration of a reference frame, important applications in free-space quantum communication are expected. Moreover, our method can also be used to robustly transmit an arbitrary two-level quantum state in a type of decoherence-free subspace

  12. Decoherence, discord, and the quantum master equation for cosmological perturbations

    Science.gov (United States)

    Hollowood, Timothy J.; McDonald, Jamie I.

    2017-05-01

    We examine environmental decoherence of cosmological perturbations in order to study the quantum-to-classical transition and the impact of noise on entanglement during inflation. Given an explicit interaction between the system and environment, we derive a quantum master equation for the reduced density matrix of perturbations, drawing parallels with quantum Brownian motion, where we see the emergence of fluctuation and dissipation terms. Although the master equation is not in Lindblad form, we see how typical solutions exhibit positivity on super-horizon scales, leading to a physically meaningful density matrix. This allows us to write down a Langevin equation with stochastic noise for the classical trajectories which emerge from the quantum system on super-horizon scales. In particular, we find that environmental decoherence increases in strength as modes exit the horizon, with the growth driven essentially by white noise coming from local contributions to environmental correlations. Finally, we use our master equation to quantify the strength of quantum correlations as captured by discord. We show that environmental interactions have a tendency to decrease the size of the discord and that these effects are determined by the relative strength of the expansion rate and interaction rate of the environment. We interpret this in terms of the competing effects of particle creation versus environmental fluctuations, which tend to increase and decrease the discord respectively.

  13. Non-unitarity, sterile neutrinos, and non-standard neutrino interactions

    Energy Technology Data Exchange (ETDEWEB)

    Blennow, Mattias [Department of Theoretical Physics, School of Engineering Sciences, KTH Royal Institute of Technology, Albanova University Center, 106 91 Stockholm (Sweden); Coloma, Pilar [Theoretical Physics Department, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States); Fernandez-Martinez, Enrique; Hernandez-Garcia, Josu [Departamento de Física Teórica, Universidad Autónoma de Madrid, Cantoblanco E-28049 Madrid (Spain); Instituto de Física Teórica UAM/CSIC, Calle Nicolás Cabrera 13-15, Cantoblanco E-28049 Madrid (Spain); Lopez-Pavon, Jacobo [INFN, Sezione di Genova, via Dodecaneso 33, 16146 Genova (Italy); CERN, Theoretical Physics Department, Geneva (Switzerland)

    2017-04-27

    The simplest Standard Model extension to explain neutrino masses involves the addition of right-handed neutrinos. At some level, this extension will impact neutrino oscillation searches. In this work we explore the differences and similarities between the case in which these neutrinos are kinematically accessible (sterile neutrinos) or not (mixing matrix non-unitarity). We clarify apparent inconsistencies in the present literature when using different parametrizations to describe these effects and recast both limits in the popular neutrino non-standard interaction (NSI) formalism. We find that, in the limit in which sterile oscillations are averaged out at the near detector, their effects at the far detector coincide with non-unitarity at leading order, even in presence of a matter potential. We also summarize the present bounds existing in both limits and compare them with the expected sensitivities of near-future facilities taking the DUNE proposal as a benchmark. We conclude that non-unitarity effects are too constrained to impact present or near future neutrino oscillation facilities but that sterile neutrinos can play an important role at long baseline experiments. The role of the near detector is also discussed in detail.

  14. Non-equilibrium scaling analysis of the Kondo model with voltage bias

    International Nuclear Information System (INIS)

    Fritsch, Peter; Kehrein, Stefan

    2009-01-01

    The quintessential description of Kondo physics in equilibrium is obtained within a scaling picture that shows the buildup of Kondo screening at low temperature. For the non-equilibrium Kondo model with a voltage bias, the key new feature are decoherence effects due to the current across the impurity. In the present paper, we show how one can develop a consistent framework for studying the non-equilibrium Kondo model within a scaling picture of infinitesimal unitary transformations (flow equations). Decoherence effects appear naturally in third order of the β-function and dominate the Hamiltonian flow for sufficiently large voltage bias. We work out the spin dynamics in non-equilibrium and compare it with finite temperature equilibrium results. In particular, we report on the behavior of the static spin susceptibility including leading logarithmic corrections and compare it with the celebrated equilibrium result as a function of temperature.

  15. Experimental metaphysics2 : The double standard in the quantum-information approach to the foundations of quantum theory

    Science.gov (United States)

    Hagar, Amit

    Among the alternatives of non-relativistic quantum mechanics (NRQM) there are those that give different predictions than quantum mechanics in yet-untested circumstances, while remaining compatible with current empirical findings. In order to test these predictions, one must isolate one's system from environmental induced decoherence, which, on the standard view of NRQM, is the dynamical mechanism that is responsible for the 'apparent' collapse in open quantum systems. But while recent advances in condensed-matter physics may lead in the near future to experimental setups that will allow one to test the two hypotheses, namely genuine collapse vs. decoherence, hence make progress toward a solution to the quantum measurement problem, those philosophers and physicists who are advocating an information-theoretic approach to the foundations of quantum mechanics are still unwilling to acknowledge the empirical character of the issue at stake. Here I argue that in doing so they are displaying an unwarranted double standard.

  16. One-way gates based on EPR, GHZ and decoherence-free states of W class

    International Nuclear Information System (INIS)

    Basharov, A.M.; Gorbachev, V.N.; Trubilko, A.I.; Yakovleva, E.S.

    2009-01-01

    The logical gates using quantum measurement as a primitive of quantum computation are considered. It is found that these gates achieved with EPR, GHZ and W entangled states have the same structure, allow encoding the classical information into states of quantum system and can perform any calculations. A particular case of decoherence-free W states is discussed as in this very case the logical gate is decoherence-free.

  17. Onset of color decoherence for soft gluon radiation in a medium

    Science.gov (United States)

    Mehtar-Tani, Y.; Salgado, C. A.; Tywoniuk, K.

    2011-12-01

    We report on recent studies of the phenomenon of color decoherence in jets in QCD media. The effect is most clearly observed in the radiation pattern of a quark-antiquark antenna, created in the same quantum state, traversing a dense color deconfined plasma. Multiple scattering with the medium color charges gradually destroys the coherence of the antenna. In the limit of opaque media, this ultimately leads to independent radiation off the antenna constituents. Accordingly, radiation off the total charge vanishes implying a memory loss effect induced by the medium.

  18. The realism problem of quantum mechanics in view of the decoherence interpretation

    International Nuclear Information System (INIS)

    Messer, Joachim August

    2007-01-01

    Quantum mechanics in the conception, as it is today present, contains - what concerns its conceivable understanding and its interpretation - numerous paradoxa. The best known Copenhagen interpretation is critized and other interpretations, as the many-world interpretation and the modern, today mostly attended decoherence interpretation are put to this describingly on side. Axiomatic explanation attempts, like those from Mackey, Jauch, and Piron are analyzed and the measurement problem discussed from three ways of view: the introduction of a cut by Georg Suessmann, the scaling formalism from Klaus Hepp, and the philosophy from Bernulf Kanitschneider. Especially the critique given by Albert Einstein on the Bohr-Heisenberg Copenhagen interpretation and the completeness of a realistic quantum theory by the EPR thought experiment (called from Einstein, Podolsky, and Rosen) is more detailedly studied and extended to a holomorphic realism, in which the measurement quantities become visible as boundary values of a holomorphic function. This analytic continuation throws a new light on the body-soul parallelism, which exceeds the positions of Platon and Feigl. Beside the decoherence also the superselection rules, which are extensively discussed, are an example for a realistic state reduction - however the nonlocality of realistic quantum mechanics forces to a dualism of Higgs' symmetry breaking with local decoherence in the terrestrial laboratory. The position of a holomorphic barycentric realism is worked out by regress to the quantum field theory of Lehmann, Symanzik, and Zimmermann (LSZ) with its reduction formula. Quantum-cosmological implications, non-commutative geometry, K theory, and background field are also discussed. The newly designed knowledge theory of the holomorphic, barycentric realism - which in the classical limit goes over in a critical realism - forms also a bridge to a deepened humanism, which cannot be constructed from purely classical physics. As

  19. The influence of entanglement and decoherence on the quantum Stackelberg duopoly game

    International Nuclear Information System (INIS)

    Zhu Xia; Kuang, L-M

    2007-01-01

    In this paper, we investigate the influence of entanglement and decoherence on the quantum Stackelberg duopoly (QSD) game. It is shown that the first-mover advantage can be weakened or enhanced due to the existence of entanglement for the QSD game without decoherence. The influence of decoherence induced by the amplitude damping and the phase damping are explicitly studied in the formalism of Kraus operator representations. We show that the amplitude damping drastically changes the Nash equilibrium of the QSD game and the profits of the two players while the phase damping does not affect the Nash equilibrium and the profits of the two players. It is found that under certain conditions there exists a 'critical point' of the damping parameter for the amplitude damping environment. At the 'critical point' the two players have the same moves and payoffs. The QSD game can change from the first-mover advantage game into the follower-mover advantage game when the damping parameter varies from the left-hand-side regime of the 'critical point' to the right-hand-side regime

  20. Decoherence of coupled Josephson charge qubits due to partially correlated low-frequency noise

    International Nuclear Information System (INIS)

    Hu, Yong; Zhou, Zheng-Wei; Cai, Jian-Ming; Guo, Guang-Can

    2007-01-01

    Josephson charge qubits are promising candidates for scalable quantum computing. However, their performances are strongly degraded by decoherence due to low-frequency background noise, typically with a 1/f spectrum. In this paper, we investigate the decoherence process of two Cooper pair boxes (CPBs) coupled via a capacitor. Going beyond the common and uncorrelated noise models and the Bloch-Redfield formalism of previous works, we study the coupled system's quadratic dephasing under the condition of partially correlated noise sources. Based on reported experiments and generally accepted noise mechanisms, we introduce a reasonable assumption for the noise correlation, with which the calculation of multiqubit decoherence can be simplified to a problem on the single-qubit level. For the conventional Gaussian 1/f noise case, our results demonstrate that the quadratic dephasing rates are not very sensitive to the spatial correlation of the noises. Furthermore, we discuss the feasibility and efficiency of dynamical decoupling in the coupled CPBs

  1. Decoherence in yeast cell populations and its implications for genome-wide expression noise.

    Science.gov (United States)

    Briones, M R S; Bosco, F

    2009-01-20

    Gene expression "noise" is commonly defined as the stochastic variation of gene expression levels in different cells of the same population under identical growth conditions. Here, we tested whether this "noise" is amplified with time, as a consequence of decoherence in global gene expression profiles (genome-wide microarrays) of synchronized cells. The stochastic component of transcription causes fluctuations that tend to be amplified as time progresses, leading to a decay of correlations of expression profiles, in perfect analogy with elementary relaxation processes. Measuring decoherence, defined here as a decay in the auto-correlation function of yeast genome-wide expression profiles, we found a slowdown in the decay of correlations, opposite to what would be expected if, as in mixing systems, correlations decay exponentially as the equilibrium state is reached. Our results indicate that the populational variation in gene expression (noise) is a consequence of temporal decoherence, in which the slow decay of correlations is a signature of strong interdependence of the transcription dynamics of different genes.

  2. Quantum-like model of brain's functioning: decision making from decoherence.

    Science.gov (United States)

    Asano, Masanari; Ohya, Masanori; Tanaka, Yoshiharu; Basieva, Irina; Khrennikov, Andrei

    2011-07-21

    We present a quantum-like model of decision making in games of the Prisoner's Dilemma type. By this model the brain processes information by using representation of mental states in a complex Hilbert space. Driven by the master equation the mental state of a player, say Alice, approaches an equilibrium point in the space of density matrices (representing mental states). This equilibrium state determines Alice's mixed (i.e., probabilistic) strategy. We use a master equation in which quantum physics describes the process of decoherence as the result of interaction with environment. Thus our model is a model of thinking through decoherence of the initially pure mental state. Decoherence is induced by the interaction with memory and the external mental environment. We study (numerically) the dynamics of quantum entropy of Alice's mental state in the process of decision making. We also consider classical entropy corresponding to Alice's choices. We introduce a measure of Alice's diffidence as the difference between classical and quantum entropies of Alice's mental state. We see that (at least in our model example) diffidence decreases (approaching zero) in the process of decision making. Finally, we discuss the problem of neuronal realization of quantum-like dynamics in the brain; especially roles played by lateral prefrontal cortex or/and orbitofrontal cortex. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Decoherence in a dynamical quantum phase transition of the transverse Ising chain

    International Nuclear Information System (INIS)

    Mostame, Sarah; Schaller, Gernot; Schuetzhold, Ralf

    2007-01-01

    For the prototypical example of the Ising chain in a transverse field, we study the impact of decoherence on the sweep through a second-order quantum phase transition. Apart from the advance in the general understanding of the dynamics of quantum phase transitions, these findings are relevant for adiabatic quantum algorithms due to the similarities between them. It turns out that (in contrast to first-order transitions studied previously) the impact of decoherence caused by a weak coupling to a rather general environment increases with system size (i.e., number of spins or qubits), which might limit the scalability of the system

  4. de Sitter group as a symmetry for optical decoherence

    International Nuclear Information System (INIS)

    Baskal, S; Kim, Y S

    2006-01-01

    Stokes parameters form a Minkowskian 4-vector under various optical transformations. As a consequence, the resulting two-by-two density matrix constitutes a representation of the Lorentz group. The associated Poincare sphere is a geometric representation of the Lorentz group. Since the Lorentz group preserves the determinant of the density matrix, it cannot accommodate the decoherence process through the decaying off-diagonal elements of the density matrix, which yields to an increase in the value of the determinant. It is noted that the O(3, 2) de Sitter group contains two Lorentz subgroups. The change in the determinant in one Lorentz group can be compensated by the other. It is thus possible to describe the decoherence process as a symmetry transformation in the O(3, 2) space. It is shown also that these two coupled Lorentz groups can serve as a concrete example of Feynman's rest of the universe

  5. Nonclassical thermal-state superpositions: Analytical evolution law and decoherence behavior

    Science.gov (United States)

    Meng, Xiang-guo; Goan, Hsi-Sheng; Wang, Ji-suo; Zhang, Ran

    2018-03-01

    Employing the integration technique within normal products of bosonic operators, we present normal product representations of thermal-state superpositions and investigate their nonclassical features, such as quadrature squeezing, sub-Poissonian distribution, and partial negativity of the Wigner function. We also analytically and numerically investigate their evolution law and decoherence characteristics in an amplitude-decay model via the variations of the probability distributions and the negative volumes of Wigner functions in phase space. The results indicate that the evolution formulas of two thermal component states for amplitude decay can be viewed as the same integral form as a displaced thermal state ρ(V , d) , but governed by the combined action of photon loss and thermal noise. In addition, the larger values of the displacement d and noise V lead to faster decoherence for thermal-state superpositions.

  6. Dynamical suppression of nuclear-spin decoherence time in Si and GaAs using inversion pulses

    International Nuclear Information System (INIS)

    Watanabe, S.; Harada, J.; Sasaki, S.; Hirayama, Y.

    2007-01-01

    We found that nuclear-spin decoherence is suppressed by applying inversion pulses such as alternating phase Carr-Purcell (APCP) and Carr-Purcell-Meiboom-Gill (CPMG) sequences in silicon and GaAs. The decoherence time reaches ∼1.3s by applying inversion pulses, which is ∼200 times as long as the characteristic decay time obtained from the Hahn echo sequence (∼6ms) in silicon

  7. Mechanisms of relaxation and spin decoherence in nanomagnets

    Science.gov (United States)

    van Tol, Johan

    Relaxation in spin systems is of great interest with respect to various possible applications like quantum information processing and storage, spintronics, and dynamic nuclear polarization (DNP). The implementation of high frequencies and fields is crucial in the study of systems with large zero-field splitting or large interactions, as for example molecular magnets and low dimensional magnetic materials. Here we will focus on the implementation of pulsed Electron Paramagnetic Resonance (ERP) at multiple frequencies of 10, 95, 120, 240, and 336 GHz, and the relaxation and decoherence processes as a function of magnetic field and temperature. Firstly, at higher frequencies the direct single-phonon spin-lattice relaxation (SLR) is considerably enhanced, and will more often than not be the dominant relaxation mechanism at low temperatures, and can be much faster than at lower fields and frequencies. In principle the measurement of the SLR rates as a function of the frequency provides a means to map the phonon density of states. Secondly, the high electron spin polarization at high fields has a strong influence on the spin fluctuations in relatively concentrated spin systems, and the contribution of the electron-electron dipolar interactions to the coherence rate can be partially quenched at low temperatures. This not only allows the study of relatively concentrated spin systems by pulsed EPR (as for example magnetic nanoparticles and molecular magnets), it enables the separation of the contribution of the fluctuations of the electron spin system from other decoherence mechanisms. Besides choice of temperature and field, several strategies in sample design, pulse sequences, or clock transitions can be employed to extend the coherence time in nanomagnets. A review will be given of the decoherence mechanisms with an attempt at a quantitative comparison of experimental rates with theory.

  8. Decoherence and absorption of Er{sup 3+}:KTiOPO{sub 4} (KTP) at 1.5 μm

    Energy Technology Data Exchange (ETDEWEB)

    Böttger, Thomas, E-mail: tbottger@usfca.edu [Department of Physics & Astronomy, University of San Francisco, 2130 Fulton St., San Francisco, CA 94117 (United States); Thiel, C.W. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Sun, Y. [Deptartment of Physics, University of South Dakota, Vermillion, SD 57069 (United States); Macfarlane, R.M. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); IBM Almaden Research Center, 650 Harry Road, San Jose, CA 95120 (United States); Cone, R.L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2016-01-15

    We present results of laser absorption spectroscopy and two-pulse photon echo decoherence measurements on the lowest {sup 4}I{sub 15/2} to lowest {sup 4}I{sub 13/2} transition in Er{sup 3+}: KTiOPO{sub 4} (KTP—potassium titanyl phosphate) for the optical transition located at 1537.238 nm. This transition was found to have an inhomogeneous absorption linewidth of 950 MHz and pronounced polarization dependence. Two-pulse photon echo decay measurements as a function of applied magnetic field strength at 1.9 K revealed a narrow homogeneous linewidth of 2.5 kHz at 0.2 T that increased to 5.8 kHz at 1.2 T and then decreased to 1.6 kHz at 4.5 T. This behavior was successfully described by decoherence due to Er{sup 3+}–Er{sup 3+} magnetic dipole interactions. Significant superhyperfine coupling of Er{sup 3+} spins to the nuclear moments of ions in the host lattice was observed, modulating the photon echo decay at low magnetic fields and limiting the effective homogenous linewidth at high fields. Combined with the well-established potential of KTP for fabrication of high-quality optical waveguides and integrated non-linear frequency conversion, our results suggest that Er{sup 3+}:KTP is a promising material system for practical spectral hole burning, signal processing, and quantum information applications. - Highlights: • Bulk Er{sup 3+}:KTP has dominant Er{sup 3+} site at 1537.238 nm with Γ{sub inh} of 950 MHz and T{sub 1} of 16.9 ms. • Two-pulse photon echoes revealed magnetic field dependent kHz-wide homogeneous linewidth. • Decoherence modeled using direct-phonon driven Er{sup 3+}–Er{sup 3+} magnetic dipole-dipole interactions. • Evidence of superhyperfine coupling of Er{sup 3+} spins to nuclear moments of host ions. • Er{sup 3+}:KTP is a promising material system for quantum memory and signal processing applications.

  9. Decoherence of quantum excitation of even/odd coherent states in ...

    Indian Academy of Sciences (India)

    2The Laboratory of Quantum Information Processing, Yazd University, Yazd, Iran. ∗ .... approach to obtain the decoherence time (by evaluating the time-dependent .... Recall that, while Fokker–Planck equation deals with the evolution of the ...

  10. Probing jet decoherence in heavy ion collisions

    Science.gov (United States)

    Casalderrey-Solana, Jorge; Mehtar-Tani, Yacine; Salgado, Carlos A.; Tywoniuk, Konrad

    2017-11-01

    We suggest to use the SofDrop jet grooming technique to investigate the sensitivity of jet substructure to color decoherence in heavy ion collisions. We propose in particular to analyze the two-prong probability angular distribution as a probe of the transition between the coherent and incoherent energy loss regimes. We predict an increasing suppression of two-prong substructures with angle as the medium resolves more jet substructure.

  11. Testing non-standard CP violation in neutrino propagation

    International Nuclear Information System (INIS)

    Winter, Walter

    2009-01-01

    Non-standard physics which can be described by effective four fermion interactions may be an additional source of CP violation in the neutrino propagation. We discuss the detectability of such a CP violation at a neutrino factory. We assume the current baseline setup of the international design study of a neutrino factory (IDS-NF) for the simulation. We find that the CP violation from certain non-standard interactions is, in principle, detectable significantly below their current bounds - even if there is no CP violation in the standard oscillation framework. Therefore, a new physics effect might be mis-interpreted as the canonical Dirac CP violation, and a possibly even more exciting effect might be missed

  12. Time dilation in quantum systems and decoherence

    International Nuclear Information System (INIS)

    Pikovski, Igor; Zych, Magdalena; Costa, Fabio; Brukner, Časlav

    2017-01-01

    Both quantum mechanics and general relativity are based on principles that defy our daily intuitions, such as time dilation, quantum interference and entanglement. Because the regimes where the two theories are typically tested are widely separated, their foundational principles are rarely jointly studied. Recent works have found that novel phenomena appear for quantum particles with an internal structure in the presence of time dilation, which can take place at low energies and in weak gravitational fields. Here we briefly review the effects of time dilation on quantum interference and generalize the results to a variety of systems. In addition, we provide an extended study of the basic principles of quantum theory and relativity that are of relevance for the effects and also address several questions that have been raised, such as the description in different reference frames, the role of the equivalence principle and the effective irreversibility of the decoherence. The manuscript clarifies some of the counterintuitive aspects arising when quantum phenomena and general relativistic effects are jointly considered. (paper)

  13. Tuning decoherence in superconducting transmon qubits by mechanical strain

    Energy Technology Data Exchange (ETDEWEB)

    Brehm, Jan; Bilmes, Alexander; Weiss, Georg; Ustinov, Alexey; Lisenfeld, Juergen [Karlsruher Institut fuer Technologie, Karlsruhe (Germany)

    2016-07-01

    Two-level tunneling systems (TLS) are formed by structural defects in disordered materials. They gained recent attention as an important decoherence source in superconducting qubits, where they appear on surface oxides and at film interfaces. Although the most advanced qubits do not show avoided level crossings arising from a strong coupling to individual TLS, they commonly display a pronounced frequency dependence of relaxation rates, with distinguishable peaks that may point towards weak resonant coupling to single TLS. Previously, we have shown that TLS are tunable via an applied mechanical strain. Here, we employ this method to test whether the characteristic decoherence spectrum of a transmon qubit sample responds to changes in the applied strain, as it can be expected when the decohering bath is formed of atomic TLS. In our experiment, we will employ a highly coherent X-mon qubit sample and tune the strain by bending the qubit chip via a piezo actuator. Our latest results will be presented.

  14. Number of particle creation and decoherence in the nonideal dynamical Casimir effect at finite temperature

    International Nuclear Information System (INIS)

    Celeri, L.C.; Pascoal, F.; Ponte, M.A. de; Moussa, M.H.Y.

    2009-01-01

    In this work we investigate the dynamical Casimir effect in a nonideal cavity by deriving an effective Hamiltonian. We first compute a general expression for the average number of particle creation, applicable for any law of motion of the cavity boundary, under the only restriction of small velocities. We also compute a general expression for the linear entropy of an arbitrary state prepared in a selected mode, also applicable for any law of motion of a slow moving boundary. As an application of our results we have analyzed both the average number of particle creation and linear entropy within a particular oscillatory motion of the cavity boundary. On the basis of these expressions we develop a comprehensive analysis of the resonances in the number of particle creation in the nonideal dynamical Casimir effect. We also demonstrate the occurrence of resonances in the loss of purity of the initial state and estimate the decoherence times associated with these resonances. Since our results were obtained in the framework of the perturbation theory, they are restricted, under resonant conditions, to a short-time approximation.

  15. Population inversion of two atoms under the phase decoherence in the multiphoton process

    International Nuclear Information System (INIS)

    Zhang Dongxia; Sa Chuerfu; Mu Qier

    2011-01-01

    By means of the quantum theory, the population inversion of two atoms in the system of two two-level atoms coupled to a light field in the Binomial Optical Field are investigated in the presence of phase decoherence in the multiphoton Tavis-Cumming Model. The influences of the phase decoherence coefficient, the parameters η of the binomial optical field, the maximum number of photons and the number of the transitional photons on the properties of the population inversion of two atoms have been discussed. The results show that the phase decoherence reduced the oscillation amplitude of the population inversion of two atoms and destroyed the atomic quantum characteristic. Changing the number of the transitional photons, evolved cycle and evolved intensity the population inversion of two atoms can be changed. The phenomena of collapse and revival disappear as photon number increase. When the binomial optical state changes from a coherent state to a Fock state, the oscillation frequency of the atomic population reduces gradually, the phenomena of collapse and revival vanishes gradually. (authors)

  16. Measurement-induced decoherence and Gaussian smoothing of the Wigner distribution function

    International Nuclear Information System (INIS)

    Chun, Yong-Jin; Lee, Hai-Woong

    2003-01-01

    We study the problem of measurement-induced decoherence using the phase-space approach employing the Gaussian-smoothed Wigner distribution function. Our investigation is based on the notion that measurement-induced decoherence is represented by the transition from the Wigner distribution to the Gaussian-smoothed Wigner distribution with the widths of the smoothing function identified as measurement errors. We also compare the smoothed Wigner distribution with the corresponding distribution resulting from the classical analysis. The distributions we computed are the phase-space distributions for simple one-dimensional dynamical systems such as a particle in a square-well potential and a particle moving under the influence of a step potential, and the time-frequency distributions for high-harmonic radiation emitted from an atom irradiated by short, intense laser pulses

  17. A review of the decoherent histories approach to the arrival time problem in quantum theory

    International Nuclear Information System (INIS)

    Yearsley, James M

    2011-01-01

    We review recent progress in understanding the arrival time problem in quantum mechanics, from the point of view of the decoherent histories approach to quantum theory. We begin by discussing the arrival time problem, focussing in particular on the role of the probability current in the expected classical solution. After a brief introduction to decoherent histories we review the use of complex potentials in the construction of appropriate class operators. We then discuss the arrival time problem for a particle coupled to an environment, and review how the arrival time probability can be expressed in terms of a POVM in this case. We turn finally to the question of decoherence of the corresponding histories, and we show that this can be achieved for simple states in the case of a free particle, and for general states for a particle coupled to an environment.

  18. Optical decoherence and persistent spectral hole burning in Er3+:LiNbO3

    International Nuclear Information System (INIS)

    Thiel, C.W.; Macfarlane, R.M.; Boettger, T.; Sun, Y.; Cone, R.L.; Babbitt, W.R.

    2010-01-01

    Developing new resonant optical materials for spatial-spectral holography and quantum information applications requires detailed knowledge of the decoherence and population relaxation dynamics for the quantum states involved in the optical transitions, motivating the need for fundamental material studies. We report recent progress in studying these properties in erbium-doped lithium niobate at liquid helium temperatures. The influence of temperature, applied magnetic fields, measurement timescale, and dopant concentration were probed using photon echo spectroscopy and time-resolved spectral hole burning on the 1532 nm transition of Er 3+ :LiNbO 3 . Effects of spectral diffusion due to interactions between Er 3+ ions and between the Er 3+ ion and 7 Li and 93 Nb nuclear spins in the host lattice were observed. In addition, long-lived persistent spectral storage of seconds to minutes was observed due to non-equilibrium population redistribution among superhyperfine states.

  19. A study on the fast decoherence process

    International Nuclear Information System (INIS)

    T, Cui H; W, Wu; X, Yi X

    2003-01-01

    We consider a decoherence process in an open system, whose temporal evolution is dominated by the interaction with its environment. Treating the free Hamiltonian as a perturbative term, we obtain a perturbative expansion for the reduced density operator of the system. The preferred pointer states coincide with the eigenstates of the coupling agent and the free evolution leads to population transfer between those pointer states. Examples of applications are presented and discussed

  20. On the precise connection between the GRW master equation and master equations for the description of decoherence

    Energy Technology Data Exchange (ETDEWEB)

    Vacchini, Bassano [Dipartimento di Fisica dell' Universita di Milano, Via Celoria 16, 20133 Milan (Italy); Istituto Nazionale di Fisica Nucleare, sezione di Milano, Via Celoria 16, 20133 Milan (Italy)

    2007-03-09

    We point out that the celebrated GRW master equation is invariant under translations, reflecting the homogeneity of space, thus providing a particular realization of a general class of translation-covariant Markovian master equations. Such master equations are typically used for the description of decoherence due to momentum transfers between the system and environment. Building on this analogy we show the exact relationship between the GRW master equation and decoherence master equations, further providing a collisional decoherence model formally equivalent to the GRW master equation. This allows for a direct comparison of order of magnitudes of relevant parameters. This formal analogy should not lead to confusion on the utterly different spirit of the two research fields, in particular it has to be stressed that the decoherence approach does not lead to a solution of the measurement problem. Building on this analogy however the feasibility of the extension of spontaneous localization models in order to avoid the infinite energy growth is discussed. Apart from a particular case considered in the paper, it appears that the amplification mechanism is generally spoiled by such modifications.

  1. Origin of the decoherence of the extended electron spin state in Ti-doped β-Ga2O3.

    Science.gov (United States)

    Mentink-Vigier, F; Binet, L; Gourier, D; Vezin, H

    2013-08-07

    The mechanism of decoherence of the electron spin of Ti(3+) in β-Ga2O3 was investigated by pulsed electron paramagnetic resonance. At 4.2 K, both instantaneous and spectral diffusion contribute to the decoherence. For electron spin concentrations ≈10(25) m(-3) in the studied samples, calculations indicate that electron-electron couplings and electron couplings with (69)Ga and (71)Ga nuclei yield similar contributions to the spectral diffusion, but that electron-nuclei interactions could become the dominant cause of spectral diffusion for only slightly lower spin concentrations. Above 20 K, an additional contribution to the decoherence as well as to the spin-lattice relaxation arises from a two-optical-phonon Raman process, which becomes the leading decoherence mechanism for T > 39 K. Rabi oscillations with a damping time of about 79 ns at 4.2 K could also be observed. The damping of the Rabi oscillations, independent of the oscillation frequency, is suspected to arise from electron-nuclei interactions.

  2. Non-standard patch test

    Directory of Open Access Journals (Sweden)

    Astri Adelia

    2018-06-01

    Full Text Available In managing contact dermatitis, identification of the causative agent is essential to prevent recurrent complaints. Patch test is the gold standard to identify the causative agent. Nowadays, there are many patch test standard materials available in the market, but do not include all the materials that potentially cause contact dermatitis. Patch test using patient’s own products or later we refer to as non-standard materials, is very helpful in identifying the causative agents of contact dermatitis. Guidance is needed in producing non-standard patch test materials in order to avoid test results discrepancy.

  3. Influence of intrinsic decoherence on tripartite entanglement and bipartite fidelity of polar molecules in pendular states

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jia-Xing; Hu, Yuan; Jin, Yu [Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Xueyuan Road No. 37, Beijing 100191 (China); Zhang, Guo-Feng, E-mail: gf1978zhang@buaa.edu.cn [Key Laboratory of Micro-Nano Measurement-Manipulation and Physics (Ministry of Education), School of Physics and Nuclear Energy Engineering, Beihang University, Xueyuan Road No. 37, Beijing 100191 (China); State Key Laboratory of Software Development Environment, Beihang University, Xueyuan Road No. 37, Beijing 100191 (China); State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Quantum Information, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026 (China)

    2016-04-07

    An array of ultracold polar molecules trapped in an external electric field is regarded as a promising carrier of quantum information. Under the action of this field, molecules are compelled to undergo pendular oscillations by the Stark effect. Particular attention has been paid to the influence of intrinsic decoherence on the model of linear polar molecular pendular states, thereby we evaluate the tripartite entanglement with negativity, as well as fidelity of bipartite quantum systems for input and output signals using electric dipole moments of polar molecules as qubits. According to this study, we consider three typical initial states for both systems, respectively, and investigate the temporal evolution with variable values of the external field intensity, the intrinsic decoherence factor, and the dipole-dipole interaction. Thus, we demonstrate the sound selection of these three main parameters to obtain the best entanglement degree and fidelity.

  4. Quantum Gate Operations in Decoherence-Free Subspace with Superconducting Charge Qubits inside a Cavity

    International Nuclear Information System (INIS)

    Yi-Min, Wang; Yan-Li, Zhou; Lin-Mei, Liang; Cheng-Zu, Li

    2009-01-01

    We propose a feasible scheme to achieve universal quantum gate operations in decoherence-free subspace with superconducting charge qubits placed in a microwave cavity. Single-logic-qubit gates can be realized with cavity assisted interaction, which possesses the advantages of unconventional geometric gate operation. The two-logic-qubit controlled-phase gate between subsystems can be constructed with the help of a variable electrostatic transformer. The collective decoherence can be successfully avoided in our well-designed system. Moreover, GHZ state for logical qubits can also be easily produced in this system

  5. Status of non-standard neutrino interactions

    International Nuclear Information System (INIS)

    Ohlsson, Tommy

    2013-01-01

    The phenomenon of neutrino oscillations has been established as the leading mechanism behind neutrino flavor transitions, providing solid experimental evidence that neutrinos are massive and lepton flavors are mixed. Here we review sub-leading effects in neutrino flavor transitions known as non-standard neutrino interactions (NSIs), which is currently the most explored description for effects beyond the standard paradigm of neutrino oscillations. In particular, we report on the phenomenology of NSIs and their experimental and phenomenological bounds as well as an outlook for future sensitivity and discovery reach. (review article)

  6. Life in an energy eigenstate: Decoherent histories analysis of a model timeless universe

    International Nuclear Information System (INIS)

    Halliwell, J.J.; Thorwart, J.

    2002-01-01

    Inspired by quantum cosmology, in which the wave function of the universe is annihilated by the total Hamiltonian, we consider the internal dynamics of a simple particle system in an energy eigenstate. Such a system does not possess a uniquely defined time parameter, and all physical questions about it must be posed without reference to time. We consider in particular the following question: what is the probability that the system's trajectory passes through a set of regions of configuration space without reference to time? We first consider the classical case, where the answer has a variety of forms in terms of a phase-space probability distribution function. We then consider the quantum case, and we analyze this question using the decoherent histories approach to quantum theory, adapted to questions which do not involve time. When the histories are decoherent, the probabilities approximately coincide with the classical case, with the phase-space probability distribution replaced by the Wigner function of the quantum state. For some initial states, decoherence requires an environment, and we compute the required influence functional and examine some of its properties. Special attention is given to the inner product used in the construction (the induced or Rieffel inner product), the construction of class operators describing the histories, and the extent to which reparametrization invariance is respected. Our results indicate that simple systems without an explicit time parameter may be quantized using the decoherent histories approach, with the expected classical limit extracted. The results support, for simple models, the usual heuristic proposals for the probability distribution function associated with a semiclassical wave function satisfying the Wheeler-DeWitt equation

  7. Decoherence and thermalization of a pure quantum state in quantum field theory.

    Science.gov (United States)

    Giraud, Alexandre; Serreau, Julien

    2010-06-11

    We study the real-time evolution of a self-interacting O(N) scalar field initially prepared in a pure, coherent quantum state. We present a complete solution of the nonequilibrium quantum dynamics from a 1/N expansion of the two-particle-irreducible effective action at next-to-leading order, which includes scattering and memory effects. We demonstrate that, restricting one's attention (or ability to measure) to a subset of the infinite hierarchy of correlation functions, one observes an effective loss of purity or coherence and, on longer time scales, thermalization. We point out that the physics of decoherence is well described by classical statistical field theory.

  8. Entropy Exchange in Coupled Field-Superconducting Charge Qubit System with Intrinsic Decoherence

    Institute of Scientific and Technical Information of China (English)

    SHAO Bin; ZHANG Jian; ZOU Jian

    2006-01-01

    Based on the intrinsic decoherence effect, partial entropy properties of a super conducting charge qubitinside a single-mode cavity field is investigated, and entropy exchange which is recently regarded as a kind of anti-correlated behavior of the entropy between subsystems is explored. Our results show that although the intrinsic decoherenceleads to an effective irreversible evolution of the interacting system due to a suppression of coherent quantum features through the decay of off-diagonal matrix elements of the density operator and has an apparently influence on the partial entropy of two individual subsystems, it does not effect the entropy exchange between the two subsystems.

  9. Non-perturbative effective interactions in the standard model

    CERN Document Server

    Arbuzov, Boris A

    2014-01-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of all, but gravity, fundamental interactions in nature. The Standard Model is devided into two parts: the Quantum chromodynamics (QCD) and the Electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu--Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogoliubov conception of compensation equations. As a result we then describe the principle feathures of the Standard...

  10. Non-perturbative effective interactions in the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Arbuzov, Boris A. [Moscow Lomonosov State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2014-07-01

    This monograph is devoted to the nonperturbative dynamics in the Standard Model (SM), the basic theory of allfundamental interactions in natureexcept gravity. The Standard Model is divided into two parts: the quantum chromodynamics (QCD) and the electro-weak theory (EWT) are well-defined renormalizable theories in which the perturbation theory is valid. However, for the adequate description of the real physics nonperturbative effects are inevitable. This book describes how these nonperturbative effects may be obtained in the framework of spontaneous generation of effective interactions. The well-known example of such effective interaction is provided by the famous Nambu-Jona-Lasinio effective interaction. Also a spontaneous generation of this interaction in the framework of QCD is described and applied to the method for other effective interactions in QCD and EWT. The method is based on N.N. Bogolyubov's conception of compensation equations. As a result we then describe the principal features of the Standard Model, e.g. Higgs sector, and significant nonperturbative effects including recent results obtained at LHC and TEVATRON.

  11. Competition between electric field and magnetic field noise in the decoherence of a single spin in diamond

    OpenAIRE

    Jamonneau, P.; Lesik, M.; Tetienne, J. P.; Alvizu, I.; Mayer, L.; Dréau, A.; Kosen, S.; Roch, J.-F.; Pezzagna, S.; Meijer, J.; Teraji, T.; Kubo, Y.; Bertet, P.; Maze, J. R.; Jacques, V.

    2016-01-01

    We analyze the impact of electric field and magnetic field fluctuations in the decoherence of the electronic spin associated with a single nitrogen-vacancy (NV) defect in diamond by engineering spin eigenstates protected either against magnetic noise or against electric noise. The competition between these noise sources is analyzed quantitatively by changing their relative strength through modifications of the environment. This study provides significant insights into the decoherence of the N...

  12. Decoherence-full subsystems and the cryptographic power of a private shared reference frame

    International Nuclear Information System (INIS)

    Bartlett, Stephen D.; Rudolph, Terry; Spekkens, Robert W.

    2004-01-01

    We show that private shared reference frames can be used to perform private quantum and private classical communication over a public quantum channel. Such frames constitute a type of private shared correlation, distinct from private classical keys or shared entanglement, useful for cryptography. We present optimally efficient schemes for private quantum and classical communication given a finite number of qubits transmitted over an insecure channel and given a private shared Cartesian frame and/or a private shared reference ordering of the qubits. We show that in this context, it is useful to introduce the concept of a decoherence-full subsystem, wherein every state is mapped to the completely mixed state under the action of the decoherence

  13. Decoherence dynamics of two charge qubits in vertically coupled quantum dots

    International Nuclear Information System (INIS)

    Ben Chouikha, W.; Bennaceur, R.; Jaziri, S.

    2007-01-01

    The decoherence dynamics of two charge qubits in a double quantum dot is investigated theoretically. We consider the quantum dynamics of two interacting electrons in a vertically coupled quantum dot driven by an external electric field. We derive the equations of motion for the density matrix, in which the presence of an electron confined in the double dot represents one qubit. A Markovian approach to the dynamical evolution of the reduced density matrix is adopted. We evaluate the concurrence of two qubits in order to study the effect of acoustic phonons on the entanglement. We also show that the disentanglement effect depends on the double dot parameters and increases with the temperature

  14. Macroscopic superposition states and decoherence by quantum telegraph noise

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Benjamin Simon

    2008-12-19

    In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)

  15. Macroscopic superposition states and decoherence by quantum telegraph noise

    International Nuclear Information System (INIS)

    Abel, Benjamin Simon

    2008-01-01

    In the first part of the present thesis we address the question about the size of superpositions of macroscopically distinct quantum states. We propose a measure for the ''size'' of a Schroedinger cat state, i.e. a quantum superposition of two many-body states with (supposedly) macroscopically distinct properties, by counting how many single-particle operations are needed to map one state onto the other. We apply our measure to a superconducting three-junction flux qubit put into a superposition of clockwise and counterclockwise circulating supercurrent states and find this Schroedinger cat to be surprisingly small. The unavoidable coupling of any quantum system to many environmental degrees of freedom leads to an irreversible loss of information about an initially prepared superposition of quantum states. This phenomenon, commonly referred to as decoherence or dephasing, is the subject of the second part of the thesis. We have studied the time evolution of the reduced density matrix of a two-level system (qubit) subject to quantum telegraph noise which is the major source of decoherence in Josephson charge qubits. We are able to derive an exact expression for the time evolution of the reduced density matrix. (orig.)

  16. Optical decoherence and persistent spectral hole burning in Er{sup 3+}:LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, C.W., E-mail: thiel@physics.montana.ed [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Macfarlane, R.M. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); IBM Almaden Research Center, San Jose, CA 95120 (United States); Boettger, T. [Department of Physics, University of San Francisco, San Francisco, CA 94117 (United States); Sun, Y. [Department of Physics, University of South Dakota, Vermillion, SD 57069 (United States); Cone, R.L. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Babbitt, W.R. [Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Department of Physics, Montana State University, Bozeman, MT 59717 (United States)

    2010-09-15

    Developing new resonant optical materials for spatial-spectral holography and quantum information applications requires detailed knowledge of the decoherence and population relaxation dynamics for the quantum states involved in the optical transitions, motivating the need for fundamental material studies. We report recent progress in studying these properties in erbium-doped lithium niobate at liquid helium temperatures. The influence of temperature, applied magnetic fields, measurement timescale, and dopant concentration were probed using photon echo spectroscopy and time-resolved spectral hole burning on the 1532 nm transition of Er{sup 3+}:LiNbO{sub 3}. Effects of spectral diffusion due to interactions between Er{sup 3+} ions and between the Er{sup 3+} ion and {sup 7}Li and {sup 93}Nb nuclear spins in the host lattice were observed. In addition, long-lived persistent spectral storage of seconds to minutes was observed due to non-equilibrium population redistribution among superhyperfine states.

  17. Robustness of multiparty nonlocality to local decoherence

    International Nuclear Information System (INIS)

    Jang, Sung Soon; Cheong, Yong Wook; Kim, Jaewan; Lee, Hai-Woong

    2006-01-01

    We investigate the robustness of multiparty nonlocality under local decoherence, acting independently and equally on each subsystem. To be specific, we consider an N-qubit Greenberger-Horne-Zeilinger (GHZ) state under a depolarization, dephasing, or dissipation channel, and examine nonlocality by testing violation of the Mermin-Klyshko inequality, which is one of Bell's inequalities for multiqubit systems. The results show that the robustness of nonlocality increases with the number of qubits, and that the nonlocality of an N-qubit GHZ state with even N is extremely persistent against dephasing

  18. Pure phase decoherence in a ring geometry

    International Nuclear Information System (INIS)

    Zhu, Z.; Aharony, A.; Entin-Wohlman, O.; Stamp, P. C. E.

    2010-01-01

    We study the dynamics of pure phase decoherence for a particle hopping around an N-site ring, coupled both to a spin bath and to an Aharonov-Bohm flux which threads the ring. Analytic results are found for the dynamics of the influence functional and of the reduced density matrix of the particle, both for initial single wave-packet states, and for states split initially into two separate wave packets moving at different velocities. We also give results for the dynamics of the current as a function of time.

  19. Multiple-Quantum Transitions and Charge-Induced Decoherence of Donor Nuclear Spins in Silicon

    Science.gov (United States)

    Franke, David P.; Pflüger, Moritz P. D.; Itoh, Kohei M.; Brandt, Martin S.

    2017-06-01

    We study single- and multiquantum transitions of the nuclear spins of an ensemble of ionized arsenic donors in silicon and find quadrupolar effects on the coherence times, which we link to fluctuating electrical field gradients present after the application of light and bias voltage pulses. To determine the coherence times of superpositions of all orders in the 4-dimensional Hilbert space, we use a phase-cycling technique and find that, when electrical effects were allowed to decay, these times scale as expected for a fieldlike decoherence mechanism such as the interaction with surrounding Si 29 nuclear spins.

  20. Phonon-assisted relaxation and decoherence of singlet-triplet qubits in Si/SiGe quantum dots

    Directory of Open Access Journals (Sweden)

    Viktoriia Kornich

    2018-05-01

    Full Text Available We study theoretically the phonon-induced relaxation and decoherence of spin states of two electrons in a lateral double quantum dot in a SiGe/Si/SiGe heterostructure. We consider two types of singlet-triplet spin qubits and calculate their relaxation and decoherence times, in particular as a function of level hybridization, temperature, magnetic field, spin orbit interaction, and detuning between the quantum dots, using Bloch-Redfield theory. We show that the magnetic field gradient, which is usually applied to operate the spin qubit, may reduce the relaxation time by more than an order of magnitude. Using this insight, we identify an optimal regime where the magnetic field gradient does not affect the relaxation time significantly, and we propose regimes of longest decay times. We take into account the effects of one-phonon and two-phonon processes and suggest how our theory can be tested experimentally. The spin lifetimes we find here for Si-based quantum dots are significantly longer than the ones reported for their GaAs counterparts.

  1. Foundational aspects of non standard mathematics

    CERN Document Server

    Ballard, David

    1994-01-01

    This work proposes a major new extension of "non"standard mathematics. Addressed to a general mathematical audience, the book is intended to be philosophically provocative. The model theory on which "non"standard mathematics has been based is first reformulated within point set topology, which facilitates proofs and adds perspective. These topological techniques are then used to give new, uniform conservativity proofs for the various versions of "non"standard mathematics proposed by Nelson, Hrbáček, and Kawai. The proofs allow for sharp comparison. Addressing broader issues, Ballard then argues that what is novel in these forms of "non"standard mathematics is the introduction, however tentative, of relativity in one's mathematical environment. This hints at the possibility of a mathematical environment which is radically relativistic. The work's major and final feature is to present and prove conservative a version of "non"standard mathematics which, for the first time, illustrates this full radical relativ...

  2. Transmission Coefficients for Chemical Reactions with Multiple States: Role of Quantum Decoherence

    Czech Academy of Sciences Publication Activity Database

    de la Lande, A.; Řezáč, Jan; Lévy, B.; Sanders, B. C.; Salahub, D. R.

    2011-01-01

    Roč. 133, č. 11 (2011), s. 3883-3894 ISSN 0002-7863 Institutional research plan: CEZ:AV0Z40550506 Keywords : decoherence * transition state theory * nonadiabatic reactions Subject RIV: CC - Organic Chemistry Impact factor: 9.907, year: 2011

  3. New effects of non-standard self-interactions of neutrinos in a supernova

    Energy Technology Data Exchange (ETDEWEB)

    Das, Anirban; Dighe, Amol; Sen, Manibrata, E-mail: anirbandas@theory.tifr.res.in, E-mail: amol@theory.tifr.res.in, E-mail: manibrata@theory.tifr.res.in [Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai, 400005 (India)

    2017-05-01

    Neutrino self-interactions are known to lead to non-linear collective flavor oscillations in a core-collapse supernova. We point out new possible effects of non-standard self-interactions (NSSI) of neutrinos on flavor conversions in a two-flavor framework. We show that, for a single-energy neutrino-antineutrino ensemble, a flavor instability is generated even in normal hierarchy for large enough NSSI. Using a toy model for the neutrino spectra, we show that flavor-preserving NSSI lead to pinching of spectral swaps, while flavor-violating NSSI cause swaps to develop away from a spectral crossing or even in the absence of a spectral crossing. Consequently, NSSI could give rise to collective oscillations and spectral splits even during neutronization burst, for both hierarchies.

  4. Photon exchange and decoherence in neutron interferometry

    International Nuclear Information System (INIS)

    Sulyok, G.

    2011-01-01

    The general subject of the present work concerns the action of time-dependent, spatially restricted magnetic fields on the wave function of a neutron. Special focus lies on their application in neutron interferometry. For arbitrary time-periodic fields, the corresponding Schroedinger equation is solved analytically. It is then shown, how the occurring exchange of energy quanta between the neutron and the modes of the magnetic field appears in the temporal modulation of the interference pattern between the original wavefunction and the wavefunction altered by the magnetic field. By Fourier analysis of the time-resolved interference pattern, the transition probabilities for all possible energy transfers are deducible. Experimental results for fields consisting of up to five modes are presented. Extending the theoretical approach by quantizing the magnetic field allows deeper insights on the underlying physical processes. For a coherent field state with a high mean photon number, the results of the calculation with classical fields is reproduced. By increasing the number of field modes whose relative phases are randomly distributed, one approaches the noise regime which offers the possibility of modelling decoherence in the neutron interferometer. Options and limitations of this modelling procedure are investigated in detail both theoretically and experimentally. Noise sources are applied in one or both interferometer path, and their strength, frequency bandwidth and position to each other is varied. In addition, the influence of increasing spatial separation of the neutron wave packet is examined, since the resulting Schroedinger cat-like states play an important role in decoherence theory. (author) [de

  5. Tibiofemoral wear in standard and non-standard squat: implication for total knee arthroplasty.

    Science.gov (United States)

    Fekete, Gusztáv; Sun, Dong; Gu, Yaodong; Neis, Patric Daniel; Ferreira, Ney Francisco; Innocenti, Bernardo; Csizmadia, Béla M

    2017-01-01

    Due to the more resilient biomaterials, problems related to wear in total knee replacements (TKRs) have decreased but not disappeared. In the design-related factors, wear is still the second most important mechanical factor that limits the lifetime of TKRs and it is also highly influenced by the local kinematics of the knee. During wear experiments, constant load and slide-roll ratio is frequently applied in tribo-tests beside other important parameters. Nevertheless, numerous studies demonstrated that constant slide-roll ratio is not accurate approach if TKR wear is modelled, while instead of a constant load, a flexion-angle dependent tibiofemoral force should be involved into the wear model to obtain realistic results. A new analytical wear model, based upon Archard's law, is introduced, which can determine the effect of the tibiofemoral force and the varying slide-roll on wear between the tibiofemoral connection under standard and non-standard squat movement. The calculated total wear with constant slide-roll during standard squat was 5.5 times higher compared to the reference value, while if total wear includes varying slide-roll during standard squat, the calculated wear was approximately 6.25 times higher. With regard to non-standard squat, total wear with constant slide-roll during standard squat was 4.16 times higher than the reference value. If total wear included varying slide-roll, the calculated wear was approximately 4.75 times higher. It was demonstrated that the augmented force parameter solely caused 65% higher wear volume while the slide-roll ratio itself increased wear volume by 15% higher compared to the reference value. These results state that the force component has the major effect on wear propagation while non-standard squat should be proposed for TKR patients as rehabilitation exercise.

  6. Preferred sets of states, predictability, classicality, and the environment-induced decoherence

    International Nuclear Information System (INIS)

    Zurek, W.H.

    1992-01-01

    Selection of the preferred classical set of states in the process of decoherence -- so important for cosmological considerations -- is discussed with an emphasis on the role of information loss and entropy. Persistence of correlations between the observables of two systems (for instance, a record and a state of a system evolved from the initial conditions described by that record) in the presence of the environment is used to define classical behavior. From the view point of an observer (or any system capable of maintaining records) predictability is a measure of such persistence. Predictability sieve -- a procedure which employs both the statistical and algorithmic entropies to systematicaly explore all of the Hilbert space of open system in order to eliminate the majority of the unpredictable and non-classical states and to locate the islands of predictability including the preferred pointer basis is proposed. Predictably evolving states of decohering systems along with the time-ordered sequences of records of their evolution define the effectively classical branches of the universal wavefunction in the context of the ''Many Worlds Interpretation''. The relation between the consistent histories approach and the preferred basis is considered. It is demonstrated that histories of sequences of events corresponding to projections onto the states of the pointer basis are consistent

  7. Decoherence from a spin chain with Dzyaloshinskii—Moriya interaction

    International Nuclear Information System (INIS)

    Yan Yi-Ying; Qin Li-Guo; Tian Li-Jun

    2012-01-01

    We study the dynamics of quantum discord and entanglement for two spin qubits coupled to a spin chain with Dzyaloshinsky—Moriya interaction. In the case of a two-qubit with an initial pure state, quantum correlations decay to zero at the critical point of the environment in a very short time. In the case of a two-qubit with initial mixed state, it is found that quantum discord may get maximized due to the quantum critical behavior of the environment, while entanglement vanishes under the same condition. Besides, we observed a sudden transition between classical and quantum decoherence when only a single qubit interacts with the environment. The effects of Dzyaloshinsky—Moriya interaction on quantum correlations are considered in the two cases. The decay of quantum correlations is always strengthened by Dzyaloshinsky—Moriya interaction

  8. Robust quantum secure direct communication and authentication protocol against decoherence noise based on six-qubit DF state

    International Nuclear Information System (INIS)

    Chang Yan; Zhang Shi-Bin; Yan Li-Li; Han Gui-Hua

    2015-01-01

    By using six-qubit decoherence-free (DF) states as quantum carriers and decoy states, a robust quantum secure direct communication and authentication (QSDCA) protocol against decoherence noise is proposed. Four six-qubit DF states are used in the process of secret transmission, however only the |0′〉 state is prepared. The other three six-qubit DF states can be obtained by permuting the outputs of the setup for |0′〉. By using the |0′〉 state as the decoy state, the detection rate and the qubit error rate reach 81.3%, and they will not change with the noise level. The stability and security are much higher than those of the ping–pong protocol both in an ideal scenario and a decoherence noise scenario. Even if the eavesdropper measures several qubits, exploiting the coherent relationship between these qubits, she can gain one bit of secret information with probability 0.042. (paper)

  9. Indications of energetic consequences of decoherence at short times for scattering from open quantum systems

    Directory of Open Access Journals (Sweden)

    C. A. Chatzidimitriou-Dreismann

    2011-06-01

    Full Text Available Decoherence of quantum entangled particles is observed in most systems, and is usually caused by system-environment interactions. Disentangling two subsystems A and B of a quantum system AB is tantamount to erasure of quantum phase relations between A and B. It is widely believed that this erasure is an innocuous process, which e.g. does not affect the energies of A and B. Surprisingly, recent theoretical investigations by different groups showed that disentangling two systems, i.e. their decoherence, can cause an increase of their energies. Applying this result to the context of neutron Compton scattering from H2 molecules, we provide for the first time experimental evidence which supports this prediction. The results reveal that the neutron-proton collision leading to the cleavage of the H-H bond in the sub-femtosecond timescale is accompanied by larger energy transfer (by about 3% than conventional theory predicts. It is proposed to interpreted the results by considering the neutron-proton collisional system as an entangled open quantum system being subject to decoherence owing to the interactions with the “environment” (i.e., two electrons plus second proton of H2.

  10. PREFACE: DICE 2006—Quantum Mechanics between Decoherence and Determinism

    Science.gov (United States)

    Diósi, Lajos; Elze, Hans-Thomas; Vitiello, Giuseppe

    2007-06-01

    These proceedings are based on the Invited Lectures and Contributed Papers of the Third International Workshop on Decoherence, Information, Complexity and Entropy—DICE 2006, which was held at Castello di Piombino (Tuscany), 11 15 September 2006. They are meant to document the stimulating exchange of ideas at this interdisciplinary workshop and to share it with the wider scientific community. It successfully continued what was begun with DICE 20021 and followed by DICE 20042 uniting more than seventy participants from more than a dozen different countries worldwide. It has been a great honour and inspiration for all of us to have Professor G. 't Hooft (Nobel Prize for Physics 1999) from the Spinoza Institute and University of Utrecht with us, who presented the lecture `A mathematical theory for deterministic quantum mechanics' (included in this volume). Discussions under the wider theme `Quantum Mechanics between decoherence and determinism: new aspects from particle physics to cosmology' took place in the very pleasant and productive atmosphere at the Castello di Piombino, with a fluctuation of stormy weather only on the evening of the conference dinner. The program of the workshop was grouped according to the following topics: complex systems, classical and quantum aspects Lorentz symmetry, neutrinos and the Universe reduction, decoherence and entanglement quantum, gravity and spacetime -- emergent reality? quantum gravity/cosmology The traditional Public Opening Lecture was presented this time by E. Del Giudice (Milano), who captivated the audience with `Old and new views on the structure of matter and the special case of living matter' on the evening of the arrival day. The workshop has been organized by S. Boccaletti (Firenze), L. Diósi (Budapest), H.-T. Elze (Pisa, chair), L. Fronzoni (Pisa), J. Halliwell (London), and G. Vitiello (Salerno), with great help from our conference secretaries M. Pesce-Rollins (Siena) and L. Baldini (Pisa). Several institutions

  11. Non-standard neutrino interactions in the mu–tau sector

    Directory of Open Access Journals (Sweden)

    Irina Mocioiu

    2015-04-01

    Full Text Available We discuss neutrino mass hierarchy implications arising from the effects of non-standard neutrino interactions on muon rates in high statistics atmospheric neutrino oscillation experiments like IceCube DeepCore. We concentrate on the mu–tau sector, which is presently the least constrained. It is shown that the magnitude of the effects depends strongly on the sign of the ϵμτ parameter describing this non-standard interaction. A simple analytic model is used to understand the parameter space where differences between the two signs are maximized. We discuss how this effect is partially degenerate with changing the neutrino mass hierarchy, as well as how this degeneracy could be lifted.

  12. Spin-based all-optical quantum computation with quantum dots: Understanding and suppressing decoherence

    International Nuclear Information System (INIS)

    Calarco, T.; Datta, A.; Fedichev, P.; Zoller, P.; Pazy, E.

    2003-01-01

    We present an all-optical implementation of quantum computation using semiconductor quantum dots. Quantum memory is represented by the spin of an excess electron stored in each dot. Two-qubit gates are realized by switching on trion-trion interactions between different dots. State selectivity is achieved via conditional laser excitation exploiting Pauli exclusion principle. Read out is performed via a quantum-jump technique. We analyze the effect on our scheme's performance of the main imperfections present in real quantum dots: exciton decay, hole mixing, and phonon decoherence. We introduce an adiabatic gate procedure that allows one to circumvent these effects and evaluate quantitatively its fidelity

  13. Neutrino mixing, oscillations and decoherence in astrophysics and cosmology

    Science.gov (United States)

    Ho, Chiu Man

    2007-08-01

    This thesis focuses on a finite-temperature field-theoretical treatment of neutrino oscillations in hot and dense media. By implementing the methods of real-time non-equilibrium field theory, we study the dynamics of neutrino mixing, oscillations, decoherence and relaxation in astrophysical and cosmological environments. We first study neutrino oscillations in the early universe in the temperature regime prior to the epoch of Big Bang Nucleosynthesis (BBN). The dispersion relations and mixing angles in the medium are found to be helicity-dependent, and a resonance like the Mikheyev-Smirnov- Wolfenstein (MSW) effect is realized. The oscillation time scales are found to be longer near a resonance and shorter for off-resonance high-energy neutrinos. We then investigate the space-time propagation of neutrino wave-packets just before BBN. A phenomenon of " frozen coherence " is found to occur if the longitudinal dispersion catches up with the progressive separation between the mass eigenstates, before the coherence time limit has been reached. However, the transverse dispersion occurs at a much shorter scale than all other possible time scales in the medium, resulting in a large suppression in the transition probabilities from electron-neutrino to muon-neutrino. We also explore the possibility of charged lepton mixing as a consequence of neutrino mixing in the early Universe. We find that charged leptons, like electrons and muons, can mix and oscillate resonantly if there is a large lepton asymmetry in the neutrino sector. We study sterile neutrino production in the early Universe via active-sterile oscillations. We provide a quantum field theoretical reassessment of the quantum Zeno suppression on the active-to-sterile transition probability and its time average. We determine the complete conditions for quantum Zeno suppression. Finally, we examine the interplay between neutrino mixing, oscillations and equilibration in a thermal medium, and the corresponding non

  14. Metric and topology on a non-standard real line and non-standard space-time

    International Nuclear Information System (INIS)

    Tahir Shah, K.

    1981-04-01

    We study metric and topological properties of extended real line R* and compare it with the non-standard model of real line *R. We show that some properties, like triangular inequality, cannot be carried over R* from R. This confirms F. Wattenberg's result for measure theory on Dedekind completion of *R. Based on conclusions from these results we propose a non-standard model of space-time. This space-time is without undefined objects like singularities. (author)

  15. On the second law of thermodynamics: The significance of coarse-graining and the role of decoherence

    International Nuclear Information System (INIS)

    Noorbala, Mahdiyar

    2014-01-01

    We take up the question why the initial entropy in the universe was small, in the context of evolution of the entropy of a classical system. We note that coarse-graining is an important aspect of entropy evaluation which can reverse the direction of the increase in entropy, i.e., the direction of thermodynamic arrow of time. Then we investigate the role of decoherence in the selection of coarse-graining and explain how to compute entropy for a decohered classical system. Finally, we argue that the requirement of low initial entropy imposes constraints on the decoherence process

  16. Solvable Quantum Macroscopic Motions and Decoherence Mechanisms in Quantum Mechanics on Nonstandard Space

    Science.gov (United States)

    Kobayashi, Tsunehiro

    1996-01-01

    Quantum macroscopic motions are investigated in the scheme consisting of N-number of harmonic oscillators in terms of ultra-power representations of nonstandard analysis. Decoherence is derived from the large internal degrees of freedom of macroscopic matters.

  17. Does non-standard work mean non-standard health? Exploring links between non-standard work schedules, health behavior, and well-being

    Directory of Open Access Journals (Sweden)

    Megan R. Winkler

    2018-04-01

    Full Text Available The last century has seen dramatic shifts in population work circumstances, leading to an increasing normalization of non-standard work schedules (NSWSs, defined as non-daytime, irregular hours. An ever-growing body of evidence links NSWSs to a host of non-communicable chronic conditions; yet, these associations primarily concentrate on the physiologic mechanisms created by circadian disruption and insufficient sleep. While important, not all NSWSs create such chronobiologic disruption, and other aspects of working time and synchronization could be important to the relationships between work schedules and chronic disease. Leveraging survey data from Project EAT, a population-based study with health-related behavioral and psychological data from U.S. adults aged 25–36 years, this study explored the risks for a broad range of less healthful behavioral and well-being outcomes among NSWS workers compared to standard schedule workers (n = 1402. Variations across different NSWSs (evening, night/rotating, and irregular schedules were also explored. Results indicated that, relative to standard schedule workers, workers with NSWSs are at increased risk for non-optimal sleep, substance use, greater recreational screen time, worse dietary practices, obesity, and depression. There was minimal evidence to support differences in relative risks across workers with different types of NSWSs. The findings provide insight into the potential links between NSWSs and chronic disease and indicate the relevancy social disruption and daily health practices may play in the production of health and well-being outcomes among working populations. Keywords: United States, Work schedule tolerance, Health behavior, Mental health, Substance abuse, Obesity

  18. Quantum computing with four-particle decoherence-free states in ion trap

    OpenAIRE

    Feng, Mang; Wang, Xiaoguang

    2001-01-01

    Quantum computing gates are proposed to apply on trapped ions in decoherence-free states. As phase changes due to time evolution of components with different eigenenergies of quantum superposition are completely frozen, quantum computing based on this model would be perfect. Possible application of our scheme in future ion-trap quantum computer is discussed.

  19. Emergence of Space-Time Localization and Cosmic Decoherence:. More on Irreversible Time, Dark Energy, Anti-Matter and Black-Holes

    Science.gov (United States)

    Magnon, Anne

    2005-04-01

    A non geometric cosmology is presented, based on logic of observability, where logical categories of our perception set frontiers to comprehensibility. The Big-Bang singularity finds here a substitute (comparable to a "quantum jump"): a logical process (tied to self-referent and divisible totality) by which information emerges, focalizes on events and recycles, providing a transition from incoherence to causal coherence. This jump manufactures causal order and space-time localization, as exact solutions to Einstein's equation, where the last step of the process disentangles complex Riemann spheres into real null-cones (a geometric overturning imposed by self-reference, reminding us of our ability to project the cosmos within our mental sphere). Concepts such as antimatter and dark energy (dual entities tied to bifurcations or broken symmetries, and their compensation), are presented as hidden in the virtual potentialities, while irreversible time appears with the recycling of information and related flow. Logical bifurcations (such as the "part-totality" category, a quantum of information which owes its recycling to non localizable logical separations, as anticipated by unstability or horizon dependence of the quantum vacuum) induce broken symmetries, at the (complex or real) geometric level [eg. the antiselfdual complex non linear graviton solutions, which break duality symmetry, provide a model for (hidden) anti-matter, itself compensated with dark-energy, and providing, with space-time localization, the radiative gravitational energy (Bondi flux and related bifurcations of the peeling off type), as well as mass of isolated bodies]. These bifurcations are compensated by inertial effects (non geometric precursors of the Coriolis forces) able to explain (on logical grounds) the cosmic expansion (a repulsion?) and critical equilibrium of the cosmic tissue. Space-time environment, itself, emerges through the jump, as a censor to totality, a screen to incoherence (as

  20. Non-standard work schedules, gender, and parental stress

    Directory of Open Access Journals (Sweden)

    Mariona Lozano

    2016-02-01

    Full Text Available Background: Working non-standard hours changes the temporal structure of family life, constraining the time that family members spend with one another and threatening individuals' well-being. However, the empirical research on the link between stress and non-standard schedules has provided mixed results. Some studies have indicated that working non-standard hours is harmful whereas others have suggested that working atypical hours might facilitate the balance between family and work. Moreover, there is some evidence that the association between stress and non-standard employment has different implications for men and women. Objective: This paper examines the association between non-standard work schedules and stress among dual-earner couples with children. Two research questions are addressed. First, do predictability of the schedule and time flexibility moderate the link between non-standard work hours and stress? Second, do non-standard schedules affect men's and women's perceptions of stress differently? Methods: We use a sample of 1,932 working parents from the Canadian 2010 General Social Survey, which includes a time-use diary. A sequential logit regression analysis stratified by gender is employed to model two types of result. First, we estimate the odds of being stressed versus not being stressed. Second, for all respondents feeling stressed, we estimate the odds of experiencing high levels versus moderate levels of stress. Results: Our analysis shows that the link between non-standard working hours and perceived stress differs between mothers and fathers. First, fathers with non-standard schedules appear more likely to experience stress than those working standard hours, although the results are not significant. Among mothers, having a non-standard schedule is associated with a significantly lower risk of experiencing stress. Second, the analysis focusing on the mediating role of flexibility and predictability indicates that

  1. The rise and fall of redundancy in decoherence and quantum Darwinism

    Science.gov (United States)

    Jess Riedel, C.; Zurek, Wojciech H.; Zwolak, Michael

    2012-08-01

    A state selected at random from the Hilbert space of a many-body system is overwhelmingly likely to exhibit highly non-classical correlations. For these typical states, half of the environment must be measured by an observer to determine the state of a given subsystem. The objectivity of classical reality—the fact that multiple observers can agree on the state of a subsystem after measuring just a small fraction of its environment—implies that the correlations found in nature between macroscopic systems and their environments are exceptional. Building on previous studies of quantum Darwinism showing that highly redundant branching states are produced ubiquitously during pure decoherence, we examine the conditions needed for the creation of branching states and study their demise through many-body interactions. We show that even constrained dynamics can suppress redundancy to the values typical of random states on relaxation timescales, and prove that these results hold exactly in the thermodynamic limit.

  2. Proposed Robust Entanglement-Based Magnetic Field Sensor Beyond the Standard Quantum Limit.

    Science.gov (United States)

    Tanaka, Tohru; Knott, Paul; Matsuzaki, Yuichiro; Dooley, Shane; Yamaguchi, Hiroshi; Munro, William J; Saito, Shiro

    2015-10-23

    Recently, there have been significant developments in entanglement-based quantum metrology. However, entanglement is fragile against experimental imperfections, and quantum sensing to beat the standard quantum limit in scaling has not yet been achieved in realistic systems. Here, we show that it is possible to overcome such restrictions so that one can sense a magnetic field with an accuracy beyond the standard quantum limit even under the effect of decoherence, by using a realistic entangled state that can be easily created even with current technology. Our scheme could pave the way for the realizations of practical entanglement-based magnetic field sensors.

  3. Gauge-independent decoherence models for solids in external fields

    Science.gov (United States)

    Wismer, Michael S.; Yakovlev, Vladislav S.

    2018-04-01

    We demonstrate gauge-invariant modeling of an open system of electrons in a periodic potential interacting with an optical field. For this purpose, we adapt the covariant derivative to the case of mixed states and put forward a decoherence model that has simple analytical forms in the length and velocity gauges. We demonstrate our methods by calculating harmonic spectra in the strong-field regime and numerically verifying the equivalence of the deterministic master equation to the stochastic Monte Carlo wave-function method.

  4. Combining semantics with non-standard interpreter hierarchies

    DEFF Research Database (Denmark)

    Abramov, Sergei M.; Glück, Robert

    2000-01-01

    This paper reports on results concerning the combination of non-standard semantics via interpreters. We define what a semantics combination means and identify under which conditions a combination can be realized by computer programs (robustness, safely combinable). We develop the underlying mathe...... mathematical theory and examine the meaning of several non-standard interpreter towers. Our results suggest a technique for the implementation of a certain class of programming language dialects by composing a hierarchy of non-standard interpreters....

  5. Search for non-standard SUSY signatures in CMS

    International Nuclear Information System (INIS)

    Teyssier, Daniel

    2008-01-01

    New studies of the CMS collaboration are presented on the sensitivity to searches for non-standard signatures of particular SUSY scenarios. These signatures include non-pointing photons as well as pairs of prompt photons as expected GMSB SUSY models, as well as heavy stable charged particles produced in split supersymmetry models, long lived staus from GMSB SUSY and long lived stops in other SUSY scenarios. Detailed detector simulation is used for the study, and all relevant Standard Model background and detector effects that can mimic these special signatures are included. It is shown that with already with less than 100 pb -1 the CMS sensitivity will probe an interesting as yet by data unexplored parameter range of these models.

  6. Quasiparticle-induced decoherence of microscopic two-level-systems in superconducting qubits

    Energy Technology Data Exchange (ETDEWEB)

    Bilmes, Alexander; Lisenfeld, Juergen; Zanker, Sebastian; Weiss, Georg; Ustinov, Alexey V. [PHI, KIT, Karlsruhe (Germany); Marthaler, Michael; Schoen, Gerd [TFP, KIT, Karlsruhe (Germany)

    2016-07-01

    Parasitic Two-Level-Systems (TLS) are one of the main sources of decoherence in superconducting nano-scale devices such as SQUIDs, resonators and quantum bits (qubits), although the TLS' microscopic nature remains unclear. We use a superconducting phase qubit to detect TLS contained within the tunnel barrier of the qubit's Al/AlOx/Al Josephson junction. If the TLS transition frequency lies within the 6-10 GHz range, we can coherently drive it by resonant microwave pulses and access its quantum state by utilizing the strong coupling to the qubit. Our previous measurements of TLS coherence in dependence of the temperature indicate that quasiparticles (QPs), which diffuse from the superconducting Al electrodes into the oxide layer, may give rise to TLS energy loss and dephasing. Here, we probe the TLS-QP interaction using a reliable method of in-situ QP injection via an on-chip dc-SQUID that is pulse-biased beyond its switching current. The QP density is calibrated by measuring associated characteristic changes to the qubit's energy relaxation rate. We will present experimental data which show the QP-induced TLS decoherence in good agreement to theoretical predictions.

  7. Control of electron spin decoherence in nuclear spin baths

    Science.gov (United States)

    Liu, Ren-Bao

    2011-03-01

    Nuclear spin baths are a main mechanism of decoherence of spin qubits in solid-state systems, such as quantum dots and nitrogen-vacancy (NV) centers of diamond. The decoherence results from entanglement between the electron and nuclear spins, established by quantum evolution of the bath conditioned on the electron spin state. When the electron spin is flipped, the conditional bath evolution is manipulated. Such manipulation of bath through control of the electron spin not only leads to preservation of the center spin coherence but also demonstrates quantum nature of the bath. In an NV center system, the electron spin effectively interacts with hundreds of 13 C nuclear spins. Under repeated flip control (dynamical decoupling), the electron spin coherence can be preserved for a long time (> 1 ms) . Thereforesomecharacteristicoscillations , duetocouplingtoabonded 13 C nuclear spin pair (a dimer), are imprinted on the electron spin coherence profile, which are very sensitive to the position and orientation of the dimer. With such finger-print oscillations, a dimer can be uniquely identified. Thus, we propose magnetometry with single-nucleus sensitivity and atomic resolution, using NV center spin coherence to identify single molecules. Through the center spin coherence, we could also explore the many-body physics in an interacting spin bath. The information of elementary excitations and many-body correlations can be extracted from the center spin coherence under many-pulse dynamical decoupling control. Another application of the preserved spin coherence is identifying quantumness of a spin bath through the back-action of the electron spin to the bath. We show that the multiple transition of an NV center in a nuclear spin bath can have longer coherence time than the single transition does, when the classical noises due to inhomogeneous broadening is removed by spin echo. This counter-intuitive result unambiguously demonstrates the quantumness of the nuclear spin bath

  8. Yoga versus non-standard care for schizophrenia.

    Science.gov (United States)

    Broderick, Julie; Crumlish, Niall; Waugh, Alice; Vancampfort, Davy

    2017-09-28

    Yoga is an ancient spiritual practice that originated in India and is currently accepted in the Western world as a form of relaxation and exercise. It has been of interest for people with schizophrenia as an alternative or adjunctive treatment. To systematically assess the effects of yoga versus non-standard care for people with schizophrenia. The Information Specialist of the Cochrane Schizophrenia Group searched their specialised Trials Register (latest 30 March 2017), which is based on regular searches of MEDLINE, PubMed, Embase, CINAHL, BIOSIS, AMED, PsycINFO, and registries of clinical trials. We searched the references of all included studies. There are no language, date, document type, or publication status limitations for inclusion of records in the register. All randomised controlled trials (RCTs) including people with schizophrenia and comparing yoga with non-standard care. We included trials that met our selection criteria and reported useable data. The review team independently selected studies, assessed quality, and extracted data. For binary outcomes, we calculated risk ratio (RR) and its 95% confidence interval (CI), on an intention-to-treat basis. For continuous data, we estimated the mean difference (MD) between groups and its 95% CI. We employed a fixed-effect models for analyses. We examined data for heterogeneity (I 2 technique), assessed risk of bias for included studies, and created a 'Summary of findings' table for seven main outcomes of interest using GRADE (Grading of Recommendations Assessment, Development and Evaluation). We were able to include six studies (586 participants). Non-standard care consisted solely of another type of exercise programme. All outcomes were short term (less than six months). There was a clear difference in the outcome leaving the study early (6 RCTs, n=586, RR 0.64 CI 0.49 to 0.83, medium quality evidence) in favour of the yoga group. There were no clear differences between groups for the remaining outcomes

  9. Non-Markovianity hinders Quantum Darwinism

    Science.gov (United States)

    Galve, Fernando; Zambrini, Roberta; Maniscalco, Sabrina

    2016-01-01

    We investigate Quantum Darwinism and the emergence of a classical world from the quantum one in connection with the spectral properties of the environment. We use a microscopic model of quantum environment in which, by changing a simple system parameter, we can modify the information back flow from environment into the system, and therefore its non-Markovian character. We show that the presence of memory effects hinders the emergence of classical objective reality, linking these two apparently unrelated concepts via a unique dynamical feature related to decoherence factors.

  10. Evaluation of Suitability of Non-Standardized Test Block for Ultrasonic Testing

    International Nuclear Information System (INIS)

    Kwon, Ho Young; Lim, Jong Ho; Kang, Sei Sun

    2000-01-01

    Standard Test Block(STB) for UT(Ultrasonic Testing) is a block approved by authoritative for material, shape and quality. STB is used for characteristic tests, sensitivity calibration and control of the time base range of UT inspection devices. The material, size and chemical components of STB should be strictly controlled to meet the related standards such as ASTM and JIS because it has an effect upon sensitivity, resolution and reproductivity of UT. The STBs which are not approved are sometimes used because the qualified STBs are very expensive. So, the purpose of this study is to survey the characteristics, quality and usability of Non-Standardized Test Blocks. Non-Standardized Test Blocks did not meet the standard requirements in size or chemical components, and ultrasonic characteristics. Therefore if the Non-Standardized Test Blocks are used without being tested, it's likely to cause errors in detecting the location and measuring the size of the defects

  11. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer

    Science.gov (United States)

    Tiwari, Vivek; Peters, William K.; Jonas, David M.

    2017-10-01

    Non-adiabatic vibrational-electronic resonance in the excited electronic states of natural photosynthetic antennas drastically alters the adiabatic framework, in which electronic energy transfer has been conventionally studied, and suggests the possibility of exploiting non-adiabatic dynamics for directed energy transfer. Here, a generalized dimer model incorporates asymmetries between pigments, coupling to the environment, and the doubly excited state relevant for nonlinear spectroscopy. For this generalized dimer model, the vibrational tuning vector that drives energy transfer is derived and connected to decoherence between singly excited states. A correlation vector is connected to decoherence between the ground state and the doubly excited state. Optical decoherence between the ground and singly excited states involves linear combinations of the correlation and tuning vectors. Excitonic coupling modifies the tuning vector. The correlation and tuning vectors are not always orthogonal, and both can be asymmetric under pigment exchange, which affects energy transfer. For equal pigment vibrational frequencies, the nonadiabatic tuning vector becomes an anti-correlated delocalized linear combination of intramolecular vibrations of the two pigments, and the nonadiabatic energy transfer dynamics become separable. With exchange symmetry, the correlation and tuning vectors become delocalized intramolecular vibrations that are symmetric and antisymmetric under pigment exchange. Diabatic criteria for vibrational-excitonic resonance demonstrate that anti-correlated vibrations increase the range and speed of vibronically resonant energy transfer (the Golden Rule rate is a factor of 2 faster). A partial trace analysis shows that vibronic decoherence for a vibrational-excitonic resonance between two excitons is slower than their purely excitonic decoherence.

  12. Wigner functions on non-standard symplectic vector spaces

    Science.gov (United States)

    Dias, Nuno Costa; Prata, João Nuno

    2018-01-01

    We consider the Weyl quantization on a flat non-standard symplectic vector space. We focus mainly on the properties of the Wigner functions defined therein. In particular we show that the sets of Wigner functions on distinct symplectic spaces are different but have non-empty intersections. This extends previous results to arbitrary dimension and arbitrary (constant) symplectic structure. As a by-product we introduce and prove several concepts and results on non-standard symplectic spaces which generalize those on the standard symplectic space, namely, the symplectic spectrum, Williamson's theorem, and Narcowich-Wigner spectra. We also show how Wigner functions on non-standard symplectic spaces behave under the action of an arbitrary linear coordinate transformation.

  13. Bilayer graphene lattice-layer entanglement in the presence of non-Markovian phase noise

    Science.gov (United States)

    Bittencourt, Victor A. S. V.; Blasone, Massimo; Bernardini, Alex E.

    2018-03-01

    The evolution of single particle excitations of bilayer graphene under effects of non-Markovian noise is described with focus on the decoherence process of lattice-layer (LL) maximally entangled states. Once the noiseless dynamics of an arbitrary initial state is identified by the correspondence between the tight-binding Hamiltonian for the AB-stacked bilayer graphene and the Dirac equation—which includes pseudovectorlike and tensorlike field interactions—the noisy environment is described as random fluctuations on bias voltage and mass terms. The inclusion of noisy dynamics reproduces the Ornstein-Uhlenbeck processes: A non-Markovian noise model with a well-defined Markovian limit. Considering that an initial amount of entanglement shall be dissipated by the noise, two profiles of dissipation are identified. On one hand, for eigenstates of the noiseless Hamiltonian, deaths and revivals of entanglement are identified along the oscillation pattern for long interaction periods. On the other hand, for departing LL Werner and Cat states, the entanglement is suppressed although, for both cases, some identified memory effects compete with the pure noise-induced decoherence in order to preserve the the overall profile of a given initial state.

  14. DOE Technical Standards List. Directory of DOE and contractor personnel involved in non-government standards activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This is a periodic report on the level of agency participation in non-Government standards activities. This technical standards list is intended to assist US Department of Energy (DOE) management and other personnel involved in the DOE technical Standards Program by identifying those participating individuals. The body of this document contains a listing of DOE employees and DOE contractors who have submitted a Record of Non-Government Standards Activity. Additional names were added from rosters supplied by non-Government standards bodies. Appendices to this document are provided to list the information by parent employment organization, by non-Government standards activity, and by the proper names of the non-Government standards organizations and committees.

  15. Non_standard Wood

    DEFF Research Database (Denmark)

    Tamke, Martin

    . Using parametric design tools and computer controlled production facilities Copenhagens Centre for IT and Architecture undertook a practice based research into performance based non-standard element design and mass customization techniques. In close cooperation with wood construction software......, but the integration of traditional wood craft techniques. The extensive use of self adjusting, load bearing wood-wood joints contributed to ease in production and assembly of a performance based architecture....

  16. Entanglement generation and entropy growth due to intrinsic decoherence in the Jaynes-Cummings model

    International Nuclear Information System (INIS)

    Obada, A.-S.F.; Hessian, Hosny A.

    2004-01-01

    We study how intrinsic decoherence leads to growing entropy and a strong degradation of the maximal generated entanglement in the multiquanta Jaynes-Cummings model. We find an exact solution of the Milburn equation in multiquanta precesses and calculate the partial entropy of the particle (atom or trapped ion) and field subsystem as well as total entropy. As the total entropy is not conserved, and it is shown to increase as time develops, one cannot use the partial field or atomic entropy as a direct measure of particle-field entanglement. For a good entropy measure, we also calculate the negativity of the eigenvalues of the partially transposed density matrix. We find that, at least qualitatively, the difference of the total entropy to the sum of field and atom partial entropies can be also used as an entanglement measure. Our results show that the degree of entanglement is very sensitive to any change in the intrinsic decoherence parameter

  17. Entanglement and decoherence in high energy physics

    International Nuclear Information System (INIS)

    Bertlmann, R.

    2005-01-01

    Full text: The phenomenon of entanglement occurs in very heavy quantum systems of particle physics. We find analogies but also differences to the entangled spin-1/2 or photon systems. In particular we discuss the features of entangled 'strangeness', the K-meson system, where a Bell inequality exists which has a remarkable connection to CP (charge conjugation and parity) and its violation. Stability of entangled quantum states is studied by allowing the system to interact with an environment. We consider possible decoherence of entangled 'beauty', the B-meson system, produced at the particle colliders at very high energies (10 GeV). Finally, we discuss a criterion for detecting entangled/separable states, a generalized Bell inequality and entanglement witness. We illustrate its geometric features by the two-spin example Alice and Bob. (author)

  18. Non-prescription medicines: a process for standards development and testing in community pharmacy.

    Science.gov (United States)

    Benrimoj, Shalom Charlie I; Gilbert, Andrew; Quintrell, Neil; Neto, Abilio C de Almeida

    2007-08-01

    The objective of the study was to develop and test standards of practice for handling non-prescription medicines. In consultation with pharmacy registering authorities, key professional and consumer groups and selected community pharmacists, standards of practice were developed in the areas of Resource Management; Professional Practice; Pharmacy Design and Environment; and Rights and Needs of Customers. These standards defined and described minimum professional activities required in the provision of non-prescription medicines at a consistent and measurable level of practice. Seven standards were described and further defined by 20 criteria, including practice indicators. The Standards were tested in 40 community pharmacies in two States and after further adaptation, endorsed by all Australian pharmacy registering authorities and major Australian pharmacy and consumer organisations. The consultation process effectively engaged practicing pharmacists in developing standards to enable community pharmacists meet their legislative and professional responsibilities. Community pharmacies were audited against a set of standards of practice for handling non-prescription medicines developed in this project. Pharmacies were audited on the Standards at baseline, mid-intervention and post-intervention. Behavior of community pharmacists and their staff in relation to these standards was measured by conducting pseudo-patron visits to participating pharmacies. The testing process demonstrated a significant improvement in the quality of service delivered by staff in community pharmacies in the management of requests involving non-prescription medicines. The use of pseudo-patron visits, as a training tool with immediate feedback, was an acceptable and effective method of achieving changes in practice. Feedback from staff in the pharmacies regarding the pseudo-patron visits was very positive. Results demonstrated the methodology employed was effective in increasing overall

  19. Non-commutative standard model: model building

    CERN Document Server

    Chaichian, Masud; Presnajder, P

    2003-01-01

    A non-commutative version of the usual electro-weak theory is constructed. We discuss how to overcome the two major problems: (1) although we can have non-commutative U(n) (which we denote by U sub * (n)) gauge theory we cannot have non-commutative SU(n) and (2) the charges in non-commutative QED are quantized to just 0,+-1. We show how the latter problem with charge quantization, as well as with the gauge group, can be resolved by taking the U sub * (3) x U sub * (2) x U sub * (1) gauge group and reducing the extra U(1) factors in an appropriate way. Then we proceed with building the non-commutative version of the standard model by specifying the proper representations for the entire particle content of the theory, the gauge bosons, the fermions and Higgs. We also present the full action for the non-commutative standard model (NCSM). In addition, among several peculiar features of our model, we address the inherentCP violation and new neutrino interactions. (orig.)

  20. Robust transmission of non-Gaussian entanglement over optical fibers

    International Nuclear Information System (INIS)

    Biswas, Asoka; Lidar, Daniel A.

    2006-01-01

    We show how the entanglement in a wide range of continuous variable non-Gaussian states can be preserved against decoherence for long-range quantum communication through an optical fiber. We apply protection via decoherence-free subspaces and quantum dynamical decoupling to this end. The latter is implemented by inserting phase shifters at regular intervals Δ inside the fiber, where Δ is roughly the ratio of the speed of light in the fiber to the bath high-frequency cutoff. Detailed estimates of relevant parameters are provided using the boson-boson model of system-bath interaction for silica fibers and Δ is found to be on the order of a millimeter

  1. CP Studies and Non-Standard Higgs Physics

    DEFF Research Database (Denmark)

    Kraml, S.; Accomando, E.; G. Akeroyd, A.

    2006-01-01

    There are many possibilities for new physics beyond the Standard Model that feature non-standard Higgs sectors. These may introduce new sources of CP violation, and there may be mixing between multiple Higgs bosons or other new scalar bosons. Alternatively, the Higgs may be a composite state......, or there may even be no Higgs at all. These non-standard Higgs scenarios have important implications for collider physics as well as for cosmology, and understanding their phenomenology is essential for a full comprehension of electroweak symmetry breaking. This report discusses the most relevant theories...

  2. Realistic continuous-variable quantum teleportation with non-Gaussian resources

    International Nuclear Information System (INIS)

    Dell'Anno, F.; De Siena, S.; Illuminati, F.

    2010-01-01

    We present a comprehensive investigation of nonideal continuous-variable quantum teleportation implemented with entangled non-Gaussian resources. We discuss in a unified framework the main decoherence mechanisms, including imperfect Bell measurements and propagation of optical fields in lossy fibers, applying the formalism of the characteristic function. By exploiting appropriate displacement strategies, we compute analytically the success probability of teleportation for input coherent states and two classes of non-Gaussian entangled resources: two-mode squeezed Bell-like states (that include as particular cases photon-added and photon-subtracted de-Gaussified states), and two-mode squeezed catlike states. We discuss the optimization procedure on the free parameters of the non-Gaussian resources at fixed values of the squeezing and of the experimental quantities determining the inefficiencies of the nonideal protocol. It is found that non-Gaussian resources enhance significantly the efficiency of teleportation and are more robust against decoherence than the corresponding Gaussian ones. Partial information on the alphabet of input states allows further significant improvement in the performance of the nonideal teleportation protocol.

  3. Non-standard antennas

    CERN Document Server

    Le Chevalier, Francois; Staraj, Robert

    2013-01-01

    This book aims at describing the wide variety of new technologies and concepts of non-standard antenna systems - reconfigurable, integrated, terahertz, deformable, ultra-wideband, using metamaterials, or MEMS,  etc, and how they open the way to a wide range of applications, from personal security and communications to multifunction radars and towed sonars, or satellite navigation systems, with space-time diversity on transmit and receive. A reference book for designers  in this lively scientific community linking antenna experts and signal processing engineers.

  4. A Non-standard Empirical Likelihood for Time Series

    DEFF Research Database (Denmark)

    Nordman, Daniel J.; Bunzel, Helle; Lahiri, Soumendra N.

    Standard blockwise empirical likelihood (BEL) for stationary, weakly dependent time series requires specifying a fixed block length as a tuning parameter for setting confidence regions. This aspect can be difficult and impacts coverage accuracy. As an alternative, this paper proposes a new version...... of BEL based on a simple, though non-standard, data-blocking rule which uses a data block of every possible length. Consequently, the method involves no block selection and is also anticipated to exhibit better coverage performance. Its non-standard blocking scheme, however, induces non......-standard asymptotics and requires a significantly different development compared to standard BEL. We establish the large-sample distribution of log-ratio statistics from the new BEL method for calibrating confidence regions for mean or smooth function parameters of time series. This limit law is not the usual chi...

  5. The Role of Quantum Decoherence in FRET.

    Science.gov (United States)

    Nelson, Philip C

    2018-02-16

    Resonance energy transfer has become an indispensable experimental tool for single-molecule and single-cell biophysics. Its physical underpinnings, however, are subtle: it involves a discrete jump of excitation from one molecule to another, and so we regard it as a strongly quantum-mechanical process. And yet its kinetics differ from what many of us were taught about two-state quantum systems, quantum superpositions of the states do not seem to arise, and so on. Although J. R. Oppenheimer and T. Förster navigated these subtleties successfully, it remains hard to find an elementary derivation in modern language. The key step involves acknowledging quantum decoherence. Appreciating that aspect can be helpful when we attempt to extend our understanding to situations in which Förster's original analysis is not applicable. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Non-standard Employment in the Nordics – towards precarious work?

    DEFF Research Database (Denmark)

    Rasmussen, Stine; Nätti, Jouko; Larsen, Trine Pernille

    2018-01-01

    This article examines non-standard employment and precariousness in four Nordic countries (Denmark, Sweden, Finland and Norway). Drawing on data from the Labour Force Survey from 1995-2015, the article investigates and compares recent developments of non-standard employment in the countries and w...... to be largely integrated in the Nordic labour markets, it still entails precarious elements in certain countries. Norway and Denmark stand out as less insecure labour markets, while Finland and Sweden have more precariousness associated with non-standard employment.......This article examines non-standard employment and precariousness in four Nordic countries (Denmark, Sweden, Finland and Norway). Drawing on data from the Labour Force Survey from 1995-2015, the article investigates and compares recent developments of non-standard employment in the countries...... and whether fixed-term contracts, temporary agency work, marginal part-time work and solo self-employment have precarious elements (income or job insecurity). We conclude that non-standard employment has remained rather stable in all four countries over time. However, although non-standard employment seems...

  7. Decoherence for a quantum memory in an ensemble of cold atoms

    International Nuclear Information System (INIS)

    Riedmatten, H. de; Chou, C.W.; Felinto, D.; Plyakov, S.; Kimble, H.J.

    2005-01-01

    Full text: Atomic ensembles are a promising candidate for various applications in quantum information science. In particular, Duan, Lukin Cirac and Zoller (DLCZ) have proposed a protocol allowing scalable long distance quantum communication using atomic ensembles and linear optics. The DLCZ protocol is a probabilistic scheme based upon the entanglement of atomic ensembles via the detection of single photons. The detection of a single photon in the forward scattered direction is uniquely correlated with a collective atomic excitation in the sample, due to a collective enhancement effect. This collective excitation can be in principle stored for a time up to the coherence time of the system, and then released by conversion into a photon. This quantum memory is mandatory for the DLCZ scheme to be scalable. Hence, the coherence time is a critical parameter for this system. Our initial steps towards the realization of the DLCZ protocol have been by way of observations of non-classical correlations between the emitted single photons and the collective atomic excitations. However, in all the experiments reported so far using cold atomic ensembles, the coherence times were extremely short (of the order of 100 ns), thus preventing to take advantage of the quantum memory. In this contribution we explore the cause of this rather fast decoherence process and present an experimental scheme to overcome this problem. First results show an improvement of more than one order of magnitude in the coherence time. Future work includes the entanglement of two spatially separated cold atomic ensembles. (author)

  8. Measurement and control of a mechanical oscillator at its thermal decoherence rate

    OpenAIRE

    Wilson, D. J.; Sudhir, V.; Piro, N.; Schilling, R.; Ghadimi, A.; Kippenberg, T. J.

    2014-01-01

    In real-time quantum feedback protocols, the record of a continuous measurement is used to stabilize a desired quantum state. Recent years have seen highly successful applications in a variety of well-isolated micro-systems, including microwave photons and superconducting qubits. By contrast, the ability to stabilize the quantum state of a tangibly massive object, such as a nanomechanical oscillator, remains a difficult challenge: The main obstacle is environmental decoherence, which places s...

  9. Internal Spin Control, Squeezing and Decoherence in Ensembles of Alkali Atomic Spins

    Science.gov (United States)

    Norris, Leigh Morgan

    particular, we find that state preparation using control of the internal hyperfine spin increases the entangling power of squeezing protocols when f>1/2. Post-processing of the ensemble using additional internal spin control converts this entanglement into metrologically useful spin squeezing. By employing a variation of the Holstein-Primakoff approximation, in which the collective spin observables of the atomic ensemble are treated as quadratures of a bosonic mode, we model entanglement generation, spin squeezing and the effects of internal spin control. The Holstein-Primakoff formalism also enables us to take into account the decoherence of the ensemble due to optical pumping. While most works ignore or treat optical pumping phenomenologically, we employ a master equation derived from first principles. Our analysis shows that state preparation and the hyperfine spin size have a substantial impact upon both the generation of spin squeezing and the decoherence of the ensemble. Through a numerical search, we determine state preparations that enhance squeezing protocols while remaining robust to optical pumping. Finally, most work on spin squeezing in atomic ensembles has treated the light as a plane wave that couples identically to all atoms. In the final part of this dissertation, we go beyond the customary plane wave approximation on the light and employ focused paraxial beams, which are more efficiently mode matched to the radiation pattern of the atomic ensemble. The mathematical formalism and the internal spin control techniques that we applied in the plane wave case are generalized to accommodate the non-homogeneous paraxial probe. We find the optimal geometries of the atomic ensemble and the probe for mode matching and generation of spin squeezing.

  10. NON-STANDARD FORMS OF EMPLOYMENT IN BUSINESS ORGANIZATIONS

    Directory of Open Access Journals (Sweden)

    A. E. Chekanov

    2013-01-01

    Full Text Available The article discusses the emergence and development of non-standard forms of employment and flexible working. The causes of their use reflects the results of research conducted in the workplace. Non-standard forms of employment and attractive today as they allow to expand the circle of the workforce.

  11. Scheme for Quantum Computing Immune to Decoherence

    Science.gov (United States)

    Williams, Colin; Vatan, Farrokh

    2008-01-01

    A constructive scheme has been devised to enable mapping of any quantum computation into a spintronic circuit in which the computation is encoded in a basis that is, in principle, immune to quantum decoherence. The scheme is implemented by an algorithm that utilizes multiple physical spins to encode each logical bit in such a way that collective errors affecting all the physical spins do not disturb the logical bit. The scheme is expected to be of use to experimenters working on spintronic implementations of quantum logic. Spintronic computing devices use quantum-mechanical spins (typically, electron spins) to encode logical bits. Bits thus encoded (denoted qubits) are potentially susceptible to errors caused by noise and decoherence. The traditional model of quantum computation is based partly on the assumption that each qubit is implemented by use of a single two-state quantum system, such as an electron or other spin-1.2 particle. It can be surprisingly difficult to achieve certain gate operations . most notably, those of arbitrary 1-qubit gates . in spintronic hardware according to this model. However, ironically, certain 2-qubit interactions (in particular, spin-spin exchange interactions) can be achieved relatively easily in spintronic hardware. Therefore, it would be fortunate if it were possible to implement any 1-qubit gate by use of a spin-spin exchange interaction. While such a direct representation is not possible, it is possible to achieve an arbitrary 1-qubit gate indirectly by means of a sequence of four spin-spin exchange interactions, which could be implemented by use of four exchange gates. Accordingly, the present scheme provides for mapping any 1-qubit gate in the logical basis into an equivalent sequence of at most four spin-spin exchange interactions in the physical (encoded) basis. The complexity of the mathematical derivation of the scheme from basic quantum principles precludes a description within this article; it must suffice to report

  12. A quantum CISC compiler and scalable assembler for quantum computing on large systems

    Energy Technology Data Exchange (ETDEWEB)

    Schulte-Herbrueggen, Thomas; Spoerl, Andreas; Glaser, Steffen [Dept. Chemistry, Technical University of Munich (TUM), 85747 Garching (Germany)

    2008-07-01

    Using the cutting edge high-speed parallel cluster HLRB-II (with a total LINPACK performance of 63.3 TFlops/s) we present a quantum CISC compiler into time-optimised or decoherence-protected complex instruction sets. They comprise effective multi-qubit interactions with up to 10 qubits. We show how to assemble these medium-sized CISC-modules in a scalable way for quantum computation on large systems. Extending the toolbox of universal gates by optimised complex multi-qubit instruction sets paves the way to fight decoherence in realistic Markovian and non-Markovian settings. The advantage of quantum CISC compilation over standard RISC compilations into one- and two-qubit universal gates is demonstrated inter alia for the quantum Fourier transform (QFT) and for multiply-controlled NOT gates. The speed-up is up to factor of six thus giving significantly better performance under decoherence. - Implications for upper limits to time complexities are also derived.

  13. Redundant information encoding in QED during decoherence

    Science.gov (United States)

    Tuziemski, J.; Witas, P.; Korbicz, J. K.

    2018-01-01

    Broadly understood decoherence processes in quantum electrodynamics, induced by neglecting either the radiation [L. Landau, Z. Phys. 45, 430 (1927), 10.1007/BF01343064] or the charged matter [N. Bohr and L. Rosenfeld, K. Danske Vidensk. Selsk, Math.-Fys. Medd. XII, 8 (1933)], have been studied from the dawn of the theory. However, what happens in between, when a part of the radiation may be observed, as is the case in many real-life situations, has not been analyzed yet. We present such an analysis for a nonrelativistic, pointlike charge and thermal radiation. In the dipole approximation, we solve the dynamics and show that there is a regime where, despite the noise, the observed field carries away almost perfect and hugely redundant information about the charge momentum. We analyze a partial charge-field state and show that it approaches a so-called spectrum broadcast structure.

  14. Non-standard quantum groups and superization

    Energy Technology Data Exchange (ETDEWEB)

    Majid, S. [Cambridge Univ. (United Kingdom). Dept. of Applied Mathematics and Theoretical Physics (DAMTP); Rodriguez-Plaza, M.J. [Nationaal Inst. voor Kernfysica en Hoge-Energiefysica (NIKHEF), Amsterdam (Netherlands). Sectie H

    1995-12-31

    We obtain the universal R-matrix of the non-standard quantum group associated to the Alexander-Conway knot polynomial. We show further that this nonstandard quantum group is related to the super-quantum group U{sub q}gl(1 vertical stroke 1) by a general process of superization, which we describe. We also study a twisted variant of this non-standard quantum group and obtain, as a result, a twisted version uf U{sub q}gl(1 vertical stroke 1) as a q-supersymmetry of the exterior differential calculus of any quantum plane of Hecke type, acting by mixing the bosonic x{sub i} co-ordinates and the forms dx{sub i}. (orig.).

  15. Combating dephasing decoherence by periodically performing tracking control and projective measurement

    International Nuclear Information System (INIS)

    Zhang Ming; Dai Hongyi; Xi Zairong; Xie Hongwei; Hu Dewen

    2007-01-01

    We propose a scheme to overcome phase damping decoherence by periodically performing open loop tracking control and projective measurement. Although it is impossible to stabilize a qubit subject to Markovian dynamics only by open loop coherent control, one can attain a 'softened' control goal with the help of periodical projective measurement. The 'softened' control objective in our scheme is to keep the state of the controlled qubit to stay near a reference pure state with a high probability for a sufficiently long time. Two suboptimal control problems are given in the sense of trace distance and fidelity, respectively, and they are eventually reduced to the design of a period T. In our scheme, one can choose the period T as long as possible if the 'softened' control goal is attained. This is in contrast to the observation that quantum Zeno effect takes place only if measurements are performed in a very frequent manner, i.e., the period T must be extremely small

  16. Observing the Progressive Decoherence of the open-quote open-quote Meter close-quote close-quote in a Quantum Measurement

    International Nuclear Information System (INIS)

    Brune, M.; Hagley, E.; Dreyer, J.; Maitre, X.; Maali, A.; Wunderlich, C.; Raimond, J.M.; Haroche, S.

    1996-01-01

    A mesoscopic superposition of quantum states involving radiation fields with classically distinct phases was created and its progressive decoherence observed. The experiment involved Rydberg atoms interacting one at a time with a few photon coherent fields trapped in a high Q microwave cavity. The mesoscopic superposition was the equivalent of an open-quote open-quote atom+measuringapparatus close-quote close-quote system in which the open-quote open-quote meter close-quote close-quote was pointing simultaneously towards two different directions emdash a open-quote open-quote Schroedinger cat.close-quote close-quote The decoherence phenomenon transforming this superposition into a statistical mixture was observed while it unfolded, providing a direct insight into a process at the heart of quantum measurement. copyright 1996 The American Physical Society

  17. Control system architecture: The standard and non-standard models

    International Nuclear Information System (INIS)

    Thuot, M.E.; Dalesio, L.R.

    1993-01-01

    Control system architecture development has followed the advances in computer technology through mainframes to minicomputers to micros and workstations. This technology advance and increasingly challenging accelerator data acquisition and automation requirements have driven control system architecture development. In summarizing the progress of control system architecture at the last International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS) B. Kuiper asserted that the system architecture issue was resolved and presented a ''standard model''. The ''standard model'' consists of a local area network (Ethernet or FDDI) providing communication between front end microcomputers, connected to the accelerator, and workstations, providing the operator interface and computational support. Although this model represents many present designs, there are exceptions including reflected memory and hierarchical architectures driven by requirements for widely dispersed, large channel count or tightly coupled systems. This paper describes the performance characteristics and features of the ''standard model'' to determine if the requirements of ''non-standard'' architectures can be met. Several possible extensions to the ''standard model'' are suggested including software as well as the hardware architectural feature

  18. DOE technical standards list: Directory of DOE and contractor personnel involved in non-government standards activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The body of this document contains a listing of DOE employees and DOE contractors who have submitted form DOE F 1300.2, Record of Non-Government Standards Activity, which is attached to the end of this document. Additional names were added from rosters supplied by non-Government standards bodies. The committees or governing bodies in which the person participates is listed after each name. An asterisk preceding the committee notation indicates that the person has identified himself or herself as the DOE representative on that committee. Appendices to this document are also provided to sort the information by the parent employment organization, by non-Government standards activity, and by the proper names of the non-Government standards organizations and committees. DOE employees and contractors listed in this technical standards list are those recorded as of May 1, 1999.

  19. The standard model on non-commutative space-time

    International Nuclear Information System (INIS)

    Calmet, X.; Jurco, B.; Schupp, P.; Wohlgenannt, M.; Wess, J.

    2002-01-01

    We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter θ μν . No new particles are introduced; the structure group is SU(3) x SU(2) x U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in θ μν we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered. (orig.)

  20. Quantum dissipation and decoherence of collective excitations in metallic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Weick, G.

    2006-09-22

    The treatment of the surface plasmon as a quantum particle provides a model system for the study of decoherence and quantum dissipation in confined nanoscopic systems, where the role of the electronic correlations is preponderant. Throughout this work we treat the metallic nanoparticle in the jellium approximation where the ionic structure is replaced by a continuous and homogeneous positive charge. The external laser field puts the center of mass into a coherent superposition of its ground and first excited state and thus creates a surface plasmon. The coupling between the center of mass and the relative coordinates causes decoherence and dissipation of this collective excitation. We have developed a theoretical formalism well adapted to the study of this dissipation, which is the reduced-density-matrix formalism. There are mainly two parameters which govern the surface plasmon dynamics: the decay rate of the plasmon, and the resonance frequency. For sizes smaller than 1 nm, presents oscillations as a function of the size. By means of a semiclassical formalism using Gutzwiller's trace formula for the density of states, we have shown that those oscillations are due to the correlations of the density of states of the particles and holes in the nanoparticle. If one considers a noble-metal nanoparticle in an inert matrix, we have shown that a naive application of the Kubo formula for the surface plasmon linewidth fails to reproduce the TDLDA numerical results, which are however consistent with experimental results. We have modified the Kubo theory in order to solve this discrepancy. We have shown, by extending our semiclassical theory to the nonlinear case, that the double plasmon is indeed well defined. We have calculated the lifetime of the double plasmon associated to this second-order effect. In addition to the width, we have also addressed the value of the resonance frequency. The classical electromagnetic Mie theory gives for the resonance frequency of the

  1. Probing non-standard interactions at Daya Bay

    Energy Technology Data Exchange (ETDEWEB)

    Agarwalla, Sanjib Kumar; Bagchi, Partha [Institute of Physics, Sachivalaya Marg,Sainik School Post, Bhubaneswar 751005 (India); Forero, David V. [AHEP Group, Institut de Física Corpuscular - C.S.I.C./Universitat de València,Parc Cientific de Paterna, C/ Catedratico José Beltrán, 2 E-46980 Paterna (València) (Spain); Center for Neutrino Physics, Virginia Tech,Blacksburg, VA 24061 (United States); Tórtola, Mariam [AHEP Group, Institut de Física Corpuscular - C.S.I.C./Universitat de València,Parc Cientific de Paterna, C/ Catedratico José Beltrán, 2 E-46980 Paterna (València) (Spain)

    2015-07-13

    In this article we consider the presence of neutrino non-standard interactions (NSI) in the production and detection processes of reactor antineutrinos at the Daya Bay experiment. We report for the first time, the new constraints on the flavor non-universal and flavor universal charged-current NSI parameters, estimated using the currently released 621 days of Daya Bay data. New limits are placed assuming that the new physics effects are just inverse of each other in the production and detection processes. With this special choice of the NSI parameters, we observe a shift in the oscillation amplitude without distorting the L/E pattern of the oscillation probability. This shift in the depth of the oscillation dip can be caused by the NSI parameters as well as by θ{sub 13}, making it quite difficult to disentangle the NSI effects from the standard oscillations. We explore the correlations between the NSI parameters and θ{sub 13} that may lead to significant deviations in the reported value of the reactor mixing angle with the help of iso-probability surface plots. Finally, we present the limits on electron, muon/tau, and flavor universal (FU) NSI couplings with and without considering the uncertainty in the normalization of the total event rates. Assuming a perfect knowledge of the event rates normalization, we find strong upper bounds ∼ 0.1% for the electron and FU cases improving the present limits by one order of magnitude. However, for a conservative error of 5% in the total normalization, these constraints are relaxed by almost one order of magnitude.

  2. Probing non-standard interactions at Daya Bay

    International Nuclear Information System (INIS)

    Agarwalla, Sanjib Kumar; Bagchi, Partha; Forero, David V.; Tórtola, Mariam

    2015-01-01

    In this article we consider the presence of neutrino non-standard interactions (NSI) in the production and detection processes of reactor antineutrinos at the Daya Bay experiment. We report for the first time, the new constraints on the flavor non-universal and flavor universal charged-current NSI parameters, estimated using the currently released 621 days of Daya Bay data. New limits are placed assuming that the new physics effects are just inverse of each other in the production and detection processes. With this special choice of the NSI parameters, we observe a shift in the oscillation amplitude without distorting the L/E pattern of the oscillation probability. This shift in the depth of the oscillation dip can be caused by the NSI parameters as well as by θ 13 , making it quite difficult to disentangle the NSI effects from the standard oscillations. We explore the correlations between the NSI parameters and θ 13 that may lead to significant deviations in the reported value of the reactor mixing angle with the help of iso-probability surface plots. Finally, we present the limits on electron, muon/tau, and flavor universal (FU) NSI couplings with and without considering the uncertainty in the normalization of the total event rates. Assuming a perfect knowledge of the event rates normalization, we find strong upper bounds ∼ 0.1% for the electron and FU cases improving the present limits by one order of magnitude. However, for a conservative error of 5% in the total normalization, these constraints are relaxed by almost one order of magnitude.

  3. Quantum eraser and the decoherence time of a local measurement process

    International Nuclear Information System (INIS)

    Abranyos, Y.; Jakob, M.; Bergou, J.

    1998-01-01

    We propose an implementation of the quantum eraser, based on a recent experimental scheme by Eichmann et al. involving two four-level atoms. In our version a continuous broad band excitation field drives the two trapped atoms and information about which atom scattered the light is stored in the internal degrees of freedom of the atoms. Entanglement of the two atoms after the detection of the photon is intimately connected to the availability of this 'which path' information. We also show that the quantum eraser can be used to measure the decoherence time of a local measurement process. (author)

  4. The standard model on non-commutative space-time

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, X.; Jurco, B.; Schupp, P.; Wohlgenannt, M. [Sektion Physik, Universitaet Muenchen (Germany); Wess, J. [Sektion Physik, Universitaet Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2002-03-01

    We consider the standard model on a non-commutative space and expand the action in the non-commutativity parameter {theta}{sup {mu}}{sup {nu}}. No new particles are introduced; the structure group is SU(3) x SU(2) x U(1). We derive the leading order action. At zeroth order the action coincides with the ordinary standard model. At leading order in {theta}{sup {mu}}{sup {nu}} we find new vertices which are absent in the standard model on commutative space-time. The most striking features are couplings between quarks, gluons and electroweak bosons and many new vertices in the charged and neutral currents. We find that parity is violated in non-commutative QCD. The Higgs mechanism can be applied. QED is not deformed in the minimal version of the NCSM to the order considered. (orig.)

  5. Decoherence in Sub-Systems of an Isolated System and the Disappearance of Quantum Multiverse

    OpenAIRE

    Ishikawa, Takuji

    2016-01-01

    This study was started to know mysterious classicality of nuclei. Using three particles model without external environments, it is found that decisions of respective state of three particles by decoherence are not simultaneous. Furthermore, in this model, wave function of total three body system collapses spontaneously without any external environments. Therefore we may able to insist that a wavefunction of our universe has already collapsed spontaneously without any external observer, becaus...

  6. Non-additive Effects in Genomic Selection

    Directory of Open Access Journals (Sweden)

    Luis Varona

    2018-03-01

    Full Text Available In the last decade, genomic selection has become a standard in the genetic evaluation of livestock populations. However, most procedures for the implementation of genomic selection only consider the additive effects associated with SNP (Single Nucleotide Polymorphism markers used to calculate the prediction of the breeding values of candidates for selection. Nevertheless, the availability of estimates of non-additive effects is of interest because: (i they contribute to an increase in the accuracy of the prediction of breeding values and the genetic response; (ii they allow the definition of mate allocation procedures between candidates for selection; and (iii they can be used to enhance non-additive genetic variation through the definition of appropriate crossbreeding or purebred breeding schemes. This study presents a review of methods for the incorporation of non-additive genetic effects into genomic selection procedures and their potential applications in the prediction of future performance, mate allocation, crossbreeding, and purebred selection. The work concludes with a brief outline of some ideas for future lines of that may help the standard inclusion of non-additive effects in genomic selection.

  7. Higher Education in Non-Standard Wage Contracts

    Science.gov (United States)

    Rosti, Luisa; Chelli, Francesco

    2012-01-01

    Purpose: The purpose of this paper is to verify whether higher education increases the likelihood of young Italian workers moving from non-standard to standard wage contracts. Design/methodology/approach: The authors exploit a data set on labour market flows, produced by the Italian National Statistical Office, by interviewing about 85,000…

  8. Parametrisation D'effets Non-Standard EN Phenomenologie Electrofaible

    Science.gov (United States)

    Maksymyk, Ivan

    Cette these pat articles porte sur la parametrisation d'effets non standard en physique electrofaible. Dans chaque analyse, nous avons ajoute plusieurs operateurs non standard au lagrangien du modele standard electrofaible. Les operateurs non standard decrivent les nouveaux effets decoulant d'un modele sous-jacent non-specefie. D'emblee, le nombre d'operateurs non standard que l'on peut inclure dans une telle analyse est illimite. Mais pour une classe specifique de modeles sous-jacents, les effets non standard peuvent etre decrits par un nombre raisonnable d'operateurs. Dans chaque analyse nous avons developpe des expressions pour des observables electrofaibles, en fonction des coefficients des operateurs nouveaux. En effectuant un "fit" statistique sur un ensemble de donnees experimentales precises, nous avons obtenu des contraintes phenomenologiques sur ces coefficients. Dans "Model-Independent Global Constraints on New Physics", nous avons adopte des hypotheses tres peu contraignantes relatives aux modeles sous-jacents. Nous avons tronque le lagrangien effectif a la dimension cinq (inclusivement). Visant la plus grande generalite possible, nous avons admis des interactions qui ne respectent pas les symetries discretes (soit C, P et CP) ainsi que des interactions qui ne conservent pas la saveur. Le lagrangien effectif contient une quarantaine d'operateurs nouveaux. Nous avons determine que, pour la plupart des coefficients des nouveaux operateurs, les contraintes sont assez serrees (2 ou 3%), mais il y a des exceptions interessantes. Dans "Bounding Anomalous Three-Gauge-Boson Couplings", nous avons determine des contraintes phenomenologiques sur les deviations des couplages a trois bosons de jauge par rapport aux interactions prescrites par le modele standard. Pour ce faire, nous avons calcule les contributions indirectes des CTBJ non standard aux observables de basse energie. Puisque le lagrangien effectif est non-renormalisable, certaines difficultes techniques

  9. DOE technical standards list: Directory of DOE and contractor personnel involved in non-government standards activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The body of this document contains a listing of DOE employees and DOE contractors who have submitted form DOE F 1300.2, Record of Non-Government Standards Activity, which is attached to the end of this document and to DOE Order 1300.2A. Additional names were added from rosters supplied by non-Government standards bodies. The committees or governing bodies in which the person participates is listed after each name. An asterisk preceding the committee notation indicates that the person has identified himself or herself as the DOE representative on that committee. Appendices to this document are also provided to sort the information by the parent employment organization, by non-Government standards activity, and by the proper names of the non-Government standards organizations and committees. DOE employees and contractors listed in this TSL are those recorded as of July 1, 1996.

  10. The minimal non-minimal standard model

    International Nuclear Information System (INIS)

    Bij, J.J. van der

    2006-01-01

    In this Letter I discuss a class of extensions of the standard model that have a minimal number of possible parameters, but can in principle explain dark matter and inflation. It is pointed out that the so-called new minimal standard model contains a large number of parameters that can be put to zero, without affecting the renormalizability of the model. With the extra restrictions one might call it the minimal (new) non-minimal standard model (MNMSM). A few hidden discrete variables are present. It is argued that the inflaton should be higher-dimensional. Experimental consequences for the LHC and the ILC are discussed

  11. Quantum decoherence in electronic current flowing through carbon nanotubes induced by thermal atomic vibrations

    Science.gov (United States)

    Ishizeki, Keisuke; Sasaoka, Kenji; Konabe, Satoru; Souma, Satofumi; Yamamoto, Takahiro

    2018-06-01

    We theoretically investigate quantum decoherence in electronic currents flowing through metallic carbon nanotubes caused by thermal atomic vibrations using the time-dependent Schrödinger equation for an open system. We reveal that the quantum coherence of conduction electrons decays exponentially with tube length at a fixed temperature, and that the decay rate increases with temperature. We also find that the phase relaxation length due to the thermal atomic vibrations is inversely proportional to temperature.

  12. Digital economy and non-standard work

    Directory of Open Access Journals (Sweden)

    Patrizia Tullini

    2016-12-01

    Full Text Available Public and scientific debate on the digital economy is now widespread in many european countries. Also labour law scholars started to pay more attention to the new economical models and to the impact of digital technologies on productive processes. Economics and labour sciences should now move from a descriptive analysis to a deeper theoretical elaboration.The directions of the theoretical analysis are essentially two: the first one deals with the overbearing diffusion of non-standard forms of work on the web, especially on the digital platforms. This trend undermines the traditional foundation of subordination and affects the dynamics of global labour law market. The second directions deals with the increasing use of artificial intelligence in the industrial environment that presents new legal and social issues, concerning both the replacement of standard work with robotics and the complementarity between human work and «non-human agents» work.

  13. Control system architecture: The standard and non-standard models

    International Nuclear Information System (INIS)

    Thuot, M.E.; Dalesio, L.R.

    1993-01-01

    Control system architecture development has followed the advances in computer technology through mainframes to minicomputers to micros and workstations. This technology advance and increasingly challenging accelerator data acquisition and automation requirements have driven control system architecture development. In summarizing the progress of control system architecture at the last International Conference on Accelerator and Large Experimental Physics Control Systems (ICALEPCS) B. Kuiper asserted that the system architecture issue was resolved and presented a open-quotes standard modelclose quotes. The open-quotes standard modelclose quotes consists of a local area network (Ethernet or FDDI) providing communication between front end microcomputers, connected to the accelerator, and workstations, providing the operator interface and computational support. Although this model represents many present designs, there are exceptions including reflected memory and hierarchical architectures driven by requirements for widely dispersed, large channel count or tightly coupled systems. This paper describes the performance characteristics and features of the open-quotes standard modelclose quotes to determine if the requirements of open-quotes non-standardclose quotes architectures can be met. Several possible extensions to the open-quotes standard modelclose quotes are suggested including software as well as the hardware architectural features

  14. Classical molecular dynamics simulation of electronically non-adiabatic processes.

    Science.gov (United States)

    Miller, William H; Cotton, Stephen J

    2016-12-22

    Both classical and quantum mechanics (as well as hybrids thereof, i.e., semiclassical approaches) find widespread use in simulating dynamical processes in molecular systems. For large chemical systems, however, which involve potential energy surfaces (PES) of general/arbitrary form, it is usually the case that only classical molecular dynamics (MD) approaches are feasible, and their use is thus ubiquitous nowadays, at least for chemical processes involving dynamics on a single PES (i.e., within a single Born-Oppenheimer electronic state). This paper reviews recent developments in an approach which extends standard classical MD methods to the treatment of electronically non-adiabatic processes, i.e., those that involve transitions between different electronic states. The approach treats nuclear and electronic degrees of freedom (DOF) equivalently (i.e., by classical mechanics, thereby retaining the simplicity of standard MD), and provides "quantization" of the electronic states through a symmetrical quasi-classical (SQC) windowing model. The approach is seen to be capable of treating extreme regimes of strong and weak coupling between the electronic states, as well as accurately describing coherence effects in the electronic DOF (including the de-coherence of such effects caused by coupling to the nuclear DOF). A survey of recent applications is presented to illustrate the performance of the approach. Also described is a newly developed variation on the original SQC model (found universally superior to the original) and a general extension of the SQC model to obtain the full electronic density matrix (at no additional cost/complexity).

  15. Non-standard employment relations and wages among school-leavers in the Netherlands

    NARCIS (Netherlands)

    de Vries, M.R.; Wolbers, M.H.J.

    2005-01-01

    Non-standard (alternatively, flexible) employment has become common in the Netherlands, and viewed as an important weapon for combating youth unemployment. However, if such jobs are 'bad', non-standard employment becomes a matter of concern. In addition, non-standard employment may hit the least

  16. Decoherence, entanglement, and chaos in the Dicke model

    International Nuclear Information System (INIS)

    Hou Xiwen; Hu Bambi

    2004-01-01

    The dynamical properties of quantum entanglement in the Dicke model without rotating-wave approximation are investigated in terms of the reduced-density linear entropy. The characteristic time of decoherence process in the early-time evolution is numerically obtained and it is shown that the characteristic time decreases as the coupling parameter increases. The mean entanglement, which is defined to be averaged over time, is employed to describe the influences of both quantum phase transition and corresponding classical chaos on the behavior of entanglement. For a given energy, initial conditions are taken to be minimum uncertainty wave packets centered at regular and chaotic regions of the classical phase space. It is shown that the entanglement has a distinct change at the quantum phase transition, and that the entanglement for regular initial conditions is smaller than that for chaotic ones in the case of weak coupling, while it fluctuates with small amplitude in strong coupling and for chaotic initial conditions

  17. Noise effects in a three-player prisoner's dilemma quantum game

    International Nuclear Information System (INIS)

    Ramzan, M; Khan, M K

    2008-01-01

    We study the three-player prisoner's dilemma game under the effect of decoherence and correlated noise. It is seen that the quantum player is always better off than the classical players. It is also seen that the game's Nash equilibrium does not change in the presence of correlated noise in contradiction to the effect of decoherence in the multiplayer case. Furthermore, it is shown that for maximum correlation the game does not behave as a noiseless game and the quantum player is still better off for all values of the decoherence parameter p which is not possible in the two-player case. In addition, the payoffs reduction due to decoherence is controlled by the correlated noise throughout the course of the game

  18. Generalized shortcuts to adiabaticity and enhanced robustness against decoherence

    Science.gov (United States)

    Santos, Alan C.; Sarandy, Marcelo S.

    2018-01-01

    Shortcuts to adiabaticity provide a general approach to mimic adiabatic quantum processes via arbitrarily fast evolutions in Hilbert space. For these counter-diabatic evolutions, higher speed comes at higher energy cost. Here, the counter-diabatic theory is employed as a minimal energy demanding scheme for speeding up adiabatic tasks. As a by-product, we show that this approach can be used to obtain infinite classes of transitionless models, including time-independent Hamiltonians under certain conditions over the eigenstates of the original Hamiltonian. We apply these results to investigate shortcuts to adiabaticity in decohering environments by introducing the requirement of a fixed energy resource. In this scenario, we show that generalized transitionless evolutions can be more robust against decoherence than their adiabatic counterparts. We illustrate this enhanced robustness both for the Landau-Zener model and for quantum gate Hamiltonians.

  19. Quantum Fisher information of the Greenberg-Horne-Zeilinger state in decoherence channels

    International Nuclear Information System (INIS)

    Ma Jian; Huang Yixiao; Wang Xiaoguang; Sun, C. P.

    2011-01-01

    Quantum Fisher information of a parameter characterizes the sensitivity of the state with respect to changes of the parameter. In this article, we study the quantum Fisher information of a state with respect to SU(2) rotations under three decoherence channels: the amplitude-damping, phase-damping, and depolarizing channels. The initial state is chosen to be a Greenberg-Horne-Zeilinger state of which the phase sensitivity can achieve the Heisenberg limit. By using the Kraus operator representation, the quantum Fisher information is obtained analytically. We observe the decay and sudden change of the quantum Fisher information in all three channels.

  20. Quantum Fisher information of the Greenberg-Horne-Zeilinger state in decoherence channels

    Energy Technology Data Exchange (ETDEWEB)

    Ma Jian; Huang Yixiao; Wang Xiaoguang [Zhejiang Institute of Modern Physics, Department of Physics, Zhejiang University, Hangzhou 310027 (China); Sun, C. P. [Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2011-08-15

    Quantum Fisher information of a parameter characterizes the sensitivity of the state with respect to changes of the parameter. In this article, we study the quantum Fisher information of a state with respect to SU(2) rotations under three decoherence channels: the amplitude-damping, phase-damping, and depolarizing channels. The initial state is chosen to be a Greenberg-Horne-Zeilinger state of which the phase sensitivity can achieve the Heisenberg limit. By using the Kraus operator representation, the quantum Fisher information is obtained analytically. We observe the decay and sudden change of the quantum Fisher information in all three channels.

  1. Non-Standard Monetary Policies Implemented By The European Central Bank After The Financial Crisis

    Directory of Open Access Journals (Sweden)

    Meryem Filiz Baştürk

    2017-07-01

    Full Text Available The financial crisis which began in the U.S. in 2007 influenced all economies on a global scale followingthe collapse of Lehman Brothers in September 2008. As a response to the crisis, central banksstarted to implement non-standard monetary policy tools as well as short-term interest rates alsoknown as standard policy tools in order to help monetary policy transmission channels work effectively.The European Central Bank (ECB implemented non-standard monetary policies as in additionto the standard policy tools during this period. The non-standard monetary policies introducedby the ECB were different from those implemented by other central banks (Fed, Bank of England interms of implementation and results. Firstly, the policies of the ECB were not specific to one singlecountry. Secondly, the banking system was the major source of finance in Europe, which had an impacton the policies. In this regard, the ECB introduced a policy of enhanced credit support consistingof five main elements in order to maintain price stability over the medium term following the crisis.By 2010, public debt in some member countries of the European Union reached high levels, requiringthem to take additional measures. The Securities Markets Programme was introduced to that end.Initially focusing on the debt securities of Greece, Ireland, and Portugal, the Securities Markets Programmewas expanded in August 2011 to cover the debt securities of Italy and Spain. In addition, twoLong-term Refinancing Operations (LTROs were introduced. This article presents a descriptive analysisof the non-standard monetary policy tools introduced by the ECB following the financial crisis.However, the monetary policy implemented in the Euro zone is not specific to one single country, andevery country has a different financial structure, both of which limit the effectiveness of the policiesimplemented. The changing structure of the monetary policy implemented in the aftermath of the crisisaims to

  2. Decoherence induced by a chaotic enviroment: A quantum walker with a complex coin

    International Nuclear Information System (INIS)

    Ermann, Leonardo; Paz, Juan Pablo; Saraceno, Marcos

    2006-01-01

    We study the differences between the processes of decoherence induced by chaotic and regular environments. For this we analyze a family of simple models that contain both regular and chaotic environments. In all cases the system of interest is a ''quantum walker,'' i.e., a quantum particle that can move on a lattice with a finite number of sites. The walker interacts with an environment which has a D-dimensional Hilbert space. The results we obtain suggest that regular and chaotic environments are not distinguishable from each other in a (short) time scale t*, which scales with the dimensionality of the environment as t*∝log 2 (D). However, chaotic environments continue to be effective over exponentially longer time scales while regular environments tend to reach saturation much sooner. We present both numerical and analytical results supporting this conclusion. The family of chaotic evolutions we consider includes the so-called quantum multibaker map as a particular case

  3. NATO Advanced Research Workshop on Decoherence, Entanglement and Information Protection in Complex Quantum Systems

    CERN Document Server

    Akulin, V.M; Kurizki, G; Pellegrin, S

    2005-01-01

    This book is a collection of articles on the contemporary status of quantum mechanics, dedicated to the fundamental issues of entanglement, decoherence, irreversibility, information processing, and control of quantum evolution, with a view of possible applications. It has multidisciplinary character and is addressed at a broad readership in physics, computer science, chemistry, and electrical engineering. It is written by the world-leading experts in pertinent fields such as quantum computing, atomic, molecular and optical physics, condensed matter physics, and statistical physics.

  4. Non-Markovian entanglement dynamics of noisy continuous-variable quantum channels

    International Nuclear Information System (INIS)

    An, J.-H.; Zhang, W.-M.

    2007-01-01

    We investigate the entanglement dynamics of continuous-variable quantum channels in terms of an entangled squeezed state of two cavity fields in a general non-Markovian environment. Using the Feynman-Vernon influence functional theory in the coherent-state representation, we derive an exact master equation with time-dependent coefficients reflecting the non-Markovian influence of the environment. The influence of environments with different spectral densities, e.g., Ohmic, sub-Ohmic, and super-Ohmic, is numerically studied. The non-Markovian process shows its remarkable influence on the entanglement dynamics due to the sensitive time dependence of the dissipation and noise functions within the typical time scale of the environment. The Ohmic environment shows a weak dissipation-noise effect on the entanglement dynamics, while the sub-Ohmic and super-Ohmic environments induce much more severe noise. In particular, the memory of the system interacting with the environment contributes a strong decoherence effect to the entanglement dynamics in the super-Ohmic case

  5. Methods of approaching decoherence in the flavor sector due to space-time foam

    Science.gov (United States)

    Mavromatos, N. E.; Sarkar, Sarben

    2006-08-01

    In the first part of this work we discuss possible effects of stochastic space-time foam configurations of quantum gravity on the propagation of “flavored” (Klein-Gordon and Dirac) neutral particles, such as neutral mesons and neutrinos. The formalism is not the usually assumed Lindblad one, but it is based on random averages of quantum fluctuations of space-time metrics over which the propagation of the matter particles is considered. We arrive at expressions for the respective oscillation probabilities between flavors which are quite distinct from the ones pertaining to Lindblad-type decoherence, including in addition to the (expected) Gaussian decay with time, a modification to oscillation behavior, as well as a power-law cutoff of the time-profile of the respective probability. In the second part we consider space-time foam configurations of quantum-fluctuating charged-black holes as a way of generating (parts of) neutrino mass differences, mimicking appropriately the celebrated Mikheyev-Smirnov-Wolfenstein (MSW) effects of neutrinos in stochastically fluctuating random media. We pay particular attention to disentangling genuine quantum-gravity effects from ordinary effects due to the propagation of a neutrino through ordinary matter. Our results are of interest to precision tests of quantum-gravity models using neutrinos as probes.

  6. Triviality-quantum decoherence of quantum chromodynamics SU(∞) in the presence of an external strong white-noise electromagnetic field

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.

    2004-01-01

    We analyze the triviality-quantum decoherence of Euclidean quantum chromodynamics in the gauge invariant quark current sector in the presence of a very strong external white-noise electromagnetic (strength) field within the context of QCD in the 't Hooft limit of a large number of colors

  7. Triviality - quantum decoherence of Fermionic quantum chromodynamics SU (Nc) in the presence of an external strong U (∞) flavored constant noise field

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.

    2008-01-01

    We analyze the triviality-quantum decoherence of Euclidean quantum chromodynamics in the gauge invariant quark current sector in the presence of an external U (∞) flavor constant charged white noise reservoir. (author)

  8. Decoherence and Determinism in a One-Dimensional Cloud-Chamber Model

    Science.gov (United States)

    Sparenberg, Jean-Marc; Gaspard, David

    2018-03-01

    The hypothesis (Sparenberg et al. in EPJ Web Conf 58:01016, [1]. https://doi.org/10.1051/epjconf/20135801016) that the particular linear tracks appearing in the measurement of a spherically-emitting radioactive source in a cloud chamber are determined by the (random) positions of atoms or molecules inside the chamber is further explored in the framework of a recently established one-dimensional model (Carlone et al. Comm Comput Phys 18:247, [2]. https://doi.org/10.4208/cicp.270814.311214a). In this model, meshes of localized spins 1/2 play the role of the cloud-chamber atoms and the spherical wave is replaced by a linear superposition of two wave packets moving from the origin to the left and to the right, evolving deterministically according to the Schrödinger equation. We first revisit these results using a time-dependent approach, where the wave packets impinge on a symmetric two-sided detector. We discuss the evolution of the wave function in the configuration space and stress the interest of a non-symmetric detector in a quantum-measurement perspective. Next we use a time-independent approach to study the scattering of a plane wave on a single-sided detector. Preliminary results are obtained, analytically for the single-spin case and numerically for up to 8 spins. They show that the spin-excitation probabilities are sometimes very sensitive to the parameters of the model, which corroborates the idea that the measurement result could be determined by the atom positions. The possible origin of decoherence and entropy increase in future models is finally discussed.

  9. Local and non-local Schroedinger cat states in cavity QED

    International Nuclear Information System (INIS)

    Haroche, S.

    2005-01-01

    Full text: I will review recent experiments performed on mesoscopic state superpositions of field states in cavity QED. Proposals to extend these studies to Schroedinger cat states delocalized in two cavities will be discussed. New versions of Bell's inequality tests will probe the non-local behavior of these cats and study their sensitivity to decoherence. (author)

  10. Random unitary evolution model of quantum Darwinism with pure decoherence

    Science.gov (United States)

    Balanesković, Nenad

    2015-10-01

    We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S-E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.

  11. Analysis of approaches to classification of forms of non-standard employment

    Directory of Open Access Journals (Sweden)

    N. V. Dorokhova

    2017-01-01

    Full Text Available Currently becoming more widespread non-standard forms of employment. If this is not clear approach to the definition and maintenance of non-standard employment. In the article the analysis of diverse interpretations of the concept, on what basis, the author makes a conclusion about the complexity and contradictory nature of precarious employment as an economic category. It examines different approaches to classification of forms of precarious employment. The main forms of precarious employment such as flexible working year, flexible working week, flexible working hours, remote work, employees on call, shift forwarding; Agency employment, self-employment, negotiator, underemployment, over employment, employment on the basis of fixed-term contracts employment based on contract of civil-legal nature, one-time employment, casual employment, temporary employment, secondary employment and part-time. The author’s approach to classification of non-standard forms of employment, based on identifying the impact of atypical employment on the development of human potential. For the purpose of classification of non-standard employment forms from the standpoint of their impact on human development as the criteria of classification proposed in the following: working conditions, wages and social guarantees, possibility of workers ' participation in management, personal development and self-employment stability. Depending on what value each of these criteria, some form of non-standard employment can be attributed to the progressive or regressive. Classification of non-standard forms of employment should be the basis of the state policy of employment management.

  12. Resilience to decoherence of the macroscopic quantum superpositions generated by universally covariant optimal quantum cloning

    International Nuclear Information System (INIS)

    Spagnolo, Nicolo; Sciarrino, Fabio; De Martini, Francesco

    2010-01-01

    We show that the quantum states generated by universal optimal quantum cloning of a single photon represent a universal set of quantum superpositions resilient to decoherence. We adopt the Bures distance as a tool to investigate the persistence of quantum coherence of these quantum states. According to this analysis, the process of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy configuration over the complete set of polarization states in the Bloch sphere.

  13. Decoherence plus spontaneous symmetry breakdown generate the ''ohmic'' view of the state-vector collapse

    International Nuclear Information System (INIS)

    Ne'eman, Y.; Univ. of Texas, Austin, TX

    1993-06-01

    The collapse of the state-vector is described as a phase transition due to three features. First, there is the atrophying of indeterminacy for macroscopic objects -- including the measurement apparatus. Secondly, there is the environment decohering mechanism, as described by Zeh, Joos and others -- dominant in macroscopic objects. As a result, the classical background, an input in the Copenhagen prescriptions, is generated as an ''effective'' picture, similar to the ''effective'' introduction of Ohmic resistance or of thermodynamical variables, when going from the micro to the macroscopic; in this case, the collectivized substrate is provided by the multiplicity of photon scatterings, etc., on top of the effect of the large number of particles in macroscopic objects. Thirdly, there is the Everett ''branching'', i.e. the materialization of one of the now decoherent states, accompanied by the destruction of the other branches. By definition, quantum indeterminancy represents a symmetry; in a measurement, or in a branching, this symmetry is broken ''spontaneously'', involving a Ginzburg-Landau type potential with asymmetric minima, thus concretizing the quantum ''dice'' without the burden of ''many worlds''. The authors review and systematize the various phase transitions relating quantum to classical phenomena

  14. 40 CFR 160.17 - Effects of non-compliance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Effects of non-compliance. 160.17... GOOD LABORATORY PRACTICE STANDARDS General Provisions § 160.17 Effects of non-compliance. (a) EPA may refuse to consider reliable for purposes of supporting an application for a research or marketing permit...

  15. Mechanical characteristics of historic mortars from tests on small-sample non-standard on small-sample non-standard specimens

    Czech Academy of Sciences Publication Activity Database

    Drdácký, Miloš; Slížková, Zuzana

    2008-01-01

    Roč. 17, č. 1 (2008), s. 20-29 ISSN 1407-7353 R&D Projects: GA ČR(CZ) GA103/06/1609 Institutional research plan: CEZ:AV0Z20710524 Keywords : small-sample non-standard testing * lime * historic mortar Subject RIV: AL - Art, Architecture, Cultural Heritage

  16. Study of Atomic Quasi-Stable States, Decoherence And Cooling of Mesoscale Particles

    Science.gov (United States)

    Zhong, Changchun

    Quantum mechanics, since its very beginning, has totally changed the way we understand nature. The past hundred years have seen great successes in the application of quantum physics, including atomic spectra, laser technology, condensed matter physics and the remarkable possibility for quantum computing, etc. This thesis is dedicated to a small regime of quantum physics. In the first part of the thesis, I present the studies of atomic quasi-stable states, which refer to those Rydberg states of an atom that are relatively stable in the presence of strong fields. Through spectrally probing the quasi-stable states, series of survival peaks are found. If the quasi-stable electrons were created by ultraviolet (UV) lasers with two different frequencies, the survival peaks could be modulated by continuously changing the phase difference between the UV and the IR laser. The quantum simulation, through directly solving the Schrodinger equation, matches the experimental results performed with microwave fields, and our studies should provide a guidance for future experiments. Despite the huge achievements in the application of quantum theory, there are still some fundamental problems that remain unresolved. One of them is the so-called quantum-to-classical transition, which refers to the expectation that the system behaves in a more classical manner when the system size increases. This basic question was not well answered until decoherence theory was proposed, which states that the coherence of a quantum system tends to be destroyed by environmental interruptions. Thus, if a system is well isolated from its environment, it is in principle possible to observe macroscopic quantum coherence. Quite recently, testing quantum principles in the macroscale has become a hot topic due to rapic technological developments. A very promising platform for testing macroscale quantum physics is a laser levitated nanoparticle, and cooling its mechanical motion to the ground state is the first

  17. Stability and non-standard finite difference method of the generalized Chua's circuit

    KAUST Repository

    Radwan, Ahmed G.

    2011-08-01

    In this paper, we develop a framework to obtain approximate numerical solutions of the fractional-order Chua\\'s circuit with Memristor using a non-standard finite difference method. Chaotic response is obtained with fractional-order elements as well as integer-order elements. Stability analysis and the condition of oscillation for the integer-order system are discussed. In addition, the stability analyses for different fractional-order cases are investigated showing a great sensitivity to small order changes indicating the poles\\' locations inside the physical s-plane. The GrnwaldLetnikov method is used to approximate the fractional derivatives. Numerical results are presented graphically and reveal that the non-standard finite difference scheme is an effective and convenient method to solve fractional-order chaotic systems, and to validate their stability. © 2011 Elsevier Ltd. All rights reserved.

  18. Baryogenesis and standard model CP violation

    International Nuclear Information System (INIS)

    Huet, P.

    1994-08-01

    The standard model possesses a natural source of CP violation contained in the phase of the CKM matrix. Whether the latter participated to the making of the matter-antimatter asymmetry of the observable universe is a fundamental question which has been addressed only recently. The generation of a CP observable occurs through interference of quantum paths along which a sequence of flavor mixings and chirality flips take place. The coherence of this phenomenon in the primeval plasma is limited by the fast quark-gluon interactions. At the electroweak era, this phenomenon of decoherence forbids a successful baryogenesis based on the sole CP violation of the CKM matrix

  19. Searches for non-Standard Model Higgs bosons

    CERN Document Server

    Dumitriu, Ana Elena; The ATLAS collaboration

    2018-01-01

    This presentation focuses on the Searches for non-Standard Model Higgs bosons using 36.1 fb of data collected by the ATLAS experiment. There are several theoretical models with an extended Higgs sector considered: 2 Higgs Doublet Models (2HDM), Supersymmetry (SUSY), which brings along super-partners of the SM particles (+ The Minimal Supersymmetric Standard Model (MSSM), whose Higgs sector is equivalent to the one of a constrained 2HDM of type II and the next-to MSSM (NMSSM)), General searches and Invisible decaying Higgs boson.

  20. Sufficient conditions for positivity of non-Markovian master equations with Hermitian generators

    International Nuclear Information System (INIS)

    Wilkie, Joshua; Wong Yinmei

    2009-01-01

    We use basic physical motivations to develop sufficient conditions for positive semidefiniteness of the reduced density matrix for generalized non-Markovian integrodifferential Lindblad-Kossakowski master equations with Hermitian generators. We show that it is sufficient for the memory function to be the Fourier transform of a real positive symmetric frequency density function with certain properties. These requirements are physically motivated, and are more general and more easily checked than previously stated sufficient conditions. We also explore the decoherence dynamics numerically for some simple models using the Hadamard representation of the propagator. We show that the sufficient conditions are not necessary conditions. We also show that models exist in which the long time limit is in part determined by non-Markovian effects

  1. A relational solution to the problem of time in quantum mechanics and quantum gravity: a fundamental mechanism for quantum decoherence

    International Nuclear Information System (INIS)

    Gambini, Rodolfo; Porto, Rafael A; Pullin, Jorge

    2004-01-01

    The use of a relational time in quantum mechanics is a framework in which one promotes to quantum operators all variables in a system, and later chooses one of the variables to operate like a 'clock'. Conditional probabilities are computed for variables of the system to take certain values when the 'clock' specifies a certain time. This framework is attractive in contexts where the assumption of usual quantum mechanics of the existence of an external, perfectly classical clock, appears unnatural, as in quantum cosmology. Until recently, there were problems with such constructions in ordinary quantum mechanics with additional difficulties in the context of constrained theories like general relativity. A scheme we recently introduced to consistently discretize general relativity removed such obstacles. Since the clock is now an object subject to quantum fluctuations, the resulting evolution in time is not exactly unitary and pure states decohere into mixed states. Here we work out in detail the type of decoherence generated, and we find it to be of Lindblad type. This is attractive since it implies that one can have loss of coherence without violating the conservation of energy. We apply the framework to a simple cosmological model to illustrate how a quantitative estimate of the effect could be computed. For most quantum systems it appears to be too small to be observed, although certain macroscopic quantum systems could in the future provide a testing ground for experimental observation

  2. Effective field theory and weak non-leptonic interactions

    International Nuclear Information System (INIS)

    Miller, R.D.C.

    1982-06-01

    The techniques of Ovrut and Schnitzer (1981) are used to calculate the finite decoupling renormalisation constants resulting from heavy fermion decoupling in a non-abelian gauge theory exhibiting broken flavour symmetry. The results of this calculation are applied to realistic, massive QCD. The decoupling information may be absorbed into renormalisation group (R.G.) invariants. Working in the Landau gauge R.G. invariants are derived for the running coupling constants and running quark masses of effective QCD in the modified minimal subtraction scheme (for effective QCD with 3 to 8 flavours). This work is then applied to the major part of the thesis; a complete derivation of the effective weak non-leptonic sector of the standard model (SU(3)/sub c/ x SU(2) x U(1)), that is the construction of all effective weak non-leptonic Hamiltonians resulting from the standard model when all quark generations above the third along with the W and Z are explicitily decoupled. The form of decoupling in the work of Gilman and Wise (1979) has been adopted. The weak non-leptonic sector naturally decomposes into flavour changing and flavour conserving sectors relative to anomalous dimension calculations. The flavour changing sector further decomposes into penguin free and penguin generating sectors. Individual analyses of these three sectors are given. All sectors are analysed uniformly, based upon a standard model with n generations

  3. Workshop on CP Studies and Non-Standard Higgs Physics

    CERN Document Server

    Accomando, E.; Akhmetzyanova, E.; Albert, J.; Alves, A.; Amapane, N.; Aoki, M.; Azuelos, G.; Baffioni, S.; Ballestrero, A.; Barger, V.; Bartl, A.; Bechtle, P.; Blanger, G.; Belhouari, A.; Bellan, R.; Belyaev, A.; Benes, Petr; Benslama, K.; Bernreuther, W.; Besanon, M.; Bevilacqua, G.; Beyer, M.; Bluj, M.; Bolognesi, S.; Boonekamp, M.; Borzumati, Francesca; Boudjema, F.; Brandenburg, A.; Brauner, Tomas; Buszello, C.P.; Butterworth, J.M.; Carena, Marcela; Cavalli, D.; Cerminara, G.; Choi, S.Y.; Clerbaux, B.; Collard, C.; Conley, John A.; Deandrea, A.; De Curtis, S.; Dermisek, R.; De Roeck, A.; Dewhirst, G.; Diaz, M.A.; Diaz-Cruz, J.L.; Dietrich, D.D.; Dolgopolov, M.; Dominici, D.; Dubinin, M.; Eboli, O.; Ellis, John R.; Evans, N.; Fano, L.; Ferland, J.; Ferrag, S.; Fitzgerald, S.P.; Fraas, H.; Franke, F.; Gennai, S.; Ginzburg, I.F.; Godbole, R.M.; Gregoire, T.; Grenier, Gerald Jean; Grojean, C.; Gudnason, S.B.; Gunion, J.F.; Haber, H.E.; Hahn, T.; Han, T.; Hankele, V.; Hays, Christopher Paul; Heinemeyer, S.; Hesselbach, S.; Hewett, J.L.; Hidaka, K.; Hirsch, M.; Hollik, W.; Hooper, D.; Hosek, J.; Hubisz, J.; Hugonie, C.; Kalinowski, J.; Kanemura, S.; Kashkan, V.; Kernreiter, T.; Khater, W.; Khoze, V.A.; Kilian, W.; King, S.F.; Kittel, O.; Klamke, G.; Kneur, J.L.; Kouvaris, C.; Kraml, S.; Krawczyk, M.; Krstonoic, P.; Kyriakis, A.; Langacker, P.; Le, M.P.; Lee, H.-S.; Lee, J.S.; Lemaire, M.C.; Liao, Y.; Lillie, B.; Litvine, Vladimir A.; Logan, H.E.; McElrath, Bob; Mahmoud, T.; Maina, E.; Mariotti, C.; Marquard, P.; Martin, A.D.; Mazumdar, K.; Miller, D.J.; Min, P.; Monig, Klaus; Moortgat-Pick, G.; Moretti, S.; Muhlleitner, M.M.; Munir, S.; Nevzorov, R.; Newman, H.; Niezurawski, P.; Nikitenko, A.; Noriega-Papaqui, R.; Okada, Y.; Osland, P.; Pilaftsis, A.; Porod, W.; Przysiezniak, H.; Pukhov, A.; Rainwater, D.; Raspereza, A.; Reuter, J.; Riemann, S.; Rindani, S.; Rizzo, T.G.; Ros, E.; Rosado, A.; Rousseau, D.; Roy, D.P.; Ryskin, M.G.; Rzehak, H.; Sannino, F.; Schmidt, E.; Schrder, H.; Schumacher, M.; Semenov, A.; Senaha, E.; Shaughnessy, G.; Singh, R.K.; Terning, J.; Vacavant, L.; Velasco, M.; Villanova del Moral, Albert; von der Pahlen, F.; Weiglein, G.; Williams, J.; Williams, K.E.; Zarnecki, A.F.; Zeppenfeld, D.; Zerwas, D.; Zerwas, P.M.; Zerwekh, A.R.; Ziethe, J.; 2nd Workshop on CP Studies and Non-standard Higgs Physics; 3rd Workshop on CP Studies and Non-standard Higgs Physics; 4th Workshop on CP Studies and Non-standard Higgs Physics; CPNSH; Workshop on CP Studies and Non-standard Higgs Physics; CP Studies and Non-Standard Higgs Physics

    2006-01-01

    There are many possibilities for new physics beyond the Standard Model that feature non-standard Higgs sectors. These may introduce new sources of CP violation, and there may be mixing between multiple Higgs bosons or other new scalar bosons. Alternatively, the Higgs may be a composite state, or there may even be no Higgs at all. These non-standard Higgs scenarios have important implications for collider physics as well as for cosmology, and understanding their phenomenology is essential for a full comprehension of electroweak symmetry breaking. This report discusses the most relevant theories which go beyond the Standard Model and its minimal, CP-conserving supersymmetric extension: two-Higgs-doublet models and minimal supersymmetric models with CP violation, supersymmetric models with an extra singlet, models with extra gauge groups or Higgs triplets, Little Higgs models, models in extra dimensions, and models with technicolour or other new strong dynamics. For each of these scenarios, this report presents ...

  4. British Thoracic Society Quality Standards for acute non-invasive ventilation in adults

    Science.gov (United States)

    Davies, Michael; Allen, Martin; Bentley, Andrew; Bourke, Stephen C; Creagh-Brown, Ben; D’Oliveiro, Rachel; Glossop, Alastair; Gray, Alasdair; Jacobs, Phillip; Mahadeva, Ravi; Moses, Rachael; Setchfield, Ian

    2018-01-01

    Introduction The purpose of the quality standards document is to provide healthcare professionals, commissioners, service providers and patients with a guide to standards of care that should be met for the provision of acute non-invasive ventilation in adults together with measurable markers of good practice. Methods Development of British Thoracic Society (BTS) Quality Standards follows the BTS process of quality standard production based on the National Institute for Health and Care Excellence process manual for the development of quality standards. Results 6 quality statements have been developed, each describing a standard of care for the provision of acute non-invasive ventilation in the UK, together with measurable markers of good practice. Conclusion BTS Quality Standards for acute non-invasive ventilation in adults form a key part of the range of supporting materials that the Society produces to assist in the dissemination and implementation of guideline’s recommendations. PMID:29636979

  5. Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence

    Science.gov (United States)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2006-03-01

    We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.

  6. Multipartite entanglement in three-mode Gaussian states of continuous-variable systems: Quantification, sharing structure, and decoherence

    International Nuclear Information System (INIS)

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2006-01-01

    We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise

  7. Manipulations of the features of standard video lottery terminal (VLT) games: effects in pathological and non-pathological gamblers.

    Science.gov (United States)

    Loba, P; Stewart, S H; Klein, R M; Blackburn, J R

    2001-01-01

    The present study was conducted to identify game parameters that would reduce the risk of abuse of video lottery terminals (VLTs) by pathological gamblers, while exerting minimal effects on the behavior of non-pathological gamblers. Three manipulations of standard VLT game features were explored. Participants were exposed to: a counter which displayed a running total of money spent; a VLT spinning reels game where participants could no longer "stop" the reels by touching the screen; and sensory feature manipulations. In control conditions, participants were exposed to standard settings for either a spinning reels or a video poker game. Dependent variables were self-ratings of reactions to each set of parameters. A set of 2(3) x 2 x 2 (game manipulation [experimental condition(s) vs. control condition] x game [spinning reels vs. video poker] x gambler status [pathological vs. non-pathological]) repeated measures ANOVAs were conducted on all dependent variables. The findings suggest that the sensory manipulations (i.e., fast speed/sound or slow speed/no sound manipulations) produced the most robust reaction differences. Before advocating harm reduction policies such as lowering sensory features of VLT games to reduce potential harm to pathological gamblers, it is important to replicate findings in a more naturalistic setting, such as a real bar.

  8. Non-Power Reactor Operator Licensing Examiner Standards

    International Nuclear Information System (INIS)

    1994-06-01

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR Part 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, this standard will be revised periodically to accommodate comments and reflect new information or experience

  9. Ultra-fast relaxation, decoherence, and localization of photoexcited states in π-conjugated polymers

    Science.gov (United States)

    Mannouch, Jonathan R.; Barford, William; Al-Assam, Sarah

    2018-01-01

    The exciton relaxation dynamics of photoexcited electronic states in poly(p-phenylenevinylene) are theoretically investigated within a coarse-grained model, in which both the exciton and nuclear degrees of freedom are treated quantum mechanically. The Frenkel-Holstein Hamiltonian is used to describe the strong exciton-phonon coupling present in the system, while external damping of the internal nuclear degrees of freedom is accounted for by a Lindblad master equation. Numerically, the dynamics are computed using the time evolving block decimation and quantum jump trajectory techniques. The values of the model parameters physically relevant to polymer systems naturally lead to a separation of time scales, with the ultra-fast dynamics corresponding to energy transfer from the exciton to the internal phonon modes (i.e., the C-C bond oscillations), while the longer time dynamics correspond to damping of these phonon modes by the external dissipation. Associated with these time scales, we investigate the following processes that are indicative of the system relaxing onto the emissive chromophores of the polymer: (1) Exciton-polaron formation occurs on an ultra-fast time scale, with the associated exciton-phonon correlations present within half a vibrational time period of the C-C bond oscillations. (2) Exciton decoherence is driven by the decay in the vibrational overlaps associated with exciton-polaron formation, occurring on the same time scale. (3) Exciton density localization is driven by the external dissipation, arising from "wavefunction collapse" occurring as a result of the system-environment interactions. Finally, we show how fluorescence anisotropy measurements can be used to investigate the exciton decoherence process during the relaxation dynamics.

  10. Exact non-Markovian master equations for multiple qubit systems: Quantum-trajectory approach

    Science.gov (United States)

    Chen, Yusui; You, J. Q.; Yu, Ting

    2014-11-01

    A wide class of exact master equations for a multiple qubit system can be explicitly constructed by using the corresponding exact non-Markovian quantum-state diffusion equations. These exact master equations arise naturally from the quantum decoherence dynamics of qubit system as a quantum memory coupled to a collective colored noisy source. The exact master equations are also important in optimal quantum control, quantum dissipation, and quantum thermodynamics. In this paper, we show that the exact non-Markovian master equation for a dissipative N -qubit system can be derived explicitly from the statistical average of the corresponding non-Markovian quantum trajectories. We illustrated our general formulation by an explicit construction of a three-qubit system coupled to a non-Markovian bosonic environment. This multiple qubit master equation offers an accurate time evolution of quantum systems in various domains, and paves the way to investigate the memory effect of an open system in a non-Markovian regime without any approximation.

  11. The classical limit of non-integrable quantum systems, a route to quantum chaos

    International Nuclear Information System (INIS)

    Castagnino, Mario; Lombardi, Olimpia

    2006-01-01

    The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state

  12. The classical limit of non-integrable quantum systems, a route to quantum chaos

    Energy Technology Data Exchange (ETDEWEB)

    Castagnino, Mario [CONICET-UNR-UBA, Institutos de Fisica de Rosario y de Astronomia y Fisica del Espacio, Casilla de Correos 67, Sucursal 28, 1428, Buenos Aires (Argentina)]. E-mail: mariocastagnino@citynet.net.ar; Lombardi, Olimpia [CONICET-Universidad de Buenos Aires-Universidad de Quilmes Rivadavia 2358, 6to. Derecha, Buenos Aires (Argentina)

    2006-05-15

    The classical limit of non-integrable quantum systems is studied. We define non-integrable quantum systems as those, which have, as their classical limit, a non-integrable classical system. This quantum systems will be the candidates to be the models of quantum chaos. In order to obtain this limit, the self-induced decoherence approach and the corresponding classical limit are generalized from integrable to non-integrable systems. In this approach, the lost of information, usually conceived as the result of a coarse-graining or the trace of an environment, is produced by a particular choice of the algebra of observables and the systematic use of mean values, that project the unitary evolution onto an effective non-unitary one. By means of our method, we can obtain the classical limit of the quantum state of a non-integrable system, which turns out to be a set of unstable, potentially chaotic classical trajectories contained in the Wigner transformation of the quantum state.

  13. Property of various correlation measures of open Dirac system with Hawking effect in Schwarzschild space–time

    International Nuclear Information System (INIS)

    He, Juan; Xu, Shuai; Yu, Yang; Ye, Liu

    2015-01-01

    We explore the performance of various correlation measures for open Dirac system with Hawking effect in Schwarzschild space–time. Our results indicate that the impact of Hawking effect on physical accessible entanglement is weaker than that of decoherence. For generalized amplitude damping (GAD) channel, the entanglement sudden death (ESD) is analyzed in detail, and the inequivalence of quantization for Dirac particles in the black hole and Kruskal space–time is verified via quantum discord measure. In addition, as an example for interpreting Bell non-locality, we study the GAD channel with Hawking effect. It can be noticed that there is a boundary line of Bell violation for physically accessible states. That is, quantum non-locality would disappear when Hawking temperature exceeds a certain value. This critical temperature increases as a decoherence parameter decreases. In the case of phase damping (PD) channel, the interaction between the particle and noise environment does not produce bipartite system–environment entanglement. Then we discuss entanglement distributions, and find that the reduced physically accessible entanglement can be redistributed to physical inaccessible region. At last, we extend our investigation to an N-qubit system, and obtain a universal expression of the physical accessible entanglement

  14. Directory of DOE and contractor personnel involved in non-government standards activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This document contains a listing of DOE employees and DOE contractors who have submitted form DOE F 1300.2, Record of Non-Government Standards Activity. Additional names were added from rosters supplied by non-Government standards bodies.

  15. The Birth and Death of Redundancy in Decoherence and Quantum Darwinism

    Science.gov (United States)

    Riedel, Charles; Zurek, Wojciech; Zwolak, Michael

    2012-02-01

    Understanding the quantum-classical transition and the identification of a preferred classical domain through quantum Darwinism is based on recognizing high-redundancy states as both ubiquitous and exceptional. They are produced ubiquitously during decoherence, as has been demonstrated by the recent identification of very general conditions under which high-redundancy states develop. They are exceptional in that high-redundancy states occupy a very narrow corner of the global Hilbert space; states selected at random are overwelming likely to exhibit zero redundancy. In this letter, we examine the conditions and time scales for the transition from high-redundancy states to zero-redundancy states in many-body dynamics. We identify sufficient condition for the development of redundancy from product states and show that the destruction of redundancy can be accomplished even with highly constrained interactions.

  16. Surface hopping, transition state theory and decoherence. I. Scattering theory and time-reversibility.

    Science.gov (United States)

    Jain, Amber; Herman, Michael F; Ouyang, Wenjun; Subotnik, Joseph E

    2015-10-07

    We provide an in-depth investigation of transmission coefficients as computed using the augmented-fewest switches surface hopping algorithm in the low energy regime. Empirically, microscopic reversibility is shown to hold approximately. Furthermore, we show that, in some circumstances, including decoherence on top of surface hopping calculations can help recover (as opposed to destroy) oscillations in the transmission coefficient as a function of energy; these oscillations can be studied analytically with semiclassical scattering theory. Finally, in the spirit of transition state theory, we also show that transmission coefficients can be calculated rather accurately starting from the curve crossing point and running trajectories forwards and backwards.

  17. Force coordination in static manipulation tasks performed using standard and non-standard grasping techniques.

    Science.gov (United States)

    de Freitas, Paulo B; Jaric, Slobodan

    2009-04-01

    We evaluated coordination of the hand grip force (GF; normal component of the force acting at the hand-object contact area) and load force (LF; the tangential component) in a variety of grasping techniques and two LF directions. Thirteen participants exerted a continuous sinusoidal LF pattern against externally fixed handles applying both standard (i.e., using either the tips of the digits or the palms; the precision and palm grasps, respectively) and non-standard grasping techniques (using wrists and the dorsal finger areas; the wrist and fist grasp). We hypothesized (1) that the non-standard grasping techniques would provide deteriorated indices of force coordination when compared with the standard ones, and (2) that the nervous system would be able to adjust GF to the differences in friction coefficients of various skin areas used for grasping. However, most of the indices of force coordination remained similar across the tested grasping techniques, while the GF adjustments for the differences in friction coefficients (highest in the palm and the lowest in the fist and wrist grasp) provided inconclusive results. As hypothesized, GF relative to the skin friction was lowest in the precision grasp, but highest in the palm grasp. Therefore, we conclude that (1) the elaborate coordination of GF and LF consistently seen across the standard grasping techniques could be generalized to the non-standard ones, while (2) the ability to adjust GF using the same grasping technique to the differences in friction of various objects cannot be fully generalized to the GF adjustment when different grasps (i.e., hand segments) are used to manipulate the same object. Due to the importance of the studied phenomena for understanding both the functional and neural control aspects of manipulation, future studies should extend the current research to the transient and dynamic tasks, as well as to the general role of friction in our mechanical interactions with the environment.

  18. Non-standard employment relationship and the gender dimension

    OpenAIRE

    Mihaela-Emilia Marica

    2015-01-01

    Besides influences economic, political and social on the standard form of individual employment contract, which led to a more flexible regulatory framework in the field of labor relations, an important factor that marked trend evolving contract atypical employment is the number of women who entered the labor market in recent decades. Because most strongly feminized form of employment non-standard employment relationship part-time, this article captures the issues most important about the r...

  19. Preservation of quantum states via a super-Zeno effect on ensemble quantum computers

    International Nuclear Information System (INIS)

    Ting-Ting, Ren; Jun, Luo; Xian-Ping, Sun; Ming-Sheng, Zhan

    2009-01-01

    Following a recent proposal by Dhar et al (2006 Phys. Rev. Lett. 96 100405), we demonstrate experimentally the preservation of quantum states in a two-qubit system based on a super-Zeno effect using liquid-state nuclear magnetic resonance techniques. Using inverting radiofrequency pulses and delicately selecting time intervals between two pulses, we suppress the effect of decoherence of quantum states. We observe that preservation of the quantum state |11) with the super-Zeno effect is three times more efficient than the ordinary one with the standard Zeno effect. (general)

  20. Non-standard model for electron heat transport for multidimensional hydrodynamic codes

    Energy Technology Data Exchange (ETDEWEB)

    Nicolai, Ph.; Busquet, M.; Schurtz, G. [CEA/DAM-Ile de France, 91 - Bruyeres Le Chatel (France)

    2000-07-01

    In simulations of laser-produced plasma, modeling of heat transport requires an artificial limitation of standard Spitzer-Haerm fluxes. To improve heat conduction processing, we have developed a multidimensional model which accounts for non-local features of heat transport and effects of self-generated magnetic fields. This consistent treatment of both mechanisms has been implemented in a two-dimensional radiation-hydrodynamic code. First results indicate good agreements between simulations and experimental data. (authors)

  1. Non-standard model for electron heat transport for multidimensional hydrodynamic codes

    International Nuclear Information System (INIS)

    Nicolai, Ph.; Busquet, M.; Schurtz, G.

    2000-01-01

    In simulations of laser-produced plasma, modeling of heat transport requires an artificial limitation of standard Spitzer-Haerm fluxes. To improve heat conduction processing, we have developed a multidimensional model which accounts for non-local features of heat transport and effects of self-generated magnetic fields. This consistent treatment of both mechanisms has been implemented in a two-dimensional radiation-hydrodynamic code. First results indicate good agreements between simulations and experimental data. (authors)

  2. Decoherence, environment-induced superselection, and classicality of a macroscopic quantum superposition generated by quantum cloning

    International Nuclear Information System (INIS)

    De Martini, Francesco; Sciarrino, Fabio; Spagnolo, Nicolo

    2009-01-01

    The high resilience to decoherence shown by a recently discovered macroscopic quantum superposition (MQS) generated by a quantum-injected optical parametric amplifier and involving a number of photons in excess of 5x10 4 motivates the present theoretical and numerical investigation. The results are analyzed in comparison with the properties of the MQS based on |α> and N-photon maximally entangled states (NOON), in the perspective of the comprehensive theory of the subject by Zurek. In that perspective the concepts of 'pointer state' and 'environment-induced superselection' are applied to the new scheme.

  3. Non-singular bounce scenarios in loop quantum cosmology and the effective field description

    International Nuclear Information System (INIS)

    Cai, Yi-Fu; Wilson-Ewing, Edward

    2014-01-01

    A non-singular bouncing cosmology is generically obtained in loop quantum cosmology due to non-perturbative quantum gravity effects. A similar picture can be achieved in standard general relativity in the presence of a scalar field with a non-standard kinetic term such that at high energy densities the field evolves into a ghost condensate and causes a non-singular bounce. During the bouncing phase, the perturbations can be stabilized by introducing a Horndeski operator. Taking the matter content to be a dust field and an ekpyrotic scalar field, we compare the dynamics in loop quantum cosmology and in a non-singular bouncing effective field model with a non-standard kinetic term at both the background and perturbative levels. We find that these two settings share many important properties, including the result that they both generate scale-invariant scalar perturbations. This shows that some quantum gravity effects of the very early universe may be mimicked by effective field models

  4. Relic abundance of WIMPs in non-standard cosmological scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Yimingniyazi, W.

    2007-08-06

    In this thesis we study the relic density n{sub {chi}} of non--relativistic long--lived or stable particles {chi} in various non--standard cosmological scenarios. First, we discuss the relic density in the non--standard cosmological scenario in which the temperature is too low for the particles {chi} to achieve full chemical equilibrium. We also investigated the case where {chi} particles are non--thermally produced from the decay of heavier particles in addition to the usual thermal production. In low temperature scenario, we calculate the relic abundance starting from arbitrary initial temperatures T{sub 0} of the radiation--dominated epoch and derive approximate solutions for the temperature dependence of the relic density which can accurately reproduces numerical results when full thermal equilibrium is not achieved. If full equilibrium is reached, our ansatz no longer reproduces the correct temperature dependence of the {chi} number density. However, we can contrive a semi-analytic formula which gives the correct final relic density, to an accuracy of about 3% or better, for all cross sections and initial temperatures. We also derive the lower bound on the initial temperature T{sub 0}, assuming that the relic particle accounts for the dark matter energy density in the universe. The observed cold dark matter abundance constrains the initial temperature T{sub 0} {>=}m{sub {chi}}/23, where m{sub {chi}} is the mass of {chi}. Second, we discuss the {chi} density in the scenario where the the Hubble parameter is modified. Even in this case, an approximate formula similar to the standard one is found to be capable of predicting the final relic abundance correctly. Choosing the {chi} annihilation cross section such that the observed cold dark matter abundance is reproduced in standard cosmology, we constrain possible modifications of the expansion rate at T {proportional_to}m{sub {chi}}/20, well before Big Bang Nucleosynthesis. (orig.)

  5. Relic abundance of WIMPs in non-standard cosmological scenarios

    International Nuclear Information System (INIS)

    Yimingniyazi, W.

    2007-01-01

    In this thesis we study the relic density n χ of non--relativistic long--lived or stable particles χ in various non--standard cosmological scenarios. First, we discuss the relic density in the non--standard cosmological scenario in which the temperature is too low for the particles χ to achieve full chemical equilibrium. We also investigated the case where χ particles are non--thermally produced from the decay of heavier particles in addition to the usual thermal production. In low temperature scenario, we calculate the relic abundance starting from arbitrary initial temperatures T 0 of the radiation--dominated epoch and derive approximate solutions for the temperature dependence of the relic density which can accurately reproduces numerical results when full thermal equilibrium is not achieved. If full equilibrium is reached, our ansatz no longer reproduces the correct temperature dependence of the χ number density. However, we can contrive a semi-analytic formula which gives the correct final relic density, to an accuracy of about 3% or better, for all cross sections and initial temperatures. We also derive the lower bound on the initial temperature T 0 , assuming that the relic particle accounts for the dark matter energy density in the universe. The observed cold dark matter abundance constrains the initial temperature T 0 ≥m χ /23, where m χ is the mass of χ. Second, we discuss the χ density in the scenario where the the Hubble parameter is modified. Even in this case, an approximate formula similar to the standard one is found to be capable of predicting the final relic abundance correctly. Choosing the χ annihilation cross section such that the observed cold dark matter abundance is reproduced in standard cosmology, we constrain possible modifications of the expansion rate at T ∝m χ /20, well before Big Bang Nucleosynthesis. (orig.)

  6. Damped driven coupled oscillators: entanglement, decoherence and the classical limit

    Energy Technology Data Exchange (ETDEWEB)

    Mancilla, R D Guerrero; Rey-Gonzalez, R R; Fonseca-Romero, K M [Grupo de Optica e Informacion Cuantica, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)], E-mail: rdguerrerom@unal.edu.co, E-mail: rrreyg@unal.edu.co, E-mail: kmfonsecar@unal.edu.co

    2009-03-13

    We investigate the quantum-classical border, the entanglement and decoherence of an analytically solvable model, comprising a first subsystem (a harmonic oscillator) coupled to a driven and damped second subsystem (another harmonic oscillator). We choose initial states whose dynamics is confined to a couple of two-level systems, and show that the maximum value of entanglement between the two subsystems, as measured by concurrence, depends on the dissipation rate to the coupling-constant ratio and the initial state. While in a related model the entropy of the first subsystem (a two-level system) never grows appreciably (for large dissipation rates), in our model it reaches a maximum before decreasing. Although both models predict small values of entanglement and dissipation, for fixed times of the order of the inverse of the coupling constant and large dissipation rates, these quantities decrease faster, as a function of the ratio of the dissipation rate to the coupling constant, in our model.

  7. Damped driven coupled oscillators: entanglement, decoherence and the classical limit

    International Nuclear Information System (INIS)

    Mancilla, R D Guerrero; Rey-Gonzalez, R R; Fonseca-Romero, K M

    2009-01-01

    We investigate the quantum-classical border, the entanglement and decoherence of an analytically solvable model, comprising a first subsystem (a harmonic oscillator) coupled to a driven and damped second subsystem (another harmonic oscillator). We choose initial states whose dynamics is confined to a couple of two-level systems, and show that the maximum value of entanglement between the two subsystems, as measured by concurrence, depends on the dissipation rate to the coupling-constant ratio and the initial state. While in a related model the entropy of the first subsystem (a two-level system) never grows appreciably (for large dissipation rates), in our model it reaches a maximum before decreasing. Although both models predict small values of entanglement and dissipation, for fixed times of the order of the inverse of the coupling constant and large dissipation rates, these quantities decrease faster, as a function of the ratio of the dissipation rate to the coupling constant, in our model

  8. Optical decoherence and persistent spectral hole burning in Tm3+:LiNbO3

    International Nuclear Information System (INIS)

    Thiel, C.W.; Sun, Y.; Boettger, T.; Babbitt, W.R.; Cone, R.L.

    2010-01-01

    We report studies of decoherence and spectral hole burning for the 794 nm optical transition of thulium-doped lithium niobate. In addition to transient spectral holes due to the 3 H 4 and 3 F 4 excited states of Tm 3+ , persistent spectral holes with lifetimes of up to minutes were observed when a magnetic field of a few hundred Gauss was applied. The observed anti-hole structure identified the hole burning mechanism as population storage in the 169 Tm nuclear hyperfine levels. In addition, the magnetic field was effective in suppressing spectral diffusion, increasing the phase memory lifetime from 11 μs at zero field to 23 μs in a field of 320 Gauss applied along the crystal's c-axis. Coupling between Tm 3+ and the 7 Li and 93 Nb spins in the host lattice was also observed and a quadrupole shift of 22 kHz was measured for 7 Li at 1.7 K. A Stark shift of 18 kHz cm/V was measured for the optical transition with the electric field applied parallel to the c-axis.

  9. Standard effective doses for proliferative tumours

    International Nuclear Information System (INIS)

    Jones, L.C.; Hoban, P.

    1999-01-01

    This study was undertaken to investigate the treatment schedules used clinically for highly proliferative tumours, particularly with reference to the effects of fraction size, fraction number and treatment duration. The linear quadratic model (with time component) is used here to compare non-standard treatment regimens (e.g. accelerated and hyperfractionated schedules), currently the focus of randomized trials, with each other and some common 'standard regimens'. To ensure easy interpretation of results, two parameters known as proliferative standard effective dose one (PSED 1 ) and proliferative standard effective dose two (PSED 2 ) have been calculated for each regimen. Graphs of PSED 1 and PSED 2 versus potential doubling time (T p ) have been generated for a range of fractionation regimens which are currently under trial in various randomized studies. From these graphs it can be seen that the highly accelerated schedules (such as CHART) only show advantages for tumours with very short potential doubling times. Calculations for most of the schedules considered showed at least equivalent tumour control expected for the trial schedule compared with the control arm used and these values agree quite well with clinical results. These calculations are in good agreement with clinical results available at present. The greater the PSED 1 or PSED 2 for the schedule considered the greater the tumour control, which can be expected. However, as has been seen with clinical trials, this higher cell kill also results in higher acute effects which have proved too great for some accelerated schedules to continue. (author)

  10. CHANGES AND MODIFICATIONS OF THE TROUSERS PATENS FOR NON-STANDARD FIGURES

    Directory of Open Access Journals (Sweden)

    SUDACEVSCHI SVETLANA

    2015-12-01

    Full Text Available Among the problems faced by the constructors of clothing goods are the non-standard figures of the human body. The present article examines the possibilities of modifying the curve of women’s trousers. The author proposes methods of chang­ing the basic drawing of the women’s trousers for figures with non-standard figures and to use these methods in the process of training in specialized educational institutions.

  11. Dynamics of Quantum Entanglement in Reservoir with Memory Effects

    International Nuclear Information System (INIS)

    Hao Xiang; Sha Jinqiao; Sun Jian; Zhu Shiqun

    2012-01-01

    The non-Markovian dynamics of quantum entanglement is studied by the Shabani-Lidar master equation when one of entangled quantum systems is coupled to a local reservoir with memory effects. The completely positive reduced dynamical map can be constructed in the Kraus representation. Quantum entanglement decays more slowly in the non-Markovian environment. The decoherence time for quantum entanglement can be markedly increased with the change of the memory kernel. It is found out that the entanglement sudden death between quantum systems and entanglement sudden birth between the system and reservoir occur at different instants. (general)

  12. Lepton flavor violating non-standard interactions via light mediators

    Energy Technology Data Exchange (ETDEWEB)

    Farzan, Yasaman [School of physics, Institute for Research in Fundamental Sciences (IPM),P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Shoemaker, Ian M. [Department of Physics, Department of Astronomy & Astrophysics,Center for Particle and Gravitational Astrophysics,The Pennsylvania State University, PA 16802 (United States)

    2016-07-07

    Non-Standard neutral current Interactions (NSIs) of neutrinos with matter can alter the pattern of neutrino oscillation due to the coherent forward scattering of neutrinos on the medium. This effect makes long-baseline neutrino experiments such as NOνA and DUNE a sensitive probe of beyond standard model (BSM) physics. We construct light mediator models that can give rise to both lepton flavor conserving as well as Lepton Flavor Violating (LFV) neutral current NSI. We outline the present phenomenological viability of these models and future prospects to test them. We predict a lower bound on Br(H→μτ) in terms of the parameters that can be measured by DUNE and NOνA, and show that the hint for H→μτ in current LHC data can be accommodated in our model. A large part of the parameter space of the model is already constrained by the bound on Br(τ→Z{sup ′}μ) and by the bounds on rare meson decays and can be in principle fully tested by improving these bounds.

  13. Physics beyond the standard model in the non-perturbative unification scheme

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1990-01-01

    The non-perturbative unification scenario predicts reasonably well the low energy gauge couplings of the standard model. Agreement with the measured low energy couplings is obtained by assuming certain kind of physics beyond the standard model. A number of possibilities for physics beyond the standard model is examined. The best candidates so far are the standard model with eight fermionic families and a similar number of Higgs doublets, and the supersymmetric standard model with five families. (author)

  14. Aharonov-Bohm oscillations, quantum decoherence and amplitude modulation in mesoscopic InGaAs/InAlAs rings.

    Science.gov (United States)

    Ren, S L; Heremans, J J; Gaspe, C K; Vijeyaragunathan, S; Mishima, T D; Santos, M B

    2013-10-30

    Low-temperature Aharonov-Bohm oscillations in the magnetoresistance of mesoscopic interferometric rings patterned on an InGaAs/InAlAs heterostructure are investigated for their dependence on excitation current and temperature. The rings have an average radius of 650 nm, and a lithographic arm width of 300 nm, yielding pronounced interference oscillations over a wide range of magnetic fields. Apart from a current and temperature dependence, the oscillation amplitude also shows a quasi-periodic modulation with applied magnetic field. The phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by direct analysis of the amplitude and its dependence on parameters. It is concluded that the Thouless energy forms the measure of excitation energies for quantum decoherence. The amplitude modulation finds an explanation in the effect of the magnetic flux threading the finite width of the interferometer arms.

  15. Non-standard and improperly posed problems

    CERN Document Server

    Straughan, Brian; Ames, William F

    1997-01-01

    Written by two international experts in the field, this book is the first unified survey of the advances made in the last 15 years on key non-standard and improperly posed problems for partial differential equations.This reference for mathematicians, scientists, and engineers provides an overview of the methodology typically used to study improperly posed problems. It focuses on structural stability--the continuous dependence of solutions on the initial conditions and the modeling equations--and on problems for which data are only prescribed on part of the boundary.The book addresses continuou

  16. Decoherence control mechanisms of a charged magneto-oscillator in contact with different environments

    Science.gov (United States)

    Rajesh, Asam; Bandyopadhyay, Malay; Jayannavar, Arun M.

    2017-12-01

    In this work, we consider two different techniques based on reservoir engineering process and quantum Zeno control method to analyze the decoherence control mechanism of a charged magneto-oscillator in contact with different type of environment. Our analysis reveals that both the control mechanisms are very much sensitive on the details of different environmental spectrum (J (ω)), and also on different system and reservoir parameters, e.g., external magnetic field (rc), confinement length (r0), temperature (T), cut-off frequency of reservoir spectrum (ωcut), and measurement interval (τ). We also demonstrate the manipulation scheme of the continuous passage from decay suppression to decay acceleration by tuning the above mentioned system or reservoir parameters, e.g., rc, r0, T and τ.

  17. Can OPERA help in constraining neutrino non-standard interactions?

    Energy Technology Data Exchange (ETDEWEB)

    Esteban-Pretel, A.; Valle, J.W.F. [AHEP Group, Institut de Fisica Corpuscular, C.S.I.C./Universitat de Valencia, Edificio Institutos de Paterna, Apt 22085, E-46071 Valencia (Spain); Huber, P. [Theory Division, Department of Physics, CERN, CH-1211 Geneva 23 (Switzerland); Institute for Particle, Nuclear and Astronomical Sciences, Physics Department, Virgina Tech, Blacksburg, VA 24062 (United States)], E-mail: pahuber@vt.edu

    2008-10-09

    We study how much the unique ability of the OPERA experiment to directly detect {nu}{sub {tau}} can help in probing new, non-standard contact interactions of the third family of neutrinos. We perform a combined analysis of future, high-statistics MINOS and OPERA data. For the case of non-standard interactions in {nu}{sub {mu}} to {nu}{sub e} transitions we also include the impact of possible Double Chooz data. In all cases we find that the {nu}{sub {tau}} sample of OPERA is too small to be statistically significant, even if one doubles the nominal exposure of OPERA to 9x10{sup 19} pot. OPERA's real benefit for this measurement lies in its very high neutrino energy and hence very different L/E compared to MINOS.

  18. Curtailing the dark side in non-standard neutrino interactions

    Energy Technology Data Exchange (ETDEWEB)

    Coloma, Pilar [Theoretical Physics Department, Fermi National Accelerator Laboratory,P.O. Box 500, Batavia, IL 60510 (United States); Denton, Peter B. [Theoretical Physics Department, Fermi National Accelerator Laboratory,P.O. Box 500, Batavia, IL 60510 (United States); Niels Bohr International Academy, University of Copenhagen, The Niels Bohr Institute,Blegdamsvej 17, DK-2100, Copenhagen (Denmark); Gonzalez-Garcia, M.C. [Departament de Fisíca Quàntica i Astrofísica and Institut de Ciencies del Cosmos,Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA),Pg. Lluis Companys 23, 08010 Barcelona (Spain); C.N. Yang Institute for Theoretical Physics, Stony Brook University,Stony Brook, NY 11794-3840 (United States); Maltoni, Michele [Instituto de Física Teórica UAM/CSIC, Universidad Autónoma de Madrid,Calle de Nicolás Cabrera 13-15, Cantoblanco, E-28049 Madrid (Spain); Schwetz, Thomas [Institut für Kernphysik, Karlsruher Institut für Technologie (KIT), D-76021 Karlsruhe (Germany)

    2017-04-20

    In presence of non-standard neutrino interactions the neutrino flavor evolution equation is affected by a degeneracy which leads to the so-called LMA-Dark solution. It requires a solar mixing angle in the second octant and implies an ambiguity in the neutrino mass ordering. Non-oscillation experiments are required to break this degeneracy. We perform a combined analysis of data from oscillation experiments with the neutrino scattering experiments CHARM and NuTeV. We find that the degeneracy can be lifted if the non-standard neutrino interactions take place with down quarks, but it remains for up quarks. However, CHARM and NuTeV constraints apply only if the new interactions take place through mediators not much lighter than the electroweak scale. For light mediators we consider the possibility to resolve the degeneracy by using data from future coherent neutrino-nucleus scattering experiments. We find that, for an experiment using a stopped-pion neutrino source, the LMA-Dark degeneracy will either be resolved, or the presence of new interactions in the neutrino sector will be established with high significance.

  19. Ultra-cold WIMPs relics of non-standard pre-BBN cosmologies

    CERN Document Server

    Gelmini, Graciela B

    2008-01-01

    We point out that in scenarios in which the Universe evolves in a non-standard manner during and after the kinetic decoupling of weakly interacting massive particles (WIMPs), these relics can be much colder than in standard cosmological scenarios (i.e. can be ultra-cold), possibly leading to the formation of smaller first objects in hierarchical structure formation scenarios.

  20. Non-Standard Hierarchies of the Runnings of the Spectral Index in Inflation

    Directory of Open Access Journals (Sweden)

    Chris Longden

    2017-03-01

    Full Text Available Recent analyses of cosmic microwave background surveys have revealed hints that there may be a non-trivial running of the running of the spectral index. If future experiments were to confirm these hints, it would prove a powerful discriminator of inflationary models, ruling out simple single field models. We discuss how isocurvature perturbations in multi-field models can be invoked to generate large runnings in a non-standard hierarchy, and find that a minimal model capable of practically realising this would be a two-field model with a non-canonical kinetic structure. We also consider alternative scenarios such as variable speed-of-light models and canonical quantum gravity effects and their implications for runnings of the spectral index.

  1. Symposium on Decoherence and No-Signalling : Current Interpretational Problems of Quantum Theory

    CERN Document Server

    Wüthrich, Adrian; New vistas on old problems : recent approaches to the foundations of quantum mechanics

    2017-01-01

    Quantum theory has been a subject of interpretational debates ever since its inception. The Einstein-Podolsky-Rosen paradox, the empirical violation of Bell's inequalities, and recent activities to exploit quantum entanglement for technological innovation only exacerbate a long-standing philosophical debate. Despite no-signaling theorems and theories of decoherence, deep- rooted conflicts between special relativistic principles and observed quantum correlations as well as between definite measurement outcomes and quantum theoretical superpositions persist. This collection of papers, first presented at an international symposium at the University of Bern in 2011, highlights some recent approaches to the old problems of a philosophy of quantum mechanics. The authors address the issues from a variety of perspectives, ranging from variations of causal theory and system theoretic interpretations of the observer to an empirical test of whether entanglement itself can be entangled. The essays demonstrate that the di...

  2. Modelling non-linear effects of dark energy

    Science.gov (United States)

    Bose, Benjamin; Baldi, Marco; Pourtsidou, Alkistis

    2018-04-01

    We investigate the capabilities of perturbation theory in capturing non-linear effects of dark energy. We test constant and evolving w models, as well as models involving momentum exchange between dark energy and dark matter. Specifically, we compare perturbative predictions at 1-loop level against N-body results for four non-standard equations of state as well as varying degrees of momentum exchange between dark energy and dark matter. The interaction is modelled phenomenologically using a time dependent drag term in the Euler equation. We make comparisons at the level of the matter power spectrum and the redshift space monopole and quadrupole. The multipoles are modelled using the Taruya, Nishimichi and Saito (TNS) redshift space spectrum. We find perturbation theory does very well in capturing non-linear effects coming from dark sector interaction. We isolate and quantify the 1-loop contribution coming from the interaction and from the non-standard equation of state. We find the interaction parameter ξ amplifies scale dependent signatures in the range of scales considered. Non-standard equations of state also give scale dependent signatures within this same regime. In redshift space the match with N-body is improved at smaller scales by the addition of the TNS free parameter σv. To quantify the importance of modelling the interaction, we create mock data sets for varying values of ξ using perturbation theory. This data is given errors typical of Stage IV surveys. We then perform a likelihood analysis using the first two multipoles on these sets and a ξ=0 modelling, ignoring the interaction. We find the fiducial growth parameter f is generally recovered even for very large values of ξ both at z=0.5 and z=1. The ξ=0 modelling is most biased in its estimation of f for the phantom w=‑1.1 case.

  3. Upgrading of the non-residential building stock towards nZEB standard

    DEFF Research Database (Denmark)

    Haavik, Trond; Helgesen, Paul Jacob; Rose, Jørgen

    the Net Zero Energy Building standards NZEB in a sustainable and cost efficient way; ways to identify important market and policy issues; and effective marketing strategies for such renovations. This report describes the work of Subtask B, which covers market and policy issues and marketing strategies...... aware that such savings are possible, they tend to set less ambitious targets. Buildings that are renovated to mediocre performance can be a lost opportunity for decades. The objectives of IEA SHC Task 47 are to develop a solid knowledge-base including: how to renovate non-residential buildings towards...

  4. Recyclable amplification for single-photon entanglement from photon loss and decoherence

    Science.gov (United States)

    Zhou, Lan; Chen, Ling-Quan; Zhong, Wei; Sheng, Yu-Bo

    2018-01-01

    We put forward a highly efficient recyclable single-photon assisted amplification protocol, which can protect single-photon entanglement (SPE) from photon loss and decoherence. Making use of quantum nondemolition detection gates constructed with the help of cross-Kerr nonlinearity, our protocol has some attractive advantages. First, the parties can recover less-entangled SPE to be maximally entangled SPE, and reduce photon loss simultaneously. Second, if the protocol fails, the parties can repeat the protocol to reuse some discarded items, which can increase the success probability. Third, when the protocol is successful, they can similarly repeat the protocol to further increase the fidelity of the SPE. Thereby, our protocol provides a possible way to obtain high entanglement, high fidelity and high success probability simultaneously. In particular, our protocol shows higher success probability in the practical high photon loss channel. Based on the above features, our amplification protocol has potential for future application in long-distance quantum communication.

  5. Medium-induced gluon radiation and colour decoherence beyond the soft approximation

    CERN Document Server

    Apolinário, Liliana; Milhano, José Guilherme; Salgado, Carlos A

    2015-01-01

    We derive the in-medium gluon radiation spectrum off a quark within the path integral formalism at finite energies, including all next-to-eikonal corrections in the propagators of quarks and gluons. Results are computed for finite formation times, including interference with vacuum amplitudes. Rewriting the medium averages in a convenient manner we present the spectrum in terms of dipole cross sections and a colour decoherence parameter with the same physical origin as that found in previous studies of the antenna radiation. This factorisation allows us to present a simple physical picture of the medium-induced radiation for any value of the formation time, of interest for a probabilistic implementation of the modified parton shower. Interestingly -- and unexpectedly -- we also find a modification of the contribution from the hard vertex which cannot be factorized, at finite formation time, as the vacuum Altarelli-Parisi splitting function. Known results are recovered for the particular cases of soft radiatio...

  6. Collectivism versus individualism: performance-related pay and union coverage for non-standard workers in Britain

    OpenAIRE

    Booth, Alison L.; Francesconi, Marco

    2000-01-01

    This paper documents the extent of union coverage and performance-related pay (PRP) - the latter representing one aspect of pay flexibility - across standard and non-standard workers in Britain, using the first seven waves of the British Household Panel Survey, 1991-1997. We find there is no evidence of expansion of either union coverage or PRP towards any type of non-standard employment in the 1990s. Thus union rhetoric about a 'strategy of enlargement' towards non-standard workers remains j...

  7. Asymmetric dark matter annihilation as a test of non-standard cosmologies

    International Nuclear Information System (INIS)

    Gelmini, Graciela B.; Huh, Ji-Haeng; Rehagen, Thomas

    2013-01-01

    We show that the relic abundance of the minority component of asymmetric dark matter can be very sensitive to the expansion rate of the Universe and the temperature of transition between a non-standard pre-Big Bang Nucleosynthesis cosmological phase and the standard radiation dominated phase, if chemical decoupling happens before this transition. In particular, because the annihilation cross section of asymmetric dark matter is typically larger than that of symmetric dark matter in the standard cosmology, the decrease in relic density of the minority component in non-standard cosmologies with respect to the majority component may be compensated by the increase in annihilation cross section, so that the annihilation rate at present of asymmetric dark matter, contrary to general belief, could be larger than that of symmetric dark matter in the standard cosmology. Thus, if the annihilation cross section of the asymmetric dark matter candidate is known, the annihilation rate at present, if detectable, could be used to test the Universe before Big Bang Nucleosynthesis, an epoch from which we do not yet have any data

  8. Collective neutrino oscillations and neutrino wave packets

    Energy Technology Data Exchange (ETDEWEB)

    Akhmedov, Evgeny; Lindner, Manfred [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany); Kopp, Joachim, E-mail: akhmedov@mpi-hd.mpg.de, E-mail: jkopp@uni-mainz.de, E-mail: lindner@mpi-hd.mpg.de [PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2017-09-01

    Effects of decoherence by wave packet separation on collective neutrino oscillations in dense neutrino gases are considered. We estimate the length of the wave packets of neutrinos produced in core collapse supernovae and the expected neutrino coherence length, and then proceed to consider the decoherence effects within the density matrix formalism of neutrino flavour transitions. First, we demonstrate that for neutrino oscillations in vacuum the decoherence effects are described by a damping term in the equation of motion of the density matrix of a neutrino as a whole (as contrasted to that of the fixed-momentum components of the neutrino density matrix). Next, we consider neutrino oscillations in ordinary matter and dense neutrino backgrounds, both in the adiabatic and non-adiabatic regimes. In the latter case we study two specific models of adiabaticity violation—one with short-term and another with extended non-adiabaticity. It is demonstrated that, while in the adiabatic case a damping term is present in the equation of motion of the neutrino density matrix (just like in the vacuum oscillation case), no such term in general appears in the non-adiabatic regime.

  9. Damping of coherent oscillations in intense ion beams

    International Nuclear Information System (INIS)

    Karpov, Ivan

    2017-01-01

    Transverse decoherence of a displaced ion bunch is an important phenomenon in synchrotrons and storage rings. An offset can be caused by an injection error after the bunch-to-bucket transfer between synchrotrons or by an externally generated kick. Decoherence results in a transverse emittance blowup, which can cause particle losses and a beam quality degradation. To prevent the beam blowup, a transverse feedback system (TFS) can be used. The damping time should be shorter than the characteristic decoherence time, which can be strongly affected by the interplay of different intensity effects (e.g., space charge and impedances). This thesis describes the development of the analytical models that explain decoherence and emittance growth with chromaticity, space charge, and image charges within the first synchrotron period. The pulsed response function including intensity effects was derived from the model for beam transfer functions. For a coasting beam, the two- dimensional model shows that space charge slows down and above intensity threshold suppresses decoherence. These predictions were confirmed by particle tracking simulations with self-consistent space charge fields. Additionally, halo buildup and losses during decoherence were observed in simulations. These effects were successfully interpreted using a non self-consistent particle-core model. The two-dimensional model was extended to the bunched beams. The simulation results reproduce the analytical predictions. The intensity threshold of decoherence suppression is higher in comparison to a coasting beam, image charges can restore decoherence. In the present work dedicated experiments were performed in the SIS18 synchrotron at GSI Darmstadt and the results were compared with simulations and analytical predictions. The contribution of nonlinearities and image charges is negligible while chromaticity and space charge dominate decoherence. To study the damping efficiency of TFS, a comprehensive TFS module was

  10. Damping of coherent oscillations in intense ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Ivan

    2017-02-06

    Transverse decoherence of a displaced ion bunch is an important phenomenon in synchrotrons and storage rings. An offset can be caused by an injection error after the bunch-to-bucket transfer between synchrotrons or by an externally generated kick. Decoherence results in a transverse emittance blowup, which can cause particle losses and a beam quality degradation. To prevent the beam blowup, a transverse feedback system (TFS) can be used. The damping time should be shorter than the characteristic decoherence time, which can be strongly affected by the interplay of different intensity effects (e.g., space charge and impedances). This thesis describes the development of the analytical models that explain decoherence and emittance growth with chromaticity, space charge, and image charges within the first synchrotron period. The pulsed response function including intensity effects was derived from the model for beam transfer functions. For a coasting beam, the two- dimensional model shows that space charge slows down and above intensity threshold suppresses decoherence. These predictions were confirmed by particle tracking simulations with self-consistent space charge fields. Additionally, halo buildup and losses during decoherence were observed in simulations. These effects were successfully interpreted using a non self-consistent particle-core model. The two-dimensional model was extended to the bunched beams. The simulation results reproduce the analytical predictions. The intensity threshold of decoherence suppression is higher in comparison to a coasting beam, image charges can restore decoherence. In the present work dedicated experiments were performed in the SIS18 synchrotron at GSI Darmstadt and the results were compared with simulations and analytical predictions. The contribution of nonlinearities and image charges is negligible while chromaticity and space charge dominate decoherence. To study the damping efficiency of TFS, a comprehensive TFS module was

  11. Non-adherence to standard treatment guidelines in a rural paediatric hospital in Sierra Leone.

    Science.gov (United States)

    De Bruycker, M; Van den Bergh, R; Dahmane, A; Khogali, M; Schiavetti, B; Nzomukunda, Y; Alders, P; Allaouna, M; Cloquet, C; Enarson, D A; Satyarayanan, S; Magbity, E; Zachariah, R

    2013-06-21

    A rural paediatric hospital in Bo, Sierra Leone. To assess the level of adherence to standard treatment guidelines among clinicians prescribing treatment for children admitted with a diagnosis of malaria and/or lower respiratory tract infection (LRTI), and determine the association between (non) adherence and hospital outcomes, given that non-rational use of medicines is a serious global problem. Secondary analysis of routine programme data. Data were collected for 865 children admitted with an entry diagnosis of malaria and 690 children with LRTI during the period January to April 2011; some patients were classified in both categories. Non-adherence to guidelines comprised use of non-standard drug regimens, dosage variations, non-standard frequency of administration and treatment duration. Cumulative non-adherence to guidelines for LRTI cases was 86%. For malaria, this involved 12% of patients. Potentially harmful non-adherence was significantly associated with an unfavourable hospital outcome, both for malaria and for LRTI cases. Overall non-adherence to standard treatment guidelines by clinicians in a routine hospital setting is very high and influences hospital outcomes. This study advocates for the implementation of routine measures to monitor and improve rational drug use and the quality of clinical care in such hospitals.

  12. Non-standard work schedules, gender, and parental stress

    Czech Academy of Sciences Publication Activity Database

    Lozano, M.; Hamplová, Dana; Le Bourdais, C.

    2016-01-01

    Roč. 34, č. 9 (2016), s. 259-284 ISSN 1435-9871 R&D Projects: GA ČR(CZ) GA14-15008S Institutional support: RVO:68378025 Keywords : stress * employment * non-standard work hours Subject RIV: AO - Sociology, Demography Impact factor: 1.320, year: 2016 http://www.demographic-research.org/volumes/vol34/9/ default .htm

  13. Non-standard work schedules, gender, and parental stress

    Czech Academy of Sciences Publication Activity Database

    Lozano, M.; Hamplová, Dana; Le Bourdais, C.

    2016-01-01

    Roč. 34, č. 9 (2016), s. 259-284 ISSN 1435-9871 R&D Projects: GA ČR(CZ) GA14-15008S Institutional support: RVO:68378025 Keywords : stress * employment * non-standard work hours Subject RIV: AO - Sociology, Demography Impact factor: 1.320, year: 2016 http://www.demographic-research.org/volumes/vol34/9/default.htm

  14. Improving LMA predictions with non standard interactions

    CERN Document Server

    Das, C R

    2010-01-01

    It has been known for some time that the well established LMA solution to the observed solar neutrino deficit fails to predict a flat energy spectrum for SuperKamiokande as opposed to what the data indicates. It also leads to a Chlorine rate which appears to be too high as compared to the data. We investigate the possible solution to these inconsistencies with non standard neutrino interactions, assuming that they come as extra contributions to the $\

  15. Index of Non-Government Standards on Human Engineering Design Criteria and Program Requirements/Guidelines. Version 3

    National Research Council Canada - National Science Library

    Poston, Alan

    2002-01-01

    .... Since the designation of documents as standards by non-government standards bodies tends to be somewhat flexible, the scope of non-government standards for the Index was kept quite loose and includes...

  16. Non-Power Reactor Operator Licensing Examiner Standards. Revision 1

    International Nuclear Information System (INIS)

    1995-06-01

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, these standards will be revised periodically to accommodate comments and reflect new information or experience

  17. Non-Power Reactor Operator Licensing Examiner Standards. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Non-Power Reactor Operator Licensing Examiner Standards provide policy and guidance to NRC examiners and establish the procedures and practices for examining and licensing of applicants for NRC operator licenses pursuant to Part 55 of Title 10 of the Code of Federal Regulations (10 CFR 55). They are intended to assist NRC examiners and facility licensees to understand the examination process better and to provide for equitable and consistent administration of examinations to all applicants by NRC examiners. These standards are not a substitute for the operator licensing regulations and are subject to revision or other internal operator examination licensing policy changes. As appropriate, these standards will be revised periodically to accommodate comments and reflect new information or experience.

  18. How Much Can Non-industry Standard Measurement Methodologies Benefit Methane Reduction Programs?

    Science.gov (United States)

    Risk, D. A.; O'Connell, L.; Atherton, E.

    2017-12-01

    In recent years, energy sector methane emissions have been recorded in large part by applying modern non-industry-standard techniques. Industry may lack the regulatory flexibility to use such techniques, or in some cases may not understand the possible associated economic advantage. As progressive jurisdictions move from estimation and towards routine measurement, the research community should provide guidance to help regulators and companies measure more effectively, and economically if possible. In this study, we outline a modelling experiment in which we explore the integration of non-industry-standard measurement techniques as part of a generalized compliance measurement program. The study was not intended to be exhaustive, or to recommend particular combinations, but instead to explore the inter-relationships between methodologies, development type, compliance practice. We first defined the role, applicable scale, detection limits, working distances, and approximate deployment cost of several measurement methodologies. We then considered a variety of development types differing mainly in footprint, density, and emissions "profile". Using a Monte Carlo approach, we evaluated the effect of these various factors on the cost and confidence of the compliance measurement program. We found that when added individually, some of the research techniques were indeed able to deliver an improvement in cost and/or confidence when used alongside industry-standard Optical Gas Imaging. When applied in combination, the ideal fraction of each measurement technique depended on development type, emission profile, and whether confidence or cost was more important. Results suggest that measurement cost and confidence could be improved if energy companies exploited a wider range of measurement techniques, and in a manner tailored to each development. In the short-term, combining clear scientific guidance with economic information could benefit immediate mitigation efforts over

  19. Non-linear mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential equations

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik

    2004-01-01

    The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...

  20. Non-classical nonlinear feature extraction from standard resonance vibration data for damage detection.

    Science.gov (United States)

    Eiras, J N; Monzó, J; Payá, J; Kundu, T; Popovics, J S

    2014-02-01

    Dynamic non-classical nonlinear analyses show promise for improved damage diagnostics in materials that exhibit such structure at the mesoscale, such as concrete. In this study, nonlinear non-classical dynamic material behavior from standard vibration test data, using pristine and frost damaged cement mortar bar samples, is extracted and quantified. The procedure is robust and easy to apply. The results demonstrate that the extracted nonlinear non-classical parameters show expected sensitivity to internal damage and are more sensitive to changes owing to internal damage levels than standard linear vibration parameters.

  1. General conditions for the existence of non-standard Lagrangians for dissipative dynamical systems

    International Nuclear Information System (INIS)

    Musielak, Z.E.

    2009-01-01

    Equations of motion describing dissipative dynamical systems with coefficients varying either in time or in space are considered. To identify the equations that admit a Lagrangian description, two classes of non-standard Lagrangians are introduced and general conditions required for the existence of these Lagrangians are determined. The conditions are used to obtain some non-standard Lagrangians and derive equations of motion resulting from these Lagrangians.

  2. PATELLOFEMORAL MODEL OF THE KNEE JOINT UNDER NON-STANDARD SQUATTING

    OpenAIRE

    FEKETE, GUSZTÁV; CSIZMADIA, BÉLA MÁLNÁSI; WAHAB, MAGD ABDEL; DE BAETS, PATRICK; VANEGAS-USECHE, LIBARDO V.; BÍRÓ, ISTVÁN

    2014-01-01

    The available analytical models for calculating knee patellofemoral forces are limited to the standard squat motion when the center of gravity is fixed horizontally. In this paper, an analytical model is presented to calculate accurately patellofemoral forces by taking into account the change in position of the trunk's center of gravity under deep squat (non-standard squatting). The accuracy of the derived model is validated through comparisons with results of the inverse dynamics technique. ...

  3. Non-extensive statistical effects in nuclear many-body problems

    International Nuclear Information System (INIS)

    Lavagno, A.; Quarati, P.

    2007-01-01

    Density and temperature conditions in many stellar core and in the first stage of relativistic heavy-ion collisions imply the presence of non-ideal plasma effects with memory and long-range interactions between particles. Recent progress in statistical mechanics indicates that Tsallis non-extensive thermostatistics could be the natural generalization of the standard classical and quantum statistics, when memory effects and long range forces are not negligible. In this framework, we show that in weakly non-ideal plasma non-extensive effects should be taken into account to derive the equilibrium distribution functions, the quantum fluctuations and correlations between the particles. The strong influence of these effects is discussed in the context of the solar plasma physics and in the high-energy nuclear-nuclear collision experiments. Although the deviation from Boltzmann-Gibbs statistics, in both cases, is very small, the stellar plasma and the hadronic gas are strongly influenced by the non-extensive feature and the discrepancies between experimental data and theoretical previsions are sensibly reduced. (authors)

  4. Decoherence and disentanglement of qubits detecting scalar fields in an expanded spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yujie; Dai, Yue [Fudan University, Department of Physics and State Key Laboratory of Surface Physics, Shanghai (China); Shi, Yu [Fudan University, Department of Physics and State Key Laboratory of Surface Physics, Shanghai (China); Fudan University, Collaborative Innovation Center of Advanced Microstructures, Shanghai (China)

    2017-09-15

    We consider Unruh-Wald qubit detector model adopted for the far future region of an exactly solvable 1 + 1 dimensional scalar field theory in a toy model of Robertson-Walker expanding spacetime. It is shown that the expansion of the spacetime in its history enhances the decoherence of the qubit coupled with a scalar field. Moreover, we consider two entangled qubits, each locally coupled with a scalar field. The expansion of the spacetime in its history degrades the entanglement between the qubits, and it can lead to entanglement's sudden death if the initial entanglement is small enough. The details depend on the parameters characterizing the expansion of the spacetime. This work, on a toy model, suggests that the history of the spacetime might be probed through the coherent and entanglement behavior of the future detectors of quantum fields. In the present toy model, the two cosmological parameters can be determined from the quantum informational quantities of the detectors. (orig.)

  5. Decoherence and disentanglement of qubits detecting scalar fields in an expanded spacetime

    International Nuclear Information System (INIS)

    Li, Yujie; Dai, Yue; Shi, Yu

    2017-01-01

    We consider Unruh-Wald qubit detector model adopted for the far future region of an exactly solvable 1 + 1 dimensional scalar field theory in a toy model of Robertson-Walker expanding spacetime. It is shown that the expansion of the spacetime in its history enhances the decoherence of the qubit coupled with a scalar field. Moreover, we consider two entangled qubits, each locally coupled with a scalar field. The expansion of the spacetime in its history degrades the entanglement between the qubits, and it can lead to entanglement's sudden death if the initial entanglement is small enough. The details depend on the parameters characterizing the expansion of the spacetime. This work, on a toy model, suggests that the history of the spacetime might be probed through the coherent and entanglement behavior of the future detectors of quantum fields. In the present toy model, the two cosmological parameters can be determined from the quantum informational quantities of the detectors. (orig.)

  6. From Classical to Discrete Gravity through Exponential Non-Standard Lagrangians in General Relativity

    Directory of Open Access Journals (Sweden)

    Rami Ahmad El-Nabulsi

    2015-08-01

    Full Text Available Recently, non-standard Lagrangians have gained a growing importance in theoretical physics and in the theory of non-linear differential equations. However, their formulations and implications in general relativity are still in their infancies despite some advances in contemporary cosmology. The main aim of this paper is to fill the gap. Though non-standard Lagrangians may be defined by a multitude form, in this paper, we considered the exponential type. One basic feature of exponential non-standard Lagrangians concerns the modified Euler-Lagrange equation obtained from the standard variational analysis. Accordingly, when applied to spacetime geometries, one unsurprisingly expects modified geodesic equations. However, when taking into account the time-like paths parameterization constraint, remarkably, it was observed that mutually discrete gravity and discrete spacetime emerge in the theory. Two different independent cases were obtained: A geometrical manifold with new spacetime coordinates augmented by a metric signature change and a geometrical manifold characterized by a discretized spacetime metric. Both cases give raise to Einstein’s field equations yet the gravity is discretized and originated from “spacetime discreteness”. A number of mathematical and physical implications of these results were discussed though this paper and perspectives are given accordingly.

  7. Vocational High School Effectiveness Standard ISO 9001: 2008 for Achievement Content Standards, Standard Process and Competency Standards Graduates

    Directory of Open Access Journals (Sweden)

    Yeni Ratih Pratiwi

    2014-06-01

    Full Text Available Efektivitas Sekolah Menengah Kejuruan Berstandar ISO 9001:2008 terhadap Pencapaian Standar Isi, Standar Proses dan Standar Kompetensi Lulusan Abstract: The purpose of this study was to determine differences in the effectiveness of the achievement of the content standards, process standards, and competency standards in vocational already standard ISO 9001: 2008 with CMS that has not been standardized ISO 9001: 2008 both in public schools and private schools. Data collection using the questionnaire enclosed Likert scale models. Analysis of data using one-way ANOVA using SPSS. The results showed: (1 there is no difference in effectiveness between public SMK ISO standard ISO standards with private SMK (P = 0.001; (2 there are differences in the effectiveness of public SMK SMK ISO standards with ISO standards have not (P = 0.000; (3 there are differences in the effectiveness of public SMK ISO standards with private vocational yet ISO standards (P = 0.000; (4 there are differences in the effectiveness of the private vocational school with vocational standard ISO standard ISO country has not (P = 0.015; (5 there are differences in the effectiveness of the private vocational bertandar ISO with private vocational yet standardized ISO (P = 0.000; (6 there was no difference in the effectiveness of public SMK has not been standardized by the ISO standard ISO private SMK yet. Key Words: vocational high school standards ISO 9001: 2008, the standard content, process standards, competency standards Abstrak: Tujuan penelitian ini untuk mengetahui perbedaan efektivitas pencapaian standar isi, standar proses, dan standar kompetensi lulusan pada SMK yang sudah berstandar ISO 9001:2008 dengan SMK yang belum berstandar ISO 9001:2008 baik pada sekolah negeri maupun sekolah swasta. Pengumpulan data menggunakan kuisioner tertutup model skala likert. Analisis data menggunakan ANOVA one way menggunakan program SPSS. Hasil penelitian menunjukkan: (1 ada perbedaan

  8. Spillover effects of international standards

    DEFF Research Database (Denmark)

    Trifkovic, Neda

    Most studies focus on trade effects and organizational outcomes of international standards, neglecting the effect of standards on employees. Using a two-year matched firm–employee panel dataset, this paper finds that the application of standards improves work conditions in small and medium....... The study reveals unexpected benefits from certification, calling for higher investment in standards....

  9. Population-genetic approach to standardization of radiation and non-radiation factors

    International Nuclear Information System (INIS)

    Telnov, I.

    2006-01-01

    population level. Of 65 analyses of association between diseases and unfavorable effects and various genetic polymorphic systems, 27 had negative results. Other 38 had significant, i.e. positive results. Respective G.S.R.R. varied accordingly in the range from 1.2 to 2.5. Averaged G.S.R.R. for some genetic systems ranged from 1.4 to 1.9. More stable and closer values of averaged G.S.R.R. calculated for various categories of effects: pathologies due to radiation and non-radiation factors - 1.51; non-tumor (1,47) and tumor (1,54) diseases; average life expectancy - 1.34. Population-averaged or integral value of G.S.R.R. was about 1.5. This value can be used as genetic predisposition coefficient (C.G.P.) for correction in averaging of environmental population level factors. Such correction can be done by decreasing of permissible standard value by the value of C.G.P. to calculate population-genetic standard. It should be noted that population-genetic standards decrease risk of development of unfavorable consequences due to effect of environmental factors in individuals with genetic predisposition to the general population level. An important advantage of this approach is that there is no need to account for all existing variations of genetic predisposition to multiform unfavorable environmental factors

  10. Non-dissipative effects in nonequilibrium systems

    CERN Document Server

    Maes, Christian

    2018-01-01

    This book introduces and discusses both the fundamental aspects and the measurability of applications of time-symmetric kinetic quantities, outlining the features that constitute the non-dissipative branch of non-equilibrium physics. These specific features of non-equilibrium dynamics have largely been ignored in standard statistical mechanics texts. This introductory-level book offers novel material that does not take the traditional line of extending standard thermodynamics to the irreversible domain. It shows that although stationary dissipation is essentially equivalent with steady non-equilibrium and ubiquitous in complex phenomena, non-equilibrium is not determined solely by the time-antisymmetric sector of energy-entropy considerations. While this should not be very surprising, this book provides timely, simple reminders of the role of time-symmetric and kinetic aspects in the construction of non-equilibrium statistical mechanics.

  11. The omega effect as a discriminant for spacetime foam

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sarben [Department of Physics, King' s College London, University of London, Strand, London WC2R 2LS (United Kingdom)

    2008-08-01

    If there is CPT violation, the nature of entanglement for neutral meson pairs produced in meson factories may, on general grounds, be affected. The new form of entanglement is the omega effect. Gravitational decoherence, due to spacetime foam, may be one route for deviations from CPT invariance. Two models of spacetime foam are considered. One, based on non-critical string theory, is able to produce the new correlations in a natural way. The other, based on the paradigm of thermal-like baths, is shown to be surprisingly resistant to producing the effect even on exercising a total freedom of choice for the state of the bath.

  12. Non standard analysis, polymer models, quantum fields

    International Nuclear Information System (INIS)

    Albeverio, S.

    1984-01-01

    We give an elementary introduction to non standard analysis and its applications to the theory of stochastic processes. This is based on a joint book with J.E. Fenstad, R. Hoeegh-Krohn and T. Lindstroeem. In particular we give a discussion of an hyperfinite theory of Dirichlet forms with applications to the study of the Hamiltonian for a quantum mechanical particle in the potential created by a polymer. We also discuss new results on the existence of attractive polymer measures in dimension d 1 2 phi 2 2 )sub(d)-model of interacting quantum fields. (orig.)

  13. Comparisons of non-destructive examination standards in the framework of fracture mechanics approach

    International Nuclear Information System (INIS)

    Reale, S.; Corvi, A.

    1993-01-01

    One of the aims of the various Engineering Standards related to Non-destructive Examination (NDE) is to identify and limit some characteristics of defects in a structure, since the degree of damage of a structure can be associated with these defect characteristics. One way that the damage level can be evaluated is by means of Fracture Mechanics. The objective of the present paper is to compare and identify the differences in the flaw acceptance criteria of national NDE Standards so as to suggest some guidelines for a future common European Standard. This paper examines the Standards adopted in France (RCC-MR), Germany (DIN), Italy (ASME) and the UK (BSI). It concentrates on both ultrasonic and radiographic inspection methods. The flaw acceptance criteria in these standards relating to non-destructive tests performed on a component during manufacturing are compared and evaluated by the Fracture Mechanics CEGB R6 procedure. General guidelines and results supporting the significance of the Fracture Mechanics approach are given. (Author)

  14. Basic mechanisms in the laser control of non-Markovian dynamics

    Science.gov (United States)

    Puthumpally-Joseph, R.; Mangaud, E.; Chevet, V.; Desouter-Lecomte, M.; Sugny, D.; Atabek, O.

    2018-03-01

    Referring to a Fano-type model qualitative analogy we develop a comprehensive basic mechanism for the laser control of the non-Markovian bath response and fully implement it in a realistic control scheme, in strongly coupled open quantum systems. Converged hierarchical equations of motion are worked out to numerically solve the master equation of a spin-boson Hamiltonian to reach the reduced electronic density matrix of a heterojunction in the presence of strong terahertz laser pulses. Robust and efficient control is achieved increasing by a factor of 2 the non-Markovianity measured by the time evolution of the volume of accessible states. The consequences of such fields on the central system populations and coherence are examined, putting the emphasis on the relation between the increase of non-Markovianity and the slowing down of decoherence processes.

  15. Determinants of teenage smoking, with special reference to non-standard family background.

    Science.gov (United States)

    Isohanni, M; Moilanen, I; Rantakallio, P

    1991-04-01

    The prevalence of teenage smoking in a cohort of 12,058 subjects born in northern Finland in 1966 is discussed in terms of its social and family determinants, especially in "non-standard" families (with one or more of the parents absent for at least part of the child's upbringing). The prevalence of experimental or daily smoking was 67.4%, the rate being 65.5% in the standard, two-parent families and 75.5% in the non-standard families, the difference being statistically significant (p less than 0.001). The corresponding prevalence of daily smoking was 6.4%, but the rate was 5.1% in standard families and 12.1% in non-standard families (p less than 0.001). An elevated risk of smoking existed among adolescents who had experienced death of their father or divorce of their parents and among girls who had experienced death of their mother. Maternal smoking during pregnancy and maternal age under 20 years at the time of delivery increased the risk, while being the first-born child reduced it. Among family factors existing in 1980, paternal smoking increased the risk for both sexes, while more than three siblings, mother's unemployment or gainful employment (i.e. not a housewife) were associated with smoking by the boys as was urban living, and for the girls migration by the family to a town. The results suggest that juvenile smoking may be a kind of indicator of possible problems experienced by the parents and/or the adolescents themselves with respect to parenthood and family development.

  16. Optical decoherence and persistent spectral hole burning in Tm{sup 3+}:LiNbO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thiel, C.W., E-mail: thiel@physics.montana.ed [Department of Physics, Montana State University, EPS 264, Bozeman, MT 59717 (United States); Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Sun, Y. [Department of Physics, University of South Dakota, Vermillion, SD 57069 (United States); Boettger, T. [Department of Physics, University of San Francisco, San Francisco, CA 94117 (United States); Babbitt, W.R. [Department of Physics, Montana State University, EPS 264, Bozeman, MT 59717 (United States); Spectrum Lab, Montana State University, Bozeman, MT 59717 (United States); Cone, R.L. [Department of Physics, Montana State University, EPS 264, Bozeman, MT 59717 (United States)

    2010-09-15

    We report studies of decoherence and spectral hole burning for the 794 nm optical transition of thulium-doped lithium niobate. In addition to transient spectral holes due to the {sup 3}H{sub 4} and {sup 3}F{sub 4} excited states of Tm{sup 3+}, persistent spectral holes with lifetimes of up to minutes were observed when a magnetic field of a few hundred Gauss was applied. The observed anti-hole structure identified the hole burning mechanism as population storage in the {sup 169}Tm nuclear hyperfine levels. In addition, the magnetic field was effective in suppressing spectral diffusion, increasing the phase memory lifetime from 11 {mu}s at zero field to 23 {mu}s in a field of 320 Gauss applied along the crystal's c-axis. Coupling between Tm{sup 3+} and the {sup 7}Li and {sup 93}Nb spins in the host lattice was also observed and a quadrupole shift of 22 kHz was measured for {sup 7}Li at 1.7 K. A Stark shift of 18 kHz cm/V was measured for the optical transition with the electric field applied parallel to the c-axis.

  17. Solving non-standard packing problems by global optimization and heuristics

    CERN Document Server

    Fasano, Giorgio

    2014-01-01

    This book results from a long-term research effort aimed at tackling complex non-standard packing issues which arise in space engineering. The main research objective is to optimize cargo loading and arrangement, in compliance with a set of stringent rules. Complicated geometrical aspects are also taken into account, in addition to balancing conditions based on attitude control specifications. Chapter 1 introduces the class of non-standard packing problems studied. Chapter 2 gives a detailed explanation of a general model for the orthogonal packing of tetris-like items in a convex domain. A number of additional conditions are looked at in depth, including the prefixed orientation of subsets of items, the presence of unusable holes, separation planes and structural elements, relative distance bounds as well as static and dynamic balancing requirements. The relative feasibility sub-problem which is a special case that does not have an optimization criterion is discussed in Chapter 3. This setting can be exploit...

  18. Colombeau's generalized functions and non-standard analysis

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1987-10-01

    Using some methods of the Non-Standard Analysis we modify one of Colombeau's classes of generalized functions. As a result we define a class ε-circumflex of the so-called meta-functions which possesses all good properties of Colombeau's generalized functions, i.e. (i) ε-circumflex is an associative and commutative algebra over the system of the so-called complex meta-numbers C-circumflex; (ii) Every meta-function has partial derivatives of any order (which are meta-functions again); (iii) Every meta-function is integrable on any compact set of R n and the integral is a number from C-circumflex; (iv) ε-circumflex contains all tempered distributions S', i.e. S' is contained in ε' isomorphically with respect to all linear operations (including the differentiation). Thus, within the class ε-circumflex the problem of multiplication of the tempered distributions is satisfactorily solved (every two distributions in S' have a well-defined product in ε-circumflex). The crucial point is that C-circumflex is a field in contrast to the system of Colombeau's generalized numbers C-bar which is a ring only (C-bar is the counterpart of C-circumflex in Colombeau's theory). In this way we simplify and improve slightly the properties of the integral and notion of ''values of the meta-functions'' as well as the properties of the whole class ε-circumflex itself if compared with the original Colombeau theory. And, what is maybe more important, we clarify the connection between the Non-Standard Analysis and Colombeau's theory of new generalized functions in the framework of which the problem of multiplication of distributions was recently solved. (author). 14 refs

  19. Dynamics and decoherence of two cold bosons in a one-dimensional harmonic trap

    International Nuclear Information System (INIS)

    Sowinski, Tomasz; Brewczyk, Miroslaw; Gajda, Mariusz; RzaPzewski, Kazimierz

    2010-01-01

    We study dynamics of two interacting ultracold Bose atoms in a harmonic oscillator potential in one spatial dimension. Making use of the exact solution of the eigenvalue problem of a particle in the δ-like potential, we study the time evolution of an initially separable state of two particles. The corresponding time-dependent single-particle density matrix is obtained and diagonalized, and single-particle orbitals are found. This allows us to study decoherence as well as creation of entanglement during the dynamics. The evolution of the orbital corresponding to the largest eigenvalue is then compared to the evolution according to the Gross-Pitaevskii equation. We show that if initially the center of mass and relative degrees of freedom are entangled, then the Gross-Pitaevskii equation fails to reproduce the exact dynamics and entanglement is produced dynamically. We stress that predictions of our study can be verified experimentally in an optical lattice in the low-tunneling limit.

  20. Spin decoherence in electron storage rings. More from a simple model

    Energy Technology Data Exchange (ETDEWEB)

    Barber, D.P. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Heinemann, K. [The Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Mathematics and Statistics

    2015-06-15

    This is an addendum to the paper ''Some models of spin coherence and decoherence in storage rings'' by one of the authors (K. Heinemann, DESY Report 97-166 (1997)), in which spin diffusion in simple electron storage rings is studied. In particular, we illustrate in a compact way, namely that the exact formalism of this article delivers a rate of depolarisation which can differ from that obtained by the conventional treatments of spin diffusion which rely on the use of the derivative ∂n/∂η. As a vehicle we consider a ring with a Siberian Snake and electron polarisation in the plane of the ring. For this simple setup with its one-dimensional spin motion, we avoid having to deal directly with the Bloch equation for the polarisation density. Our treatment, which is deliberately pedagogical, shows that the use of ∂n/∂η provides a very good approximation to the rate of spin depolarisation in the model considered. But it then shows that the exact rate of depolarisation can be obtained by replacing ∂n/∂η by another derivative, while giving a heuristic justification for the new derivative.

  1. Non-Standard Assessment Practices in the Evaluation of Communication in Australian Aboriginal Children

    Science.gov (United States)

    Gould, Judith

    2008-01-01

    Australian Aboriginal children typically receive communication assessment services from Standard Australian English (SAE) speaking non-Aboriginal speech-language pathologists (SLPs). Educational assessments, including intelligence testing, are also primarily conducted by non-Aboriginal educational professionals. While the current paper will show…

  2. Antineutrino Oscillations and a Search for Non-standard Interactions with the MINOS

    Energy Technology Data Exchange (ETDEWEB)

    Isvan, Zeynep [Univ. of Pittsburgh, PA (United States)

    2012-01-01

    MINOS searches for neutrino oscillations using the disappearance of muon neutrinos from the NuMI beam at Fermilab between two detectors. The Near Detector, located near the source, measures the beam composition before flavor change occurs. The energy spectrum is measured again at the Far Detector after neutrinos travel a distance. The mixing angle and mass splitting between the second and third mass states are extracted from the energy dependent difference between the spectra at the two detectors. NuMI is able to produce an antineutrino-enhanced beam as well as a neutrino-enhanced beam. Collecting data in antineutrino-mode allows the direct measurement of antineutrino oscillation parameters. From the analysis of the antineutrino mode data we measure $|\\Delta\\bar{m}^{2}_{\\text{atm}}| = 2.62^{+0.31}_{-0.28}\\times10^{-3}\\text{eV}^{2}$ and $\\sin^{2}(2\\bar{\\theta})_{23} = 0.95^{+0.10}_{-0.11}$, which is the most precise measurement of antineutrino oscillation parameters to date. A difference between neutrino and antineutrino oscillation parameters may indicate new physics involving interactions that are not part of the Standard Model, called non-standard interactions, that alter the apparent disappearance probability. Collecting data in neutrino and antineutrino mode independently allows a direct search for non-standard interactions. In this dissertation non-standard interactions are constrained by a combined analysis of neutrino and antineutrino datasets and no evidence of such interactions is found.

  3. Exciton-plasmon quantum metastates: self-induced oscillations of plasmon fields in the absence of decoherence in nanoparticle molecules

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, S. M., E-mail: seyed.sadeghi@uah.edu [University of Alabama in Huntsville, Department of Physics and Nano and Mirco Device Center (United States)

    2016-02-15

    We investigate formation of unique quantum states (metastates) in quantum dot-metallic nanoparticle systems via self-induced coherent dynamics generated by interaction of these systems with a visible and an infrared laser fields. In such metastates, the quantum decoherence rates of the quantum dots can become zero and even negative while they start to rapidly change with time. Under these conditions, the energy dissipation rates and plasmon fields of the nanoparticle systems undergo undamped oscillations with gigahertz frequency, while the amplitudes of both visible and the infrared laser fields are considered to be time-independent. These dynamics also lead to variation of the plasmon absorption of the metallic nanoparticles between high and nearly zero values, forming electromagnetically induced transparency oscillations. We show that under these conditions, the effective transition energies and broadening of the quantum dots undergo oscillatory dynamics, highlighting the unique aspects of the metastates. These results extend the horizon for investigation of light-matter interaction in the presence of zero or negative polarization dephasing rates with strong time dependency.

  4. Constraints on Non-Standard Contributions to the Charged-Current Interactions

    CERN Document Server

    Hagiwara, K; Hagiwara, Kaoru; Matsumoto, Seiji

    1998-01-01

    The success of the quantum level predictions of the Standard Model on the $Z$ boson properties, on $\\mw$ and on $\\mt$, which makes use of the muon lifetime as an input, implies a stringent constraint on new physics contributions to the $V-A$ charged-current interactions among leptons. Observed unitarity of the CKM matrix elements then implies constraints on non-standard contributions to the lepton-quark charged-current interactions. By using the recent electroweak data as inputs, we find the 95% CL limits for the corresponding contact interactions: $\\Lambda_{CC,+}^{\\ell\\ell}>7.5$ TeV and the lepton-quark contact interactions.

  5. Ultrasonic transverse velocity calibration of standard blocks for use in non-destructive testing

    International Nuclear Information System (INIS)

    Silva, C E R; Braz, D S; Maggi, L E; Felix, R P B Costa

    2015-01-01

    Standard blocks are employed in the verification of the equipment used in Ultrasound Non-Destructive Testing. To assure the metrology reliability of all the measurement process, it is necessary to calibrate or certify these Standard blocks. In this work, the transverse wave velocity and main dimensions were assessed according to the specifications ISO Standards. For transverse wave velocity measurement, a 5 MHz transverse wave transducer, a waveform generator, an oscilloscope and a computer with a program developed in LabVIEW TM were used. Concerning the transverse wave velocity calibration, only two Standard blocks of the 4 tested is in accordance with the standard

  6. The role of a German multi-stakeholder standard for livestock products derived from non-GMO feed

    NARCIS (Netherlands)

    Venus, Thomas J.; Drabik, Dusan; Wesseler, Justus

    2018-01-01

    In Germany, products derived from livestock who were fed GMO are not required to be labeled as GMO. However, non-GMO labeling requires compliance with the national public non-GMO production standard, including a confirmation that no GM feed was used. In addition to the national standard, firms can

  7. — study of the use of two standard- and non-standard-measuring devices

    Directory of Open Access Journals (Sweden)

    Paweł Ostapkowicz

    2014-03-01

    Full Text Available This paper deals with leak detection in liquid transmission pipelines. Diagnostic method based on negative pressure wave detection is taken into account here. The paper focuses on variant of this method, related to the use of only two measurement points (devices, placed at the inlet and outlet of the pipeline. Standard transducers for measurement of pressure signals and non-standard elaborated technique for measurement of new diagnostic signals were used. New diagnostic signals, conventionally named the signals of weak interactions, result from the work of special devices (correctors joined to the pipeline. In order to compare both hardware solutions key performance attributes for the analyzed leak detection method were determined. The bases of such assessment were experimental tests. They were conducted with the use of a physical model of a pipeline. The pipeline was 380 meters long, 34 mm in internal diameter and made of polyethylene (PEHD pipes. The medium pumped through the pipeline was water. Carrying out such research, diagnostic procedures elaborated by the author were used and tested.[b]Keywords[/b]: technical diagnostics, pipelines, leak detection

  8. Starting the universe: Stable violation of the null energy condition and non-standard cosmologies

    International Nuclear Information System (INIS)

    Creminelli, P.; Luty, M.A.; Nicolis, A.; Senatore, L.

    2006-06-01

    We present a consistent effective theory that violates the null energy condition (NEC) without developing any instabilities or other pathological features. The model is the ghost condensate with the global shift symmetry softly broken by a potential. We show that this system can drive a cosmological expansion with H-dot > 0. Demanding the absence of instabilities in this model requires H-dot or approx. H 2 . We then construct a general low-energy effective theory that describes scalar fluctuations about an arbitrary FRW background, and argue that the qualitative features found in our model are very general for stable systems that violate the NEC. Violating the NEC allows dramatically non- standard cosmological histories. To illustrate this, we construct an explicit model in which the expansion of our universe originates from an asymptotically flat state in the past, smoothing out the big-bang singularity within control of a low- energy effective theory. This gives an interesting alternative to standard inflation for solving the horizon problem. We also construct models in which the present acceleration has w < -1; a periodic ever-expanding universe; and a model with a smooth 'bounce' connecting a contracting and expanding phase. (author)

  9. Prevalence and determinants of non-standard motorcycle safety helmets amongst food delivery workers in Selangor and Kuala Lumpur.

    Science.gov (United States)

    Kulanthayan, S; See, Lai Git; Kaviyarasu, Y; Nor Afiah, M Z

    2012-05-01

    Almost half of the global traffic crashes involve vulnerable groups such as pedestrian, cyclists and two-wheeler users. The main objective of this study was to determine the factors that influence standard of the safety helmets used amongst food delivery workers by presence of Standard and Industrial Research Institute of Malaysia (SIRIM) certification label. A cross sectional study was conducted amongst 150 food delivery workers from fast food outlets in the vicinity of Selangor and Kuala Lumpur. During observation, safety helmets were classified as standard safety helmet in the presence of SIRIM label and non-standard in the absence of the label. They were approached for questionnaire participation once consent was obtained and were requested to exchange their safety helmet voluntarily with a new one after the interview. Data analysis was carried out using SPSS. Chi square and logistic regression analysis was applied to determine the significance and odds ratio of the variables studied, respectively (penetration test, age, education level, knowledge, crash history, types of safety helmet, marital status and years of riding experience) against the presence of SIRIM label. The response rate for this study was 85.2%. The prevalence of non-standard helmets use amongst fast food delivery workers was 55.3%. Safety helmets that failed the penetration test had higher odds of being non-standard helmets compared with safety helmets passing the test. Types of safety helmet indicated half-shell safety helmets had higher odds to be non-standard safety helmets compared to full-shell safety helmets. Riders with more years of riding experience were in high odds of wearing non-standard safety helmets compared to riders with less riding experience. Non-standard (non-SIRIM approved) helmets were more likely to be half-shell helmets, were more likely to fail the standards penetration test, and were more likely to be worn by older, more experienced riders. The implications of these

  10. Non Standard Finite Difference Scheme for Mutualistic Interaction Description

    OpenAIRE

    Gabbriellini, Gianluca

    2012-01-01

    One of the more interesting themes of the mathematical ecology is the description of the mutualistic interaction between two interacting species. Based on continuous-time model developed by Holland and DeAngelis 2009 for consumer-resource mutualism description, this work deals with the application of the Mickens Non Standard Finite Difference method to transform the continuous-time scheme into a discrete-time one. It has been proved that the Mickens scheme is dynamically consistent with the o...

  11. Local properties of analytic functions and non-standard analysis

    International Nuclear Information System (INIS)

    O'Brian, N.R.

    1976-01-01

    This is an expository account which shows how the methods of non-standard analysis can be applied to prove the Nullstellensatz for germs of analytic functions. This method of proof was discovered originally by Abraham Robinson. The necessary concepts from model theory are described in some detail and the Nullstellensatz is proved by investigating the relation between the set of infinitesimal elements in the complex n-plane and the spectrum of the ring of germs of analytic functions. (author)

  12. Experience with nuclear safety standards development in non-governmental international organizations

    International Nuclear Information System (INIS)

    Becker, K.

    1985-01-01

    Besides the IAEA as a 'governmental' organization dealing with basic safety recommendations addressed primarily to the national regulatory bodies in developing countries, two closely related non-governmental international standards organizations have gained extensive experience in the field of nuclear standardization. Over more than 25 years since their formation, both (a) the International Organization for Standardization's (ISO) Technical Committee 85 'Nuclear Energy', in particular in its Sub-Committee 3 'Reactor Technology and Safety' and (b) the International Electrotechnical Commission's (IEC) Technical Committee 45 'Nuclear Instrumentation' have published numerous standards. A brief review is given of these, draft standards, and other documents planned to become international standards. Many of them deal with rather specialized topics typical for 'industrial' standards such as standardized procedures, instruments, methods, materials, test methods, terminology, and signs and symbols, but others are directly related to more basic safety issues. In some areas such as quality assurance, seismic aspects of siting and terminology, there has been in the past occasional overlap in the activities of the NUSS programme, IEC and ISO. Letters of Understanding have since 1981 contributed to clarifying the borderlines and to avoiding redundant efforts. Also, some experiences and problems are described arising, for example, from the harmonization of different national safety philosophies and traditions into universally accepted international standards, and the transfer of international standards into national standards systems. Finally, based on a recent comprehensive compilation of some 3300 nuclear standards and standards projects, an attempt is made to present a cost/benefit analysis and an outlook on future developments. (author)

  13. Strong Interactions, (De)coherence and Quarkonia

    CERN Document Server

    Bellucci, Stefano; Tiwari, Bhupendra Nath

    2011-01-01

    Quarkonia are the central objects to explore the non-perturbative nature of non-abelian gauge theories. We describe the confinement-deconfinement phases for heavy quarkonia in a hot QCD medium and thereby the statistical nature of the inter-quark forces. In the sense of one-loop quantum effects, we propose that the "quantum" nature of quark matters follows directly from the thermodynamic consideration of Richardson potential. Thereby we gain an understanding of the formation of hot and dense states of quark gluon plasma matter in heavy ion collisions and the early universe. In the case of the non-abelian theory, the consideration of the Sudhakov form factor turns out to be an efficient tool for soft gluons. In the limit of the Block-Nordsieck resummation, the strong coupling obtained from the Sudhakov form factor yields the statistical nature of hadronic bound states, e.g. kaons and Ds particles.

  14. Non-Markovian dynamics of charge carriers in quantum dots

    International Nuclear Information System (INIS)

    Vaz, E; Kyriakidis, J

    2008-01-01

    We have investigated the dynamics of bound particles in multilevel current-carrying quantum dots. We look specifically in the regime of resonant tunnelling transport, where several channels are available for transport. Through a non-Markovian formalism under the Born approximation, we investigate the real-time evolution of the confined particles including transport-induced decoherence and relaxation. In the case of a coherent superposition between states with different particle number, we find that a Fock-space coherence may be preserved even in the presence of tunneling into and out of the dot. Real-time results are presented for various asymmetries of tunneling rates into different orbitals

  15. Decoherence of spin states induced by Rashba coupling for an electron confined to a semiconductor quantum dot in the presence of a magnetic field

    Science.gov (United States)

    Poszwa, A.

    2018-05-01

    We investigate quantum decoherence of spin states caused by Rashba spin-orbit (SO) coupling for an electron confined to a planar quantum dot (QD) in the presence of a magnetic field (B). The Schrödinger equation has been solved in a frame of second-order perturbation theory. The relationship between the von Neumann (vN) entropy and the spin polarization is obtained. The relation is explicitly demonstrated for the InSb semiconductor QD.

  16. Ideal Standards, Acceptance, and Relationship Satisfaction: Latitudes of Differential Effects

    Directory of Open Access Journals (Sweden)

    Asuman Buyukcan-Tetik

    2017-09-01

    Full Text Available We examined whether the relations of consistency between ideal standards and perceptions of a current romantic partner with partner acceptance and relationship satisfaction level off, or decelerate, above a threshold. We tested our hypothesis using a 3-year longitudinal data set collected from heterosexual newlywed couples. We used two indicators of consistency: pattern correspondence (within-person correlation between ideal standards and perceived partner ratings and mean-level match (difference between ideal standards score and perceived partner score. Our results revealed that pattern correspondence had no relation with partner acceptance, but a positive linear/exponential association with relationship satisfaction. Mean-level match had a significant positive association with actor’s acceptance and relationship satisfaction up to the point where perceived partner score equaled ideal standards score. Partner effects did not show a consistent pattern. The results suggest that the consistency between ideal standards and perceived partner attributes has a non-linear association with acceptance and relationship satisfaction, although the results were more conclusive for mean-level match.

  17. On the consistent effect histories approach to quantum mechanics

    International Nuclear Information System (INIS)

    Rudolph, O.

    1996-01-01

    A formulation of the consistent histories approach to quantum mechanics in terms of generalized observables (POV measures) and effect operators is provided. The usual notion of open-quote open-quote history close-quote close-quote is generalized to the notion of open-quote open-quote effect history.close-quote close-quote The space of effect histories carries the structure of a D-poset. Recent results of J. D. Maitland Wright imply that every decoherence functional defined for ordinary histories can be uniquely extended to a bi-additive decoherence functional on the space of effect histories. Omngrave es close-quote logical interpretation is generalized to the present context. The result of this work considerably generalizes and simplifies the earlier formulation of the consistent effect histories approach to quantum mechanics communicated in a previous work of this author. copyright 1996 American Institute of Physics

  18. Non-standard employment relationship and the gender dimension

    Directory of Open Access Journals (Sweden)

    Mihaela-Emilia Marica

    2015-12-01

    Full Text Available Besides influences economic, political and social on the standard form of individual employment contract, which led to a more flexible regulatory framework in the field of labor relations, an important factor that marked trend evolving contract atypical employment is the number of women who entered the labor market in recent decades. Because most strongly feminized form of employment non-standard employment relationship part-time, this article captures the issues most important about the relationship work part-time and the gender factor, the impact of this form of employment on the size women's social and level of protection provided by labor law and social protection rules in light of states that have agreed to support and legitimize this form of employment. Also, the circumstances of the most important, determining the choice of women in terms of hiring part-time, rationales justifying the strong influence of gender in hiring part-time, along with the identification of negative consequences of the feminization of this atypical forms of work are important factors that are discussed in this article.

  19. Non-standard constraints within In-Core Fuel Management

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, G.I. [University of Cincinnati, P.O. Box 210072, Cincinnati, OH 45221-0072 (United States); Torres, C. [Comision Federal de Electricidad, Gestion de Combustible, Mexico, D.F. (Mexico); Marrote, G.N.; Ruiz U, V. [Global Nuclear Fuel, Americas, LLC, PO Box 780, M/C A16, Wilmington, NC28402 (United States)]. e-mail: Ivan.Maldonado@uc.edu

    2004-07-01

    Recent advancements in the area of nuclear fuel management optimization have been considerable and widespread. Therefore, it is not surprising that the design of today's nuclear fuel reloads can be a highly automated process that is often accompanied by sophisticated optimization software and graphical user interfaces to assist core designers. Most typically, among other objectives, optimization software seeks to maximize the energy efficiency of a fuel cycle while satisfying a variety of safety, operational, and regulatory constraints. Concurrently, the general industry trend continues to be one of pursuing higher generating capacity (i.e., power up-rates) alongside cycle length extensions. As these increasingly invaluable software tools and ambitious performance goals are pursued in unison, more aggressive core designs ultimately emerge that effectively minimize the margins to limits and, in some cases, may turn out less forgiving or accommodating to changes in underlying key assumptions. The purpose of this article is to highlight a few 'non-standard', though common constraints that can affect a BWR core design but which are often difficult, if not impossible, to implement into an automated setting. In a way, this article indirectly emphasizes the unique and irreplaceable role of the experienced designer in light of 'real life' situations. (Author)

  20. Non-standard constraints within In-Core Fuel Management

    International Nuclear Information System (INIS)

    Maldonado, G.I.; Torres, C.; Marrote, G.N.; Ruiz U, V.

    2004-01-01

    Recent advancements in the area of nuclear fuel management optimization have been considerable and widespread. Therefore, it is not surprising that the design of today's nuclear fuel reloads can be a highly automated process that is often accompanied by sophisticated optimization software and graphical user interfaces to assist core designers. Most typically, among other objectives, optimization software seeks to maximize the energy efficiency of a fuel cycle while satisfying a variety of safety, operational, and regulatory constraints. Concurrently, the general industry trend continues to be one of pursuing higher generating capacity (i.e., power up-rates) alongside cycle length extensions. As these increasingly invaluable software tools and ambitious performance goals are pursued in unison, more aggressive core designs ultimately emerge that effectively minimize the margins to limits and, in some cases, may turn out less forgiving or accommodating to changes in underlying key assumptions. The purpose of this article is to highlight a few 'non-standard', though common constraints that can affect a BWR core design but which are often difficult, if not impossible, to implement into an automated setting. In a way, this article indirectly emphasizes the unique and irreplaceable role of the experienced designer in light of 'real life' situations. (Author)

  1. Stability and non-standard finite difference method of the generalized Chua's circuit

    KAUST Repository

    Radwan, Ahmed G.; Moaddy, K.; Momani, Shaher M.

    2011-01-01

    In this paper, we develop a framework to obtain approximate numerical solutions of the fractional-order Chua's circuit with Memristor using a non-standard finite difference method. Chaotic response is obtained with fractional-order elements as well

  2. Non-ionizing radiations : physical characteristics, biological effects and health hazard assessment

    International Nuclear Information System (INIS)

    Repacholi, M.H.

    1988-01-01

    The Workshop was a project of the International Non-Ionizing Radiation Committee of IRPA and comprised a series of educational lectures and demonstrations intended to give a comprehensive overview of non-ionizing electromagnetic radiation: physical characteristics, sources of concern, levels of exposure, mechanisms of interaction and reported effects of these fields and radiations with biological tissues, human studies, health risk assessment, national and international standards and guidelines, and protective measures

  3. Non-destructive testing. The current state of standards and qualification and certification for leak testing

    International Nuclear Information System (INIS)

    Tamura, Yoshikazu

    2011-01-01

    Domestic standards of the leak testing are enacted as one of Japan Industrial Standards. The conformity is advanced between these domestic standards and ISO (International Organization for Standardization) standard. ISO9712 (Non-destructive testing-Qualification and certification of personnel) was revised to include the leak testing of qualification and certification in 2005. The preparation working group of qualification and certification for leak testing is planning start aiming at the system in one and a half years. (author)

  4. EU effect: Exporting emission standards for vehicles through the global market economy.

    Science.gov (United States)

    Crippa, M; Janssens-Maenhout, G; Guizzardi, D; Galmarini, S

    2016-12-01

    Emission data from EDGAR (Emissions Database for Global Atmospheric Research), rather than economic data, are used to estimate the effect of policies and of the global exports of policy-regulated goods, such as vehicles, on global emissions. The results clearly show that the adoption of emission standards for the road transport sector in the two main global markets (Europe and North America) has led to the global proliferation of emission-regulated vehicles through exports, regardless the domestic regulation in the country of destination. It is in fact more economically convenient for vehicle manufacturers to produce and sell a standard product to the widest possible market and in the greatest possible amounts. The EU effect (European Union effect) is introduced as a global counterpart to the California effect. The former is a direct consequence of the penetration of the EURO standards in the global markets by European and Japanese manufacturers, which effectively export the standard worldwide. We analyze the effect on PM 2.5 emissions by comparing a scenario of non-EURO standards against the current estimates provided by EDGAR. We find that PM 2.5 emissions were reduced by more than 60% since the 1990s worldwide. Similar investigations on other pollutants confirm the hypothesis that the combined effect of technological regulations and their diffusion through global markets can also produce a positive effect on the global environment. While we acknowledge the positive feedback, we also demonstrate that current efforts and standards will be totally insufficient should the passenger car fleets in emerging markets reach Western per capita figures. If emerging countries reach the per capita vehicle number of the USA and Europe under current technological conditions, then the world will suffer pre-1990 emission levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Reducing matrix effect error in EDXRF: Comparative study of using standard and standard less methods for stainless steel samples

    International Nuclear Information System (INIS)

    Meor Yusoff Meor Sulaiman; Masliana Muhammad; Wilfred, P.

    2013-01-01

    Even though EDXRF analysis has major advantages in the analysis of stainless steel samples such as simultaneous determination of the minor elements, analysis can be done without sample preparation and non-destructive analysis, the matrix issue arise from the inter element interaction can make the the final quantitative result to be in accurate. The paper relates a comparative quantitative analysis using standard and standard less methods in the determination of these elements. Standard method was done by plotting regression calibration graphs of the interested elements using BCS certified stainless steel standards. Different calibration plots were developed based on the available certified standards and these stainless steel grades include low alloy steel, austenitic, ferritic and high speed. The standard less method on the other hand uses a mathematical modelling with matrix effect correction derived from Lucas-Tooth and Price model. Further improvement on the accuracy of the standard less method was done by inclusion of pure elements into the development of the model. Discrepancy tests were then carried out for these quantitative methods on different certified samples and the results show that the high speed method is most reliable for determining of Ni and the standard less method for Mn. (Author)

  6. Non-standard interactions with high-energy atmospheric neutrinos at IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Salvado, Jordi; Mena, Olga; Palomares-Ruiz, Sergio; Rius, Nuria [Instituto de Física Corpuscular (IFIC), CSIC-Universitat de València,Apartado de Correos 22085, E-46071 Valencia (Spain)

    2017-01-31

    Non-standard interactions in the propagation of neutrinos in matter can lead to significant deviations from expectations within the standard neutrino oscillation framework and atmospheric neutrino detectors have been considered to set constraints. However, most previous works have focused on relatively low-energy atmospheric neutrino data. Here, we consider the one-year high-energy through-going muon data in IceCube, which has been already used to search for light sterile neutrinos, to constrain new interactions in the μτ-sector. In our analysis we include several systematic uncertainties on both, the atmospheric neutrino flux and on the detector properties, which are accounted for via nuisance parameters. After considering different primary cosmic-ray spectra and hadronic interaction models, we improve over previous analysis by using the latest data and showing that systematics currently affect very little the bound on the off-diagonal ε{sub μτ}, with the 90% credible interval given by −6.0×10{sup −3}<ε{sub μτ}<5.4×10{sup −3}, comparable to previous results. In addition, we also estimate the expected sensitivity after 10 years of collected data in IceCube and study the precision at which non-standard parameters could be determined for the case of ε{sub μτ} near its current bound.

  7. Effectiveness of the gold standard programmes (GSP) for smoking cessation in pregnant and non-pregnant women

    DEFF Research Database (Denmark)

    Rasmussen, Mette; Heitmann, Berit Lilienthal; Tønnesen, Hanne

    2013-01-01

    Smoking is considered the most important preventable risk factor in relation to the development of complications during pregnancy and delivery. The aim of this study was to evaluate the effectiveness of an intensive 6-week gold standard programme (GSP) on pregnant women in real life....

  8. DOE technical standards list. Department of Energy standards index

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This document was prepared for use by personnel involved in the selection and use of DOE technical standards and other Government and non-Government standards. This TSL provides listing of current DOE technical standards, non-Government standards that have been adopted by DOE, other Government documents in which DOE has a recorded interest, and canceled DOE technical standards. Information on new DOE technical standards projects, technical standards released for coordination, recently published DOE technical standards, and activities of non-Government standards bodies that may be of interest to DOE is published monthly in Standards Actions.

  9. The effect of non-standard heat treatment of sheep's milk on physico-chemical properties, sensory characteristics, and the bacterial viability of classical and probiotic yogurt.

    Science.gov (United States)

    Zamberlin, Šimun; Samaržija, Dubravka

    2017-06-15

    Classical and probiotic set yogurt were made using non-standard heat treatment of sheep's milk at 60°C/5min. Physico-chemical properties, sensory characteristics, and the viability of bacteria that originated from cultures in classical and probiotic yogurt were analysed during 21days of storage at 4°C. For the production of yogurt, a standard yogurt culture and a probiotic strain Lactobacillus rhamnosus GG were used. At the end of storage time of the classical and probiotic yogurt the totals of non-denatured whey proteins were 92.31 and 91.03%. The viability of yogurt culture bacteria and Lactobacillus rhamnosus GG were higher than 10 6 cfu/g. The total sensory score (maximum - 20) was 18.49 for the classical and 18.53 for the probiotic. In nutritional and functional terms it is possible to produce classical and probiotic sheep's milk yogurt by using a non-standard temperature of heat treatment with a shelf life of 21days. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Non-standard base pairing and stacked structures in methyl xanthine clusters

    Czech Academy of Sciences Publication Activity Database

    Callahan, M. P.; Gengeliczki, Z.; Svadlenak, N.; Valdes, Haydee; Hobza, Pavel; de Vries, M. S.

    2008-01-01

    Roč. 10, č. 19 (2008), s. 2819-2826 ISSN 1463-9076 R&D Projects: GA MŠk LC512 Grant - others:NSF(US) CHE-0615401 Institutional research plan: CEZ:AV0Z40550506 Keywords : non-standard base pairing * stacked structures * in methyl xanthine Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.064, year: 2008

  11. The effectiveness of non-pharmacological interventions in improvement of sleep quality among non-remissive cancer patients: A systematic review of randomized trials

    Directory of Open Access Journals (Sweden)

    Fatmawati Fadli

    2016-12-01

    Full Text Available Statistical results estimated that most of non-remissive cancer patients face sleep problem and experience the symptoms of insomnia throughout and after the completion of cancer treatment. The purpose of this review was to compare the effectiveness between several types of non-pharmacological interventions and standard care or treatment to improve the sleep quality among non-remissive cancer patients. All randomized studies focused on non-pharmacological interventions to improve sleep quality among non-remissive cancer patients were included. Thirteen studies were selected with a total of 1,617 participants. The results found that only four interventions were significantly effective to improve sleep quality among non-remissive cancer patients, included cognitive behavioral therapy, relaxation and guided imagery program, self-care behavior education program, and energy and sleep enhancement program.

  12. 77 FR 22564 - Proposed Collection; Comment Request; Safety Standards for Full-Size Baby Cribs and Non-Full-Size...

    Science.gov (United States)

    2012-04-16

    ... CONSUMER PRODUCT SAFETY COMMISSION [Docket No. CPSC-2012-0019] Proposed Collection; Comment Request; Safety Standards for Full- Size Baby Cribs and Non-Full-Size Baby Cribs; Compliance Form AGENCY... safety standards for full-size and non-full-size baby cribs in response to the direction under section...

  13. Invariant class operators in the decoherent histories analysis of timeless quantum theories

    International Nuclear Information System (INIS)

    Halliwell, J. J.; Wallden, P.

    2006-01-01

    The decoherent histories approach to quantum theory is applied to a class of reparametrization-invariant models whose state is an energy eigenstate. A key step in this approach is the construction of class operators characterizing the questions of physical interest, such as the probability of the system entering a given region of configuration space without regard to time. In nonrelativistic quantum mechanics these class operators are given by time-ordered products of projection operators. But in reparametrization-invariant models, where there is no time, the construction of the class operators is more complicated, the main difficulty being to find operators which commute with the Hamiltonian constraint (and so respect the invariance of the theory). Here, inspired by classical considerations, we put forward a proposal for the construction of such class operators for a class of reparametrization-invariant systems. They consist of continuous infinite temporal products of Heisenberg picture projection operators. We investigate the consequences of this proposal in a number of simple models and also compare with the evolving constants method. The formalism developed here is ultimately aimed at cosmological models described by a Wheeler-DeWitt equation, but the specific features of such models are left to future papers

  14. Light-induced electronic non-equilibrium in plasmonic particles.

    Science.gov (United States)

    Kornbluth, Mordechai; Nitzan, Abraham; Seideman, Tamar

    2013-05-07

    We consider the transient non-equilibrium electronic distribution that is created in a metal nanoparticle upon plasmon excitation. Following light absorption, the created plasmons decohere within a few femtoseconds, producing uncorrelated electron-hole pairs. The corresponding non-thermal electronic distribution evolves in response to the photo-exciting pulse and to subsequent relaxation processes. First, on the femtosecond timescale, the electronic subsystem relaxes to a Fermi-Dirac distribution characterized by an electronic temperature. Next, within picoseconds, thermalization with the underlying lattice phonons leads to a hot particle in internal equilibrium that subsequently equilibrates with the environment. Here we focus on the early stage of this multistep relaxation process, and on the properties of the ensuing non-equilibrium electronic distribution. We consider the form of this distribution as derived from the balance between the optical absorption and the subsequent relaxation processes, and discuss its implication for (a) heating of illuminated plasmonic particles, (b) the possibility to optically induce current in junctions, and (c) the prospect for experimental observation of such light-driven transport phenomena.

  15. Methodological aspects of hygienic standardization of complex radiation and non-radiation effects on human organizm

    International Nuclear Information System (INIS)

    Liberman, A.N.; Sanovskaya, M.S.; Bronshtejn, I.Eh.; Orobej, V.V.

    1978-01-01

    Considered are the necessary requirements for the methodics of substantiating the hygienic standards for a combined effect of radiation and nonradiation factors on workers engaged in electronic, radio engineering branches of industry and a number of nuclear-physical units. These approaches were used in planning and conducting of investigations on hygienic evaluation of a combined effect of ionizing radiation, electromagnetic UHF radiation, noise and other factors. Along with experimental investigations on small laboratory animals, clinico-physiological examinations of people affected by a combined or predominantely separate effect of the above-mentioned factors have been carried out for many years. The material obtaed has been subjected to mathematical treatment with the use of dispersion analysis. The results testify to the intensification of the effect under conditions of a combined action of X-ray and UHF radiations and noise

  16. The Application and Its Consequences for Non-Standard Knowledge Work

    DEFF Research Database (Denmark)

    Nouwens, Midas; Klokmose, Clemens Nylandsted

    2018-01-01

    Application-centric computing dominates human-computer interactions, yet the concept of an application is ambiguous and the impact of its ubiquity underexplored. We unpack “the application” through the lens of non-standard knowledge work: freelance, self-employed, and fixed-term contract workers...... of applications, such as update processes, interface symmetries, application-document relationships, and operating system and hardware dependencies. By empirically and analytically focusing on “the application”, we reveal the implications of the current application-centric computing paradigm and discuss how...

  17. Bounds on the Higgs mass in the standard model and the minimal supersymmetric standard model

    CERN Document Server

    Quiros, M.

    1995-01-01

    Depending on the Higgs-boson and top-quark masses, M_H and M_t, the effective potential of the {\\bf Standard Model} can develop a non-standard minimum for values of the field much larger than the weak scale. In those cases the standard minimum becomes metastable and the possibility of decay to the non-standard one arises. Comparison of the decay rate to the non-standard minimum at finite (and zero) temperature with the corresponding expansion rate of the Universe allows to identify the region, in the (M_H, M_t) plane, where the Higgs field is sitting at the standard electroweak minimum. In the {\\bf Minimal Supersymmetric Standard Model}, approximate analytical expressions for the Higgs mass spectrum and couplings are worked out, providing an excellent approximation to the numerical results which include all next-to-leading-log corrections. An appropriate treatment of squark decoupling allows to consider large values of the stop and/or sbottom mixing parameters and thus fix a reliable upper bound on the mass o...

  18. Exact and approximate formulas for neutrino mixing and oscillations with non-standard interactions

    International Nuclear Information System (INIS)

    Meloni, Davide; Ohlsson, Tommy; Zhang, He

    2009-01-01

    We present, both exactly and approximately, a complete set of mappings between the vacuum (or fundamental) leptonic mixing parameters and the effective ones in matter with non-standard neutrino interaction (NSI) effects included. Within the three-flavor neutrino framework and a constant matter density profile, a full set of sum rules is established, which enables us to reconstruct the moduli of the effective leptonic mixing matrix elements, in terms of the vacuum mixing parameters in order to reproduce the neutrino oscillation probabilities for future long-baseline experiments. Very compact, but quite accurate, approximate mappings are obtained based on series expansions in the neutrino mass hierarchy parameter η ≡ Δm 2 21 /Δm 2 31 , the vacuum leptonic mixing parameter s 13 ≡ sin θ 13 , and the NSI parameters ε αβ . A detailed numerical analysis about how the NSIs affect the smallest leptonic mixing angle θ 13 , the deviation of the leptonic mixing angle θ 23 from its maximal mixing value, and the transition probabilities useful for future experiments are performed using our analytical results.

  19. The realism problem of quantum mechanics in view of the decoherence interpretation; Das Realismus-Problem der Quantenmechanik angesichts der Dekohaerenz-Interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Messer, Joachim August

    2007-07-01

    Quantum mechanics in the conception, as it is today present, contains - what concerns its conceivable understanding and its interpretation - numerous paradoxa. The best known Copenhagen interpretation is critized and other interpretations, as the many-world interpretation and the modern, today mostly attended decoherence interpretation are put to this describingly on side. Axiomatic explanation attempts, like those from Mackey, Jauch, and Piron are analyzed and the measurement problem discussed from three ways of view: the introduction of a cut by Georg Suessmann, the scaling formalism from Klaus Hepp, and the philosophy from Bernulf Kanitschneider. Especially the critique given by Albert Einstein on the Bohr-Heisenberg Copenhagen interpretation and the completeness of a realistic quantum theory by the EPR thought experiment (called from Einstein, Podolsky, and Rosen) is more detailedly studied and extended to a holomorphic realism, in which the measurement quantities become visible as boundary values of a holomorphic function. This analytic continuation throws a new light on the body-soul parallelism, which exceeds the positions of Platon and Feigl. Beside the decoherence also the superselection rules, which are extensively discussed, are an example for a realistic state reduction - however the nonlocality of realistic quantum mechanics forces to a dualism of Higgs' symmetry breaking with local decoherence in the terrestrial laboratory. The position of a holomorphic barycentric realism is worked out by regress to the quantum field theory of Lehmann, Symanzik, and Zimmermann (LSZ) with its reduction formula. Quantum-cosmological implications, non-commutative geometry, K theory, and background field are also discussed. The newly designed knowledge theory of the holomorphic, barycentric realism - which in the classical limit goes over in a critical realism - forms also a bridge to a deepened humanism, which cannot be constructed from purely classical physics. As

  20. The realism problem of quantum mechanics in view of the decoherence interpretation; Das Realismus-Problem der Quantenmechanik angesichts der Dekohaerenz-Interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Messer, Joachim August

    2007-07-01

    Quantum mechanics in the conception, as it is today present, contains - what concerns its conceivable understanding and its interpretation - numerous paradoxa. The best known Copenhagen interpretation is critized and other interpretations, as the many-world interpretation and the modern, today mostly attended decoherence interpretation are put to this describingly on side. Axiomatic explanation attempts, like those from Mackey, Jauch, and Piron are analyzed and the measurement problem discussed from three ways of view: the introduction of a cut by Georg Suessmann, the scaling formalism from Klaus Hepp, and the philosophy from Bernulf Kanitschneider. Especially the critique given by Albert Einstein on the Bohr-Heisenberg Copenhagen interpretation and the completeness of a realistic quantum theory by the EPR thought experiment (called from Einstein, Podolsky, and Rosen) is more detailedly studied and extended to a holomorphic realism, in which the measurement quantities become visible as boundary values of a holomorphic function. This analytic continuation throws a new light on the body-soul parallelism, which exceeds the positions of Platon and Feigl. Beside the decoherence also the superselection rules, which are extensively discussed, are an example for a realistic state reduction - however the nonlocality of realistic quantum mechanics forces to a dualism of Higgs' symmetry breaking with local decoherence in the terrestrial laboratory. The position of a holomorphic barycentric realism is worked out by regress to the quantum field theory of Lehmann, Symanzik, and Zimmermann (LSZ) with its reduction formula. Quantum-cosmological implications, non-commutative geometry, K theory, and background field are also discussed. The newly designed knowledge theory of the holomorphic, barycentric realism - which in the classical limit goes over in a critical realism - forms also a bridge to a deepened humanism, which cannot be constructed from purely classical physics. As

  1. The Tacit 'Quantum' of Meeting the Aesthetic Sign; Contextualize, Entangle, Superpose, Collapse or Decohere.

    Science.gov (United States)

    Broekaert, Jan

    2018-01-01

    The semantically ambiguous nature of the sign and aspects of non-classicality of elementary matter as described by quantum theory show remarkable coherent analogy. We focus on how the ambiguous nature of the image, text and art work bears functional resemblance to the dynamics of contextuality , entanglement , superposition , collapse and decoherence as these phenomena are known in quantum theory. These quantumlike properties in linguistic signs have previously been identified in formal descritions of e.g. concept combinations and mental lexicon representations and have been reported on in the literature. In this approach the informationalized, communicated, mediatized conceptual configuration-of e.g. the art work-in the personal reflected mind behaves like a quantum state function in a higher dimensional complex space, in which it is time and again contextually collapsed and further cognitively entangled (Aerts et al. in Found Sci 4:115-132, 1999; in Lect Notes Comput Sci 7620:36-47, 2012). The observer-consumer of signs becomes the empowered 'produmer' (Floridi in The philosophy of information, Oxford University Press, Oxford, 2011) creating the cognitive outcome of the interaction, while loosing most of any 'classical givenness' of the sign (Bal and Bryson in Art Bull 73:174-208, 1991). These quantum-like descriptions are now developed here in four example aesthetic signs; the installation Mist room by Ann Veronica Janssens (2010), the installation Sections of a happy moment by David Claerbout (2010), the photograph The Falling Man by Richard Drew (New York Times, p. 7, September 12, 2001) and the documentary Huicholes. The Last Peyote Guardians by Vilchez and Stefani (2014). Our present work develops further the use of a previously developed quantum model for concept representation in natural language. In our present approach of the aesthetic sign, we extend to individual -idiosyncratic-observer contexts instead of socially shared group contexts, and as such

  2. Minimal and non-minimal standard models: Universality of radiative corrections

    International Nuclear Information System (INIS)

    Passarino, G.

    1991-01-01

    The possibility of describing electroweak processes by means of models with a non-minimal Higgs sector is analyzed. The renormalization procedure which leads to a set of fitting equations for the bare parameters of the lagrangian is first reviewed for the minimal standard model. A solution of the fitting equations is obtained, which correctly includes large higher-order corrections. Predictions for physical observables, notably the W boson mass and the Z O partial widths, are discussed in detail. Finally the extension to non-minimal models is described under the assumption that new physics will appear only inside the vector boson self-energies and the concept of universality of radiative corrections is introduced, showing that to a large extent they are insensitive to the details of the enlarged Higgs sector. Consequences for the bounds on the top quark mass are also discussed. (orig.)

  3. The Effect of a Reading Accommodation on Standardized Test Scores of Learning Disabled and Non Learning Disabled Students.

    Science.gov (United States)

    Meloy, Linda L.; Deville, Craig; Frisbie, David

    The effect of the Read Aloud accommodation on the performances of learning disabled in reading (LD-R) and non-learning disabled (non LD) middle school students was studied using selected texts from the Iowa Tests of Basic Skills (ITBS) achievement battery. Science, Usage and Expression, Math Problem Solving and Data Interpretation, and Reading…

  4. DOE technical standards list: Department of Energy standards index

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    This Department of Energy (DOE) technical standards list (TSL) has been prepared by the Office of Nuclear Safety Policy and Standards (EH-31) on the basis of currently available technical information. Periodic updates of this TSL will be issued as additional information is received on standardization documents being issued, adopted, or canceled by DOE. This document was prepared for use by personnel involved in the selection and use of DOE technical standards and other Government and non-Government standards. This TSL provides listings of current DOE technical standards, non-Government standards that have been adopted by DOE, other standards-related documents in which DOE has a recorded interest, and canceled DOE technical standards. Information on new DOE technical standards projects, technical standards released for coordination, recently published DOE technical standards, and activities of non-Government standards bodies that may be of interest to DOE is published monthly in Standards Actions.

  5. 77 FR 43811 - Submission for OMB Review; Comment Request-Safety Standards for Full-Size Baby Cribs and Non-Full...

    Science.gov (United States)

    2012-07-26

    ... CONSUMER PRODUCT SAFETY COMMISSION Submission for OMB Review; Comment Request--Safety Standards for Full-Size Baby Cribs and Non-Full-Size Baby Cribs; Compliance Form AGENCY: Consumer Product Safety... standards for full-size and non-full-size baby cribs in response to the direction under section 104(b) of...

  6. De invloed van afwijkende werktijden op de werkthuis situatie [The influence of working at non-standard working hours on the workhome situation

    NARCIS (Netherlands)

    Hooff, L.M. van; Bakhuys Roozeboom, M.M.C.; Vroome, E.M.M. de; Smulders, P.G.W.

    2010-01-01

    The present study was designed to map the causal relationships between nonstandard working hours and work-home interference (WHI) and home-work interference (HWI). To this purpose, a longitudinal full-panel design was employed. Using such a design, we examined both the causal effects of non-standard

  7. Decoherence and tripartite entanglement dynamics in the presence of Gaussian and non-Gaussian classical noise

    Energy Technology Data Exchange (ETDEWEB)

    Kenfack, Lionel Tenemeza, E-mail: kenfacklionel300@gmail.com [Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, PO Box: 67 Dschang (Cameroon); Tchoffo, Martin; Fai, Lukong Cornelius [Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, PO Box: 67 Dschang (Cameroon); Fouokeng, Georges Collince [Mesoscopic and Multilayer Structure Laboratory, Department of Physics, Faculty of Science, University of Dschang, PO Box: 67 Dschang (Cameroon); Laboratoire de Génie des Matériaux, Pôle Recherche-Innovation-Entrepreneuriat (PRIE), Institut Universitaire de la Côte, BP 3001 Douala (Cameroon)

    2017-04-15

    We address the entanglement dynamics of a three-qubit system interacting with a classical fluctuating environment described either by a Gaussian or non-Gaussian noise in three different configurations namely: common, independent and mixed environments. Specifically, we focus on the Ornstein-Uhlenbeck (OU) noise and the random telegraph noise (RTN). The qubits are prepared in a state composed of a Greenberger-Horne-Zeilinger (GHZ) and a W state. With the help of the tripartite negativity, we show that the entanglement evolution is not only affected by the type of system-environment coupling but also by the kind and the memory properties of the considered noise. We also compared the dynamics induced by the two kinds of noise and we find that even if both noises have a Lorentzian spectrum, the effects of the OU noise cannot be in a simple way deduced from those of the RTN and vice-versa. In addition, we show that the entanglement can be indefinitely preserved when the qubits are coupled to the environmental noise in a common environment (CE). Finally, the presence or absence of peculiar phenomena such as entanglement revivals (ER) and entanglement sudden death (ESD) is observed.

  8. Decoherence and tripartite entanglement dynamics in the presence of Gaussian and non-Gaussian classical noise

    International Nuclear Information System (INIS)

    Kenfack, Lionel Tenemeza; Tchoffo, Martin; Fai, Lukong Cornelius; Fouokeng, Georges Collince

    2017-01-01

    We address the entanglement dynamics of a three-qubit system interacting with a classical fluctuating environment described either by a Gaussian or non-Gaussian noise in three different configurations namely: common, independent and mixed environments. Specifically, we focus on the Ornstein-Uhlenbeck (OU) noise and the random telegraph noise (RTN). The qubits are prepared in a state composed of a Greenberger-Horne-Zeilinger (GHZ) and a W state. With the help of the tripartite negativity, we show that the entanglement evolution is not only affected by the type of system-environment coupling but also by the kind and the memory properties of the considered noise. We also compared the dynamics induced by the two kinds of noise and we find that even if both noises have a Lorentzian spectrum, the effects of the OU noise cannot be in a simple way deduced from those of the RTN and vice-versa. In addition, we show that the entanglement can be indefinitely preserved when the qubits are coupled to the environmental noise in a common environment (CE). Finally, the presence or absence of peculiar phenomena such as entanglement revivals (ER) and entanglement sudden death (ESD) is observed.

  9. Assessment and Mitigation of the Effects of Noise on Habitability in Deep Space Environments: Report on Non-Auditory Effects of Noise

    Science.gov (United States)

    Begault, Durand R.

    2018-01-01

    This document reviews non-auditory effects of noise relevant to habitable volume requirements in cislunar space. The non-auditory effects of noise in future long-term space habitats are likely to be impactful on team and individual performance, sleep, and cognitive well-being. This report has provided several recommendations for future standards and procedures for long-term space flight habitats, along with recommendations for NASA's Human Research Program in support of DST mission success.

  10. Comparison of the effectiveness of high flow nasal oxygen cannula vs. standard non-rebreather oxygen face mask in post-extubation intensive care unit patients.

    Science.gov (United States)

    Brotfain, Evgeni; Zlotnik, Alexander; Schwartz, Andrei; Frenkel, Amit; Koyfman, Leonid; Gruenbaum, Shaun E; Klein, Moti

    2014-11-01

    Optimal oxygen supply is the cornerstone of the management of critically ill patients after extubation, especially in patients at high risk for extubation failure. In recent years, high flow oxygen system devices have offered an appropriate alternative to standard oxygen therapy devices such as conventional face masks and nasal prongs. To assess the clinical effects of high flow nasal cannula (HFNC) compared with standard oxygen face masks in Intensive Care Unit (ICU) patients after extubation. We retrospectively analyzed 67 consecutive ventilated critical care patients in the ICU over a period of 1 year. The patients were allocated to two treatment groups: HFNC (34 patients, group 1) and non-rebreathing oxygen face mask (NRB) (33 patients, group 2). Vital respiratory and hemodynamic parameters were assessed prior to extubation and 6 hours after extubation. The primary clinical outcomes measured were improvement in oxygenation, ventilation-free days, re-intubation, ICU length of stay, and mortality. The two groups demonstrated similar hemodynamic patterns before and after extubation. The respiratory rate was slightly elevated in both groups after extubation with no differences observed between groups. There were no statistically significant clinical differences in PaCO2. However, the use of HFNC resulted in improved PaO2/FiO2 post-extubation (P < 0.05). There were more ventilator-free days in the HFNC group (P< 0.05) and fewer patients required reintubation (1 vs. 6). There were no differences in ICU length of stay or mortality. This study demonstrated better oxygenation for patients treated with HFNC compared with NRB after extubation. HFNC may be more effective than standard oxygen supply devices for oxygenation in the post-extubation period.

  11. Constraints on non-Standard Model Higgs boson interactions in an effective Lagrangian using differential cross sections measured in the H→γγ decay channel at s=8 TeV with the ATLAS detector

    Directory of Open Access Journals (Sweden)

    G. Aad

    2016-02-01

    Full Text Available The strength and tensor structure of the Higgs boson's interactions are investigated using an effective Lagrangian, which introduces additional CP-even and CP-odd interactions that lead to changes in the kinematic properties of the Higgs boson and associated jet spectra with respect to the Standard Model. The parameters of the effective Lagrangian are probed using a fit to five differential cross sections previously measured by the ATLAS experiment in the H→γγ decay channel with an integrated luminosity of 20.3 fb−1 at s=8 TeV. In order to perform a simultaneous fit to the five distributions, the statistical correlations between them are determined by re-analysing the H→γγ candidate events in the proton–proton collision data. No significant deviations from the Standard Model predictions are observed and limits on the effective Lagrangian parameters are derived. The statistical correlations are made publicly available to allow for future analysis of theories with non-Standard Model interactions.

  12. Long-range memory and non-Markov statistical effects in human sensorimotor coordination

    Science.gov (United States)

    M. Yulmetyev, Renat; Emelyanova, Natalya; Hänggi, Peter; Gafarov, Fail; Prokhorov, Alexander

    2002-12-01

    In this paper, the non-Markov statistical processes and long-range memory effects in human sensorimotor coordination are investigated. The theoretical basis of this study is the statistical theory of non-stationary discrete non-Markov processes in complex systems (Phys. Rev. E 62, 6178 (2000)). The human sensorimotor coordination was experimentally studied by means of standard dynamical tapping test on the group of 32 young peoples with tap numbers up to 400. This test was carried out separately for the right and the left hand according to the degree of domination of each brain hemisphere. The numerical analysis of the experimental results was made with the help of power spectra of the initial time correlation function, the memory functions of low orders and the first three points of the statistical spectrum of non-Markovity parameter. Our observations demonstrate, that with the regard to results of the standard dynamic tapping-test it is possible to divide all examinees into five different dynamic types. We have introduced the conflict coefficient to estimate quantitatively the order-disorder effects underlying life systems. The last one reflects the existence of disbalance between the nervous and the motor human coordination. The suggested classification of the neurophysiological activity represents the dynamic generalization of the well-known neuropsychological types and provides the new approach in a modern neuropsychology.

  13. DOE technical standards list: Department of Energy standards index

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    This technical standards list (TSL) was prepared for use by personnel involved in the selection and use of US DOE technical standards and other government and non-government standards. This TSL provides listings of current DOE technical standards, non-government standards that have been adopted by DOE, other government documents in which DOE has a recorded interest, and cancelled DOE technical standards. Standards are indexed by type in the appendices to this document. Definitions of and general guidance for the use of standards are also provided.

  14. Effect of the interface resistance in non-local Hanle measurements

    International Nuclear Information System (INIS)

    Villamor, Estitxu; Hueso, Luis E.; Casanova, Fèlix

    2015-01-01

    We use lateral spin valves with varying interface resistance to measure non-local Hanle effect in order to extract the spin-diffusion length of the non-magnetic channel. A general expression that describes spin injection and transport, taking into account the influence of the interface resistance, is used to fit our results. Whereas the fitted spin-diffusion length value is in agreement with the one obtained from standard non-local measurements in the case of a finite interface resistance, in the case of transparent contacts a clear disagreement is observed. The use of a corrected expression, recently proposed to account for the anisotropy of the spin absorption at the ferromagnetic electrodes, still yields a deviation of the fitted spin-diffusion length which increases for shorter channel distances. This deviation shows how sensitive the non-local Hanle fittings are, evidencing the complexity of obtaining spin transport information from such type of measurements

  15. Gravitational Field as a Pressure Force from Logarithmic Lagrangians and Non-Standard Hamiltonians: The Case of Stellar Halo of Milky Way

    Science.gov (United States)

    El-Nabulsi, Rami Ahmad

    2018-03-01

    Recently, the notion of non-standard Lagrangians was discussed widely in literature in an attempt to explore the inverse variational problem of nonlinear differential equations. Different forms of non-standard Lagrangians were introduced in literature and have revealed nice mathematical and physical properties. One interesting form related to the inverse variational problem is the logarithmic Lagrangian, which has a number of motivating features related to the Liénard-type and Emden nonlinear differential equations. Such types of Lagrangians lead to nonlinear dynamics based on non-standard Hamiltonians. In this communication, we show that some new dynamical properties are obtained in stellar dynamics if standard Lagrangians are replaced by Logarithmic Lagrangians and their corresponding non-standard Hamiltonians. One interesting consequence concerns the emergence of an extra pressure term, which is related to the gravitational field suggesting that gravitation may act as a pressure in a strong gravitational field. The case of the stellar halo of the Milky Way is considered.

  16. Non-generic couplings in supersymmetric standard models

    Directory of Open Access Journals (Sweden)

    Evgeny I. Buchbinder

    2015-09-01

    Full Text Available We study two phases of a heterotic standard model, obtained from a Calabi–Yau compactification of the E8×E8 heterotic string, in the context of the associated four-dimensional effective theories. In the first phase we have a standard model gauge group, an MSSM spectrum, four additional U(1 symmetries and singlet fields. In the second phase, obtained from the first by continuing along the singlet directions, three of the additional U(1 symmetries are spontaneously broken and the remaining one is a B–L symmetry. In this second phase, dimension five operators inducing proton decay are consistent with all symmetries and as such, they are expected to be present. We show that, contrary to this expectation, these operators are forbidden due to the additional U(1 symmetries present in the first phase of the model. We emphasise that such “unexpected” absences of operators, due to symmetry enhancement at specific loci in the moduli space, can be phenomenologically relevant and, in the present case, protect the model from fast proton decay.

  17. Successful non-standard approaches to massive hemoptysis in invasive pulmonary aspergillosis

    Directory of Open Access Journals (Sweden)

    Mitrović Mirjana

    2012-01-01

    Full Text Available Introduction. Invasive pulmonary aspergillosis (IA is the most frequent invasive fungal infection in patients with hematological malignancies. Massive hemoptysis (MH with blood loss more than 300- 600 ml in 24 hours is a rare (5-10% of IA patients but frequently fatal complication. Standard treatment of MH, such as oxygenation, a semi-sitting position with the bleeding site down, bronchoscopical suctioning, antifungal therapy, transfusion support and surgical resection might be either ineffective or not feasible in some cases. Outline of Cases. We report two patients with life threatening, non-controlled, massive hemoptysis who were successfully managed by non-standard measures. A 61-year-old male with acute myeloid leukemia developed pulmonary IA and massive hemoptysis after consolidation cure by chemotherapy. The bleeding site was localized in the VI lung segment by bronchoscopy. Local application of fibrinogen-thrombin concentrate (fibrin glue stopped the bleeding. A 22-year-old female patient with the diagnosis of severe aplastic anemia developed IA and massive hemoptysis early after application of immunosuppressive therapy (antilymphocyte globulin, cyclosporine and corticosteroids. Conventional transfusion therapy, desmopresine and antifibrinolytics were ineffective. This urgent condition was successfully treated with human activated recombinant factor VII (rFVIIa, NovoSeven®. Conclusion. Our experience together with data from the available literature suggests a potential benefit of fibrinogen-thrombin concentrate and rFVIIa in the treatment of refractory critical bleeding in hematooncological patients.

  18. Non-locality versus entanglement in the neutral kaon system

    International Nuclear Information System (INIS)

    Ableitinger, A.; Bertlmann, R.A.; Durstberger, K.; Hiesmayr, B.C.; Krammer, P.

    2006-01-01

    Full text: Particle physics has become an interesting testing ground for fundamental questions of quantum mechanics (QM). The entangled massive meson-antimeson systems are specially suitable as they offer a unique laboratory to test various aspects of particle physics (CP violation, CPT violation, . . . ) as well to test foundations of QM (local realistic theories versus QM, Bell inequalities, decoherence effects, quantum marking and erasure concepts, . . . ). For the neutral kaon system we show that nonlocality detected by the violation of a Bell inequality and entanglement are indeed different concepts. (author)

  19. Transition Systems and Non-Standard Employment in Early Career: Comparing Japan and Switzerland

    Science.gov (United States)

    Imdorf, Christian; Helbling, Laura Alexandra; Inui, Akio

    2017-01-01

    Even though Japan and Switzerland are characterised by comparatively low youth unemployment rates, non-standard forms of employment are on the rise, posing a risk to the stable integration of young labour market entrants. Drawing on the French approach of societal analysis, this paper investigates how country-specific school-to-work transition…

  20. Coherence and decoherence in the interaction of light with atoms

    Science.gov (United States)

    Carmichael, H. J.

    1997-12-01

    Amplification without population inversion in a resonant V-type atomic medium is analyzed using the theory of quantum trajectories. A global view of the dynamics underlying the amplification is provided by a quantum stochastic process governing an interplay between coherence and decoherence. The quantum trajectories decompose into distinct ``gain cycles'' and ``loss cycles'' which determine, respectively, the emission and absorption spectra that might be calculated from perturbation theory. Two methods for calculating net gain are developed, motivated by complementary views of the exchange of energy between an atom and a probe field. One time averages the energy radiated continuously by the induced dipole, while the other determines probabilities for discontinuous energy exchange through the emission and absorption of individual quanta. In the latter case, the emission and absorption probabilities are evaluated as sums over probabilities for classical records that define the unobservable exchange of a quantum with the probe field in terms of observable scattering events. Quantum trajectories for a V-type medium driven by a coherent field are compared with those for a medium driven incoherently. Two relationships which connect amplification to population inversion in the latter case are shown to be lacking in the former; hence the possibility for amplification without population inversion arises from the following: (1) a decoupling of the rate of gain-cycle (loss-cycle) initiation from the time-averaged population in the initial state for gain (loss), and (2) loss of the symmetry that the final state for emission be the initial state for absorption and vice versa. The specific influences of these general observations vary from model to model. The details are worked out for the resonant V-type medium, where the quantum trajectory analysis sheds light on the meaning of ``without population inversion'' and ``cancellation of absorption by quantum interference.''