WorldWideScience

Sample records for non-point source wastewater

  1. The removal of nutrients from non-point source wastewater by a hybrid bioreactor.

    Science.gov (United States)

    Wu, Yonghong; Hu, Zhengyi; Yang, Linzhang; Graham, Bruce; Kerr, Philip G

    2011-02-01

    The aim of this project was to establish an economical and environmentally benign biotechnology for removing nutrients from non-point source wastewater. The proposal involves a hybrid bioreactor comprised of sequential anaerobic, anoxic and aerobic (A(2)/O) processes and an eco-ditch being constructed and applied in a suburban area, Kunming, south-western China, where wastewater was discharged from an industrial park and suburban communities. The results show that the hybrid bioreactor fosters heterotrophic and autotrophic microorganisms. When the hydraulic load is 200 m(3) per day with the running mode in 12h cycles, the removal efficiencies of the nutrients were 81% for TP, 74% for TDP, 82% for TN, 79% for NO(3)-N and 86% for NH(4)-N. The improved bacterial community structure and bacterial habitats further implied enhanced water quality and indicates that the easily-deployed, affordable and environmentally-friendly hybrid bioreactor is a promising bio-measure for removing high loadings of nutrients from non-point source wastewater.

  2. Estimation of contribution from non-point sources to perfluorinated surfactants in a river by using boron as a wastewater tracer.

    Science.gov (United States)

    Nishikoori, Hiroshi; Murakami, Michio; Sakai, Hiroshi; Oguma, Kumiko; Takada, Hideshige; Takizawa, Satoshi

    2011-08-01

    The contribution of non-point sources to perfluorinated surfactants (PFSs) in a river was evaluated by estimating their fluxes and by using boron (B) as a tracer. The utility of PFSs/B as an indicator for evaluating the impact of non-point sources was demonstrated. River water samples were collected from the Iruma River, upstream of the intake of drinking water treatment plants in Tokyo, during dry weather and wet weather, and 13 PFSs, dissolved organic carbon (DOC), total nitrogen (TN), and B were analyzed. Perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluoroheptanoate (PFHpA), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), perfluorodecanoate (PFDA), perfluoroundecanoate (PFUA), and perfluorododecanoate (PFDoDA) were detected on all sampling dates. The concentrations and fluxes of perfluorocarboxylates (PFCAs, e.g. PFOA and PFNA) were higher during wet weather, but those of perfluoroalkyl sulfonates (PFASs, e.g. PFHxS and PFOS) were not. The wet/dry ratios of PFSs/B (ratios of PFSs/B during wet weather to those during dry weather) agreed well with those of PFS fluxes (ratios of PFS fluxes during wet weather to those during dry weather), indicating that PFSs/B is useful for evaluating the contribution from non-point sources to PFSs in rivers. The wet/dry ratios of PFOA and PFNA were higher than those of other PFSs, DOC, and TN, showing that non-point sources contributed greatly to PFOA and PFNA in the water. This is the first study to use B as a wastewater tracer to estimate the contribution of non-point sources to PFSs in a river.

  3. Trends of nitrogen and phosphorus input into Lake Neusiedl from wastewater treatment plants and non-point sources

    Science.gov (United States)

    Kinner, Paul; Heiss, Gerhard; Soja, Gerhard

    2013-04-01

    nitrogen load amounted to 304 tons in 2010, compared to 47 tons in 2001. In the period 1992-2010 the nitrogen load caused by diffuse sources was 4.3 times higher than the point source nitrogen load (2 wastewater treatment plants). The proportion of total discharge, of inorganic nitrogen load and of phosphorus load caused by the two wastewater treatment plants depended on the discharge rate of the river Wulka (monitoring station Schützen). In 2001 (low precipitation year: 578 mm annual sum) point sources contributed about 47% of the discharge, 51% of the nitrogen load and 65% of the phosphorus load of the river Wulka. In 2010 (high precipitation year: 945 mm annual sum) point sources contributed 25% of the discharge, 11% of the nitrogen load and 31% of the total phosphorus load. In the period 1992 to 2010 the inorganic nitrogen load caused by surface water (Wulka, WWTP, creeks and channels) varied from 65 t/a to 675 t/a (mean:233 t/a).

  4. Controlling Non-Point Source Pollution in Australian Agricultural Systems

    Institute of Scientific and Technical Information of China (English)

    C. GOURLEY; A. RIDLEY

    2005-01-01

    The Australian farming sector is continuing to intensify, particularly within 300 km of the east and southern coastlines.In the future there will be fewer and larger farms, which will use more fertilizer, support more stock, grow more monoculture crops, and utilise more marginal soils. This is likely to increase the major environmental impacts of soil degradation, salt,nutrient and sediment contamination of waterways, and greenhouse gas emissions. Australian national water policy continues to focus on land, stream and groundwater salinity issues, although there is now a greater recognition of the importance of nitrogen and phosphorus losses from agriculture. The general philosophy of policy for dealing with nonpoint source pollution has been towards a voluntary rather than regulatory approach, with state and national governments supporting a range of programs to encourage sustainable agricultural practices. A catchment (watershed) based approach,through the use of integrated catchment management plans, is the primary way that non-point source pollution is addressed at the farm and local level. At an industry level, cotton, grains, meat, sugarcane and dairy amongst others, as well as the Australian fertilizer industry, have responded to non-point source issues by investing in research and development, and developing codes of practice aimed at abating these environmental impacts. Understanding the economic, social, political and cultural contexts of farming as well as the environmental impacts of agriculture are very important in determining the appropriateness of policy responses for Australian farming systems.

  5. Reducing non-point source pollution with enhancing infiltration

    Institute of Scientific and Technical Information of China (English)

    MU Huan-zhen; ZHENG Tao; HUANG Yan-chu; ZHANG Chun-ping; LIU Chen

    2006-01-01

    The rainfall system was set up on a slope land, which was used with some materials to enhance soil infiltration. The results showed that it was effective to enhance the infiltration of rainwater in soil and reduce the pollutants of surface runoff. After the soil meliorated by the lignin polymer and zeolite, runoff was delayed about 10 min and reduced by 44.40%-50.00%, synchronously, the pollutant loads, such as total suspended solids (TSS), chemical oxygen demand by ditromate (CODCr), total nitroger (TN) and total phosphorus (TP), were reduced on averages by 44.58%, 37.80%, 51.62% and 44.11%, respectively. It is an available technique to control the pollution of non-point source from sources.

  6. Application of a constructed wetland for non-point source pollution control.

    Science.gov (United States)

    Kao, C M; Wang, J Y; Lee, H Y; Wen, C K

    2001-01-01

    In Taiwan, non-point source (NPS) pollution is one of the major causes of impairment of surface waters. The main objective of this study was to evaluate the efficacy of using constructed wetlands on NPS pollutant removal and water quality improvements. A field-scale constructed wetland system was built inside the campus of National Sun Yat-Sen University (located in southern Taiwan) to remove (1) NPS pollutants due to the stormwater runoff, and (2) part of the untreated wastewater from school drains. The constructed wetland was 40 m (L) x 30 m (W) x 1 m (D), which received approximately 85 m3 per day of untreated wastewater from school drainage pipes. The plants grown on the wetland included floating (Pistia stratiotes L.) and emergent (Phragmites communis L.) species. One major storm event and baseline water quality samples were analyzed during the monitoring period. Analytical results indicate that the constructed wetland removed a significant amount of NPS pollutants and wastewater constituents. More than 88% of nitrogen, 81% of chemical oxygen demand (COD), 85% of heavy metals, and 60% of the total suspended solids (TSS) caused by the storm runoff were removed by the wetland system before discharging. Results from this study may be applied to the design of constructed wetlands for NPS pollution control and water quality improvement.

  7. The Roles of Countrywomen in Controlling Non-point Source Pollution

    Institute of Scientific and Technical Information of China (English)

    Jiang Dongmei; Zhou Yuanfang; Lu Genfa

    2006-01-01

    The main causes of non-point source pollution in Taihu Lake are the improper ways of crop production, animal husbandry, and daily runoff. The paper discusses the relationship between countrywomen and non-point source pollution control by 731 questionnaires in Weidu village and 466 questionnaires in Dapu Town. The roles of countrywomen have changed in families and they have close relationship with non-point source pollution. Furthermore, we discuss the possibility and methods of organizing countrywomen in non-point source pollution control.

  8. [A landscape ecological approach for urban non-point source pollution control].

    Science.gov (United States)

    Guo, Qinghai; Ma, Keming; Zhao, Jingzhu; Yang, Liu; Yin, Chengqing

    2005-05-01

    Urban non-point source pollution is a new problem appeared with the speeding development of urbanization. The particularity of urban land use and the increase of impervious surface area make urban non-point source pollution differ from agricultural non-point source pollution, and more difficult to control. Best Management Practices (BMPs) are the effective practices commonly applied in controlling urban non-point source pollution, mainly adopting local repairing practices to control the pollutants in surface runoff. Because of the close relationship between urban land use patterns and non-point source pollution, it would be rational to combine the landscape ecological planning with local BMPs to control the urban non-point source pollution, which needs, firstly, analyzing and evaluating the influence of landscape structure on water-bodies, pollution sources and pollutant removal processes to define the relationships between landscape spatial pattern and non-point source pollution and to decide the key polluted fields, and secondly, adjusting inherent landscape structures or/and joining new landscape factors to form new landscape pattern, and combining landscape planning and management through applying BMPs into planning to improve urban landscape heterogeneity and to control urban non-point source pollution.

  9. Assessment of Economic Loss Caused by Agricultural Non-point Source Nutrient Loss

    Institute of Scientific and Technical Information of China (English)

    FAN Liang-qian; CHEN Feng-hui

    2012-01-01

    Taking Zhejiang Province as an example, we use the JOHNES export coefficient model to estimate the total nitrogen (TN) and total phosphorus (TP) load of agricultural planting, livestock and poultry breeding and rural living non-point source in 2009. Based on the protection cost method in environmental economics, we quantitatively assess the economic loss caused by these three types of non-point source nutrient loss. The results show that in TN non-point source load, the load of land for planting accounts for 57.48%, the load of rural living accounts for 30.22%, and the load of livestock and poultry breeding accounts for 12.30%; in TP non-point source load, the load of rural living accounts for 46.18%, the load of livestock and poultry breeding accounts for 29.00%, and the load of land for planting accounts for 24.82%. The economic loss arising from the agricultural non-point source nutrient loss is equivalent to 2.329 424 7 billion yuan per year (the loss from land for planting accounts for 55.46%; the loss from rural living accounts for 31.21%; the loss from livestock and poultry breeding accounts for 13.33%). It indicates that in order to reduce the loss arising from agricultural non-point source nutrient loss, we should pay attention to controlling the land for planting and rural living source.

  10. Evaluation of the Agricultural Non-point Source Pollution in Chongqing Based on PSR Model

    Institute of Scientific and Technical Information of China (English)

    Hanwen; ZHANG; Xinli; MOU; Hui; XIE; Hong; LU; Xingyun; YAN

    2014-01-01

    Through a series of exploration based on PSR framework model,for the purpose of building a suitable Chongqing agricultural nonpoint source pollution evaluation index system model framework,combined with the presence of Chongqing specific agro-environmental issues,we build a agricultural non-point source pollution assessment index system,and then study the agricultural system pressure,agro-environmental status and human response in total 3 major categories,develope an agricultural non-point source pollution evaluation index consisting of 3 criteria indicators and 19 indicators. As can be seen from the analysis,pressures and responses tend to increase and decrease linearly,state and complex have large fluctuations,and their fluctuations are similar mainly due to the elimination of pressures and impact,increasing the impact for agricultural non-point source pollution.

  11. Game Analysis and Strategy Research of Farmers Involving in the Agricultural Non-Point Source Pollution Prevention and Control

    OpenAIRE

    Zhou Zaohong

    2013-01-01

    This thesis applies game theory to make a quantitative analysis of the outward problem of the agricultural non-point source pollution and discusses the basic starting point to study the agricultural non-point source pollution prevention and control and furthermore researches the measures and recommendations of agricultural non-point source pollution prevention and control.

  12. Game Analysis and Strategy Research of Farmers Involving in the Agricultural Non-Point Source Pollution Prevention and Control

    Directory of Open Access Journals (Sweden)

    Zhou Zaohong

    2013-06-01

    Full Text Available This thesis applies game theory to make a quantitative analysis of the outward problem of the agricultural non-point source pollution and discusses the basic starting point to study the agricultural non-point source pollution prevention and control and furthermore researches the measures and recommendations of agricultural non-point source pollution prevention and control.

  13. mpacts of Agricultural Non-point Pollution on Water-source Area in Songhua Dam

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    [Objective] The aim was to research impacts of agricultural non-point pol- lution on water-source region in Songhua Dam, laying foundation for control of water pollution and scientific protection of water-source region. [Method] Water in Muyang River, lengshui River and Zizania aquatica region were sampled to measure content of pollutants in water and conclude relation between water contamination and agri- cultural non-point pollution to find the major cause of pollution. [Result] Organic pollu- tant in Muyang River was higher; N and P contents in Lengshui River were higher; the measured indices in Zizania aquatica region excessively exceeded related stan- dard. [Conclusion] The chemical fertilizers and pesticides are the toxic materials lead- ing to water contamination and constitute a major cause of pollution in Songhua Dam water-source region. Agricultural non-point pollution should be controlled in a scientific way.

  14. Estimation of Non-point Source Pollution Loads Under Uncertain Information

    Institute of Scientific and Technical Information of China (English)

    LI Ruzhong

    2008-01-01

    Many kinds of uncertainties are involved, such as random, fuzzy, grey, unascertained property and so on, in soil erosion process. To exactly predict the non-point source pollution loads, some uncertainties should be taken into consideration. Aiming at the deficiency of present blind number theory being helpless for fuzziness, a novel blind number, i.e. extended-blind number, was introduced by substituting a set of triangular fuzzy numbers (TFNs), ex-pressed as α-cuts, for interval values in present blind number, and the expected value of extended-blind number was also brought forward by referring to the current blind number theory. On the basis of denoting the parameters of Uni-versal Soil Loss Equation (USLE) as extended-blind parameters, a novel USLE model was established for quantita-tively evaluating soil erosion loss and non-point source pollution loads. As a case, the uncertain USLE was employed for predicting the soil erosion loss and non-point source pollution loads of absorbed nitrogen and phosphorus in a dis-trict in the Hangbu-Fengle River basin, in the upstream of Chaohu Lake watershed. The results show that it is feasible in theory to extend blind number into fuzzy environment and reliable on conclusion to apply extended-blind number theory for predicting non-point source pollution loads.

  15. Another Look at the Income Elasticity of Non-point Source Air Pollutants: A Semiparametric Approach

    NARCIS (Netherlands)

    Roy, N.; Kooten, van G.C.

    2004-01-01

    In this paper, a semiparametric model is used to examine the relationship between pollution and income for three non-point source pollutants. Statistical tests reject the quadratic specification in favor of the semiparametric model in all cases. However, the results do not support the inverted-U hyp

  16. Relationship Between Non-Point Source Pollution and Korean Green Factor

    OpenAIRE

    Seung Chul Lee; In-Hyeok Park; Byung Sik Kim; and Sung Ryong Ha

    2015-01-01

    In determining the relationship between the rational event mean concentration (REMC) which is a volume-weighted mean of event mean concentrations (EMCs) as a non-point source (NPS) pollution indicator and the green factor (GF) as a low impact development (LID) land use planning indicator, we constructed at runoff database containing 1483 rainfall events collected from 107 different experimental catchments from 19 references in Korea. The collected data showed that EMCs were not correlated wit...

  17. THE METHOD OF CAR HEADLIGHTS LUMINOUS INTENSITY MEASURING FOR NON-POINT SOURCES OF LIGHT

    Directory of Open Access Journals (Sweden)

    A. Kupko

    2015-12-01

    Full Text Available It is shown that the measurements of luminous intensity of car headlights luminous intensity for non-point sources have pecularities. A simplified method for correction the luminous intensity at various distances is developed. The applicability of the given method with possible measurement errors is studied. The results were obtained, using a stand of the National Scientific Center “Institute of Metroligy”.

  18. Response of non-point source pollutant loads to climate change in the Shitoukoumen reservoir catchment.

    Science.gov (United States)

    Zhang, Lei; Lu, Wenxi; An, Yonglei; Li, Di; Gong, Lei

    2012-01-01

    The impacts of climate change on streamflow and non-point source pollutant loads in the Shitoukoumen reservoir catchment are predicted by combining a general circulation model (HadCM3) with the Soil and Water Assessment Tool (SWAT) hydrological model. A statistical downscaling model was used to generate future local scenarios of meteorological variables such as temperature and precipitation. Then, the downscaled meteorological variables were used as input to the SWAT hydrological model calibrated and validated with observations, and the corresponding changes of future streamflow and non-point source pollutant loads in Shitoukoumen reservoir catchment were simulated and analyzed. Results show that daily temperature increases in three future periods (2010-2039, 2040-2069, and 2070-2099) relative to a baseline of 1961-1990, and the rate of increase is 0.63°C per decade. Annual precipitation also shows an apparent increase of 11 mm per decade. The calibration and validation results showed that the SWAT model was able to simulate well the streamflow and non-point source pollutant loads, with a coefficient of determination of 0.7 and a Nash-Sutcliffe efficiency of about 0.7 for both the calibration and validation periods. The future climate change has a significant impact on streamflow and non-point source pollutant loads. The annual streamflow shows a fluctuating upward trend from 2010 to 2099, with an increase rate of 1.1 m(3) s(-1) per decade, and a significant upward trend in summer, with an increase rate of 1.32 m(3) s(-1) per decade. The increase in summer contributes the most to the increase of annual load compared with other seasons. The annual NH (4) (+) -N load into Shitoukoumen reservoir shows a significant downward trend with a decrease rate of 40.6 t per decade. The annual TP load shows an insignificant increasing trend, and its change rate is 3.77 t per decade. The results of this analysis provide a scientific basis for effective support of decision

  19. Uncertainty Analysis of non-point source pollution control facilities design techniques in Korea

    Science.gov (United States)

    Lee, J.; Okjeong, L.; Gyeong, C. B.; Park, M. W.; Kim, S.

    2015-12-01

    The design of non-point sources control facilities in Korea is divided largely by the stormwater capture ratio, the stormwater load capture ratio, and the pollutant reduction efficiency of the facility. The stormwater capture ratio is given by a design formula as a function of the water quality treatment capacity, the greater the capacity, the more the amount of stormwater intercepted by the facility. The stormwater load capture ratio is defined as the ratio of the load entering the facility of the total pollutant load generated in the target catchment, and is given as a design formula represented by a function of the stormwater capture ratio. In order to estimate the stormwater capture ratio and load capture ratio, a lot of quantitative analysis of hydrologic processes acted in pollutant emission is required, but these formulas have been applied without any verification. Since systematic monitoring programs were insufficient, verification of these formulas was fundamentally impossible. However, recently the Korean ministry of Environment has conducted an long-term systematic monitoring project, and thus the verification of the formulas became possible. In this presentation, the stormwater capture ratio and load capture ratio are re-estimated using actual TP data obtained from long-term monitoring program at Noksan industrial complex located in Busan, Korea. Through the re-estimated process, the uncertainty included in the design process that has been applied until now will be shown in a quantitative extent. In addition, each uncertainty included in the stormwater capture ratio estimation and in the stormwater load capture ratio estimation will be expressed to quantify the relative impact on the overall non-point pollutant control facilities design process. Finally, the SWMM-Matlab interlocking module for model parameters estimation will be introduced. Acknowledgement This subject is supported by Korea Ministry of Environment as "The Eco Innovation Project : Non-point

  20. The Degree of Farmers’ Cognition on Non-point Source Pollution:Based on the Statistical Analysis of 453 Farmers

    Institute of Scientific and Technical Information of China (English)

    Qian; BI; Huaiye; WANG; Jue; PENG

    2014-01-01

    With the rapid development of modern agriculture,agricultural non-point source pollution becomes increasingly serious in China,improving farmers’ environmental protection consciousness plays a very important role in the reduction of agricultural non-point source pollution.Therefore,this investigation and study chooses rural areas of five counties from Chongqing city and Zhejiang province as our samples,our investigation and statistical analysis includes the following four aspects:farmers’ cognition on non-point source pollution concept,farmers’ cognition to rural environment satisfaction,farmers’ cognition on non-point source pollution in agricultural production and farmers’ cognition on the consequences of agricultural non-point source pollution and the effects on ecological environment.The analysis and conclusions of farmers’ consciousness cognition on agricultural non-point source pollution,provides the supports in theory and practice for optimizing the behavior of farmers,promoting the management of agricultural non-point source pollution and implementing new rural construction goal.

  1. A method to analyze "source-sink" structure of non-point source pollution based on remote sensing technology.

    Science.gov (United States)

    Jiang, Mengzhen; Chen, Haiying; Chen, Qinghui

    2013-11-01

    With the purpose of providing scientific basis for environmental planning about non-point source pollution prevention and control, and improving the pollution regulating efficiency, this paper established the Grid Landscape Contrast Index based on Location-weighted Landscape Contrast Index according to the "source-sink" theory. The spatial distribution of non-point source pollution caused by Jiulongjiang Estuary could be worked out by utilizing high resolution remote sensing images. The results showed that, the area of "source" of nitrogen and phosphorus in Jiulongjiang Estuary was 534.42 km(2) in 2008, and the "sink" was 172.06 km(2). The "source" of non-point source pollution was distributed mainly over Xiamen island, most of Haicang, east of Jiaomei and river bank of Gangwei and Shima; and the "sink" was distributed over southwest of Xiamen island and west of Shima. Generally speaking, the intensity of "source" gets weaker along with the distance from the seas boundary increase, while "sink" gets stronger.

  2. [L-THIA-based management design for controlling urban non-point source pollution].

    Science.gov (United States)

    Guo, Qing-Hai; Yang, Liu; Ke-Ming, Ma

    2007-11-01

    L-THIA Model was used to simulate the amounts of NPS pollutants in 2 catchments of Sanjiao watershed (Sj1, Sj2) in Hanyang district, and the total simulated amount of NPS loads in Sj1 and Sj2 were 1.82 x 10(4) kg, 1.38 x 10(5) kg, respectively. Based on the theory of resource-sink" and interaction of pattern with process, a series of BMPs, including green roof, grassland, porous pavement, infiltration trench, vegetative filter strip and wet pond, were optimized, and effects of BMPs were simulated along the surface runoff pathway. The results show that total pollutants outputs entering Sj1 and Sj2 account for 14.65% and 6.57%, respectively. Combining L-THIA model and BMPs in series is a proper measure for non-point source pollution control and urban development planning at watershed or region scale.

  3. Modified Weighting for Calculating the Average Concentration of Non-Point Source Pollutant

    Institute of Scientific and Technical Information of China (English)

    牟瑞芳

    2004-01-01

    The concentration of runoff depends upon that of soil loss and the latter is assumed to be linear to the value of EI that equals the product of total storm energy E times the maximum 30-min intensity I30 for a given rainstorm. Usually, the maximum accumulative amount of rain for a rainstorm might bring on the maximum amount of runoff, but it does not equal the maximum erosion and not always lead the maximum concentration. Thus, the average concentration weighted by amount of runoff is somewhat unreasonable. An improvement for the calculation method of non-point source pollution load put forward by professor Li Huaien is proposed. In replacement of the weight of runoff, EI value of a single rainstorm is introduced as a new weight. An example of Fujing River watershed shows that its application is effective.

  4. [Zoning planning in non-point source pollution control in Hanyang district].

    Science.gov (United States)

    Yang, Liu; Ma, Ke-Ming; Guo, Qing-Hai; Zhao, Jing-Zhu; Luo, Yong-Feng

    2006-01-01

    It is most important for managing urban non-point source (NPS) pollution, actualizing the urban sustainable development as well, that zoning planning of urban NPS pollution control is studied. A case study on principles and methods of zoning planning in urban NPS pollution is carried out. Principles of urban sustainable development, priority of urban NPS pollution sensitivity, similarity of urban NPS control direction and region conjugate are put forward. Besides, it is for the first time that a more quantitive method is presented, in the case of Hanyang district, Wuhan city, which is based on L-THIA model and spatial analysis technique in GIS. Assessment of NPS pollution status quo, as well as analysis of NPS sensitivity, is the kernel component of the quantitive method. Hanyang might be divided into four NPS pollution control zones. It is helpful for decision-making of regional NPS pollution control.

  5. Isotopic Tracers for Delineating Non-Point Source Pollutants in Surface Water

    Energy Technology Data Exchange (ETDEWEB)

    Davisson, M L

    2001-03-01

    This study tested whether isotope measurements of surface water and dissolved constituents in surface water could be used as tracers of non-point source pollution. Oxygen-18 was used as a water tracer, while carbon-14, carbon-13, and deuterium were tested as tracers of DOC. Carbon-14 and carbon-13 were also used as tracers of dissolved inorganic carbon, and chlorine-36 and uranium isotopes were tested as tracers of other dissolved salts. In addition, large databases of water quality measurements were assembled for the Missouri River at St. Louis and the Sacramento-San Joaquin Delta in California to enhance interpretive results of the isotope measurements. Much of the water quality data has been under-interpreted and provides a valuable resource to investigative research, for which this report exploits and integrates with the isotope measurements.

  6. Investigation and Analysis of Guangzhou Nansha Coast Park Point Source Pollution and Non-point Source Pollution

    Institute of Scientific and Technical Information of China (English)

    Ruijie; YANG; Huanghuang; ZENG; Budan; CHEN; Fang; CHEN; Shikai; WU

    2014-01-01

    [Objective]To find out the situation of Nansha Coast Park point and non-point source pollution.[Method]By investigating the park water environment,analysis of point and non-point source pollutants contribution rate,setting up water quality monitoring sites for basic data related indicators and then using national water quality standards to evaluate water quality.[Result]The Coast Park point source pollution mainly comes from the campus greeting fertilizer spraying.The COD of lakes and river outside the park and ammonia mean concentration belong to grade III.The total nitrogen of lake belongs to grade III.The total phosphorus belongs to grade IV.The total nitrogen of river is the worst.The total phosphorus is grade V.[Conclusion] The lake water quality is highly affected by the point and non-point source pollution,the quality of the river is worse than that of the lake in the park,and it needs powerful governance.

  7. [Impacts of the urbanization on waters non-point source pollution].

    Science.gov (United States)

    Yang, Liu; Ma, Ke-Ming; Guo, Qing-hai; Zhao, Jing-zhu

    2004-11-01

    Non-point source (NPS) pollution is the prominent source of water pollution in many countries, included America and China, of the world. Urban NPS pollution was attached little importance for long, compared with agriculture NPS pollution. While urbanization is the dominant form of land-use change in terms of impacts on water quality, the hydrology, other physical properties of watersheds as well as their NPS pollution potential at present. The formation of urban NPS pollution of water could be described by "source-process-sink". Urbanization has changed the source, process and sink of urban NPS pollution. A review was conducted on the international researches of urbanization impacts on NPS pollution in urban water environment from the point of view of "describe-predict and evaluation-application". The studies of urbanization impacts on urban NPS pollution were focused on modeling the process of urban NPS pollution by hydrologic model, predicting the pollutants load of NPS pollution. It is a fresh methodology that the relationship between urbanization and urban NPS pollution of water was analyzed by the method of landscape change and ecological process. The research on temporal-spatial comprehensive impacts of landscape pattern changes, led by urbanization, on the urban NPS pollution will be one of the hotspots.

  8. Loss coefficient of nitrogenous non-point source pollution under various precipitation conditions

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this study,calibrations of non-point source (NPS) pollution models are performed based on Black River basin historical real-time runoff data,sedimentation record data,and NPS sources survey information.The concept of NPS loss coefficient for the watershed or the loss coefficients (LC) for simplicity is brought up by examining NPS build-up and migration processes along riverbanks in natural river systems.The historical data is used for determining the nitrogenous NPS loss coefficient for five land use types including farmland,urban land,grassland,shrub land,and forest under different precipitation conditions.The comparison of outputs from Soil and Water Assessment Tool (SWAT) model and coefficient export method showed that both methods could obtain reasonable LC.The high Pearson correlation coefficient (0.94722) between those two sets of calculation results justified the consistency of those two models.Another result in the study is that different combinations of precipitation condition and land use types could significantly affect the calculated loss coefficient.As for the adsorptive nitrogen,the order of impact on LC for different land use types can be sorted as:farm land > urban land > grassland > shrub land > forest while the order was farmland > grass land > shrub land > forest > urban land for soluble nitrogen.

  9. Mapping the scientific research on non-point source pollution: a bibliometric analysis.

    Science.gov (United States)

    Yang, Beibei; Huang, Kai; Sun, Dezhi; Zhang, Yue

    2017-02-01

    A bibliometric analysis was conducted to examine the progress and future research trends of non-point source (NPS) pollution during the years 1991-2015 based on the Science Citation Index Expanded (SCI-Expanded) of Web of Science (WoS). The publications referencing NPS pollution were analyzed including the following aspects: document type, publication language, publication output and characteristics, subject category, source journal, distribution of country and institution, author keywords, etc. The results indicate that the study of NPS pollution demonstrated a sharply increasing trend since 1991. Article and English were the most commonly used document type and language. Environmental sciences and ecology, water resources, and engineering were the top three subject categories. Water science and technology ranked first in distribution of journal, followed by Science of the total environment and Environmental Monitoring and Assessment. The USA took a leading position in both quantity and quality, playing an important role in the research field of NPS pollution, followed by the UK and China. The most productive institution was the Chinese Academy of Sciences (Chinese Acad Sci), followed by Beijing Normal University and US Department of Agriculture's Agricultural Research Service (USDA ARS). The analysis of author keywords indicates that the major hotspots of NPS pollution from 1991 to 2015 contained "water," "model," "agriculture," "nitrogen," "phosphorus," etc. The results provide a comprehensive understanding of NPS pollution research and help readers to establish the future research directions.

  10. Optimization strategy integrity for watershed agricultural non-point source pollution control based on Monte Carlo simulation

    Science.gov (United States)

    Gong, Y.; Yu, Y. J.; Zhang, W. Y.

    2016-08-01

    This study has established a set of methodological systems by simulating loads and analyzing optimization strategy integrity for the optimization of watershed non-point source pollution control. First, the source of watershed agricultural non-point source pollution is divided into four aspects, including agricultural land, natural land, livestock breeding, and rural residential land. Secondly, different pollution control measures at the source, midway and ending stages are chosen. Thirdly, the optimization effect of pollution load control in three stages are simulated, based on the Monte Carlo simulation. The method described above is applied to the Ashi River watershed in Heilongjiang Province of China. Case study results indicate that the combined three types of control measures can be implemented only if the government promotes the optimized plan and gradually improves implementation efficiency. This method for the optimization strategy integrity for watershed non-point source pollution control has significant reference value.

  11. Parameter uncertainty analysis of non-point source pollution from different land use types.

    Science.gov (United States)

    Shen, Zhen-yao; Hong, Qian; Yu, Hong; Niu, Jun-feng

    2010-03-15

    Land use type is one of the most important factors that affect the uncertainty in non-point source (NPS) pollution simulation. In this study, seventeen sensitive parameters were screened from the Soil and Water Assessment Tool (SWAT) model for parameter uncertainty analysis for different land use types in the Daning River Watershed of the Three Gorges Reservoir area, China. First-Order Error Analysis (FOEA) method was adopted to analyze the effect of parameter uncertainty on model outputs under three types of land use, namely, plantation, forest and grassland. The model outputs selected in this study consisted of runoff, sediment yield, organic nitrogen (N), and total phosphorus (TP). The results indicated that the uncertainty conferred by the parameters differed among the three land use types. In forest and grassland, the parameter uncertainty in NPS pollution was primarily associated with runoff processes, but in plantation, the main uncertain parameters were related to runoff process and soil properties. Taken together, the study suggested that adjusting the structure of land use and controlling fertilizer use are helpful methods to control the NPS pollution in the Daning River Watershed.

  12. Regional-scale assessment of non-point source groundwater contamination

    Science.gov (United States)

    Loague, Keith; Corwin, Dennis L.

    1998-05-01

    Predictive assessments of non-point source (NPS) pollution can have great utility for environmentally focused land use decisions related to both the remediation of existing groundwater contamination and the regulation of current (and future) agrochemical use. At the regional scales associated with NPS agrochemical applications there are staggering data management problems in assessing potential groundwater vulnerability. Geographical information system (GIS) technology is a timely tool that greatly facilitates the organized characterization of regional-scale variability. In this paper we review the recently reported (Loague et al., 1998a,b) simulations of NPS groundwater vulnerability, resulting from historical applications of the agrochemical DBCP (1,2-dibromo-3-chloropropane), for east-central Fresno County (California). The Fresno case study helps to illustrate the data requirements associated with process-based three-dimensional simulations of coupled fluid flow and solute transport in the unsaturated/saturated subsurface at a regional scale. The strengths and weaknesses of using GIS in regional-scale vulnerability assessments, such as the Fresno case study, and the critical problem of estimating the uncertainties in these assessments (owing to both data and model errors) are discussed. A regional GIS-driven integrated assessment approach is proposed, which is based upon cost-benefit analysis, and incorporates both physical and economic factors that can be used in a regulatory decision process.

  13. Pollution of surface waters by metalaxyl and nitrate from non-point sources.

    Science.gov (United States)

    Bermúdez-Couso, Alipio; Fernández-Calviño, David; Álvarez-Enjo, Manuel Ali; Simal-Gándara, Jesús; Nóvoa-Muñoz, Juan Carlos; Arias-Estévez, Manuel

    2013-09-01

    The mobility of contaminants in soil is highly dependent upon the characteristics of the contaminant chemical and the properties of the soil. In order to explore these relationships, the district of A Limia (Galicia, NW Spain) was selected as the study area--a cropland devoted to growing potatoes, where the soil had been managed intensively over the last 50 years. The soil was characterised by low slopes with the water table located very close to the soil surface. Our aim was to study the influence of high and intensive crop production on the water bodies and non-point source contamination, with a particular focus on metalaxyl and nitrate. The highest concentrations of metalaxyl occurred when rainfalls were low and in zones of the study area where natural hydrology was significantly altered by numerous drainage canals. The spatial and temporal distributions of the nitrate also showed a high variability, with the interaction between seasons and sampling area being the most significant factor in explaining the levels found. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Introduction: Assessing non-point source pollution in the vadose zone with advanced information technologies

    Science.gov (United States)

    Corwin, Dennis L.; Loague, Keith; Ellsworth, Timothy R.

    The information age has ushered in a global awareness of complex environmental problems that do not respect political or physical boundaries: climatic change, ozone layer depletion, deforestation, desertification, and non-point source (NPS) pollution. Among these global environmental problems, NPS pollutants represent a perfect example of a complex multidisciplinary problem that exists over multiple scales with tremendous spatial and temporal complexity. To address the NPS problem, specific to the vadose zone, advanced information technologies must be applied in a spatial context. An integrated system of advanced information technologies (i.e., global positioning, geographic information system, geostatistics, remote sensing, solute transport modeling, neural networks, transfer functions, fuzzy logic, hierarchical theory, and uncertainty analysis) provides a framework from which real-time and/or simulated assessments of NPS pollution can be made. The ability to accurately assess present and future NPS-pollution impacts on ecosystems ranging from local to global scales provides a powerful tool for environmental stewardship and guiding future human activities.

  15. A distributed non-point source pollution model: calibration and validation in the Yellow River Basin.

    Science.gov (United States)

    Hao, Fang-hua; Zhang, Xue-song; Yang, Zhi-feng

    2004-01-01

    The applicability of a non-point source pollution model--SWAT(soil and water assessment tools) in a large river basin with high sediment runoff modulus(770 t/km2 in the Yellow River) was examined. The basic database, which includes DEM, soil and landuse map, weather data, and land management data, was established for the study area using GIS. A two-stage "Brute Force" optimization method was used to calibrate the parameters with the observed monthly flow and sediment data from 1992 to 1997. In the process of calibration automated digital filter technique was used to separate direct runoff and base flow. The direct runoff was firstly calibrated, and the base flow, then the total runoff was matched. The sediment yield was calibrated to match well. Keeping input parameters set during the calibration process unchanged, the model was validated with 1998--1999's observed monthly flow and sediment. The evaluation coefficients for simulated and observed flow and sediment showed that SWAT was successfully applied in the study area: relative error was within 20%, coefficient of determination and Nash-Suttcliffe simulation efficiency were all equal to or above 0.70 during calibration and validation period.

  16. Model AVSWAT apropos of simulating non-point source pollution in Taihu lake basin.

    Science.gov (United States)

    Zhang, Qiu-Ling; Chen, Ying-Xu; Jilani, Ghulam; Shamsi, Imran Haider; Yu, Qiao-Gang

    2010-02-15

    Accelerated eutrophication and nutrient loads in the lakes are of major concern for human health and environment. This study was undertaken for modeling the non-point source pollution of Taihu lake basin in eastern China. The SWAT model having an interface in ArcView GIS was employed. Model sensitive parameters related to hydrology and water quality were obtained by sensitivity analysis, and then calibrated and validated by comparing model predictions with field data. The GIS showed good potential for parameterization of hill-slopes, channels, and representative slope profiles for SWAT model simulations. In a monthly and daily time step, the model's Nash-Sutcliffe coefficient (E) and the coefficient of determination (R(2)) indicated that values of simulated runoff, NH(4)(+)-N and total phosphorus were acceptably closer to the measured data. Surface water parameters especially CN, Soil-AWC and ESCO were the most sensitive and had more recognition in the model. It is concluded that runoff carrying N and P nutrients from chemical fertilizer inputs in agricultural areas is the major contributor to NPSP in the lake basin. So, decrease in excessive use of N and P fertilizers and their synergism with organic manures is recommended that would significantly reduce nutrient pollution in the lake ecosystem.

  17. Reducing future non-point source sediment and phosphorus loading under intensifying agricultural production in the Ethiopian highlands

    Science.gov (United States)

    Mogus, Mamaru; Schmitter, Petra; Tilahun, Seifu; Steenhuise, Tammo

    2016-04-01

    Intensification of agriculture will bring along non-point source pollution in the Ethiopian highlands resulting in eutrophication of lakes. The first signs of eutrophication have been observed already in Lake Tana. The lake it supports the lives of millions in the surrounding through fishing, tourism, transportation and hydropower.Presently, information on non-point source pollution is lacking in the Ethiopian highlands. There are few studies carried out in the highlands on the extent and the source areas of pollution, and models are not available for predicting sediment and phosphorus loading other than those developed for temperate climates. The objective of this chapter is to review existing non-point source studies, report on our findings of sediment and phosphorus sources that are related the non-point source pollution of Lake Tana and to present a non-point source model for the Ethiopian highland based on the Parameter Efficient Semi-distributed Watershed Hydrology Model (PED-WHM).In our research we have found that the saturation excess runoff from valley bottoms and from degraded lands are prevalent in the Ethiopia highlands. The periodically runoff source areas are also the sources for the non-point source pollution and by concentrating best management practices in these source areas we expect that we can reduce pollution without affecting the profitability of the existing farms. The water balance component of the non-point source model has been performing well in predicting both the discharge and the location of the runoff source areas. Sediment and phosphorus prediction models have been developed and are currently being tested for the 7km2Awramba watershed and the 1350 km2Gumara basin. Initial results indicate that 11.2 ton/ha/year sediment load and an accumulation rate of 17.3 mg/kg/year of dissolved phosphorus from Gumara watershed joining the lake. By developing best management practices at this time before non-point source pollution is rampant and

  18. Agricultural non-point source pollution of glyphosate and AMPA at a catchment scale

    Science.gov (United States)

    Okada, Elena; Perez, Debora; De Geronimo, Eduardo; Aparicio, Virginia; Costa, Jose Luis

    2017-04-01

    Information on the actual input of pesticides into the environment is crucial for proper risk assessment and the design of risk reduction measures. The Crespo basin is found within the Balcarce County, located south-east of the Buenos Aires Province. The whole basin has an area of approximately 490 km2 and the river has a length of 65 km. This study focuses on the upper basin of the Crespo stream, covering an area of 226 km2 in which 94.7% of the land is under agricultural production representing a highly productive area, characteristic of the Austral Pampas region. In this study we evaluated the levels of glyphosate and its metabolite aminomethylphosphonic acid (AMPA) in soils; and the non-point source pollution of surface waters, stream sediments and groundwater, over a period of one year. Stream water samples were taken monthly using propylene bottles, from the center of the bridge. If present, sediment samples from the first 5 cm were collected using cylinder samplers. Groundwater samples were taken from windmills or electric pumps from different farms every two months. At the same time, composite soil samples (at 5 cm depth) were taken from an agricultural plot of each farm. Samples were analyzed for detection and quantification of glyphosate and AMPA using ultra-performance liquid chromatography coupled to a mass spectrometer (UPLC-MS/MS). The limit of detection (LD) in the soil samples was 0.5 μg Kg-1 and the limit of quantification (LQ) was 3 μg Kg-1, both for glyphosate and AMPA. In water samples the LD was 0.1 μg L-1 and the LQ was 0.5 μg L-1. The results showed that the herbicide dispersed into all the studied environmental compartments. Glyphosate and AMPA residues were detected in 34 and 54% of the stream water samples, respectively. Sediment samples had a higher detection frequency (>96%) than water samples, and there was no relationship between the presence in surface water with the detection in sediment samples. The presence in sediment samples

  19. Relationship Between Non-Point Source Pollution and Korean Green Factor

    Directory of Open Access Journals (Sweden)

    Seung Chul Lee

    2015-01-01

    Full Text Available In determining the relationship between the rational event mean concentration (REMC which is a volume-weighted mean of event mean concentrations (EMCs as a non-point source (NPS pollution indicator and the green factor (GF as a low impact development (LID land use planning indicator, we constructed at runoff database containing 1483 rainfall events collected from 107 different experimental catchments from 19 references in Korea. The collected data showed that EMCs were not correlated with storm factors whereas they showed significant differences according to the land use types. The calculated REMCs for BOD, COD, TSS, TN, and TP showed negative correlations with the GFs. However, even though the GFs of the agricultural area were concentrated in values of 80 like the green areas, the REMCs for TSS, TN, and TP were especially high. There were few differences in REMC runoff characteristics according to the GFs such as recreational facilities areas in suburbs and highways and trunk roads that connect to major roads between major cities. Except for those areas, the REMCs for BOD and COD were significantly related to the GFs. The REMCs for BOD and COD decreased when the rate of natural green area increased. On the other hand, some of the REMCs for TSS, TN, and TP were still high where the catchments encountered mixed land use patterns, especially public facility areas with bare ground and artificial grassland areas. The GF could therefore be used as a major planning indicator when establishing land use planning aimed at sustainable development with NPS management in urban areas if the weighted GF values will be improved.

  20. Assessing the effects of non-point source pollution on American Samoa's coral reef communities.

    Science.gov (United States)

    Houk, Peter; Didonato, Guy; Iguel, John; Van Woesik, Robert

    2005-08-01

    Surveys were completed on Tutuila Island, American Samoa, to characterize reef development and assess the impacts of non-point source pollution on adjacent coral reefs at six sites. Multivariate analyses of benthic and coral community data found similar modern reef development at three locations; Aoa, Alofau, and Leone. These sites are situated in isolated bays with gentle sloping foundations. Aoa reefs had the highest estimates of crustose coralline algae cover and coral species richness, while Leone and Alofau showed high abundances of macroalgae and Porites corals. Aoa has the largest reef flat between watershed discharge and the reef slope, and the lowest human population density. Masefau and Fagaalu have a different geomorphology consisting of cemented staghorn coral fragments and steep slopes, however, benthic and coral communities were not similar. Benthic data suggest Fagaalu is heavily impacted compared with all other sites. Reef communities were assessed as bio-criteria indicators for waterbody health, using the EPA aquatic life use support designations of (1) fully supportive, (2) partially supportive, and (3) non-supportive for aquatic life. All sites resulted in a partially supportive ranking except Fagaalu, which was non-supportive. The results of this rapid assessment based upon relative benthic community measures are less desirable than long-term dataset analyses from monitoring programs, however it fills an important role for regulatory agencies required to report annual waterbody assessments. Future monitoring sites should be established to increase the number of replicates within each geological and physical setting to allow for meaningful comparisons along a gradient of hypothesized pollution levels.

  1. Spatial and Temporal Distribution Characteristics of Agricultural Non-point Source Pollution in Xixi Watershed of Jinjiang Basin

    Institute of Scientific and Technical Information of China (English)

    Kun RONG; Jiqiang ZHANG; Yang SHI

    2016-01-01

    The SWAT model was applied to analyze the temporal-spatial distribution patterns of non-point source pollution loads and the difference of pollution loads of different land use types in Xixi Watershed of Jinjiang Basin. The results showed that both yearly nitrogen and phosphorus pollution loads were evenly distributed during 1973 to 1979,the annual TN pollution from non-point source was 1530 t,or 6. 3 kg / ha,and the annual TP pollution from non-point source was 270 t,or 1. 1 kg / ha during 1973 to 1979 in the watershed. Considerable differences were identified on both monthly nitrogen and phosphorus pollution loads. The TN and TP pollution loads during the flood season( from April to September) accounted for 76. 2% and 75. 8% of the annual load respectively. There were great differences in both TN and TP pollution loads of different land use types in the study area,and the pollution load of both farmland and orchard was higher than that of the other land use types. TN and TP pollution loads of farmland accounted for 66% and 83% of total watershed. There was a great spatial difference in the nonpoint source pollution load of the study area. The critical source areas of non-point source pollution are mainly located at Guanqiao Town,Longmen Town,Changkeng Town,Shangqing Town and Dapu Town,where the efforts of controlling pollution should be made.

  2. The Treatment Train approach to reducing non-point source pollution from agriculture

    Science.gov (United States)

    Barber, N.; Reaney, S. M.; Barker, P. A.; Benskin, C.; Burke, S.; Cleasby, W.; Haygarth, P.; Jonczyk, J. C.; Owen, G. J.; Snell, M. A.; Surridge, B.; Quinn, P. F.

    2016-12-01

    An experimental approach has been applied to an agricultural catchment in NW England, where non-point pollution adversely affects freshwater ecology. The aim of the work (as part of the River Eden Demonstration Test Catchment project) is to develop techniques to manage agricultural runoff whilst maintaining food production. The approach used is the Treatment Train (TT), which applies multiple connected mitigation options that control nutrient and fine sediment pollution at source, and address polluted runoff pathways at increasing spatial scale. The principal agricultural practices in the study sub-catchment (1.5 km2) are dairy and stock production. Farm yards can act as significant pollution sources by housing large numbers of animals; these areas are addressed initially with infrastructure improvements e.g. clean/dirty water separation and upgraded waste storage. In-stream high resolution monitoring of hydrology and water quality parameters showed high-discharge events to account for the majority of pollutant exports ( 80% total phosphorus; 95% fine sediment), and primary transfer routes to be surface and shallow sub-surface flow pathways, including drains. To manage these pathways and reduce hydrological connectivity, a series of mitigation features were constructed to intercept and temporarily store runoff. Farm tracks, field drains, first order ditches and overland flow pathways were all targeted. The efficacy of the mitigation features has been monitored at event and annual scale, using inflow-outflow sampling and sediment/nutrient accumulation measurements, respectively. Data presented here show varied but positive results in terms of reducing acute and chronic sediment and nutrient losses. An aerial fly-through of the catchment is used to demonstrate how the TT has been applied to a fully-functioning agricultural landscape. The elevated perspective provides a better understanding of the spatial arrangement of mitigation features, and how they can be

  3. Using a constructed wetland for non-point source pollution control and river water quality purification: a case study in Taiwan.

    Science.gov (United States)

    Wu, C Y; Kao, C M; Lin, C E; Chen, C W; Lai, Y C

    2010-01-01

    The Kaoping River Rail Bridge Constructed Wetland, which was commissioned in 2004, is one of the largest constructed wetlands in Taiwan. This multi-function wetland has been designed for the purposes of non-point source (NPS) pollutant removal, wastewater treatment, wildlife habitat, recreation, and education. The major influents of this wetland came from the local drainage trench containing domestic, agricultural, and industrial wastewaters, and effluents from the wastewater treatment plant of a paper mill. Based on the quarterly investigation results from 2007 to 2009, more than 96% of total coliforms (TC), 48% of biochemical oxygen demand (BOD), and 40% of nutrients (e.g. total nitrogen, total phosphorus) were removed via the constructed wetland system. Thus, the wetland system has a significant effect on water quality improvement and is capable of removing most of the pollutants from the local drainage system before they are discharged into the downgradient water body. Other accomplishments of this constructed wetland system include the following: providing more green areas along the riversides, offering more water assessable eco-ponds and eco-gardens for the public, and rehabilitating the natural ecosystem. The Kaoping River Rail Bridge Constructed Wetland has become one of the most successful multi-function constructed wetlands in Taiwan. The experience obtained from this study will be helpful in designing similar natural treatment systems for river water quality improvement and wastewater treatment.

  4. Long-term vegetation landscape pattern with non-point source nutrient pollution in upper stream of Yellow River basin

    NARCIS (Netherlands)

    Ouyang, W.; Skidmore, A.K.; Toxopeus, A.G.; Hao, F.

    2010-01-01

    Grassland, forest, and farmland are the dominant land covers in upper catchments of the Yellow River and their landscape status has direct connection with dynamics of non-point source (NPS) pollution. Understanding the correlations between landscape variables and different formats of NPS nutrients p

  5. Long-term vegetation landscape pattern with non-point source nutrient pollution in upper stream of Yellow River basin

    NARCIS (Netherlands)

    Ouyang, W.; Skidmore, A.K.; Toxopeus, A.G.; Hao, F.

    2010-01-01

    Grassland, forest, and farmland are the dominant land covers in upper catchments of the Yellow River and their landscape status has direct connection with dynamics of non-point source (NPS) pollution. Understanding the correlations between landscape variables and different formats of NPS nutrients p

  6. Impacts of DEM uncertainties on critical source areas identification for non-point source pollution control based on SWAT model

    Science.gov (United States)

    Xu, Fei; Dong, Guangxia; Wang, Qingrui; Liu, Lumeng; Yu, Wenwen; Men, Cong; Liu, Ruimin

    2016-09-01

    The impacts of different digital elevation model (DEM) resolutions, sources and resampling techniques on nutrient simulations using the Soil and Water Assessment Tool (SWAT) model have not been well studied. The objective of this study was to evaluate the sensitivities of DEM resolutions (from 30 m to 1000 m), sources (ASTER GDEM2, SRTM and Topo-DEM) and resampling techniques (nearest neighbor, bilinear interpolation, cubic convolution and majority) to identification of non-point source (NPS) critical source area (CSA) based on nutrient loads using the SWAT model. The Xiangxi River, one of the main tributaries of Three Gorges Reservoir in China, was selected as the study area. The following findings were obtained: (1) Elevation and slope extracted from the DEMs were more sensitive to DEM resolution changes. Compared with the results of the 30 m DEM, 1000 m DEM underestimated the elevation and slope by 104 m and 41.57°, respectively; (2) The numbers of subwatersheds and hydrologic response units (HRUs) were considerably influenced by DEM resolutions, but the total nitrogen (TN) and total phosphorus (TP) loads of each subwatershed showed higher correlations with different DEM sources; (3) DEM resolutions and sources had larger effects on CSAs identifications, while TN and TP CSAs showed different response to DEM uncertainties. TN CSAs were more sensitive to resolution changes, exhibiting six distribution patterns at all DEM resolutions. TP CSAs were sensitive to source and resampling technique changes, exhibiting three distribution patterns for DEM sources and two distribution patterns for DEM resampling techniques. DEM resolutions and sources are the two most sensitive SWAT model DEM parameters that must be considered when nutrient CSAs are identified.

  7. [Spatial discharge characteristics and total load control of non-point source pollutants based on the catchment scale].

    Science.gov (United States)

    Wang, Xia-Hui; Lu, Jun; Zhang, Qing-Zhong; Wang, Bo; Yao, Rui-Hua; Zhang, Hui-Yuan; Huang, Feng

    2011-09-01

    Agricultural non-point source pollution is one of the major causes of water quality deterioration. Based on the analysis of the spatial discharge characteristics and intensity of major pollutants from the agricultural pollution source, the establishment of spatial management subzones for controlling agricultural non-point pollution and a design of a plan for total load control of pollutants from each subzone is an important way to improve the efficiency of control measures. In this paper the Four Lake basin in Hubei Province is adopted as the research case region and a systematic research of the control countermeasures of agricultural non-point pollution based on the catchment scale is carried out. The results shows that in the Four Lake basin, the COD, total nitrogen, total phosphorus and ammonia nitrogen load of the water environment are mainly caused by agricultural non-point pollution. These four kinds of non-point source pollutants respectively account for 67.6%, 82.2%, 84.7% and 50.9% of the total pollutant discharge amount in the basin. The analysis of the spatial discharge characteristics of non-point source pollutants in the Four Lake basin shows that the major contributor source regions of non-point source pollutant in the basin are the four counties, including Honghu, Jianli, Qianjiang and Shayang where the aquatic and livestock production are relatively developed. According to the spatial discharge characteristics of the pollutants and the evaluation of the discharge intensity of pollutants, the Four Lake basin is divided into three agricultural non-point pollution management subzones, which including Changhu upstream aquatic and livestock production pollution control subzone, Four-lake trunk canal rural non-point source pollution control subzone and Honghu aquatic production pollution control subzone. Specific pollution control measures are put forward for each subzone. With a comprehensive consideration of the water quality amelioration and the

  8. [Three patterns of interaction between soil and non-point source P-pollutants in agricultural watershed].

    Science.gov (United States)

    Wang, Xia-hui; Yin, Cheng-qing; Yan, Xiao; Shan, Bao-qing; Wang, Wei-dong

    2004-07-01

    Typical agricultural watershed was selected to study the interactions between soil matrix and non-point source P-pollutants in surface runoff under simulative conditions. The soil samples were taken in different spatial locations in this watershed and were under different degree of human disturbance. The results showed that the interactions between different soil matrix and phosphorus could be divided into three patterns:retention, release and combination of retention and release. Soil of retention pattern has strong adsorption capacity of phosphate and will retain phosphorus from polluted runoff. Soil of release pattern has significant desorption capacity of phosphate and will release phosphorus to the runoff. Soil of retention and release combination pattern will retain or release phosphorus according to the phosphate concentration in the polluted runoff. These results showed that soil matrix in different spatial locations in the agricultural watershed have different ecological functions and environmental values under the processing of natural conditions and human disturbance. From the view of occurrence of non-point source pollution, these soils could become the sink of pollutants as well as the source of pollutants. Under some conditions, there has a conversion between sink and source of them. These results are valuable for control of non-point source pollution on watershed level, identification of key source area of pollutants and improvement of efficiency of control measures.

  9. SPATIAL ANALYSIS OF SOIL EROSION AND NON-POINT SOURCE POLLUTION BASED ON GIS IN ERLONG LAKE WATERSHED, JILIN PROVINCE

    Institute of Scientific and Technical Information of China (English)

    WANG Ning; ZHANG Hong-yan; WANG Hui-lian; ZHANG Zheng-xiang

    2004-01-01

    Data collection, factor composition, nappe analysis and integrative simulation of natural geographical factors in Erlong Lake watershed have been carried out based on GIS. The risk areas where non-point source pollution may occur were compartmentalized and assessed, and the total soil erosion and the runoffs of N and P with rainfall in this valley were worked out by experiment and GIS mapping. The study indicated that the main type of soil in dry land with variable slope east of the lake and the middle-south parts of steep slope mountainous region (erosion source pollution (NSP) of nitrogen and phosphorus loss was corresponded with the soil erosion. Spatial distribution and the reasons of the distribution difference have been presented and it was emphasized that the human activities among the influence factors was the most important. It surely offers a scientific basis to control and prevent non-point source pollution in the watershed.

  10. The non-point source (NPS) information system based on remote sensing and GIS and its preliminary application

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A non-point source information system (NPSIS) has been constructed by use of remote sensing and GIS technology, and a construction method of NPSlS introduced with Shenzhen as an example. With the remote sensing land-using images as an environment unit, the analysis modules based on NPSIS are built through combining the NPS model with NPSIS, and the preliminary NPS calculation and analysis performed.

  11. Role of rural solid waste management in non-point source pollution control of Dianchi Lake catchments, China

    Institute of Scientific and Technical Information of China (English)

    Wenjing LU; Hongtao WANG

    2008-01-01

    In recent years, with control of the main municipal and industrial point pollution sources and implementation of cleaning for some inner pollution sources in the water body, the discharge of point source pollution decreased gradually, while non-point source pollution has become increasingly distressing in Dianchi Lake catchments. As one of the major targets in non-point source pollution control, an integrated solid waste controlling strategy combined with a technological solution and management system was proposed and implemented based on the waste disposal situation and characteristics of rural solid waste in the demonstration area. As the key technoogy in rural solid waste treatment, both centralized plantscale composting and a dispersed farmer-operated waste treating system showed promise in rendering timely benefits in efficiency, large handling capacity, high quality of the end product, as well as good economic return. Problems encountered during multi-substrates co-com-posting such as pathogens, high moisture content, asyn-chronism in the decomposition of different substrates, and low quality of the end product can all be tackled. 92.5% of solid waste was collected in the demonstration area, while the treating and recycling ratio reached 87.9%, which pre-vented 32.2 t nitrogen and 3.9 t phosphorus per year from entering the water body of Dianchi Lake after imple-mentation of the project.

  12. Anthropogenic point-source and non-point-source nitrogen inputs into Huai River basin and their impacts on riverine ammonia-nitrogen flux

    Science.gov (United States)

    Zhang, W. S.; Swaney, D. P.; Li, X. Y.; Hong, B.; Howarth, R. W.; Ding, S. H.

    2015-07-01

    This study provides a new approach to estimate both anthropogenic non-point-source and point-source nitrogen (N) inputs to the landscape, and determines their impacts on riverine ammonia-nitrogen (AN) flux, providing a foundation for further exploration of anthropogenic effects on N pollution. Our study site is Huai River basin of China, a water-shed with one of the highest levels of N input in the world. Multi-year average (2003-2010) inputs of N to the watershed are 27 200 ± 1100 kg N km-2 yr-1. Non-point sources comprised about 98 % of total N input, and only 2 % of inputs are directly added to the aquatic ecosystem as point sources. Fertilizer application was the largest non-point source of new N to the Huai River basin (69 % of net anthropogenic N inputs), followed by atmospheric deposition (20 %), N fixation in croplands (7 %), and N content of imported food and feed (2 %). High N inputs showed impacts on riverine AN flux: fertilizer application, point-source N input, and atmospheric N deposition were proved as more direct sources to riverine AN flux. Modes of N delivery and losses associated with biological denitrification in rivers, water consumption, interception by dams may influence the extent of export of riverine AN flux from N sources. Our findings highlight the importance of anthropogenic N inputs from both point sources and non-point sources in heavily polluted watersheds, and provide some implications for AN prediction and management.

  13. Modelling of point and non-point source pollution of nitrate with SWAT in the river Dill, Germany

    OpenAIRE

    T. Pohlert; J. A. Huisman; L. Breuer; Frede, H.-G.

    2005-01-01

    International audience; We used the Soil and Water Assessment Tool (SWAT) to simulate point and non-point source pollution of nitrate in a mesoscale mountainous catchment. The results show that the model efficiency for daily discharge is 0.81 for the calibration period (November 1990 to December 1993) and 0.56 for the validation period (April 2000 to January 2003). The model efficiency for monthly nitrate load is 0.66 and 0.77 for the calibration period (April 2000 to March 2002) and validati...

  14. Study on the Control Model of Rural Non-point Source Pollution——Taking Ninghe County in Tianjin as an Example

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the control model of rural non-point source pollution.[Method] Taking Ninghe County(a typical agricultural county in Tianjin) as an example,the current development of local economy and society and characteristics of rural non-point source pollution were studied firstly,then the control model of rural non-point source pollution suitable for Ninghe County was constructed,and its environmental and economic benefits were analyzed finally.[Result] According to the sources of non-...

  15. User's Guide for the Agricultural Non-Point Source (AGNPS) Pollution Model Data Generator

    Science.gov (United States)

    Finn, Michael P.; Scheidt, Douglas J.; Jaromack, Gregory M.

    2003-01-01

    BACKGROUND Throughout this user guide, we refer to datasets that we used in conjunction with developing of this software for supporting cartographic research and producing the datasets to conduct research. However, this software can be used with these datasets or with more 'generic' versions of data of the appropriate type. For example, throughout the guide, we refer to national land cover data (NLCD) and digital elevation model (DEM) data from the U.S. Geological Survey (USGS) at a 30-m resolution, but any digital terrain model or land cover data at any appropriate resolution will produce results. Another key point to keep in mind is to use a consistent data resolution for all the datasets per model run. The U.S. Department of Agriculture (USDA) developed the Agricultural Nonpoint Source (AGNPS) pollution model of watershed hydrology in response to the complex problem of managing nonpoint sources of pollution. AGNPS simulates the behavior of runoff, sediment, and nutrient transport from watersheds that have agriculture as their prime use. The model operates on a cell basis and is a distributed parameter, event-based model. The model requires 22 input parameters. Output parameters are grouped primarily by hydrology, sediment, and chemical output (Young and others, 1995.) Elevation, land cover, and soil are the base data from which to extract the 22 input parameters required by the AGNPS. For automatic parameter extraction, follow the general process described in this guide of extraction from the geospatial data through the AGNPS Data Generator to generate input parameters required by the pollution model (Finn and others, 2002.)

  16. Distributed Simulation of Non-Point Source Pollution in Ashi River Basin

    Institute of Scientific and Technical Information of China (English)

    Fang Ma; Xiaofeng Jiang; Li Wang; Zhe Li; Xiongwei Liang

    2015-01-01

    In order to get a thorough understanding of non⁃point source pollution, it is essential to examine its temporal and spatial distribution. A physically⁃based distributed model, Soil and Water Assessment Tool ( SWAT) , was used in this research, to quantitatively estimate the NPS load and analyze the temporal and spatial distributions of NPS pollution in Ashi River Basin. The results indicated that SWAT was suitable to simulate stream⁃flow and water quality in Ashi River Basin. Total Nitrogen which was contributed by NPS (NPS⁃TN) accounted for 32�47%-62�61%, and Total Phosphorus which was contributed by NPS (NPS⁃TP) accounted for 22�30%-57�85% of the total load respectively. In inter⁃annual timescale, both NPS⁃TN and NPS⁃TP were influenced by stream⁃flow and fertilizer. However, when compared with fertilizer, NPS pollution was more directly affected by stream⁃flow. In annual timescale, NPS⁃TN and NPS⁃TP mainly occurred in flood season (from May to September). In the aspect of space, spatial differences of NPS⁃TN and NPS⁃TP were extremely significant. The spatial variations of NPS pollution were mainly influenced by land use, precipitation, soil and slope.

  17. Modelling of point and non-point source pollution of nitrate with SWAT in the river Dill, Germany

    Directory of Open Access Journals (Sweden)

    T. Pohlert

    2005-01-01

    Full Text Available We used the Soil and Water Assessment Tool (SWAT to simulate point and non-point source pollution of nitrate in a mesoscale mountainous catchment. The results show that the model efficiency for daily discharge is 0.81 for the calibration period (November 1990 to December 1993 and 0.56 for the validation period (April 2000 to January 2003. The model efficiency for monthly nitrate load is 0.66 and 0.77 for the calibration period (April 2000 to March 2002 and validation period (April 2002 to January 2003, respectively. However, the model efficiency for daily loads is low (0.15, which cannot only be attributed to the quality of input data of point source effluents. An analysis of the internal fluxes and cycles of nitrogen pointed out considerable weaknesses in the models conceptualisation of the nitrogen modules which will be improved in future research.

  18. Search for the northwest passage: the assignation of NSP (non-point source pollution) rights in nutrient trading programs.

    Science.gov (United States)

    Collentine, D

    2002-01-01

    The search for solutions to the problem of non-point source pollution (NSP) includes alternatives based on theories associated with the use of tradable pollution permits. Tradable permit programs have received significant support as a promising policy for the reduction of effluent discharges but programs in practice have not been regarded as successful. The lack of success is ascribed to the design of the programs. However, this may be a design problem which is insurmountable due to the nature of the NSP problem. Tradable permit solutions are based on an assumption that the assignation of quantifiable rights to both point and nonpoint sources, based on some predetermined ambient water quality measure, is possible. The conclusion here is that there are significant features particular to NSP that hinder the introduction of rights and significantly decrease the utility of tradable permit solutions.

  19. Sensitivity analysis of non-point sources in a water quality model applied to a dammed low-flow-reach river.

    Science.gov (United States)

    Silva, Nayana G M; von Sperling, Marcos

    2008-01-01

    Downstream of Capim Branco I hydroelectric dam (Minas Gerais state, Brazil), there is the need of keeping a minimum flow of 7 m3/s. This low flow reach (LFR) has a length of 9 km. In order to raise the water level in the low flow reach, the construction of intermediate dikes along the river bed was decided. The LFR has a tributary that receives the discharge of treated wastewater. As part of this study, water quality of the low-flow reach was modelled, in order to gain insight into its possible behaviour under different scenarios (without and with intermediate dikes). QUAL2E equations were implemented in FORTRAN code. The model takes into account point-source pollution and diffuse pollution. Uncertainty analysis was performed, presenting probabilistic results and allowing identification of the more important coefficients in the LFR water-quality model. The simulated results indicate, in general, very good conditions for most of the water quality parameters The variables of more influence found in the sensitivity analysis were the conversion coefficients (without and with dikes), the initial conditions in the reach (without dikes), the non-point incremental contributions (without dikes) and the hydraulic characteristics of the reach (with dikes).

  20. The Non-point Source Pollution Effects of Pesticides Based on the Survey of 340 Farmers in Chongqing City

    Institute of Scientific and Technical Information of China (English)

    Lianchao; YU; Limeng; GU; Qian; BI

    2015-01-01

    Using the survey data on 340 farmers in Chongqing City,this paper performs an empirical analysis of the factors influencing the non-point source pollution of pesticides. The results show that the older householders will apply more pesticides,which may be due to the weak physical strength and weak ability to accept the concept of advanced cultivation; the householders with high level of education will choose to use less pesticides; the pesticide application rate is negatively correlated with whether farmers have participated in agricultural technology training,that is,the farmers having participated in agricultural technology training have stronger ability to scientifically apply pesticides,and in-depth understanding of advanced agricultural production technology and positive and negative effects of pesticides,so they often choose to reduce the application rate of pesticide; the cognitive factor on the role of pesticides in better promoting the growth of crops is significant,which requires the government and relevant departments to carry out concrete publicity of effectiveness and negative impact of different pesticides during the popularization of agricultural science knowledge,to prompt farmers to have a systematic and in-depth understanding of the agricultural nonpoint source pollution caused by pesticides.

  1. A distributed non-point source pollution model:calibration and validation in the Yellow River Basin

    Institute of Scientific and Technical Information of China (English)

    HAO Fang-bua; ZHANG Xue-song; YANG Zhi-feng

    2004-01-01

    The applicability of a non-point source pollution model-SWAT(soil and water assessment tools) in a large river basin with high sediment runoff modulus(770 t/km2 in the Yellow River) was examined. The basic database,which includes DEM, soil and landuse map, weather data, and land management data, was established for the study area using GIS. A two-stage "Brute Force" optimization method was used to calibrate the parameters with the observed monthly flow and sediment data from 1992 to 1997. In the process of calibration automated digital filter technique was used to separate direct runoff and base flow. The direct runoff was firstly calibrated, and the base flow, then the total runoff was matched. The sediment yield was calibrated to match well. Keeping input parameters set during the calibration process unchanged, the model was validated with 1998-1999's observed monthly flow and sediment. The evaluation coefficients for simulated and observed flow and sediment showed that SWAT was successfully applied in the study area: relative error was within 20%, coefficient of determination and Nash-Suttcliffe simulation efficiency were all equal to or above 0.70 during calibration and validation period.

  2. Landscape planning for agricultural non-point source pollution reduction. II. Balancing watershed size, number of watersheds, and implementation effort.

    Science.gov (United States)

    Maxted, Jeffrey T; Diebel, Matthew W; Vander Zanden, M Jake

    2009-01-01

    Agricultural non-point source (NPS) pollution poses a severe threat to water quality and aquatic ecosystems. In response, tremendous efforts have been directed toward reducing these pollution inputs by implementing agricultural conservation practices. Although conservation practices reduce pollution inputs from individual fields, scaling pollution control benefits up to the watershed level (i.e., improvements in stream water quality) has been a difficult challenge. This difficulty highlights the need for NPS reduction programs that focus efforts within target watersheds and at specific locations within target watersheds, with the ultimate goal of improving stream water quality. Fundamental program design features for NPS control programs--i.e., number of watersheds in the program, total watershed area, and level of effort expended within watersheds--have not been considered in any sort of formal analysis. Here, we present an optimization model that explores the programmatic and environmental trade-offs between these design choices. Across a series of annual program budgets ranging from $2 to $200 million, the optimal number of watersheds ranged from 3 to 27; optimal watershed area ranged from 29 to 214 km(2); and optimal expenditure ranged from $21,000 to $35,000/km(2). The optimal program configuration was highly dependent on total program budget. Based on our general findings, we delineated hydrologically complete and spatially independent watersheds ranging in area from 20 to 100 km(2). These watersheds are designed to serve as implementation units for a targeted NPS pollution control program currently being developed in Wisconsin.

  3. Assessment of the relationship between rural non-point source pollution and economic development in the Three Gorges Reservoir Area.

    Science.gov (United States)

    Zhang, Tong; Ni, Jiupai; Xie, Deti

    2016-04-01

    This study investigates the relationship between rural non-point source (NPS) pollution and economic development in the Three Gorges Reservoir Area (TGRA) by using the Environmental Kuznets Curve (EKC) hypothesis for the first time. Five types of pollution indicators, namely, fertilizer input density (FD), pesticide input density (PD), agricultural film input density (AD), grain residues impact (GI), and livestock manure impact (MI), were selected as rural NPS pollutant variables. Rural net income per capita was used as the indicator of economic development. Pollution load was generated by agricultural inputs (consumption of fertilizer, pesticide, and agricultural film) and economic growth with invert U-shaped features. The predicted turning points for FD, PD, and AD were at rural net income per capita levels of 6167.64, 6205.02, and 4955.29 CNY, respectively, which were all surpassed. However, the features between agricultural waste outputs (grain residues and livestock manure) and economic growth were inconsistent with the EKC hypothesis, which reflected the current trends of agricultural economic structure in the TGRA. Given that several other factors aside from economic development level could influence the pollutant generation in rural NPS, a further examination with long-run data support should be performed to understand the relationship between rural NPS pollution and income level.

  4. Long-term agricultural non-point source pollution loading dynamics and correlation with outlet sediment geochemistry

    Science.gov (United States)

    Ouyang, Wei; Jiao, Wei; Li, Xiaoming; Giubilato, Elisa; Critto, Andrea

    2016-09-01

    Some agricultural non-point source (NPS) pollutants accumulate in sediments in the outlet sections of watersheds. It is crucial to evaluate the historical interactions between sediment properties and watershed NPS loading. Therefore, a sediment core from the outlet of an agricultural watershed was collected. The core age was dated using the 210Pb method, and sedimentation rates were determined using the constant rate of supply (CRS) model. The total nitrogen (TN), total phosphorus (TP), Cd, Pb, Cu, Ni and Cr accumulations in the sediment generally showed fluctuating increases, with the highest sedimentation fluxes all occurring in approximately 1998. The measurement of specific mass sedimentation rates reflected a record of watershed soil erosion dynamics. Using SWAT (Soil and Water Assessment Tool) to simulate long-term watershed agricultural NPS pollution loadings, the historical interactions between sediment properties and NPS loadings were further evaluated. The N leaching process weakened these interactions, but the historical accumulations of TP and heavy metals in sediments generally correlated well with watershed NPS TP loading. The regression analysis suggested that Pb and Cr were the most suitable indexes for assessing long-term NPS TN and TP pollution, respectively. Assessing the NPS loading dynamics using the vertical characteristics of sediment geochemistry is a new method.

  5. Farmers’ Willingness to Pay( WTP ) for Reducing Agricultural Non-point Source Pollution: Based on the Empirical Analysis of 453 Farmers

    Institute of Scientific and Technical Information of China (English)

    Qian; BI; Huaiye; WANG; Yongyan; ZUO

    2014-01-01

    With the rapid development of modern agriculture,agricultural non-point source pollution becomes increasingly serious in China,improving farmers’ environmental protection consciousness plays a very important role in the reduction of agricultural non-point source pollution,and the WTP of Farmers for controlling agricultural non-point source pollution strongly reflects the strength of their environmental protection consciousness. Therefore,this investigation and study choose rural areas of five counties from Chongqing city and Zhejiang province as our sample,respectively make interview survey with the WTP(money or voluntary work) of farmers for improving local water and soil quality. Based on the statistical analysis of survey data,this study also takes empirical test and analysis with the influence factors on the WTP of farmers for reducing agricultural non-point source pollution. The analysis and conclusions of this research provides the supports in theory and practice for optimizing farmers’ behavior,promoting the management of agricultural non-point source pollution and implementing new rural construction goal.

  6. 非点源污染负荷模型的研究进展%Research Progress of Non-point Source Pollution Models in Water Environment

    Institute of Scientific and Technical Information of China (English)

    姚瑞华; 王东; 赵越; 张晶

    2012-01-01

    Based on non-point source load model research at home and abroad, in accordance of the agriculture, urban and mixed non-point source models, the main conditions for the application model were summarized, and the development of non-point source model was prospected.%基于国内外非点源负荷污染模型的研究现状,针对农业、城市和混合三种类型非点源模型,总结并梳理了主要模型的适用条件,并对非点源模型的发展趋势进行了展望.

  7. Assessing the effects of rural livelihood transition on non-point source pollution: a coupled ABM-IECM model.

    Science.gov (United States)

    Yuan, Chengcheng; Liu, Liming; Ye, Jinwei; Ren, Guoping; Zhuo, Dong; Qi, Xiaoxing

    2017-04-02

    Water pollution caused by anthropogenic activities and driven by changes in rural livelihood strategies in an agricultural system has received increasing attention in recent decades. To simulate the effects of rural household livelihood transition on non-point source (NPS) pollution, a model combining an agent-based model (ABM) and an improved export coefficient model (IECM) was developed. The ABM was adopted to simulate the dynamic process of household livelihood transition, and the IECM was employed to estimate the effects of household livelihood transition on NPS pollution. The coupled model was tested in a small catchment in the Dongting Lake region, China. The simulated results reveal that the transition of household livelihood strategies occurred with the changes in the prices of rice, pig, and labor. Thus, the cropping system, land-use intensity, resident population, and number of pigs changed in the small catchment from 2000 to 2014. As a result of these changes, the total nitrogen load discharged into the river initially increased from 6841.0 kg in 2000 to 8446.3 kg in 2004 and then decreased to 6063.9 kg in 2014. Results also suggest that rural living, livestock, paddy field, and precipitation alternately became the main causes of NPS pollution in the small catchment, and the midstream region of the small catchment was the primary area for NPS pollution from 2000 to 2014. Despite some limitations, the coupled model provides an innovative way to simulate the effects of rural household livelihood transition on NPS pollution with the change of socioeconomic factors, and thereby identify the key factors influencing water pollution to provide valuable suggestions on how agricultural environmental risks can be reduced through the regulation of the behaviors of farming households in the future.

  8. Agricultural Non-point Source Pollution and Countermeasures in Yunnan%云南省农业面源污染及防治对策

    Institute of Scientific and Technical Information of China (English)

    邱成

    2014-01-01

    云南省主要农业环境污染问题包括:化肥使用量不断增加;地膜使用量及其覆盖面积不断增加;农药使用量不断增加;畜禽粪便污染日益加重。分析了问题产生的原因,提出了防治农业污染的建议。%Environmental problems are emerging due to agricultural non -point source pollution in Yunnan.The most serious problems are as follows:an increasing usage of chemical fertilizers and plastics in farm field,a rising release of pesticide,and a growing amount of waste from livestock and poultry.Agricultural non-point sources in Yunnan were identified.Suggestions were put forward to control agricultural pollution.

  9. 农业非点源污染研究进展和趋势%The Progress and Trends of Agricultural Non-point Source Pollution Research

    Institute of Scientific and Technical Information of China (English)

    李丽华; 李强坤

    2014-01-01

    根据国内外农业非点源污染研究现状,本文在探讨农业非点源污染内涵及其特征的基础上,简要总结了农业非点源污染负荷的估算模型,列举区域农业非点源污染风险评估的手段和方法,从不同角度归纳了农业非点源污染的控制技术,并提出了近期农业非点源污染急需研究的热点和趋势,以期为进一步的农业非点源污染管理和控制提供参考。%According to the current research on agricultural non-point source pollution at home and abroad, the connotation and feature of a-gricultural non-point source pollution were explored in this paper, and then the estimating model of pollution load was concluded briefly. Meanwhile, the paper also listed the means and methods of risk assessment of regional agricultural non-point source pollution and summed up the control technologies from different angles. Finally, the recent much-needed research hotspots and trends were put forward in order to provide reference for further management and control of agricultural non-point source pollution.

  10. Non-point source analysis of a railway bridge area using statistical method: case study of a concrete road-bed.

    Science.gov (United States)

    Gil, Kyungik; Im, Jiyeol

    2014-06-01

    In an effort to protect the quality of the water system, interest in non-point source pollution is increasing. Recently, studies of non-point sources pollution are continuing in relation to various land-use areas, but such studies have not been fully conducted in railway facility sites. Using monitoring data of railway bridge area with concrete road-bed, the runoff characteristics, pollutant unit loads, and first flush criteria were assessed. Railway bridge area with concrete road-bed typically show the first flush effect, and the pollutant unit load was determined to be higher than other public facilities areas. Further, the first flush criteria show an effective rainfall amount of 7 mm. In other words, from the runoff of railway facilities, considerable amounts of non-point source pollutants are occurred, indicating the need to create best management practices which are adequate for railway facility sites. Copyright © 2014 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  11. The simulation research of dissolved nitrogen and phosphorus non-point source pollution in Xiao-Jiang watershed of Three Gorges Reservoir area.

    Science.gov (United States)

    Wu, Lei; Long, Tian-Yu; Li, Chong-Ming

    2010-01-01

    Xiao-jiang, with a basin area of almost 5,276 km(2) and a length of 182.4 km, is located in the center of the Three Gorges Reservoir Area, and is the largest tributary of the central section in Three Gorges Reservoir Area, farmland accounts for a large proportion of Xiao-jiang watershed, and the hilly cropland of purple soil is much of the farmland of the watershed. After the second phase of water storage in the Three Gorges Reservoir, the majority of sub-rivers in the reservoir area experienced eutrophication phenomenon frequently, and non-point source (NPS) pollution has become an important source of pollution in Xiao-jiang Watershed. Because dissolved nitrogen and phosphorus non-point source pollution are related to surface runoff and interflow, using climatic, topographic and land cover data from the internet and research institutes, the Semi-Distributed Land-use Runoff Process (SLURP) hydrological model was introduced to simulate the complete hydrological cycle of the Xiao-jiang Watershed. Based on the SLURP distributed hydrological model, non-point source pollution annual output load models of land use and rural residents were respectively established. Therefore, using GIS technology, considering the losses of dissolved nitrogen and phosphorus in the course of transport, a dissolved non-point source pollution load dynamic model was established by the organic coupling of the SLURP hydrological model and land-use output model. Through the above dynamic model, the annual dissolved non-point source nitrogen and phosphorus pollution output as well as the load in different types were simulated and quantitatively estimated from 2001 to 2008, furthermore, the loads of Xiao-jiang Watershed were calculated and expressed by temporal and spatial distribution in the Three Gorges Reservoir Area. The simulation results show that: the temporal changes of dissolved nitrogen and phosphorus load in the watershed are close to the inter-annual changes of rainfall runoff, and the

  12. Multi-angle Indicators System of Non-point Pollution Source Assessment in Rural Areas: A Case Study Near Taihu Lake

    Science.gov (United States)

    Huang, Lei; Ban, Jie; Han, Yu Ting; Yang, Jie; Bi, Jun

    2013-04-01

    This study aims to identify key environmental risk sources contributing to water eutrophication and to suggest certain risk management strategies for rural areas. The multi-angle indicators included in the risk source assessment system were non-point source pollution, deficient waste treatment, and public awareness of environmental risk, which combined psychometric paradigm methods, the contingent valuation method, and personal interviews to describe the environmental sensitivity of local residents. Total risk values of different villages near Taihu Lake were calculated in the case study, which resulted in a geographic risk map showing which village was the critical risk source of Taihu eutrophication. The increased application of phosphorus (P) and nitrogen (N), loss vulnerability of pollutant, and a lack of environmental risk awareness led to more serious non-point pollution, especially in rural China. Interesting results revealed by the quotient between the scores of objective risk sources and subjective risk sources showed what should be improved for each study village. More environmental investments, control of agricultural activities, and promotion of environmental education are critical considerations for rural environmental management. These findings are helpful for developing targeted and effective risk management strategies in rural areas.

  13. Non-point Source Pollution Modeling Using Geographic Information System (GIS for Representing Best Management Practices (BMP in the Gorganrood Watershed

    Directory of Open Access Journals (Sweden)

    Z. Pasandidehfard

    2014-09-01

    Full Text Available The most important pollutants that cause water pollution are nitrogen and phosphorus from agricultural runoff called Non-Point Source Pollution (NPS. To solve this problem, management practices known as BMPs or Best Management Practices are applied. One of the common methods for Non-Point Source Pollution prediction is modeling. By modeling, efficiency of many practices can be tested before application. In this study, land use changes were studied from the years 1984 till 2010 that showed an increase in agricultural lands from 516908.52 to 630737.19 ha and expansion of cities from 5237.87 to 15487.59 ha and roads from 9666.07 to 11430.24 ha. Using L-THIA model (from nonpoint source pollution models for both land use categories, the amount of pollutant and the volume of runoff were calculated that showed high growth. Then, the seventh sub-basin was recognized as a critical zone in terms of pollution among the sub-basins. In the end, land use change was considered as a BMP using Multi-Criteria Evaluation (MCE based on which a more suitable land use map was produced. After producing the new land use map, L-THIA model was run again and the result of the model was compared to the actual land use to show the effect of this BMP. Runoff volume decreased from 367.5 to 308.6 M3/ha and nitrogen in runoff was reduced from 3.26 to 1.58 mg/L and water BOD from 3.61 to 2.13 mg/L. Other pollutants also showed high reduction. In the end, land use change is confirmed as an effective BMP for Non-Point Source Pollution reduction.

  14. Detection of spatial fluctuations of non-point source fecal pollution in coral reef surrounding waters in southwestern Puerto Rico using PCR-based assays.

    Science.gov (United States)

    Bonkosky, M; Hernández-Delgado, E A; Sandoz, B; Robledo, I E; Norat-Ramírez, J; Mattei, H

    2009-01-01

    Human fecal contamination of coral reefs is a major cause of concern. Conventional methods used to monitor microbial water quality cannot be used to discriminate between different fecal pollution sources. Fecal coliforms, enterococci, and human-specific Bacteroides (HF183, HF134), general Bacteroides-Prevotella (GB32), and Clostridium coccoides group (CP) 16S rDNA PCR assays were used to test for the presence of non-point source fecal contamination across the southwestern Puerto Rico shelf. Inshore waters were highly turbid, consistently receiving fecal pollution from variable sources, and showing the highest frequency of positive molecular marker signals. Signals were also detected at offshore waters in compliance with existing microbiological quality regulations. Phylogenetic analysis showed that most isolates were of human fecal origin. The geographic extent of non-point source fecal pollution was large and impacted extensive coral reef systems. This could have deleterious long-term impacts on public health, local fisheries and in tourism potential if not adequately addressed.

  15. Screening and identification of early warning algal species for metal contamination in fresh water bodies polluted from point and non-point sources.

    Science.gov (United States)

    Rai, U N; Dubey, Smita; Shukla, O P; Dwivedi, S; Tripathi, R D

    2008-09-01

    The water bodies of Lucknow, Unnao and Kanpur (U.P.), India polluted through various point and non point sources were found to be either eutrophic or oligotrophic in nature. These water bodies supported a great number of algal diversity, which varied seasonally depending upon the physico-chemical properties of water. Further, the water bodies polluted through non point sources supports diverse algal species, while the water bodies polluted through point sources supports growth of tolerant blue green algae. High biomass producing algal species growing in these water bodies have accumulated significant amount of metals in their tissues. Maximum amount of Fe was found accumulated by species of Oedogonium sp. II (20,523.00 microg g(-1) dw) and Spirogyra sp. I (4,520.00 microg g(-1) dw), while maximum Chromium (Cr) was found accumulated in Phormedium bohneri (2,109.00 microg g(-1) dw) followed by Oscillatoria nigra (1,957.88 microg g(-1) dw) and Oedogonium sp. I (156.00 microg g(-1) dw) and Ni in Ulothrix sp. (495.00 microg g(-1) dw). Results showed that some of these forms growing in polluted environment and accumulating high amounts of toxic metals may be used as bioindicator species, however, their performance in metal contaminated water under different ecological niche is to be ascertained.

  16. Study on agricultural structure and non-point source pollution: a case in Dapu Town of Yixing City

    Institute of Scientific and Technical Information of China (English)

    Jiang Dongmei; Wang Xiyuan; Liu Minghui; Lu Genfa

    2006-01-01

    The water body of Taihu Lake has been eutrophicated because of area-source pollution. 83% of the total nitrogen and 84% of the total phosphorus of the pollutant that have washed into Taihu Lake originated from the fertilizer of crop land, rural animal husbandry and living sewage and rubbish in rural area. The goal of adjusting agricultural structure is to improve agricultural development, and to increase the peasants income by planting non-grain crop,centralizing animal husbandry, and intensifying aquaculture, etc, It is necessary to research on the influences of agriculture industrial structure on area-source pollution, This paper studies a case of Dapu Town in Yixing City, which is a typical drainage place beside Taihu Lake. On the basis of the analysis on the status quo of area-source pollution and agriculture industrial structure in Dapu Town, the conflicts between them are discussed. Non-grain crop production with a great deal of fertilizer and developing aquaculture with a great deal of organic pollutant, which are directly discharged,make area-source pollution more serious and accelerate the eutrophication in Taihu Lake. This paper suggests taking corresponding technological measures and policies, which have been tested in Dapu Town and demonstrated in Taihu Lake area.

  17. A dual-inexact fuzzy stochastic model for water resources management and non-point source pollution mitigation under multiple uncertainties

    Science.gov (United States)

    Dong, C.; Tan, Q.; Huang, G.-H.; Cai, Y.-P.

    2014-05-01

    In this research, a dual-inexact fuzzy stochastic programming (DIFSP) method was developed for supporting the planning of water and farmland use management system considering the non-point source pollution mitigation under uncertainty. The random boundary interval (RBI) was incorporated into DIFSP through integrating fuzzy linear programming (FLP) and chance-constrained programming (CCP) approaches within an interval linear programming (ILP) framework. This developed method could effectively tackle the uncertainties expressed as intervals and fuzzy sets. Moreover, the lower and upper bounds of RBI are continuous random variables, and the correlation existing between the lower and upper bounds can be tackled in RBI through the joint probability distribution function. And thus the subjectivity of decision making is greatly reduced, enhancing the stability and robustness of obtained solutions. The proposed method was then applied to solve a water and farmland use planning model (WFUPM) with non-point source pollution mitigation. The generated results could provide decision makers with detailed water supply-demand schemes involving diversified water-related activities under preferred satisfaction degrees. These useful solutions could allow more in-depth analyses of the trade-offs between humans and environment, as well as those between system optimality and reliability. In addition, comparative analyses on the solutions obtained from ICCP (Interval chance-constraints programming) and DIFSP demonstrated the higher application of this developed approach for supporting the water and farmland use system planning.

  18. Study on Control Countermeasures of Agricultural Non-point Source Pollution in Lakeside Belt of Poyang Lake——Taking Duchang Section in the Lower Reaches of Poyang Lake as Example

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The aim was to study the control countermeasures of agricultural non-point source pollution in lakeside belt of Poyang Lake.[Method] The current situation of water quality of Poyang Lake was analyzed firstly,then the causes of agricultural non-point source pollution in Duchang section of Poyang Lake were studied,finally corresponding control countermeasures were put forward.[Result] Agricultural non-point source pollution in Duchang section of Poyang Lake was mainly related to the rapid developm...

  19. Assessment of Non-Point Source Total Phosphorus Pollution from Different Land Use and Soil Types in a Mid-High Latitude Region of China

    Directory of Open Access Journals (Sweden)

    Zhiwei Wang

    2016-11-01

    Full Text Available The transport characteristics of phosphorus in soil and the assessment of its environmental risk have become hot topics in the environmental and agricultural fields. The Sanjiang Plain is an important grain production base in China, and it is characterised by serious land use change caused by large-scale agricultural exploitation. Agricultural inputs and tillage management have destroyed the soil nutrient balance formed over long-term conditions. There are few studies on non-point source phosphorus pollution in the Sanjiang Plain, which is the largest swampy low plain in a mid-high-latitude region in China. Most studies have focused on the water quality of rivers in marsh areas, or the export mechanism of phosphorus from specific land uses. They were conducted using experimental methods or empirical models, and need further development towards mechanism models and the macro-scale. The question is how to find a way to couple processes in phosphorus cycling and a distributed hydrological model considering local hydrological features. In this study, we report an attempt to use a distributed phosphorus transport model to analyse non-point source total phosphorus pollution from different land uses and soil types on the Sanjiang Plain. The total phosphorus concentration generally shows an annually increasing trend in the study area. The total phosphorus load intensity is heterogeneous in different land use types and different soil types. The average total phosphorus load intensity of different land use types can be ranked in descending order from paddy field, dry land, wetlands, grassland, and forestland. The average total phosphorus load intensity of different soil types can be ranked in descending order: paddy soil, bog soil, planosol, meadow soil, black soil, and dark brown earth. The dry land and paddy fields account for the majority of total phosphorus load in the study area. This is mainly caused by extensive use of phosphate fertilizer on the

  20. Combination system of full-scale constructed wetlands and wetland paddy fields to remove nitrogen and phosphorus from rural unregulated non-point sources.

    Science.gov (United States)

    Sun, Haijun; Zhang, Hailin; Yu, Zhimin; Wu, Jiasen; Jiang, Peikun; Yuan, Xiaoyan; Shi, Weiming

    2013-12-01

    Constructed wetlands (CWs) have been used effectively to remove nitrogen (N) and phosphorus (P) from non-point sources. Effluents of some CWs were, however, still with high N and P concentrations and remained to be pollution sources. Widely distributed paddy fields can be exploited to alleviate this concern. We were the first to investigate a combination system of three-level CWs with wetland paddy fields in a full scale to remove N and P from rural unregulated non-point sources. The removal efficiencies (REs) of CWs reached 57.3 % (37.4-75.1 %) for N and 76.3 % (62.0-98.4 %) for P. The CWs retained about 1,278 kg N ha(-1) year(-1) and 121 kg P ha(-1) year(-1). There was a notable seasonal change in REs of N and P, and the REs were different in different processing components of CWs. The removal rates of wetland paddy fields adopt "zero-drainage" water management according to local rainfall forecast and physiological water demand of crop growth reached 93.2 kg N ha(-1) year(-1) and 5.4 kg P ha(-1) year(-1). The rice season had higher potential in removing N and P than that in the wheat season. The whole combined system (0.56 ha CWs and 5.5 ha wetland paddy fields) removed 1,790 kg N year(-1) and 151 kg P year(-1), which were higher than those from CWs functioned alone. However, another 4.7-ha paddy fields were needed to fully remove the N and P in the effluents of CWs. The combination of CWs and paddy fields proved to be a more efficient nutrient removal system.

  1. Linking monitoring and modelling for river basin management:Danish experience with combating nutrient loadings to the aquatic environment from point and non-point sources

    Institute of Scientific and Technical Information of China (English)

    KRONVANG; Brian; WINDOLF; JФrgen; GRANT; Ruth; ANDERSEN; Hans; E; THODSEN; Hans; OVESEN; Niels; B; LARSEN; SФren; E

    2009-01-01

    Nationwide monitoring of the aquatic environment was initiated in 1988 in Denmark as a means to follow the outcome of the Action Plans for nutrient pollution of the aquatic environment. Five Action Plans have been adopted by the Danish Parliament since 1985 and the nationwide monitoring programme can be used to quantify the outcome as shown by reductions in nutrient discharges from both point and non-point sources. Moreover, the empirical experience gathered from nearly 20 years of monitoring is assisting the development and calibration of models for simulation of nitrogen leaching, nitrogen removal in groundwater and surface waters and the establishment of a P-index all covering the entire land area of Denmark.

  2. Linking monitoring and modelling for river basin man-agement: Danish experience with combating nutrient loadings to the aquatic environment from point and non-point sources

    Institute of Scientific and Technical Information of China (English)

    KRONVANG Brian; WINDOLF J(φ)rgen; GRANT Ruth; ANDERSEN Hans E; THODSEN Hans; OVESEN Niels B; LARSEN S(φ)ren E

    2009-01-01

    Nationwide monitoring of the aquatic environment was initiated in 1988 in Denmark as a means to fol-low the outcome of the Action Plans for nutrient pollution of the aquatic environment.Five Action Plans have been adopted by the Danish Parliament since 1985 and the nationwide monitoring programme can be used to quantify the outcome as shown by reductions in nutrient discharges from both point and non-point sources.Moreover, the empirical experience gathered from nearly 20 years of monitoring is assisting the development and calibration of models for simulation of nitrogen leaching, nitrogen re-moval in groundwater and surface waters and the establishment of a P-index all covering the entire land area of Denmark.

  3. [Analysis on nitrogen and phosphorus loading of non-point sources in Shiqiao river watershed based on L-THIA model].

    Science.gov (United States)

    Li, Kai; Zeng, Fan-Tang; Fang, Huai-Yang; Lin, Shu

    2013-11-01

    Based on the Long-term Hydrological Impact Assessment (L-THIA) model, the effect of land use and rainfall change on nitrogen and phosphorus loading of non-point sources in Shiqiao river watershed was analyzed. The parameters in L-THIA model were revised according to the data recorded in the scene of runoff plots, which were set up in the watershed. The results showed that the distribution of areas with high pollution load was mainly concentrated in agricultural land and urban land. Agricultural land was the biggest contributor to nitrogen and phosphorus load. From 1995 to 2010, the load of major pollutants, namely TN and TP, showed an obviously increasing trend with increase rates of 17.91% and 25.30%, respectively. With the urbanization in the watershed, urban land increased rapidly and its area proportion reached 43.94%. The contribution of urban land to nitrogen and phosphorus load was over 40% in 2010. This was the main reason why pollution load still increased obviously while the agricultural land decreased greatly in the past 15 years. The rainfall occurred in the watershed was mainly concentrated in the flood season, so the nitrogen and phosphorus load of the flood season was far higher than that of the non-flood season and the proportion accounting for the whole year was over 85%. Pearson regression analysis between pollution load and the frequency of different patterns of rainfall demonstrated that rainfall exceeding 20 mm in a day was the main rainfall type causing non-point source pollution.

  4. Impact of Point and Non-point Source Pollution on Coral Reef Ecosystems In Mamala Bay, Oahu, Hawaii based on Water Quality Measurements and Benthic Surveys in 1993-1994 (NODC Accession 0001172)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The effects of both point and non-point sources of pollution on coral reef ecosystems in Mamala Bay were studied at three levels of biological organization; the...

  5. Examining trends in general fecal indicator bacteria and microbial source tracking genetic markers at non-point source impacted Chicago beaches

    Science.gov (United States)

    In the Chicago area, treated wastewater and storm water flow through the engineered Chicago River system to the Mississippi River, with the goal to protect Lake Michigan from urban discharges. Therefore, under dry weather conditions, nearby Lake Michigan recreational beaches shou...

  6. Long-term variation (1960-2003) and causal factors of non-point-source nitrogen and phosphorus in the upper reach of the Yangtze River.

    Science.gov (United States)

    Shen, Zhenyao; Chen, Lei; Ding, Xiaowen; Hong, Qian; Liu, Ruimin

    2013-05-15

    The knowledge of long-term variation and causal factors of non-point source (NPS) pollution in large-scale watersheds is helpful in the development of water quality control programs. In this study, the Improved Export Coefficient Model and the Revised Universal Soil Loss Equation were combined to estimate the temporal and spatial variations (1960-2003) of NPS pollution in the upper reach of the Yangtze River (URYR). Two change points for NPS pollution were successfully detected. In the URYR, the dissolved nitrogen (DN) and dissolved phosphorus (DP) increased before 2000 and decreased after 2000, whereas the inflection points from increase to decline were around 1980 for the adsorbed N (AN) and adsorbed P (AP). The results also indicated that the dissolved pollutants were mainly contributed by the anthropogenic factors, while the adsorbed pollutants were primarily exported by the natural factors. By comparing the load intensities from each source, it revealed that for the dissolved pollutants, the major source of the high load intensity transferred from urban land to dry land after 1980. Simultaneously, the high load intensity areas of the adsorbed pollutants transferred from forest to orchard around 1980, which was mainly attributed to the increasing fertilizer application. These results may be useful for planning and management of the URYR and other large-scale watersheds.

  7. 河流污染的点源和非点源负荷分割研究%The Segmentation of the Point Source and Non-point Source Pollution Load of Rivers

    Institute of Scientific and Technical Information of China (English)

    乔继平; 代俊峰

    2015-01-01

    Non-point source pollution has become the major source of pollution of water environment .Point source pollution and non-point source pollution of river water environmental monitoring to distinguish sections is very necessary .This paper mainly intro‐duces the research progress at home and abroad about non point source pollution .This paper focuses on the pollution load partition of Nanliu River Basin in Guangxi Beibu Gulf Economic Zone .The segmentation of point source pollution and non-point source pollution of potassium permanganate index ,total phosphorus and ammonia nitrogen are made based on the hydrological estimation method and the digital filtering method .The hydrological estimation method results show that three indexes of non-point source pollution the to‐tal pollution load ratio is 0 .77 ,0 .74 and 0 .76 .And the digital filtering method results show that they are 0 .59 ,0 .64 and 0 .66 .Di‐viding two methods of non-point source is close to the result ,Nanliu River Basin is more serious .%非点源污染已经成为水环境的主要污染源,区分河流水环境监测断面的点源污染与非点源污染显得十分必要。以广西入海河流南流江为研究背景,采用数字滤波法和水文估算法进行点源与非点源污染负荷的分割。分析结果显示,基于水文估算法计算的2003-2011年多年平均高锰酸盐指数、总磷、氨氮的非点源污染负荷占总负荷的比例分别为0.77、0.74、0.76;采用数字滤波法计算的2003-2011年多年平均高锰酸盐指数、总磷、氨氮的非点源污染负荷占总负荷的比例分别为0.59、0.64、0.66。结果表明,两种方法分割的非点源结果的变幅趋势相同,南流江的非点源污染在总污染负荷中的比例较高。

  8. Spatial-temporal characteristics of phosphorus in non-point source pollution with grid-based export coefficient model and geographical information system.

    Science.gov (United States)

    Liu, Ruimin; Dong, Guangxia; Xu, Fei; Wang, Xiujuan; He, Mengchang

    2015-01-01

    In this paper, the spatial changes and trends in non-point source (NPS) total phosphorus (TP) pollution were analyzed by land and non-land uses in the Songliao River Basin from 1986 to 2000 (14 years). A grid-based export coefficient model was used in the process of analysis based on to a geographic information system. The Songliao Basin is divided in four regions: Liaoning province, Jilin province (JL), Heilongjiang province and the eastern part of the Inner Mongolia (IM) Autonomous Region. Results indicated that the NPS phosphorus load caused by land use and non-land use increased steadily from 3.11×10(4) tons in 1986 to 3.49×10(4) tons in 2000. The southeastern region of the Songliao Plain was the most important NPS pollution contributor of all the districts. Although the TP load caused by land use decreased during the studied period in the Songliao River Basin, the contribution of land use to the TP load was dominant compared to non-land uses. The NPS pollution caused by non-land use steadily increased over the studied period. The IM Autonomous Region and JL province had the largest mean annual rate of change among all districts (more than 30%). In this area, livestock and poultry breeding had become one of the most important NPS pollution sources. These areas will need close attention in the future.

  9. Evaluating the Effects of Land Use Planning for Non-Point Source Pollution Based on a System Dynamics Approach in China.

    Science.gov (United States)

    Kuai, Peng; Li, Wei; Liu, Nianfeng

    2015-01-01

    Urbanization is proceeding rapidly in several developing countries such as China. This accelerating urbanization alters the existing land use types in a way that results in more Non-Point Source (NPS) pollution to local surface waters. Reasonable land use planning is necessary. This paper compares seven planning scenarios of a case study area, namely Wulijie, China, from the perspective of NPS pollution. A System Dynamics (SD) model was built for the comparison to adequately capture the planning complexity. These planning scenarios, which were developed by combining different land use intensities (LUIs) and construction speeds (CSs), were then simulated. The results show that compared to scenario S1 (business as usual) all other scenarios will introduce more NPS pollution (with an incremental rate of 22%-70%) to Wulijie. Scenario S6 was selected as the best because it induced relatively less NPS pollution while simultaneously maintaining a considerable development rate. Although LUIs represent a more critical factor compared to CSs, we conclude that both LUIs and CSs need to be taken into account to make the planning more environmentally friendly. Considering the power of SD in decision support, it is recommended that land use planning should take into consideration findings acquired from SD simulations.

  10. {sup 37}Cl, {sup 15}N, {sup 13}C isotopic analysis of common agro-chemicals for identifying non-point source agricultural contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Annable, W.K. [Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)]. E-mail: wkannabl@uwaterloo.ca; Frape, S.K. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Shouakar-Stash, O. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Shanoff, T. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Drimmie, R.J. [Department of Earth Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Harvey, F.E. [School of Natural Resources, University of Nebraska, Lincoln, NE 68588-0517 (United States)

    2007-07-15

    The isotopic compositions of commercially available herbicides were analyzed to determine their respective {sup 15}N, {sup 13}C and {sup 37}Cl signatures for the purposes of developing a discrete tool for tracing and identifying non-point source contaminants in agricultural watersheds. Findings demonstrate that of the agrochemicals evaluated, chlorine stable isotopes signatures range between {delta}{sup 37}Cl = -4.55 per mille and +3.40 per mille , whereas most naturally occurring chlorine stable isotopes signatures, including those of road salt, sewage sludge and fertilizers, vary in a narrow range about the Standard Mean Ocean Chloride (SMOC) between -2.00 per mille and +1.00 per mille . Nitrogen stable isotope values varied widely from {delta}{sup 15}N = -10.86 per mille to +1.44 per mille and carbon stable isotope analysis gave an observed range between {delta}{sup 13}C = -37.13 per mille and -21.35 per mille for the entire suite of agro-chemicals analyzed. When nitrogen, carbon and chlorine stable isotope analyses were compared in a cross-correlation analysis, statistically independent isotopic signatures exist suggesting a new potential tracer tool for identifying herbicides in the environment.

  11. Comparative study on nutrient removal of agricultural non-point source pollution for three filter media filling schemes in eco-soil reactors.

    Science.gov (United States)

    Du, Fuyi; Xie, Qingjie; Fang, Longxiang; Su, Hang

    2016-08-01

    Nutrients (nitrogen and phosphorus) from agricultural non-point source (NPS) pollution have been increasingly recognized as a major contributor to the deterioration of water quality in recent years. The purpose of this article is to investigate the discrepancies in interception of nutrients in agricultural NPS pollution for eco-soil reactors using different filling schemes. Parallel eco-soil reactors of laboratory scale were created and filled with filter media, such as grit, zeolite, limestone, and gravel. Three filling schemes were adopted: increasing-sized filling (I-filling), decreasing-sized filling (D-filling), and blend-sized filling (B-filling). The systems were intermittent operations via simulated rainstorm runoff. The nutrient removal efficiency, biomass accumulation and vertical dissolved oxygen (DO) distribution were defined to assess the performance of eco-soil. The results showed that B-filling reactor presented an ideal DO for partial nitrification-denitrification across the eco-soil, and B-filling was the most stable in the change of bio-film accumulation trends with depth in the three fillings. Simultaneous and highest removals of NH4(+)-N (57.74-70.52%), total nitrogen (43.69-54.50%), and total phosphorus (42.50-55.00%) were obtained in the B-filling, demonstrating the efficiency of the blend filling schemes of eco-soil for oxygen transfer and biomass accumulation to cope with agricultural NPS pollution.

  12. 拉萨河流域非点源污染输出风险评估%Risk assessment of non-point source pollution export in Lasahe basin

    Institute of Scientific and Technical Information of China (English)

    方广玲; 香宝; 杜加强; 王宝良; 张立坤; 胡钰; 徐杰

    2015-01-01

    Identification of the high risk area of non-point source pollution has important practical significance to control non-point source pollution and improve the water environment quality. Lasahe River basin located in the Tibet Autonomous Region of China is important drinking-water source for Lhasa City, Linzhou County and Dangxiong County. Because the underdevelopment of industry and the less discharge of industrial pollutants in this area, non-point source pollution is the most important contributing factor for water pollution. Lhasa River basin is the region of agricultural production base with the densest population in the Tibet Autonomous Region. This study built the output risk model that includes rainfall, topography, and fertilization influence factor, identification the output risk region unit from basin non-point source pollution at all levels object. The risk probability of non-point source pollution was classed into five levels: lowest, lower, moderate, higher and highest. Data used in this study were mainly from remote sensing image, statistical yearbook, and the parameters in output risk model were collected from the literatures. The results showed that risk probability of non-point source pollution output in 1996 and 2010 was 50%and 46.3%respectively. 17.5%in 1996 and 12.6%in 2010 of the study area showed that risk probability of non-point source pollution was more than 70%. The risk probability of non-point source pollution was spatially heterogeneous, corresponding with the attributes of land use types. The areas with highest risk of non-point source pollution were concentrated in farmland, where agricultural activities strengthened, and concentrated in unused land with great ecological vulnerability and sensitivity to external interference. Areas with lowest and lower risk of non-point source pollution mainly distributed in grassland, which has relative stability and robustness. Our study also found that risk probability of non-point source pollution

  13. 植草沟技术在面源污染控制中的研究进展%Advance on Grassed Swales Technology in Non-point Source Pollution Control

    Institute of Scientific and Technical Information of China (English)

    王健; 尹炜; 叶闽; 雷阿林; 李思敏

    2011-01-01

    Current research advances of non-point source pollution, especially urban non-point source pollution were introduced. Research advances and applications of grassed swales technology in non-point source pollution control were expounded. Main problems and application prospects of grassed swales technology in actual engineering were discussed as well. Coupling of grassed swales technology and other non-point source pollution control technology are proposed to be considered as a development direction in urban non-point source pollution control.%文章介绍了面源污染,尤其是城市面源污染的现状及其控制技术研究进展,并论述了植草沟技术的国内外研究进展及应用现状,讨论了其在工程中需解决的问题及应用前景,提出了植草沟技术与其他面源污染控制单项技术有机耦合是城市面源污染控制的一个发展方向.

  14. Export of non-point source suspended sediment, nitrogen, and phosphorus from sloping highland agricultural fields in the East Asian monsoon region.

    Science.gov (United States)

    Reza, Arif; Eum, Jaesung; Jung, Sungmin; Choi, Youngsoon; Owen, Jeffrey S; Kim, Bomchul

    2016-12-01

    Excess sediment and nutrient export from agricultural fields with steep slopes is a major concern linked to surface water quality in Korea. In this study, the export of suspended sediment (SS), total nitrogen (TN), and total phosphorus (TP) and their event mean concentrations (EMCs) in surface runoff from a highland mixed land use (61% forested, 30% cropped, 9% other) watershed were quantified. In 2007, the Korean Ministry of Environment (MoE) declared the study area as a priority region for non-point source (NPS) pollution management and initiated various best management practices (BMPs) in the study watershed. SS, TN, and TP concentrations in Mandae Stream were monitored for 5 years (2009-2013) to evaluate the effectiveness of BMPs. Average EMCs for SS, TN, and TP were as high as 986, 3.4 and 0.8 mg/L, respectively. The agricultural export coefficients of agricultural land in the study watershed for SS, TN, and TP were 5611, 171, and 6.83 kg/ha/year, respectively. A comparison with results from other studies shows that both EMCs and agricultural export coefficients in the study watershed were much higher than most of the results reported for watersheds in other regions. The results show that sediment and nutrient export from intensive agriculture areas with steep slopes continue to be a major concern for the downstream reservoir, Lake Soyang. Remedial strategies should be directed towards controlling sources of SS, TN, and TP to improve downstream water quality in sloping highland agricultural areas in Korea.

  15. Application of modified export coefficient method on the load estimation of non-point source nitrogen and phosphorus pollution of soil and water loss in semiarid regions.

    Science.gov (United States)

    Wu, Lei; Gao, Jian-en; Ma, Xiao-yi; Li, Dan

    2015-07-01

    Chinese Loess Plateau is considered as one of the most serious soil loss regions in the world, its annual sediment output accounts for 90 % of the total sediment loads of the Yellow River, and most of the Loess Plateau has a very typical characteristic of "soil and water flow together", and water flow in this area performs with a high sand content. Serious soil loss results in nitrogen and phosphorus loss of soil. Special processes of water and soil in the Loess Plateau lead to the loss mechanisms of water, sediment, nitrogen, and phosphorus are different from each other, which are greatly different from other areas of China. In this study, the modified export coefficient method considering the rainfall erosivity factor was proposed to simulate and evaluate non-point source (NPS) nitrogen and phosphorus loss load caused by soil and water loss in the Yanhe River basin of the hilly and gully area, Loess Plateau. The results indicate that (1) compared with the traditional export coefficient method, annual differences of NPS total nitrogen (TN) and total phosphorus (TP) load after considering the rainfall erosivity factor are obvious; it is more in line with the general law of NPS pollution formation in a watershed, and it can reflect the annual variability of NPS pollution more accurately. (2) Under the traditional and modified conditions, annual changes of NPS TN and TP load in four counties (districts) took on the similar trends from 1999 to 2008; the load emission intensity not only is closely related to rainfall intensity but also to the regional distribution of land use and other pollution sources. (3) The output structure, source composition, and contribution rate of NPS pollution load under the modified method are basically the same with the traditional method. The average output structure of TN from land use and rural life is about 66.5 and 17.1 %, the TP is about 53.8 and 32.7 %; the maximum source composition of TN (59 %) is farmland; the maximum source

  16. Spatio-temporal variation of erosion-type non-point source pollution in a small watershed of hilly and gully region, Chinese Loess Plateau.

    Science.gov (United States)

    Wu, Lei; Liu, Xia; Ma, Xiao-Yi

    2016-06-01

    Loss of nitrogen and phosphorus in the hilly and gully region of Chinese Loess Plateau not only decreases the utilization rate of fertilizer but also is a potential threat to aquatic environments. In order to explore the process of erosion-type non-point source (NPS) pollution in Majiagou watershed of Loess Plateau, a distributed, dynamic, and integrated NPS pollution model was established to investigate impacts of returning farmland on erosion-type NPS pollution load from 1995 to 2012. Results indicate that (1) the integrated model proposed in this study was verified to be reasonable; the general methodology is universal and can be applicable to the hilly and gully region, Loess Plateau; (2) the erosion-type NPS total nitrogen (TN) and total phosphorus (TP) load showed an overall decreasing trend; the average nitrogen and phosphorus load modulus in the last four years (2009-2012) were 1.23 and 1.63 t/km(2) · a, respectively, which were both decreased by about 35.4 % compared with the initial treatment period (1995-1998); and (3) The spatial variations of NPS pollution are closely related to spatial characteristics of rainfall, topography, and soil and land use types; the peak regions of TN and TP loss mainly occurred along the main river banks of the Yanhe River watershed from northeast to southeast, and gradually decreased with the increase of distance to the left and right river banks, respectively. Results may provide scientific basis for the watershed-scale NPS pollution control of the Loess Plateau.

  17. Contingent Valuation of Residents' Attitudes and Willingness-to-Pay for Non-point Source Pollution Control: A Case Study in AL-Prespa, Southeastern Albania

    Science.gov (United States)

    Grazhdani, Dorina

    2015-07-01

    Recently, local governments in Albania have begun paying attention to management of small watershed, because there are specific boundaries and people living within a watershed basin tend to be more concerned about the basin's environmental, economic, and social development. But this natural resource management and non-point source (NPS) pollution control is still facing challenges. Albanian part of Prespa Park (AL-Prespa) is a good case study, as it is a protected wetland area of high biodiversity and long human history. In this framework, this study was undertaken, the main objectives of which were to explore: (1) the attitudes of the residents toward NPS pollution control, (2) their willingness-to-pay for improving water quality, and (3) factors affecting the residents' willingness-to-pay. Descriptive statistics, one-way ANOVA (analysis of variance), Chi-square analysis, and multivariate data analysis techniques were used. Findings strongly suggested that the residents' attitudes toward NPS pollution control in this area were positive. With the combination of two major contingent valuation methods—dichotomous choice and open-ended formats, the survey results indicated that the average yearly respondents' WTP was €6.4. The survey revealed that residents' yearly income and education level were the main factors affecting residents' willingness-to-pay for NPS pollution control in this area, and there was no significant correlation between residents' yearly income and their education level. The current study would lay a solid foundation on decision-making in further NPS pollution control and public participation through community-based watershed management policies in AL-Prespa watershed and similar areas.

  18. The urban atmosphere as a non-point source for the transport of MTBE and other volatile organic compounds (VOCS) to shallow groundwater

    Science.gov (United States)

    Pankow, J.F.; Thomson, N.R.; Johnson, R.L.; Baehr, A.L.; Zogorski, J.S.

    1997-01-01

    all no- net recharge cases. The mechanism responsible for this effect was the dispersion acting on each downward infiltration event, and also on the ET-induced flow. The ability of MTBE to reach groundwater in cases 2-5 is taken as evidence of the potential importance of urban air as a non-point source for VOCs in shallow urban groundwater. Two subcases were run for both case 4 and case 5: subcase a (water and VOCs move with ET) and subcase b (water only moves with ET).Numerical simulations were conducted using a 1-D model domain set in medium sand to provide a test of whether methyl-tert-butyl ether (MTBE) and other atmospheric volatile organic compounds could move to shallow groundwater within the 10-15 y time frame over which MTBE was used in large amounts. The gasoline additive MTBE is of special interest because of its: current levels in some urban air; strong partitioning from air into water; resistance to degradation; use as an octane-booster since the 1970s; rapidly increasing use in the 1990s to reduce CO and O3 in urban air; and its frequent detection at low microgram per liter levels in shallow urban groundwater.

  19. Discussion on the Green Tax Stimulation Measure of Nitrogen Fertilizer Non-Point Source Pollution Control - Taking the Dongting Lake Area in China as a Case

    Institute of Scientific and Technical Information of China (English)

    XIANG Ping-an; ZHOU Yan; HUANG Huang; ZHENG Hua

    2007-01-01

    A study on designing the tax of nitrogen fertilizer can provide a new method for controlling nitrogen fertilizer non-point source pollution. The tax design of nitrogen fertilizer was discussed by utilizing the external theory and the demand elasticity theory. The results indicated that the coefficient of price elasticity of nitrogen fertilizer demand is -0.21, which instructed that the market demand is in lack of elasticity in the short period and the impact of nitrogen fertilizer manufacturers is subtle. The 11 counties (cities and boroughs) in the Dongting Lake area in China, where the farmland nitrogen application surpassed the average ecological fertilization dosage, is listed to the taxation scope of nitrogen fertilizer tax. The environment loss will reduce 0.07 hundred million RMB yuan and the revenue will increase 0.89 hundred million RMB yuan in the country after levying on nitrogen fertilizer. The loss, which was brought by the decreasing food supplies production, will be 0.58 hundred million RMB yuan and the net social benefit will be 0.38 hundred million RMB yuan following revenue collection. The variation scope of the increasing expenditure of farmers will range from 0.95 to 1.49%. The variation scope of the income of farmers will range from -8.41 to 6.44%. The 5 areas, Yunxi Borough, Junshan Borough, Hanshou County, Jinshi City, and Ziyang Borough, had an increase in food supplies production after the revenue collection. The environment loss will reduce 0.01 hundred million RMB yuan and the revenue will increase 0.16 hundred million RMB yuan in the country after levying on nitrogen fertilizer. The economic benefits, which was brought by the increasing cereals production, will be 0.67 hundred million RMB yuan and the net social benefit will be 0.84 hundred million RMB yuan after revenue collection. The variation scope of the increasing expenditure of farmers will range from 0.95 to 1.06%. The variation scope of the increasing income of farmers will

  20. [Source identification of toxic wastewaters in a petrochemical industrial park].

    Science.gov (United States)

    Yang, Qian; Yu, Yin; Zhou, Yue-Xi; Chen, Xue-Min; Fu, Xiao-Yong; Wang, Miao

    2014-12-01

    Petrochemical wastewaters have toxic impacts on the microorganisms in biotreatment processes, which are prone to cause deterioration of effluent quality of the wastewater treatment plants. In this study, the inhibition effects of activated sludge's oxygen consumption were tested to evaluate the toxicity of production wastewaters in a petrochemical industrial park. The evaluation covered the wastewaters from not only different production units in the park, but also different production nodes in each unit. No direct correlation was observed between the toxicity effects and the organic contents, suggesting that the toxic properties of the effluents could not be predicted by the organic contents. In view of the variation of activated sludge sensitivity among different tests, the toxicity data were standardized according to the concentration-effect relationships of the standard toxic substance 3, 5-dichlorophenol on each day, in order to improve the comparability among the toxicity data. Furthermore, the Quality Emission Load (QEL) of corresponding standard toxic substance was calculated by multiplying the corresponding 3, 5-dichlorophenol concentration and the wastewater flow quantity, to indicate the toxicity emission contribution of each wastewater to the wastewater treatment plant. According to the rank list of the toxicity contribution of wastewater from different units and nodes, the sources of toxic wastewater in the petrochemical industrial park were clearly identified. This study provides effective guidance for source control of wastewater toxicity in the large industrial park.

  1. Spatial and temporal variability of heavy metals in streams of the Flint Creek and Flint River Watersheds from non-point sources

    OpenAIRE

    I. Abdi; T. Tsegaye; Silitonga, M.; Tadesse, W

    2009-01-01

    Throughout the United States, non-point pollution is responsible for large quantities of heavy metals entering bodies of water. Pollution as a result of heavy metals can impact drinking water supplies, recreation, fisheries, and aquatic species. Presence of heavy metals such as lead (Pb), cadmium (Cd), and chromium (Cr), in surface water may pose great risks to human health as well as to aquatic animals. In order to understand water quality changes due to heavy metal element...

  2. Spatial and temporal variability of heavy metals in streams of the Flint Creek and Flint River Watersheds from non-point sources

    OpenAIRE

    Tadesse, W; Silitonga, M.; I. Abdi; T. Tsegaye

    2009-01-01

    Throughout the United States, non-point pollution is responsible for large quantities of heavy metals entering bodies of water. Pollution as a result of heavy metals can impact drinking water supplies, recreation, fisheries, and aquatic species. Presence of heavy metals such as lead (Pb), cadmium (Cd), and chromium (Cr), in surface water may pose great risks to human health as well as to aquatic animals. In order to understand water quality changes due to heavy metal elements and pH as a resu...

  3. Spatial Distribution Pattern of Agricultural Non-point Source Pollution in Jiangxi Province%江西省农业面源污染空间分布格局

    Institute of Scientific and Technical Information of China (English)

    张文东; 许仕; 庐俊

    2012-01-01

    The agricultural non-point source pollution is becoming an increasingly important eco-envjonrmental problem, il is difficult lo control due lo its dispersive and extensive characteristics. Jiangxi Province is still at ihe initial stage ai agricultural modernization, bul its agricultural non-point source pollution is exacerbating. According to the investigation on the pollution sources of planting, animal husbandry and aq-uaculture in Jiangs i Province, the ArcGIS software was adopted to analyze the spatial and digital features of agricultural non-point source pollution. As indicated by the results, the principal pollution source is animal husbandry, then followed by planting, ihe pollution from aquarulture is becoming more and more serious. The study provided scientific basis for the evaluation of agricultural non-point source pollution in Jiangxi Province.%农业面源污染正成为生态环境的主要问题,但其分散性、广泛性等特点又决定了其治理难度较大.江西目前仍处于农业现代化的起点阶段,农业面源污染日益严重:该研究通过对江西省农业的种植业、畜禽业和水产养殖业的污染源进行调查,利用ArcGIS软件,对江西省农业面源污染进行了空间化和数字化处理.结果表明,江西省农业污染源主要是畜禽养殖业,其次是种植业,水产养殖业污染日趋严重.该研究为江西省农业面源污染评估提供了科学依据.

  4. Assessment of contamination sources of trace metals in wastewater ...

    African Journals Online (AJOL)

    Assessment of contamination sources of trace metals in wastewater irrigated vegetable garden soils of Kano, Northern Nigeria. ... Heavy metal pollution is on the increase especially in urban centers where there were proliferation of industrial ...

  5. Status of Agricultural Non-point Source Pollu-tion in China and Com-prehensive Treatment%我国农业面源污染现状及综合治理

    Institute of Scientific and Technical Information of China (English)

    李晓俐

    2015-01-01

    Agricultural non-point source pollution is worsening in China, mainly due to excessive and irrational use of pesticides, excessive use of fertil-izers, plastic sheeting pollution, straw pollution, intensive breeding farms pol-lution,etc. Agricultural non-point source pollution is harmful to water, atmosphere and soil,so the comprehensive treatment measures were put forward.%我国农业面源污染日益严重,主要原因是过量且不合理地使用农药,过量使用化肥,农膜污染、秸秆污染、集约化养殖场污染等。农业面源污染对水体、大气、土壤等造成严重危害,故提出综合治理措施。

  6. Yield calculation of agricultural non-point source pollutants in Huntai River Basin based on SWAT model%基于SWAT模型的浑太河流域农业面源污染物产生量估算

    Institute of Scientific and Technical Information of China (English)

    付意成; 臧文斌; 董飞; 付敏; 张剑

    2016-01-01

    The establishment of non-point source pollutants output load model under the mode of rainfall-runoff and land use, the analog calculation of agricultural non-point source pollutants in the process of migration and transformation, and the systematic analysis of non-point source pollutants discharge quantity, distribution and composition characteristics are based on actual monitoring data, calibration and validation model, in consideration of underlying surface, hydrology and meteorology, and physical features of Huntai River basin. The areas 1 km away from each side of master stream Huntai River, Taizihe River and Daliaohe River and 5 km away from reservoir were defined as buffer zone, where the mode of land use was transformed so as to restore the natural ecosystem. The process of pollutant migration and conversion was simulated based on the calibration of key hydrological parameters, and the causes as well as the migratory features of non-point source pollution were investigated. The primary area of water environment pollution was mainly distributed along both sides of the water channel of the mainstreams of Huntai River. The point-source pollutant was mainly related to the distribution of industry and the amount of discharged wastewater. The risk of non-point pollution was mainly related to the pattern of agricultural plantation and farmland utilization. The secondary area of water environment pollution was mainly distributed along both sides of the water channel of tributaries. Therefore, the situation of pollutant production corresponding to the intra-regional regulation of industrial structure, land utilization pattern surrounding the water channel should be highlighted. The non-point pollution in Huntai watershed was dominated by farmland pollution, and the main indices of pollutants were total nitrogen (N) and total phosphorus (P). The contribution rate of pollutants was farmland runoff > livestock and poultry breeding > urban runoff > water and soil erosion

  7. Non-Point Source Pollutant Load Variation in Rapid Urbanization Areas by Remote Sensing, Gis and the L-THIA Model: A Case in Bao'an District, Shenzhen, China

    Science.gov (United States)

    Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan

    2016-11-01

    Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.

  8. 卫星遥感技术在农业非点源污染评价中的应用分析%Analysis of Satellite Remote Sensing Technology in the Evaluation of Agricultural Non- point Source Pollution

    Institute of Scientific and Technical Information of China (English)

    陈强; 胡勇; 巩彩兰

    2011-01-01

    Non - point source pollution is an important source of water pollution, thus constituting one of the decisive factors affecting water environment. The commonly used agricultural non - point source pollution evaluation methods include statistical models and physical models of the computer. No matter what kind of modeling the researchers adopt, a variety of data acquisition types and the evaluation of the accuracy of the verification results make up the main bottleneck. In order to make people aware of the importance of satellite remote sensing technology in agricultural non - point source pollution evaluation, this paper made an application analysis of the access capability and feasibility of the satellite remote sensing technology from the angle of data types required by the study of the non - point source pollution, and also forecast the application potential of the satellite remote sensing technology in the precision verification of the agricultural non - point source pollution evaluation results.%非点源污染物是水污染的重要来源,已成为影响水环境状况的决定性因素之一.目前常用的农业非点源污染评价模型包括统计模型和机理模型两大类,而无论采用哪种建模方法,多类型数据的获取和评价结果的精度验证都是研究的主要瓶颈.为了使人们对卫星遥感技术在农业非点源污染评价中的应用有所了解,从非点源污染研究所需数据种类的角度,对卫星遥感技术的获取能力和可行性进行了应用分析,并对卫星遥感技术在农业非点源污染评价结果的精度验证中的应用潜力进行了展望.

  9. Assessment and Strategies for Watershed Agricultural Non-point Source Pollution Control%集水区农业非点源污染之评估及控制对策

    Institute of Scientific and Technical Information of China (English)

    林昭远; 陈键鑫; 颜正平

    2001-01-01

    Improper agricultural activities accelerate soil loss and water pollution. An assessment system for agricultural non-point source pollution estimation was developed in this study. Digital Elevation Model (DEM), Remote Sensing (RS) and Geographic Information Systems (GIS) couples with non-point source pollution models were applied in the system to discuss the efficiency of non-point pollution control in a watershed. Concepts of sediment delivery ratio (SDR) and placement of riparian buffer strips couples with the analysis of topography and hydrology for the watersheds of interest to classify the sensitive zone could effectively monitor and control watershed agricultural non-point-source pollution.%集水区内不当之农业活动,加速集水区土壤流失及水库水质恶化。本研究利用数值地形模型(Digital Elevation Model, DEM)、配合遥感探测 (Remote Sensing, RS)与地理信息系统(Geographic Information Systems, GIS)等技术,撰写程序建立集水区农业非点源污染评估系统,探讨集水区农业非点源污染控制之成效。利用泥砂递移率与植生缓冲带区位检视集水区内之农业非点源污染源,划定集水区环境敏感区位,针对敏感区回收造林,可有效控制集水区农业非点源污染。

  10. 基于农业面源污染控制的三峡库区种植业结构优化%Planting structure optimization based on agricultural non-point source pollution control in Three Gorges Reservoir Region

    Institute of Scientific and Technical Information of China (English)

    肖新成; 谢德体; 何丙辉; 魏朝富; 倪九派

    2014-01-01

    Agricultural non-point source pollution has gradually become a major pollution source of lake eutrophication and deterioration of water quality in recent years. The Three Gorges Reservoir Region is both an important sensitive eco-economy area and a typical poverty-stricken mountain area. However, its unique geographical location, its irrational agricultural structure and its increasing serious agricultural non-point source pollution problems challenge the environment in this region. Hence, it is a necessity to take controlling agricultural non-point source pollution from the source as one of the most effective approaches. In current research, agricultural non-point source pollution control excessively depends on engineering and technology. Anyhow, the roles of agricultural planting structure adjustment and agricultural cleaner production which can reduce non-point source pollution should not be ignored. Promoting the adjustment of planting structure, reducing the use of chemical fertilizers and pesticides, and adopting agricultural cleaner production technologies not only help improve the land production capacity and agricultural products quality, but also effectively reduce the agricultural non-point source pollution. By these important measures for energy saving and emission reduction can be realized in Three Gorges Reservoir Region. Based on the dual goals of the optimal agricultural economic benefits and non-point source pollution emission reduction, the linear programming model was used to optimize the planting structure and clean agricultural production in the Three Gorges Reservoir Region. The optimization results showed that the optimal paths to maximize the crop net income were as follows: The land area for grain production should cover 119.16×104hm2but cleaner production area of rice-wheat, corn, soybean and tuber crops needs 31.91×104, 18.69×104, 6.79×104and 19.55×104 hm2; the land area for vegetables planting should be 33.25×104hm2 and its cleaner

  11. 兰州农村面源污染现状及防治对策分析%The Analysis of the Rural Non-point Source Pollution Situation and Countermeasures in Lan Zhou City

    Institute of Scientific and Technical Information of China (English)

    桂洪杰; 赵军平; 杜海霞; 张君弟; 刘佳

    2011-01-01

    文中在兰州统计年鉴的基础上,根据面源污染来源,分析了农业、畜牧业、生产和生活活动的危害,初步估算了主要面源污染物的流失量。并根据兰州市农村具体情况提出了相应的保护和控制措施,旨在为解决农村面源污染问题和保护农村生态环境提供借鉴。%In this paper,on the basis of Lan Zhou statistical yearbook,We analyzed the dangers of agriculture,animal husbandry,production activities and life activities according to the sources of rural non-point pollution,and then,we preliminary estimate the loss of the main non-point pollutant.In order to Provide reference for solving the problem of non-point pollution and the rural ecological environment protection,we put forward the corresponding protection and control measures,according to the specific situation of Lan Zhou countryside.

  12. 苏州市东山镇池塘养蟹面源污染现状及控制%Current status and control strategies of non-point source pollution from pond aquaculture in Dongshan town of Suzhou

    Institute of Scientific and Technical Information of China (English)

    宋学宏; 郭培红; 孙丽萍; 朱江

    2011-01-01

    结合全国污染源普查活动,以苏州市养殖老区东山镇养殖池塘为典型,调查其现行养殖模式、经济效益、养殖污染状况.调查结果显示,东山镇现有养殖面积为2253.33hm2,主养品种为河蟹.1个养殖周期中,养殖池塘通过沟渠排入外界的TN、TP含量分别平均为21.25kg/hm2、2.34kg/hm2;密度为9000只/hm2的低密度养殖池外排的TN含量为16.79kg/hm2,而无TP排出.分析苏州地区池塘养殖产生水环境污染的主要原因,从池塘管理体制改革、科学生态养殖技术及养殖尾水处理等方面探讨池塘养殖污水零排放技术,为苏州市养殖业面源污染的控制提供对策和措施.%Combining with national census of pollution sources and using large-scale pond aquaculture in Dongshan town in Suzhou as a case study, the current cultural modes, economic benefits, and aquaculture pollution were surveyed. The results showed that there were 2 253.33 hm2 of aquaculture in Dongshan town, and the Chinese mitten crab was the main specie. In a single aquaculture period, the discharged total nitrogen (TN) and total phosphorus (TP) from pounds to outside through canals and ditches were on average 21.25 kg/hm2 and 2.34 kg/hm2 respectively. However, in a lowdensity crab raising pond of 9000 ind/hm2, the discharged TN was 16.79 kg/hm2, and no TP was found to be discharged.Based on the case study, the main reasons for the water environment pollution by pond aquaculture were analyzed, and the zero discharge technologies for the waste water of pond aquaculture were discussed from aspects of the management system reform for pond, the scientific and ecological raising technique, and the aquaculture wastewater treatment. The possible strategies and countermeasures for controlling the aquacultural non-point source pollution in Suzhou were also provided.

  13. Non-Point Source Pollutant Load Variation in Rapid Urbanization Areas by Remote Sensing, Gis and the L-THIA Model: A Case in Bao'an District, Shenzhen, China.

    Science.gov (United States)

    Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan

    2016-11-01

    Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.

  14. SWAT模型在大洋河流域非点源污染模拟中的运用研究%The application of the SWAT model in a non-point source pollution in the Dayang River basin

    Institute of Scientific and Technical Information of China (English)

    刘晓哲

    2015-01-01

    Based on the SWAT model to Ocean River watershed for the study, quantitative modeling of the ocean River 2000 - -2010 Pollution, the results show that non-point source: SWAT model is appropriate for non-point source pollu-tion ocean river basin model parameters of periodic and verification simulation of total nitrogen and total phosphorus relative er-ror is less than 30%, the simulation uncertainty factor of 0. 5 or more, to meet the non-point source pollution simulation ac-curacy; total nitrogen and total phosphorus peak ocean River mainly 7 - September. Research for Ocean River water environ-mental protection and governance provide a reference value.%基于SWAT模型,以大洋河流域为研究流域,定量模拟了大洋河流域2000 -2010 年非点源污染,研究结果表明:SWAT模型适合于大洋河流域的非点源污染模拟,模型在参数率定期和验证模拟总氮和总磷相对误差均小于30%,模拟确定性系数达到0. 5 以上,满足流域非点源污染模拟精度要求;大洋河流域总氮和总磷峰值主要集中在7 -9 月份. 研究成果对于大洋河流域水环境保护和治理提供参考价值.

  15. A review on Non-point Source Nutrient Pollution of Irrigation Plain Areas%平原灌区农田养分非点源污染研究进展

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    平原灌区作为农业规模化生产的基地,在农业乃至经济社会发展中起到了重要作用,但是随着农业的发展,平原灌区农田非点源污染问题日益严重,研究平原灌区农田非点源污染具有重要意义。文章以平原灌区污染物随水文循环迁移过程为基础对平原灌区养分非点源污染研究进行综述。(1)平原灌区农田非点源污染的主要来源是过量的化肥施用,农药和农膜,秸秆等农作物的降解,牲畜粪便,污水灌溉,灌溉引起的盐渍化以及大气的干湿沉降等;产生及影响因素主要有土壤的理化性质,水分的输入方式和人为管理措施等。(2)降雨径流及灌溉排水条件下污染物在多级渠系中的迁移规律和灌区地表水与地下水的交互耦合作用决定了平原灌区农田非点源污染的输送途径与特征。(3)在监测资料比较缺乏时,采用输出系数法进行负荷估算;在监测资料充足情况下,采用针对灌区特殊的水文特征而改进的经典水文模型对平原灌区农田非点源污染的负荷进行估算。(4)新型肥料、配方施肥、合理的耕作措施及生态沟渠的设置有利于平原灌区农田非点源污染的控制,TMDL (Total Maximum Daily Loads)为平原灌区农田非点源污染控制提供可靠的依据。针对平原灌区非点源污染研究现状,提出了中国开展平原灌区农田非点源污染研究的重点,包括养分污染物在多级沟渠中的迁移,灌区地表与地下水水量水质耦合模型的建立,分级控制单元与TMDL的制定以及多模型结合模拟等,可望在控制农业非点源污染方面起到指导作用。%Plain irrigation areas as the basis of agricultural large-scale production played an important role in agricultural, economic and social development. However, the seriousness of non-point source pollution in plain irrigation areas is increasing with the

  16. Large area radiation source for water and wastewater treatment

    Science.gov (United States)

    Mueller, Michael T.; Lee, Seungwoo; Kloba, Anthony; Hellmer, Ronald; Kumar, Nalin; Eaton, Mark; Rambo, Charlotte; Pillai, Suresh

    2011-06-01

    There is a strong desire for processes that improve the safety of water supplies and that minimize disinfection byproducts. Stellarray is developing mercury-free next-generation x-ray and UV-C radiation sources in flat-panel and pipe form factors for water and wastewater treatment applications. These new radiation sources are designed to sterilize sludge and effluent, and to enable new treatment approaches to emerging environmental concerns such as the accumulation of estrogenic compounds in water. Our UV-C source, based on cathodoluminescent technology, differs significantly from traditional disinfection approaches using mercury arc lamps or UV LEDs. Our sources accelerate electrons across a vacuum gap, converting their energy into UV-C when striking a phosphor, or x-rays when striking a metallic anode target. Stellarray's large area radiation sources for wastewater treatment allow matching of the radiation source area to the sterilization target area for maximum coverage and improved efficiency.

  17. Calculation and discussion of non-point source pollution loads in Danjiangkou Reservoir Area%丹江口水库入库非点源污染负荷的计算与讨论

    Institute of Scientific and Technical Information of China (English)

    郑艳霞; 程超; 辛小康

    2015-01-01

    正确估算丹江口水库入库非点源污染负荷对于水源区水环境保护具有重要意义. 根据丹江口库区6条主要入库河流汉江、天河、堵河、丹江、老灌河、淇河控制水文站2013年逐日流量数据,采用数字滤波法对基流进行了分割. 以逐日流量、河川基流量和代表污染物(CODMn和TP)2013年逐月浓度监测值为基础,采用通量法计算了背景污染负荷和点源污染负荷、非点源污染负荷. 结果表明:(1) 6条河流入库流量占总入库流量的95. 9%,非点源污染已成为丹江口水库水质变化的主导因素. (2) 汉江是入库污染负荷的最大来源,其次是堵河. (3) 由于非点源污染伴随降雨汇入河道,水库污染负荷主要集中于丰水期,2013年度丰水期CODMn和TP的比例分别达到了80. 8%和90. 9%.%Correctly estimating the non-point source pollution loads in Danjiangkou Reservoir Area is important to the envi-ronmental protection of the water source area. The Digital Filter method is used to separate the base flows of Hanjiang River, Tianhe River, Duhe River, Danjiang River, Laoguan River and Qihe River in the reservoir basin according to the daily discharge data. Based on the daily flow, the base flow and monthly typical pollutant concentration in 2013, a flux model is set up to calcu-late the background pollution loads, point-source pollution loads and non-point source pollution loads respectively. The calcu-lation results show that in 2013, the inflow discharge of the 6 rivers accounted for 95. 9% of the total inflow, and the total pollu-tion loads of CODMn and TP from the 6 rivers are 58. 2 thousand t and 1. 86 thousand t, while the non-point source pollution loads are 39. 82 thousand t and 1. 544 thousand t, so the non-point source pollution is the decisive factor;Hanjiang River is the largest pollutants contributor to Danjiangkou Reservoir and followed by Duhe River; the non-point source pollution enters into the river channel

  18. 宁夏黄河灌区农业非点源污染损失估算%Economic loss caused by non-point source pollution ——A case study of Ningxia Yellow River Water Irrigation District

    Institute of Scientific and Technical Information of China (English)

    杨引禄; 冯永忠; 杨世琦; 曹艳春; 刘强; 杨改河

    2011-01-01

    Non-point source pollution have become more and more serious and brought enormous danger to water environment in Ningxia Yellow River Water Irrigation District, so it has important significance for ecological security to esti-mate the economic value of losses of pollution load in this area. In this paper, according to the JOHNES export coefficient method, calculation is made of non-point source pollution load in'Ningxia Yellow River Water Irrigation District, and the methoddology of enxironmental economics is used to reckon quantitatively economic loss caused by agricultural non-point source pollution. The results showed that the livestock breeding pollution contributed 41.27% to the pollution load of the area, and 37.25 % to the TN and 4.03 % to the TP pollution load of the area. The planting was the second and the rural domestic waste was the lowest proportion in non-point source pollution load, which was 34.54% and 24.2% to the pollution load of the area. The economic loss caused by the regional non-point source pollution was calculated at about 548.741 million RMB in total, of which about 40.97% was coutributed by livestock breeding pollution, while the planting and the rural areaa domestic waste respectively 35.6% and 23.4% to the all economic loss. This results illuminate that only the control of livestock breeding pollution can reduce economic loss caused by agricultural ono-point source pollution in Ningxia Yellow River Water Irrigation District.%以宁夏黄河灌区为研究区,在充分利用JOHNES输出系数法计算灌区非点源污染负荷的基础上,应用环境经济学中的恢复防护费用法对灌区农业非点源污染产生的负荷转化为经济损失进行估算.结果表明:宁夏黄河灌区禽畜养殖产生的污染负荷最高,占灌区污染负荷的41.27%,其中全氮排放占整个区域污染负荷的37.25%,全磷排放占整个区域污染负荷的4.03%,种植业产生的氮磷污染负荷次之,居民生活

  19. Present Situation and Countermeasures of Agricultural Non-point Source Pollution in Wuhan City%武汉市农业面源污染现状及治理对策

    Institute of Scientific and Technical Information of China (English)

    汪坤乾; 张凯; 苏斌; 夏杏明; 汤少云

    2014-01-01

    从化肥施用、农药使用、农膜使用现状3个方面阐述了武汉市农业面源污染现状和为害性,分析了武汉市农业面源污染产生的原因,提出了建立政府主导的农业面源污染治理机制、应用化肥减量化技术、应用农药减量化和残留控制技术、推广可降解地膜等治理面源污染的对策。%We pointed out the status and harmfulness of agricultural non-point source pollution in Wuhan from the three aspects, including the application of chemical fertilizer, pesticide and agricultural film, and analyzed the factors that caused the problem, in addition, we put forward related countermeasures, including establishing the government leading mechanism to control agricultural non-point source pollution, using chemical fertilizer reduction technology, applying pesticide reduction and residue control technology, and using biodegradable plastic film.

  20. Incorporation of Complex Hydrological and Socio-economic Factors for Non-point Source Pollution Control: A Case Study at the Yincungang Canal, the Lake Tai Basin of China

    Science.gov (United States)

    Yang, X.; Luo, X.; Zheng, Z.

    2012-04-01

    It is increasingly realized that non-point pollution sources contribute significantly to water environment deterioration in China. Compared to developed countries, non-point source pollution in China has the unique characteristics of strong intensity and composition complexity due to its special socioeconomic conditions. First, more than 50% of its 1.3 billion people are rural. Sewage from the majority of the rural households is discharged either without or only with minimal treatment. The large amount of erratic rural sewage discharge is a significant source of water pollution. Second, China is plagued with serious agricultural pollution due to widespread improper application of fertilizers and pesticides. Finally, there lack sufficient disposal and recycling of rural wastes such as livestock manure and crop straws. Pollutant loads from various sources have far exceeded environmental assimilation capacity in many parts of China. The Lake Tai basin is one typical example. Lake Tai is the third largest freshwater lake in China. The basin is located in the highly developed and densely populated Yangtze River Delta. While accounting for 0.4% of its land area and 2.9% of its population, the Lake Tai basin generates more than 14% of China's Gross Domestic Production (GDP), and the basin's GDP per capita is 3.5 times as much as the state average. Lake Tai is vital to the basin's socio-economic development, providing multiple services including water supply for municipal, industrial, and agricultural needs, navigation, flood control, fishery, and tourism. Unfortunately, accompanied with the fast economic development is serious water environment deterioration in the Lake Tai basin. The lake is becoming increasingly eutrophied and has frequently suffered from cyanobacterial blooms in recent decades. Chinese government has made tremendous investment in order to mitigate water pollution conditions in the basin. Nevertheless, the trend of deteriorating water quality has yet to

  1. Spatial Quantification of Non-Point Source Pollution in a Meso-Scale Catchment for an Assessment of Buffer Zones Efficiency

    Directory of Open Access Journals (Sweden)

    Mikołaj Piniewski

    2015-04-01

    Full Text Available The objective of this paper was to spatially quantify diffuse pollution sources and estimate the potential efficiency of applying riparian buffer zones as a conservation practice for mitigating chemical pollutant losses. This study was conducted using a semi-distributed Soil and Water Assessment Tool (SWAT model that underwent extensive calibration and validation in the Sulejów Reservoir catchment (SRC, which occupies 4900 km2 in central Poland. The model was calibrated and validated against daily discharges (10 gauges, NO3-N and TP loads (7 gauges. Overall, the model generally performed well during the calibration period but not during the validation period for simulating discharge and loading of NO3-N and TP. Diffuse agricultural sources appeared to be the main contributors to the elevated NO3-N and TP loads in the streams. The existing, default representation of buffer zones in SWAT uses a VFS sub-model that only affects the contaminants present in surface runoff. The results of an extensive monitoring program carried out in 2011–2013 in the SRC suggest that buffer zones are highly efficient for reducing NO3-N and TP concentrations in shallow groundwater. On average, reductions of 56% and 76% were observed, respectively. An improved simulation of buffer zones in SWAT was achieved through empirical upscaling of the measurement results. The mean values of the sub-basin level reductions are 0.16 kg NO3/ha (5.9% and 0.03 kg TP/ha (19.4%. The buffer zones simulated using this approach contributed 24% for NO3-N and 54% for TP to the total achieved mean reduction at the sub-basin level. This result suggests that additional measures are needed to achieve acceptable water quality status in all water bodies of the SRC, despite the fact that the buffer zones have a high potential for reducing contaminant emissions.

  2. A novel modelling framework to prioritize estimation of non-point source pollution parameters for quantifying pollutant origin and discharge in urban catchments.

    Science.gov (United States)

    Fraga, I; Charters, F J; O'Sullivan, A D; Cochrane, T A

    2016-02-01

    Stormwater runoff in urban catchments contains heavy metals (zinc, copper, lead) and suspended solids (TSS) which can substantially degrade urban waterways. To identify these pollutant sources and quantify their loads the MEDUSA (Modelled Estimates of Discharges for Urban Stormwater Assessments) modelling framework was developed. The model quantifies pollutant build-up and wash-off from individual impervious roof, road and car park surfaces for individual rain events, incorporating differences in pollutant dynamics between surface types and rainfall characteristics. This requires delineating all impervious surfaces and their material types, the drainage network, rainfall characteristics and coefficients for the pollutant dynamics equations. An example application of the model to a small urban catchment demonstrates how the model can be used to identify the magnitude of pollutant loads, their spatial origin and the response of the catchment to changes in specific rainfall characteristics. A sensitivity analysis then identifies the key parameters influencing each pollutant load within the stormwater given the catchment characteristics, which allows development of a targeted calibration process that will enhance the certainty of the model outputs, while minimizing the data collection required for effective calibration. A detailed explanation of the modelling framework and pre-calibration sensitivity analysis is presented.

  3. Evaluation of Land Use, Land Management and Soil Conservation Strategies to Reduce Non-Point Source Pollution Loads in the Three Gorges Region, China.

    Science.gov (United States)

    Strehmel, Alexander; Schmalz, Britta; Fohrer, Nicola

    2016-11-01

    The construction of the Three Gorges Dam in China and the subsequent impoundment of the Yangtze River have induced a major land use change in the Three Gorges Reservoir Region, which fosters increased inputs of sediment and nutrients from diffuse sources into the water bodies. Several government programs have been implemented to mitigate high sediment and nutrient loads to the reservoir. However, institutional weaknesses and a focus on economic development have so far widely counteracted the effectiveness of these programs. In this study, the eco-hydrological model soil and water assessment tool is used to assess the effects of changes in fertilizer amounts and the conditions of bench terraces in the Xiangxi catchment in the Three Gorges Reservoir Region on diffuse matter releases. With this, the study aims at identifying efficient management measures, which should have priority. The results show that a reduction of fertilizer amounts cannot reduce phosphorus loads considerably without inhibiting crop productivity. The condition of terraces in the catchment has a strong impact on soil erosion and phosphorus releases from agricultural areas. Hence, if economically feasible, programmes focusing on the construction and maintenance of terraces in the region should be implemented. Additionally, intercropping on corn fields as well as more efficient fertilization schemes for agricultural land were identified as potential instruments to reduce diffuse matter loads further. While the study was carried out in the Three Gorges Region, its findings may also beneficial for the reduction of water pollution in other mountainous areas with strong agricultural use.

  4. Evaluation of Land Use, Land Management and Soil Conservation Strategies to Reduce Non-Point Source Pollution Loads in the Three Gorges Region, China

    Science.gov (United States)

    Strehmel, Alexander; Schmalz, Britta; Fohrer, Nicola

    2016-11-01

    The construction of the Three Gorges Dam in China and the subsequent impoundment of the Yangtze River have induced a major land use change in the Three Gorges Reservoir Region, which fosters increased inputs of sediment and nutrients from diffuse sources into the water bodies. Several government programs have been implemented to mitigate high sediment and nutrient loads to the reservoir. However, institutional weaknesses and a focus on economic development have so far widely counteracted the effectiveness of these programs. In this study, the eco-hydrological model soil and water assessment tool is used to assess the effects of changes in fertilizer amounts and the conditions of bench terraces in the Xiangxi catchment in the Three Gorges Reservoir Region on diffuse matter releases. With this, the study aims at identifying efficient management measures, which should have priority. The results show that a reduction of fertilizer amounts cannot reduce phosphorus loads considerably without inhibiting crop productivity. The condition of terraces in the catchment has a strong impact on soil erosion and phosphorus releases from agricultural areas. Hence, if economically feasible, programmes focusing on the construction and maintenance of terraces in the region should be implemented. Additionally, intercropping on corn fields as well as more efficient fertilization schemes for agricultural land were identified as potential instruments to reduce diffuse matter loads further. While the study was carried out in the Three Gorges Region, its findings may also beneficial for the reduction of water pollution in other mountainous areas with strong agricultural use.

  5. 西充河流域(西充县境内)面源污染现状与防治措施%Non-point Source Pollution and Control Measures of Xichong River Basin (Xi-chong Territory)

    Institute of Scientific and Technical Information of China (English)

    王小霞; 黎小东; 张洪波; 刘星; 吴碧琼

    2015-01-01

    Taking for example the 23 towns ,in Xichong River Basin (Xi-chong territory) ,the output coefficient method is used to e‐valuate the rural non-point source pollution comprehensively from the perspective of the various sources and different towns and put forward some corresponding control measures .The results show that the main pollution in the research area is the rural non-point source pollution :①83 .3% of the pollution load comes from chemical fertilizer pollution ,rural residents living sewage and backyard poultry ;②The pollution in Hong-xi River is more serious than Longtan River;③The most polluted village is Jin-cheng Town .Ac‐cording to the results of this evaluation ,this paper puts forward the corresponding comprehensive control of non-point source pollu‐tion in engineering and non-engineering measures and suggestions .%以西充河流域(西充县境内)的23个乡镇为例,采用输出系数法,从各个污染源和不同乡镇的角度出发,对西充县境内的农村面源污染进行了综合评价,并提出相应的防治措施。结果表明:研究区内的主要污染为农村面源污染:①83.3%的污染负荷来源于为化肥污染、农村居民生活污水和散养畜禽;②虹溪河支流与龙滩河相比,污染较严重;③污染最严重的乡镇为晋城镇。根据评估结果,本文提出了相应的面源污染综合治理的工程及非工程措施和建议。

  6. Non-pointSource Pollution Control Policy under the Perspective of Experimental Economics:A Review%实验经济学视角下的非点源污染控制政策研究:一个文献综述

    Institute of Scientific and Technical Information of China (English)

    Wu Dan; Zhang weiwen

    2015-01-01

    Non-point source pollution has become an important source of water pollution for many countries including China. Used for the design and evaluation of non-point pollution control policy recently,experimental economics has made remarkable achievements in this field. In contrast,related research has not been published in China so far. This paper tries to anatomize and conclude the experimental economics on non-point source control policy by summarizing it as two categories,that is,individual -performance -based and collective -performance -based, from which some enlightenment are obtained and some preliminary research ideas are put forward.

  7. Source Apportionment of Non-point Source Nitrogen Pollution in Ashi River Basin Usingδ15N Technique%阿什河流域非点源氮污染的δ15N源解析研究

    Institute of Scientific and Technical Information of China (English)

    胡钰; 王业耀; 滕彦国; 香宝; 马广文; 方广玲

    2015-01-01

    crop farming on water nitro-gen pollution were dependent on river water seasonal periods and farming cycles. During the normal water period, non-point nitrogen pollu-tion by crop farming occurred mainly in the midstream and downstream sections, with δ15N value ranging from 0.46%to 0.77%. The pollu-tion sources were primarily artificial chemical fertilizers and farmland water recession. During the high water period, the pollution from non-point nitrogen extended to the upstream area, withδ15N range of 0.19%~0.4%. The main pollution source was artificial chemical fertilizers in the upstream area, while it was soil organic nitrogen via soil erosion caused by rainfall and irrigation in the midstream and downstream. Dur-ing the low water period, however, artificial chemical fertilizers were still the main contributor of non-point nitrogen pollution, with δ15N val-ues of 0.11%to 0.39%. This was resulted from the feedback of the nitrite-nitrogen from artificial chemical fertilizers that were applied and infiltrated in the ground during the monsoon.

  8. 重庆市四面山4种森林群落面源污染控制功能分析%The non-point source pollution control function of four forest communities in Simian Mountains, Chongqing

    Institute of Scientific and Technical Information of China (English)

    荣文卓; 张洪江; 杜仕才; 程金花; 王伟; 李根平; 古德洪

    2009-01-01

    Selecting canopy interception rate, capillary porosity,non-capillary porosity and soil anti-erosion coefficient as analysis indices, the function of non-point source pollution control of four forest communities in Simian Mountains of Chongqing were ana-lyzed by Grey Relational Grade Analiysis. The results show that the grey correlation degree of natural Phyllostachys pubescens for-est is 0.887 7, hgher than other three communities, which means that the function of non-point source pollution control of Phyl-lostachys pubescens forest is the best. In the planatations types, the grey correlation degree of broadleaf forest is the highest, 0.779 4, followed by mixed broadleaf-conifer forest (0.699 2). The grey correlation degree of coniferous forest is the lowest, 0.636 1. Which means it has the lowest function for non-point source pollution control.%以重庆市四面山4种森林群落为研究对象,选取林冠截留率、林地土壤毛管孔隙度、林地土壤非毛管孔隙度和林地0~20 cm土壤抗冲刷系数为分析指标,运用灰色关联度法对4种森林群落的面源污染控制功能进行研究.结果表明:在4种森林群落中作为天然林的楠竹林灰关联度值最大为0.887 7,面源污染控制功能最好,其次是人工阔叶林(0.7794)和人工混交林(0.6992),人工针叶林(0.636 1)面源污染防控能力相对较弱.在人工林方面,阔叶林灰关联度值最大为0.7794,面源污染防控能力最好,其次是针阔混交林(0.699 2),针叶林灰关联度值最低为0.636 1,其面源污染防控能力较弱.

  9. Agriculture Non-Point Source Pollution Control

    OpenAIRE

    2003-01-01

    The Chesapeake Bay is the largest and historically most productive estuary in the United States. It is approximately 200 miles long and 35 mile wide at it broadest point. The Bay's watershed includes parts of six states (Delaware, Maryland, New York, Pennsylvania, Virginia, West Virginia, and the entire District of Columbia. This area encompasses 64,000 square-miles, 150 major rivers and s...

  10. 国内外遥感技术在非点源污染模拟中的应用%Application of Remote Sensing Technology in Non-point Source Pollution Monitoring

    Institute of Scientific and Technical Information of China (English)

    王天培

    2011-01-01

    综述了遥感技术在土壤类型和性质、植被类型和性质、水文气象以及土地利用等直接影响非点源污染产生的因素中的应用,以期为模型模拟与遥感技术联合研究非点源污染提供借鉴.%The application of remote sensing technology on the main factors, including soil types and properties, characteristics of vegetation,hydrological process, meteorological information, land use and so on were discussed in this paper so as to provide references for using modelsimulation and remote sensing technology to study the non-point source pollution.

  11. 英国农业面源污染防控对我国的启示%Prevention and control of agricultural non-point source pollutions in UK and suggestions to China

    Institute of Scientific and Technical Information of China (English)

    刘坤; 任天志; 吴文良; 孟凡乔; Jessica Bellarby; Laurence Smith

    2016-01-01

    Currently, the world is facing challenges of maintaining food production growth while improving agricultural ecological environ-mental quality. The prevention and control of agricultural non-point source pollution, a key component of these challenges, is a systematic program which integrates many factors such as technology and its extension, relevant regulation and policies. In the project of UK-China Sustainable Agriculture Innovation Network, we undertook a comprehensive analysis of the prevention and control technology, technology extension systems and related policy measures of agricultural non-point source pollution in UK. We then proposed the promotion of preven-tion and control of agricultural non-point source pollution in China. Considering the current agricultural resources and environment counter-measures of“one control”(control over the total quantity of the agricultural water and agricultural water environment pollution),“two re-duction”(reduction in quantities of fertilizers and pesticides), and “three basic countermeasures”(resource utilization, recycling, and disharm treatment of livestock and poultry wastes, agricultural plastic films and crop straws), we suggested that in the near future source control and process prevention should be technical priorities. Optimzation and reduction of chemical fertilizer, combined use of chemical and organic fertilizers, land utilization management, agricultural sector adjustment and integration of crop production with animal husbandry should be the key technologies. The role of non-governmental technical service should be promoted. Government subsidies, ecological com-pensations and other forms of economic means could be used to encourage famers actively participate in the prevention and control of nitro-gen and phosphorus losses and pollution in soil and water systems. Related technical documents and regulations should be more specific, clear, and practical. Collection, transmission and analysis of

  12. Investigation on Present Xingtai Agricultural Non-point Source Pollution and Preventive Countermeasures%邢台市农业面源污染现状及防治对策

    Institute of Scientific and Technical Information of China (English)

    陈计兵

    2014-01-01

    Xingtai has a large population, with a serious contradiction between demand for food and land supply. The development of agriculture has brought about some pollution, and agricultural non-point source pollution prevention and control is the basic guarantee to realize agricultural sustainable development. Xingtai agricultural non-point source pollution is serious. The pollutants mainly include chemical fertilizer, chemical pesticide, agricultural plastic films, livestock and poultry breeding wastes and life wastes. The pollution has caused the decrease of the farmland quality, the degradation of the quality of agricultural products and water, the damage of the ecological balance. The countermeasures include technical measures, management measures, publicity and education measures, etc.%邢台市人口数量大、粮食需求、土地供给矛盾突出,在农业发展中,产生了一些不可忽视的污染现象,而农业面源污染的防治是实现农业可持续发展的基本保障。邢台市农业面源污染比较严重,污染源主要包括化学肥料污染、化学农药污染、农膜污染、畜禽养殖业污染和生活废弃物污染;污染带来耕地质量下降、农产品和水质质量变差、破坏生态平衡等危害;防治对策包括技术措施、管理措施及宣传教育措施等。

  13. 模拟排水沟渠非点源溶质氮迁移实验研究%Transformation of Non-point Source Soluble Nitrogen in Simulated Drainage Ditch

    Institute of Scientific and Technical Information of China (English)

    李强坤; 宋常吉; 胡亚伟; 彭聪; 马强; 姜正曦; 琚艺萌

    2016-01-01

    The drainage ditch has a compound ecosystem structure consisting of water, sediment and plants. Migration and transformation of the non-point source solute is important to study interception, control and management of agricultural non-point source pollution in the drainage ditch. Based on the experiment on static simulation of drainage ditches, the article used typical non-point source soluble nitrogen as an example to analyze the changing process of nitrogen content in water, sediment and reeds, and to study the effects of the sediment adsorption and desorption, reeds growth and death in different periods on nitrogen concentration in water. The article discussed nitrogen migration in water-sediment- reeds compound ecosystem and its influence on nitrogen concentration in water. The results showed that both adsorption and desorption in sediment and absorption and assimilation of reeds growth had effect on nitrogen concentration in water. The effect before October was reducing the nitrogen concentration in water, which was the process of nitrogen purification in water. After October, the nitrogen concentration in water increased and made it easy to form secondary nitrogen pollution. Meanwhile, the migration in the water-sediment-seeds ecosystem in simulated drainage ditch had close ties, any migration and transformation of nitrogen in a single medium or between different mediums would cause adjustment of nitrogen concentration in water.%农田排水沟渠是由水-底泥-植物组成的复合生态结构,其间非点源溶质的迁移转化对研究沟渠拦截、控制和管理农业非点源污染具有重要意义。本研究以模拟排水沟渠静态实验为基础,以典型非点源溶质氮素为例,分析了实验期内水体、底泥及芦苇不同介质内氮含量变化过程,分析了底泥吸附与解析、芦苇生长与衰败等年内不同时期对水体中氮素浓度的影响,探讨了水-底泥-芦苇复合生态体内氮迁移及对水体中氮

  14. Research Progress on Guangdong Agricultural Non-point Source Pollution Control-Conservation Agriculture Project%广东农业面源污染治理保护性耕作项目研究进展

    Institute of Scientific and Technical Information of China (English)

    任小平; 区颖刚; 杨丹彤; 唐湘如; 胡建广

    2015-01-01

    广东省属于农业大省,近年来随着人口增加和农村经济快速发展,农业面源污染形势十分严峻.广东省承担的世界银行农业面源污染治理保护性耕作项目,通过在省内的项目示范区域进行水稻和甜玉米的示范试验,探索保护性耕作减少农业面源污染源的作用和方法.项目组设计了免耕和少耕插秧、免耕和少耕直播4种主要模式,投入了50多台套农业机械,经过4个试验点1年的试验,初步结果表明,南方高温潮湿地区水稻和甜玉米生产采用保护性耕作技术是有效果的,所选的农机具大多数是适用的,部分北方旱地机械还需要改进.讨论了广东保护性耕作存在的问题和改进的意见.%Guangdong province is an important agricultural province. The agricultural non-point source pollution situation is very grim in recent years as the population increases and the rural economy grows rapidly. Explo-ration, supported by the world bank agriculture non-point source pollution control-conservation tillage project, has been undertaken in Guangdong province to discover the roles and methods for reducing agricultural non-point source pollution by conservation tillage. The project is conducted in four paddy rice and sweet corn demonstration and experimental sites in the province. Four main models, the no-till and less-till transplanting, no-till and less-till direct seeding, have been designed by the project team. More than 50 sets of agricultural machines have been put into the experiments. After one year's experiments conducted in four sites, prelimi-nary results show that the conservation tillage technology is effective in the paddy rice and sweet corn produc-tion in southern area with high temperature and wet conditions. Most of the selected farm machines are appli-cable. Some of the northern dryland machines need to be improved. The paper discussed the problems and im-provement opinions existing in the Guangdong conservation

  15. Review of green roof in controlling unban non-point source pollution%绿色屋顶技术控制城市面源污染应用研究进展

    Institute of Scientific and Technical Information of China (English)

    王书敏; 于慧; 张彬; 邵磊

    2011-01-01

    It has been widely adopted abroad that green roof is an effective mode in controlling Urban Non-point Source Pollution(UNSP),which still belongs to new research fields in China.Based on studies in recent years home and abroad,highlight is given about green roof in controlling unban non-point source pollution from three aspects(i.e.,the reduction and retention of runoff volume,water quality from green roof and the installation method of green roof).Results show that further study is needed for a long time in order to establish the function between stormwater runoff reduction volume and influencing factors;the physical and chemical properties of plants growth media is the key problem affecting runoff water quality.It should follow a wide rang of purposes to install green roofs at home,and the design guidance for green roofs should also be made according to domestic environmental background.The plants growth substrate and the choice of plants are primary problems to be ascertained.%应用绿色屋顶技术控制城市面源污染在欧美国家已得到广泛认同和应用,但在国内尚处于起步阶段.根据国内外最近几年的研究情况,从绿色屋顶消减暴雨径流、绿色屋顶径流水质、绿色屋顶构建方法等方面详细介绍了绿色屋顶技术在控制城市面源污染中的应用研究情况.研究结果表明,建立绿色屋顶暴雨径流消减量与影响因子的映射关系仍需要大量的、长期的研究;植物生长介质的理化性质是影响绿色屋顶径流水质的关键.在国内构建绿色屋顶,应遵循构建目的多元化的原则,逐步建立起适合国内国情的新的绿色屋顶构建导则,其中,植物生长基质搭配方式和植物选取是需要重点明确的问题.

  16. Application of SWMM in the Simulation of Non-Point Source Pollution Load in Urban Residential Area%SWMM模型应用于城市住宅区非点源污染负荷模拟计算

    Institute of Scientific and Technical Information of China (English)

    马晓宇; 朱元励; 梅琨; 张艳军; 张明华

    2012-01-01

    This study was focused on the non-point source pollution loading in a typical urban residential area in Wenzhou City, Zhejiang Province. Based on the SWMM principle, parameters from the literature and field experiments were integrated, and a non-point source pollution calibration model was constructed. Four different rainfall scenarios were designed to analyze the pollution loads and the accumulation process of total suspended solids (TSS) , chemical oxygen demand (CODCr) , total nitrogen (TN) and total phosphorus ( TP). The results showed that the simulated data matched the field-monitored data satisfactorily. The relative errors between the simulated and the true values of all the four parameters were less than 10%. Under' the four rainfall conditions: 1) the highest concentrations of the pollutants were observed within 30-40 minutes; the heavier the rain, the earlier their highest concentrations appeared; 2) higher-intensity rainfall caused more serious pollution to the receiving water bodies than the low-intensity rainfall did.%以温州市典型住宅区非点源污染为对象,基于SWMM(storm water management model)模型的模拟机理,借鉴国内外相关研究的模型参数,结合降雨径流实测数据率定模型参数,将模型“本地化”,构建了基于SWMM模型的研究区非点源污染负荷计算模型,并设计了4种不同降雨情景,分析在不同降雨条件下研究区非点源污染固体悬浮物(TSS)、CODCr、TN和TP的污染负荷量及其累积变化过程.结果表明,构建的SWMM模型的模拟值可以较好地与实测值相吻合,4种污染物模拟的相对误差均小于10%.在设计的4种降雨情景下:①污染物浓度峰值出现在降雨30~40 min内,降雨强度越大,出现浓度峰值的时间越早;②高强度降雨较低强度降雨可对受纳水体造成更大的污染.

  17. 我国农业面源污染现状及其对策研究%Review of the current situation and control countermeasures in agricultural non-point source pollution control in China

    Institute of Scientific and Technical Information of China (English)

    李自林

    2013-01-01

    随着我国经济的快速发展,农业面源污染已成为我国环境污染的主要原因之一。农业面源污染制约农业可持续发展,已成为亟待解决的环境问题。目前,造成农业面源污染的原因主要是化肥农药的过量施用和流失,畜禽和水产养殖业污染,水土流失,作物秸秆大量废弃以及农膜污染。农业面源污染具有分散性、广泛性、随机性等特征,对土壤、水体、大气造成负面影响。本文针对农业面源污染问题,从生物、物理、化学以及农业管理等角度提出了相应的防治对策及措施,以期有效治理农业面源污染,保护环境,促进农业可持续发展。%Agricultural non-point source pollution is the main factor to the environmental pollution in rural China now with the development of economy in China .It has gained the attention of the government and scientist in the country , and also is the main factor to restrain the agricultural sustainable development .At present ,the reasons are list as follow :chemical fertilizer and pesticide and excessive application ;Livestock and aquatic products pollution ;soil erosion ;a ma-jority of strews abandoned ;agricultural plastic film pollution .It has the characteristics of dispensability ,universality and randomness ,which have negative effects on soil ,water and air .In terms of biological chemistry and physics and agricul-tural management ,this paper proposes countermeasures to control agricultural non -point source pollution ,protect the environment ,and promote the sustainable development of agriculture .

  18. 潮河流域非点源污染关键区识别及其管理措施研究%IDENTIFICATION OF NON-POINT SOURCE POLLUTION AND ASSESSMENT OF MANAGEMENT MEASURES IN THE CHAO RIVER BASIN

    Institute of Scientific and Technical Information of China (English)

    唐芳芳; 徐宗学; 徐华山

    2012-01-01

    选取SWAT模型,对潮河流域径流、泥沙及非点源污染过程进行模拟.在对模型进行率定和验证的基础上,参照土壤侵蚀模数与国家地表水环境质量标准对土壤侵蚀及总氮污染关键区进行识别.最后分别在土壤侵蚀和总氮污染关键区设置污染控制情景,对控制措施成效进行模拟和评价.结果表明,SWAT模型可以较好地模拟潮河流域水文过程和污染物迁移转化过程;流域20.9%的区域为轻度土壤侵蚀区,39.8%的区域为总氮风险区;梯田、等高耕作、退耕还林还草和减少化肥施用量等措施都不同程度地对非点源污染负荷起到一定的削减效果.%Chao River basin is one of the most important surface water sources for drinking water in Beijing.In recent years,the Chao River basin is facing water scarcity and water quality problem due to the impact of human activities,development of local economy and climate change.The Chao River basin was selected as the study area in this investigation.SWAT model was applied to simulate hydrological cycle and process of nutrient movements and transformation in the Chao River basin.Then critical source areas of soil erosion were identified according to soil erosion modulus,and critical source areas of TN concentration were identified based on the National Environmental Quality Standards for Surface Water.Finally,several scenarios to control non-point source pollution on critical source areas of soil erosion and TN concentration were proposed.Data showed that the performance of calibration and validation for runoff,sediments and nutrients were satisfactory.Mild soil erosion area was 1260.657 km2,accounting for 20.9% of the total basin area,while critical source area of TN was 2405.1 km2,accounting for 39.8% of the total area.Data also showed that the measures including terraces,contour farming,turning farm into forest and grasslands and fertilizer reduction played different reduction role on controlling

  19. 流域非点源污染景观源汇格局遥感解析%Remote sensing parsing on non-point pollution landscape source and assembly pattern in river basin

    Institute of Scientific and Technical Information of China (English)

    张新; 程熙; 李万庆; 罗雷

    2014-01-01

    流域非点源污染景观源汇格局解析是流域水质污染物产生、输运机理认知与有效防治措施制定的重要科学理论基础。该文以充分挖掘流域遥感数据多时空尺度的特征与优势为目标,制定了流域非点源污染景观源汇类型界定方案,提出了像元级、亚像元级以及时序更新的流域非点源污染景观源汇格局遥感解析方法。在此基础上,以福建省九龙江流域为例,对不透水面这一典型流域非点源污染“源”景观2010年空间格局进行了信息提取,并对2000、2005年对应信息进行了时序更新与空间特征分析,结果显示2000-2010年间九龙江流域内不透水面覆盖面积增长了33.38%。该研究可为中国流域非点源污染研究、生态管理与建设提供参考。%The non-point pollution landscape source and assembly pattern of a river basin and its spatio-temporal process analysis are the scientific theoretical bases for studying the pollution, production, transport, prevention, and policy of river water. In this paper, to mine the spatio-temporal character and advantages of remote sensing data, the definition schedule of the landscape of the river basin non-point pollution source and assembly was introduced. The first types of landscape in the river basin included the impervious surface area (ISA) and the pervious surface area. The second types of landscapes in the river basin consisted of 14 different types, including woodland, orchard, road, rural area, town, and paddy field, etc. The river basin non-point pollution landscape source and assembly pattern remote sensing parsing method was subsequently presented at the pixel, sub-pixel, and time-renewing levels. (1) A “globe-local” coupling information extraction model for ISA at the pixel level was established. Through the mining and integration of the spatial information in a local image area, the spectral instability of the whole scale was optimized. The

  20. 苏州市农业面源污染现状与控制研究%Current situation and control recommendations of agricultural non-point source pollution in Suzhou City

    Institute of Scientific and Technical Information of China (English)

    张贵龙; 秦伟; 管永祥; 邱丹; 杨殿林; 赵建宁

    2011-01-01

    Based on the results of national survey of pollution sources, the production and emission characteristics of pollutants from agricultural activities and the major control measures of agricultural non-point source pollution in Suzhou along the Yangtze River, Taihu Lake and Yangchenghu Lake were analyzed and demonstrated. The results showed that among the non-point source pollutants, the totalamount of nitrogen and phosphorus emitted were 11 878.9 and 1 343.8 t respectively, pesticides loss was 28.0 t, plastic membrane residual was 203.9 t, the volume of straw burned was 214 000 t, total amount of COD emitted by livestock breeding, aquaculture and rural community was 92 360.3 t; The emission amount of nitrogen and phosphorus along the Yangtze River was the largest followed by Taihu Lake, along the Yangcbenghu Lake the lowest. According to the analysis of the total amount of N and P emitted, the ranking of pollutant resource was as below: rural community > livestock breeding >aquaculture > planting; The pollution intensity caused by the four sources were different. The three watershed, the pollution intensity of farming, animal husbandry and rural communities was greater in the Yangtze River, but the pollution intensity of aquaculture was greater in Taihu Lake Therefore,in guiding concept for the prevention and control of no point source pollution, the government should pay close attention to the Yangtze River, give more weight to domestic pollution sources. In view of the above -mentioned facts,to control agricultural non-point source pollution. Some proposals were offered as follows, concentrating superior resources to dispose rural sewage, optimizing the agricultural industry structure, strengthening the ecological construction, comprehensively treating livestock pollution, promoting the utilization of crop straw resources,and reasonably planning aquaculture etc.%利用提供的区城产排污系数,对苏州市沿长江、太湖和阳澄湖流域农业面

  1. SWAT模型在洱海流域面源污染评价中的应用%Application of SWAT Model in Agricultural Non-Point Source Pollution Investigation in Lake Erhai Watershed

    Institute of Scientific and Technical Information of China (English)

    翟玥; 尚晓; 沈剑; 王欣泽

    2012-01-01

    重点污染区域和污染因子的识别是面源污染控制的基础.通过将物理过程模拟及排污系数法计算进行整合,建立了SWAT模型,以描述农业生产活动与污染入湖量之间的关联关系,并以云南洱海流域总氮污染为例,使用验证后的SWAT模型模拟计算不同空间单元和不同农业生产活动对入湖TN的污染贡献系数,定量分析流域内各区域的农业面源污染源结构,识别洱海流域重点农业污染源和农业污染村镇.结果表明,奶牛养殖、生猪养殖和大蒜种植是目前洱海流域内入湖TN污染的最重要农业污染源,占流域总污染负荷的66.12%.对入湖TN污染贡献最大的6个村镇为江尾、右所、三营、玉湖、凤仪和喜洲,占流域总污染负荷的63.41%.%The identification of key polluted areas and factors is the basis of non-point source pollution control. Based on physical processes simulation and the discharge coefficient method, the SWAT model was established to describe the relationship between agricultural production activities and pollution load into a lake. Lake Erhai watershed in Yunnan province was selected as the research area, and TN variation in the lake was calculated. The contribution coefficients of TN nonpoint source pollution to the lake by different spatial areas and different agricultural production activities were calculated with the verified SWAT model, and the pollution source composition in each spatial unit was calculated quantitatively. The key pollution sources and Bpatial units ( administrative village in this study) were identified. The results showed that dairy cattle breeding, pig farming and garlic planting were the major agricultural pollution sources, contributing 66.12% of TN load to the lake. Six villages - Jiangwei, Yousuo, Sanying, Yuhu, Fengyi and Xizhou - contributed most to TN pollution in the lake, accounting for 63.41% of the watershed total pollution load.

  2. Enhanced biomass production through optimization of carbon source and utilization of wastewater as a nutrient source.

    Science.gov (United States)

    Gupta, Prabuddha L; Choi, Hee-Jeong; Pawar, Radheshyam R; Jung, Sokhee P; Lee, Seung-Mok

    2016-12-15

    The study aimed to utilize the domestic wastewater as nutrient feedstock for mixotrophic cultivation of microalgae by evaluating appropriate carbon source. The microalgae Chlorella vulgaris was cultivated in municipal wastewater under various carbon sources (glucose, glycerol, and acetate), followed by optimization of appropriate carbon source concentration to augment the biomass, lipid, and carbohydrate contents. Under optimized conditions, namely of 5 g/L glucose, C. vulgaris showed higher increments of biomass with 1.39 g/L dry cell weight achieving biomass productivity of 0.13 g/L/d. The biomass accumulated 19.29 ± 1.83% total lipid, 41.4 ± 1.46% carbohydrate, and 33.06 ± 1.87% proteins. Moreover, the cultivation of Chlorella sp. in glucose-supplemented wastewater removed 96.9% chemical oxygen demand, 65.3% total nitrogen, and 71.2% total phosphate. The fatty acid methyl ester obtained showed higher amount (61.94%) of saturated fatty acid methyl esters associated with the improved fuel properties. These results suggest that mixotrophic cultivation using glucose offers great potential in the production of renewable biomass, wastewater treatment, and consequent production of high-value microalgal oil.

  3. 生态景观型灌排系统面源污染防治试验及生态响应%Non-point source pollution control experiment and ecological response of ecological landscape type irrigation and drainage system

    Institute of Scientific and Technical Information of China (English)

    张雅杰; 邵庆军; 李海彩; 叶梁倩; 姚星; 胡将军

    2015-01-01

    The current irrigation and drainage system in land renovation was mainly designed and constructed to heighten efficiency of irrigation and drainage, structure safety and convenient management, which, however, somewhat neglected ecological landscape design, exerting an inappropriate influence on the biological habitat and agricultural non-point source pollution. Therefore, the aim of this paper is to design an ecological landscape irrigation and drainage system and realize more comprehensive benefits. First of all, originated from the traditional agricultural drainage and irrigation system, irrigation and drainage with an ecological ring-ditch was designed by using the principle of mutually-beneficial symbiosis of paddy, red duckweed, fish and vegetable planting plates, which realized the multifunctional stereo development of rice paddy pisciculture, vegetable planting and so on. Meanwhile, the roundabout biochemical pond was designed at the ecological ring-ditch drainage sluice, which was used as the treatment device of agricultural non-point source pollution. Then, ecological landscape lateral canal and lateral ditch was designed, which was made up of vegetation type diaphragm blocks, hornworts, vegetable planting plates, fish, Jumping type antiskid ecological plate and plant ecological community. What is more, by using the land reclamation project in shanghai as the experimental area, the rice growth cycle (6-10 months) as study period, the COD, NH4+-N, TN and TP as test indicators, and three monitoring sections as monitoring points, experimental of non-point source pollution prevention effects were made comparisons between system 1, system 2 and system3. The system 1 was constituted by the irrigation and drainage system using ecological ring-ditch, roundabout biochemical pond and lateral ditch wetlands. The system 2 was constituted by the irrigation and drainage system using underground pipe and current lateral ditch. And the system 3 was constituted by the

  4. 宁夏农村面源污染现状调查分析结果初报%Preliminary Report on Investigation and Analysis Result of Current Situation of Rural Non-point Source Pol ution in Ningxia

    Institute of Scientific and Technical Information of China (English)

    杨晓娟; 靳军良; 王金保

    2014-01-01

    通过调查监测,宁夏农村面源污染的主要来源集中体现在化肥污染、农药污染、畜禽粪便污染、农膜污染及农村生活污染5个方面,但其影响和污染主要表现在对水环境和土壤环境的污染上。其中,对水环境的污染形式则是通过地表径流和地下淋溶把过剩的氮、磷、有机农药、无机盐等带到地表水和地下水中,致使地表水富营养化,破环水生态环境,鱼虾难以生存。对土壤环境的污染形式是通过农业投入品超量施入,在改变土壤物理性状、破环土壤通透性、造成土壤板结、粘结的同时,造成重金属离子和病原菌的积累,给农产品质量安全带来危害。%Based on an investigation and monitoring,the main sources of Ningxia rural non-point source pollution includes the five aspects of chemical fertilizer pollution, pesticide pollution, livestock and poultry manure pollution, agricultural plastic film pollution and rural domestic pollution. But the impact and pollution were mainly manifested in the pollution of water envi-ronment and soil environment. The form of pollution of the water environment was bringing excess nitrogen, phosphorus, or-ganic pesticides and inorganic salt to the surface water and underground water by the surface runoff and underground leach-ing,it caused the surface water eutrophication,the destruction of the aquatic ecological environment and made the fish and shrimp hard to survive. The form of pollution of the soil environment was changing the soil physical characteristic, destroying the soil permeability, causing soil compaction and bond,and causing the accumulation of heavy metal ions and pathogenic bacteria by excessive application of agricultural inputs, and it brought harms to the quality and safety of agricultural products.

  5. WASTEWATER

    African Journals Online (AJOL)

    acid in the ozonized wastewater were degraded completely by ... wastewater from pulp and paper plants pose serious environmental problems when they are ... support aquatic life (Stern & Gasner 1974), Gupta and Battacharya 1985).

  6. Nitrogen Non-Point Source Pollution Identification Based on ArcSWAT in Changle River%基于ArcSWAT模型的长乐江流域非点源氮素污染源识别和分析

    Institute of Scientific and Technical Information of China (English)

    邓欧平; 孙嗣旸; 吕军

    2013-01-01

    The ArcSWAT (Soil and Water Assessment Tool) model was adopted for Non-point source ( NPS) nitrogen pollution modeling and nitrogen source apportionment for the Changle River watershed, a typical agricultural watershed in Southeast China. Water quality and hydrological parameters were monitored, and the watershed natural conditions (including soil, climate, land use, etc) and pollution sources information were also investigated and collected for SWAT database. The ArcSWAT model was established in the Changle River after the calibrating and validating procedures of the model parameters. Based on the validated SWAT model, the contributions of different nitrogen sources to river TN loading were quantified, and spatial-temporal distributions of NPS nitrogen export to rivers were addressed. The results showed that in the Changle River watershed, Nitrogen fertilizer, nitrogen air deposition and nitrogen soil pool were the prominent pollution sources, which contributed 35% , 32% and 25% to the river TN loading, respectively. There were spatial-temporal variations in the critical sources for NPS TN export to the river. Natural sources, such as soil nitrogen pool and atmospheric nitrogen deposition, should be targeted as the critical sources for river TN pollution during the rainy seasons. Chemical nitrogen fertilizer application should be targeted as the critical sources for river TN pollution during the crop growing season. Chemical nitrogen fertilizer application, soil nitrogen pool and atmospheric nitrogen deposition were the main sources for TN exported from the garden plot, forest and residential land, respectively. However, they were the main sources for TN exported both from the upland and paddy field. These results revealed that NPS pollution controlling rules should focus on the spatio-temporal distribution of NPS pollution sources.%本研究以我国东南沿海地区的典型农业流域——长乐江流域为对象,通过实地调查、数据收集和分析,

  7. Reduction rate of nitrogen and phosphorus non-point source pollution under different riparian buffer restoring strategies%不同河岸带修复策略对氮磷非点源污染的净化作用

    Institute of Scientific and Technical Information of China (English)

    赵鹏; 胡艳芳; 林峻宇

    2015-01-01

    This study was conducted along Liuxi River watershed, a main branch of Beijiang River, in Guangdong Province. Based on the non-point source (NPS) pollution and riparian buffer’s reduction in current situations of the Liuxi River Basin, the differences of NPS pollution reduction improvement of different restoration strategies were investigated by scenario simulations. In order to compare the efficiency of different restoration strategies, the relationships between the improvement of NPS reduction rate and the increase of buffer area were interpreted by benefit-cost index. The results showed the NPS reduction rate performed remarkable spatial variation. Each scenario had improved the NPS reduction rates to varying degrees (TN: 23.36%~30.72%; TP: 27.19%~39.86%). The relationships between buffer areas and NPS reduction rate of each scenario were fitted well by the logarithmic function (P<0.05). The strategy with restoring the sub-basins of prior riparian buffer restoration, which integrated NPS loading and riparian buffers conditions, could reach the best benefit-cost index (1.19%).%选择北江的重要支流流溪河流域为研究对象,基于现有河岸带对非点源污染削减作用的模拟结果,采用情景分析法,预测不同河岸带修复策略对非点源污染的削减作用,使用效益-成本指数表征 TN 和 TP 削减率提高幅度与增加河岸带面积的关系,比较不同河岸带修复策略的效率.结果表明:河岸带对TN和TP的削减能力具有较大的空间差异性.各修复情景都在不同程度上提高了河岸带对TN和TP的削减率(TN:23.36%~30.72%;TP:27.19%~39.86%),河岸带增加总面积与削减率呈现对数增长关系(P<0.05).选择综合考虑了流域非点源负荷量以及河岸带状况的优先修复子流域进行河岸带修复时,效益-成本指数达最高为1.19%.

  8. 林带对太湖地区农业非点源的控制效应研究%Controlling effects of forest belts on non-point source pollution of agricultural lands in Taihu Lake area, China

    Institute of Scientific and Technical Information of China (English)

    陈金林; 侍璐璐; 张爱国

    2002-01-01

    in water, crops and underground of forest, the transfer and loss of N and P (main water pollutants) in faming ecosystem were studied, and the effects of forest belts on non-point source pollution of agricultural lands was analyzed. The results indicated that the transfer and loss of N and P vary with means of rotation, types of crops and the amount of fertilizer application. Buffering forest belts betweens farmlands and ditches can effectively stop and purify such elements as N and P in soil runoffs, thus controlling non-point source pollution of agricultural lands. When the width ratio of farmland to forest belt is 100 to 40, 50.05% losing N, 29.37% losing P can be absorbed by forest under rape-rice rotation and 30.98% N, 86.73% P can be absorbed by forest under wheat-rice rotation. When the width ratio of farmland to forest belt is 150 to 40, 33.37% losing N, 19.58% losing P can be absorbed by the forest under rape-rice rotation, and under wheat-rice rotation 20.65% lost N and 57.82% lost P can be absorbed. There is only some purification effect when the width ration of farmland to forest belt is 200 to 40. Based on model of buffering forest belts, the width ratio of farmland to forest is determined between 100 to 40 and 150 to 40, because it not only can purify water, but also occupy less farmland. It is suggested that Poplars, with the characteristics of fast-growing and high value, are suitable to be planted as shelter-forest in Taihu Lake Watershed.

  9. Effective growth of dinoflagellate Prorocentrum minimum by cultivating the cells using municipal wastewater as nutrient source.

    Science.gov (United States)

    Ho, Kin-Chung; Xu, Steven Jing-Liang; Wu, Kam-Chau; Lee, Fred Wang-Fat

    2013-01-01

    Several studies have been conducted worldwide in order to develop a more economical method for mass algal cultivation so that more cost-effective biomass production can be accessed. One of the directions is to reduce production costs by using wastewater as a nutrient source in algal cell cultivation. The growth ability of a red-tide causative dinoflagellate species, Prorocentrum minimum, in various concentrations of local urban wastewater was examined in this study. The highest exponential growth rate and maximum cell density (MCD) were achieved when autoclaved 10% wastewater was used for cell cultivation, although the cells could survive in 0.01-100% wastewater. Both growth rate and MCD of the cells in wastewater were found to be substantially higher than that in optimized L1 culture medium. This research highlights the potential of using wastewater as a cost-effective approach for mass cultivation of dinoflagellate cells with consequent production of valuable microalgal biomass.

  10. Spatial-temporal Variation of Agricultural Non-point Source Pollution Based on GIS Technology in Guangdong Province, China%基于GIS的广东省农业面源污染的时空分异研究

    Institute of Scientific and Technical Information of China (English)

    叶延琼; 章家恩; 李逸勉; 李韵; 吴睿珊

    2013-01-01

    近年来,广东省化肥、农药等农用化学品的投入量大增,农业面源污染问题日趋严重.采用历年统计数据以及GIS技术,对广东省农业面源污染的时空分异性进行了分析.结果表明,全省化肥、农药使用量均呈逐年增加态势,化肥使用量由1990年的162.41万t增加到2010年的237.29万t,农药由1990年的7.95万t增加到2010年的10.44万t.畜禽粪尿排放量则由2000年的339.34亿t减少到2010年的222.08亿t;在空间分布上,全省化肥投入强度超过400 kg· hm-2的县(市)由1995年的35个增加到2010年的61个,粤西、粤东全部,珠三角大部以及粤北部分地区均属化肥严重污染区,其原因主要在于对农作物产量增加的追求.农药投入强度超过30 kg· hm-2的县(市)由1995年的10个增加到2010年的27个,这主要是由于广东的气候条件及种植结构改变造成的.畜禽粪尿排放污染情况相对较好,但因粤西的雷州半岛地区以水稻生产为主,大牲畜牛的养殖规模较大,因此畜禽粪尿重度污染主要集中在这一地区.GIS空间分析的运用,能直观地反映各地区农业面源污染的时空动态变化情况,为有针对性地开展污染治理提供依据.%Agriculture non-point source pollution (ANSP) is becoming a serious environmental concern in Guangdong Province due to the increased applications of agricultural chemicals such as fertilizers and pesticides in recent years. This study investigated the spatial-temporal variation of ANSP using the historical statistical data and GIS technology. Results showed that the fertilizer, pesticide and other agrochemical applications in Guangdong Province were increased and reached quite a high level in order to secure food supply. The total amount of chemical fertilizer application increased from 1.62x1061 in 1990 to 2.73x1061 in 2010 and the total amount of pesticide application elevated from 7.95X1041 to 10.04X1041, while the total amount of animal manure

  11. External and internal sources which inhibit the nitrification process in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sinkjær, O.; Bøgebjerg, P.; Grüttner, Henrik

    1996-01-01

    In connection with the upgrading of the two largest wastewater treatment plants in the Copenhagen area to nutrient removal special attention has been paid to the nitrification process regarding inhibition effects. Inhibitory substances in the wastewater could be identified by simple batch tests......, and the long-term effects on the nitrification process were tested in pilot plants or at full-scale. A distinction could be made between effects produced by wastewater from external sources in the catchment area and internally circulated flows in the wastewater treatment plant. Results from programmes...... the nitrification capacity monitored at the pilot plants has been in agreement with the design basis. The recycling of the scrubber water from the cleaning of sludge incineration flue gas was found to be an important internal source of inhibition at the Lynetten WWTP. Investigations show that it is possible...

  12. MUNICIPAL WASTEWATER AS AN SOURCE OF WASTE HEAT – CASE STUDY

    Directory of Open Access Journals (Sweden)

    Alina Żogała

    2016-09-01

    Full Text Available The paper describes the possibility of useing treated wastewater from municipal waste water treatment plant as a waste heat source. Presented and calculated theoretical possibilities of receiving heat takes into account the indirect and direct method. A variant case study was carried out on the example of municipal mechanical and biological wastewater treatment plant Ruptawa belonging to Jastrzębskie Przedsiębiorstwo Wodociągów i Kanalizacji (voivodship Silesia, Jastrzębie City.

  13. Printing ink and paper recycling sources of TMDD in wastewater and rivers.

    Science.gov (United States)

    Guedez, Arlen A; Püttmann, Wilhelm

    2014-01-15

    2,4,7,9-Tetramethyl-5-decyne-4,7-diol (TMDD) is a non-ionic surfactant which is preferentially used as defoamer in paints and printing ink and for the treatment of surfaces. Effluents of wastewater treatment plants (WWTPs) have been identified as the domination point sources for TMDD in rivers since the removal rate of the compound in the WWTPs is in general less than 70%. However, the dominating entry pathways of TMDD into the sewage were unknown so far. In this study effluents from both, municipal WWTPs with and without treatment of indirect industrial dischargers and from industrial WWTPs with direct discharge of wastewater into receiving rivers were analyzed for the first time to identify the proportions of TMDD coming from domestic wastewater and from various industrial sources. Moreover, rivers were samples before and after the influent of sewage water from WWTPs. The TMDD concentrations in the water samples were measured using solid phase extraction (SPE) followed by gas chromatography/mass spectrometry (GC/MS). High TMDD concentrations were found in rivers (up to 63.5 μg/L), and in effluents of WWTPs (up to 310 μg/L) affected by wastewater from paper recycling industry and factories producing paint and printing ink. Concentrations of TMDD revealed to be far higher in wastewater from factories processing recycled paper (up to 113 μg/L) compared to wastewater from factories not processing recycled paper (0.066 μg/L). The results indicate that the use of recycling paper in the paper production process is the dominating reason for increased TMDD concentrations in wastewaters and receiving rivers due to the wash out of TMDD from the paper impregnated with printing ink. Very high TMDD concentrations (up to 3300 μg/L) were also detected in wastewater from a printing ink factory and a paint factory.

  14. “双重失灵”视角下我国农业面源污染的法律规制%Legal Regulation of the Agricultural Non-point Source Pollution in the Perspective of “Double Failure”

    Institute of Scientific and Technical Information of China (English)

    祝创杰

    2016-01-01

    来自化肥、农药、农膜、畜禽养殖等污染源的农业面源污染已经成为我国水污染的最大污染源。现行立法对农业面源污染的规制在指导思想、具体内容和立法技术等方面仍存在一些不足,而这些不足又是忽略或缺乏经济法的思维方式所致。我国农业面源污染恶化是市场失灵和政府失灵共同作用的结果。克服“双重失灵”,有效规制面源污染,可以通过完善环境税收体系,增设生态税、建立排污权交易制度等经济法的调整手段实现。%The Agricultural Non-point Source Pollution (ANPSP),which is caused by pollution source like chemical fertilizers,pesticides,agricultural film and livestock breeding,has already be-come the largest source of pollution of our country's water pollution.The regulation of The Agricultural Non-point Source Pollution given by current legislation still has some deficiencies in guiding ideology, concrete content and legislative technique.This is caused by neglecting or lacking the thinking mode of economic law.The root cause of the deterioration of The Agricultural Non-point Source Pollution in China is the combined action of market failure and government failure.The task of overcoming “double failure”and controlling The Agricultural Non-point Source Pollution can be finished by using adjust-ment methods of economic law.The methods may include improving the environmental tax system, adding ecological taxation and establishing emission trading system.

  15. Cultivation of Nannochloropsis sp. in brackish groundwater supplemented with municipal wastewater as a nutrient source

    Directory of Open Access Journals (Sweden)

    Louise Lins de Sousa

    2014-04-01

    Full Text Available The aim of this work was to study growth potential of the green microalgae Nannochloropsis sp. using brackish groundwater from a well in the semi-arid northeast region of Brazil as culture medium. The medium was supplemented with (% 19.4, 22.0, 44.0 and 50.0% of municipal wastewater after UASB treatment as a low-cost nutrient source. The results showed that the culture tested was capable of growing in the brackish groundwater even at salinity levels as low as 2 ppt. Furthermore it was shown that municipal wastewater could be used as a sole nutrient source for Nannochloropsis sp.

  16. Optimization of Policy and Management Service System on Control of Rural Non-Point Source Pollution-A Case Study of the Rural Area of Shanghai%农村面源污染治理的政策与管理服务体系优化——以上海郊区农村为例

    Institute of Scientific and Technical Information of China (English)

    黄文芳; 沈哲

    2012-01-01

    It is a common view that control of rural non-point source pollution is not only a technology issue, but also a management system issue. So hard currently it has become a hot spot and a hard nut as well to probe and consummate the policy, management and service system for control of rural non-point source pollution. Selecting the rural suburbs of Shanghai for case study, the status quo of the rural non-point source pollution and its management have been analyzed and summarized. While affirming the effect of the current work on pollution management, the limitations of the work are discerned and it was pointed out that inharmony between the agriculture development policy and the environmental protection policy and the lag of the management mechanism and service system behind the change in the rural development model are the basic causes. To counter the major contributors of the rural non-point source pollution, i. e. chemical fertilizers, pesticides , livestock excretes and rural domestic sewage, countermeasures and suggestions are presented for management of the pollution from the aspects of modification of the agricultural subsidization system, reconfiguration and implementation of the rural multi-value system and consummation of agricultural production service system.%农村面源污染控制不仅是技术问题,也是管理体制与机制问题,探讨并完善农村面源污染治理的政策、管理与服务体系已成为当前研究的热点与难点.以上海郊区农村为例,梳理总结农村面源污染及其控制现状;在肯定当前治理效果的同时,识别其局限性,指出农业政策与环境保护政策的不协调、农村发展模式转变下制度与服务体系的相对滞后是根本原因;针对当前农村面源污染重要的贡献者——化肥、农药、畜禽粪便以及农村生活污水,分别从改革农业补贴制度、重构实现农村多重价值的制度以及完善农业生产服务体系等方面给出了治理的对策与建议.

  17. Micropollutant removal in an algal treatment system fed with source separated wastewater streams

    NARCIS (Netherlands)

    de Wilt, Arnoud; Butkovskyi, Andrii; Tuantet, Kanjana; Hernandez Leal, Lucia; Fernandes, T.V.; Langenhoff, Alette; Zeeman, Grietje

    2016-01-01

    Micropollutant removal in an algal treatment system fed with source separated wastewater streams was studied. Batch experiments with the microalgae Chlorella sorokiniana grown on urine, anaerobically treated black water and synthetic urine were performed to assess the removal of six spiked pharmaceu

  18. Resource recovery from source separated domestic waste(water) streams; Full scale results

    NARCIS (Netherlands)

    Zeeman, G.; Kujawa, K.

    2011-01-01

    A major fraction of nutrients emitted from households are originally present in only 1% of total wastewater volume. New sanitation concepts enable the recovery and reuse of these nutrients from feces and urine. Two possible sanitation concepts are presented, with varying degree of source separation

  19. Biomass and pigments production in photosynthetic bacteria wastewater treatment: effects of light sources.

    Science.gov (United States)

    Zhou, Qin; Zhang, Panyue; Zhang, Guangming

    2015-03-01

    This study is aimed at enhancing biomass and pigments production together with pollution removal in photosynthetic bacteria (PSB) wastewater treatment via different light sources. Red, yellow, blue, white LED and incandescent lamp were used. Results showed different light sources had great effects on the PSB. PSB had the highest biomass production, COD removal and biomass yield with red LED. The corresponding biomass, COD removal and biomass yield reached 2580 mg/L, 88.6% and 0.49 mg-biomass/mg-COD-removal, respectively. The hydraulic retention time of wastewater treatment could be shortened to 72 h with red LED. Mechanism analysis showed higher ATP was produced with red LED than others. Light sources could significantly affect the pigments production. The pigments productions were greatly higher with LED than incandescent lamp. Yellow LED had the highest pigments production while red LED produced the highest carotenoid/bacteriochlorophyll ratio. Considering both efficiency and energy cost, red LED was the optimal light source.

  20. Production of Polyhydroxybutyrate by Bacillus axaraqunsis BIPC01 using Petrochemical Wastewater as Carbon Source

    Directory of Open Access Journals (Sweden)

    Nasim Mayeli

    2015-08-01

    Full Text Available The aim of this study was to use petrochemical wastewater as the source of carbon for the production of polyhydroxyalkanoates (PHA in an effort to decrease its cost of production. For this purpose, PHA producing bacteria were isolated from the petrochemical wastewater of Bandar Imam, Iran. The purified colonies were screened for PHA by Sudan Black B and Nile Blue A staining. Among positively stained bacteria, the best PHA producer was selected on the basis of cell growth, PHA content and the monomer composition of PHA. The phenotypic and genotypic identification this isolate showed it to be Bacillus axaraqunsis. The PHA was produced at a cell density of about 9.46 g/l of maximum concentration of 6.33g/l l, corresponding to 66% of cell dry weight. These results showed that B. axaraqunsis BIPC01 could be a potent PHA producer using wastewater for industrial purpose and simultaneously reducing the environmental pollution.

  1. Advances on agricultural non-point source pollution and the control in regions around Hung-tse Lake%环洪泽湖区域农业面源污染特征及控制对策

    Institute of Scientific and Technical Information of China (English)

    徐勇峰; 陈子鹏; 吴翼; 朱咏莉; 李萍萍

    2016-01-01

    Hung⁃tse Lake, located in the northwest of Jiangsu Province, is the fourth largest freshwater lake in China. It is also one of the key hinge lakes in the east route of the south⁃to⁃north water transfer project. However, the water quality for the lake was worse than grade Ⅴ according to the Environmental Quality Standard of Surface Water of the People�s Republic of China. Non⁃point source pollution around the lake was considered one of the main reasons. In the present study, the feature, sources, inducement, control and management of agricultural non⁃point pollution around the lake were reviewed. We held that the unreasonable application of chemical fertilizer was the largest source of the pollution. Aquaculture pollution was substantially increasing due to the facts of the ineffective management to enclosure culture and the abuse of exogenous diets. In addition, the emissions of livestock and poultry breeding, rural sewage and unordered waste management were the main contributors of the pollution. Therefore, the control strategies for the agricultural non⁃point source pollution in the regions should focused on ① developing ecological agriculture with reasonable applications of fertilizer and pesticides,②integrating and optimizing the aquaculture,③improving the treatment of rural sewage and recycling of agricultural wastes,④ reducing pollution by enhancing the land use among farmlands, woodlands and wet⁃lands.%洪泽湖是位于江苏省西北部的我国第四大淡水湖泊,同时是南水北调东线工程的重要节点湖泊。然而,目前洪泽湖水质总体状况仍呈下降趋势,其中面源污染是重要原因之一。笔者对环洪泽湖地区农业面源污染的特点、来源与诱因以及控制技术等进行系统评述,分析认为:不合理的化肥施用是该区域第一大面源污染来源;围网养殖区无序规划及大量外源性饵料的投加,使得水产养殖的污染排放呈现增加趋

  2. Investigation of fluorescence methods for rapid detection of municipal wastewater impact on drinking water sources

    Science.gov (United States)

    Peleato, Nicolas M.; Legge, Raymond L.; Andrews, Robert C.

    2017-01-01

    Fluorescence spectroscopy as a means to detect low levels of treated wastewater impact on two source waters was investigated using effluents from five wastewater facilities. To identify how best to interpret the fluorescence excitation-emission matrices (EEMs) for detecting the presence of wastewater, several feature selection and classification methods were compared. An expert supervised regional integration approach was used based on previously identified features which distinguish biologically processed organic matter including protein-like fluorescence and the ratio of protein to humic-like fluorescence. Use of nicotinamide adenine dinucleotide-like (NADH) fluorescence was found to result in higher linear correlations for low levels of wastewater presence. Parallel factors analysis (PARAFAC) was also applied to contrast an unsupervised multiway approach to identify underlying fluorescing components. A humic-like component attributed to reduced semiquinone-like structures was found to best correlate with wastewater presence. These fluorescent features were used to classify, by volume, low (0.1-0.5%), medium (1-2%), and high (5-15%) levels by applying support vector machines (SVMs) and logistic regression. The ability of SVMs to utilize high-dimensional input data without prior feature selection was demonstrated through their performance when considering full unprocessed EEMs (66.7% accuracy). The observed high classification accuracies are encouraging when considering implementation of fluorescence spectroscopy as a water quality monitoring tool. Furthermore, the use of SVMs for classification of fluorescence data presents itself as a promising novel approach by directly utilizing the high-dimensional EEMs.

  3. The Empirical Analysis of EKC on Agricultural Non-Point Source Pollution in Chongqing%重庆市农业面源污染源的 EKC实证分析

    Institute of Scientific and Technical Information of China (English)

    刘志欣; 邵景安; 李阳兵

    2015-01-01

    Based on the Environmental Kuznets Curve theory and the data from 2000-2012 of Chongqing , five indexes ,w hich are related to the agricultural non‐point source pollution ,are selected as variances and the Environmental Kuznets Curve model are established to analyze the relationship between agricultural non‐point source pollution and the agricultural economic growth .Meanwhile ,use the software of Eviews 7 .0 and SPSS 17 .0 to estimate the parameters .The conclusions can be drawn as follows :1) The chemical fertilizer application level ,the pesticide application level and the emission density of crop residues exhibited typical inverted‐U shaped curve relations with the per capita agricultural net income of farmers .And the chemical fertilizer application level ,pesticide application level and the emission density of crop residues have reduced with the agricultural economic grow th .2) During the study period ,the agricultural films ap‐plication level exhibited liner relations with the per capita agriculture net income of farmers .With the grow th of agricultural economy ,the environmental pressure caused by agricultural films will be further in‐creased .3) The pig droppings equivalent emission density of livestock and poultry manure with the per ca‐pita agricultural net income of farmers exhibited “N”shaped curve characteristics ,the curve exists two in‐flection points .Currently it’s on the right side of the second inflection point and it indicates that the envi‐ronmental pressure caused by livestock and poultry manure pollution will deteriorate again with the devel‐opment of agricultural economy .The government should take effective measures to strengthen the agricul‐tural non‐point source pollution control .%基于环境库兹涅茨曲线理论,根据重庆市2000-2012年的时序数据,选取5个与农业面源污染有关的指标作为污染变量,分析农业面源污染与农业经济增长的关系,并利用EVIEWS7.0

  4. Review on super absorbent polymer application for improving fertilizer efficiency and controlling agricultural non-point source pollutions%高吸水树脂保水剂提高肥效及减少农业面源污染

    Institute of Scientific and Technical Information of China (English)

    廖人宽; 杨培岭; 任树梅

    2012-01-01

    Super absorbent polymer (SAP) is a new type of multifunctional material in drought resistant and pollution control. SAP can quickly absorb water and fertilizer for increasing soil crumb structure and porosity, restraining soil evaporation, promoting crop physiological function and reducing fertilizer loss, so as to result in significant improvement of water and fertilizer use efficiency and marked reduction in fertilizer pollution. In recent years, SAP has been widely used in agricultural nonpoint source pollution control as a chemical product of absorbing and storing water and fertilizer. The paper expounds its acting mechanism and efficiency in controlling pollution, introduces the researches on its main antifouling function, and emphatically summarizes the researches of SAP application in agricultural production and the development of agricultural antifouling absorbent agent. In the end, the problems existing in the field are discussed and the future research fields are proposed.%高吸水树脂(保水剂)是一种新型多功能抗旱、防污材料,能够快速吸持水肥,增加土壤团粒结构和孔隙度,抑制土面蒸发,提升作物生理机能,减少养分淋失,从而达到提高水肥利用效率和减少肥料污染的作用.近年来,保水剂在农业面源污染防治方面得到了越来越广泛的应用.该文阐述了保水剂的防污作用机理及效能,介绍了保水剂主要防污作用方面的研究,重点对保水剂在农业生产上的防污应用及农用防污型保水剂的研制进行了综述,最后分析了保水剂在农业防污应用和研究过程中存在的问题,提出了保水剂未来进行防污应用的研究方向.

  5. Development and application of some renovated technologies for municipal wastewater treatment in China

    Institute of Scientific and Technical Information of China (English)

    QIAN Yi; WEN Xianghua; HUANG Xia

    2007-01-01

    China has been experiencing fast economic development in recent decades at the cost of serious environmental deterioration.Wastewater discharge,especially municipal wastewater discharge,and non-point pollution sources are becoming the major water pollution source and research focus.Great efforts have been made on water pollution control and a number of renovated technologies and processes for municipal wastewater treatment and reclamation as well as non-point pollution control have been developed and applied in China.This paper discusses the development and application of the appropriate technologies,including natural treatment systems,anaerobic biological treatment,biofilm reactors and wastewater reclamation technologies,for water pollution control in the country.

  6. Source analysis of organic matter in swine wastewater after anaerobic digestion with EEM-PARAFAC.

    Science.gov (United States)

    Zeng, Zhuo; Zheng, Ping; Ding, Aqiang; Zhang, Meng; Abbas, Ghulam; Li, Wei

    2017-03-01

    Swine wastewater is one of the most serious pollution sources, and it has attracted a great public concern in China. Anaerobic digestion technology is extensively used in swine wastewater treatment. However, the anaerobic digestion effluents are difficult to meet the discharge standard. The results from batch experiments showed that plenty of refractory organic matter remained in the effluents after mesophilic anaerobic digestion for 30 days. The effluent total COD (tCOD) and soluble COD (sCOD) were 483 and 324 mg/L, respectively, with the sCOD/tCOD ratio of 0.671. Fluorescence excitation-emission matrix (EEM) coupled with parallel factor analysis (PARAFAC) revealed that the dissolved organic matter in the effluents was tryptophan-like substance, humic acid substance, and fulvic acid substance. Based on the appearance time during anaerobic digestion, tryptophan-like substance and humic acid substance were inferred to originate from the raw swine wastewater, and the fulvic acid substance was inferred to be formed in the anaerobic digestion. This work has revealed the source of residual organic matter in anaerobic digestion of swine wastewater and has provided some valuable information for the post-treatment.

  7. Evaluation of Sources of Nitrate Beneath Food Processing Wastewater-Application Sites near Umatilla, Oregon

    Science.gov (United States)

    Frans, Lonna; Paulson, Anthony; Richerson, Phil; Striz, Elise; Black, Curt

    2009-01-01

    Water samples from wells were collected beneath and downgradient of two food-processing wastewater-application sites near Umatilla, Oregon. These samples were analyzed for nitrate stable isotopes, nutrients, major ions, and age-dating constituents to determine if nitrate-stable isotopes can be used to differentiate food-processing waste from other potential sources of nitrate. Major-ion data from each site were used to determine which samples were associated with the recharge of the food-processing wastewater. End-member mixing analysis was used to determine the relative amounts of each identified end member within the samples collected from the Terrace Farm site. The delta nitrogen-15 (delta 15N) of nitrate generally ranged between +2 and +9 parts per thousand and the delta oxygen-18 (delta 18O) of nitrate generally ranged between -2 and -7 parts per thousand. None of the samples that were determined to be associated with the wastewater were different from the samples that were not affected by the wastewater. The nitrate isotope values measured in this study are also characteristic of ammonium fertilizer, animal and human waste, and soil nitrate; therefore, it was not possible to differentiate between food-processing wastewater and the other nitrate sources. Values of delta 15N and delta 18O of nitrate provided no more information about the sources of nitrate in the Umatilla River basin than did a hydrologic and geochemical understanding of the ground-water system derived from interpreting water-level and major-ion chemistry data.

  8. Wastewater effluent, combined sewer overflows, and other sources of organic compounds to Lake Champlain

    Science.gov (United States)

    Phillips, P.; Chalmers, A.

    2009-01-01

    Some sources of organic wastewater compounds (OWCs) to streams, lakes, and estuaries, including wastewater-treatment-plant effluent, have been well documented, but other sources, particularly wet-weather discharges from combined-sewer-overflow (CSO) and urban runoff, may also be major sources of OWCs. Samples of wastewater-treatment-plant (WWTP) effluent, CSO effluent, urban streams, large rivers, a reference (undeveloped) stream, and Lake Champlain were collected from March to August 2006. The highest concentrations of many OWCs associated with wastewater were in WWTP-effluent samples, but high concentrations of some OWCs in samples of CSO effluent and storm runoff from urban streams subject to leaky sewer pipes or CSOs were also detected. Total concentrations and numbers of compounds detected differed substantially among sampling sites. The highest total OWC concentrations (10-100 ??g/l) were in samples of WWTP and CSO effluent. Total OWC concentrations in samples from urban streams ranged from 0.1 to 10 ??g/l, and urban stream-stormflow samples had higher concentrations than baseflow samples because of contributions of OWCs from CSOs and leaking sewer pipes. The relations between OWC concentrations in WWTP-effluent and those in CSO effluent and urban streams varied with the degree to which the compound is removed through normal wastewater treatment. Concentrations of compounds that are highly removed during normal wastewater treatment [including caffeine, Tris(2-butoxyethyl)phosphate, and cholesterol] were generally similar to or higher in CSO effluent than in WWTP effluent (and ranged from around 1 to over 10 ??g/l) because CSO effluent is untreated, and were higher in urban-stream stormflow samples than in baseflow samples as a result of CSO discharge and leakage from near-surface sources during storms. Concentrations of compounds that are poorly removed during treatment, by contrast, are higher in WWTP effluent than in CSO, due to dilution. Results indicate

  9. Source discrimination of drug residues in wastewater: The case of salbutamol.

    Science.gov (United States)

    Depaolini, Andrea Re; Fattore, Elena; Cappelli, Francesca; Pellegrino, Raffaele; Castiglioni, Sara; Zuccato, Ettore; Fanelli, Roberto; Davoli, Enrico

    2016-06-15

    Analytical methods used for pharmaceuticals and drugs of abuse in sewage play a fundamental role in wastewater-based epidemiology (WBE) studies. Here quantitative analysis of drug metabolites in raw wastewaters is used to determine consumption from general population. Its great advantage in public health studies is that it gives objective, real-time data about community use of chemicals, highlighting the relationship between environmental and human health. Within a WBE study on salbutamol use in a large population, we developed a procedure to distinguish human metabolic excretion from external source of contamination, possibly industrial, in wastewaters. Salbutamol is mainly excreted as the sulphate metabolite, which is rapidly hydrolyzed to the parent compound in the environment, so this is currently not detected. When a molecule is either excreted un-metabolized or its metabolites are unstable in the environment, studies can be completed by monitoring the parent compound. In this case it is mandatory to assess whether the drug in wastewater is present because of population use or because of a specific source of contamination, such as industrial manufacturing waste. Because commercial salbutamol mainly occurs as a racemic mixture and is stereoselective in the human metabolism, the enantiomeric relative fraction (EFrel) in wastewater samples should reflect excretion, being unbalanced towards one of two enantiomers, if the drug is of metabolic origin. The procedure described involves chiral analysis of the salbutamol enantiomers by liquid chromatography-tandem mass spectrometry (LC-MS-MS) and calculation of EFrel, to detect samples where external contamination occurs. Samples were collected daily between October and December 2013 from the Milano Nosedo wastewater treatment plant. Carbamazepine and atenolol were measured in the sewage collector, as "control" drugs. Salbutamol EFrel was highly consistent in all samples during this three-month period, but a limited

  10. Characterization of non point source pollutants and their dispersion ...

    African Journals Online (AJOL)

    EJIRO

    African Journal of Environmental Science and Technology Vol. 5(2), pp. ... wet season increases the concentrations of ammonia, phosphorus, nitrites and nitrates. Ammonia .... sampling coordinates were stored in a GPS and later traced during ..... threats, impacts and conservation strategies in the African Great,. Lakes.

  11. 基于改进USLE模型的北运河流域非点源污染潜在敏感区分析%Potential Sensitive Areas Analysis of Non-Point Source Pollution in North Canal Basin based on Improved USLE Model

    Institute of Scientific and Technical Information of China (English)

    靳美珠; 张晓惠; 袁雪竹

    2012-01-01

    Based on the universal soil loss equation (USLE), the model of demarcation of sensitive areas of the non-point pollution in North Canal basin is developed. With the database of TM remote sensing images, digital elevation model (DEM), and the map of soil use type in research area in 2009, distribution map of sensitive areas of non-point source in North Canal basin is produced by the model. Base on the simulation, the three risk areas (high, medium and low) and safe areas are identified. Results show that improved model can be effectively used in the analysis of sensitive areas of non-point source pollution.%基于通用土壤流失方程(USLE)建立北运河流域非点源污染敏感区的划分模型,以2009年研究区域TM遥感影像、数字高程模型(DEM)、研究区土壤利用类型图等为数据基础,在GIS9.3和ERDAS9.2平台上通过对各模型因子进行栅格运算生成北运河流域非点源污染潜在敏感区分布图,在此基础上划分了高、中、低三个风险区以及安全区.鉴于我国与美国不同的自然条件,以及土壤流失与固体垃圾的扩散之间所存在的差异,在引进和应用该模型时,对方程中各因子的算法和参数做了一定的调整和改进,结果表明改进后的模型可以有效的运用于非点源污染敏感区的分析.

  12. Optimized treatment conditions for textile wastewater reuse using photocatalytic processes under UV and visible light sources.

    Science.gov (United States)

    Starling, Maria Clara V M; Castro, Luiz Augusto S; Marcelino, Rafaela B P; Leão, Mônica M D; Amorim, Camila C

    2017-03-01

    In this study, photo-Fenton systems using visible light sources with iron and ferrioxalate were tested for the DOC degradation and decolorization of textile wastewater. Textile wastewaters originated after the dyeing stage of dark-colored tissue in the textile industry, and the optimization of treatment processes was studied to produce water suitable for reuse. Dissolved organic carbon, absorbance, turbidity, anionic concentrations, carboxylic acids, and preliminary cost analysis were performed for the proposed treatments. Conventional photo-Fenton process achieved near 99 % DOC degradation rates and complete absorbance removal, and no carboxylic acids were found as products of degradation. Ferrioxalate photo-Fenton system achieved 82 % of DOC degradation and showed complete absorbance removal, and oxalic acid has been detected through HPLC analysis in the treated sample. In contrast, photo-peroxidation with UV light was proved effective only for absorbance removal, with DOC degradation efficiency near 50 %. Treated wastewater was compared with reclaimed water and had a similar quality, indicating that these processes can be effectively applied for textile wastewater reuse. The results of the preliminary cost analysis indicated costs of 0.91 to 1.07 US$ m(-3) for the conventional and ferrioxalate photo-Fenton systems, respectively. Graphical Abstract ᅟ.

  13. Solid Waste from Swine Wastewater as a Fuel Source for Heat Production

    Directory of Open Access Journals (Sweden)

    Myung-Ho Park

    2012-11-01

    Full Text Available This study was to evaluate the feasibility of recycling the solids separated from swine wastewater treatment process as a fuel source for heat production and to provide a data set on the gas emissions and combustion properties. Also, in this study, the heavy metals in ash content were analyzed for its possible use as a fertilizer. Proximate analysis of the solid recovered from the swine wastewater after flocculation with organic polymer showed high calorific (5,330.50 kcal/kg and low moisture (15.38% content, indicating that the solid separated from swine wastewater can be used as an alternative fuel source. CO and NOx emissions were found to increase with increasing temperature. Combustion efficiency of the solids was found to be stable (95 to 98% with varied temperatures. Thermogravimetry (TG and differential thermal analysis (DTA showed five thermal effects (four exothermic and one endothermic, and these effects were distinguished in three stages, water evaporation, heterogeneous combustion of hydrocarbons and decomposition reaction. Based on the calorific value and combustion stability results, solid separated from swine manure can be used as an alternative source of fuel, however further research is still warranted regarding regulation of CO and NOx emissions. Furthermore, the heavy metal content in ash was below the legal limits required for its usage as fertilizer.

  14. IDENTIFICATION OF CRYPTOSPORIDIUM SPECIES AND SOURCES IN RAW WASTEWATER USING A SMALL SUBUNIT RRNA-BASED PCR-RFLP TOOL

    Science.gov (United States)

    The species composition and source of Cryptosporidium oocysts in wastewater have never been determined, even though it is widely assumed that these oocysts are from human sewage. Recent molecular characterizations of Cryptosporidium parasites make it possible to differentiate hum...

  15. PowerStep - Wastewater as source of biomass for renewable energy

    Science.gov (United States)

    Loderer, Christian; Lesjean, Boris; Krampe, Jörg

    2017-04-01

    at operating WWTP sites of different sizes (up to 350,000 pe) and involving various and representative state-of-the-art treatment processes, which underlines both the realistic nature of testing conditions and also the interest of associated partners and utilities in the innovative potential of the investigated technologies and concepts. Within the next three years the following goals should be achieved: • Breakthough innovation: the WWTP will be net energy producer. Wastewater as the last forgotten source of biomass for renewable energy. • No additional needs for power infrastructure, as WWTPs are already well connected in energy supply network and close to power demand (big cities). • First coordinated European project demonstrating energy positive WWTPs as cost effective combination of technological solutions. • Demonstration with first large-scale references: Best practices for next generation WWTPs integrated with global assessment. • Outstanding market and environment impact: Global yearly market value of up 30 Billion, energy cost savings for WWTP operators in Europe of at least €1.7 Billion per year and 5.9 Million tCO2 reduction per year.

  16. Electricity generation from wastewaters with starch as carbon source using a mediatorless microbial fuel cell.

    Science.gov (United States)

    Herrero-Hernandez, E; Smith, T J; Akid, R

    2013-01-15

    Microbial fuel cells represent a new method for producing electricity from the oxidation of organic matter. A mediatorless microbial fuel cell was developed using Escherichia coli as the active bacterial component with synthetic wastewater of potato extract as the energy source. The two-chamber fuel cell, with a relation of volume between anode and cathode chamber of 8:1, was operated in batch mode. The response was similar to that obtained when glucose was used as the carbon source. The performance characteristics of the fuel cell were evaluated with two different anode and cathode shapes, platinised titanium strip or mesh; the highest maximum power density (502mWm(-2)) was achieved in the microbial fuel cell with mesh electrodes. In addition to electricity generation, the MFC exhibited efficient treatment of wastewater so that significant reduction of initial oxygen demand of wastewater by 61% was observed. These results demonstrate that potato starch can be used for power generation in a mediatorless microbial fuel cell with high removal efficiency of chemical oxygen demand.

  17. ASSESSMENT AND CONTROL OF NITROGEN EMISSION FROM AGRICULTURAL NON-POINT SOURCE IN THE URBAN AGGLOMERATION IN THE MIDDLE-LOWER YANGTZE RIVER BELT%长江中下游城市群农业面源污染氮排放评价及调控

    Institute of Scientific and Technical Information of China (English)

    赖敏; 王伟力; 郭灵辉

    2016-01-01

    Nitrogen is an important component of protein and essential element for the growth of aquatic biomass. Excessive nitrogen input to natural water bodies leads to huge ecological pressure and environmental pollutions such as eutrophication. As point source pollution got effective control in the socio-economic system, agricultural non-point source pollution has become the main cause of eutrophication. Quantifying and regulating the agricultural non-point source pollution emissions throughout the entire socio-economic system is crucial to mitigate or avoid pro-ducing water pollution. Based on the inventory analysis method and emission coefficient method, this paper calcu-lated the nitrogen emission from the agricultural non-point source for the Urban Agglomeration in the Middle-Lower Yangtze River Belt. The results showed that the total nitrogen emission from the agricultural non -point source in the whole area was 128. 27 × 104 t in 2011, of which agricultural emission accounted for 58. 92%, and e-mission from livestock and poultry was 33 . 53%. The sensitivity analysis method and scenario analysis method were then applied to simulate the emission situation during 2011 to 2020 and 2020 to 2030 . Some conclusions were drawn as follows:Under scenario 1, if more stringent pollution control efforts were not implemented, the nitrogen e-mission from the agricultural non-point source would increase 16 . 29% during 2011 to 2020 , and 18 . 78% during 2020 to 2030. Under scenario 2 and scenario 3, by contrast, the total nitrogen emission of the four urban agglomer-ations would be 15% fewer in 2020 than in 2011 , and 25% fewer in 2030 than in 2011 . The nitrogen emission re-duction effect in scenario 2 was better than that in scenario 3;Scenario 3 was considered to be more conducive to couple the relationship between regional economic growth and environmental protection. Finally, some recommen-dations were put forward to regional emission reduction, including reducing

  18. Source apportionment and spatial heterogeneity of agricultural non-point source pollution based on water environmental function zoning%基于水环境功能区划的农业面源污染源解析及其空间异质性

    Institute of Scientific and Technical Information of China (English)

    钱晓雍; 沈根祥; 郭春霞; 顾海蓉; 朱英; 王振旗

    2011-01-01

    Taking township as basic unit, the inventory analysis method and equivalent standard method were conducted to determine the discharge amount of chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) from different types of agricultural non-point sources, including chemical fertilizer application, animal manure application, crop straws, animal husbandry, aquaculture and rural sewage. The impact of agricultural non-point source pollution (ANPSP) on water environment and its spatial heterogeneity were analyzed based on water environmental function zoning at the scales of county and town. The results indicated that, the absolute discharge amount of COD, TN and TP from ANPSP were 4.42× 104,1.13× 104, 0.44× 104 t/a respectively, and the discharge amount in equivalent standard were 0.16× 104, 0.93 × 104, 1.65× 104 m3/a respectively. The primary pollution source was animal husbandry, which load ratio in equivalent standard reached 66.31%, and the primary pollutant was TP, which load ratio in equivalent standard reached 60.32%. Discharge concentration of COD, TN and TP caused by ANPSP in different districts were in the range of 4.16-40.91, 1.30-8.71, 0.23-4.94 mg/L respectively, while the average water quality index ranged from 0.67 to 5.91. From the point view of town-based pollution stress, the pollution extent of the towns in South Shanghai and Chongming Island was much higher, which had greater agriculture productive value and located near the water conservation area with stricter water quality standards.%通过清单分析方法和等标污染负荷法,以乡镇为单元研究了上海市化肥施用、有机肥施用、农作物秸秆、畜禽养殖、水产养殖、农村生活污水等农业面源污染来源化学需氧量(COD)、总氮(TN)、总磷(TP)等污染物的排放量及其贡献率,并根据各区域水环境功能区划分别在区县尺度和乡镇尺度分析了农业面源污染程度及其区域分布.结果表明,上

  19. Activated sludge is a potential source for production of biodegradable plastics from wastewater.

    Science.gov (United States)

    Khardenavis, A; Guha, P K; Kumar, M S; Mudliar, S N; Chakrabarti, T

    2005-05-01

    Increased utilization of synthetic plastics caused severe environmental pollution due to their non-biodegradable nature. In the search for environmentally friendly materials to substitute for conventional plastics, different biodegradable plastics have been developed by microbial fermentations. However, limitations of these materials still exist due to high cost. This study aims at minimization of cost for the production of biodegradable plastics P(3HB) and minimization of environmental pollution. The waste biological sludge generated at wastewater treatment plants is used for the production of P(3HB) and wastewater is used as carbon source. Activated sludge was induced by controlling the carbon: nitrogen ratio to accumulate storage polymer. Initially polymer accumulation was studied by using different carbon and nitrogen sources. Maximum accumulation of polymer was observed with carbon source acetic acid and diammonium hydrogen phosphate (DAHP) as nitrogen source. Further studies were carried out to optimize the carbon: nitrogen ratios using acetic acid and DAHP. A maximum of 65.84% (w/w) P(3HB) production was obtained at C/N ratio of 50 within 96 hours of incubation.

  20. 东江源山地果畜结合区面源污染生态化控制模式与效果分析%Study on ecological control mode of non-point source pollution from the system of orchard linked with animal husbandry in the valley of Dongjiang River Headwater

    Institute of Scientific and Technical Information of China (English)

    席运官; 刘明庆; 王磊; 汪贞; 李德波; 王宏燕

    2013-01-01

    The paper studied the structure and functions of pig-biogas-fruit-fish eco-agricultural mode in the headwater of Dongjiang River based on the Xinglin farm in Dingnan County, analyzed the controlling effect in quality and quantity to the water pollution nutrition through source controlling, drainage reducing and cleaning, and tested the draining water of Xinglin farm showing that draining water quality was better than the Ⅳ level standard of surface water. It proved that this model had the features of opearational, extentional and low input, and could be the important mode for controlling the non-point source pollution in the headwater of Dongjiang River.%  分析东江源山地果畜结合区“猪-沼-果-鱼”生态农业模式的结构与功能,定性和定量分析农庄采用生态化技术对水体污染物控源、减排、净化的效果,跟踪采样分析农庄排水水质,结果表明,农庄排水全年优于地表水Ⅳ类水标准,该模式兼具可操作、可推广、低投入特性,是东江源控制农业面源污染的重要模式。

  1. 农业面源污染治理的政策效用评估以江苏省海安县的测土配方施肥推广为例%Agricultural Non-point Source Pollution Controlling Policy's Utility Evaluation Based on Environmental Cost:A Case Study of Soil Testing and Fertilizer Recommendation Technology in Hai'an County

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    为衡量农业面源污染治理政策的作用效果,文章基于环境成本的视角,探索了农业面源污染治理政策效用评估的一般方法与步骤。首先,结合农业化肥的环境污染特点,利用输出系数模型以实现对区域内农业化肥造成的总氮TN、总磷TP排放量的合理测算。然后,建立了基于能值分析法的环境成本估计模型,并结合经济成本和经济收益,构建了基于成本-收益分析的农业面源污染治理政策效用评估的一般模型。最后,以江苏省海安县的测土配方施肥技术的推广为例,对海安县测土配方施肥节本增收效果进行综合评价,并探索了江苏省实现测土配方施肥全覆盖时的总体效果,为面源污染治理政策的评估提供思路。%In order to assess the policy effect of controlling agricultural non-point source pollution ,this paper ,based on the perspec‐tive of environmental cost ,explores the general methods and steps for utility evaluation of agricultural non-point source pollution's treatment measures .First of all ,combined with the characteristics of environmental pollution caused by agricultural fertilizer ,this paper chooses a rational export coefficient model to calculate total nitrogen (TN) ,total phosphorus (TP) emissions caused by agri‐cultural fertilizer in the region .Then ,targeted at soil testing and fertilizer recommendation technology ,this paper constructs envi‐ronmental cost estimation model based on energy analysis and general utility evaluation model based on cost-benefit analysis .Finally , this paper takes Hai'an County's promotion of soil testing and fertilizer recommendation in Jiangsu Province for example ,the synthe‐sized evaluation of the technology is achieved in saving costs and increasing income .Further ,this paper explores the beneficial se‐quence when the technology is spread to the whole Jiangsu Province ,which will provide ways to better choose

  2. 基于排水过程分析的水稻灌区农田面源污染模拟%Simulation of agricultural non-point source pollution from paddy rice irrigation district based on analyses of drainage processes

    Institute of Scientific and Technical Information of China (English)

    陈会; 王康; 周祖昊

    2012-01-01

    对前郭灌区主要面源污染物迁移、转化及汇集过程开展了2a的系统试验与监测,模拟了灌区面源污染水质水量过程,分析了灌区农田面源污染形成机制.水均衡测定结果表明,灌区排水主要由灌溉退水、稻田地表弃水和稻田渗流排水3部分组成,采用马斯京根法和连续分段马斯京根法能够有效地模拟各级排水沟道的排水过程.主要面源污染物随水体发生迁移及掺混,采用一级动力学方法描述污染物转化过程,模拟的灌区水质水量过程与实际过程符合较好,稻田地表退水主要影响水稻抽穗前的面源污染入河过程,而渗流排水则在抽穗后灌区排水水质中起主要作用.结果表明水稻灌区中地表排水和稻田渗漏排水对于面源污染过程起主要作用.%The transport and transformation processes of non-point source pollutions form paddy rice field to the main drainage canal through lateral and branch drainage canals were monitored in the Qianguo irrigation district during the rice growing seasons in 2009 and 2010. Water balance were measured in lateral canal in the controlled irrigation region. Results showed that the drainage water were composed of the rice field surface returned water, the irrigation returned water and the seepage from rice field to the drainage canals. Drainage processes in branch and main canal were simulated using the Muskingum method and the Muskingum segmentation flow routing method, respectively. The transport processes of chemical concentrations were determined by the mix and convection of water flow and the transformation processes were described using the first order kinetic equation. Drainage processes and contaminant concentration simulated showed good agreements with the measured values. The returned water and seepage from rice field played key roles in the process of agricultural non point pollution into the river. This research suggested the surface drainage and seepage

  3. The cold adaptability of microorganisms with different carbon source in activated sludge treating synthetical wastewater.

    Science.gov (United States)

    Niu, Chuan; Geng, Jinju; Ren, Hongqiang; Ding, Lili; Xu, Ke

    2012-11-01

    The cold adaptability of microorganisms with different carbon source under 5°C was studied in activated sludge for treating synthetical wastewater. Phospholipid fatty acid (PLFA) analysis indicated contents of unsaturated fatty acids in cell membrane at 5°C were 13.66% and 24.96% higher for glucose and sodium acetate source than that at 25°C. PLFA biomarkers showed more Gram-negative bacteria enriched than Gram-positive bacteria in low-temperature activated sludge. The Shannon-Wiener diversity analysis demonstrated glucose fed reactor in low temperature had lower PLFA diversity index (1.21-1.30) than that at 25°C and sodium acetate source was reverse (1.08-0.69). The 16S rRNA analysis manifested certain microbes were considerably suitable for existence under cold environment, most of which belong to Gram-negative bacteria.

  4. Contamination, source, and input route of polycyclic aromatic hydrocarbons in historic wastewater-irrigated agricultural soils.

    Science.gov (United States)

    Wang, Ning; Li, Hong-Bo; Long, Jin-Lin; Cai, Chao; Dai, Jiu-Lan; Zhang, Juan; Wang, Ren-Qing

    2012-12-01

    Contamination by polycyclic aromatic hydrocarbons (PAHs) of historic wastewater-irrigated agricultural topsoil (0-5 cm) and the contribution of groundwater irrigation and atmospheric deposition to soil PAHs were studied in a typical agricultural region, i.e. Hunpu region, Liaoning, China. Concentrations of total PAHs ranged from 0.43 to 2.64 mg kg⁻¹ in topsoil, being lower than those found in other wastewater-irrigated areas. The levels of PAHs in soil declined as the distance from a water source increased. Concentrations of individual PAHs were generally higher in upland than in paddy topsoils. The calculated nemerow composite index showed that agricultural soil in the region was "polluted" by PAHs. A human health risk assessment based on the total toxic equivalent concentration showed that the presence of elevated concentrations of PAHs in the soil might pose a great threat to the health of local residents. Ratios of pairs of PAHs and principal component analysis (PCA) showed that pyrogenesis, such as coal combustion, was the main source of PAHs, while petroleum, to some extent, also had a strong influence on PAHs contamination in upland soil. The distribution patterns of individual PAHs and composition of PAHs differed between irrigation groundwater and topsoil, but were similar between atmospheric deposition and topsoil. There were significant linear correlations (r = 0.90; p soils, while no significant relationships were observed between irrigation groundwater and topsoil in levels of PAHs. These suggested that PAHs in agricultural soils were mainly introduced from atmospheric deposition, rather than from groundwater irrigation after the phasing out of wastewater irrigation in the region since 2002. This study provides a reference to ensure agricultural product safety, pollution control, and proper soil management.

  5. 引导农户施肥行为在农业面源污染治理中的影响--基于中英项目调查分析%The Effects from Guidance of FarmersˊBehavior for Fertilizer Using in the Regulation of Agricultural Non -point Source Pollution:Based on the Survey of China -UK Educational Program

    Institute of Scientific and Technical Information of China (English)

    华春林; 陆迁; 姜雅莉

    2015-01-01

    Based on the implementation of the China -UK educational program,this paper empirically analyzes the effects from guidance of farmersˊbehavior for fertilizer using with the survey data of 331 farmers in Yangling Demonstration Zone and Wugong County of Shaanxi Province.The result indicates that the amount of farmersˊfertilizer using is significantly re-duced by correct guidance.During the process of constructing the governance micro -mechanism of agricultural non -point source pollution,it is necessary to seriously consider the guiding function of educational program.%基于中英项目实施情况,利用陕西省杨凌示范区及泾阳县331份农户实地调查数据,实证分析引导农户化肥施用行为在污染治理中的影响。分析结果表明对农户化肥施用行为的正确引导会减少化肥量的投入,最终影响我国农业面源污染的治理效果。因此,在构建我国农业面源污染微观治理机制时,要重视具有引导农户生产行为作用的治理手段。

  6. 基于“压力-响应”机制的江苏省农业面源污染源解析及其空间特征%Spatial Distribution Characteristics and Source Origin of Agricultural Non-point Source Pollution in Jiangsu Province Based on Pressure-response System

    Institute of Scientific and Technical Information of China (English)

    陆尤尤; 胡清宇; 段华平; 卞新民

    2012-01-01

    运用清单分析、等标负荷和聚类分析等方法,对江苏省农业面源污染源、影响因子、空间分布特征等进行了分析与评价.结果表明:江苏省农业面源污染化学需氧量(COD)、全氮(TN)、全磷(TP)绝对实物排放量分别为155.23×104 t/a、62.34×104 t/a、9.05×104t/a,相应的绝对等标排放量分别为7.76×104 t/a、62.34×104 t/a、45.23×104t/a.农业面源污染造成的COD、TN、TP的平均排放浓度分别为6.25 mg/L、2.53mg/L、0.36 mg/L,排放浓度地区差异显示苏北>苏中>苏南.农业面源污染综合水质指数显示,江苏省均值为2.10,达到中度污染水平.其中徐州、连云港、宿迁处于严重污染状态;淮安、盐城、泰州处于中度污染状态;南通、扬州处于轻度污染状态;南京处于警戒状态;无锡、常州、苏州、镇江处于安全状态.主要污染物依次是TN、TP,其贡献率分别为54.71%和38.86%;主要污染源依次是化肥施用、畜禽养殖、人粪尿、水产养殖,其贡献率分别为30.75%、24.94%、16.85%、15.28%;在国土面积、农业产值和农村人口几大因子中,农业产值是与污染物排放量相关性程度最高的因子.通过对”压力-响应”的表征量进行聚类分析得出江苏省农业面源污染的空间分布特征,其压力和响应基本一致.%The primary source, influence factors, and spatial distribution characteristics of agricultural non-point source pollution (NPSP) in Jiangsu Province were analyzed by inventory analysis, equivalent standard load, and cluster analysis methods. Results showed that the absolute real emissions of COD, TN and TP from NPSP were 155.23× 104t/a, 62.34×l04t/a and 9.05×l04t/a respectively. And the related standard emissions were 7.76×104 t/a, 62.34×104t/a and 45.23×104 t/a. The average concentrations of COD, TN and TP emitted from NPSP were 6.25 mg/L, 2.53 mg/L, 0.36 mg/L, respectively. The concentrations of these

  7. A national reconnaissance for pharmaceuticals and other organic wastewater contaminants in the United States - II) Untreated drinking water sources

    Science.gov (United States)

    Focazio, M.J.; Kolpin, D.W.; Barnes, K.K.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Barber, L.B.; Thurman, M.E.

    2008-01-01

    Numerous studies have shown that a variety of manufactured and natural organic compounds such as pharmaceuticals, steroids, surfactants, flame retardants, fragrances, plasticizers and other chemicals often associated with wastewaters have been detected in the vicinity of municipal wastewater discharges and livestock agricultural facilities. To provide new data and insights about the environmental presence of some of these chemicals in untreated sources of drinking water in the United States targeted sites were sampled and analyzed for 100 analytes with sub-parts per billion detection capabilities. The sites included 25 ground- and 49 surface-water sources of drinking water serving populations ranging from one family to over 8 million people.

  8. Distillery wastes as external carbon sources for denitrification in municipal wastewater treatment plants.

    Science.gov (United States)

    Czerwionka, K; Makinia, J; Kaszubowska, M; Majtacz, J; Angowski, M

    2012-01-01

    In this study, by-products from alcohol production were examined in terms of their potential application as external carbon sources for enhancing denitrification in biological nutrient removal systems. Three types of batch tests were used to compare the effects of the distillery by-products, such as fusel oil, syrup and reject water, on the non-acclimated activated sludge. Much higher nitrate utilization rates (NURs) were observed for the latter two carbon sources. In the conventional NUR measurements (one-phase experiments), the observed NURs with syrup and reject water were 3.2-3.3 g N/(kg VSS h) compared with 1.0 g N/(kg VSS h) obtained for fusel oils from two different distilleries. When the carbon sources were added at the beginning of the anoxic phase preceded by an anaerobic phase (two-phase experiments), the NURs were 4.2 g N/(kg VSS h) (syrup and reject water) and 2.4-2.7 g N/(kg VSS h) (fusel oils). The heterotrophic yield coefficient, determined based on the conventional OUR measurements, varied in a relatively narrow range (0.72-0.79 g COD/g COD) for all the examined carbon sources. Due to advantageous composition (much higher COD concentrations and COD/N ratios), fusel is a preferred carbon source for practical handling in full-scale wastewater treatment plants.

  9. Treated wastewater effluent as a source of microbial pollution of surface water resources.

    Science.gov (United States)

    Naidoo, Shalinee; Olaniran, Ademola O

    2013-12-23

    Since 1990, more than 1.8 billion people have gained access to potable water and improved sanitation worldwide. Whilst this represents a vital step towards improving global health and well-being, accelerated population growth coupled with rapid urbanization has further strained existing water supplies. Whilst South Africa aims at spending 0.5% of its GDP on improving sanitation, additional factors such as hydrological variability and growing agricultural needs have further increased dependence on this finite resource. Increasing pressure on existing wastewater treatment plants has led to the discharge of inadequately treated effluent, reinforcing the need to improve and adopt more stringent methods for monitoring discharged effluent and surrounding water sources. This review provides an overview of the relative efficiencies of the different steps involved in wastewater treatment as well as the commonly detected microbial indicators with their associated health implications. In addition, it highlights the need to enforce more stringent measures to ensure compliance of treated effluent quality to the existing guidelines.

  10. Treated Wastewater Effluent as a Source of Microbial Pollution of Surface Water Resources

    Directory of Open Access Journals (Sweden)

    Shalinee Naidoo

    2013-12-01

    Full Text Available Since 1990, more than 1.8 billion people have gained access to potable water and improved sanitation worldwide. Whilst this represents a vital step towards improving global health and well-being, accelerated population growth coupled with rapid urbanization has further strained existing water supplies. Whilst South Africa aims at spending 0.5% of its GDP on improving sanitation, additional factors such as hydrological variability and growing agricultural needs have further increased dependence on this finite resource. Increasing pressure on existing wastewater treatment plants has led to the discharge of inadequately treated effluent, reinforcing the need to improve and adopt more stringent methods for monitoring discharged effluent and surrounding water sources. This review provides an overview of the relative efficiencies of the different steps involved in wastewater treatment as well as the commonly detected microbial indicators with their associated health implications. In addition, it highlights the need to enforce more stringent measures to ensure compliance of treated effluent quality to the existing guidelines.

  11. 考虑面源污染的中国苹果全要素生产率及其空间集聚特征分析%Total factor productivity of apple industry in China considering non-point source pollution and its spatial concentration analysis

    Institute of Scientific and Technical Information of China (English)

    冯晓龙; 霍学喜

    2015-01-01

    Apple industry has become a major industry of rural economy in most of the north region in China, which plays an important role on the adjustment of agricultural structure, the increase of farmer’s income and the export. But overall, the development of apple industry still has belonged to the traditional production style depending on fertilizer and pesticide; on one side it has brought high economic benefits for farmers, and on the other side it has been the main reason to agricultural non-point source pollution. There is no doubt that this production style has exacerbated the contradiction between the development of apple industry and the ecological environment in China. Therefore, in order to achieve the sustainable development of apple industry, the transformation of the development mode of apple industry, the improvement of resource use efficiency and the effective control of non-point source pollution in apple production should be taken into account urgently. And to achieve these goals are closely dependent on the contribution of apple total factor productivity to industry development, the reasonable estimation of apple total factor productivity, and thus the guide of the correct policy. Using the unit investigation and evaluation model, this paper calculates the non-point source pollution from apple industry, which is taken as non-ideal output and integrated into the model of total factor productivity, then analyzes the total factor productivity of apple industry under the constraint of environment of 21 provinces in China from 1994 to 2013 by applying the Malmquist-Luenberger productivity index, and finally tests the spatial autocorrelation of total factor productivity of apple industry by using Moran’s index. The results show as follows: 1) Apple total factor productivity index under the constraint of environment is lower than that without this constraint, implying that environment pollution has obvious negative effects on apple productivity in China

  12. Dairy-impacted wastewater is a source of iodinated disinfection byproducts in the environment

    Science.gov (United States)

    Hladik, Michelle L.; Hubbard, Laura E.; Kolpin, Dana W.; Focazio, Michael J.

    2016-01-01

    Iodinated disinfection byproducts (DBPs) are among the most toxic DBPs, but they are not typically measured in treated water. Iodinated DBPs can be toxic to humans, and they also have the potential to affect aquatic communities. Because of the specific use of iodine and iodine-containing compounds in dairies, such livestock operations can be a potential source of iodinated DBPs in corresponding receiving water bodies. DBPs [trihalomethanes (THMs), including iodinated THMs] were measured within dairy processing facilities (milking and cheese manufacturing) and surface waters that receive dairy-impacted effluents [either directly from the dairy or through wastewater treatment plants (WWTPs)] in three areas of the United States (California, New York, and Wisconsin). Iodo-THMs comprised 15−29% of the total THMs in surface water near WWTP effluents that were impacted by dairy waste and 0−100% of the total THMs in samples from dairy processing facilities.

  13. SOURCES OF COPPER IONS AND SELECTED METHODS OF THEIR REMOVAL FROM WASTEWATER FROM THE PRINTED CIRCUITS BOARD PRODUCTION

    Directory of Open Access Journals (Sweden)

    Maciej Thomas

    2014-10-01

    Full Text Available This paper presents the issues related to the presence and removal of copper compounds from industrial effluents with including wastewater from plants involved in the production of printed circuit boards. Characterized the toxicological properties of selected copper compounds, described the applicable technological processes, sources of copper ions in the effluents and selected methods for their removal.

  14. Evaluating Urbanization Impacts from Non-Point Stormwater Runoff using Geospatial Analysis

    Science.gov (United States)

    Zivkovich, B. R.; Mays, D. C.

    2015-12-01

    Sediments, nutrients and other chemical impairments caused by urbanization continue to deteriorate natural ecosystem processes, resulting in the current degraded state of urban surface waters. Understanding non-point source impacts on these natural ecosystems has become a prevalent topic in sustainable urban infrastructure design as efforts to restore the urban hydrologic regime continue to drive engineers, planners, and environmentalists to develop optimal design practices for rapidly expanding built environments. To best understand how and where these impairments are received, the U.S. Environmental Protection Agency and other organizations have adopted urban runoff programs to identify contributions from non-point sources. This presentation provides a geospatial analysis method for identifying non-point source watersheds, and associated sub-basins, that contribute the highest loads of pollutants to receiving urban streams and lakes. This method, using a form of linear matrix inversion, is an area-averaged weighting method for non-point pollutants that corresponds to a geospatial land cover analysis. This two-phase analysis can be used to aid all parties in understanding how different land use types affect urban stream systems and processes. Optimal locations for water quality features (i.e., best management practices) can be evaluated in order to reduce, capture, and treat stormwater runoff as close to the source as possible. These best management practices have the ability to operate most effectively when located properly, because their ability to act as a minor treatment and prevention system is of great important for the restoration of the urban hydrologic regime.

  15. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms.

    Science.gov (United States)

    Ziajahromi, Shima; Neale, Peta A; Leusch, Frederic D L

    2016-11-01

    Wastewater treatment plant (WWTP) effluent has been identified as a potential source of microplastics in the aquatic environment. Microplastics have recently been detected in wastewater effluent in Western Europe, Russia and the USA. As there are only a handful of studies on microplastics in wastewater, it is difficult to accurately determine the contribution of wastewater effluent as a source of microplastics. However, even the small amounts of microplastics detected in wastewater effluent may be a remarkable source given the large volumes of wastewater treatment effluent discharged to the aquatic environment annually. Further, there is strong evidence that microplastics can interact with wastewater-associated contaminants, which has the potential to transport chemicals to aquatic organisms after exposure to contaminated microplastics. In this review we apply lessons learned from the literature on microplastics in the aquatic environment and knowledge on current wastewater treatment technologies, with the aim of identifying the research gaps in terms of (i) the fate of microplastics in WWTPs, (ii) the potential interaction of wastewater-based microplastics with trace organic contaminants and metals, and (iii) the risk for aquatic organisms.

  16. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer

    Energy Technology Data Exchange (ETDEWEB)

    Schaider, Laurel A., E-mail: schaider@silentspring.org; Ackerman, Janet M.; Rudel, Ruthann A.

    2016-03-15

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1 mg/L NO{sub 3}-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study. - Highlights: • We tested 20 domestic drinking water wells for 117 organic wastewater compounds. • PFASs, pharmaceuticals, and an artificial sweetener were most frequently detected. • Nitrate, boron, and well depth were all correlated with PFASs and pharmaceuticals. • Acesulfame

  17. 坡耕地不同物种植物篱对面源污染物的拦截效率及影响因素%Effects of Different Plant Species Hedgerows on Interception of Non- point Source Pollutants in Sloping Cultivated Land

    Institute of Scientific and Technical Information of China (English)

    田潇; 周运超; 蔡先立; 马礼平; 刘晓芸

    2015-01-01

    Hedgerows play important roles in control over the spread of pollutants in the environment. To investigate the effect of plant species of hedgerows on the intercepting efficiency of non-point source pollutants, a field experiment was conducted in a sloping cultivated land in the upstream of Hongfeng Lake, Guizhou. Thirty runoff plots(20 m long × 5 m width)with three banded hedgerows at equal distance were established in 15 degree sloping cultivated land. The hedgerows was planted in a criss-crossed double rows with 5 m length and 0.15 m width. Quantity of surface runoff, silt and nutrient was monitored in each runoff plot under natural raining in 2010. Results showed that there were only five surface runoffs observed after rainfall in 2010, of which two were stronger while three weaker but lasted for longer time. The greatest runoff interception was observed in the plot with Tephrosia purpurea(L.)Pers. hedgerows, with relative surface runoff intercep-tion rate of 91.75%, and the greatest silt interception was found in the plot of Medicago sativa L. hedgerows, with relative interception rate of 69.25%. Tephrosia purpurea(L.)Pers. could effectively reduce N and P loss, with interception rate about 70.08% for N(283.03 g·hm-2) and 80.21%for P(185.92 g·hm-2). However, the greatest K interception was measured in the plot with Lespedeza bicolor Turcz and fol-lowed by Tephrosia purpurea(L.)Pers. Their relative interception rates were 86.08%(135.11 g·hm-2)and 79.72%(125.13 g·hm-2), re-spectively. The present results show that hedgerows would be of great significance in controlling non-point source pollution in sloping farm-ing area.%在红枫湖上游15°的坡耕地上设置30个植物篱径流小区,小区水平投影面积100 m2,顺坡长20 m,横坡宽5 m。在小区内横坡等距种植三带植物篱,植物篱带呈双行“品”字型种植模式,带长5 m,带宽0.15 m。通过监测该年度天然降雨下每个径流小区产生的地表径流、

  18. Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources.

    Science.gov (United States)

    Cho, Sunja; Lee, Nakyeong; Park, Seonghwan; Yu, Jaecheul; Luong, Thanh Thao; Oh, You-Kwan; Lee, Taeho

    2013-03-01

    In order to reduce input cost for microalgal cultivation, we investigated the feasibility of wastewater taken from a municipal WWTP in Busan, Korea as wastewater nutrients. The wastewaters used in this study were the effluent from a primary settling tank (PS), the effluent from an anaerobic digestion tank (AD), the conflux of wastewaters rejected from sludge-concentrate tanks and dewatering facilities (CR), and two combined wastewaters of AD:PS (10:90, v/v) and AD:CR (10:90, v/v). Chlorella sp. ADE5, which was isolated from the AD, was selected for the feasibility test. The highest biomass production (3.01 g-dry cell weight per liter) of the isolate was obtained with the combined wastewater ADCR, and it was 1.72 times higher than that with BG 11 medium. Interestingly, the cells cultivated with wastewater containing PS wastewater were easily separated from the culture and improved lipid content, especially oleic acid content, in their cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Effects of iron and calcium carbonate on the variation and cycling of carbon source in integrated wastewater treatments.

    Science.gov (United States)

    Zhimiao, Zhao; Xinshan, Song; Yufeng, Zhao; Yanping, Xiao; Yuhui, Wang; Junfeng, Wang; Denghua, Yan

    2017-02-01

    Iron and calcium carbonate were added in wastewater treatments as the adjusting agents to improve the contaminant removal performance and regulate the variation of carbon source in integrated treatments. At different temperatures, the addition of the adjusting agents obviously improved the nitrogen and phosphorous removals. TN and TP removals were respectively increased by 29.41% and 23.83% in AC-100 treatment under 1-day HRT. Carbon source from dead algae was supplied as green microbial carbon source and Fe(2+) was supplied as carbon source surrogate. COD concentration was increased to 30mg/L and above, so the problem of the shortage of carbon source was solved. Dead algae and Fe(2+) as carbon source supplement or surrogate played significant role, which was proved by microbial community analysis. According to the denitrification performance in the treatments, dead algae as green microbial carbon source combined with iron and calcium carbonate was the optimal supplement carbon source in wastewater treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Demonstration and Effects of Best Management Practices Applied to Control of Rural Non-point Source Pollution in Poyang Lake Area%鄱阳湖区农村面源污染控制中最佳管理措施示范研究

    Institute of Scientific and Technical Information of China (English)

    万金保; 孙蕾; 刘峰; 汤爱萍

    2012-01-01

    Water environment security in rural areas around Poyang Lake has been threatened by increasingly severe non-point source pollution(NPS pollution).Combined with the features of NPS pollution in the areas,the structural best management practices(BMPs) are established in the demonstration area of Xingzi County to control the rural NPS pollution.Monitoring results show that in the monitoring period,the removal amounts of COD,TP and TN by the BMPs are 568.25,3.06 and 26.90 kg,respectively.Constructed wetland maintains the better and more stable pollutant removal capability and the removal amounts of COD,TP and TN per unit area are about 40,0.4 and 3.0 g/m2,respectively.The removal amounts of the pollutants per unit area by ecological ditch vary greatly.Ecological ditch has better removal ability per unit area than constructed wetland,but has poor stability.In consideration of the advantages of ecological ditch and tri-class surface flow constructed wetland(3-SFW),the plants suitable to ecological ditch are recommended to improve its stability in pollutant removal.%鄱阳湖区农村面源污染问题日益严峻,已威胁到湖泊的水环境安全。结合该区域农村面源污染自身的变化特征,在星子县示范区内构建结构性最佳管理措施BMPs(best management practices)系统对区域内农村面源污染进行控制。结果表明,在监测期间该BMPs系统对COD,TP和TN的削减量分别为568.25,3.06和26.90kg。其中人工湿地对COD,TP和TN的单位面积削减量约达40,0.4和3.0g/m2,有较稳定的污染物去除能力;生态沟渠对各污染物单位面积削减量变化较大,与人工湿地相比虽有更强的污染物削减能力,但稳定性较弱。结合生态沟渠和三级表面流人工湿地的特点,建议通过引入适宜的植物至生态沟渠提高其处理污染物的稳定性。

  1. Effects of Grass Hedges and No-tillage Practice Oil the Removing of Typical Agricultural Non-point Source Pollutants from Runoff%免耕和草篱措施对径流中典型农业面源污染物的去除效果

    Institute of Scientific and Technical Information of China (English)

    李霞; 陶梅; 肖波; 王庆海; 陈建平

    2011-01-01

    Chemical fertilizer and herbicide are widely used in agricultural production. These chemical substances not only significantly increase crop yields but also result in serious water pollution. This study was conducted to evaluate the effects of three practices (no-tillage, grass hedges, no-tillage and grass hedges) on the loss of nitrogen, phosphorus and atrazine with runoff. The results showed that no-tillage and grass hedges significantly reduced agricultural non-point source pollution. As compared to the control, the total nitrogen, total phosphorus and atrazine loss in the plots with no-tillage were decreased by 53%, 51% and 56%, respectively; reductions by the grass hedges were 68%, 61% and 90%, respectively; the decreases due to no-tillage and grass hedges were 77%, 76% and 92%, respectively. Moreover, the regression results showed that the losses of nitrogen, phosphorus and atrazine with runoff were positively correlated to the surface runoff. From these results could be concluded that both of no-tillage and grass hedges could significantly reduce nitrogen, phosphorus and atrazine loss with runoff, and the integration of these two practices was proved to be much more effective than their individual effects.%大量施用农业化学物质在提高作物产量的同时,也导致了严重的水体污染.在北京地区不同坡度的径流小区上,通过人工模拟降雨试验,研究免耕、草篱、以及免耕与草篱复合3种措施对农田径流中氮、磷、阿特拉津3种典型农业面源污染物的去除效果.结果表明:免耕措施可减少53%的总氮、51%的总磷和56%的阿特拉津流失;草篱措施可减少68%的总氮、61%的总磷和90%的阿特拉津流失;而免耕与草篱复合措施可减少77%的总氮、76%的总磷和92%的阿特拉津流失.另外,总氯、总磷和阿特拉津流失量均与径流量呈显著的线性正相关关系.本研究证实,免耕和草篱措施均能有效防止氮、磷以及阿特拉津随农

  2. IDENTIFICATION OF CRYPTOSPORIDIUM SPECIES AND THE SOURCES IN RAW WASTEWATER USING A SMALL SUBUNIT RRNA-BASED PCR-RFLP TOOL

    Science.gov (United States)

    The species composition and source of Cryptosporidium oocysts in wastewater have never been determined, even though it is widely assumed that these oocysts are from human sewage. Recent molecular characterizations of Cryptosporidium parasites make it possible to differentiate hum...

  3. Combined sewer overflows: an environmental source of hormones and wastewater micropollutants

    Science.gov (United States)

    Phillips, P.J.; Chalmers, A.T.; Gray, J.L.; Kolpin, D.W.; Foreman, W.T.; Wall, G.R.

    2012-01-01

    Data were collected at a wastewater treatment plant (WWTP) in Burlington, Vermont, USA, (serving 30,000 people) to assess the relative contribution of CSO (combined sewer overflow) bypass flows and treated wastewater effluent to the load of steroid hormones and other wastewater micropollutants (WMPs) from a WWTP to a lake. Flow-weighted composite samples were collected over a 13 month period at this WWTP from CSO bypass flows or plant influent flows (n = 28) and treated effluent discharges (n = 22). Although CSO discharges represent 10% of the total annual water discharge (CSO plus treated plant effluent discharges) from the WWTP, CSO discharges contribute 40–90% of the annual load for hormones and WMPs with high (>90%) wastewater treatment removal efficiency. By contrast, compounds with low removal efficiencies (hormones and many WMPs in samples from treated discharges can increase with increasing flow due to decreasing removal efficiency.

  4. Septic systems as sources of organic wastewater compounds in domestic drinking water wells in a shallow sand and gravel aquifer.

    Science.gov (United States)

    Schaider, Laurel A; Ackerman, Janet M; Rudel, Ruthann A

    2016-03-15

    Domestic drinking water wells serve 44 million people in the US and are common globally. They are often located in areas served by onsite wastewater treatment systems, including septic systems, which can be sources of biological and chemical pollutants to groundwater. In this study we tested 20 domestic drinking water wells in a sand and gravel aquifer on Cape Cod, Massachusetts, USA, for 117 organic wastewater compounds (OWCs) and for inorganic markers of septic system impact. We detected 27 OWCs, including 12 pharmaceuticals, five per- and polyfluoroalkyl substances (PFASs), four organophosphate flame retardants, and an artificial sweetener (acesulfame). Maximum concentrations of several PFASs and pharmaceuticals were relatively high compared to public drinking water supplies in the US. The number of detected OWCs and total concentrations of pharmaceuticals and of PFASs were positively correlated with nitrate, boron, and acesulfame and negatively correlated with well depth. These wells were all located in areas served exclusively by onsite wastewater treatment systems, which are likely the main source of the OWCs in these wells, although landfill leachate may also be a source. Our results suggest that current regulations to protect domestic wells from pathogens in septic system discharges do not prevent OWCs from reaching domestic wells, and that nitrate, a commonly measured drinking water contaminant, is a useful screening tool for OWCs in domestic wells. Nitrate concentrations of 1mg/L NO3-N, which are tenfold higher than local background and tenfold lower than the US federal drinking water standard, were associated with wastewater impacts from OWCs in this study.

  5. Including non-point sfources in a water quality trading permit program.

    Science.gov (United States)

    Collentine, D

    2005-01-01

    There has been overwhelming interest in addressing water quality issues through the use of economic instruments. Much of this attention has focused on the cost efficiencies offered by Transferable Discharge Permit (TDP) systems. Unfortunately, the attempts to start up permit markets which are able to exploit abatement cost differences between sources have not met with the success expected. Two of the reasons for the lack of success that have been taken up in analysis of these programs have been the problem of transaction costs and in the case of non-point sources (NPS), undefined property rights. The composite market design is a proposal for a TDP system which specifically includes agricultural non-point source (NPS) dischargers and addresses both property rights and transaction cost problems. The composite market consists of three interrelated markets each serving a particular function. When the composite market is mature, the total number of permits issued represents the cap on discharges allowed in the catchment. The structure of the composite market allows this system to be phased in over time with existing institutions and limited demands on financing.

  6. Decolorization of Blue CL-BR dye by AOPs using bleach wastewater as source of H2O2

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    This research was focused on the investigation of the efficacy of advanced oxidation processes (Fenton, ozonation and UV/H2O2)for decolorization of reactive azo dye (Blue CL-BR) using bleach wastewater as possible source of H2O2. All the experiments were performed on the laboratory scale set-up. Thc results showed that colour removal efficiencies by UV or bleach (H2O2) alone were not so efficient. Fenton process with bleach wastewater was found to be the most effective at process conditions such as pH of 3 and H2O2/Fe2+ratio of 24:1, resulting in 64% colour removal. Almost complete colour removal, i.e., 99% and 95% were achieved by UV/H2O2 and UV/bleach wastewater in 30 and 60 min, respectively. Ozonation proved an efficient method for decolorization of Blue CL-BR dye at alkaline pH. It was possible to achieve 98% colour removal with 30 min of ozonation at pH 9. The colour removal of dye was found to follow first order kinetics.

  7. Wastewater treatment plant and landfills as sources of polyfluoroalkyl compounds to the atmosphere.

    Science.gov (United States)

    Ahrens, Lutz; Shoeib, Mahiba; Harner, Tom; Lee, Sum Chi; Guo, Rui; Reiner, Eric J

    2011-10-01

    Polyfluoroalkyl compounds (PFCs) were determined in air around a wastewater treatment plant (WWTP) and two landfill sites using sorbent-impregnated polyurethane foam (SIP) disk passive air samplers in summer 2009. The samples were analyzed for five PFC classes (i.e., fluorotelomer alcohols (FTOHs), perfluorooctane sulfonamides (FOSAs), sulfonamidoethanols (FOSEs), perfluoroalkyl sulfonic acids (PFSAs), and perfluoroalkyl carboxylic acids (PFCAs)) to investigate their concentration in air, composition and emissions to the atmosphere. ∑PFC concentrations in air were 3-15 times higher within the WWTP (2280-24 040 pg/m(3)) and 5-30 times higher at the landfill sites (2780-26 430 pg/m(3)) compared to the reference sites (597-1600 pg/m3). Variations in the PFC pattern were observed between the WWTP and landfill sites and even within the WWTP site. For example, FTOHs were the predominant PFC class in air for all WWTP and landfill sites, with 6:2 FTOH as the dominant compound at the WWTP (895-12 290 pg/m(3)) and 8:2 FTOH dominating at the landfill sites (1290-17 380 pg/m(3)). Furthermore, perfluorooctane sulfonic acid (PFOS) was dominant within the WWTP (43-171 pg/m(3)), followed by perfluorobutanoic acid (PFBA) (55-116 pg/m(3)), while PFBA was dominant at the landfill sites (101-102 pg/m(3)). It is also noteworthy that the PFCA concentrations decreased with increasing chain length and that the emissions for the even chain length PFCAs outweighed emissions for the odd chain length compounds. Furthermore, highly elevated PFC concentrations were found near the aeration tanks compared to the other tanks (i.e., primary and secondary clarifier) and likely associated with increased volatilization during aeration that may be further enhanced through aqueous aerosol-mediated transport. ∑PFC yearly emissions estimated using a simplified dispersion model were 2560 g/year for the WWTP, 99 g/year for landfill site 1, and 1000 g/year for landfill site 2. These results

  8. Emergence of ciprofloxacin-resistant extended-spectrum β-lactamase-producing enteric bacteria in hospital wastewater and clinical sources.

    Science.gov (United States)

    Maheshwari, Meenu; Yaser, Nawar Hadi; Naz, Suraiya; Fatima, Mansha; Ahmad, Iqbal

    2016-06-01

    This study aimed to evaluate the incidence of ciprofloxacin-resistant extended-spectrum β-lactamase (ESBL)-producing enteric bacteria in hospital wastewater and clinical sources. Enteric bacteria, mainly Escherichia coli, were isolated from clinical sources (urinary tract and gastrointestinal tract infections; 80 isolates) and hospital wastewater (103 isolates). The antibiotic resistance profile and ESBL production of the isolates were investigated by disc diffusion assay and combined disc diffusion test, respectively. Plasmid profiling was performed by agarose gel electrophoresis, and elimination of resistance markers was performed by a plasmid curing experiment. Antibiotic susceptibility testing revealed a high incidence of β-lactam resistance, being highest to ampicillin (88.0%) followed by amoxicillin, ceftriaxone, cefpodoxime, cefotaxime, aztreonam, cefepime and ceftazidime. Among the non-β-lactam antibiotics, the highest resistance was recorded to nalidixic acid (85.7%). Moreover, 50.8% of enteric bacteria showed resistance to ciprofloxacin. Among 183 total enteric bacteria, 150 (82.0%) exhibited multidrug resistance. ESBL production was detected in 78 isolates (42.6%). A significantly higher incidence of ciprofloxacin resistance was observed among ESBL-producing enteric bacteria both in clinical (P=0.0015) and environmental isolates (P=0.012), clearly demonstrating a close association between ESBL production and ciprofloxacin resistance. Plasmid profiling of selected ESBL-positive strains indicated the presence of one or more plasmids of varying sizes. Plasmid curing resulted in loss of ciprofloxacin and cefotaxime resistance markers simultaneously from selected ESBL-positive isolates, indicating the close relationship of these markers. This study revealed a common occurrence of ciprofloxacin-resistant ESBL-producing enteric bacteria both in hospital wastewater and clinical sources, indicating a potential public health threat.

  9. 紫色丘陵区典型小流域非点源磷迁移特征%Characteristics of Non-point-source Phosphorus Losses in Some Representative Land-use Sub-catchments in the Hilly Area of Purple Soil

    Institute of Scientific and Technical Information of China (English)

    沈茜; 唐家良; 朱波

    2015-01-01

    Phosphorus forms and fluxes via hydrological pathways in typical rainfall events from different land uses in the hilly area of purple soil had been conducted by in-situ monitoring in some sub-catchments so as to understand“hotspot”and “critical time”for control of non-point-source pollution of phosphorus in a catchment.Rainfall-run-off process along with sediment yield,total phosphorus (TP),dissolved phosphorus (DP)and particulate phos-phorus (PP)concentrations and loadings were monitored in representative rain (small,medium,heavy and storm) events from sub-catchment of residence,forestland and cropland.The results showed that rainfall-runoff processes responded with land uses.In the residence sub-catchment,runoff started while rainfall reached 4mm,whereas, that started in much higher rainfall (20 mm)in the forestland and cropland sub-catchment,respectively.Runoff responded to rainfall rapidly at almost the same peak in the residence sub-catchment in medium,heavy and storm rain,while runoff delayed 20 -90 and 20 -120 min after rainfall in cropland and forestland sub-catchment,re-spectively.The mean runoff depth,runoff coefficient and sediment yield from residence sub-catchment were 22.4 mm,0.36 and 136.2 kg/hm2;while those were 9.5 mm,0.09 and 48.6 kg/hm2 from forestland and 12.3mm, 0.17 and 73.5 kg/hm2 from cropland,respectively.The water and soil loss from the residence is the most serious in the hilly area of purple soil.The concentration of total P (TP)and particulate phosphorus (PP)of runoff water from the residence and forestland sub-catchment reached peak quickly and decreased sharply,whereas,TP and PP of runoff water from cropland turned into a process with multi-peaks.The concentration of dissolved P (DP)of run-off water from the residence sub-catchment decreased when runoff discharge increased.DP of runoff water from the forestland sub-catchment increased during the runoff process.DP and phosphate (PO3-4 -P)concentrations of run-off from cropland

  10. Effect of fermentation liquid from food waste as a carbon source for enhancing denitrification in wastewater treatment.

    Science.gov (United States)

    Zhang, Yongmei; Wang, Xiaochang C; Cheng, Zhe; Li, Yuyou; Tang, Jialing

    2016-02-01

    Food wastes were used for anaerobic fermentation to prepare carbon sources for enhancing nitrogen removal in wastewater treatment. Under anaerobic conditions without pH adjustment, the fermentation liquid from food wastes (FLFW) with a high organic acid content was produced at room temperature (25 °C) and initial solid concentration of 13%. Using FLFW as the sole carbon source of artificial wastewater for biological treatment by sequence batch operation, maximized denitrification (with a denitrification rate of V(DN) = 12.89 mg/gVSS h and a denitrification potential of P(DN) = 0.174 gN/gCOD) could be achieved at a COD/TN ratio of 6. The readily biodegradable fraction in the FLFW was evaluated as 58.35%. By comparing FLFW with glucose and sodium acetate, two commonly used chemical carbon sources, FLFW showed a denitrification result similar to sodium acetate but much better than glucose in terms of total nitrogen removal, V(DN), P(DN), organic matter consumption rate (V(COD)) and heterotrophy anoxic yield coefficient (Y(H)).

  11. Enhanced nitrogen removal in a wastewater treatment process characterized by carbon source manipulation with biological adsorption and sludge hydrolysis.

    Science.gov (United States)

    Liu, Hongbo; Zhao, Fang; Mao, Boyang; Wen, Xianghua

    2012-06-01

    An innovative adsorption/nitrification/denitrification/sludge-hydrolysis wastewater treatment process (ENRS) characterized by carbon source manipulation with a biological adsorption unit and a sludge hydrolysis unit was developed to enhance nitrogen removal and reduce sludge production for municipal wastewater treatment. The system presented good performance in pollutants removal, yielding the effluent with average COD, NH(4)(+)-N, TN and TP of 48.5, 0.6, 13.2 and 1.0 mg/L, respectively. Sixty percent of the total carbon source in the influent was concentrated and separated by the quick adsorption of activated sludge, providing the possibilities of reusing waste carbon source in the denitrification tank and accumulating nitrobacteria in the nitrification tank. Low temperature of 6-15 °C and high hydraulic loading rate of 3.0-15.0 m(3)/d did not affect NH(4)(+)-N removal performance, yielding the NH(4)(+)-N of lower 1.0 mg/L in the effluent. Furthermore, 50% of the residual sludge in the ENRS system could be transformed into soluble COD (SCOD) by alkaline thermal hydrolysis with temperature of 60 °C and pH of 11, and the hydrolyzed carbon could completely substitute methanol as a good quality carbon to support high efficient denitrification.

  12. The investigation of effect of organic carbon sources addition in anaerobic-aerobic (low dissolved oxygen) sequencing batch reactor for nutrients removal from wastewaters.

    Science.gov (United States)

    Zheng, Xiong; Tong, Juan; Li, Hongjing; Chen, Yinguang

    2009-05-01

    The effect of addition of organic carbon sources (acetic acid and waste activated sludge alkaline fermentation liquid) on anaerobic-aerobic (low dissolved oxygen, 0.15-0.45 mg/L) biological municipal wastewater treatment was investigated. The results showed that carbon source addition affected not only the transformations of polyhydroxyalkanoates (PHA), glycogen, nitrogen and phosphorus, but the net removal of nitrogen and phosphorus. The removal efficiencies of TN and TP were, respectively, 61% and 61% without organic carbon source addition, 81% and 95% with acetic acid addition, and 83% and 97% with waste activated sludge alkaline fermentation liquid addition. It seems that the alkaline fermentation liquid of waste biosolids generated in biological wastewater treatment plant can be used to replace acetic acid as an additional carbon source to improve the anaerobic-aerobic (low dissolved oxygen) municipal wastewater nutrients removal although its use was observed to cause a slight increase of effluent BOD and COD concentrations.

  13. Measuring biomarkers in wastewater as a new source of epidemiological information: Current state and future perspectives

    DEFF Research Database (Denmark)

    Gracia-Lor, Emma; Castiglioni, Sara; Bade, Richard

    2017-01-01

    lifestyle habits, health and wellbeing, but its selection is not an easy task as it should fulfil several specific requirements in order to be successfully employed. This paper aims to summarize the current knowledge related to the most relevant biomarkers used so far. In addition, some potential wastewater...... and pharmacokinetic data (i.e. metabolism and urinary excretion profile) has been reviewed. Finally, several needs and recommendations for future research are proposed....

  14. Blending water- and nutrient-source wastewaters for cost-effective cultivation of high lipid content microalgal species Micractinium inermum NLP-F014.

    Science.gov (United States)

    Park, Seonghwan; Kim, Jeongmi; Yoon, Youngjin; Park, Younghyun; Lee, Taeho

    2015-12-01

    The possibility of utilizing blended wastewaters from different streams was investigated for cost-efficient microalgal cultivation. The influent of a domestic wastewater treatment plant and the liquid fertilizer from a swine wastewater treatment plant were selected as water- and nutrient-source wastewaters, respectively. The growth of Micractinium inermum NLP-F014 in the blended wastewater medium without any pretreatment was comparable to that in Bold's Basal Medium. The optimum blending ratio of 5-15% (vv(-1)) facilitated biomass production up to 5.7 g-dry cell weight (DCW) L(-1), and the maximum biomass productivity (1.03 g-DCWL(-1)d(-1)) was achieved after three days of cultivation. Nutrient depletion induced lipid accumulation in the cell up to 39.1% (ww(-1)) and the maximum lipid productivity was 0.19 g-FAMEL(-1)d(-1). These results suggest that blending water- and nutrient-source wastewaters at a proper ratio without pretreatment can significantly cut costs in microalgae cultivation for biodiesel production.

  15. Polybrominated diphenyl ethers (PBDEs) in a conventional wastewater treatment plant (WWTP) from Shanghai, the Yangtze River Delta: Implication for input source and mass loading

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Nan [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Zhao, Xiaohua [School of Chemistry and Chemical engineering, Henan Normal University, Xinxiang 453007 (China); Meng, Xiang-Zhou, E-mail: xzmeng@tongji.edu.cn [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China); Chen, Ling [State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2013-09-01

    The concentrations of 19 polybrominated diphenyl ethers (PBDEs) congeners in a conventional wastewater treatment plant (WWTP) were determined to investigate the occurrence and fate of PBDEs during wastewater treatment processes. The level of total PBDEs ranged from 1.68 to 4.64 ng/L in wastewater, with BDE209 accounting for the largest proportion, followed by penta- and octa-BDE congeners. PBDEs were found to mainly exist in the particulate phase of wastewater, which rendered sedimentation efficient for the removal of PBDEs, while the removal efficiencies might be varied for congeners with different Br atom numbers. Because of similar congener profiles, in-house dust was considered to be an important source for PBDEs in the WWTP. According to the mass loading estimation, over 60% of total PBDEs entering the WWTP accumulated in the dewatered sludge, resulting in the total PBDE release of 43.8 kg/year via sewage sludge in Shanghai. And the annual release via effluent was estimated to be 5.5 kg, less but shouldn't be neglected. - Highlights: • The distribution of PBDEs was investigated in a conventional WWTP in Shanghai. • PBDEs mainly exist in particulate phase of wastewater contributed mostly by BDE209. • In-house dust was considered to be an important source for PBDEs in the WWTP. • Release of PBDEs via wastewater and sludge discharge is necessary to be considered.

  16. Virulence determinants invA and spvC in salmonellae isolated from poultry products, wastewater, and human sources.

    Science.gov (United States)

    Swamy, S C; Barnhart, H M; Lee, M D; Dreesen, D W

    1996-10-01

    The presence of two virulence foci, invA and spvC, in Salmonella isolates obtained from poultry, wastewater, and human sources was determined. All isolates (n = 245) were positive for the invA gene sequence. Differences in degree of invasiveness were apparent with the Madin Darby canine kidney cell line, as only 79 of 159 randomly selected isolates (49.7%) tested were invasive at > 0.1% of the inoculum. 25% were invasive between 0.1 and 1.0% of the inoculum, and 24.5% were invasive at > 1.0% of the inoculum. There was a significant correlation between degree of invasion and source from which the isolate was recovered but no correlation between geographic origin of poultry isolates and degree of invasion. Only 37 of 245 isolates (15.1%) hybridized with the spvC DNA probe. All isolates that were recovered from a commercial egg production environment and chicken eggs and whose sequences exhibited homology with the spvC gene sequence were determined to be either Salmonella enteritidis PT 23 or PT 13. The sequences of few isolates from ceca and none from wastewater or humans demonstrated homology with the spvC gene.

  17. Evaluation of pharmaceuticals and personal care products with emphasis on anthelmintics in human sanitary waste, sewage, hospital wastewater, livestock wastewater and receiving water.

    Science.gov (United States)

    Sim, Won-Jin; Kim, Hee-Young; Choi, Sung-Deuk; Kwon, Jung-Hwan; Oh, Jeong-Eun

    2013-03-15

    We investigated 33 pharmaceuticals and personal care products (PPCPs) with emphasis on anthelmintics and their metabolites in human sanitary waste treatment plants (HTPs), sewage treatment plants (STPs), hospital wastewater treatment plants (HWTPs), livestock wastewater treatment plants (LWTPs), river water and seawater. PPCPs showed the characteristic specific occurrence patterns according to wastewater sources. The LWTPs and HTPs showed higher levels (maximum 3000 times in influents) of anthelmintics than other wastewater treatment plants, indicating that livestock wastewater and human sanitary waste are one of principal sources of anthelmintics. Among anthelmintics, fenbendazole and its metabolites are relatively high in the LWTPs, while human anthelmintics such as albendazole and flubendazole are most dominant in the HTPs, STPs and HWTPs. The occurrence pattern of fenbendazole's metabolites in water was different from pharmacokinetics studies, showing the possibility of transformation mechanism other than the metabolism in animal bodies by some processes unknown to us. The river water and seawater are generally affected by the point sources, but the distribution patterns in some receiving water are slightly different from the effluent, indicating the influence of non-point sources.

  18. Wastewater reuse

    Directory of Open Access Journals (Sweden)

    Milan R. Radosavljević

    2013-12-01

    application and technology applied are ​​significantly dependent on socio-economic circumstances, industry structure, climate and politics. Reuse of water for irrigation of agricultural crops Fourty-one percent of the recycled water in Japan, 60% in California (USA, and 15% in Tunisia is used for irrigation of crops. In China, at least 1.33 million hectares of agricultural land is irrigated with untreated or partially treated wastewater (http://www.eolss.net. Agricultural irrigation is essential to improve the quality and quantity of production. By 2025, agriculture is expected to increase its water requirements by 1.2 times (http://www.unep.or.jp. If wastewater originatines from industrial sources, the presence of toxic chemicals, salts and heavy metals may limit its reuse. Such materials can change soil properties and may affect the growth of crops, so that appropriate treatment and supervision should be practiced. Recycled water that is important for agriculture must contain nitrogen, potassium, zinc, boron and sulfur. However, excess nitrogen can lead to overgrowth, delayed crop maturity and poor quality. Boron is an essential element for plant growth, and the excess boron becomes toxic. Tunisia is one of a few countries that have implemented a national policy for the reuse of wastewater. Since 1960., the wastewater in Tunisia has been used for irrigation of orchards. Since 1989, after a secondary treatment, the wastewater has been used for the cultivation of various crops (olives, fodder, cotton, etc., except for growing vegetables. In countries such as Morocco, Jordan, Egypt, Malta, Cyprus and Spain, wastewater is either used or being considered for irrigation, while in Israel, the percentage of the use of wastewater for irrigation is the highest in the region, with 24.4% and should be increased to 36% in the future (http://www.eolss.net. Depending on the country, socio-economic conditions, may be different,  starting from the shortage of money for capital

  19. Remediation of nitrate-contaminated wastewater using denitrification biofilters with straws of ornamental flowers added as carbon source.

    Science.gov (United States)

    Chang, Junjun; Ma, Luyao; Zhou, Yuanyang; Zhang, Shenghua; Wang, Weilu

    Straws of four ornamental flowers (carnation, rose, lily, and violet) were added into denitrification biofilters using gravel as matrix through vertically installed perforated polyvinylchloride pipes to provide organic carbon for the treatment of nitrate-contaminated wastewater operating in batch mode. Removal efficiencies of nitrate and phosphate, as well as temporal variations of nitrogen and carbon during batches 10 and 19, were investigated and assessed. Nitrate removal was efficiently enhanced by the addition of flower straws, but decreased gradually as the organic substances were consumed. Phosphate removal was also improved, although this very limited. High nitrate removal rates were achieved during the initial 12 h in the two batches each lasting for 3 days, along with the depletion of influent dissolved oxygen due to aerobic degradation of the organic compounds. NO2(-)-N of 0.01-2.83 mg/L and NH4(+)-N of 0.02-1.69 mg/L were formed and both positively correlated to the nitrate reduced. Inorganic carbon (IC) concentrations increased during the batches and varied conversely with the nitrate contents, and could be indicative of nitrate removal due to the highly significant positive correlation between NO3(-)-N removed and IC concentration (r(2) = 0.881, p nitrate-contaminated wastewater, although further optimization of carbon source addition is still required.

  20. Production and application of a novel bioflocculant by multiple-microorganism consortia using brewery wastewater as carbon source

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhi-qiang; LIN Bo; XIA Si-qing; WANG Xue-jiang; YANG A-ming

    2007-01-01

    The flocculating activity of a novel bioflocculant MMF1 produced by multiple-microorganism consortia MM1 was investigated. MM1 was composed of strain BAFRT4 identified as Staphylococcus sp. and strain CYGS1 identified as Pseudomonas sp. The flocculating activity of MMF1 isolated from the screening medium was 82.9%, which is remarkably higher than that of the bioflocculant produced by either of the strains under the same condition. Brewery wastewater was also used as the carbon source for MM1, and the cost-effective production medium for MM1 mainly comprised 1.0 L brewery water (chemical oxygen demand (COD) 5000 mg/L), 0.5 g/L urea, 0.5 g/L yeast extract, and 0.2 g/L (NH4)2SO4. The optimal conditions for the production of MMF1 was inoculum size 2%, initial pH 6.0, cultivating temperature 30℃, and shaking speed 160 r/min, under which the flocculating activity of the MMF1 reached 96.8%. Fifteen grams of purified bioflocculant could be recovered from 1.0 L of fermentation broth. MMF1 was identified as a macromolecular substance containing both protein and polysaccharide. It showed good flocculating performance in treating indigotin printing and dyeing wastewater, and the maximal removal efficiencies of COD and chroma were 79.2% and 86.5%, respectively.

  1. N-nitrosodimethylamine formation upon ozonation and identification of precursors source in a municipal wastewater treatment plant.

    Science.gov (United States)

    Sgroi, Massimiliano; Roccaro, Paolo; Oelker, Gregg L; Snyder, Shane A

    2014-09-01

    Ozone doses normalized to the dissolved organic carbon concentration were applied to the primary influent, primary effluent, and secondary effluent of a wastewater treatment plant producing water destined for potable reuse. Results showed the most N-Nitrosodimethylamine (NDMA) production from primary effluent, and the recycle streams entering the primary clarifiers were identified as the main source of NDMA precursors. The degradation of aminomethylated polyacrylamide (Mannich) polymer used for sludge treatment was a significant cause of precursor occurrence. A strong correlation between NDMA formation and ammonia concentration was found suggesting an important role of ammonia oxidation on NDMA production. During ozonation tests in DI water using dimethylamine (DMA) as model precursor, the NDMA yield significantly increased in the presence of ammonia and bromide due to the formation of hydroxylamine and brominated nitrogenous oxidants. In addition, NDMA formation during ozonation of dimethylformamide (DMF), the other model precursor used in this study, occurred only in the presence of ammonia, and it was attributable to the oxidation of DMF by hydroxyl radicals. Filtered wastewater samples (0.7 μm) produced more NDMA than unfiltered samples, suggesting that ozone reacted with dissolved precursors and supporting the hypothesis of polymer degradation. Particularly, the total suspended solids content similarly affected NDMA formation and the UV absorbance decrease during ozonation due to the different ozone demand created in filtered and unfiltered samples.

  2. Enhanced biohydrogen production from beverage industrial wastewater using external nitrogen sources and bioaugmentation with facultative anaerobic strains.

    Science.gov (United States)

    Kumar, Gopalakrishnan; Bakonyi, Péter; Sivagurunathan, Periyasamy; Kim, Sang-Hyoun; Nemestóthy, Nándor; Bélafi-Bakó, Katalin; Lin, Chiu-Yue

    2015-08-01

    In this work biohydrogen generation and its improvement possibilities from beverage industrial wastewater were sought. Firstly, mesophilic hydrogen fermentations were conducted in batch vials by applying heat-treated (80°C, 30 min) sludge and liquid (LB-grown) cultures of Escherichia coli XL1-Blue/Enterobacter cloacae DSM 16657 strains for bioaugmentation purposes. The results showed that there was a remarkable increase in hydrogen production capacities when facultative anaerobes were added in the form of inoculum. Furthermore, experiments were carried out in order to reveal whether the increment occurred either due to the efficient contribution of the facultative anaerobic microorganisms or the culture ingredients (in particular yeast extract and tryptone) supplied when the bacterial suspensions (LB media-based inocula) were mixed with the sludge. The outcome of these tests was that both the applied nitrogen sources and the bacteria (E. coli) could individually enhance hydrogen formation. Nevertheless, the highest increase took place when they were used together. Finally, the optimal initial wastewater concentration was determined as 5 g/L.

  3. Investigating dynamic sources of pharmaceuticals: Demographic and seasonal use are more important than down-the-drain disposal in wastewater effluent in a University City setting

    Science.gov (United States)

    Vatovec, Christine; Phillips, Patrick; Van Wagoner, Emily; Scott, Tia-Marie; Furlong, Edward T.

    2016-01-01

    Pharmaceutical pollution in surface waters poses risks to human and ecosystem health. Wastewater treatment facilities are primary sources of pharmaceutical pollutants, but little is known about the factors that affect drugs entering the wastewater stream. This paper investigates the effects of student pharmaceutical use and disposal behaviors and an annual demographic shift on pharmaceutical pollution in a university town. We sampled wastewater effluent during a ten-day annual spring student move-out period at the University of Vermont. We then interpreted these data in light of survey results that investigated pharmaceutical purchasing, use, and disposal practices among the university student population. Surveys indicated that the majority of student respondents purchased pharmaceuticals in the previous year. Many students reported having leftover drugs, though only a small portion disposed of them, mainly in the trash.We detected 51 pharmaceuticals in 80% or more of the wastewater effluent samples collected over the ten-day sampling period. Several increased in concentration after students left the area. Concentrations of caffeine and nicotine decreased weakly. Drug disposal among this university student population does not appear to be a major source of pharmaceuticals in wastewater. Increases in pharmaceutical concentration after the students left campus can be tied to an increase in the seasonal use of allergy medications directly related to pollen, as well as a demographic shift to a year-round older population, which supports national data that older people use larger volumes and different types of pharmaceuticals than the younger student population.

  4. Biological nitrate removal using a food waste-derived carbon source in synthetic wastewater and real sewage.

    Science.gov (United States)

    Zhang, Haowei; Jiang, Jianguo; Li, Menglu; Yan, Feng; Gong, Changxiu; Wang, Quan

    2016-01-15

    The production of volatile fatty acids (VFAs) from food waste to improve biological nutrient removal has drawn much attention. In this study, acidogenic liquid from food waste was used as an alternative carbon source for synthetic wastewater treatment. C/N ratios of 5 and 6 were suitable for denitrification, and the change in acidogenic liquid composition had no negative effect on denitrification. The denitrification rates using optimal carbon-to-nitrate ratios of acidogenic liquid were more than 25 mg NO3-N/(gVSS·h). At the same time, acidogenic liquid was used to improve nutrient removal from summer and winter sewage. C/N ratios of 5 and 6 were acceptable for summer sewage treatment. Total nitrogen in the final effluent was less than 7 mg/L. Two additional hours were required for winter sewage treatment, and the C/N ratio had to be >6.

  5. Ozonation for source treatment of pharmaceuticals in hospital wastewater - ozone lifetime and required ozone dose

    DEFF Research Database (Denmark)

    Hansen, Kamilla Marie Speht; Spiliotopoulou, Aikaterini; Chhetri, Ravi Kumar

    2016-01-01

    Ozonation aimed at removing pharmaceuticals was studied in an effluent from an experimental pilot system using staged moving bed biofilm reactor (MBBR) tanks for the optimal biological treatment of wastewater from a medical care unit of Aarhus University Hospital. Dissolved organic carbon (DOC......) and pH in samples varied considerably, and the effect of these two parameters on ozone lifetime and the efficiency of ozone in removing pharmaceuticals were determined. The pH in the effluent varied from 5.0 to 9.0 resulting in approximately a doubling of the required ozone dose at the highest p......H for each pharmaceutical. DOC varied from 6 to 20 mg-DOC/L. The ozone required for removing each pharmaceutical, varied linearly with DOC and thus, ozone doses normalized to DOC (specific ozone dose) agreed between water samples (typically within 15%). At neutral pH the specific ozone dose required...

  6. Laundry detergents as a source of heavy metals in Irish domestic wastewater.

    Science.gov (United States)

    Aonghusa, Caitríona Níc; Gray, Nick F

    2002-01-01

    Concentrations of Cd, Cu and Zn in 175 detergent samples representing twenty-one brands of washing powders were analysed. Mean concentrations of 3.03 (+/- 0.50) microg Cd/g, 2.61 (+/- 1.22) microg Cu/g and 15.23 (+/- 7.26) microg Zn/g were recorded. The concentration of cadmium was much lower than previously reported. The daily contribution of metals from laundry washing are in the order of 54.5 microg Cd/ca/d, 47.0 microg Cu/ca/d and 274.1 microg Zn/ca/d. In Irish municipal wastewater the contribution from detergents of these metals are 31.9% for Cd, 0.24% Cu and 0.30% for Zn. This has important implications for sewage sludge disposal.

  7. Wastewater from the soft drinks industry as a source for bioethanol production.

    Science.gov (United States)

    Isla, Miguel A; Comelli, Raúl N; Seluy, Lisandro G

    2013-05-01

    Wastewaters from the soft drinks industry were examined as media for producing bioethanol using yeast-mediated fermentation. Fermentation assays were performed using cola-type, orange and lemon-lime soft drinks and the biomass, sugar and ethanol levels were monitored over time. The effect of the addition of yeast extract was evaluated; the results indicated that 15 g/L is a suitable value for successful fermentation. Depletion of the sugars contained in the soft drinks (10-12% w/v) was achieved in less than 12 h when the medium was inoculated with 2 g/L of Saccharomyces cerevisiae var. Windsor. Ethanol yields were close to the theoretical values. The performance of several kinetic models was evaluated, and their parameters were determined. A model including inhibition by ethanol enabled the best adjustment of the experimental results in all assayed media. Some soft drinks include sodium benzoate in their formulae, the effect of which on yeast metabolism is discussed.

  8. Wastewater Reuse for Agriculture: Development of a Regional Water Reuse Decision-Support Model (RWRM) for Cost-Effective Irrigation Sources.

    Science.gov (United States)

    Tran, Quynh K; Schwabe, Kurt A; Jassby, David

    2016-09-06

    Water scarcity has become a critical problem in many semiarid and arid regions. The single largest water use in such regions is for crop irrigation, which typically relies on groundwater and surface water sources. With increasing stress on these traditional water sources, it is important to consider alternative irrigation sources for areas with limited freshwater resources. One potential irrigation water resource is treated wastewater for agricultural fields located near urban centers. In addition, treated wastewater can contribute an appreciable amount of necessary nutrients for plants. The suitability of reclaimed water for specific applications depends on water quality and usage requirements. The main factors that determine the suitability of recycled water for agricultural irrigation are salinity, heavy metals, and pathogens, which cause adverse effects on human, plants, and soils. In this paper, we develop a regional water reuse decision-support model (RWRM) using the general algebraic modeling system to analyze the cost-effectiveness of alternative treatment trains to generate irrigation water from reclaimed wastewater, with the irrigation water designed to meet crop requirements as well as California's wastewater reuse regulations (Title 22). Using a cost-minimization framework, least-cost solutions consisting of treatment processes and their intensities (blending ratios) are identified to produce alternative irrigation sources for citrus and turfgrass. Our analysis illustrates the benefits of employing an optimization framework and flexible treatment design to identify cost-effective blending opportunities that may produce high-quality irrigation water for a wide range of end uses.

  9. Characterization of wastewater treatment plant microbial communities and the effects of carbon sources on diversity in laboratory models.

    Directory of Open Access Journals (Sweden)

    Sangwon Lee

    Full Text Available We are developing a laboratory-scale model to improve our understanding and capacity to assess the biological risks of genetically engineered bacteria and their genetic elements in the natural environment. Our hypothetical scenario concerns an industrial bioreactor failure resulting in the introduction of genetically engineered bacteria to a downstream municipal wastewater treatment plant (MWWTP. As the first step towards developing a model for this scenario, we sampled microbial communities from the aeration basin of a MWWTP at three seasonal time points. Having established a baseline for community composition, we investigated how the community changed when propagated in the laboratory, including cell culture media conditions that could provide selective pressure in future studies. Specifically, using PhyloChip 16S-rRNA-gene targeting microarrays, we compared the compositions of sampled communities to those of inocula propagated in the laboratory in simulated wastewater conditionally amended with various carbon sources (glucose, chloroacetate, D-threonine or the ionic liquid 1-ethyl-3-methylimidazolium chloride ([C2mim]Cl. Proteobacteria, Bacteroidetes, and Actinobacteria were predominant in both aeration basin and laboratory-cultured communities. Laboratory-cultured communities were enriched in γ-Proteobacteria. Enterobacteriaceae, and Aeromonadaceae were enriched by glucose, Pseudomonadaceae by chloroacetate and D-threonine, and Burkholderiacea by high (50 mM concentrations of chloroacetate. Microbial communities cultured with chloroacetate and D-threonine were more similar to sampled field communities than those cultured with glucose or [C2mim]Cl. Although observed relative richness in operational taxonomic units (OTUs was lower for laboratory cultures than for field communities, both flask and reactor systems supported phylogenetically diverse communities. These results importantly provide a foundation for laboratory models of industrial

  10. Microalgae biomass growth using primary treated wastewater as nutrient source and their potential use for lipids production

    Science.gov (United States)

    Frementiti, Anastacia; Aravantinou, Andriana F.; Manariotis, Ioannis D.

    2015-04-01

    The great demand for energy, the rising price of the crude oil and the rapid decrease of the supply of fossil fuels are the main reasons that have increased the interest for the production of fuels from renewable resources. Microalgae are considered to be the most promising new source of biomass and biofuels, since their lipid content in some cases is up to 70%. The microalgal growth and its metabolism processes are essential in wastewater treatment with many economical prospects. The aim of this work was to evaluate the algal production in a laboratory scale open pond. The pond had a working volume of 30 L and was fed with sterilized primary treated wastewater. Chlorococcum sp. was used as a model microalgal. Experiments were conducted under controlled environmental conditions in order to investigate the removal of nutrients, biomass growth, and lipids accumulation in microalgae. Chlorococcum sp. cultures behavior was investigated under batch, fill and draw, and continuous operation mode, at two different radiation intensities (100 and 200 μmol/m2s). The maximum biomass concentration of 630 mg/L was observed with the fill and draw mode. Moreover, the growth rates of microalgal biomass were depended on the influent nutrients concentration. Specifically, the phosphates were the limiting factor for biomass growth in continuous condition; the phosphates removal in this condition, reached a 100%. Chemical demand oxygen (COD) was not removed efficiently by Chlorococcum sp. since it was an autotrophic microalgal with no organic carbon demands for its growth. The lipids content in the dry weight of Chlorococcum sp. ranged from 1 to 9% depending on the concentration of nutrients and the operating conditions.

  11. ERIC-PCR Fingerprinting of Fecal Escherichia Coli and Microbial Source Tracking in Non-point Pollution of the Shellfish Culture Area of East China Sea%大肠埃希氏菌ERIC-PCR指纹图谱构建及贝类污染微生物源示踪

    Institute of Scientific and Technical Information of China (English)

    何力; 傅玲琳; 冯立芳; 励建荣

    2012-01-01

    Objective: to establish a host-orign fecal E. Coli DNA fingerprint library by rep-PCR method using ERIC primers from livestock and poultry farms in the shellfish culture area of East China Sea. Moreover, the efficacy of microbial source tracking (MST) based on ERIC-PCR for differentiating host sources of E. Coli from shellfish and their growing waters is also evaluated. Methods: fecal samples of poultry and livestock were obtained as cloacal swabs from different farm sites in Xiangshan Bay. E. Coli isolates were purified from the fecal samples by selective cultivation and API 20E tests. The genomic DNA of E. Coli isolates was extracted by bacterial genomic DNA purification kit and fingerprinted by ERIC-PCR. InfoQuestFPTM software was used to analyze the similarities, rate of correct classification(RCC) and the stability of library. Finally, host sources of E. Coli obtained from shellfish and shellfish growing waters were predicted using MST method by Multi-Dimensional Scaling (MDS). Results: cluster analysis of ERIC-PCR DNA fingerprints of 216 E. Coli isolates revealed 37 clusters. Jack-knife analysis revealed high rate of correct classification(RCC) with 91.7%, 76.9%, 100% and 94.4% of swine, chicken, duck and goose E. Coli isolates classified into the correct host source, respectively. In addition, based on the above host-origin library by discriminant analysis, 12 unknown source strains from shellfish and growing waters were successfully discriminanted with RCC value of 78.8%. Conclusion: this work suggests that ERIC-PCR fingerprinting can be a promising genotypic tool applied in the shellfish growing water management on East Chi na Sea for source identification of fecal pollution.%目的:采用rep-PCR的ERIC引物(ERIC-PCR)构建象山港周边粪污染指示因子大肠埃希氏菌(E.coli)的DNA指纹图谱库,并根据所建DNA指纹图谱库对贝类产品污染进行微生物源示踪(Microbial Source Tracking,MST).方法:在选定的贝类养殖区域周

  12. Evaluation of Natural Materials as Exogenous Carbon Sources for Biological Treatment of Low Carbon-to-Nitrogen Wastewater

    Science.gov (United States)

    Ramírez-Godínez, Juan; Beltrán-Hernández, Icela; Álvarez-Hernández, Alejandro; Coronel-Olivares, Claudia; Contreras-López, Elizabeth; Quezada-Cruz, Maribel; Vázquez-Rodríguez, Gabriela

    2015-01-01

    In the bacterial processes involved in the mitigation of nitrogen pollution, an adequately high carbon-to-nitrogen (C : N) ratio is key to sustain denitrification. We evaluated three natural materials (woodchips, barley grains, and peanut shells) as carbon sources for low C : N wastewater. The amount of organic matter released from these materials to aqueous media was evaluated, as well as their pollution swapping potential by measuring the release of total Kjeldahl nitrogen, N-NH4+, NO2−, and NO3−, and total phosphorous. Barley grains yielded the highest amount of organic matter, which also showed to be the most easily biodegradable. Woodchips and peanut shells released carbon rather steadily and so they would not require frequent replenishment from biological reactors. These materials produced eluates with lower concentrations of nutrients than the leachates from barley grains. However, as woodchips yielded lower amounts of suspended solids, they constitute an adequate exogenous source for the biological treatment of carbon-deficient effluents. PMID:26495313

  13. Anthropogenic point and non-point nitrogen inputs into Huai River Basin and their impacts on riverine ammonia-nitrogen flux

    Science.gov (United States)

    Zhang, W. S.; Swaney, D. P.; Li, X. Y.; Hong, B.; Howarth, R. W.; Ding, S. H.

    2015-02-01

    This study provides a new approach to estimate both anthropogenic non-point and point nitrogen (N) inputs to the landscape, and determines their impacts on riverine ammonia-nitrogen (AN) flux, providing a foundation for further exploration of anthropogenic effects on N pollution. Our study site is Huai River Basin of China, a watershed with one of the highest levels of N input in the world. Multi-year average (2003-2010) inputs of N to the watershed are 27 200 ± 1100 kg N km-2 yr-1. Non-point sources comprised about 98% of total N input and only 2% of inputs are directly added to the aquatic ecosystem as point sources. Fertilizer application was the largest non-point source of new N to the Huai River Basin (69% of net anthropogenic N inputs), followed by atmospheric deposition (20%), N fixation in croplands (7%), and N content of imported food and feed (2%). High N inputs showed impacts on riverine AN flux: fertilizer application, point N input and atmospheric N deposition were proved as more direct sources to riverine AN flux. Modes of N delivery and losses associated with biological denitrification in rivers, water consumption, interception by dams influenced the extent of export of riverine AN flux from N sources. Our findings highlight the importance of anthropogenic N inputs from point and non-point sources in heavily polluted watersheds, and provide some implications for AN prediction and management.

  14. External and internal sources which inhibit the nitrification process in wastewater treatment plants

    DEFF Research Database (Denmark)

    Sinkjær, O.; Bøgebjerg, P.; Grüttner, Henrik

    1996-01-01

    monitoring the influent to the Lynetten WWTP and the Damhusaen WWTP and the catchment areas have revealed that discharges from industries are to be considered the most important external sources of inhibition. The load from the external sources has decreased during the investigation period, and since 1993...... the nitrification capacity monitored at the pilot plants has been in agreement with the design basis. The recycling of the scrubber water from the cleaning of sludge incineration flue gas was found to be an important internal source of inhibition at the Lynetten WWTP. Investigations show that it is possible...

  15. Fuel from Wastewater - Harnessing a Potential Energy Source in Canada through the Co-location of Algae Biofuel Production to Sources of Effluent, Heat and CO2

    Science.gov (United States)

    Klise, G. T.; Roach, J. D.; Passell, H. D.; Moreland, B. D.; O'Leary, S. J.; Pienkos, P. T.; Whalen, J.

    2010-12-01

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the “production” footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada’s NRC. Results from the NREL / NRC collaboration including specific

  16. Characterization of Missouri surface waters near point sources of pollution reveals potential novel atmospheric route of exposure for bisphenol A and wastewater hormonal activity pattern

    Science.gov (United States)

    Kassotis, Christopher D.; Alvarez, David A.; Taylor, Julia A.; vom Saal, Frederick S.; Nagel, Susan C.; Tillitt, Donald E.

    2015-01-01

    Surface water contamination by chemical pollutants increasingly threatens water quality around the world. Among the many contaminants found in surface water, there is growing concern regarding endocrine disrupting chemicals, based on their ability to interfere with some aspect of hormone action in exposed organisms, including humans. This study assessed water quality at several sites across Missouri (near wastewater treatment plants and airborne release sites of bisphenol A) based on hormone receptor activation potencies and chemical concentrationspresent in the surface water. We hypothesized that bisphenol A and ethinylestradiol would be greater in water near permitted airborne release sites and wastewater treatment plant inputs, respectively, and that these two compounds would be responsible for the majority of activities in receptor-based assays conducted with water collected near these sites. Concentrations of bisphenol A and ethinylestradiol were compared to observed receptor activities using authentic standards to assess contribution to total activities, and quantitation of a comprehensive set of wastewater compounds was performed to better characterize each site. Bisphenol A concentrations were found to be elevated in surface water near permitted airborne release sites, raising questions that airborne releases of BPA may influence nearby surface water contamination and may represent a previously underestimated source to the environment and potential for human exposure. Estrogen and androgen receptor activities of surface water samples were predictive of wastewater input, although the lower sensitivity of the ethinylestradiol ELISA relative to the very high sensitivity of the bioassay approaches did not allow a direct comparison. Wastewater-influenced sites also had elevated anti-estrogenic and anti-androgenic equivalence, while sites without wastewater discharges exhibited no antagonist activities.

  17. Characterization of Missouri surface waters near point sources of pollution reveals potential novel atmospheric route of exposure for bisphenol A and wastewater hormonal activity pattern.

    Science.gov (United States)

    Kassotis, Christopher D; Alvarez, David A; Taylor, Julia A; vom Saal, Frederick S; Nagel, Susan C; Tillitt, Donald E

    2015-08-15

    Surface water contamination by chemical pollutants increasingly threatens water quality around the world. Among the many contaminants found in surface water, there is growing concern regarding endocrine disrupting chemicals, based on their ability to interfere with some aspect of hormone action in exposed organisms, including humans. This study assessed water quality at several sites across Missouri (near wastewater treatment plants and airborne release sites of bisphenol A) based on hormone receptor activation potencies and chemical concentrations present in the surface water. We hypothesized that bisphenol A and ethinylestradiol would be greater in water near permitted airborne release sites and wastewater treatment plant inputs, respectively, and that these two compounds would be responsible for the majority of activities in receptor-based assays conducted with water collected near these sites. Concentrations of bisphenol A and ethinylestradiol were compared to observed receptor activities using authentic standards to assess contribution to total activities, and quantitation of a comprehensive set of wastewater compounds was performed to better characterize each site. Bisphenol A concentrations were found to be elevated in surface water near permitted airborne release sites, raising questions that airborne releases of BPA may influence nearby surface water contamination and may represent a previously underestimated source to the environment and potential for human exposure. Estrogen and androgen receptor activities of surface water samples were predictive of wastewater input, although the lower sensitivity of the ethinylestradiol ELISA relative to the very high sensitivity of the bioassay approaches did not allow a direct comparison. Wastewater-influenced sites also had elevated anti-estrogenic and anti-androgenic equivalence, while sites without wastewater discharges exhibited no antagonist activities.

  18. Characteristics of grey wastewater

    DEFF Research Database (Denmark)

    Eriksson, Eva; Auffarth, Karina Pipaluk Solvejg; Henze, Mogens

    2002-01-01

    The composition of grey wastewater depends on sources and installations from where the water is drawn, e.g. kitchen, bathroom or laundry. The chemical compounds present originate from household chemicals, cooking, washing and the piping. In general grey wastewater contains lower levels of organic...

  19. A case study on non-point source pollution and environmental carrying capacity of animal raising industry in subtropical watershed%亚热带流域氮磷排放与养殖业环境承载力实例研究

    Institute of Scientific and Technical Information of China (English)

    孟岑; 李裕元; 许晓光; 高茹; 王毅; 张满意; 吴金水

    2013-01-01

    畜禽养殖业粪便排放已经成为我国农村地区主要的农业面源污染源之一,也是制约养殖业良性发展的主要瓶颈.本文以湖南省长沙县典型亚热带流域为研究单元,基于流域水环境定位观测、耕地氮(N)磷(P)消纳能力以及养殖业调查和土壤分析资料,初步分析了亚热带丘陵区的面源污染现状及畜禽养殖业的环境承载力.结果表明,研究区金井河流域134.4 km2范围内N、P年负荷分别为N 2.72 t·km-2和P0.11t·km-2,其中养殖粪便对水体总氮(TN)、总磷(TP)负荷的贡献率分别约为42.2%和62.0%.区内平均畜禽养殖密度为3.46 AU·hm-2(相当于流域内年出栏生猪24.39万头),显著高于现有化肥用量条件下流域的实际承载力1.13 AU·hm-2(相当于流域内年出栏生猪6.35万头),因此养殖密度过高是导致研究区水体NP负荷较高的主要原因.区内N、P盈余量分别为N 35.8 kg·hm-2、P 18.61 kg·hm-2.研究区基本不施用化肥条件下畜禽养殖业的最大环境承载力为7.26 AU·hm-2,在有机肥占合理施肥量30%条件下,当地畜禽养殖业的环境承载力为2.74AU·hm-2(相当于流域内年出栏生猪19.50万头).降低养殖密度、调整养殖业空间布局以及提高养殖废弃物的资源化利用率是防治当前面源污染的有效途径.%The discharge of faeces from animal production is a major source of nitrogen ( N) and phosphorus (P) pollutants in the subtropical region of China. To quantify the N and F load from animal production to hydro-systems in the region, surveys on pig density and N,P inputs to farmlands, soil N and P contents, and annual observations of the N and P flows in the streams and the terminal river were carried out in a hilly watershed (134.4 km2 ) in Changsha County, Hunan Province. It was showed that the total NP loads from the watershed to the terminal river was 2.72 t and 0. 11 t·km-2·a-1, respectively ; within which 42. 2% of the N and 62. 0% of

  20. Sources of matrix-bound phosphine in advanced wastewater treatment system

    Institute of Scientific and Technical Information of China (English)

    DING Lili; LIANG Hanwen; ZHU Yixin; MO Weiheng; WANG Qiang; REN Hongqiang; WANG Xiaorong; M.Edwards; D.Glindemann

    2005-01-01

    @@ Phosphine (PH3), a highly toxic and reductive gas, has been explored in biogases[1,2] and it proves also to be ubiquitous even in remote atmospheric air at a concentration in the order of (pg--ng) /m3 [3]. For more than one hundred years, sources and mechanisms of biological phosphine formation in natural and engineered environments have been investigated and discussed[4].

  1. Source identification of N2O produced during simulated wastewater treatment under different oxygen conditions using stable isotopic analysis

    Directory of Open Access Journals (Sweden)

    T Azzaya

    2014-12-01

    Full Text Available Nitrous oxide (N2O, a potent greenhouse gas which is important in climate change, is predicted to be the most dominant ozone depleting substance. It is mainly produced by oxidation of hydroxylamine (NH2OH or reduction of nitrite (NO2- during microbiological processes such as nitrification and denitrification. Wastewater treatment plant (WWTP is one of the anthropogenic N2O sources because inorganic and organic nitrogen compounds are converted to nitrate (NO3-, in the case of standard system or N2 (in the case of advanced system by bacterial nitrification and denitrification in WWTP. We investigated the N2O production mechanisms during batch experiments that simulate wastewater treatment with activated sludge under various dissolved oxygen (DO concentrations by stable isotope analysis. About 125mL of water was sampled from 30L incubation chamber for several times during the incubation, and concentration and isotopomer ratios of N2O and N-containing species were measured using gas chromatography/isotope ratio mass spectrometry (GC/IRMS. Ammonium (NH4+ consumption was accompanied by increment of nitrite (NO2-, and at the same time dissolved N2O concentration gradually increased to 4850 and 5650 nmol kg-1, respectively, during the four-hour incubation when DO concentrations were 0.2 and 0.5 mg L-1. Observed low SP values (0.2-8.9‰ at DO-0.2 mg L-1, -5.3-6.3‰ at DO-0.5 mg L-1, -1.0-8.3‰ at DO-0.8 mg L-1 in N2O and relationship of nitrogen isotope ratios between N2O and its potential substrates (NH4+, NO3- suggested that N2O produced under the aerobic condition derived mainly from NO2- reduction by ammonia-oxidizing bacteria (nitrifier–denitrification.DOI: http://doi.dx.org/10.5564/mjc.v15i0.313Mongolian Journal of Chemistry  15 (41, 2014, p4-10  

  2. Polybrominated diphenyl ethers (PBDEs) in a conventional wastewater treatment plant (WWTP) from Shanghai, the Yangtze River Delta: implication for input source and mass loading.

    Science.gov (United States)

    Xiang, Nan; Zhao, Xiaohua; Meng, Xiang-Zhou; Chen, Ling

    2013-09-01

    The concentrations of 19 polybrominated diphenyl ethers (PBDEs) congeners in a conventional wastewater treatment plant (WWTP) were determined to investigate the occurrence and fate of PBDEs during wastewater treatment processes. The level of total PBDEs ranged from 1.68 to 4.64 ng/L in wastewater, with BDE209 accounting for the largest proportion, followed by penta- and octa-BDE congeners. PBDEs were found to mainly exist in the particulate phase of wastewater, which rendered sedimentation efficient for the removal of PBDEs, while the removal efficiencies might be varied for congeners with different Br atom numbers. Because of similar congener profiles, in-house dust was considered to be an important source for PBDEs in the WWTP. According to the mass loading estimation, over 60% of total PBDEs entering the WWTP accumulated in the dewatered sludge, resulting in the total PBDE release of 43.8 kg/year via sewage sludge in Shanghai. And the annual release via effluent was estimated to be 5.5 kg, less but shouldn't be neglected.

  3. Non-Point Pollution from Crop Production: Global,Regional and National Issues

    Institute of Scientific and Technical Information of China (English)

    D.NORSE

    2005-01-01

    China is now the world's largest producer and user of industrial fertilizers and manures. Consequently China plays a substantial role in global N cycle dynamics and in man's disruption of the nitrogen cycle though there are still significant uncertainties about the size and importance of emission and leaching rates. A major cause of 1China's global role is the overuse of nitrogen fertilizers, which is most serious with intensive vegetable production where application rates can be up to 50% greater than crop needs, but is also a problem with wheat, rice and maize.China's overuse of nitrogen fertiliser over the past 10-20 years has resulted in non-point source (NPS) pollution from crop production becoming a major cause of water pollution, and the situation is projected to get worse. In contrast, water pollution from point sources such as intensive livestock production and urban or industrial development is being brought more under control. The consequences for air pollution are equally serious. Emissions of nitrous oxide from fertilizers and manures may be so large that China could be responsible for 25-30% of global emissions of this damaging greenhouse gas and of the global warming resulting from it.The main national and local issues relate particularly to low fertilizer use efficiency and the losses of ammonia and NOx that lead to acid precipitation, and leaching and run-off losses that result in high nitrate levels in groundwater and eutrophication of rivers and lakes. The reasons why farmers overuse nitrogen fertilizer are complex and not fully understood. They involve agro-climate differences between provinces and counties, farming systems and farm income structures. Although there is a wide range of institutional and technological improvements that can greatly reduce this overuse rapid progress in reducing NPS is unlikely.

  4. Watershed Management Tool for Selection and Spacial Allocation of Non-Point Source Pollution Control Practices

    Science.gov (United States)

    Distributed-parameter watershed models are often utilized for evaluating the effectiveness of sediment and nutrient abatement strategies through the traditional {calibrate→ validate→ predict} approach. The applicability of the method is limited due to modeling approximations. In ...

  5. 40 CFR 63.1106 - Wastewater provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 10 2010-07-01 2010-07-01 false Wastewater provisions. 63.1106 Section... Technology Standards § 63.1106 Wastewater provisions. (a) Process wastewater. Except as specified in... source shall comply with the HON process wastewater requirements in §§ 63.132 through 63.148. (1)...

  6. Wastewater Outfalls

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Outfalls which discharge wastewater from wastewater treatment facilities with individual NPDES permits. It does not include NPDES general permits.

  7. Biocides in urban wastewater treatment plant influent at dry and wet weather: concentrations, mass flows and possible sources.

    Science.gov (United States)

    Bollmann, Ulla E; Tang, Camilla; Eriksson, Eva; Jönsson, Karin; Vollertsen, Jes; Bester, Kai

    2014-09-01

    In recent years, exterior thermal insulation systems became more and more important leading to an increasing amount of houses equipped with biocide-containing organic façade coatings or fungicide treated wood. It is known that these biocides, e.g. terbutryn, carbendazim, and diuron, as well as wood preservatives as propiconazole, leach out of the material through contact with wind driven rain. Hence, they are present in combined sewage during rain events in concentrations up to several hundred ng L(-1). The present study focused on the occurrence of these biocides in five wastewater treatment plants in Denmark and Sweden during dry and wet weather. It was discovered, that biocides are detectable not only during wet weather but also during dry weather when leaching from façade coatings can be excluded as source. In most cases, the concentrations during dry weather were in the same range as during wet weather (up to 100 ng L(-1)); however, for propiconazole noteworthy high concentrations were detected in one catchment (4.5 μg L(-1)). Time resolved sampling (12 × 2 h) enabled assessments about possible sources. The highest mass loads during wet weather were detected when the rain was heaviest (e.g. up to 116 mg h(-1) carbendazim or 73 mg h(-1) mecoprop) supporting the hypothesis that the biocides were washed off by wind driven rain. Contrary, the biocide emissions during dry weather were rather related to household activities than with emissions from buildings, i.e., emissions were highest during morning and evening hours (up to 50 mg h(-1)). Emissions during night were significantly lower than during daytime. Only for propiconazole a different emission behaviour during dry weather was observed: the mass load peaked in the late afternoon (3 g h(-1)) and declined slowly afterwards. Most likely this emission was caused by a point source, possibly from inappropriate cleaning of spray equipment for agriculture or gardening. Copyright © 2014 Elsevier

  8. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China

    Energy Technology Data Exchange (ETDEWEB)

    Chang Xiaosong [Department of Environmental Hygiene, School of Military Preventive Medicine, Third Military Medical University, Chongqing 400038 (China); Meyer, Michael T. [United States Geological Survey, 4821 Quail Crest Place, Lawrence, Kansas 66049 (United States); Liu Xiaoyun [Center for Disease Prevention and Control, Lanzhou Military Region, Lanzhou 730020 (China); Zhao Qing; Chen Hao; Chen Jian; Qiu Zhiqun; Yang Lan [Department of Environmental Hygiene, School of Military Preventive Medicine, Third Military Medical University, Chongqing 400038 (China); Cao Jia [Department of Military Toxicology, School of Military Preventive Medicine, Third Military Medical University, Chongqing 400038 (China); Shu Weiqun, E-mail: xm0630@sina.co [Department of Environmental Hygiene, School of Military Preventive Medicine, Third Military Medical University, Chongqing 400038 (China)

    2010-05-15

    Sewage samples from 4 hospitals, 1 nursery, 1 slaughter house, 1 wastewater treatment plant and 5 source water samples of Chongqing region of Three Gorge Reservoir were analyzed for macrolide, lincosamide, trimethoprim, fluorouinolone, sulfonamide and tetracycline antibiotics by online solid-phase extraction and liquid chromatography-tandem mass spectrometry. Results showed that the concentration of ofloxacin (OFX) in hospital was the highest among all water environments ranged from 1.660 mug/L to 4.240 mug/L and norfloxacin (NOR, 0.136-1.620 mug/L), ciproflaxacin (CIP, ranged from 0.011 mug/L to 0.136 mug/L), trimethoprim (TMP, 0.061-0.174 mug/L) were commonly detected. Removal range of antibiotics in the wastewater treatment plant was 18-100% and the removal ratio of tylosin, oxytetracycline and tetracycline were 100%. Relatively higher removal efficiencies were observed for tylosin (TYL), oxytetracycline (OXY) and tetracycline (TET)(100%), while lower removal efficiencies were observed for Trimethoprim (TMP, 1%), Epi-iso-chlorotetracycline (EICIC, 18%) and Erythromycin-H{sub 2}O (ERY-H{sub 2}O, 24%). Antibiotics were removed more efficiently in primary treatment compared with those in secondary treatment. - This study give the first insight into the concentration of antibiotics in receiving waters from 4 hospitals, 1 nursery, 1 slaughter house, 1 wastewater treatment plant and 5 source water of Chongqing region of Three Gorge Reservoir

  9. Application of Potential Non-Point Pollution Index For An Urban Watershed: Istanbul, Kucukcekmece Lagoon

    Science.gov (United States)

    Musaoglu, N.; Dikerler, T.; Seker, D. Z.; Ustun, B.

    2011-12-01

    Istanbul is a major city with more than 15 million population and limited water resources. Besides, its urbanized area has been rapidly expanding for more than 30 years. Küçükçekmece Lagoon, as a potential RAMSAR site with its rich natural diversity and housing asset for birds, has been suffering from urbanization and industrial stress. With Sazlidere Dam constructed on the Lagoon's most important creek which supplies fresh water, Küçükçekmece Basin has almost 600 km2 wide area. Due to dam operation which cuts fresh water input down, water quality of the Küçükçekmece Lagoon has been deteriorating, as well as other antropogenic impacts. Potential non-point pollution index (or PNPI) is based on land use, soil and topographic data and aims to highlight the potentially polluting areas in a watershed. Denoting those areas, PNPI puts an assessment of the pressure exerted on the water bodies by different land uses. This index calculates different layers in order to represent run-off, land cover effect, and the distance of each polluting source (or pixels) in the study area. By the multiplication of those layers under GIS, a new data layer is produced showing the polluting potential of each pixel on the study area. For by Küçükçekmece Basin, Landsat ETM satellite images have been taken and its land use produced by unsupervised classification. Using this updated data, land use - land cover indicator has been calculated for the basin. Topography is another fact that is needed to produce both run-off indicator and distance indicator and it is generated by elevation data with 5m resolution. By integrating these indicator layers, PNPI analysis layer has been produced for Küçükçekmece Lagoon watershed.

  10. Bio-Economic Strategy to Combat Non-Point Pollution in China

    Institute of Scientific and Technical Information of China (English)

    WEI Yong-Ping; CHEN De-Li; B.DAVIDSON; R.E.WHITE

    2005-01-01

    While non-point pollution from agriculture has become an increasingly serious problem in China, some progress has been made in studying the causal biophysical processes. However, few studies have assessed the economic consequences of non-point pollution in China or the policy options that could be employed to combat it. In this work a sustainable strategy to control non-point pollution from crop production, which involved taxing excessive inputs of irrigation water and fertilizer, was proposed. The approach taken to assess these measures combined biophysical and economic models,having a trade-off between economic returns and an improved environment. A proven and practical spatially referenced water and nutrient management model was used to determine the quantities of excessive irrigation water and fertilizer for specific soil and land use. Also, a set of indicators were proposed for evaluating the effects of agricultural economic output and agricultural practices on the environment.

  11. Using chemical and microbiological indicators to track the impacts from the land application of treated municipal wastewater and other sources on groundwater quality in a karstic springs basin

    Science.gov (United States)

    Katz, B.G.; Griffin, Dale W.

    2008-01-01

    Multiple chemical constituents (nutrients; N, O, H, C stable isotopes; 64 organic wastewater compounds, 16 pharmaceutical compounds) and microbiological indicators were used to assess the impact on groundwater quality from the land application of approximately 9.5 million liters per day of treated municipal sewage effluent to a sprayfield in the 960-km2 Ichetucknee Springs basin, northern Florida. Enriched stable isotope signatures (?? 18O and ??2H) were found in water from the effluent reservoir and a sprayfield monitoring well (MW-7) due to evaporation; however, groundwater samples downgradient from the sprayfield have ??18O and ??2H concentrations that represented recharge of meteoric water. Boron and chloride concentrations also were elevated in water from the sprayfield effluent reservoir and MW-7, but concentrations in groundwater decreased substantially with distance downgradient to background levels in the springs (about 12 km) and indicated at least a tenfold dilution factor. Nitrate-nitrogen isotope (??15N-NO3) values above 10 ??? in most water samples were indicative of organic nitrogen sources except Blue Hole Spring (??15N-NO3 = 4.6-4.9 ???), which indicated an inorganic source of nitrogen (fertilizers). The detection of low concentrations the insect repellent N,N-diethyl-metatoluamide (DEET), and other organic compounds associated with domestic wastewater in Devil's Eye Spring indicated that leakage from a nearby septic tank drainfield likely has occurred. Elevated levels of fecal coliforms and enterococci were found in Blue Hole Spring during higher flow conditions, which likely resulted from hydraulic connections to upgradient sinkholes and are consistent with previoius dye-trace studies. Enteroviruses were not detected in the sprayfield effluent reservoir, but were found in low concentrations in water samples from a downgradient well and Blue Hole Spring during high-flow conditions indicating a human wastewater source. The Upper Floridan aquifer in

  12. Effect of carbon source and COD/NO₃⁻-N ratio on anaerobic simultaneous denitrification and methanogenesis for high-strength wastewater treatment.

    Science.gov (United States)

    Xie, Li; Chen, Jinrong; Wang, Rui; Zhou, Qi

    2012-06-01

    The effect of carbon source and COD/NO(3)(-)-N ratio on denitrification and methanogenesis in mixed methanogenic matrix was investigated in this study. Industrial wastewater, anaerobic treated cassava stillage (CS) and glucose synthetic wastewater were used as carbon sources respectively for comparison. Experimental results showed that denitrification was the main nitrate reduction pathway for all COD/NO(3)(-)-N ratios tested in two substrates. Simultaneous denitrification and methanogenesis occurred at COD/NO(3)(-)-N higher than 7 regardless of carbon sources. Incomplete denitrification was observed at COD/NO(3)(-)-N ratio below 7 in both the anaerobic effluent of CS and glucose-fed cultures due to the insufficient available organic carbon. The nature of carbon sources was observed to play a key role in the nitrate and organic carbon utilization rates. COD/NO(3)(-)-N ratio had a strong effect on the organic matter utilization pathways. Methanization consumed more organic matter than denitrification with further increase of COD/NO(3)(-)-N ratio above 7 in two substrates. Results of VFA variation suggested that propionate and butyrate were preferably utilized by the denitrifiers than acetate.

  13. Can non-point pollutions emissions from agriculture be regulated efficiently using input-output taxes?

    DEFF Research Database (Denmark)

    Hansen, Line Block; Hansen, Lars Gårn

    2012-01-01

    In many parts of Europe and North America, phosphorus loss from cultivated fields is threatening natural ecosystems. Though there are similarities to other non-point agricultural emissions like nitrogen that have been studied extensively, phosphorus is often characterized by the presence of large...

  14. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams.

    Science.gov (United States)

    Hladik, Michelle L; Focazio, Michael J; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L(-1) with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L(-1)). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L(-1)) and other organic DBP precursors (phenol at 15 μg L(-1)). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L(-1)) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L(-1) total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged.

  15. Discharges of produced waters from oil and gas extraction via wastewater treatment plants are sources of disinfection by-products to receiving streams

    Science.gov (United States)

    Hladik, Michelle L.; Focazio, Michael J.; Engle, Mark

    2014-01-01

    Fluids co-produced with oil and gas production (produced waters) are often brines that contain elevated concentrations of bromide. Bromide is an important precursor of several toxic disinfection by-products (DBPs) and the treatment of produced water may lead to more brominated DBPs. To determine if wastewater treatment plants that accept produced waters discharge greater amounts of brominated DBPs, water samples were collected in Pennsylvania from four sites along a large river including an upstream site, a site below a publicly owned wastewater treatment plant (POTW) outfall (does not accept produced water), a site below an oil and gas commercial wastewater treatment plant (CWT) outfall, and downstream of the POTW and CWT. Of 29 DBPs analyzed, the site at the POTW outfall had the highest number detected (six) ranging in concentration from 0.01 to 0.09 μg L− 1 with a similar mixture of DBPs that have been detected at POTW outfalls elsewhere in the United States. The DBP profile at the CWT outfall was much different, although only two DBPs, dibromochloronitromethane (DBCNM) and chloroform, were detected, DBCNM was found at relatively high concentrations (up to 8.5 μg L− 1). The water at the CWT outfall also had a mixture of inorganic and organic precursors including elevated concentrations of bromide (75 mg L− 1) and other organic DBP precursors (phenol at 15 μg L− 1). To corroborate these DBP results, samples were collected in Pennsylvania from additional POTW and CWT outfalls that accept produced waters. The additional CWT also had high concentrations of DBCNM (3.1 μg L− 1) while the POTWs that accept produced waters had elevated numbers (up to 15) and concentrations of DBPs, especially brominated and iodinated THMs (up to 12 μg L− 1 total THM concentration). Therefore, produced water brines that have been disinfected are potential sources of DBPs along with DBP precursors to streams wherever these wastewaters are discharged.

  16. Greenhouse wastewater treatment by baffled subsurface-flow constructed wetlands supplemented with flower straws as carbon source in different modes.

    Science.gov (United States)

    Chang, Junjun; Ma, Luyao; Chen, Jinquan; Lu, Yifeng; Wang, Xiaoyun

    2017-01-01

    Four laboratory-scale baffled subsurface-flow constructed wetlands (BSCWs) were established for the treatment of greenhouse wastewater containing high levels of nitrate and sulfate in the present study. Each BSCW microcosm involved a treatment zone and another post-treatment zone with a surface area ratio of 2:1. Evenly mixed straws of carnation and rose (w/w: 1/1), two common ornamental flowers, were supplemented as an organic carbon source into the treatment zone through a hydrolysis zone (CW 1), decentralized vertically installed perforated pipes (CW 2), and centralized pipes (CW 3 in the figures), except the blank system. Removals and transformations of nitrogen and sulfate as well as carbon release in the BSCWs were investigated and comparatively assessed. Results showed that the supplements of flower straws could greatly enhance both the nitrate and sulfate removals, and good performance was achieved during the beginning operation period of 30 days, followed by decline due to insufficient organic carbon supply. Nitrate removal efficiency was significantly higher and more stable compared to sulfate. The highest removal rates of nitrate and sulfate were achieved in the CW 3, with a mean value of 4.33 g NO3(-)-N·m(-2) d(-1) and 2.74 g SO4(2-)-S·m(-2) d(-1), respectively, although the differences among the experimental microcosms were not statistically significant. However, almost the same TN removal rate (3.40-3.47 g N·m(-2) d(-1)) was obtained due to the productions of NO2(-)-N and NH4(+)-N and leaching of organic N from the straws. High contents of organic carbon and colored substance were leached from the straws during the initial 10 days, but dropped rapidly to low levels, and could hardly determined after 30 days operation. The post-treatment zone could further eliminate various contaminants, but the capability was limited. Inorganic carbon (IC) concentration was detected to be a highly good indicator for the estimation of nitrate and sulfate

  17. Biocides in urban wastewater treatment plant influent at dry and wet weather: concentrations, mass flows and possible sources

    DEFF Research Database (Denmark)

    Bollmann, Ulla E.; Petersen, Camilla Tang; Eriksson, Eva

    2014-01-01

    preservatives as propiconazole, leach out of the material through contact with wind driven rain. Hence, they are present in combined sewage during rain events in concentrations up to several hundred ng L(-1). The present study focused on the occurrence of these biocides in five wastewater treatment plants...

  18. Effect of carbon source on biomass growth and nutrients removal of Scenedesmus obliquus for wastewater advanced treatment and lipid production.

    Science.gov (United States)

    Shen, Qiao-Hui; Jiang, Jia-Wei; Chen, Li-Ping; Cheng, Li-Hua; Xu, Xin-Hua; Chen, Huan-Lin

    2015-08-01

    The combination of tertiary wastewater treatment and microalgal lipid production is considered to be a promising approach to water eutrophication as well as energy crisis. To intensify wastewater treatment and microalgal biofuel production, the effect of organic and inorganic carbon on algal growth and nutrient removal of Scenedesmus obliquus were examined by varying TOC (total organic carbon) concentrations of 20-120mgL(-1) in wastewater and feeding CO2 concentrations in the range of 0.03-15%, respectively. The results showed that the maximal biomass and average lipid productivity were 577.6 and 16.7mgL(-1)d(-1) with 5% CO2 aeration. The total nitrogen, total phosphorus and TOC removal efficiencies were 97.8%, 95.6% and 59.1% respectively within 6days when cultured with real secondary municipal wastewater. This work further showed that S. obliquus could be utilized for simultaneous organic pollutants reduction, N, P removal and lipid accumulation.

  19. Investigation into Sources of Fipronil in Surface Water and Identification of a Novel Fipronil Metabolite in Reclaimed Wastewater

    Science.gov (United States)

    Fipronil is a phenyl pyrazole insecticide used to control termites, fleas, roaches, ants, and other pests in residential and agricultural settings. Fipronil has been found in various environmental media (surface water, wastewater, indoor and outdoor dust, etc) and is known to un...

  20. An innovative wood-chip-framework substrate used as slow-release carbon source to treat high-strength nitrogen wastewater.

    Science.gov (United States)

    Li, Huai; Chi, Zifang; Yan, Baixing; Cheng, Long; Li, Jianzheng

    2017-01-01

    Removal of nitrogen in wastewater before discharge into receiving water courses is an important consideration in treatment systems. However, nitrogen removal efficiency is usually limited due to the low carbon/nitrogen (C/N) ratio. A common solution is to add external carbon sources, but amount of liquid is difficult to determine. Therefore, a combined wood-chip-framework substrate (with wood, slag and gravel) as a slow-release carbon source was constructed in baffled subsurface-flow constructed wetlands to overcome the problem. Results show that the removal rate of ammonia nitrogen (NH4(+)-N), total nitrogen (TN) and chemical oxygen demand (COD) could reach 37.5%-85%, 57.4%-86%, 32.4%-78%, respectively, indicating the combined substrate could diffuse sufficient oxygen for the nitrification process (slag and gravel zone) and provide carbon source for denitrification process (wood-chip zone). The nitrification and denitrification were determined according to the location of slag/gravel and wood-chip, respectively. Nitrogen removal was efficient at the steady phase before a shock loading using slag-wood-gravel combined substrate because of nitrification-denitrification process, while nitrogen removal was efficient under a shock loading with wood-slag-gravel combined substrate because of ANAMMOX process. This study provides a new idea for wetland treatment of high-strength nitrogen wastewater.

  1. Assessment of point and non-point pollution associated with the power generation sector in South Africa.

    Science.gov (United States)

    van Zyl, H D; Heath, R G

    2007-01-01

    Access to water and water availability remains a key factor in ensuring the sustainability of development in Southern Africa. The need for guidelines to improve management of this valuable resource, and to regulate pollutant discharge, is therefore of national interest. A new and growing threat to our natural water resources is non-point source (NPS) pollution. The important distinction between point pollution and NPS pollution is that the latter is difficult to identify and the entry point of contamination to resources is diffuse and not limited to a single location. NPS pollution associated with power generation includes, but is not limited to, atmospheric deposition resulting from emissions (air and water), leachate from coal storage piles and runoff from impervious areas which are covered with dust fallout from coal and ash handling operations. Emissions of primary concern are sulfur, nitrogen and mercury.

  2. Minimization of nitrous oxide emission from CASS process treating low carbon source domestic wastewater: Effect of feeding strategy and aeration rate.

    Science.gov (United States)

    Liang, Weihao; Yu, Chao; Ren, Hongqiang; Geng, Jinju; Ding, Lili; Xu, Ke

    2015-12-01

    Nitrous oxide (N2O) emission during wastewater treatment can be mitigated by improving operational conditions, e.g., organic carbon supply and dissolved oxygen. To evaluate the control parameters for N2O emission in the low carbon source domestic wastewater treatment process, N2O emissions from Cyclic Activated Sludge System (CASS) under different feeding strategies and aeration rates were investigated. Results showed that continuous feeding enhanced nitrogen removal and reduced N2O emission compared to batch feeding, while a higher aeration rate led to less N2O emission. N2O was mainly produced during non-aeration phases in batch feeding CASS and the amount of N2O generated from denitrification decreased under continuous feeding, indicating that carbon source in the continuous influent relieved the electron competition between denitrification reductases during non-aeration phase. Moreover, taxonomic analysis based on high-throughput 16S rRNA gene sequencing revealed higher abundance of denitrifying bacteria, especially N2O-reducing bacteria in continuous feeding CASS.

  3. Can non-point pollutions emissions from agriculture be regulated efficiently using input-output taxes?

    DEFF Research Database (Denmark)

    Hansen, Line Block; Gårn Hansen, Lars

    2014-01-01

    In many parts of Europe and North America, phosphorus loss from cultivated fields is threatening natural ecosystems. Though there are similarities to other non-point agricultural emissions like nitrogen that have been studied extensively, phosphorus is often characterized by the presence of large...... systems. Depending on the proportions of different types of farms in the agricultural sector, we find that an input-output tax system can be the core element of a close to efficient regulatory policy....

  4. Recovery of biogas as a source of renewable energy from ice-cream production residues and wastewater.

    Science.gov (United States)

    Demirel, Burak; Orok, Murat; Hot, Elif; Erkişi, Selin; Albükrek, Metin; Onay, Turgut T

    2013-01-01

    Proper management of waste streams and residues from agro-industry is very important to prevent environmental pollution. In particular, the anaerobic co-digestion process can be used as an important tool for safe disposal and energy recovery from agro-industry waste streams and residues. The primary objective of this laboratory-scale study was to determine whether it was possible to recover energy (biogas) from ice-cream production residues and wastewater, through a mesophilic anaerobic co-digestion process. A high methane yield of 0.338 L CH4/gCOD(removed) could be achieved from anaerobic digestion of ice-cream wastewater alone, with almost 70% of methane in biogas, while anaerobic digestion of ice-cream production residue alone did not seem feasible. When wastewater and ice-cream production residue were anaerobically co-digested at a ratio of 9:1 by weight, the highest methane yield of 0.131 L CH4/gCOD(removed) was observed. Buffering capacity seemed to be imperative in energy recovery from these substrates in the anaerobic digestion process.

  5. Source-Related Effects of Wastewater on Transcription Factor (AhR, CAR and PXR)-Mediated Induction of Gene Expression in Cultured Rat Hepatocytes and Their Association with the Prevalence of Antimicrobial-Resistant Escherichia coli

    Science.gov (United States)

    Guruge, Keerthi S.; Yamanaka, Noriko; Sonobe, Miyuki; Fujizono, Wataru; Yoshioka, Miyako; Akiba, Masato; Yamamoto, Takehisa; Joshua, Derrick I.; Balakrishna, Keshava; Yamashita, Nobuyoshi; Kannan, Kurunthachalam; Tsutsui, Toshiyuki

    2015-01-01

    Extracts of wastewater collected from 4 sewage treatment plants (STPs) receiving effluents from different sources in South India were investigated for their levels of transcription factor-mediated gene induction in primary cultured rat hepatocytes. In addition, the relation between gene induction levels and the prevalence of antimicrobial-resistant Escherichia coli (E. coli) in wastewater was examined. STP-3, which treats only hospital wastewater, exhibited significantly greater induction potency of all 6 drug metabolizing cytochrome P450 (CYP) genes examined, CYP1A1, 1A2, 1B1, 2B15, 3A1, and 3A2, whereas the wastewater at STP-1, which exclusively receives domestic sewage, showed significantly diminished levels of induction of 3 CYP genes when compared to the levels of CYP induction at STP-2, which receives mixed wastewater. Samples collected during the monsoon season showed a significantly altered gene induction capacity compared to that of samples from the pre-monsoon period. The data suggest that the toxicity of wastewater in STPs was not significantly diminished during the treatment process. The chemical-gene interaction data predicted that a vast number of chemicals present in the wastewater would stimulate the genes studied in the rat hepatocytes. The multivariable logistic regression analysis demonstrated that the prevalence of isolates resistant to cefotaxime, imipenem and streptomycin was significantly correlated with the levels of induction of at least three CYP-isozymes in STP wastewater. In addition, the resistance of isolates in treatment plants was not altered by the treatment steps, whereas the sampling season did have an impact on the resistance to specific antimicrobials. The identification of receptor-mediated gene regulation capacities offers important data not limited to the (synergistic) physiological role of chemicals in biological systems but may provide new insight into the link between the effects of known/unknown drugs and prevalence of

  6. Source-Related Effects of Wastewater on Transcription Factor (AhR, CAR and PXR-Mediated Induction of Gene Expression in Cultured Rat Hepatocytes and Their Association with the Prevalence of Antimicrobial-Resistant Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Keerthi S Guruge

    Full Text Available Extracts of wastewater collected from 4 sewage treatment plants (STPs receiving effluents from different sources in South India were investigated for their levels of transcription factor-mediated gene induction in primary cultured rat hepatocytes. In addition, the relation between gene induction levels and the prevalence of antimicrobial-resistant Escherichia coli (E. coli in wastewater was examined. STP-3, which treats only hospital wastewater, exhibited significantly greater induction potency of all 6 drug metabolizing cytochrome P450 (CYP genes examined, CYP1A1, 1A2, 1B1, 2B15, 3A1, and 3A2, whereas the wastewater at STP-1, which exclusively receives domestic sewage, showed significantly diminished levels of induction of 3 CYP genes when compared to the levels of CYP induction at STP-2, which receives mixed wastewater. Samples collected during the monsoon season showed a significantly altered gene induction capacity compared to that of samples from the pre-monsoon period. The data suggest that the toxicity of wastewater in STPs was not significantly diminished during the treatment process. The chemical-gene interaction data predicted that a vast number of chemicals present in the wastewater would stimulate the genes studied in the rat hepatocytes. The multivariable logistic regression analysis demonstrated that the prevalence of isolates resistant to cefotaxime, imipenem and streptomycin was significantly correlated with the levels of induction of at least three CYP-isozymes in STP wastewater. In addition, the resistance of isolates in treatment plants was not altered by the treatment steps, whereas the sampling season did have an impact on the resistance to specific antimicrobials. The identification of receptor-mediated gene regulation capacities offers important data not limited to the (synergistic physiological role of chemicals in biological systems but may provide new insight into the link between the effects of known/unknown drugs and

  7. Source-Related Effects of Wastewater on Transcription Factor (AhR, CAR and PXR)-Mediated Induction of Gene Expression in Cultured Rat Hepatocytes and Their Association with the Prevalence of Antimicrobial-Resistant Escherichia coli.

    Science.gov (United States)

    Guruge, Keerthi S; Yamanaka, Noriko; Sonobe, Miyuki; Fujizono, Wataru; Yoshioka, Miyako; Akiba, Masato; Yamamoto, Takehisa; Joshua, Derrick I; Balakrishna, Keshava; Yamashita, Nobuyoshi; Kannan, Kurunthachalam; Tsutsui, Toshiyuki

    2015-01-01

    Extracts of wastewater collected from 4 sewage treatment plants (STPs) receiving effluents from different sources in South India were investigated for their levels of transcription factor-mediated gene induction in primary cultured rat hepatocytes. In addition, the relation between gene induction levels and the prevalence of antimicrobial-resistant Escherichia coli (E. coli) in wastewater was examined. STP-3, which treats only hospital wastewater, exhibited significantly greater induction potency of all 6 drug metabolizing cytochrome P450 (CYP) genes examined, CYP1A1, 1A2, 1B1, 2B15, 3A1, and 3A2, whereas the wastewater at STP-1, which exclusively receives domestic sewage, showed significantly diminished levels of induction of 3 CYP genes when compared to the levels of CYP induction at STP-2, which receives mixed wastewater. Samples collected during the monsoon season showed a significantly altered gene induction capacity compared to that of samples from the pre-monsoon period. The data suggest that the toxicity of wastewater in STPs was not significantly diminished during the treatment process. The chemical-gene interaction data predicted that a vast number of chemicals present in the wastewater would stimulate the genes studied in the rat hepatocytes. The multivariable logistic regression analysis demonstrated that the prevalence of isolates resistant to cefotaxime, imipenem and streptomycin was significantly correlated with the levels of induction of at least three CYP-isozymes in STP wastewater. In addition, the resistance of isolates in treatment plants was not altered by the treatment steps, whereas the sampling season did have an impact on the resistance to specific antimicrobials. The identification of receptor-mediated gene regulation capacities offers important data not limited to the (synergistic) physiological role of chemicals in biological systems but may provide new insight into the link between the effects of known/unknown drugs and prevalence of

  8. SIMULATION OF NON-POINT POLLUTANTS EVOLUTION IN COASTAL PLAIN ISLAND-A CASE STUDY OF CHONGMING ISLAND

    Institute of Scientific and Technical Information of China (English)

    YIN Hai-long; JIANG Wen-yan; LI Jian-hua

    2008-01-01

    The coastal plain region usually shows the agricultural dominated industry mode, so more and more attention is paid to non-point pollutants discharge. In this study, the method for assessing the influence of non-point pollutants discharge on river water quality is probed which is concluded as follows: (1) Considering the costal plain island is characterized as nearly even elevation, the conventional gravitational runoff confluence method based on eight-point gravitational flowing directions (D8) is unable to compute the runoff confluence received by the surrounding rivers, so a new method of triangular confluence based on three-points of grid center and the river segments is presented. Further the equations of non-point pollutants loads estimation and non-point pollutants confluence on rivers are presented. (2) The integration mode of non-point pollutants model and river water quality model is presented so as to further assess the non-point pollutants contribution to river water quality. (3) With the Chongming Island, the third largest island in China, as an example, the above-mentioned equations are specified. For this island, the non-point pollutants loads are estimated and linked to the developed water quality model of the river network in the island, and further the non-point pollution evolution in river network is simulated. In this scenario, the non-point pollution contribution to river water quality over the whole island is clearly displayed, and the area where the river water quality is seriously influenced by non-point pollutants discharge is distinctly depicted. This scenario also shows the water quality contribution ratio of non-point pollution to point pollution can be in the range of 55.5% to 44.5% which proves the importance of non-point pollution control in costal plain islands.

  9. Wastewater Treatment

    Science.gov (United States)

    ... make water safe. Effects of wastewater pollutants If wastewater is not properly treated, then the environment and human health can be negatively impacted. These impacts can include harm to fish and wildlife ... in wastewater and the potentially harmful effects these substances can ...

  10. Wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ranđel N. Kitanović

    2013-10-01

    Full Text Available Quality of life on Earth in the future will largely depend on the amount of safe water. As the most fundamental source of life, water is relentlessly consumed and polluted. To halt this trend, many countries are taking extensive measures and investing substantial resources in order to stop the contamination of water and return at least tolerably good water quality to nature. The goal of water purification is to obtain clean water with the sewage sludge as a by-product. Clean water is returned to nature, and further treatment of sludge may be subject to other procedures. The conclusion of this paper is simple. The procedure with purified water is easily achievable, purified water is discharged into rivers, lakes and seas, but the problem of further treatment of sludge remains. This paper presents the basic methods of wastewater treatment and procedures for processing the products from contaminated water. The paper can serve as a basis for further elaboration. Water Pollution In order to ensure normal life of living creatures, the water in which they live or the water they use must have a natural chemical composition and natural features. When, as a result of human activities, the chemical composition of water and the ratio of its chemical elements significantly change, we say that water is polluted. When the pollutants come from industrial plants, we are talking about industrial wastewater, and when they come from households and urban areas, we are talking about municipal wastewater. Both contain a huge amount of pollutants that eventually end up in rivers. Then, thousands of defenseless birds, fish and other animals suffer, and environmental consequences become immeasurable. In addition, the waste fed to the water often ends up in the bodies of marine animals, so they can return to us as food. Thermal water pollution also has multiple effects on the changes in the wildlife composition of aquatic ecosystems. Polluted water can be purified by

  11. The use of fermentation liquid of wastewater primary sedimentation sludge as supplemental carbon source for denitrification based on enhanced anaerobic fermentation.

    Science.gov (United States)

    Liu, Feng; Tian, Yu; Ding, Yi; Li, Zhipeng

    2016-11-01

    Wastewater primary sedimentation sludge was prepared into fermentation liquid as denitrification carbon source, and the main components of fermentation liquid was short-chain volatile fatty acids. Meanwhile, the acetic acid and propionic acid respectively accounted for about 29.36% and 26.56% in short-chain volatile fatty acids. The performance of fermentation liquid, methanol, acetic acid, propionic acid and glucose used as sole carbon source were compared. It was found that the denitrification rate with fermentation liquid as carbon source was 0.17mgNO3(-)-N/mg mixed liquor suspended solid d, faster than that with methanol, acetic acid, and propionic acid as sole carbon source, and lower than that with glucose as sole carbon source. For the fermentation liquid as carbon source, the transient accumulation of nitrite was insignificantly under different initial total nitrogen concentration. Therefore, the use of fermentation liquid for nitrogen removal could improve denitrification rate, and reduce nitrite accumulation in denitrification process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. 40 CFR 63.1256 - Standards: Wastewater.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 11 2010-07-01 2010-07-01 true Standards: Wastewater. 63.1256 Section... for Pharmaceuticals Production § 63.1256 Standards: Wastewater. (a) General. Each owner or operator of any affected source (existing or new) shall comply with the general wastewater requirements...

  13. Orientation to Municipal Wastewater Treatment. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Introductory-level material on municipal wastewater treatment facilities and processes is presented. Course topics include sources and characteristics of municipal wastewaters; objectives of wastewater treatment; design, operation, and maintenance factors; performance testing; plant staffing; and laboratory considerations. Chapter topics include…

  14. Nutrient Removal in Wastewater Treatment

    Science.gov (United States)

    Shah, Kanti L.

    1973-01-01

    Discusses the sources and effects of nutrients in wastewater, and the methods of their removal in wastewater treatment. In order to conserve water resources and eliminate the cost of nutrient removal, treated effluent should be used wherever possible for irrigation, since it contains all the ingredients for proper plant growth. (JR)

  15. [Non-point loads of soluble cadmium by in situ field experiment with different landuses, in central Hunan province mining area].

    Science.gov (United States)

    Liu, Xiao-li; Zeng, Zhao-xia; Chen, Zhe; Tie, Bai-qing; Chen, Qiu-wen; Ye, Chang-cheng

    2013-09-01

    Non-point source loads of heavy metals from contaminated soil has increasingly become the major cause of heavy metal concentrations of rivers and lakes surpassed the limitation value, while only few studies had focused on quantitative monitoring of soil heavy metal transportation to water, in situ field conditions. As reported, agricultural farmland heavy metal contamination was the major contamination problem, especially for cadmium (Cd) pollution in middle and downstream of Xiangjiang River. This study selected the typical Cd polluted agricultural watershed for a case study, three typical landuse types of rice, dry farmland and unused grassland with three replicate quadrates were carried out for natural rainfall runoff hydrology processes monitoring, from 2011-2012. Results showed that, precipitation pH value increased from spring to summer, soluble Cd concentration of spring runoff was significantly higher than that of summer rainfall runoff, which presented an obviously seasonal heterogeneity and had a negative correlation with rainfall pH value, and rainfall pH value can obviously impact soil soluble Cd transportation into surface runoff charge. In the same rainfall event, soluble Cd concentration and non-point load of rice were significantly lower than those of dry land and unused grassland, while no obviously seasonal trend was found for non-point load of Cd from three typical landuse types because of the rainfall depth variance, which needs more researches and concerns in the future. These results can provide valuable data and scientific supports for watershed scale's heavy metal non-point source load quantitative estimation and water environment management and water quality diagnosis and early warning.

  16. Polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP) in a conventional wastewater treatment plant (WWTP) in Shanghai: seasonal variations and potential sources.

    Science.gov (United States)

    Xiang, Nan; Chen, Ling; Meng, Xiang-Zhou; Li, Yu-Lin; Liu, Zhigang; Wu, Bing; Dai, Lingling; Dai, Xiaohu

    2014-07-15

    Wastewater treatment plants (WWTPs) are considered an important medium for the transport and transformation of organic pollutants, such as polybrominated diphenyl ethers (PBDEs) and dechlorane plus (DP). However, limited data on PBDEs and no data on DP were available regarding wastewater and sludge from China, especially in Shanghai, one of the most developed cities in China. This study examined the occurrence of PBDEs and DP in a conventional WWTP in Shanghai for one year. The levels of the total PBDEs in the influent and dewatered sludge ranged from 5.31 to 27.9 ng/L and 31.0 to 99.5 ng/g, respectively, which were at the low end of the global range. DP was reported in wastewater with a mean concentration of 0.46 ng/L (range: 0.05 to 1.40 ng/L) and sludge contained DP in the range of 1.1 to 2.0 ng/g. For both PBDEs and DP, there were no significant seasonal variations observed in the four seasons. Indoor dust and outdoor air could be two main sources of PBDEs and DP in the WWTP. In both the influent and sewage sludge, BDE-209 was the most abundant congener, with contributions to the total PBDE levels ranging from 52.9 to 82.6% and 82.7 to 84.0%, respectively. The fraction of anti-DP was consistently higher than that of syn-DP, and the average of fsyn ranged from 0.16 to 0.33, which fell in the range of two commercial DP mixtures. The annual releases of PBDEs and DP via sewage sludge from WWTPs in Shanghai were estimated to be 6,370 g and 164.8 g, respectively. The fate and risk of these compounds after being released into the environment require further research. To the best of our knowledge, this study is the first to report on the occurrence of DP in wastewater.

  17. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China

    Science.gov (United States)

    Chang, Xiaotian; Meyer, M.T.; Liu, Xiuying; Zhao, Q.; Chen, H.; Chen, J.-a.; Qiu, Z.; Yang, L.; Cao, J.; Shu, W.

    2010-01-01

    Sewage samples from 4 hospitals, 1 nursery, 1 slaughter house, 1 wastewater treatment plant and 5 source water samples of Chongqing region of Three Gorge Reservoir were analyzed for macrolide, lincosamide, trimethoprim, fluorouinolone, sulfonamide and tetracycline antibiotics by online solid-phase extraction and liquid chromatography-tandem mass spectrometry. Results showed that the concentration of ofloxacin (OFX) in hospital was the highest among all water environments ranged from 1.660????g/L to 4.240????g/L and norfloxacin (NOR, 0.136-1.620????g/L), ciproflaxacin (CIP, ranged from 0.011????g/L to 0.136????g/L), trimethoprim (TMP, 0.061-0.174????g/L) were commonly detected. Removal range of antibiotics in the wastewater treatment plant was 18-100% and the removal ratio of tylosin, oxytetracycline and tetracycline were 100%. Relatively higher removal efficiencies were observed for tylosin (TYL), oxytetracycline (OXY) and tetracycline (TET)(100%), while lower removal efficiencies were observed for Trimethoprim (TMP, 1%), Epi-iso-chlorotetracycline (EICIC, 18%) and Erythromycin-H2O (ERY-H2O, 24%). Antibiotics were removed more efficiently in primary treatment compared with those in secondary treatment. ?? 2009 Elsevier Ltd. All rights reserved.

  18. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China.

    Science.gov (United States)

    Chang, Xiaosong; Meyer, Michael T; Liu, Xiaoyun; Zhao, Qing; Chen, Hao; Chen, Ji-an; Qiu, Zhiqun; Yang, Lan; Cao, Jia; Shu, Weiqun

    2010-05-01

    Sewage samples from 4 hospitals, 1 nursery, 1 slaughter house, 1 wastewater treatment plant and 5 source water samples of Chongqing region of Three Gorge Reservoir were analyzed for macrolide, lincosamide, trimethoprim, fluorouinolone, sulfonamide and tetracycline antibiotics by online solid-phase extraction and liquid chromatography-tandem mass spectrometry. Results showed that the concentration of ofloxacin (OFX) in hospital was the highest among all water environments ranged from 1.660 microg/L to 4.240 microg/L and norfloxacin (NOR, 0.136-1.620 microg/L), ciproflaxacin (CIP, ranged from 0.011 microg/L to 0.136 microg/L), trimethoprim (TMP, 0.061-0.174 microg/L) were commonly detected. Removal range of antibiotics in the wastewater treatment plant was 18-100% and the removal ratio of tylosin, oxytetracycline and tetracycline were 100%. Relatively higher removal efficiencies were observed for tylosin (TYL), oxytetracycline (OXY) and tetracycline (TET)(100%), while lower removal efficiencies were observed for Trimethoprim (TMP, 1%), Epi-iso-chlorotetracycline (EICIC, 18%) and Erythromycin-H(2)O (ERY-H(2)O, 24%). Antibiotics were removed more efficiently in primary treatment compared with those in secondary treatment. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. A disposable power source in resource-limited environments: A paper-based biobattery generating electricity from wastewater.

    Science.gov (United States)

    Fraiwan, Arwa; Kwan, Landen; Choi, Seokheun

    2016-11-15

    We report a novel paper-based biobattery which generates power from microorganism-containing liquid derived from renewable and sustainable wastewater which is readily accessible in the local environment. The device fuses the art of origami and the technology of microbial fuel cells (MFCs) and has the potential to shift the paradigm for flexible and stackable paper-based batteries by enabling exceptional electrical characteristics and functionalities. 3D, modular, and retractable battery stack is created from (i) 2D paper sheets through high degrees of folding and (ii) multifunctional layers sandwiched for MFC device configuration. The stack is based on ninja star-shaped origami design formed by eight MFC modular blades, which is retractable from sharp shuriken (closed) to round frisbee (opened). The microorganism-containing wastewater is added into an inlet of the closed battery stack and it is transported into each MFC module through patterned fluidic pathways in the paper layers. During operation, the battery stack is transformed into the round frisbee to connect eight MFC modules in series for improving the power output and simultaneously expose all air-cathodes to the air for their cathodic reactions. The device generates desired values of electrical current and potential for powering an LED for more than 20min.

  20. Can non-point pollutions emissions from agriculture be regulated efficiently using input-output taxes?

    DEFF Research Database (Denmark)

    Hansen, Line Block; Hansen, Lars Gårn

    2012-01-01

    In many parts of Europe and North America, phosphorus loss from cultivated fields is threatening natural ecosystems. Though there are similarities to other non-point agricultural emissions like nitrogen that have been studied extensively, phosphorus is often characterized by the presence of large...... systems. Depending on the proportions of different types of farms in the agricultural sector, we find that an input-output tax system may be close to efficient, or in other cases must be supplemented with subsidy and manure reallocation schemes....

  1. NITRO-HYDROLYSIS: AN ENERGY EFFICIENT SOURCE REDUCTION AND CHEMICAL PRODUCTION PROCESS FOR WASTEWATER TREATMENT PLANT BIOSOLIDS

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2003-03-10

    The nitro-hydrolysis process has been demonstrated in the laboratory in batch tests on one municipal waste stream. This project was designed to take the next step toward commercialization for both industrial and municipal wastewater treatment facility (WWTF) by demonstrating the feasibility of the process on a small scale. In addition, a 1-lb/hr continuous treatment system was constructed at University of Tennessee to treat the Kuwahee WWTF (Knoxville, TN) sludge in future work. The nitro-hydrolysis work was conducted at University of Tennessee in the Chemical Engineering Department and the gas and liquid analysis were performed at Oak Ridge National Laboratory. Nitro-hydrolysis of sludge proved a very efficient way of reducing sludge volume, producing a treated solution which contained unreacted solids (probably inorganics such as sand and silt) that settled quickly. Formic acid was one of the main organic acid products of reaction when larger quantities of nitric acid were used in the nitrolysis. When less nitric acid was used formic acid was initially produced but was later consumed in the reactions. The other major organic acid produced was acetic acid which doubled in concentration during the reaction when larger quantities of nitric acid were used. Propionic acid and butyric acid were not produced or consumed in these experiments. It is projected that the commercial use of nitro-hydrolysis at municipal wastewater treatment plants alone would result in a total estimated energy savings of greater than 20 trillion Btu/yr. A net reduction of 415,000 metric tons of biosolids per year would be realized and an estimated annual cost reduction of $122M/yr.

  2. Wastewater Collection.

    Science.gov (United States)

    Chatterjee, Samar; And Others

    1978-01-01

    Presents a literature review of wastewater collection systems and components. This review covers: (1) planning, (2) construction; (3) sewer system evaluation; (4) maintenance; (5) rehabilitation; (6) overview prevention; and (7) wastewater pumping. A list of 111 references is also presented. (HM)

  3. Can non-point phosphorus emissions from agriculture be regulated efficiently using input-output taxes?

    DEFF Research Database (Denmark)

    Hansen, Line Bloch; Hansen, Lars Gårn

    In many parts of Europe and North America, phosphorus loss from cultivated fields is threatening natural ecosystems. Though there are similarities to other non-point agricultural emissions like nitrogen that have been studied extensively, phosphorus is often characterised by the presence of large...... stocking capacities for phosphorus in farm soils and long time-lags between applications and emission. This makes it important to understand the dynamics of the phosphorus emission problem when designing regulatory systems. Using a model that reflects these dynamics, we evaluate alternative regulatory...... systems. Depending on the proportions of different types of farms in the agricultural sector, we find that an input-output tax system may be close to efficient, or in other cases must be supplemented with subsidy and manure reallocation schemes....

  4. Polluted dust derived from long-range transport as a major end member of urban aerosols and its implication of non-point pollution in northern China.

    Science.gov (United States)

    Yan, Y; Sun, Y B; Weiss, D; Liang, L J; Chen, H Y

    2015-02-15

    The contribution of polluted dust transported from local and distal sources remains poorly constrained due to their similar geophysical and geochemical properties. We sampled aerosols in three cities in northern China (Xi'an, Beijing, Xifeng) during the spring of 2009 to determine dust flux, magnetic susceptibility and elemental concentrations. Combining dust fluxes with wind speed and regional visibility records enabled to differentiate between dust transported from long range and derived from local sources, while the combination of magnetic susceptibility and enrichment factors (EF) of heavy metals (Pb, Zn) allowed to distinguish natural aerosols from polluted ones. Our results indicate that polluted dust from long-range transport became a major end member of urban dust aerosols. Human settlements as its potential sources were confirmed by a pollutant enriched regional dust event originating from populated areas to the south as inferred by back trajectory modeling, implying their non-point source nature of dust pollution.

  5. Comparison of fipronil sources in North Carolina surface water and identification of a novel fipronil transformation product in recycled wastewater

    Science.gov (United States)

    Fipronil is a phenylpyrazole insecticide that is widely used in residential and agricultural settings to control ants, roaches, termites, and other pests. Fipronil and its transformation products have been found in a variety of environmental matrices, but the source[s] which make...

  6. Evaluation and Source Apportionment of Heavy Metals (HMs in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs in Shanxi, China

    Directory of Open Access Journals (Sweden)

    Baoling Duan

    2015-12-01

    Full Text Available Heavy metals (HMs in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index Igeo and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. Igeo classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes.

  7. Identification and Characterization of Oleaginous Yeast Isolated from Kefir and Its Ability to Accumulate Intracellular Fats in Deproteinated Potato Wastewater with Different Carbon Sources

    Directory of Open Access Journals (Sweden)

    Iwona Gientka

    2017-01-01

    Full Text Available The search for efficient oleaginous microorganisms, which can be an alternative to fossil fuels and biofuels obtained from oilseed crops, has been going on for many years. The suitability of microorganisms in this regard is determined by their ability to biosynthesize lipids with preferred fatty acid profile along with the concurrent utilization of energy-rich industrial waste. In this study, we isolated, characterized, and identified kefir yeast strains using molecular biology techniques. The yeast isolates identified were Candida inconspicua, Debaryomyces hansenii, Kluyveromyces marxianus, Kazachstania unispora, and Zygotorulaspora florentina. We showed that deproteinated potato wastewater, a starch processing industry waste, supplemented with various carbon sources, including lactose and glycerol, is a suitable medium for the growth of yeast, which allows an accumulation of over 20% of lipid substances in its cells. Fatty acid composition primarily depended on the yeast strain and the carbon source used, and, based on our results, most of the strains met the criteria required for the production of biodiesel. In particular, this concerns a significant share of saturated fatty acids, such as C16:0 and C18:0, and unsaturated fatty acids, such as C18:1 and C18:2. The highest efficiency in lipid biosynthesis exceeded 6.3 g L−1. Kazachstania unispora was able to accumulate the high amount of palmitoleic acid.

  8. Organic contaminants in onsite wastewater treatment systems

    Science.gov (United States)

    Conn, K.E.; Siegrist, R.L.; Barber, L.B.; Brown, G.K.

    2007-01-01

    Wastewater from thirty onsite wastewater treatment systems was sampled during a reconnaissance field study to quantify bulk parameters and the occurrence of organic wastewater contaminants including endocrine disrupting compounds in treatment systems representing a variety of wastewater sources and treatment processes and their receiving environments. Bulk parameters ranged in concentrations representative of the wide variety of wastewater sources (residential vs. non-residential). Organic contaminants such as sterols, surfactant metabolites, antimicrobial agents, stimulants, metal-chelating agents, and other consumer product chemicals, measured by gas chromatography/mass spectrometry were detected frequently in onsite system wastewater. Wastewater composition was unique between source type likely due to differences in source water and chemical usage. Removal efficiencies varied by engineered treatment type and physicochemical properties of the contaminant, resulting in discharge to the soil treatment unit at ecotoxicologically-relevant concentrations. Organic wastewater contaminants were detected less frequently and at lower concentrations in onsite system receiving environments. Understanding the occurrence and fate of organic wastewater contaminants in onsite wastewater treatment systems will aid in minimizing risk to ecological and human health.

  9. Coking wastewater treatment plant as a source of polycyclic aromatic hydrocarbons (PAHs) to the atmosphere and health-risk assessment for workers.

    Science.gov (United States)

    Zhang, Wanhui; Wei, Chaohai; Feng, Chunhua; Yan, Bo; Li, Ning; Peng, Pingan; Fu, Jiamo

    2012-08-15

    PAHs were identified and some of them were determined in the air around a coking wastewater treatment plant (WWTP) using passive air samplers. Seventy seven PAHs were found in the emissions from the degreasing tanks, the aeration tanks and the secondary clarifiers. ∑PAH concentrations within the plant (373.3±27.3-12959.5±685.9 ng/m(3)) were 3-41 times higher compared to the reference sites (315.7±50.2-363.4±77.5 ng/m(3)). The identification of numerous PAHs and high concentrations of these selected ones in the air of the studied sites indicated that the coking WWTP was a new source of atmospheric PAHs. Variations in the PAH pattern were observed in air within the coking WWTP. For example, Flu and Pyr accounted for 35-46% of the total contents at the degreasing tanks, but less than 10% at the hydrolytic tanks. The calculation of the diagnostic ratios suggested that PAHs in the emissions had the source characters of coal combustion. Furthermore, highly elevated PAH concentrations were determined at the degreasing tanks compared to the other tanks (i.e., aeration tanks and secondary clarifiers) and likely associated with their high concentrations in the coking wastewater and increased volatilization at high water temperature. Health risk assessments were carried out by evaluating the inhalation PAH exposure data. The resultant inhalation exposure levels due to TEQ(BaP) for workers ranged from 1.6±0.6 to 71.2±8.2 ng/m(3), and the estimated lung cancer risks were between 0.1×10(-3)±0.1×10(-4) and 5.2×10(-3)±0.5×10(-3), indicating PAHs in the air around the degreasing tanks and the aerobic tanks would have potential lung cancer risk for the operating workers. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. A Model to Predict Nitrogen Losses in Advanced Soil-Based Wastewater Treatment Systems

    Science.gov (United States)

    Morales, I.; Cooper, J.; Loomis, G.; Kalen, D.; Amador, J.; Boving, T. B.

    2014-12-01

    Most of the non-point source Nitrogen (N) load in rural areas is attributed to onsite wastewater treatment systems (OWTS). Nitrogen compounds are considered environmental pollutants because they deplete the oxygen availability in water bodies and produce eutrophication. The objective of this study was to simulate the fate and transport of Nitrogen in OWTS. The commercially-available 2D/3D HYDRUS software was used to develop a transport and fate model. Experimental data from a laboratory meso-cosm study included the soil moisture content, NH4 and NO3- data. That data set was used to calibrate the model. Three types of OWTS were simulated: (1) pipe-and-stone (P&S), (2) advanced soil drainfields, pressurized shallow narrow drainfield (SND) and (3) Geomat (GEO), a variation of SND. To better understand the nitrogen removal mechanism and the performance of OWTS technologies, replicate (n = 3) intact soil mesocosms were used with 15N-labelled nitrogen inputs. As a result, it was estimated that N removal by denitrification was predominant in P&S. However, it is suggested that N was removed by nitrification in SND and GEO. The calibrated model was used to estimate Nitrogen fluxes for both conventional and advanced OWTS. Also, the model predicted the N losses from nitrification and denitrification in all OWTS. These findings help to provide practitioners with guidelines to estimate N removal efficiencies for OWTS, and predict N loads and spatial distribution for identifying non-point sources.

  11. Water-Quality Data for Pharmaceuticals and Other Organic Wastewater Contaminants in Ground Water and in Untreated Drinking Water Sources in the United States, 2000-01

    Science.gov (United States)

    Barnes, Kimberlee K.; Kolpin, Dana W.; Focazio, Michael J.; Furlong, Edward T.; Meyer, Michael T.; Zaugg, Steven D.; Haack, Sheridan K.; Barber, Larry B.; Thurman, E. Michael

    2008-01-01

    This report presents water-quality data from two nationwide studies on the occurrence and distribution of organic wastewater contaminants. These data are part of the continuing effort of the U.S. Geological Survey Toxic Substances Hydrology Program to collect baseline information on the environmental occurrence of pharmaceuticals and other organic wastewater contaminants.

  12. Wastewater Districts

    Data.gov (United States)

    Vermont Center for Geographic Information — The Wastewater districts layer is part of a larger dataset that contains administrative boundaries for Vermont's Agency of Natural Resources. The dataset includes...

  13. Wastewater Treatment.

    Science.gov (United States)

    Zoltek, J., Jr.; Melear, E. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. This review covers: (1) process application; (2) coagulation and solids separation; (3) adsorption; (4) ion exchange; (5) membrane processes; and (6) oxidation processes. A list of 123 references is also presented. (HM)

  14. Anaerobic treatment as a core technology for energy, nutrients and water from source-separated domestic waste(water)

    NARCIS (Netherlands)

    Zeeman, G.; Kujawa, K.; Mes, de T.Z.D.; Graaff, de M.S.; Abu-Ghunmi, L.N.A.H.; Mels, A.R.; Meulman, B.; Temmink, B.G.; Buisman, C.J.N.; Lier, van J.B.; Lettinga, G.

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas product

  15. Controlled Carbon Source Addition to an Alternating Nitrification-Denitrification Wastewater Treatment Process Including Biological P Removal

    DEFF Research Database (Denmark)

    Isaacs, Steven Howard; Henze, Mogens

    1995-01-01

    experiments performed in 5 liter bottles indicated that the denitrification rate can be instantaneously increased through the addition of either carbon source. The amount by which the rate was increased depended on the amount of carbon added. In the main experiments performed in a pilot scale alternating...

  16. Thermo- and mesophilic aerobic batch biodegradation of high-strength distillery wastewater (potato stillage)--utilisation of main carbon sources.

    Science.gov (United States)

    Krzywonos, Małgorzata; Cibis, Edmund; Lasik, Małgorzata; Nowak, Jacek; Miśkiewicz, Tadeusz

    2009-05-01

    The aim of the study was to ascertain the extent to which temperature influences the utilisation of main carbon sources (reducing substances determined before and after hydrolysis, glycerol and organic acids) by a mixed culture of thermo- and mesophilic bacteria of the genus Bacillus in the course of aerobic batch biodegradation of potato stillage, a high-strength distillery effluent (COD=51.88 g O(2)/l). The experiments were performed at 20, 30, 35, 40, 45, 50, 55, 60 and 63 degrees C, at pH 7, in a 5l working volume stirred-tank bioreactor (Biostat B, B. Braun Biotech International) with a stirrer speed of 550 rpm and aeration at 1.6 vvm. Particular consideration was given to the following issues: (1) the sequence in which the main carbon sources in the stillage were assimilated and (2) the extent of their assimilation achieved under these conditions.

  17. A review on wastewater disinfection

    OpenAIRE

    Mohammad Mehdi Amin; Hassan Hashemi; Amir Mohammadi Bovini; Yung Tse Hung

    2013-01-01

    Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent d...

  18. Continuous 'Passive' Registration of Non-Point Contaminant Loads Via Agricultural Subsurface Drain Tubes

    Science.gov (United States)

    Rozemeijer, J.; Jansen, S.; de Jonge, H.; Lindblad Vendelboe, A.

    2014-12-01

    Considering their crucial role in water and solute transport, enhanced monitoring and modeling of agricultural subsurface tube drain systems is important for adequate water quality management. For example, previous work in lowland agricultural catchments has shown that subsurface tube drain effluent contributed up to 80% of the annual discharge and 90-92% of the annual NO3 loads from agricultural fields towards the surface water. However, existing monitoring techniques for flow and contaminant loads from tube drains are expensive and labor-intensive. Therefore, despite the unambiguous relevance of this transport route, tube drain monitoring data are scarce. The presented study aimed developing a cheap, simple, and robust method to monitor loads from tube drains. We are now ready to introduce the Flowcap that can be attached to the outlet of tube drains and is capable of registering total flow, contaminant loads, and flow-averaged concentrations. The Flowcap builds on the existing SorbiCells, a modern passive sampling technique that measures average concentrations over longer periods of time (days to months) for various substances. By mounting SorbiCells in our Flowcap, a flow-proportional part of the drain effluent is sampled from the main stream. Laboratory testing yielded good linear relations (R-squared of 0.98) between drainage flow rates and sampling rates. The Flowcap was tested in practice for measuring NO3 loads from two agricultural fields and one glasshouse in the Netherlands. The Flowcap registers contaminant loads from tube drains without any need for housing, electricity, or maintenance. This enables large-scale monitoring of non-point contaminant loads via tube drains, which would facilitate the improvement of contaminant transport models and would yield valuable information for the selection and evaluation of mitigation options to improve water quality.

  19. Tertiary nitrogen removal for municipal wastewater using a solid-phase denitrifying biofilter with polycaprolactone as the carbon source and filtration medium.

    Science.gov (United States)

    Li, Peng; Zuo, Jiane; Wang, Yajiao; Zhao, Jian; Tang, Lei; Li, Zaixing

    2016-04-15

    Tertiary nitrogen removal technologies are needed to reduce the excess nitrogen that is discharged into sensitive aquatic ecosystems. An integrated solid-phase denitrification biofilter (SDNF) was developed with dual media to remove nitrate and suspended solids (SS) from the secondary effluent of municipal wastewater treatment plants. Biodegradable polymer pellets of polycaprolactone (PCL) served as the biofiltration medium and carbon source for denitrification. Long-term continuous operation of the SDNF was conducted with real secondary effluent to evaluate the denitrification performance and effects of influent nitrate loading rates (NLR) and operating temperatures. The results indicated that both nitrate and SS were effectively removed. The SDNF had a strong tolerance for fluctuations in influent NLR, and a maximum denitrification rate of 3.80 g N/(L·d) was achieved. The low temperature had a significant impact on nitrogen removal, yet the denitrification rate was still maintained at a relative high level to as much as 1.23 g N/(L·d) even at approximately 8.0 °C in winter. Nitrite accumulation and excessive organics residue in the effluent were avoided throughout the whole experiment, except on occasional days in the lag phase. The observed biomass yield was calculated to be 0.44 kgVSS/kgPCL. The microbial diversity and community structure of the biofilm in the SDNF were revealed by Illumina high-throughput sequencing. The special carbon source led to an obvious succession of microbial community from the initial inoculum (activated sludge from aerobic tanks), and included a decrease in microbial diversity and a shift in the dominant groups, which were identified to be members of the family Comamonadaceae in the SDNF. The SDNF developed in this study was verified to be an efficient technology for tertiary nitrogen removal from secondary effluent. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste(water).

    Science.gov (United States)

    Zeeman, Grietje; Kujawa, Katarzyna; de Mes, Titia; Hernandez, Lucia; de Graaff, Marthe; Abu-Ghunmi, Lina; Mels, Adriaan; Meulman, Brendo; Temmink, Hardy; Buisman, Cees; van Lier, Jules; Lettinga, Gatze

    2008-01-01

    Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas production. Post-treatment of the effluent is providing recovery of phosphorus and removal of remaining COD and nitrogen. The total energy saving of the new sanitation concept amounts to 200 MJ/year in comparison with conventional sanitation, moreover 0.14 kg P/p/year and 90 litres of potential reusable water are produced.

  1. A repeated-measures study of recreational water exposure, non-point source pollution, and risk of illness

    Science.gov (United States)

    Discharge of stormwater runoff onto beaches is a major cause of beach closings and advisories in the United States. Prospective studies of recreational water quality and health have often been limited to two time points (baseline and follow-up). Little is known about the risk of ...

  2. Seasonal change of non-point source pollution-induced bioavailable phosphorus loss: A case study of Southwestern China

    Science.gov (United States)

    Gao, Yang; Zhu, Bo; Wang, Tao; Wang, Yafeng

    2012-02-01

    SummaryBioavailable phosphorus (P) losses due to agriculture activity in a purple soil watershed in the Sichuan Basin of Southwestern China were monitored to define the hydrological controls of P transport. Our results indicate that the proportion of P that was transported in particulate form increased in the rainy season, and that the mass of total bioavailable P (BAP) loads exhibited seasonal fluctuations, wherein the majority (over 90%) was observed to have been exported between June and September. The proportion of bioavailable dissolved P (BDP) in the BAP discharge budget in the watershed varied between 11% and 15% during the monitoring period. The bioavailable particulate P (BPP) and BDP concentrations of stream water under rainstorm events increased by over 40% in comparison to their annual mean concentrations, and the annual BAP load was primarily dominated by the loads that occurred during rainstorm events in the study year. BAP concentration in groundwater significantly fluctuated with the seasons, and the ratio of total BAP in groundwater to that in surface water gradually increased during the rainy season. Thus, the impact of agriculture on the water quality of this watershed becomes clearly evident.

  3. WA - Impacts of non-point source pollution on the health of salmonids in urban and urbanizing watersheds

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — By the Services conducting this off-refuge EC investigation and jointly publishing the results in the two aforementioned manuscripts [see notes section of ProCite...

  4. Investigation into sources of fipronil in surface water and identification of a novel fipronil metabolite in reclaimed wastewater (Carolinas SETAC 2015 presentation)

    Science.gov (United States)

    Fipronil is a phenyl pyrazole insecticide used to control termites, fleas, roaches, ants, and otherpests in residential and agricultural settings. Fipronil has been found in various environmentalmedia (surface water, wastewater, indoor and outdoor dust, etc) and is known to under...

  5. Source Bioaerosol Concentration and rRNA Gene-Based Identification of Microorganisms Aerosolized at a Flood Irrigation Wastewater Reuse Site

    OpenAIRE

    Paez-Rubio, Tania; Viau, Emily; Romero-Hernandez, Socorro; Peccia, Jordan

    2005-01-01

    Reuse of partially treated domestic wastewater for agricultural irrigation is a growing practice in arid regions throughout the world. A field sampling campaign to determine bioaerosol concentration, culturability, and identity at various wind speeds was conducted at a flooded wastewater irrigation site in Mexicali, Baja California, Mexico. Direct fluorescent microscopy measurements for total microorganisms, culture-based assays for heterotrophs and gram-negative enteric bacteria, and small-s...

  6. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.

    Science.gov (United States)

    Narula, Kapil K; Gosain, A K

    2013-12-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11,600 km(2) with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO3) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO3 transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash-Sutcliffe and R(2) correlations greater than +0.7). Nitrate loading obtained after nitrification, denitrification, and NO3 removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO3 concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the century. Water yield estimates under

  7. Source bioaerosol concentration and rRNA gene-based identification of microorganisms aerosolized at a flood irrigation wastewater reuse site.

    Science.gov (United States)

    Paez-Rubio, Tania; Viau, Emily; Romero-Hernandez, Socorro; Peccia, Jordan

    2005-02-01

    Reuse of partially treated domestic wastewater for agricultural irrigation is a growing practice in arid regions throughout the world. A field sampling campaign to determine bioaerosol concentration, culturability, and identity at various wind speeds was conducted at a flooded wastewater irrigation site in Mexicali, Baja California, Mexico. Direct fluorescent microscopy measurements for total microorganisms, culture-based assays for heterotrophs and gram-negative enteric bacteria, and small-subunit rRNA gene-based cloning were used for microbial characterizations of aerosols and effluent wastewater samples. Bioaerosol results were divided into two wind speed regimens: (i) below 1.9 m/s, average speed 0.5 m/s, and (ii) above 1.9 m/s, average speed 4.5 m/s. Average air-borne concentration of total microorganisms, culturable heterotrophs, and gram-negative enteric bacteria were, respectively, 1.1, 4.2, and 6.2 orders of magnitude greater during the high-wind-speed regimen. Small-subunit rRNA gene clone libraries processed from samples from air and the irrigation effluent wastewater during a high-wind sampling event indicate that the majority of air clone sequences were more than 98% similar to clone sequences retrieved from the effluent wastewater sample. Overall results indicate that wind is a potential aerosolization mechanism of viable wastewater microorganisms at flood irrigation sites.

  8. Organic micropollutant removal from wastewater effluent-impacted drinking water sources during bank filtration and artificial recharge.

    Science.gov (United States)

    Maeng, Sung Kyu; Ameda, Emmanuel; Sharma, Saroj K; Grützmacher, Gesche; Amy, Gary L

    2010-07-01

    Natural treatment systems such as bank filtration (BF) and artificial recharge (via an infiltration basin) are a robust barrier for many organic micropollutants (OMPs) and may represent a low-cost alternative compared to advanced drinking water treatment systems. This study analyzes a comprehensive database of OMPs at BF and artificial recharge (AR) sites located near Lake Tegel in Berlin (Germany). The focus of the study was on the derivation of correlations between the removal efficiencies of OMPs and key factors influencing the performance of BF and AR. At the BF site, shallow monitoring wells located close to the Lake Tegel source exhibited oxic conditions followed by prolonged anoxic conditions in deep monitoring wells and a production well. At the AR site, oxic conditions prevailed from the recharge pond along monitoring wells to the production well. Long residence times of up to 4.5 months at the BF site reduced the temperature variation during soil passage between summer and winter. The temperature variations were greater at the AR site as a consequence of shorter residence times. Deep monitoring wells and the production well located at the BF site were under the influence of ambient groundwater and old bank filtrate (up to several years of age). Thus, it is important to account for mixing with native groundwater and other sources (e.g., old bank filtrate) when estimating the performance of BF with respect to removal of OMPs. Principal component analysis (PCA) was used to investigate correlations between OMP removals and hydrogeochemical conditions with spatial and temporal parameters (e.g., well distance, residence time and depth) from both sites. Principal component-1 (PC1) embodied redox conditions (oxidation-reduction potential and dissolved oxygen), and principal component-2 (PC2) embodied degradation potential (e.g., total organic carbon and dissolved organic carbon) with the calcium carbonate dissolution potential (Ca(2+) and HCO(3)(-)) for the BF

  9. Organic micropollutant removal from wastewater effluent-impacted drinking water sources during bank filtration and artificial recharge

    KAUST Repository

    Maeng, Sungkyu

    2010-07-01

    Natural treatment systems such as bank filtration (BF) and artificial recharge (via an infiltration basin) are a robust barrier for many organic micropollutants (OMPs) and may represent a low-cost alternative compared to advanced drinking water treatment systems. This study analyzes a comprehensive database of OMPs at BF and artificial recharge (AR) sites located near Lake Tegel in Berlin (Germany). The focus of the study was on the derivation of correlations between the removal efficiencies of OMPs and key factors influencing the performance of BF and AR. At the BF site, shallow monitoring wells located close to the Lake Tegel source exhibited oxic conditions followed by prolonged anoxic conditions in deep monitoring wells and a production well. At the AR site, oxic conditions prevailed from the recharge pond along monitoring wells to the production well. Long residence times of up to 4.5 months at the BF site reduced the temperature variation during soil passage between summer and winter. The temperature variations were greater at the AR site as a consequence of shorter residence times. Deep monitoring wells and the production well located at the BF site were under the influence of ambient groundwater and old bank filtrate (up to several years of age). Thus, it is important to account for mixing with native groundwater and other sources (e.g., old bank filtrate) when estimating the performance of BF with respect to removal of OMPs. Principal component analysis (PCA) was used to investigate correlations between OMP removals and hydrogeochemical conditions with spatial and temporal parameters (e.g., well distance, residence time and depth) from both sites. Principal component-1 (PC1) embodied redox conditions (oxidation-reduction potential and dissolved oxygen), and principal component-2 (PC2) embodied degradation potential (e.g., total organic carbon and dissolved organic carbon) with the calcium carbonate dissolution potential (Ca2+ and HCO3 -) for the BF site

  10. Effects of Forest Ecosystems on Non-point Pollution Control%森林生态系统对非点源污染的控制机理与效果及其影响因素

    Institute of Scientific and Technical Information of China (English)

    张灿强; 张彪; 李文华; 杨艳刚; 王斌

    2011-01-01

    Non-point source pollution, particularly agricultural non-point source pollution, has become a major contributor of water pollution in many countries during recent years. Major lakes and rivers in China have suffered from serious eutrophication problems, e.g., five lakes (Poyang Lake, Dongting Lake, Taihu Lake, Hongze Lake, and Chaohu Lake), the Three Gorges Reservoir,Baiyangdian Lake, Nansi Lake, and Yilong Lake. The contribution rate of non-point pollution to eutrophication has been found to be much higher than point source pollution. Although tremendous efforts have been made to control non-point pollution, they seem to be far from effective due to uncertain emissions of the non-point pollutants. As such, people are resorting to purifying natural ecosystems, e.g., forest riparian buffer has been recommended as one of the Best Management Practices (BMP) for non-point source pollutant control in the United States. The authors comprehensively summarized studies associated with the effects of forest ecosystems on non-point source pollution control. Forest ecosystems have been shown to be of the capacity to adsorb and purify non-point source pollutants mainly through plants, canopy, ground litter, and soil layers.Plant uptake is one of important mechanisms of nutrients control. Part of pollutions carried by rainfall can be intercepted by canopy, while the nutrient content will increase because of eluviations. However, the non-point pollution can be greatly reduced after runoff flow through ground cover and soil layer. Numerous studies show that forests could reduce about 60~90% of the total nitrogen and phosphorus from upper farming areas. Non-point source pollution control is generally affected by many factors. The forest belt width has an impact on the effect of non-point source pollution reduction, and therefore the width needs to be adjusted appropriately. Different tree species show varying absorption capacities of non-point source pollutants; therefore the

  11. A Study on the Mechanism of Emission Trading between Industrial Point Pollution and Agriculture Non-Point Pollution%工业点源-农业面源排污权交易的机制创新研究

    Institute of Scientific and Technical Information of China (English)

    王奇; 王会; 陈海丹; 詹贤达

    2011-01-01

    Agriculture non-point pollution has been one of the most important sources of the water pollution in China.Compared with industrial point pollution, the emission reduction cost of agriculture non-point pollution is lower, which make the emission trade feasible. First, the characteristics of agriculture non-point pollution were recognized as that agriculture non-point pollution had many sources, uncertainty in occurring, difficulty to supervise. Then, two emission trade mechanisms had been built, one of which was that farmers changed production behavior uniformly and the other was that industrial point pollution built public pollution eliminating infrastructures. Finally, some key problem in the emission trading between industrial point pollution and agriculture non-point pollution were discussed.%当前,农业面源污染已经成为我国水环境污染的主要来源.相比较于大型工业点源,农业面源污染减排成本较低的状况为二者进行排污权交易提供了有利条件.在分析面源污染具有涉及个体多、发生不确定性强、减排结果监测困难等特征的基础上,提出了工业点源与农业面源排污权交易的两种机制:基于污染产生的"农户统一行动交易机制"和基于污染治理的"农业公共治理设施建设交易机制".最后,针对工业点源-农业面源排污权交易中存在的一些问题进行了初步探讨.

  12. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin

    Energy Technology Data Exchange (ETDEWEB)

    Narula, Kapil K., E-mail: kkn2104@columbia.edu [Columbia Water Center (India Office), Columbia University, New Delhi 110 016 (India); Gosain, A.K. [Department of Civil Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110 016 (India)

    2013-12-01

    The mountainous Himalayan watersheds are important hydrologic systems responsible for much of the water supply in the Indian sub-continent. These watersheds are increasingly facing anthropogenic and climate-related pressures that impact spatial and temporal distribution of water availability. This study evaluates temporal and spatial distribution of water availability including groundwater recharge and quality (non-point nitrate loadings) for a Himalayan watershed, namely, the Upper Yamuna watershed (part of the Ganga River basin). The watershed has an area of 11 600 km{sup 2} with elevation ranging from 6300 to 600 m above mean sea level. Soil and Water Assessment Tool (SWAT), a physically-based, time-continuous model, has been used to simulate the land phase of the hydrological cycle, to obtain streamflows, groundwater recharge, and nitrate (NO{sub 3}) load distributions in various components of runoff. The hydrological SWAT model is integrated with the MODular finite difference groundwater FLOW model (MODFLOW), and Modular 3-Dimensional Multi-Species Transport model (MT3DMS), to obtain groundwater flow and NO{sub 3} transport. Validation of various modules of this integrated model has been done for sub-basins of the Upper Yamuna watershed. Results on surface runoff and groundwater levels obtained as outputs from simulation show a good comparison with the observed streamflows and groundwater levels (Nash–Sutcliffe and R{sup 2} correlations greater than + 0.7). Nitrate loading obtained after nitrification, denitrification, and NO{sub 3} removal from unsaturated and shallow aquifer zones is combined with groundwater recharge. Results for nitrate modeling in groundwater aquifers are compared with observed NO{sub 3} concentration and are found to be in good agreement. The study further evaluates the sensitivity of water availability to climate change. Simulations have been made with the weather inputs of climate change scenarios of A2, B2, and A1B for end of the

  13. 40 CFR 63.105 - Maintenance wastewater requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Maintenance wastewater requirements. 63... § 63.105 Maintenance wastewater requirements. (a) Each owner or operator of a source subject to this... wastewaters containing those organic HAP's listed in table 9 of subpart G of this part. (b) The owner...

  14. Use of a multi-isotope and multi-tracer approach including organic matter isotopes for quantifying nutrient contributions from agricultural vs wastewater sources

    Science.gov (United States)

    Kendall, C.; Silva, S. R.; Young, M. B.

    2013-12-01

    While nutrient isotopes are a well-established tool for quantifying nutrients inputs from agricultural vs wastewater treatment plant (WWTP) sources, we have found that combining nutrient isotopes with the C, N, and S isotopic compositions of dissolved and particulate organic matter, as part of a comprehensive multi-isotope and multi-tracer approach, is a much more diagnostic approach. The main reasons why organic matter C-N-S isotopes are a useful adjunct to studies of nutrient sources and biogeochemical processes are that the dissolved and particulate organic matter associated with (1) different kinds of animals (e.g., humans vs cows) often have distinctive isotopic compositions reflecting the different diets of the animals, and (2) the different processes associated with the different land uses (e.g., in the WWTP or associated with different crop types) often result in significant differences in the isotopic compositions of the organics. The analysis of the δ34S of particulate organic matter (POM) and dissolved organic matter (DOM) has been found to be especially useful for distinguishing and quantifying water, nutrient, and organic contributions from different land uses in aquatic systems where much of the organic matter is aquatic in origin. In such environments, the bacteria and algae incorporate S from sulfate and sulfide that is isotopically labeled by the different processes associated with different land uses. We have found that there is ~35 permil range in δ34S of POM along the river-estuary continuum in the San Joaquin/Sacramento River basin, with low values associated with sulfate reduction in the upstream wetlands and high values associated with tidal inputs of marine water into the estuary. Furthermore, rice agriculture results in relatively low δ34S values whereas WWTP effluent in the Sacramento River produces distinctly higher values than upstream of the WWTP, presumably because SO2 is used to treat chlorinated effluent. The fish living

  15. Water and Wastewater Rate Hikes Outpace CPI

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fuchs, Heidi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Yuting [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunham, Camilla [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-08-31

    Water and wastewater treatment and delivery is the most capital-intensive of all utility services. Historically underpriced, water and wastewater rates have exhibited unprecedented growth in the past fifteen years. Steep annual increases in water and wastewater rates that outpace the Consumer Price Index (CPI) have increasingly become the norm across the United States. In this paper, we analyze water and wastewater rates across U.S. census regions between 2000 and 2014. We also examine some of the driving factors behind these rate increases, including drought, water source, required infrastructure investment, population patterns, and conservation effects. Our results demonstrate that water and wastewater prices have consistently increased and have outstripped CPI throughout the study period nationwide, as well as within each census region. Further, evaluation of the current and upcoming challenges facing water and wastewater utilities suggests that sharp rate increases are likely to continue in the foreseeable future.

  16. Regulation og non-point phosphorus emissions from the agricultural sector by use of economic incentives

    DEFF Research Database (Denmark)

    Hansen, Line Block

    . Once a soil is highly enriched it will become a significant source of P losses for a long time. In Denmark, application of manure is primarily determined by nitrogen (N) crop nutrition, implying that livestock farmers are not motivated to further reduce their surplus P applications. The high costs...

  17. Controlled-release fertilizer(CRF):A green fertilizer for controlling non-point contamination in agriculture

    Institute of Scientific and Technical Information of China (English)

    MAO Xiao-yun; SUN Ke-jun; WANG De-han; LIAO Zong-wen

    2005-01-01

    Fertilizers contribute greatly to high yields but also result in environmental non-point contamination, including the emission of greenhouse gas(N2O) and eutrophication of water bodies. How to solve this problem has become a serious challenge, especially for China as its high ecological pressure. Controlled-release fertilizer(CRF) has been developed to minimize the contamination while keeping high yield and has become a green fertilizer for agriculture. Several CRFs made with special coating technology were used for testing the fertilizer effects in yield and environment through pot experiment and field trial. The result indicated that the CRFs had higher N use efficiency, thus reducing N loss through leaching and volatilization while keeping higher yields. Comparing with imported standard CRFs,the test on CRFs showed similar fertilizer effect but with much lower cost. CRFs application is becoming a new approach for minimizing non-point contamination in agriculture.

  18. Arthrospira (Spirulina) in tannery wastewaters. Part 2: Evaluation of ...

    African Journals Online (AJOL)

    2013-03-27

    Mar 27, 2013 ... Department of Biochemistry, Microbiology and Biotechnology, Rhodes University, Grahamstown, .... ground of a dynamic wastewater treatment environment which ..... source, nitrification/denitrification and ammonia stripping.

  19. Characterisation of wastewater for modelling of wastewater ...

    African Journals Online (AJOL)

    wastewater treatment plants receiving industrial effluent. FT Mhlanga* and ... The modelling of biological wastewater treatment systems has developed ..... of KwaZulu-Natal. ORHON D and CORGNOR EU (1996) COD fractionation in waste-.

  20. Regulation og non-point phosphorus emissions from the agricultural sector by use of economic incentives

    DEFF Research Database (Denmark)

    Hansen, Line Block

    in the effort to reduce agricultural P runoff. Continued application of P in excess of crop requirements causes P stocks to build up in fields and, over time, this increases the risk of losing P to the aquatic environment through surface runoff and erosion and through leaching via the soil matrix or macropores...... of transporting and applying manure to fields means that increasing mineral-fertilizer prices does not generate a sufficient incentive for farmers to reallocate all P surpluses generated by livestock between farms and fields. The aim of the thesis is to increase the understanding of the long-term impacts....... Once a soil is highly enriched it will become a significant source of P losses for a long time. In Denmark, application of manure is primarily determined by nitrogen (N) crop nutrition, implying that livestock farmers are not motivated to further reduce their surplus P applications. The high costs...

  1. Effects of Climate Change on Non-Point Pollution in Huaibei Region and Comprehensive Regulation Strategies%气候变化对淮北地区面源污染的影响及综合调控

    Institute of Scientific and Technical Information of China (English)

    王刚; 严登华; 尹军; 翁白莎

    2011-01-01

    分析了安徽省淮北地区面源污染的现状与压力,从污染物的产生、迁移、转化与汇聚的机理讨论气候变化对面源污染的影响机制,最后从源头控制、途径控制、末端治理、调控机制建设4个层面提出综合调控措施.%In this study, the situation and pressure of non-point pollution in Huaibei region of Anhui province were analyzed. The influence mechanism of climate change on non-point pollution was discussed from mechanism of generation, migration, conversion, and aggregation of contaminants. In the end, comprehensive coping strategies were put forward from four levels: source control, process control, end treatment and construction of regulation mechanism.

  2. Wastewater treatment using gamma irradiation: Tetouan pilot station, Morocco

    Energy Technology Data Exchange (ETDEWEB)

    Tahri, Loubna, E-mail: dloubna78@hotmail.co [Pole d' excellence Regional, Centre des Etudes Environnementales Mediterraneennes, Laboratoire de Biologie Appliquee et Sciences de l' Environnement, Faculte des Sciences et Techniques, B.P. 416, Tangier (Morocco); Station d' Ionization de Boukhalef, Institut National de la Recherche Agronomique, Tangier (Morocco); Elgarrouj, Driss; Zantar, Said; Mouhib, Mohamed [Station d' Ionization de Boukhalef, Institut National de la Recherche Agronomique, Tangier (Morocco); Azmani, Amina; Sayah, Fouad [Pole d' excellence Regional, Centre des Etudes Environnementales Mediterraneennes, Laboratoire de Biologie Appliquee et Sciences de l' Environnement, Faculte des Sciences et Techniques, B.P. 416, Tangier (Morocco)

    2010-04-15

    The increasing demand on limited water supplies has accelerated the wastewater reuse and reclamation. We investigated gamma irradiation effects on wastewater by measuring differences in the legislated parameters, aiming to reuse the wastewater. Effluents samples were collected at the urban wastewater treatment station of Tetouan and were irradiated at different doses ranging from 0 to 14 kGy using a Co{sup 60} gamma source. The results showed an elimination of bacterial flora, a decrease of biochemical and chemical oxygen demand, and higher conservation of nutritious elements. The results of this study indicated that gamma irradiation might be a good choice for the reuse of wastewater for agricultural activities.

  3. Wastewater treatment pilot

    OpenAIRE

    2016-01-01

    The aim of this thesis was to investigate the functionality of the wastewater treatment pilot and produce a learning manual-handout, as well as to define the parameters of wastewater clarification by studying the nutrient removal and the effluent clarification level of the processed wastewater. As part of the Environmental Engineering studies, Tampere University of Applied Sciences has invested on a Wastewater Treatment Pilot. The pilot simulates the basic wastewater treatment practices u...

  4. 山东省废水污染源自动监测监控系统的设计与应用%Design and Application of the Automatic Monitoring System for Wastewater Source in Shandong Province

    Institute of Scientific and Technical Information of China (English)

    吴云; 王兴武; 李彦; 范素芳

    2012-01-01

    In order to realize real-time online monitoring of the wastewater source enterprise, manage and issue its information, this paper comprehensively used automatic control, embedded data acquisition and transmission, distributed computing and data processing, geographic information system, etc. to develop automatic monitoring system of the wastewatcr source in Shandong Province. This system incorporates the automatic monitoring information acquisition, transmission and daily work as an organic whole. The system realizes not only the continuous online monitoring of wastewater source enterprise, but also the deep excavation and utilization to monitoring information. It provides the scientific and objective basis for energy saving, consumption reduction, carbon emission reduction, total amount control and other environmental management work, and meets the requirements of environment management and related departments to wastewater source management.%为了实现对废水污染源企业的实时在线监控,对监测信息进行管理和发布,综合利用自动控制、嵌入式数据采集与传输、分布式计算与数据处理、地理信息系统等技术,研制了山东省废水污染源自动监测监控系统.该系统集全省废水污染源企业自动监测信息的采集、传输和日常处理工作为一体,不仅实现了对废水污染源企业的连续在线监控,并且对监测数据进行深度挖掘与利用,为节能、降耗、减排、总量控制等环境管理工作提供了科学和客观的依据,满足环境管理及相关部门对废水污染源管理的要求.

  5. Treated wastewater effluent as a source of pyrethroids and fipronil at Todos Santos Bay, Mexico: Its impact on sediments and organisms.

    Science.gov (United States)

    Hernández-Guzmán, Félix Augusto; Macías-Zamora, José Vinicio; Ramírez-Álvarez, Nancy; Alvarez-Aguilar, Arturo; Quezada-Hernández, Cristina; Fonseca, Ana Paula

    2017-06-03

    Pyrethroids are insecticides widely used to control pests and disease vectors in residential areas and agricultural lands. Pyrethroids are emerging pollutants, and their use is a growing concern because of their toxicity potential to aquatic organisms. Todos Santos Bay and the Punta Banda estuary, 2 coastal bodies located to the south of the Southern California Bight, were studied to establish a baseline of the current conditions of pollution by pyrethroids and fipronil. Eight pyrethroids, along with fipronil and its 2 metabolites, were determined in effluents from wastewater-treatment plants (n = 3), surface sediments (n = 32), and 3 locations with mussels (Mytilus californianus, n = 9). Bifenthrin, permethrin, and cypermethrin were the most common pyrethroids found in the study areas and were widespread in sediments, mussels, and wastewater-treated effluents. Fipronil and its metabolites were detected in mussels and wastewater-treated effluents only. Total pyrethroid concentrations in sediments ranged from 0.04 to 1.95 ng/g dry weight in the Punta Banda estuary (n = 13) and from 0.07 to 6.62 ng/g dry weight in Todos Santos Bay (n = 19). Moreover, total pyrethroids in mussels ranged from 1.19 to 6.15 ng/g wet weight. Based on the toxic unit data calculated for pyrethroids and fipronil for Eohaustorius estuarius and Hyalella azteca, little to no impact is expected to the benthic population structure. Environ Toxicol Chem 2017;9999:1-8. © 2017 SETAC. © 2017 SETAC.

  6. Nonpoint source pollution by swine farming wastewater in bean crop Poluição difusa da água residuária de suinocultura do feijoeiro

    Directory of Open Access Journals (Sweden)

    André F. Doblinski

    2010-01-01

    Full Text Available In order to verify the environmental impact of the application of swine farming wastewater in bean crop, an experiment was set up in the Experimental Farm of PUCPR - Toledo, PR, Brazil. Runoff and soil samples were collected at the end of the experiment. Four wastewater treatments were utilized during the experiment (50, 100, 150 and 200 m³ ha-1 and the without wastewater as the control. The results demonstrate that (i the amounts of potassium, phosphorus, and nitrogen in runoff are exponential, (ii that phosphorus has a seven-fold polluting potential compared to potassium and three-fold compared to nitrogen, and (iii that the mobility of potassium in the soil profile is the largest, followed by those of nitrogen and phosphorus.Visando verificar o impacto ambiental da aplicação de água residuária de suinocultura na cultura do feijoeiro, instalou-se um experimento na Fazenda Experimental da PUCPR - Toledo, PR, Brasil; para isto, amostras do solo e do escoamento superficial foram coletadas ao final do experimento e se utilizaram quatro taxas de aplicação de água residuária durante o experimento, 50, 100, 150 e 200 m³ ha-1, sem aplicação de água residuária como testemunha. Os resultados demonstraram que: (i as perdas de potássio, fósforo e nitrogênio no escoamento superficial são exponenciais; (ii o fósforo apresenta potencial poluidor sete vezes maior que o potássio e três vezes maior que o nitrogênio; (iii a mobilidade do potássio no perfil do solo é maior, seguida do nitrogênio e do fósforo.

  7. Removal of Selected Endocrine Disrupting Chemicals During On-Site Wastewater Treatment Using A Constructed Wetland

    Science.gov (United States)

    Significant research has shown that domestic and industrial wastewater can be a source of endocrine disrupting chemicals (EDCs) to the environment. Much of this research has focused on municipal and industrial centralized wastewater treatment plants. These plants have been show...

  8. Multiple sources of boron in urban surface waters and groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Hasenmueller, Elizabeth A., E-mail: eahasenm@wustl.edu; Criss, Robert E.

    2013-03-01

    Previous studies attribute abnormal boron (B) levels in streams and groundwaters to wastewater and fertilizer inputs. This study shows that municipal drinking water used for lawn irrigation contributes substantial non-point loads of B and other chemicals (S-species, Li, and Cu) to surface waters and shallow groundwaters in the St. Louis, Missouri, area. Background levels and potential B sources were characterized by analysis of lawn and street runoff, streams, rivers, springs, local rainfall, wastewater influent and effluent, and fertilizers. Urban surface waters and groundwaters are highly enriched in B (to 250 μg/L) compared to background levels found in rain and pristine, carbonate-hosted streams and springs (< 25 μg/L), but have similar concentrations (150 to 259 μg/L) compared to municipal drinking waters derived from the Missouri River. Other data including B/SO{sub 4}{sup 2-}−S and B/Li ratios confirm major contributions from this source. Moreover, sequential samples of runoff collected during storms show that B concentrations decrease with increased discharge, proving that elevated B levels are not primarily derived from combined sewer overflows (CSOs) during flooding. Instead, non-point source B exhibits complex behavior depending on land use. In urban settings B is rapidly mobilized from lawns during “first flush” events, likely representing surficial salt residues from drinking water used to irrigate lawns, and is also associated with the baseflow fraction, likely derived from the shallow groundwater reservoir that over time accumulates B from drinking water that percolates into the subsurface. The opposite occurs in small rural watersheds, where B is leached from soils by recent rainfall and covaries with the event water fraction. Highlights: ► Boron sources and loads differ between urban and rural watersheds. ► Wastewaters are not the major boron source in small St. Louis, MO watersheds. ► Municipal drinking water used for lawn

  9. Shuttle Wastewater Solution Characterization

    Science.gov (United States)

    Adam, Niklas; Pham, Chau

    2011-01-01

    During the 31st shuttle mission to the International Space Station, STS-129, there was a clogging event in the shuttle wastewater tank. A routine wastewater dump was performed during the mission and before the dump was completed, degraded flow was observed. In order to complete the wastewater dump, flow had to be rerouted around the dump filter. As a result, a basic chemical and microbial investigation was performed to understand the shuttle wastewater system and perform mitigation tasks to prevent another blockage. Testing continued on the remaining shuttle flights wastewater and wastewater tank cleaning solutions. The results of the analyses and the effect of the mitigation steps are detailed in this paper.

  10. Cultivation of Nannochloropsis salina in municipal wastewater or digester centrate.

    Science.gov (United States)

    Dong, Bingfeng; Ho, Nam; Ogden, Kimberly L; Arnold, Robert G

    2014-05-01

    Meaningful use of biofuels for transportation depends on utilization of water from non-traditional, non-potable resources. Here it is hypothesized that (i) reclaimed wastewater or nutrient-rich side streams derived from municipal wastewater treatment are suitable for that purpose and (ii) use of those waters for algal growth can promote water quality through nutrient management. Experiments showed that metals levels in municipal wastewaters are unlikely to inhibit algal growth and lipid production, at least by metals tolerant microalgae like Nannochloropsis salina. Cells grew without inhibition in treated municipal wastewater or centrate derived from wastewater treatment at additions up to 75 percent v/v in their normal growth medium minus nitrogen and phosphorus. Although wastewater provides a suitable nutrient source for algal growth, not enough municipal wastewater is available to support a meaningful biofuels industry without efficient water recycling and nutrient recovery/reuse from spent algae. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Impact of wastewater from different sources on the prevalence of antimicrobial-resistant Escherichia coli in sewage treatment plants in South India.

    Science.gov (United States)

    Akiba, Masato; Senba, Hironobu; Otagiri, Haruna; Prabhasankar, Valipparambil P; Taniyasu, Sachi; Yamashita, Nobuyoshi; Lee, Ken-ichi; Yamamoto, Takehisa; Tsutsui, Toshiyuki; Ian Joshua, Derrick; Balakrishna, Keshava; Bairy, Indira; Iwata, Taketoshi; Kusumoto, Masahiro; Kannan, Kurunthachalam; Guruge, Keerthi S

    2015-05-01

    The sewage treatment plant (STP) is one of the most important interfaces between the human population and the aquatic environment, leading to contamination of the latter by antimicrobial-resistant bacteria. To identify factors affecting the prevalence of antimicrobial-resistant bacteria, water samples were collected from three different STPs in South India. STP1 exclusively treats sewage generated by a domestic population. STP2 predominantly treats sewage generated by a domestic population with a mix of hospital effluent. STP3 treats effluents generated exclusively by a hospital. The water samples were collected between three intermediate treatment steps including equalization, aeration, and clarification, in addition to the outlet to assess the removal rates of bacteria as the effluent passed through the treatment plant. The samples were collected in three different seasons to study the effect of seasonal variation. Escherichia coli isolated from the water samples were tested for susceptibility to 12 antimicrobials. The results of logistic regression analysis suggest that the hospital wastewater inflow significantly increased the prevalence of antimicrobial-resistant E. coli, whereas the treatment processes and sampling seasons did not affect the prevalence of these isolates. A bias in the genotype distribution of E. coli was observed among the isolates obtained from STP3. In conclusion, hospital wastewaters should be carefully treated to prevent the contamination of Indian environment with antimicrobial-resistant bacteria.

  12. Paper 1: Wastewater characterisation

    African Journals Online (AJOL)

    drinie

    the suitability of the prefermented wastewater for downstream biological nutrient removal processes. The raw ... in the secondary treatment processes (BNRAS reactor), without ..... Wastewater and Activated Sludge from European Municipal.

  13. Nutrient removal efficiency and physiological responses of Desmodesmus communis at different HRTs and nutrient stress condition using different sources of urban wastewater effluents.

    Science.gov (United States)

    Samorì, Giulia; Samorì, Chiara; Pistocchi, Rossella

    2014-05-01

    The objective of the present study was to evaluate the nutrient removal efficiency and the physiological responses in terms of growth, biochemical composition and photosynthetic activity of the autochthonous freshwater algal strain Desmodesmus communis. Microalgae were grown in a primary municipal effluent under different hydraulic retention times (HRTs) and in a two-phases process using both primary and secondary wastewater effluents. Semi-continuous cultures were operated for 7 day at 5-, 3- and 1.5-day HRT and the different dilution rate showed a greater influence on the biomass composition and nutrient removal efficiency. Removal of N-NH3 and P-PO4 was over 99 % and the highest accumulation of polysaccharides (57.2 wt.%) was obtained at high HRT (5 day); the maximum content of proteins (26.9 wt.%) was achieved at 1.5-day HRT, even if, under this condition, a clear inefficiency in terms of ammonia removal was observed. Moreover the accumulation of N-NH3 occurring at 1.5-day HRT caused the decrease of the photosynthetic response in terms of efficiency of light capture (α) and relative electron transport rate (rETR), both parameters extracted from the rapid light curves (RLC) measurements. No significant differences were observed for the total fatty acids (TFAs), with a content of 2-3.5 wt.% for each HRT condition. On the other hand, in the two-phases process, when a nutrient deprivation condition was induced by diluting the culture with the secondary wastewater effluent, the algal cells accumulated TFAs, achieving a maximum content of 9.7 wt.% and a great increment in terms of biomass (1.64 ± 0.02 g L(-1)) due to the ability of this algal strain to accumulate intracellular N. The wide and accurate investigation of the different aspects related to the whole process represents a relevant point of novelty in this research field and suggests the operational conditions for the start-up of an open pond system for wastewater treatment and biomass

  14. Agricultural Use of Untreated Urban Wastewater in Pakistan

    Directory of Open Access Journals (Sweden)

    Samina Khalil

    2011-09-01

    Full Text Available Untreated wastewater is used for irrigation in over 80% of all Pakistani communities with a population of over 10,000 inhabitants. The absence of a suitable alternative water source, wastewater’s high nutrient value, reliability, and its proximity to urban markets are the main reasons for its use. Two case studies in Pakistan studied the impact of untreated wastewater use on health, environment, and income. The results showed a high increase in hookworm infections among wastewater users and a clear over-application of nutrients through wastewater. Heavy metal accumulation in soil over a period of 30 years was minimal in Haroonabad, a small town with no industry,but showed initial signs of excess levels in soil and plant material in Faisalabad, a city with large-scale industry. The impact of wastewater irrigation on household income was considerable as wastewater farmers earned approximately US$300/annum more than farmers using freshwater. Both case studies showed the importance of wastewater irrigation on local livelihoods. The lack of financial resources at municipal and provincial levels for wastewater treatment calls for other measures to reduce the negative impact of untreated wastewater use on health and environment, for example to manage groundwater, regular (canal irrigation water, and wastewater conjunctively, and regular deworming treatment of those exposed to wastewater.

  15. A review on wastewater disinfection

    Directory of Open Access Journals (Sweden)

    Mohammad Mehdi Amin

    2013-01-01

    Full Text Available Changes in regulations and development of new technologies have affected the selection of alternative for treated wastewater disinfection. Disinfection is the last barrier of wastewater reclamation process to protect ecosystem safety and human health. Driving forces include water scarcity and drinking water supply, irrigation, rapid industrialization, using reclaimed water, source protection, overpopulation, and environmental protection. The safe operation of water reuse depends on effluent disinfection. Understanding the differences in inactivation mechanisms is critical to identify rate-limiting steps involved in the inactivation process as well as to develop more effective disinfection strategies. Disinfection byproducts discharged from wastewater treatment plants may impair aquatic ecosystems and downstream drinking-water quality. Numerous inorganic and organic micropollutants can undergo reactions with disinfectants. Therefore, to mitigate the adverse effects and also to enhance that efficiency, the use of alternative oxidation/disinfection systems should be evaluated as possible alternative to chlorine. This review gives a summary of the traditional, innovative, and combined disinfection alternatives and also disinfection byproducts for effluent of municipal wastewater treatment plants.

  16. Denitrifying bioreactor clogging potential during wastewater treatment

    Science.gov (United States)

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewat...

  17. sources

    Directory of Open Access Journals (Sweden)

    Shu-Yin Chiang

    2002-01-01

    Full Text Available In this paper, we study the simplified models of the ATM (Asynchronous Transfer Mode multiplexer network with Bernoulli random traffic sources. Based on the model, the performance measures are analyzed by the different output service schemes.

  18. Wastewater garden--a system to treat wastewater with environmental benefits to community.

    Science.gov (United States)

    Nair, Jaya

    2008-01-01

    Many communities and villages around the world face serious problems with lack of sanitation especially in disposing of the wastewater-black water and grey water from the houses, or wash outs from animal rearing sheds. Across the world diverting wastewater to the surroundings or to the public spaces are not uncommon. This is responsible for contaminating drinking water sources causing health risks and environmental degradation as they become the breeding grounds of mosquitoes and pathogens. Lack of collection and treatment facilities or broken down sewage systems noticed throughout the developing world are associated with this situation. Diverting the wastewater to trees and vegetable gardens was historically a common practice. However the modern world has an array of problems associated with such disposal such as generation of large quantity of wastewater, unavailability of space for onsite disposal or treatment and increase in population. This paper considers the wastewater garden as a means for wastewater treatment and to improve the vegetation and biodiversity of rural areas. This can also be implemented in urban areas in association with parks and open spaces. This also highlights environmental safety in relation to the nutrient, pathogen and heavy metal content of the wastewater. The possibilities of different types of integration and technology that can be adopted for wastewater gardens are also discussed.

  19. Review of wastewater problems and wastewater-management planning in the San Francisco Bay region, California

    Science.gov (United States)

    Hines, Walter G.

    1973-01-01

    The San Francisco Bay region has suffered adverse environmental effects related to the discharge of municipal-, industrial-, and agricultural- wastewater and storm-water runoff. Specific pollutional properties of theses discharges are not well understood in all cases although the toxic materials and aquatic-plant nutrients (biostimulants) found in municipal and industrial waterwater are considered to be a major cause of regional water-quality problems. Other water-quality problems in the region are commonly attributed to pesticides found in agricultural wastewater and potentially pathogenic bacteria in municipal-wastewater discharges and in storm-water runoff. The geographical distribution and magnitude of wastewater discharges in the bay region, particularly those from municipalities and industries, is largely a function of population, economic growth, and urban development. As might be expected, the total volume of wastewater has increased in a trend paralleling this growth and development. More significant, perhaps, is the fact that the total volume parameters such as BOD (biochemical oxygen demand), biostimulant concentrations, and toxicity, has increased despite large expenditures on new and improved municipal- and industrial-wastewater-treatment plants. Also, pollutant loadings from other major source, such as agriculture and storm-water runoff, have increased. At the time of writing (1972), many Federal, State, regional, and local agencies are engaged in a comprehensive wastewater-management-planning effort for the entire bay region. Initial objectives of this planning effort are: (1) the consolidation and coordination of loosely integrated wastewater-management facilities and (2) the elimination of wastewater discharges to ecologically sensitive areas, such as fresh-water streams and shallow extremities of San Francisco Bay. There has been some investigation of potential long-range wastewater-management alternatives based upon disposal in deep water in the

  20. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell.

    Science.gov (United States)

    Huang, Xiao; Qu, Yan; Cid, Clément A; Finke, Cody; Hoffmann, Michael R; Lim, Keahying; Jiang, Sunny C

    2016-04-01

    The paucity of proper sanitation facilities has contributed to the spread of waterborne diseases in many developing countries. The primary goal of this study was to demonstrate the feasibility of using a wastewater electrolysis cell (WEC) for toilet wastewater disinfection. The treated wastewater was designed to reuse for toilet flushing and agricultural irrigation. Laboratory-scale electrochemical (EC) disinfection experiments were performed to investigate the disinfection efficiency of the WEC with four seeded microorganisms (Escherichia coli, Enterococcus, recombinant adenovirus serotype 5, and bacteriophage MS2). In addition, the formation of organic disinfection byproducts (DBPs) trihalomethanes (THMs) and haloacetic acids (HAA5) at the end of the EC treatment was also investigated. The results showed that at an applied cell voltage of +4 V, the WEC achieved 5-log10 reductions of all four seeded microorganisms in real toilet wastewater within 60 min. In contrast, chemical chlorination (CC) disinfection using hypochlorite [NaClO] was only effective for the inactivation of bacteria. Due to the rapid formation of chloramines, less than 0.5-log10 reduction of MS2 was observed in toilet wastewater even at the highest [NaClO] dosage (36 mg/L, as Cl2) over a 1 h reaction. Experiments using laboratory model waters showed that free reactive chlorine generated in situ during EC disinfection process was the main disinfectant responsible for the inactivation of microorganisms. However, the production of hydroxyl radicals [OH], and other reactive oxygen species by the active bismuth-doped TiO2 anode were negligible under the same electrolytic conditions. The formation of THMs and HAA5 were found to increase with higher applied cell voltage. Based on the energy consumption estimates, the WEC system can be operated using solar energy stored in a DC battery as the sole power source.

  1. Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell

    Science.gov (United States)

    Huang, Xiao; Qu, Yan; Cid, Clément A.; Finke, Cody; Hoffmann, Michael R.; Lim, Keahying; Jiang, Sunny C.

    2016-01-01

    The paucity of proper sanitation facilities has contributed to the spread of waterborne diseases in many developing countries. The primary goal of this study was to demonstrate the feasibility of using a wastewater electrolysis cell (WEC) for toilet wastewater disinfection. The treated wastewater was designed to reuse for toilet flushing and agricultural irrigation. Laboratory-scale electrochemical (EC) disinfection experiments were performed to investigate the disinfection efficiency of the WEC with four seeded microorganisms (Escherichia coli, Enterococcus, recombinant adenovirus serotype 5, and bacteriophage MS2). In addition, the formation of organic disinfection byproducts (DBPs) trihalomethanes (THMs) and haloacetic acids (HAA5) at the end of the EC treatment was also investigated. The results showed that at an applied cell voltage of +4 V, the WEC achieved 5-log10 reductions of all four seeded microorganisms in real toilet wastewater within 60 min. In contrast, chemical chlorination (CC) disinfection using hypochlorite [NaClO] was only effective for the inactivation of bacteria. Due to the rapid formation of chloramines, less than 0.5-log10 reduction of MS2 was observed in toilet wastewater even at the highest [NaClO] dosage (36 mg/L, as Cl2) over a 1 h reaction. Experiments using laboratory model waters showed that free reactive chlorine generated in situ during EC disinfection process was the main disinfectant responsible for the inactivation of microorganisms. However, the production of hydroxyl radicals [•OH], and other reactive oxygen species by the active bismuth-doped TiO2 anode were negligible under the same electrolytic conditions. The formation of THMs and HAA5 were found to increase with higher applied cell voltage. Based on the energy consumption estimates, the WEC system can be operated using solar energy stored in a DC battery as the sole power source. PMID:26854604

  2. Treated wastewater reuse on potato (Solanum tuberosum)

    DEFF Research Database (Denmark)

    Battilani, A.; Plauborg, Finn; Andersen, M. N.

    2014-01-01

    A field experiment was carried out in Northern Italy (Po Valley), within the frame of the EU project SAFIR, to asses the impact of treated wastewater reuse on potato yield, quality and hygiene. The potato crop was drip irrigated and fertigated. Wastewater produced by small communities (≤2000 EI......) was treated by Membrane Bio Reactor (MBR) technology and gravel filter (FTS) during three cropping seasons. Treated wastewater, soil and tubers were analysed for the faecal indicator bacterium E. coli and heavy metals contents. Potato total yield was similar for tap and reused water, while the marketable...... increased by 635 and 765 euro ha-1y-1 with FTS and MBR, respectively. Tubers were not contaminated by E. coli found in treated wastewater used for irrigation. The frequency of heavy metal and nitrate detection in tubers were comparable among water sources, as well as for the average contents. Only for boron...

  3. 强化低碳源污水生物除磷的技术方式探究%Study on Technical Methods for Enhancing Biological Phosphorus Removal from Wastewater with Low Carbon Source

    Institute of Scientific and Technical Information of China (English)

    郝晓地; 衣兰凯; 王克巍

    2012-01-01

    以一营养物去除工艺——BNR为研究对象,分别采用试验与模拟,研究了通过厌氧上清液侧流磷回收和外加碳源方式对低碳源污水生物除磷的强化作用.试验结果与模拟预测双双显示,对COD/P值=50的实际生活污水实施30%的厌氧上清液旁路磷沉淀可明显强化生物除磷作用,使出水TP浓度从碳源抑制时的1.8 mgP/L下降至0.5 mgP/L以下.侧流磷回收不仅可回收40%的进水磷负荷,亦可节省27%的外加碳源.因此,厌氧上清液侧流磷回收与外加碳源对强化生物除磷作用有着异曲同工之处.模拟预测与试验结果几乎一致的演示表明,数学模拟技术可取代传统试验进行相关问题研究.%Based on a BNR process, enhancing biological phosphorus removal from wastewater with low carbon source by side-stream phosphorus recovery from anaerobic supernatant and addition of external carbon source was evaluated by both experiment and modeling. Both experiment and modeling demonstrate that side-stream phosphorus recovery from 30% anaerobic supernatant can effectively improve biological phosphorus removal from wastewater with the COD/P ratio of 50, which makes the effluent phosphorus lowered to^O. 5 mgP/L from 1. 8 mgP/L (limited by less carbon). Side-stream phosphorus recovery can not only recover 40% of the influent phosphorus loading, but also save 27% of external carbon source. Therefore, side-stream phosphorus recovery has the same function on enhancing biological phosphorus removal as addition of external carbon source. The simulation prediction matches the experimental results, which confirms that modeling is completely possible to replace conventional experiments for research purpose.

  4. Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource.

    Science.gov (United States)

    Chiu, Sheng-Yi; Kao, Chien-Ya; Chen, Tsai-Yu; Chang, Yu-Bin; Kuo, Chiu-Mei; Lin, Chih-Sheng

    2015-05-01

    Using wastewater for microalgal cultures is beneficial for minimizing the use of freshwater, reducing the cost of nutrient addition, removing nitrogen and phosphorus from wastewater and producing microalgal biomass as bioresources for biofuel or high-value by-products. There are three main sources of wastewater, municipal (domestic), agricultural and industrial wastewater, which contain a variety of ingredients. Some components in the wastewater, such as nitrogen and phosphorus, are useful ingredients for microalgal cultures. In this review, the effects on the biomass and lipid production of microalgal Chlorella cultures using different kinds of wastewater were summarized. The use of the nutrients resource in wastewater for microalgal cultures was also reviewed. The effect of ammonium in wastewater on microalgal Chlorella growth was intensively discussed. In the end, limitations of wastewater-based of microalgal culture were commented in this review article.

  5. Ozonation for degradation of pharmaceutical in hospital wastewater

    DEFF Research Database (Denmark)

    Bester, Kai; Hansen, Kamilla S; Spiliotopoulou, Aikaterini

    There is an increasing concern about hospital wastewater as a point source of chemical pollution to municipal wastewater. Thus in Denmark a project with focus ion cleaning point source at hospitals was established. Pilot scale Moving-Bed-Biofilm-Reactors (MBBR) in stages were used to treat...... wastewater from a hospital followed by ozonation. As the treatment was close to the source, a high variety in the quality of the wastewater was observed (e.g. change in pH and dissolved organic carbon). High DOC results in relative high ozone doses needed to remove non-biodegradable micro......-pollutants (Antoniou et al., 2013). In the present work, ozonation of biological treated hospital wastewater spiked with pharmaceuticals were performed to determine the required ozone dose for 90 % removal of the investigated pharmaceuticals. Effluents with different DOC level were used to investigate the effect...

  6. Enzymatic pretreatment of Chlorella vulgaris for biogas production: Influence of urban wastewater as a sole nutrient source on macromolecular profile and biocatalyst efficiency.

    Science.gov (United States)

    Mahdy, Ahmed; Ballesteros, Mercedes; González-Fernández, Cristina

    2016-01-01

    Two biocatalysts, namely carbohydrases and proteases, were assessed for organic matter solubilisation and methane yield enhancement of microalgae biomass. This study evidenced Chlorella vulgaris carbohydrate accumulation (40% on VSS basis) when grown in urban wastewater. Despite of the carbohydrate prevailing fraction, protease pretreatment showed higher organic matter hydrolysis efficiency (54%). Microscopic observation revealed that carbohydrases affected slightly the cell wall while protease was not selective to wall constituents. Raw and pretreated biomass was digested at 1.5 kg tCOD m(-3) day(-1) organic loading rate (OLR1) and 20 days hydraulic retention time (HRT). The highest methane yield (137 mL CH4 g COD in(-1)) was achieved in the reactor fed with protease pretreated C. vulgaris. Additionally, anaerobic digestion was conducted at OLR2 (3 kg tCOD m(-3) day(-1)) and HRT (15 days). When compared to raw biomass, methane yield increased 5- and 6.3-fold at OLR1 and OLR2, respectively. No inhibitors were detected during the anaerobic digestion.

  7. Operation performance and granule characterization of upflow anaerobic sludge blanket (UASB) reactor treating wastewater with starch as the sole carbon source.

    Science.gov (United States)

    Lu, Xueqin; Zhen, Guangyin; Estrada, Adriana Ledezma; Chen, Mo; Ni, Jialing; Hojo, Toshimasa; Kubota, Kengo; Li, Yu-You

    2015-03-01

    Long-term performance of a lab-scale UASB reactor treating starch wastewater was investigated under different hydraulic retention times (HRT). Successful start-up could be achieved after 15days' operation. The optimal HRT was 6h with organic loading rate (OLR) 4g COD/Ld at COD concentration 1000mg/L, attaining 81.1-98.7% total COD removal with methane production rate of 0.33L CH4/g CODremoved. Specific methane activity tests demonstrated that methane formation via H2-CO2 and acetate were the principal degradation pathways. Vertical characterizations revealed that main reactions including starch hydrolysis, acidification and methanogenesis occurred at the lower part of reactor ("main reaction zone"); comparatively, at the up converting acetate into methane predominated ("substrate-shortage zone"). Further reducing HRT to 3h caused volatile fatty acids accumulation, sludge floating and performance deterioration. Sludge floating was ascribed to the excess polysaccharides in extracellular polymeric substances (EPS). More efforts are required to overcome sludge floating-related issues. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Utilization of high-strength wastewater for the production of biogas as a renewable energy source using hybrid upflow anaerobic sludge blanket (HUASB) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shivayogimath, C.B.; Ramanujam, T.K.

    1998-07-01

    Anaerobic digestion of distillery spentwash, a high-strength wastewater, was studied using a hybrid upflow anaerobic sludge blanket (HUASB) reactor for 240 days under ambient conditions. The HUASB reactor combined an open volume in the bottom two-thirds of the reactor for sludge blanket and polypropylene pall rings packing in the upper one-third of the reactor. The aim of the study was to achieve optimum biogas production and waste treatment. Using non-granular anaerobic sewage sludge as seed, the start-up of the HUASB reactor was successfully completed, with the production of active bacterial granules of 1--2 mm size, within 90 days. Examination of the bacterial granules under scanning electron microscope (SEM) revealed that Methanothrix like microorganisms were the dominant species besides Methanosarcina. An organic loading of 24 kg COD/m{sup 3}d at a low hydraulic retention time (HRT) of 6 hours was achieved with 82% reduction in COD. Biogas with high methane content (80%) was produced at these loadings. The specific biogas yield was 0.36 m{sup 3} CH{sub 4}/kg COD. Packing in the upper third of the reactor was very efficient as a gas-solid separator (GSS); and in addition it retained the biomass.

  9. Constructed wetlands for saline wastewater treatment: A review

    Science.gov (United States)

    Saline wastewater originating from sources such as agriculture, aquaculture, and many industrial sectors usually contains high levels of salts and other contaminants, which can adversely affect both aquatic and terrestrial ecosystems. Therefore, the treatment of saline wastewater (removal of both sa...

  10. 40 CFR 413.44 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... elected by the source introducing treated process wastewater into a publicly owned treatment works with... user introducing wastewater pollutants into a publicly owned treatment works under the provisions of this subpart shall augment the use of process wastewater or otherwise dilute the wastewater as...

  11. 40 CFR 413.54 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... elected by the source introducing treated process wastewater into a publicly owned treatment works with... user introducing wastewater pollutants into a publicly owned treatment works under the provisions of this subpart shall augment the use of process wastewater or otherwise dilute the wastewater as...

  12. 40 CFR 413.74 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... optional control program may be elected by the source introducing treated process wastewater into a... (PSES): (a) No User introducing wastewater pollutants into publicly owned treatment works under the provisions of this subpart shall augment the use of process wastewater or otherwise dilute the wastewater...

  13. Wastewater resource recovery via the Enhanced Biological Phosphorus Removal and Recovery (EBP2R) process coupled with green microalgae cultivation

    DEFF Research Database (Denmark)

    Valverde Perez, Borja

    Conventionally, the objective of wastewater treatment has been the elimination of organic and inorganic pollutants, such as nitrogen and phosphorus, from wastewater. Current research promotes a paradigm shift, whereby wastewater is considered not only as a source of pollution but also as a source...

  14. The non-point output of different agriculture landuse types in Zhexi hydraulic region of Taihu Basin

    Institute of Scientific and Technical Information of China (English)

    LIHengpeng; LIUXiaomei; HUANGWenyu

    2004-01-01

    This paper takes Zhexi hydraulic region in Taihu Basin as a study area. On the basis of hydraulic analysis function of Arcgis8.3, the drainages were delineated by selecting the monitoring points and discharge stations as outlets. The landuse map were finished by denoting the TM/ETM image. The precipitation map was finished by spatial interpolation according to the rainfall monitoring records. Overlaying the drainage boundary, landuse map and precipitation map, the rainfall, different landuse type area, and runoff pollution concentration and runoff were calculated. Based on these data in different sub-watersheds, by Origin7.0 regression tool, an equation is established to predict runoff using the relationships between runoff, precipitation depth and land use patterns in each of the sub-watersheds. Selecting the sub-watershed which is mainly composed of forest landuse type, the mean runoff concentration (MRC) from sub-watershed has been estimated. The mean runoff concentration of farmland has been estimated by the same methods after the contribution of forestlanduse type was removed. The results are" for the forest landuse type, the mean runoff concentrationsof COD, BOD, Total N and Total P are 2.95 mg/l, 1.080 mg/l, 0.715 mg/l, and 0.039 mg/l,respectively; for the farmland, the mean runoff concentrations of COD, BOD, Total N and Total P are 5.721 rag/l, 3.097 rag/l, 2.092 rag/l, and 0.166 rag/l, respectively. By using these results, the agriculture non-point pollution loads have been assessed. The loads of COD, BOD, Total N and Total P in Zhexi region are 14,631.69 t/a, 6401.93 t/a, 4281.753 t/a and 287.67 t/a, respectively.

  15. Performance of organics and nitrogen removal in subsurface wastewater infiltration systems by intermittent aeration and shunt distributing wastewater.

    Science.gov (United States)

    Pan, Jing; Yuan, Fang; Yu, Long; Huang, Linli; Fei, Hexin; Cheng, Fan; Zhang, Qi

    2016-07-01

    Organics and nitrogen removal in four subsurface wastewater infiltration systems (SWISs), named SWIS A (without intermittent aeration and shunt distributing wastewater), SWIS B (with intermittent aeration), SWIS C (with shunt distributing wastewater) and SWIS D (with intermittent aeration and shunt distributing wastewater) was investigated. High average removal rates of 92.3% for COD, 90.2% for NH4-N and 88.1% for TN were achieved simultaneously in SWIS D compared with SWIS A, B and C. The excellent TN removal of SWIS D was due to intermittent aeration provided sufficient oxygen for nitrification in upper matrix and the favorable anoxic or anaerobic environment for denitrification in subsequent matrix, and moreover, shunt distributing wastewater provided sufficient carbon source for denitrification process. The results indicated that intermittent artificial aeration combined with shunt distributing wastewater could achieve high organics and nitrogen removal in SWISs.

  16. Olive Mill Wastewater: From a Pollutant to Green Fuels, Agricultural Water Source and Bio-Fertilizer—Part 1. The Drying Kinetics

    Directory of Open Access Journals (Sweden)

    Mejdi Jeguirim

    2017-09-01

    Full Text Available Olive Mill Wastewater (OMWW treatment is considered to be one of the main challenges that Mediterranean countries face. Although several procedures and technologies are mentioned in the literature, these techniques have several disadvantages or have been limited to laboratory pilot validation without posterior industrial projection. Recently, an advanced environmental friendly strategy for the recovery of OMWW was established involving the impregnation of OMWW on dry biomasses, drying of these impregnated samples, and finally green fuels and biochar production. This established strategy revealed that the drying step is crucial for the success of the entire recovery process. Hence, two impregnated samples were prepared through OMWW impregnation on sawdust (IS and olive mill solid waste (ISW. The drying kinetics of OMWW and impregnated samples (IS and ISW were examined in a convective dryer (air velocity range from 0.7–1.3 m/s and the temperature from 40–60 °C. The experimental results indicated that the drying of the impregnated samples occurred twice as fast as for the OMWW sample. Such behavior was attributed to the remaining thin layer of oil on the OMWW surface Furthermore, the Henderson and Pabis model showed the suitable fit of the drying curves with a determination coefficient R2 above 0.97. The drying rates were extracted from the mathematical models and the drying process was analyzed. The coefficient of effective diffusivity varied between 2.8 and 11.7 × 10−10 m2/s. In addition, the activation energy values ranged between 28.7 and 44.9 kJ/mol. These values were in the same range as those obtained during the drying of other agrifood byproducts. The final results could be very helpful to engineers aiming to improve and optimize the OMWW drying process.

  17. Nitrification in Saline Industrial Wastewater

    NARCIS (Netherlands)

    Moussa, M.S.

    2004-01-01

    Biological nitrogen removal is widely and successfully applied for municipal wastewater. However, these experiences are not directly applicable to industrial wastewater, due to its specific composition. High salt levels in many industrial wastewaters affect nitrification negatively and improved unde

  18. Nitrification in Saline Industrial Wastewater

    NARCIS (Netherlands)

    Moussa, M.S.

    2004-01-01

    Biological nitrogen removal is widely and successfully applied for municipal wastewater. However, these experiences are not directly applicable to industrial wastewater, due to its specific composition. High salt levels in many industrial wastewaters affect nitrification negatively and improved

  19. Wastewater Industrial Contributors

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Industrial contributors to municipal wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES) program.

  20. Characterization of sources and loadings of fecal pollutants using microbial source tracking assays in urban and rural areas of the Grand River Watershed, Southwestern Ontario.

    Science.gov (United States)

    Lee, Dae-Young; Lee, Hung; Trevors, Jack T; Weir, Susan C; Thomas, Janis L; Habash, Marc

    2014-04-15

    Sources of fecal water pollution were assessed in the Grand River and two of its tributaries (Ontario, Canada) using total and host-specific (human and bovine) Bacteroidales genetic markers in conjunction with reference information, such as land use and weather. In-stream levels of the markers and culturable Escherichia coli were also monitored during multiple rain events to gain information on fecal loadings to catchment from diffuse sources. Elevated human-specific marker levels were accurately identified in river water impacted by a municipal wastewater treatment plant (WWTP) effluent and at a downstream site in the Grand River. In contrast, the bovine-specific marker showed high levels of cattle fecal pollution in two tributaries, both of which are characterized as intensely farmed areas. The bovine-specific Bacteroidales marker increased with rainfall in the agricultural tributaries, indicating enhanced loading of cattle-derived fecal pollutants to river from non-point sources following rain events. However, rain-triggered fecal loading was not substantiated in urban settings, indicating continuous inputs of human-originated fecal pollutants from point sources, such as WWTP effluent. This study demonstrated that the Bacteroidales source tracking assays, in combination with land use information and hydrological data, may provide additional insight into the spatial and temporal distribution of source-specific fecal contamination in streams impacted by varying land uses. Using the approach described in this study may help to characterize impacted water sources and to design targeted land use management plans in other watersheds in the future.

  1. Denitrifying bioreactor clogging potential during wastewater treatment.

    Science.gov (United States)

    Christianson, Laura E; Lepine, Christine; Sharrer, Kata L; Summerfelt, Steven T

    2016-11-15

    Chemoheterotrophic denitrification technologies using woodchips as a solid carbon source (i.e., woodchip bioreactors) have been widely trialed for treatment of diffuse-source agricultural nitrogen pollution. There is growing interest in the use of this simple, relatively low-cost biological wastewater treatment option in waters with relatively higher total suspended solids (TSS) and chemical oxygen demand (COD) such as aquaculture wastewater. This work: (1) evaluated hydraulic retention time (HRT) impacts on COD/TSS removal, and (2) assessed the potential for woodchip clogging under this wastewater chemistry. Four pilot-scale woodchip denitrification bioreactors operated for 267 d showed excellent TSS removal (>90%) which occurred primarily near the inlet, and that COD removal was maximized at lower HRTs (e.g., 56% removal efficiency and 25 g of COD removed per m(3) of bioreactor per d at a 24 h HRT). However, influent wastewater took progressively longer to move into the woodchips likely due to a combination of (1) woodchip settling, (2) clogging due to removed wastewater solids and/or accumulated bacterial growth, and (3) the pulsed flow system pushing the chips away from the inlet. The bioreactor that received the highest loading rate experienced the most altered hydraulics. Statistically significant increases in woodchip P content over time in woodchip bags placed near the bioreactor outlets (0.03 vs 0.10%P2O5) and along the bioreactor floor (0.04 vs. 0.12%P2O5) confirmed wastewater solids were being removed and may pose a concern for subsequent nutrient mineralization and release. Nevertheless, the excellent nitrate-nitrogen and TSS removal along with notable COD removal indicated woodchip bioreactors are a viable water treatment technology for these types of wastewaters given they are used downstream of a filtration device. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Environmental and public health implications of wastewater quality ...

    African Journals Online (AJOL)

    Environmental and public health implications of wastewater quality. ... The reuse of treated effluent (for agriculture and as supplement for drinking water needs) is currently receiving attention as a reliable water source. ... Article Metrics.

  3. Sources

    OpenAIRE

    2015-01-01

    SOURCES MANUSCRITES Archives nationales Rôles de taille 1768/71 Z1G-344/18 Aulnay Z1G-343a/02 Gennevilliers Z1G-340/01 Ivry Z1G-340/05 Orly Z1G-334c/09 Saint-Remy-lès-Chevreuse Z1G-344/18 Sevran Z1G-340/05 Thiais 1779/80 Z1G-391a/18 Aulnay Z1G-380/02 Gennevilliers Z1G-385/01 Ivry Z1G-387b/05 Orly Z1G-388a/09 Saint-Remy-lès-Chevreuse Z1G-391a/18 Sevran Z1G-387b/05 Thiais 1788/89 Z1G-451/18 Aulnay Z1G-452/21 Chennevières Z1G-443b/02 Gennevilliers Z1G-440a/01 Ivry Z1G-452/17 Noiseau Z1G-445b/05 ...

  4. Nitrate-N movement in groundwater from the land application of treated municipal wastewater and other sources in the Wakulla Springs springshed, Leon and Wakulla Counties, Florida, 1966-2018

    Science.gov (United States)

    Davis, J. Hal; Katz, Brian G.; Griffin, Dale W.

    2010-01-01

    The City of Tallahassee began a pilot study in 1966 at the Southwest Farm sprayfield to determine whether disposal of treated municipal wastewater using center pivot irrigation techniques to uptake nitrate-nitrogen (nitrate-N) is feasible. Based on the early success of this project, a new, larger Southeast Farm sprayfield was opened in November 1980. However, a recent 2002 study indicated that nitrate-N from these operations may be moving through the Upper Floridan aquifer to Wakulla Springs, thus causing nitrate-N concentrations to increase in the spring water. The increase in nitrate-N combined with the generally clear spring water and abundant sunshine may be encouraging invasive plant species growth. Determining the link between the nitrate-N application at the sprayfields and increased nitrate-N levels is complicated because there are other sources of nitrate-N in the Wakulla Springs springshed, including atmospheric deposition, onsite sewage disposal systems, disposal of biosolids by land spreading, creeks discharging into sinks, domestic fertilizer application, and livestock wastes.

  5. Agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetlands: a case study in the Yellow River wetland in China.

    Science.gov (United States)

    Zhao, Tongqian; Xu, Huashan; He, Yuxiao; Tai, Chao; Meng, Hongqi; Zeng, Fanfu; Xing, Menglin

    2009-01-01

    Riparian wetland is the major transition zone of matter, energy and information transfer between aquatic and terrestrial ecosystems and has important functions of water purification and non-point pollution control. Using the field experiment method and an isotope tracing technique, the agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetland was studied in the Kouma Section of the Yellow River. The results showed that the retention of agricultural non-point nitrogen pollution by riparian wetland soil occurs mainly in top 0-10 cm layer. The amount of nitrogen retained by surface soils associated with three types of vegetation are 0.045 mg/g for Phragmites communis Trin Linn, 0.036 mg/g for Scirpus triqueter Linn, and 0.032 mg/g for Typha angustifolia Linn, which account for 59.21%, 56.25%, and 56.14% of the total nitrogen interception, respectively. Exogenous nitrogen in 0-10 cm soil layer changes more quickly than in other layers. One month after adding K(15)NO3 to the tested vegetation, nitrogen content was 77.78% for P. communis Trin, 68.75% for T. angustifolia, and 8.33% for S. triqueter in the surface soil. After three months, nitrogen content was 93.33% for P. communis Trin, 72.22% for S. triqueter, and 37.50% for T. Angustifolia. There are large differences among vegetation communities respecting to purification of agricultural non-point nitrogen pollution. The nitrogen uptake amount decreases in the sequence: new shoots of P. communis Trin (9.731 mg/g) > old P. communis Trin (4.939 mg/g) > S. triqueter (0.620 mg/g) > T. angustifolia (0.186 mg/g). Observations indicated that the presence of riparian wetlands as buffers on and adjacent to stream banks could be recommended to control agricultural non-point pollution.

  6. Agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetlands: A case study in the Yellow River wetland in China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Tongqian; XU Huashan; HE Yuxiao; TAI Chao; MENG Hongqi; ZENG Fanfu; XING Menglin

    2009-01-01

    Riparian wetland is the major transition zone of matter, energy and information transfer between aquatic and terrestrial ecosystems and has important functions of water purification and non-point pollution control. Using the field experiment method and an isotope tracing technique, the agricultural non-point nitrogen pollution control function of different vegetation types in riparian wetland was studied in the Kouma Section of the Yellow River. The results showed that the retention of agricultural non-point nitrogen pollution by riparian wetland soil occurs mainly in top 0-10 cm layer. The amount of nitrogen retained by surface soils associated with three types of vegetation are 0.045 mg/g for Phragmites communis Trin Lima, 0.036 mg/g for Scirpus triqueter Liun, and 0.032 mg/g for Typha angustifolia Linn, which account for 59.21%, 56.25%, and 56.14% of the total nitrogen interception, respectively. Exogenous nitrogen in 0-10 cm soil layer changes more quickly than in other layers. One month after adding K15NO3 to the tested vegetation, nitrogen content was 77.78% for P. Communis Trin, 68.75% for T. Angustifolia, and 8.33% for S. Triqueter in the surface soil. After three months, nitrogen content was 93.33% for P. Communis Trin, 72.22% for S. Triqueter, and 37.50% for T. Angustifolia. There are large differences among vegetation communities respecting to purification of agricultural non-point nitrogen pollution. The nitrogen uptake amount decreases in the sequence: new shoots of P. Communis Trin (9.731 mg/g)>old P. Communis Trin (4.939 mg/g)>S. Triqueter (0.620 mg/g)>T. Angustifolia (0.186 mg/g). Observations indicated that the presence of riparian wetlands as buffers on and adjacent to stream banks could be recommended to control agricultural non-point pollution.

  7. Fracking, wastewater disposal, and earthquakes

    Science.gov (United States)

    McGarr, Arthur

    2016-03-01

    In the modern oil and gas industry, fracking of low-permeability reservoirs has resulted in a considerable increase in the production of oil and natural gas, but these fluid-injection activities also can induce earthquakes. Earthquakes induced by fracking are an inevitable consequence of the injection of fluid at high pressure, where the intent is to enhance permeability by creating a system of cracks and fissures that allow hydrocarbons to flow to the borehole. The micro-earthquakes induced during these highly-controlled procedures are generally much too small to be felt at the surface; indeed, the creation or reactivation of a large fault would be contrary to the goal of enhancing permeability evenly throughout the formation. Accordingly, the few case histories for which fracking has resulted in felt earthquakes have been due to unintended fault reactivation. Of greater consequence for inducing earthquakes, modern techniques for producing hydrocarbons, including fracking, have resulted in considerable quantities of coproduced wastewater, primarily formation brines. This wastewater is commonly disposed by injection into deep aquifers having high permeability and porosity. As reported in many case histories, pore pressure increases due to wastewater injection were channeled from the target aquifers into fault zones that were, in effect, lubricated, resulting in earthquake slip. These fault zones are often located in the brittle crystalline rocks in the basement. Magnitudes of earthquakes induced by wastewater disposal often exceed 4, the threshold for structural damage. Even though only a small fraction of disposal wells induce earthquakes large enough to be of concern to the public, there are so many of these wells that this source of seismicity contributes significantly to the seismic hazard in the United States, especially east of the Rocky Mountains where standards of building construction are generally not designed to resist shaking from large earthquakes.

  8. Modeling Nitrogen Losses in Conventional and Advanced Soil-Based Onsite Wastewater Treatment Systems under Current and Changing Climate Conditions.

    Directory of Open Access Journals (Sweden)

    Ivan Morales

    Full Text Available Most of the non-point source nitrogen (N load in rural areas is attributed to onsite wastewater treatment systems (OWTS. Nitrogen compounds cause eutrophication, depleting the oxygen in marine ecosystems. OWTS rely on physical, chemical and biological soil processes to treat wastewater and these processes may be affected by climate change. We simulated the fate and transport of N in different types of OWTS drainfields, or soil treatment areas (STA under current and changing climate scenarios, using 2D/3D HYDRUS software. Experimental data from a mesocosm-scale study, including soil moisture content, and total N, ammonium (NH4+ and nitrate (NO3- concentrations, were used to calibrate the model. A water content-dependent function was used to compute the nitrification and denitrification rates. Three types of drainfields were simulated: (1 a pipe-and-stone (P&S, (2 advanced soil drainfields, pressurized shallow narrow drainfield (PSND and (3 Geomat (GEO, a variation of SND. The model was calibrated with acceptable goodness-of-fit between the observed and measured values. Average root mean square error (RSME ranged from 0.18 and 2.88 mg L-1 for NH4+ and 4.45 mg L-1 to 9.65 mg L-1 for NO3- in all drainfield types. The calibrated model was used to estimate N fluxes for both conventional and advanced STAs under current and changing climate conditions, i.e. increased soil temperature and higher water table. The model computed N losses from nitrification and denitrification differed little from measured losses in all STAs. The modeled N losses occurred mostly as NO3- in water outputs, accounting for more than 82% of N inputs in all drainfields. Losses as N2 were estimated to be 10.4% and 9.7% of total N input concentration for SND and Geo, respectively. The highest N2 losses, 17.6%, were estimated for P&S. Losses as N2 increased to 22%, 37% and 21% under changing climate conditions for Geo, PSND and P&S, respectively. These findings can provide

  9. Modeling Nitrogen Losses in Conventional and Advanced Soil-Based Onsite Wastewater Treatment Systems under Current and Changing Climate Conditions.

    Science.gov (United States)

    Morales, Ivan; Cooper, Jennifer; Amador, José A; Boving, Thomas B

    2016-01-01

    Most of the non-point source nitrogen (N) load in rural areas is attributed to onsite wastewater treatment systems (OWTS). Nitrogen compounds cause eutrophication, depleting the oxygen in marine ecosystems. OWTS rely on physical, chemical and biological soil processes to treat wastewater and these processes may be affected by climate change. We simulated the fate and transport of N in different types of OWTS drainfields, or soil treatment areas (STA) under current and changing climate scenarios, using 2D/3D HYDRUS software. Experimental data from a mesocosm-scale study, including soil moisture content, and total N, ammonium (NH4+) and nitrate (NO3-) concentrations, were used to calibrate the model. A water content-dependent function was used to compute the nitrification and denitrification rates. Three types of drainfields were simulated: (1) a pipe-and-stone (P&S), (2) advanced soil drainfields, pressurized shallow narrow drainfield (PSND) and (3) Geomat (GEO), a variation of SND. The model was calibrated with acceptable goodness-of-fit between the observed and measured values. Average root mean square error (RSME) ranged from 0.18 and 2.88 mg L-1 for NH4+ and 4.45 mg L-1 to 9.65 mg L-1 for NO3- in all drainfield types. The calibrated model was used to estimate N fluxes for both conventional and advanced STAs under current and changing climate conditions, i.e. increased soil temperature and higher water table. The model computed N losses from nitrification and denitrification differed little from measured losses in all STAs. The modeled N losses occurred mostly as NO3- in water outputs, accounting for more than 82% of N inputs in all drainfields. Losses as N2 were estimated to be 10.4% and 9.7% of total N input concentration for SND and Geo, respectively. The highest N2 losses, 17.6%, were estimated for P&S. Losses as N2 increased to 22%, 37% and 21% under changing climate conditions for Geo, PSND and P&S, respectively. These findings can provide practitioners

  10. The use of wastewater in livestock production and its socioeconomic and welfare implications.

    Science.gov (United States)

    Elahi, Ehsan; Abid, Muhammad; Zhang, Liqin; Alugongo, Gibson Maswayi

    2017-07-01

    Although epidemiological studies have found a significant amount of toxins in surface water, a complex link between animals' access to wastewater and associated animal and human welfare losses needs to be explored. The scarcity of safe water has put stress on the utilization of wastewater for crops and livestock production. The access of animals to wastewater is related to the emergence of dangerous animal's diseases, hampering productivity, increasing economic losses, and risking human health along the food chain. This review explores use of wastewater for agriculture, epidemiological evidence of microbial contamination in wastewater, and animal and human welfare disruption due to the use of wastewater for crop and livestock production. More specifically, the review delves into animals exposure to wastewater for bathing, drinking, or grazing on a pasture irrigated with contaminated water and related animal and human welfare losses. We included some scientific articles and reviews published from 1970 to 2017 to support our rational discussions. The selected articles dealt exclusively with animals direct access to wastewater via bathing and indirect access via grazing on pasture irrigated with contaminated wastewater and their implication for animal and human welfare losses. The study also identified that some policy options such as wastewater treatments, constructing wastewater stabilization ponds, controlling animal access to wastewater, and dissemination of necessary information to ultimate consumers related to the source of agricultural produce and wastewater use in animal and crop production are required to protect the human and animal health and welfare.

  11. CHANGES IN THE MICROBIAL COMPOSITION OF MUNICIPAL WASTEWATER TREATED IN BIOLOGICAL PROCESSES

    Directory of Open Access Journals (Sweden)

    Aleksandra Jolanta Bawiec

    2016-07-01

    Full Text Available Municipal wastewater is characterized by diverse microbial content, largely dependent on their sources as well as many other factors like condition and health of their producer, but also environmental factors. The number and share of individual bacterial population in wastewater is changing during the process of their treatment in wastewater treatment plants. The microbial content of treated wastewater is significantly affected by the type of technology used for wastewater treatment. The paper presents the results of the species composition of bacteria present in the wastewater at various stages of treatment for the two different technologies. Samples of wastewater from hydroponic wastewater treatment plant and from the plant which technology is based on biofilters were analysed. A key mechanism for wastewater treatment in both cases is biological treatment, using microbial activity that decomposes pollutants in the wastewater, which significantly contributes to changes in the species composition of bacteria comparing to microbiological composition of sewage flowing into the treatment plant. Analyses of microbial composition showed that in the objects consisting of preliminary tank and biofilter, composition of bacteria species is changing, but many species isolated from raw sewage is also found in treated wastewater. In the plant with hydroponic lagoon after wastewater treatment throughout the process system, bacteria present in raw sewage or in wastewater after biological treatment were not identified in the outlet.

  12. 自除污型干式污水源热泵系统的实验研究%EXPERIMENTAL SYSTEM BUILT AND RESEARCH OF A DRY-TYPE WASTEWATER SOURCE HEAT PUMP

    Institute of Scientific and Technical Information of China (English)

    沈朝; 姜益强; 姚杨

    2013-01-01

    A dry-type wastewater source heat pump with function of de-fouling was presented, and then an experiment using this test rig was carried out in a sauna center. The unit operation parameters were real-time monitored. Also, effectiveness of de-fouling function of the wastewater evaporator was verified through a field test. Results showed that time for water heating is 23 minutes/once and supplying volume of hot water is 120L/once and temperature of supplying hot water is 511 which is high enough for hot water users; The maximum COP is 3.67, minimum is 2. 51 and mean value in the heating process is 2. 91. Results also implied that heat transfer rate of wastewater evaporator dropt from 8300W to 5600W during 30-day running which is 67.5% of the initial one. It was enhanced to 8100W by the function of de-fouling which was equal to the initial heat transfer rate approximately; After de-fouling, evaporation temperature increased from 3.91℃ to 6. 1℃, which indicates the function of de-fouling can improve the heat transfer coefficient effectively.%提出一种具有快速除污功能的干式壳管式污水源热泵机组,并对其在桑拿洗浴中心的运行特性进行现场测试.实时监测生产热水过程中机组的运行参数,并验证污水蒸发器的除污特性.研究结果显示:热水加热时间为23min/次,供应热水量约120L/次,温度为51℃,可充分满足用水温度需要;机组COP最高达3.67,最低为2.51,平均值为2.91;30d内污水蒸发器换热量由8300W降低到5600W,约为干净状态换热量的67.5%,除污后污水换热量提升到8100W,基本恢复初始换热量,除污型污水换热器除污和换热效率较高;除污前后,蒸发温度由3.9℃提高到6.1℃,表明该除污功能可大大改善换热系数.

  13. Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques.

    Science.gov (United States)

    Huang, Fang; Wang, Xiaoquan; Lou, Liping; Zhou, Zhiqing; Wu, Jiaping

    2010-03-01

    Understanding the spatial distribution and apportioning the sources of water pollution are important in the study and efficient management of water resources. In this work, we considered data for 13 water quality variables collected during the year 2004 at 46 monitoring sites along the Qiantang River (China). Fuzzy comprehensive analysis categorized the data into three major pollution zones (low, moderate, and high) based on national quality standards for surface waters, China. Most sites classified as "low pollution zones" (LP) occurred in the main river channel, whereas those classified as "moderate and high pollution zones" (MP and HP, respectively) occurred in the tributaries. Factor analysis identified two potential pollution sources that explained 67% of the total variance in LP, two potential pollution sources that explained 73% of the total variance in MP, and three potential pollution sources that explained 80% of the total variance in HP. UNMIX was used to estimate contributions from identified pollution sources to each water quality variable and each monitoring site. Most water quality variables were influenced primarily by pollution due to industrial wastewater, agricultural activities and urban runoff. In LP, non-point source pollution such as agricultural runoff and urban runoff dominated; in MP and HP, mixed source pollution dominated. The pollution in the small tributaries was more serious than that in the main channel. These results provide information for developing better pollution control strategies for the Qiantang River.

  14. Wastewater treatment modelling: dealing with uncertainties

    DEFF Research Database (Denmark)

    Belia, E.; Amerlinck, Y.; Benedetti, L.;

    2009-01-01

    This paper serves as a problem statement of the issues surrounding uncertainty in wastewater treatment modelling. The paper proposes a structure for identifying the sources of uncertainty introduced during each step of an engineering project concerned with model-based design or optimisation...... of a wastewater treatment system. It briefly references the methods currently used to evaluate prediction accuracy and uncertainty and discusses the relevance of uncertainty evaluations in model applications. The paper aims to raise awareness and initiate a comprehensive discussion among professionals on model...

  15. 40 CFR 413.14 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... following optional control program may be elected by the source introducing treated process wastewater into... for existing sources (PSES): (a) No user introducing wastewater pollutants into a publicly owned treatment works under the provisions of this subpart shall augment the use of process wastewater...

  16. 40 CFR 413.24 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... optional control program may be elected by the source introducing treated process wastewater into a... existing sources (PSES): (a) No user introducing wastewater pollutants into a publicly owned treatment works under the provisions of this subpart shall augment the use of process wastewater or...

  17. PHYCOREMEDIATION AND THE POTENTIAL OF SUSTAINABLE ALGAL BIOFUEL PRODUCTION USING WASTEWATER

    Directory of Open Access Journals (Sweden)

    Adel A. Fathi

    2013-01-01

    Full Text Available Wastewater remediation by microalgae is an eco-friendly process with no secondary pollution as long as the biomass produced is reused and allows efficient nutrient recycling. This study was undertaken to evaluate the remediation of wastewater by the green alga Chlorella vulgaris and the potential of these alga (biomass to produce sustainable biofuel. The results shows that the cultivation of green alga Chlorella vulgaris on wastewater has a positive effect on removal the major inorganic elements form the wastewater. Biodiesel can be produced from Chlorella vulgaris. The Chlorella vulgaris can be used for remediation of wastewater and the producing biomass can be used as source of renewable energy.

  18. Wastewater treatment using gamma irradiation: Tétouan pilot station, Morocco

    Science.gov (United States)

    Tahri, Loubna; Elgarrouj, Driss; Zantar, Said; Mouhib, Mohamed; Azmani, Amina; Sayah, Fouad

    2010-04-01

    The increasing demand on limited water supplies has accelerated the wastewater reuse and reclamation. We investigated gamma irradiation effects on wastewater by measuring differences in the legislated parameters, aiming to reuse the wastewater. Effluents samples were collected at the urban wastewater treatment station of Tetouan and were irradiated at different doses ranging from 0 to 14 kGy using a Co 60 gamma source. The results showed an elimination of bacterial flora, a decrease of biochemical and chemical oxygen demand, and higher conservation of nutritious elements. The results of this study indicated that gamma irradiation might be a good choice for the reuse of wastewater for agricultural activities.

  19. Synthesis of lignin-based copolymer LSAA and the application on controlling non-point source pollution (NPS) resulted from surface runoff

    Institute of Scientific and Technical Information of China (English)

    LIU Chen; WU Guangxia; MU Huanzhen; YUAN Zonghuan; TANG Lianyi; LIN Xiangwei

    2008-01-01

    In this article, alkali lignin separated from paper pulp waste was grafted into a novel copolymer LSAA (a copolymer of lignin, starch, acrylamide and acrylic acid). Its practical application effect and environmental safety were studied. The results of field simulation experiment indicated that the application of LSAA significantly affected the output of the runoff and pollutants. The runoff quantity was decreased by 16.67%-47.00% and the loads of total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN) and total phosphorus (TP) were reduced by 17.78%-62.14%, 26.32%-59.91%, 26.67%-42.86%, and 22.18%-52.78%, respectively. Tests on its environmental safety showed that LSAA did no harm the soil. Compared with polyacrylamide (PAM), a dominant product in this field, LSAA exhibited similar effects and cheap cost. Thus, this study not only created a new product for controlling runoff water quality but also offered a beneficial application for industrial paper waste.

  20. Assessing the influence of different plant species in drainage ditches on mitigation of non-point source pollutants (N, P, and sediments) in the Purple Sichuan Basin.

    Science.gov (United States)

    Kumwimba, Mathieu Nsenga; Zhu, Bo; Muyembe, Diana Kavidia

    2017-06-01

    Three different types of ditches, each 300 m in length, were employed in this study. One vegetated constructed ditch (VCD), three natural vegetated soil ditches (NVSD), and three constructed ditches left unvegetated (UCD) as controls were investigated using simple in/out mass balances and uptake by plant species with a potential for phytoremediation and their mechanisms. Significant differences in the ditches were observed, suggesting the importance of plant species in nutrient mitigation. The removal rates of TN (total nitrogen) and TP (total phosphorus) were 64.28 and 58.02, 31.16 and 27.49, and 3.91 and 2.97%, respectively, in the VCD, NVSD, and UCD. Canna indica (45.12 g m(-2)) and Oenanthe javanica (21.48 g m(-2)) had the highest total N and P storage in the VCD and NVSD. Furthermore, species C. indica possessed the highest annual N and P uptake in the VCD (216.59 kg N/ha/yr and 30.73 kg P/ha/yr). In the NVSD, species O. javanica had the greatest annual N and P uptake (96.66 kg N/ha/yr and 7.94 kg P/ha/yr). Both VCD and NVSD were found to have a reasonably good outcome compared to UCD. Retention of nutrients by ditch sediments was probably the major attenuation mechanism, with subsequent plant uptake and microbial nitrification-denitrification of the nutrients as secondary removal mechanisms. Results of this study highlight the importance of taking actions for establishment of appropriate plant species inside the ditches in order to enhance its direct and indirect roles and maximize purification rate in aquatic environments.

  1. Development and application of a coupled bio-geochmical and hydrological model for point and non-point source river water pollution

    Science.gov (United States)

    Pohlert, T.

    2007-12-01

    The aim of this paper is to present recent developments of an integrated water- and N-balance model for the assessment of land use changes on water and N-fluxes for meso-scale river catchments. The semi-distributed water-balance model SWAT was coupled with algorithms of the bio-geochemical model DNDC as well as the model CropSyst. The new model that is further denoted as SWAT-N was tested with leaching data from a long- term lysimeter experiment as well as results from a 5-years sampling campaign that was conducted at the outlet of the meso-scale catchment of the River Dill (Germany). The model efficiency for N-load as well as the spatial representation of N-load along the river channel that was tested with results taken from longitudinal profiles show that the accuracy of the model has improved due to the integration of the aforementioned process-oriented models. After model development and model testing, SWAT-N was then used for the assessment of the EU agricultural policy (CAP reform) on land use change and consequent changes on N-fluxes within the Dill Catchment. giessen.de/geb/volltexte/2007/4531/

  2. Bibliometric analysis on literatures of Non-Point Source Pollution at A Watershed Scale%流域非点源污染文献计量分析

    Institute of Scientific and Technical Information of China (English)

    马鑫; 闫铁柱; 曹洪涛; 陈少波

    2014-01-01

    非点源污染成为制约中国社会经济和环境可持续发展的重要因素.为了准确掌握流域非点源污染研究的全球状况和前沿动态,客观反映相关国家或地区在该领域的科学能力和科学影响,采用ISI Web of Knowlere的Web of Science引文数据库,选用基本检索方式,以流域非点源的相关术语作为主题检索词,对1900年-2012年之间该库收录的此领域的相关文献进行计量分析.结果表明:从发文量、研究机构和研究人员、高被引文献分析可以看出,美国在此领域成绩卓越,领先于其他国家;在典型机理模型运用方面,SWAT的发文量最多,占模型运用相关文献发文量的52%;国际上该领域最主要的期刊有Journal of The American Water Resources Association、Science of The Total Environment、Journal of Hydrology和Journal of Environmental Quality;中国科学院、北京师范大学和浙江大学的流域非点源污染领域发文量在中国位居前3位.

  3. AnnAGNPS – A United States Department of Agriculture Watershed Conservation Management Planning Tool for Non-Point Source Pollution Control

    Science.gov (United States)

    A watershed scale assessment of the effect of conservation practices on the environment is critical when recommending best management practices to agricultural producers. The environmental benefits of these practices have not been widely quantified at the watershed scale, which would require extens...

  4. 40 CFR 421.286 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ...) Leaching wet air pollution control. PSNS for the Secondary Tantalum Subcategory Pollutant or pollutant... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Tantalum Subcategory... wastewater pollutants in secondary tantalum process wastewater introduced into a POTW shall not exceed...

  5. Long-term groundwater contamination after source removal—The role of sorbed carbon and nitrogen on the rate of reoxygenation of a treated-wastewater plume on Cape Cod, MA, USA

    Science.gov (United States)

    Smith, Richard L.; Repert, Deborah A.; Barber, Larry B.; LeBlanc, Denis R.

    2013-01-01

    The consequences of groundwater contamination can remain long after a contaminant source has been removed. Documentation of natural aquifer recoveries and empirical tools to predict recovery time frames and associated geochemical changes are generally lacking. This study characterized the long-term natural attenuation of a groundwater contaminant plume in a sand and gravel aquifer on Cape Cod, Massachusetts, after the removal of the treated-wastewater source. Although concentrations of dissolved organic carbon (DOC) and other soluble constituents have decreased substantially in the 15 years since the source was removed, the core of the plume remains anoxic and has sharp redox gradients and elevated concentrations of nitrate and ammonium. Aquifer sediment was collected from near the former disposal site at several points in time and space along a 0.5-km-long transect extending downgradient from the disposal site and analyses of the sediment was correlated with changes in plume composition. Total sediment carbon content was generally low (< 8 to 55.8 μmol (g dry wt)− 1) but was positively correlated with oxygen consumption rates in laboratory incubations, which ranged from 11.6 to 44.7 nmol (g dry wt)− 1 day− 1. Total water extractable organic carbon was < 10–50% of the total carbon content but was the most biodegradable portion of the carbon pool. Carbon/nitrogen (C/N) ratios in the extracts increased more than 10-fold with time, suggesting that organic carbon degradation and oxygen consumption could become N-limited as the sorbed C and dissolved inorganic nitrogen (DIN) pools produced by the degradation separate with time by differential transport. A 1-D model using total degradable organic carbon values was constructed to simulate oxygen consumption and transport and calibrated by using observed temporal changes in oxygen concentrations at selected wells. The simulated travel velocity of the oxygen gradient was 5–13% of the groundwater velocity. This

  6. Nutrient sources in a Mediterranean catchment and their improvement for water quality management

    Science.gov (United States)

    Candela, Angela; Viviani, Gaspare

    2010-05-01

    . Regarding the inventory of point and non-point pollutants sources, the river receives a number of point source pollutants from small villages and some outskirts of Palermo, most of them untreated, and non point source pollutants from agricultural cropland and zoo-technical farms. In particular, the Oreto river receives untreated wastewater and stormwater from Altofonte (8200 inhabitants) and Pioppo (2500 inhabitants) . The model was first calibrated using meteorological, flow and water quality data collected at various stations through-out the catchment, in order to predict water and nutrient concentrations at the catchment outlet and then was used to evaluate the potential impact of various management strategies on surface water quality. The results demonstrates that point and non-point polluting sources have to be contiguously analysed because they concur to the definition of river water quality both during wet and dry periods.

  7. Wastewater Treatment Plants

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — The actual treatment areas for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System...

  8. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  9. Wastewater Treatment in Greenland

    DEFF Research Database (Denmark)

    Gunnarsdottir, Ragnhildur

    The Arctic nature is vulnerable to environmental contaminants because of low biological diversity, lack of nutrients and extreme seasonal variations in light. In Greenland neither industrial nor domestic wastewater is treated before it is discharged to the recipients, which in most cases is the sea...... treatment in these regions. However, designing, constructing and operating wastewater collection systems in the Arctic is challenging because of e.g. permafrost conditions, hard rock surfaces, freezing, limited quantity of water and high costs of electricity, fuel and transportation, as well as a settlement...... collection systems, and be more economically and environmentally sustainable than traditional wastewater collection and treatment systems. Possible alternative wastewater treatment methods for Greenlandic communities are dry composting or anaerobic digestion of excreta, collected at household level using dry...

  10. Coupling of algal biofuel production with wastewater.

    Science.gov (United States)

    Bhatt, Neha Chamoli; Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  11. Coupling of Algal Biofuel Production with Wastewater

    Science.gov (United States)

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  12. Coupling of Algal Biofuel Production with Wastewater

    Directory of Open Access Journals (Sweden)

    Neha Chamoli Bhatt

    2014-01-01

    Full Text Available Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area.

  13. Enhanced Nitrogen Removal Efficiency of External Carbon Source during Abnormal Influent in Municipal Wastewater Treatment Plant%外加碳源对污水厂异常进水时的强化脱氮效果

    Institute of Scientific and Technical Information of China (English)

    杨巧林; 奚小英; 陈娜; 张静; 刘曦; 杜鹃

    2011-01-01

    Since Chongqing Sino-French Tangjiatuo Wastewater Treatment Co. Ltd. started operation, the influent quality fluctuated greatly. The phenomenon of low C/N ratio caused by abnormal increase in the influent TN concentration occurred many times, which did not enable the effluent TN to meet the discharge standard. In case of lack of stable and sufficient external carbon source, a variety of commercially available carbon sources including methanol, ethanol, acetic acid, glucose and malt sugar were tested in the lab for their effects on TN removal. The results show that the five kinds of commercially available carbon sources can all significantly improve the nitrogen removal efficiency of the treatment process, in which the efficiency of acetic acid is the highest, and that of malt sugar is the lowest. Based on the comprehensive analysis of use efficiency and safety, market supply and cost of external carbon sources, it is considered that glucose is the most suitable external carbon source. When the influent TN is abnormally increased, the dosing of glucose in anoxic zone can effectively control the effluent TN to ensure the effluent quality to meet the discharge standard. Although the phase dosing of carbon source increases the treatment cost, it has positive significance for protecting the water quality of Yangtze River.%重庆中法唐家沱污水处理有限公司自正式运行以来,进水水质波动较大,多次出现进水TN浓度异常升高而导致C/N值偏低的现象,使得出水TN浓度不能稳定达标.在缺乏来源稳定且充足的废水或废物作为外加碳源的情况下,公司对一系列商业碳源(包括甲醇、乙醇、乙酸、葡萄糖和麦芽糖)的强化脱氮效果进行了测试.结果表明,5种商业碳源的投加均可明显提高主体工艺的脱氮效果,其中,乙酸的效果最优,麦芽糖的效果最差;但综合考虑外加碳源的运行效果、使用安全性、市场供应情况、成本等因素,发现葡萄糖是

  14. The potential of sustainable algal biofuel production using wastewater resources.

    Science.gov (United States)

    Pittman, Jon K; Dean, Andrew P; Osundeko, Olumayowa

    2011-01-01

    The potential of microalgae as a source of renewable energy has received considerable interest, but if microalgal biofuel production is to be economically viable and sustainable, further optimization of mass culture conditions are needed. Wastewaters derived from municipal, agricultural and industrial activities potentially provide cost-effective and sustainable means of algal growth for biofuels. In addition, there is also potential for combining wastewater treatment by algae, such as nutrient removal, with biofuel production. Here we will review the current research on this topic and discuss the potential benefits and limitations of using wastewaters as resources for cost-effective microalgal biofuel production. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Off Grid Photovoltaic Wastewater Treatment and Management Lagoons

    Science.gov (United States)

    LaPlace, Lucas A.; Moody, Bridget D.

    2015-01-01

    The SSC wastewater treatment system is comprised of key components that require a constant source of electrical power or diesel fuel to effectively treat the wastewater. In alignment with the President's new Executive Order 13653, Planning for Federal Sustainability in the Next Decade, this project aims to transform the wastewater treatment system into a zero emissions operation by incorporating the advantages of an off grid, photovoltaic system. Feasibility of implementation will be based on an analytical evaluation of electrical data, fuel consumption, and site observations.

  16. Biohydrogen production from industrial wastewaters.

    Science.gov (United States)

    Moreno-Andrade, Iván; Moreno, Gloria; Kumar, Gopalakrishnan; Buitrón, Germán

    2015-01-01

    The feasibility of producing hydrogen from various industrial wastes, such as vinasses (sugar and tequila industries), and raw and physicochemical-treated wastewater from the plastic industry and toilet aircraft wastewater, was evaluated. The results showed that the tequila vinasses presented the maximum hydrogen generation potential, followed by the raw plastic industry wastewater, aircraft wastewater, and physicochemical-treated wastewater from the plastic industry and sugar vinasses, respectively. The hydrogen production from the aircraft wastewater was increased by the adaptation of the microorganisms in the anaerobic sequencing batch reactor.

  17. Countermeasures of Reclaimed Municipal Wastewater for Safety of Agricultural Use in China

    Institute of Scientific and Technical Information of China (English)

    SHI Rong-guang; PENG Sheng-wei; WANG Yue-hua; ZHANG Hao; ZHAO Yu-jie; LIU Feng-zhi; ZHOU Qi-xing

    2008-01-01

    China is facing a severe water resource crisis, and the shortage of water for agricultural consumption is a prominent problem. Irrigation with reclaimed municipal wastewater that can reach the agricultural recycling standards is an important way to deal with water shortage in agricultural production. Owing to the complex sources of municipal wastewater, there are multifarious pollutants in municipal wastewater. Improper use of wastewater can cause potential risks to ago-environment, agricultural products safety, and human health. This article deals with the current situation and the development prospects of reclaimed wastewater for agricultural use in China and abroad; the potential risks to human health and environmental pollution from the reclaimed municipal wastewater for agricultural reuse are also discussed. And some countermeasures and advices of reclaimed municipal wastewater for safety of agricultural reuse are provided.

  18. Biodegradation of pharmaceuticals from hospital wastewater in staged Moving Bed Biofilm Reactors (MBBR)

    DEFF Research Database (Denmark)

    Escola, Monica; Kumar Chhetri, Ravi; Ooi, Gordon

    2015-01-01

    Hospital wastewater may represent an important source of pharmaceuticals into wastewater treatment plants, which are usually inefficient for complete pharmaceuticals removal. Consequently, on-site treatment of hospital wastewater has been suggested. MBBRs (Moving Bed Biofilm Reactors) rely...... of pharmaceuticals from hospital wastewater. A pilot MBBR line consisting of three tanks in series containing AnoxKaldnes™ K5 carriers was installed to treat a fraction of the wastewater from the oncology department of Aarhus University Hospital. Two sampling campaigns were conducted to study the removal...... the wastewater treatment. In both experiments, the first tank was observed to conduct the main part of the pharmaceuticals removal, matching the general parameters data. Overall, the MBBR was shown to treat hospital wastewater efficiently. However, for removal of recalcitrant pharmaceuticals, a polishing...

  19. Occurrence of human-associated Bacteroidetes genetic source tracking markers in raw and treated wastewater of municipal and domestic origin and comparison to standard and alternative indicators of faecal pollution.

    Science.gov (United States)

    Mayer, R E; Bofill-Mas, S; Egle, L; Reischer, G H; Schade, M; Fernandez-Cassi, X; Fuchs, W; Mach, R L; Lindner, G; Kirschner, A; Gaisbauer, M; Piringer, H; Blaschke, A P; Girones, R; Zessner, M; Sommer, R; Farnleitner, A H

    2016-03-01

    This was a detailed investigation of the seasonal occurrence, dynamics, removal and resistance of human-associated genetic Bacteroidetes faecal markers (GeBaM) compared with ISO-based standard faecal indicator bacteria (SFIB), human-specific viral faecal markers and one human-associated Bacteroidetes phage in raw and treated wastewater of municipal and domestic origin. Characteristics of the selected activated sludge wastewater treatment plants (WWTPs) from Austria and Germany were studied in detail (WWTPs, n = 13, connected populations from 3 to 49000 individuals), supported by volume-proportional automated 24-h sampling and chemical water quality analysis. GeBaM were consistently detected in high concentrations in raw (median log10 8.6 marker equivalents (ME) 100 ml(-1)) and biologically treated wastewater samples (median log10 6.2-6.5 ME 100 ml(-1)), irrespective of plant size, type and time of the season (n = 53-65). GeBaM, Escherichia coli, and enterococci concentrations revealed the same range of statistical variability for raw (multiplicative standard deviations s* = 2.3-3.0) and treated wastewater (s* = 3.7-4.5), with increased variability after treatment. Clostridium perfringens spores revealed the lowest variability for raw wastewater (s* = 1.5). In raw wastewater correlations among microbiological parameters were only detectable between GeBaM, C. perfringens and JC polyomaviruses. Statistical associations amongst microbial parameters increased during wastewater treatment. Two plants with advanced treatment were also investigated, revealing a minimum log10 5.0 (10th percentile) reduction of GeBaM in the activated sludge membrane bioreactor, but no reduction of the genetic markers during UV irradiation (254 nm). This study highlights the potential of human-associated GeBaM to complement wastewater impact monitoring based on the determination of SFIB. In addition, human-specific JC polyomaviruses and adenoviruses seem to be a valuable support

  20. Microbial source tracking in impaired watersheds using PhyloChip and machine-learning classification.

    Science.gov (United States)

    Dubinsky, Eric A; Butkus, Steven R; Andersen, Gary L

    2016-11-15

    Sources of fecal indicator bacteria are difficult to identify in watersheds that are impacted by a variety of non-point sources. We developed a molecular source tracking test using the PhyloChip microarray that detects and distinguishes fecal bacteria from humans, birds, ruminants, horses, pigs and dogs with a single test. The multiplexed assay targets 9001 different 25-mer fragments of 16S rRNA genes that are common to the bacterial community of each source type. Both random forests and SourceTracker were tested as discrimination tools, with SourceTracker classification producing superior specificity and sensitivity for all source types. Validation with 12 different mammalian sources in mixtures found 100% correct identification of the dominant source and 84-100% specificity. The test was applied to identify sources of fecal indicator bacteria in the Russian River watershed in California. We found widespread contamination by human sources during the wet season proximal to settlements with antiquated septic infrastructure and during the dry season at beaches during intense recreational activity. The test was more sensitive than common fecal indicator tests that failed to identify potential risks at these sites. Conversely, upstream beaches and numerous creeks with less reliance on onsite wastewater treatment contained no fecal signal from humans or other animals; however these waters did contain high counts of fecal indicator bacteria after rain. Microbial community analysis revealed that increased E. coli and enterococci at these locations did not co-occur with common fecal bacteria, but rather co-varied with copiotrophic bacteria that are common in freshwaters with high nutrient and carbon loading, suggesting runoff likely promoted the growth of environmental strains of E. coli and enterococci. These results indicate that machine-learning classification of PhyloChip microarray data can outperform conventional single marker tests that are used to assess health

  1. Organic Wastewater Compounds, Pharmaceuticals, andColiphage in Ground Water Receiving Discharge from OnsiteWastewater Treatment Systems near La Pine, Oregon:Occurrence and Implications for Transport

    Science.gov (United States)

    Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.

    2005-01-01

    The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate

  2. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scen

  3. Microalgal biofilms for wastewater treatment

    NARCIS (Netherlands)

    Boelee, N.C.

    2013-01-01

    The objective of this thesis was to explore the possibilities of using microalgal biofilms for the treatment of municipal wastewater, with a focus on the post-treatment of municipal wastewater effluent. The potential of microalgal biofilms for wastewater treatment was first investigated using a scen

  4. Life cycle environmental impacts of wastewater-based algal biofuels.

    Science.gov (United States)

    Mu, Dongyan; Min, Min; Krohn, Brian; Mullins, Kimberley A; Ruan, Roger; Hill, Jason

    2014-10-07

    Recent research has proposed integrating wastewater treatment with algae cultivation as a way of producing algal biofuels at a commercial scale more sustainably. This study evaluates the environmental performance of wastewater-based algal biofuels with a well-to-wheel life cycle assessment (LCA). Production pathways examined include different nutrient sources (municipal wastewater influent to the activated sludge process, centrate from the sludge drying process, swine manure, and freshwater with synthetic fertilizers) combined with emerging biomass conversion technologies (microwave pyrolysis, combustion, wet lipid extraction, and hydrothermal liquefaction). Results show that the environmental performance of wastewater-based algal biofuels is generally better than freshwater-based algal biofuels, but depends on the characteristics of the wastewater and the conversion technologies. Of 16 pathways compared, only the centrate cultivation with wet lipid extraction pathway and the centrate cultivation with combustion pathway have lower impacts than petroleum diesel in all environmental categories examined (fossil fuel use, greenhouse gas emissions, eutrophication potential, and consumptive water use). The potential for large-scale implementation of centrate-based algal biofuel, however, is limited by availability of centrate. Thus, it is unlikely that algal biofuels can provide a large-scale and environmentally preferable alternative to petroleum transportation fuels without considerable improvement in current production technologies. Additionally, the cobenefit of wastewater-based algal biofuel production as an alternate means of treating various wastewaters should be further explored.

  5. Identification of wastewater processes

    DEFF Research Database (Denmark)

    Carstensen, Niels Jacob

    -known theory of the processes with the significant effects found in data. These models are called grey box models, and they contain rate expressions for the processes of influent load of nutrients, transport of nutrients between the aeration tanks, hydrolysis and growth of biomass, nitrification...... function. The grey box models are estimated on data sets from the Lundtofte pilot scale plant and the Aalborg West wastewater treatment plant. Estimation of Monod- kinetic expressions is made possible through the application of large data sets. Parameter extimates from the two plants show a reasonable......The introduction of on-line sensors for monitoring of nutrient salts concentrations on wastewater treatment plants with nutrient removal, opens a wide new area of modelling wastewater processes. The subject of this thesis is the formulation of operational dynamic models based on time series...

  6. Treatment of electroplating wastewater

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    To study the feasibility of treated water being used as rinsing water with CP/ED (chemical precipitation/electrodialysis) system, the relation between concentration of Cr (VI) and conductivity of water is investigated, the effect of electrodialysis (ED) for different wastewater is also studied. And several parameters of importance that are relevant to the process are identified. Analysis of ICP (Inductively coupled plasma) and IC (Ion chromatography) shows that the main reason of conductivity increase in CP treated water is the increase of Na+ and Cl- ions. The 93.8%-100% of ions from wastewater both in ED and CP/ED systems was removed successfully. The results of experiments indicate that the CP/ED system is a feasible method for electroplating wastewater treatment, the CP/ED system used as a way of wastwater is not only in favour of environment, but also economic beneficial to achieve.

  7. Bioaugmentative Approaches for Dairy Wastewater Treatment

    OpenAIRE

    Irina Schneider; Yana Topalova

    2010-01-01

    Problem statement: The achievement of a good ecological status of water receivers after discharge of waste or partially treated water from dairy industry requires harmonic interaction between water treatment technology and self-purification processes. Approach: The present research included two modules. First: an anaerobic treatment process for dairy wastewater in broadly spread sequencing batch bioreactor with fixed biomass was studied. As a source of active biological sy...

  8. Treatment of Distillery Wastewater by Anaerobic Methods

    Directory of Open Access Journals (Sweden)

    Vandana Patyal

    2015-12-01

    Full Text Available One of the major environmental problems faced by the world is management of wastes. Industrial processes create a wide range of wastewater pollutants; which are not only difficult but costly to treat. Characteristics of wastewater and level of pollutants vary significantly from industry to industry. To control this problem today emphasis is laid on waste minimization and revenue generation through by-product and energy recovery. Pollution prevention focuses on preventing the harmful effect of generated wastewater on the environment, while waste minimization refers to reducing the volume or toxicity of hazardous wastes by water recycling and reuse, process modifications and by by-product recovery. Production of ethyl alcohol in distilleries based on cane sugar molasses constitutes a major industry in Asia and South America. The world’s total production of alcohol from cane molasses is more than13 million m3 /annum. The aqueous distillery effluent stream known as spent wash is a dark brown highly organic effluent and is approximately 12-15 times by volume of the product alcohol. This highly aqueous, organic soluble containing residue is considered a troublesome and potentially polluting waste due to its extremely high BOD and COD values. Because of the high concentration of organic load, distillery spent wash is a potential source of renewable energy. The paper reviews the possibility of anaerobic treatment of the distillery wastewater.

  9. Bioaugmentative Approaches for Dairy Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Irina Schneider

    2010-01-01

    Full Text Available Problem statement: The achievement of a good ecological status of water receivers after discharge of waste or partially treated water from dairy industry requires harmonic interaction between water treatment technology and self-purification processes. Approach: The present research included two modules. First: an anaerobic treatment process for dairy wastewater in broadly spread sequencing batch bioreactor with fixed biomass was studied. As a source of active biological system specially treated and acclimated activated sludge from Sofia Wastewater Treatment Plant was used. The acclimation and immobilization of initially inoculated biomass, the addition of microbiological preparations and its modification for increase of the biodegradation activity to target pollutants were studied as opportunities for the stimulation of water treatment process in bioreactors and water receiver. Second: self-purification processes in а water receiver for partially treated dairy wastewater were investigated. The functional role and restructuring of the microbial communities in the water, sediment water and sediments were studied. Results: The results showed that the most important approaches for achieving high effectiveness of wastewater treatment process were both the acclimation and immobilization of biomass. In that aspect the data for the water receiver confirmed this conclusion. These two processes increased biodegradation effectiveness of the target pollutant (protein with 67%. Conclusion: The effect of the added preparations was smaller (protein biodegradation was increased to 9% for the different biological systems. It was thoroughly related to low improvement of the rate of metabolism and functioning of the biological system mainly on an enzyme level.

  10. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  11. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise...

  12. 40 CFR 413.64 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... introducing treated process wastewater into a publicly owned treatment works with the concurrence of the... existing sources (PSES): (a) No User introducing wastewater pollutants into publicly owned treatment works under the provisions of this subpart shall augment the use of process wastewater or otherwise dilute...

  13. Status of metal levels and their potential sources of contamination in Southeast Asian rivers.

    Science.gov (United States)

    Chanpiwat, Penradee; Sthiannopkao, Suthipong

    2014-01-01

    To assess the concentration and status of metal contaminants in four major Southeast Asian river systems, water were collected from the Tonle Sap-Bassac Rivers (Cambodia), Citarum River (Indonesia), lower Chao Phraya River (Thailand), and Saigon River (Vietnam) in both dry and wet seasons. The target elements were Be, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Ba, Tl, and Pb and the concentrations exceeded the background metal concentrations by 1- to 88-fold. This distinctly indicates enrichment by human urban area activities. The results of a normalization technique used to distinguish natural from enriched metal concentrations confirmed contamination by Al, Cd, Co, Mn, Ni, Pb, and Zn. Cluster analysis revealed the probable source of metals contamination in most sampling sites on all rivers studied to be anthropogenic, including industrial, commercial, and residential activities. Stable lead isotopes analyses applied to track the sources and pathways of anthropogenic lead furthermore confirmed that anthropogenic sources of metal contaminated these rivers. Discharges of wastewater from both industrial and household activities were major contributors of Pb into the rivers. Non-point sources, especially road runoff and street dust, also contributed contamination from Pb and other metals.

  14. Forward osmosis for application in wastewater treatment: a review.

    Science.gov (United States)

    Lutchmiah, Kerusha; Verliefde, A R D; Roest, K; Rietveld, L C; Cornelissen, E R

    2014-07-01

    Research in the field of Forward Osmosis (FO) membrane technology has grown significantly over the last 10 years, but its application in the scope of wastewater treatment has been slower. Drinking water is becoming an increasingly marginal resource. Substituting drinking water for alternate water sources, specifically for use in industrial processes, may alleviate the global water stress. FO has the potential to sustainably treat wastewater sources and produce high quality water. FO relies on the osmotic pressure difference across the membrane to extract clean water from the feed, however the FO step is still mostly perceived as a "pre-treatment" process. To prompt FO-wastewater feasibility, the focus lies with new membrane developments, draw solutions to enhance wastewater treatment and energy recovery, and operating conditions. Optimisation of these parameters are essential to mitigate fouling, decrease concentration polarisation and increase FO performance; issues all closely related to one another. This review attempts to define the steps still required for FO to reach full-scale potential in wastewater treatment and water reclamation by discussing current novelties, bottlenecks and future perspectives of FO technology in the wastewater sector.

  15. Investigations into the biodegradation of microcystin-LR in wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Ho, Lionel, E-mail: lionel.ho@sawater.com.au [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); School of Earth and Environmental Sciences, University of Adelaide, SA 5005 (Australia); Hoefel, Daniel [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); School of Earth and Environmental Sciences, University of Adelaide, SA 5005 (Australia); Palazot, Sebastien [Ecole Superieure de Chimie Physique Electronique de Lyon, 43 Boulevard du 11 Novembre 1918 BP 2077, 69616 Villeurbanne Cedex (France); Sawade, Emma; Newcombe, Gayle [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); Saint, Christopher P. [Australian Water Quality Centre, SA Water Corporation, 250 Victoria Square, Adelaide, SA 5000 (Australia); School of Earth and Environmental Sciences, University of Adelaide, SA 5005 (Australia); Brookes, Justin D. [School of Earth and Environmental Sciences, University of Adelaide, SA 5005 (Australia)

    2010-08-15

    Microcystins are potent hepatotoxins that can be produced by cyanobacteria. These organisms can proliferate in wastewaters due to a number of factors including high concentrations of nutrients for growth. As treated wastewaters are now being considered as supplementary drinking water sources, in addition to their frequent use for irrigated agriculture, it is imperative that these wastewaters are free of toxins such as microcystins. This study investigated the potential for biodegradation of microcystin-LR (MCLR) in wastewaters through a biological sand filtration experiment and in static batch reactor experiments. MCLR was effectively removed at a range of concentrations and at various temperatures, with degradation attributed to the action of microorganisms indigenous to the wastewaters. No hepatotoxic by-products were detected following the degradation of MCLR as determined by a protein phosphatase inhibition assay. Using TaqMan polymerase chain reaction, the first gene involved in bacterial degradation of MCLR (mlrA) was detected and the responsible bacteria shown to increase with the amount of MCLR being degraded. This finding suggested that the degradation of MCLR was dependent upon the abundance of MCLR-degrading organisms present within the wastewater, and that MCLR may provide bacteria with a significant carbon source for proliferation; in turn increasing MCLR removal.

  16. Paradigms of mangroves in treatment of anthropogenic wastewater pollution.

    Science.gov (United States)

    Ouyang, Xiaoguang; Guo, Fen

    2016-02-15

    Mangroves have been increasingly recognized for treating wastewater from aquaculture, sewage and other sources with the overwhelming urbanization trend. This study clarified the three paradigms of mangroves in disposing wastewater contaminants: natural mangroves, constructed wetlands (including free water surface and subsurface flow) and mangrove-aquaculture coupling systems. Plant uptake is the common major mechanism for nutrient removal in all the paradigms as mangroves are generally nitrogen and phosphorus limited. Besides, sediments accrete and provide substrates for microbial activities, thereby removing organic matter and nutrients from wastewater in natural mangroves and constructed wetlands. Among the paradigms, the mangrove-aquaculture coupling system was determined to be the optimal alternative for aquaculture wastewater treatment by multi-criterion decision making. Sensitivity analysis shows variability of alternative ranking but underpins the coupling system as the most environment-friendly and cost-efficient option. Mangrove restoration is expected to be achievable if aquaculture ponds are planted with mangrove seedlings, creating the coupling system.

  17. Occurrence and fate of organic contaminants during onsite wastewater treatment.

    Science.gov (United States)

    Conn, Kathleen E; Barber, Larry B; Brown, Gregory K; Siegrist, Robert L

    2006-12-01

    Onsite wastewater treatment systems serve approximately 25% of the U.S. population. However, little is known regarding the occurrence and fate of organic wastewater contaminants (OWCs), including endocrine disrupting compounds, during onsite treatment. A range of OWCs including surfactant metabolites, steroids, stimulants, metal-chelating agents, disinfectants, antimicrobial agents, and pharmaceutical compounds was quantified in wastewater from 30 onsite treatment systems in Summit and Jefferson Counties, CO. The onsite systems represent a range of residential and nonresidential sources. Eighty eight percent of the 24 target compounds were detected in one or more samples, and several compounds were detected in every wastewater sampled. The wastewater matrices were complex and showed unique differences between source types due to differences in water and consumer product use. Nonresidential sources generally had more OWCs at higher concentrations than residential sources. Additional aerobic biofilter-based treatment beyond the traditional anaerobic tank-based treatment enhanced removal for many OWCs. Removal mechanisms included volatilization, biotransformation, and sorption with efficiencies from 99% depending on treatment type and physicochemical properties of the compound. Even with high removal rates during confined unit onsite treatment, OWCs are discharged to soil dispersal units at loadings up to 20 mg/m2/d, emphasizing the importance of understanding removal mechanisms and efficiencies in onsite treatment systems that discharge to the soil and water environments.

  18. Microalgae and wastewater treatment

    Science.gov (United States)

    Abdel-Raouf, N.; Al-Homaidan, A.A.; Ibraheem, I.B.M.

    2012-01-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater. PMID:24936135

  19. Microalgae and wastewater treatment.

    Science.gov (United States)

    Abdel-Raouf, N; Al-Homaidan, A A; Ibraheem, I B M

    2012-07-01

    Organic and inorganic substances which were released into the environment as a result of domestic, agricultural and industrial water activities lead to organic and inorganic pollution. The normal primary and secondary treatment processes of these wastewaters have been introduced in a growing number of places, in order to eliminate the easily settled materials and to oxidize the organic material present in wastewater. The final result is a clear, apparently clean effluent which is discharged into natural water bodies. This secondary effluent is, however, loaded with inorganic nitrogen and phosphorus and causes eutrophication and more long-term problems because of refractory organics and heavy metals that are discharged. Microalgae culture offers an interesting step for wastewater treatments, because they provide a tertiary biotreatment coupled with the production of potentially valuable biomass, which can be used for several purposes. Microalgae cultures offer an elegant solution to tertiary and quandary treatments due to the ability of microalgae to use inorganic nitrogen and phosphorus for their growth. And also, for their capacity to remove heavy metals, as well as some toxic organic compounds, therefore, it does not lead to secondary pollution. In the current review we will highlight on the role of micro-algae in the treatment of wastewater.

  20. Modelling of wastewater systems

    DEFF Research Database (Denmark)

    Bechmann, Henrik

    In this thesis, models of pollution fluxes in the inlet to 2 Danish wastewater treatment plants (WWTPs) as well as of suspended solids (SS) concentrations in the aeration tanks of an alternating WWTP and in the effluent from the aeration tanks are developed. The latter model is furthermore used...

  1. Recent trends in wastewater flow and pollutant load resulting from urbanization in Shanghai.

    Science.gov (United States)

    Liu, Chen; Huang, Tao

    2014-05-01

    To better control water pollution and to manage water resources, we used input-output analysis to examine structural changes in wastewater flows and pollutant loads following changes in socioeconomic activities in Shanghai. We found that the industrial structure has changed considerably and that total direct emission loads exhibited a decreasing trend between 1997 and 2007. Emission loads from secondary industries, especially from paper manufacturing, have decreased. However, wastewater from primary industries remained constant while wastewater from tertiary industries and domestic sources increased, acting as the largest sources of emission loads since 2002. Wastewater and pollutant loads from household consumption, including indirect sources from food manufacturing, clothing, and transportation, had an especially large influence on emission loads in 2007. These emissions were primarily generated through primary industries and food manufacturing sectors. With continued urbanization, wastewater and pollutants generated by household consumption should be factored into the control of water pollution in Shanghai.

  2. When water saving limits recycling: Modelling economy-wide linkages of wastewater use.

    Science.gov (United States)

    Luckmann, Jonas; Grethe, Harald; McDonald, Scott

    2016-01-01

    The reclamation of wastewater is an increasingly important water source in parts of the world. It is claimed that wastewater recycling is a cheap and reliable form of water supply, which preserves water resources and is economically efficient. However, the quantity of reclaimed wastewater depends on water consumption by economic agents connected to a sewage system. This study uses a Computable General Equilibrium (CGE) model to analyse such a cascading water system. A case study of Israel shows that failing to include this linkage can lead to an overestimation of the potential of wastewater recycling, especially when economic agents engage in water saving.

  3. A Course on Operational Considerations in Wastewater Treatment Plant Design. Instructor's Manual.

    Science.gov (United States)

    Cooper, John W.; And Others

    This manual contains 17 instructional units (sequenced to correspond to parallel chapters in a student's manual) focusing on upgrading the design of wastewater plant facilities and serving as a reference source for establishing criteria for upgrading wastewater treatment plants. The manual also furnishes information for modifying plant design to…

  4. Removal Of Endocrine Disrupting Chemicals By A Constructed Wetland For On-Site Domestic Wastewater Treatment

    Science.gov (United States)

    Research has shown that domestic and industrial wastewater can be a source of endocrine disrupting chemicals (EDCs) to the environment. Much of this research has focused on municipal and industrial centralized wastewater treatment plants (WWTPs). These WWTPs have been shown to ...

  5. 40 CFR 63.11498 - What are the standards and compliance requirements for wastewater systems?

    Science.gov (United States)

    2010-07-01

    ... each wastewater stream using process knowledge, engineering assessment, or test data. Also, you must... organic material that is recycled to a process is no longer wastewater and no longer subject to the... Chemical Manufacturing Area Sources Standards and Compliance Requirements § 63.11498 What are the standards...

  6. A global, spatially-explicit assessment of irrigated croplands influenced by urban wastewater flows

    Science.gov (United States)

    Thebo, A. L.; Drechsel, P.; Lambin, E. F.; Nelson, K. L.

    2017-07-01

    When urban areas expand without concomitant increases in wastewater treatment capacity, vast quantities of wastewater are released to surface waters with little or no treatment. Downstream of many urban areas are large areas of irrigated croplands reliant on these same surface water sources. Case studies document the widespread use of untreated wastewater in irrigated agriculture, but due to the practical and political challenges of conducting a true census of this practice, its global extent is not well known except where reuse has been planned. This study used GIS-based modeling methods to develop the first spatially-explicit estimate of the global extent of irrigated croplands influenced by urban wastewater flows, including indirect wastewater use. These croplands were further classified by their likelihood of using poor quality water based on the spatial proximity of croplands to urban areas, urban wastewater return flow ratios, and proportion of wastewater treated. This study found that 65% (35.9 Mha) of downstream irrigated croplands were located in catchments with high levels of dependence on urban wastewater flows. These same catchments were home to 1.37 billion urban residents. Of these croplands, 29.3 Mha were located in countries with low levels of wastewater treatment and home to 885 million urban residents. These figures provide insight into the key role that water reuse plays in meeting the water and food needs of people around the world, and the need to invest in wastewater treatment to protect public health.

  7. Formaldehyde removal in synthetic and industrial wastewater by Rhodococcus erythropolis UPV-1.

    Science.gov (United States)

    Hidalgo, A; Lopategi, A; Prieto, M; Serra, J L; Llama, M J

    2002-02-01

    Rhodococcus erythropolis strain UPV-1 is able to grow on phenol as the only carbon and energy source and to remove formaldehyde completely from both synthetic and industrial wastewater. The rate of formaldehyde removal is independent of either initial biomass or formaldehyde concentration. The presence of viable, intact cells is strictly necessary for this removal to take place. Discontinuous and continuous formaldehyde-feed systems were successfully tested with synthetic wastewater in shaken flasks. Once biodegradation was well established in model synthetic wastewater, a real wastewater sample was obtained from a local phenolic and melamine resin-manufacturing company. Incubation of biomass with this wastewater at subtoxic concentrations of formaldehyde resulted in the complete removal of the pollutant. Parameters, such as chemical oxygen demand and toxicity, were assessed as indicators of wastewater cleanup progress.

  8. A Verhulst model for microalgae Botryococcus sp. growth and nutrient removal in wastewater

    Science.gov (United States)

    Jamaian, Siti Suhana; Bakeri, Noorhadila Mohd; Sunar, Norshuhaila Mohamed; Gani, Paran

    2017-08-01

    Microalgae Botryococcus sp. is a colonial green alga found in lakes and reservoirs in Malaysia. Previous studies reported that the potential of Botryococcus sp. photosynthesis as a source of fuel. The Botryococcus sp. contains hydrocarbon up to 75% of dry weight, which can be converted into petrol, diesel or turbine fuel or other liquid or gaseous hydrocarbons. Recently, an experimental study was conducted on phycoremediation technology for wastewater using Botryococcus sp. The phycoremediation technology is useful to remove the excess of nutrients such as nitrogen, phosphorus and also have the ability to remove various pollutants from wastewater. This research implements the Verhulst model to estimate the nutrient removal by microalgae Botryococcus sp. from the wastewater. This model has been validated with the experiments of microalgae Botryococcus sp. grown in domestic and palm oil wastewater. The results suggested that microalgae Botryococcus sp. could be cultured in domestic and palm oil wastewater while nutrients are reduced from these wastewaters.

  9. Degrading organic micropollutants: The next challenge in the evolution of biological wastewater treatment processes

    Directory of Open Access Journals (Sweden)

    Naresh eSinghal

    2016-05-01

    Full Text Available Global water scarcity is driving the need for identifying new water source. Wastewater could be a potential water resource if appropriate treatment technologies could be developed. One of the barriers to obtaining high quality water from wastewater arises from the presence of organic micropollutants, which are biologically active at trace levels. Removal of these compounds from wastewater by current physico-chemical technologies is prohibitively expensive. While biological treatment processes are comparatively cheap, current systems are not capable of degrading the wide range of organic micropollutants present in wastewater. As current wastewater treatment processes were developed for treating conventional pollutants present at mg/L levels, degrading the ng/L levels of micropollutants will require a different approach to system design and operation. In this paper we discuss strategies that could be employed to develop biological wastewater treatment systems capable of degrading organic micropollutants.

  10. Mitigating Environmental Risks of Wastewater Reuse for Agriculture

    Science.gov (United States)

    Al-Busaidi, Ahmed; Ahmed, Mushtaque

    2016-04-01

    and improved plant productivity. Finally, treated wastewater is a good source of water and can supply soil and plant with many nutrients. However, to avoid any health or environmental problems, reuse of treated wastewater should be subjected to continuous monitoring and fruit qualities should be evaluated.

  11. 40 CFR 417.96 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Oleum Sulfonation and... subpart that introduces process wastewater pollutants into a publicly owned treatment works must comply...

  12. 40 CFR 417.196 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Manufacture of Detergent Bars... subpart that introduces process wastewater pollutants into a publicly owned treatment works must comply...

  13. 40 CFR 417.46 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Glycerine Concentration... introduces process wastewater pollutants into a publicly owned treatment works must comply with 40 CFR part...

  14. 40 CFR 417.26 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Fatty Acid Manufacturing by... this subpart that introduces process wastewater pollutants into a publicly owned treatment works must...

  15. 40 CFR 417.16 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Soap Manufacturing by Batch... subpart that introduces process wastewater pollutants into a publicly owned treatment works must comply...

  16. 40 CFR 417.56 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Glycerine Distillation... introduces process wastewater pollutants into a publicly owned treatment works must comply with 40 CFR part...

  17. 40 CFR 417.36 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... GUIDELINES AND STANDARDS SOAP AND DETERGENT MANUFACTURING POINT SOURCE CATEGORY Soap Manufacturing by Fatty... to this subpart that introduces process wastewater pollutants into a publicly owned treatment works...

  18. 40 CFR 427.36 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Starch Binder... introduces process wastewater pollutants into a publicly owned treatment works must comply with 40 CFR...

  19. 40 CFR 427.46 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... GUIDELINES AND STANDARDS ASBESTOS MANUFACTURING POINT SOURCE CATEGORY Asbestos Paper (Elastomeric Binder... introduces process wastewater pollutants into a publicly owned treatment works must comply with 40 CFR...

  20. 40 CFR 405.124 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Dry Whey Subcategory... introduces process wastewater pollutants into a publicly owned treatment works must comply with 40 CFR...

  1. 40 CFR 405.114 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ...) EFFLUENT GUIDELINES AND STANDARDS DAIRY PRODUCTS PROCESSING POINT SOURCE CATEGORY Condensed Whey... that introduces process wastewater pollutants into a publicly owned treatment works must comply with...

  2. GIS-based predicative modelling of agricultural non point pollution. A case study; Modellazione previsionale GIS-based dell'inquinamento di origine diffusa da fonti agricole. Un caso di studio

    Energy Technology Data Exchange (ETDEWEB)

    Pistocchi, A. [Studio di Ingegneria per l' Ambiente e il Territorio, Cesena (Italy); Bettini, S.; Miserocchi, R. [Geaprogetti Ambiente e Territorio, Ravenna (Italy)

    2000-01-01

    A mathematical modelling approach is presented for agricultural non point source pollution, based on a GIS paradigm. The capability of GIS technology is exploited so to achieve a detailed description of the study area via simple mathematical relations. The features that make the approach preferable for land use management and planning are highlighted. An application to a case study is also given that shows how the model can be set up using currently available cartography. [Italian] Viene presentato un approccio alla modellazione matematica dell'inquinamento di origine diffusa da fonti agricole, che si basa sul paradigma dei sistemi informativi geografici e sulla possibilita' di descrivere i fenomeni idrologici mediante relazioni matematiche semplici e una quantita' di dati capillarmente distribuiti. Vengono messe in evidenza le caratteristiche che rendono questo tipo di approccio preferibile alla modellazione classica per quanto riguarda la pianificazione territoriale. Si illustra l'applicazione al caso di studio del bacino del fiume Savio in Emilia Romagna, mostrando l'applicabilita' del metodo a partire dalle conoscenze rappresentate nella cartografia corrente.

  3. Mercury Bioaccumulation Potential from Wastewater Treatment Plants in Receiving Waters

    Science.gov (United States)

    Dean, J. D.; Mason, R. P.

    2008-12-01

    In early 2007, the Water Environment Research Foundation (WERF) mercury bioavailability project was initiated in response to the establishment of mercury Total Maximum Daily Load (TMDL) criteria around the country. While many TMDLs recognize that point sources typically constitute a small fraction of the mercury load to a water body, the question was raised concerning the relative bioavailablity of mercury coming from various sources. For instance, is the mercury discharged from a wastewater treatment plant more or less bioavailable than mercury contributed from other sources? This talk will focus on the results of a study investigating approaches to the estimation of bioavailability and potential bioaccumulation of mercury from wastewater treatment plants and other sources in receiving waters. From the outset, a working definition of bioavailability was developed which included not only methylmercury, the form that readily bioaccumulates in aquatic food chains, but also bioavailable inorganic mercury species that could be converted to methylmercury within a scientifically reasonable time frame. Factors that enhance or mitigate the transformation of inorganic mercury to methylmercury and its subsequent bioaccumulation were identified. Profiles were developed for various sources of mercury in watersheds, including wastewater treatment plants, with regard to methylmercury and inorganic bioavailable mercury, and the key factors that enhance or mitigate mercury bioavailability. Technologies that remove mercury from wastewater were reviewed and evaluated for their effect on bioavailability. A screening procedure was developed for making preliminary estimates of bioavailable mercury concentrations and fluxes in wastewater effluents and in fresh, estuarine and marine receiving waters. The procedure was validated using several diverse river and reservoir data sets. A "Bioavailability Tool" was developed which allows a user to estimate the bioavailability of an effluent and

  4. Physiochemicals and Heavy Metal Removal from Domestic Wastewater via Phycoremediation

    Directory of Open Access Journals (Sweden)

    Ab Razak Abdul Rafiq

    2016-01-01

    Full Text Available The common sources of water pollution in Malaysia are domestic sewage and industrial waste. Therefore, domestic wastewater quality effluent should be improved before discharged through the outlets. The alternative method of treatment uses microalgae for water remediation which is known as phycoremediation was applied. This technique is to remove or reduce nutrients and harmful pollutants in domestic wastewater. Thus, objective of the present study is to bioremediate the physiochemical and heavy metal from domestic wastewater using freshwater green microalgae Botryococcus sp. A photobioreactor is used to treat the wastewater by employing the microalgae Botryococcus sp. as a vital part of the treatment system. The results show that several nutrients have been reduced successfully such as phosphate and total phosphorus of 100% removal, inorganic carbon of 99% removal, total carbon of 42% removal, and nitrate of 10%. The most prominent heavy metal content that has been removed is Aluminium of 41%. At the same time, the growth of microalgae Botryococcus sp. in this wastewater has achieved the maximum value at Day 4 with 2.58 × 105 cell/ml only. These results show the potential of Botryococcus sp. cultivation as an alternative method to treat domestic wastewater and any other biotechnology works in the future.

  5. Wastewater Irrigation: Persistent Organic Pollutans in Soil and Product

    Directory of Open Access Journals (Sweden)

    Mehmet Emin AYDIN

    2015-06-01

    Full Text Available Treated or untreated wastewaters, used for irrigation purpose, contain various persistent organic pollutants. The long use of these waters for irrigation purpose results in deposition of the pollutants in soil, contaminates products and has adverse health affect on the human through food chain, and biologic activity of flora and fauna. The wastewaters of Konya were conveyed to the Salt Lake through the main drainage channel without any treatment until 2010.  During the arid period, the wastewater in the main drainage channel was used for irrigation and the products were cultivated. In this work, persistent organic pollutants i.e., polychlorinated biphenyls (PCB 28, 52, 101, 138, 153, 180 and polycyclic aromatic hydrocarbons (naphthalene, acenaphthalene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene, dibenzo[a,h]anthracene, benzo[g,h,i]perylene are determined in wastewater irrigated agricultural soil samples and the wheat samples cultivated in the region. High alkaline properties and clay structure of Konya soil were determined. These properties of soil result in the accumulation of contaminants in top soil layer used for agricultural production. On the other hand, PCB and PAH compounds were determined in comparable concentrations in well water irrigated reference soils with wastewater irrigated soils. PCB and PAH sources other than wastewater irrigation was evidenced for the study field.

  6. Cryptosporidium and Giardia removal by secondary and tertiary wastewater treatment.

    Science.gov (United States)

    Taran-Benshoshan, Marina; Ofer, Naomi; Dalit, Vaizel-Ohayon; Aharoni, Avi; Revhun, Menahem; Nitzan, Yeshayahu; Nasser, Abidelfatah M

    2015-01-01

    Wastewater disposal may be a source of environmental contamination by Cryptosporidium and Giardia. This study was conducted to evaluate the prevalence of Cryptosporidium oocysts and Giardia cysts in raw and treated wastewater effluents. A prevalence of 100% was demonstrated for Giardia cysts in raw wastewater, at a concentration range of 10 to 12,225 cysts L(-1), whereas the concentration of Cryptosporidium oocysts in raw wastewater was 4 to 125 oocysts L(-1). The removal of Giardia cysts by secondary and tertiary treatment processes was greater than those observed for Cryptosporidium oocysts and turbidity. Cryptosporidium and Giardia were present in 68.5% and 76% of the tertiary effluent samples, respectively, at an average concentration of 0.93 cysts L(-1) and 9.94 oocysts L(-1). A higher detection limit of Cryptosporidium oocysts in wastewater was observed for nested PCR as compared to immune fluorescent assay (IFA). C. hominis was found to be the dominant genotype in wastewater effluents followed by C. parvum and C. andersoni or C. muris. Giardia was more prevalent than Cryptosporidium in the studied community and treatment processes were more efficient for the removal of Giardia than Cryptosporidium. Zoonotic genotypes of Cryptosporidium were also present in the human community. To assess the public health significance of Cryptosporidium oocysts present in tertiary effluent, viability (infectivity) needs to be assessed.

  7. Wastewater treatment models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2011-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise....... Efficient and good modeling practice therefore requires the use of a proper set of guidelines, thus grounding the modeling studies on a general and systematic framework. Last but not least, general limitations of WWTP models – more specifically activated sludge models – are introduced since these define...

  8. Wastewater Treatment Models

    DEFF Research Database (Denmark)

    Gernaey, Krist; Sin, Gürkan

    2008-01-01

    The state-of-the-art level reached in modeling wastewater treatment plants (WWTPs) is reported. For suspended growth systems, WWTP models have evolved from simple description of biological removal of organic carbon and nitrogen in aeration tanks (ASM1 in 1987) to more advanced levels including...... the practice of WWTP modeling by linking the wastewater treatment line with the sludge handling line in one modeling platform. Application of WWTP models is currently rather time consuming and thus expensive due to the high model complexity, and requires a great deal of process knowledge and modeling expertise....... Efficient and good modeling practice therefore requires the use of a proper set of guidelines, thus grounding the modeling studies on a general and systematic framework. Last but not least, general limitations of WWTP models – more specifically, activated sludge models – are introduced since these define...

  9. Constructed Wetlands for Wastewater Treatment

    OpenAIRE

    Jan Vymazal

    2010-01-01

    The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating); hydrology (free water surface and subsurface flow); and subsurface flow wetlands can be further classified accordi...

  10. Wastewater nitrogen and trace metal uptake by biota on a high-energy rocky shore detected using stable isotopes.

    Science.gov (United States)

    Oakes, Joanne M; Eyre, Bradley D

    2015-11-15

    On high-energy rocky shores receiving treated wastewater, impacts are difficult to distinguish against a highly variable background and are localised due to rapid dilution. We demonstrate that nitrogen stable isotope values (δ(15)N) of rocky shore biota are highly sensitive to wastewater inputs. For macroalgae (Ulva lactuca and Endarachne binghamiae), grazing snails (Bembicium nanum and Nerita atramentosa), and predatory snails (Morula marginalba), δ(15)N was enriched near a wastewater outfall and declined with distance, returning to background levels within 290m. Any of these species therefore indicates the extent of influence of wastewater, allowing identification of an appropriate scale for studies of ecosystem impacts. For M. marginalba, significant regressions between δ(15)N and tissue copper, manganese, and zinc concentrations indicate a possible wastewater source for these metals. This suggests that δ(15)N is a proxy for exposure to wastewater contaminants, and may help to attribute variations in rocky shore communities to wastewater impacts.

  11. Wastewater treatment with algae

    Energy Technology Data Exchange (ETDEWEB)

    Wong Yukshan [Hong Kong Univ. of Science and Technology, Kowloon (China). Research Centre; Tam, N.F.Y. [eds.] [City Univ. of Hong Kong, Kowloon (China). Dept. of Biology and Chemistry

    1998-05-01

    Immobilized algal technology for wastewater treatment purposes. Removal of copper by free and immobilized microalga, Chlorella vulgaris. Biosorption of heavy metals by microalgae in batch and continuous systems. Microalgal removal of organic and inorganic metal species from aqueous solution. Bioaccumulation and biotransformation of arsenic, antimony and bismuth compounds by freshwater algae. Metal ion binding by biomass derived from nonliving algae, lichens, water hyacinth root and spagnum moss. Metal resistance and accumulation in cyanobacteria. (orig.)

  12. Bioindicators of wastewater ecotoxicity.

    Science.gov (United States)

    Jirova, Gabriela; Wittlingerova, Zdenka; Zimova, Magdalena; Vlkova, Alena; Wittlerova, Martina; Dvorakova, Marketa; Jirova, Dagmar

    2016-12-18

    Wastewater, especially containing hospital effluents, exhibits high chemical complexity and specificity since it includes various chemicals, biocides, pharmaceuticals, surfactants, radionuclides, disinfectants and pathogens. Biological tests provide true evidence of the wastewater quality and unlike chemical analytical tests show comprehensive pollution effects on the environment and human health. Normalized conventional bioassays are not sensitive enough for ecotoxicological evaluation of wastewater and there is a great need for the development of suitable sensitive bioassays in order to characterize properly the residual toxicity of treated effluents. Provisions of binding EU legislation regarding protection of animals used for scientific purposes and legislation dealing with test methods for identification and classification of health hazard of chemicals, pharmaceuticals, biocides, medical devices and consumer products such as cosmetics for environmental ecosystems and for man require to employ alternative toxicological methods respecting the 3Rs concept with priority given to methods in vitro. The Fish Embryo Test (FET) is identified as a relevant, reliable and efficient alternative test method in vitro for determination of acute toxicity for fish. Using the FET, additional toxicological endpoints may be investigated to assess organ specific bioaccumulation, genotoxicity and mutagenicity, developmental toxicity, teratogenicity, various forms of neurotoxicity or endocrine disruptivity. The addition of multiparametric sensitive endpoints makes the FET a true alternative in vitro assay and a powerful tool in toxicology.

  13. Contamination Profiles and Mass Loadings of Macrolide Antibiotics and Illicit Drugs from a Small Urban Wastewater Treatment Plant

    Science.gov (United States)

    Information is limited regarding sources, distribution, environmental behavior, and fate of prescribed and illicit drugs. Wastewater treatment plant (WWTP) effluents can be one of the sources of pharmaceutical and personal care products (PPCP) into streams, rivers and lakes. The ...

  14. Contamination Profiles and Mass Loadings of Macrolide Antibiotics and Illicit Drugs from a Small Urban Wastewater Treatment Plant

    Science.gov (United States)

    Information is limited regarding sources, distribution, environmental behavior, and fate of prescribed and illicit drugs. Wastewater treatment plant (WWTP) effluents can be one of the sources of pharmaceutical and personal care products (PPCP) into streams, rivers and lakes. The ...

  15. Training Centers for Onsite Wastewater Treatment

    Science.gov (United States)

    Onsite wastewater training centers offer classes, demonstration projects and research facilities for onsite industry professionals. Classes include wastewater management, new technologies and pre-licensing.

  16. WILL FLUOROTELOMER ALCOHOL BASED POLYMER FORMULATIONS BIODEGRADE DURING AEROBIC BIOLOGICAL WASTEWATER TREATMENT?

    Science.gov (United States)

    The release of fluorotelomer alcohol (FTOH) based polymer formulations (PFs) to wastewater treatment plants (WWTPs) may be an important source of the perfluoroalkyl carboxylic acids (PFCAs) observed in many environmental matrices. Working with the Office of Pollution, Prevention,...

  17. Algae-based biofilm productivity utilizing dairy wastewater: effects of temperature and organic carbon concentration

    National Research Council Canada - National Science Library

    Fica, Zachary T; Sims, Ronald C

    2016-01-01

    .... The dairy industry is a significant source of wastewater worldwide that could provide an inexpensive and nutrient rich feedstock for the cultivation of algae biomass for use in downstream processing...

  18. Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production.

    Science.gov (United States)

    Lu, Qian; Zhou, Wenguang; Min, Min; Ma, Xiaochen; Chandra, Ceria; Doan, Yen T T; Ma, Yiwei; Zheng, Hongli; Cheng, Sibo; Griffith, Richard; Chen, Paul; Chen, Chi; Urriola, Pedro E; Shurson, Gerald C; Gislerød, Hans R; Ruan, Roger

    2015-12-01

    In this work, Chlorella sp. (UM6151) was selected to treat meat processing wastewater for nutrient removal and biomass production. To balance the nutrient profile and improve biomass yield at low cost, an innovative algae cultivation model based on wastewater mixing was developed. The result showed that biomass yield (0.675-1.538 g/L) of algae grown on mixed wastewater was much higher than that on individual wastewater and artificial medium. Wastewater mixing eased the bottleneck for algae growth and contributed to the improved biomass yield. Furthermore, in mixed wastewater with sufficient nitrogen, ammonia nitrogen removal efficiencies (68.75-90.38%) and total nitrogen removal efficiencies (30.06-50.94%) were improved. Wastewater mixing also promoted the synthesis of protein in algal cells. Protein content of algae growing on mixed wastewater reached 60.87-68.65%, which is much higher than that of traditional protein source. Algae cultivation model based on wastewater mixing is an efficient and economical way to improve biomass yield. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Possible Use of Treated Wastewater as Irrigation Water at Urban Green Area

    Directory of Open Access Journals (Sweden)

    Elif Bozdoğan

    2014-08-01

    Full Text Available Ever increasing demands for fresh water resources have brought the reuse of treated wastewater into agendas. Wastewater has year-long potential to be used as an irrigation water source. Therefore, treated wastewater is used as irrigation water over agricultural lands and urban landscapes, as process water in industrial applications, as back-up water in environmental applications in water resources and wetlands of dry regions. The present study was conducted to investigate the possible use of domestic wastewater treated through pilot-scale constructed wetland of Adana-Karaisalı with dominant Mediterranean climate in irrigation of marigold (Tagetes erecta, commonly used over urban landscapes. Experiments were carried out between the dates May-November 2008 for 7 months with fresh water and treated wastewater. Plant growth parameters (plant height, plant diameter, number of branches and flowering parameters (number of flowers, flower diameter, flower pedicle thickness were monitored in monthly basis. Results revealed positive impacts of treated wastewater irrigations on plant growth during the initial 5 months between May-September but negative impacts in October and November. Similarly, treated wastewater irrigations had positive impacts on flowering parameters during the initial 3 months but had negative impacts during the subsequent 4 months. Such a case indicated shortened visual efficiencies of marigold. Therefore, treated wastewater can be used as an alternative water resource in irrigation of annual flowers, but better results can be attained by mixing treated wastewater with fresh water at certain ratios.

  20. Technical analysis of advanced wastewater-treatment systems for coal-gasification plants

    Energy Technology Data Exchange (ETDEWEB)

    1981-03-31

    This analysis of advanced wastewater treatment systems for coal gasification plants highlights the three coal gasification demonstration plants proposed by the US Department of Energy: The Memphis Light, Gas and Water Division Industrial Fuel Gas Demonstration Plant, the Illinois Coal Gasification Group Pipeline Gas Demonstration Plant, and the CONOCO Pipeline Gas Demonstration Plant. Technical risks exist for coal gasification wastewater treatment systems, in general, and for the three DOE demonstration plants (as designed), in particular, because of key data gaps. The quantities and compositions of coal gasification wastewaters are not well known; the treatability of coal gasification wastewaters by various technologies has not been adequately studied; the dynamic interactions of sequential wastewater treatment processes and upstream wastewater sources has not been tested at demonstration scale. This report identifies key data gaps and recommends that demonstration-size and commercial-size plants be used for coal gasification wastewater treatment data base development. While certain advanced treatment technologies can benefit from additional bench-scale studies, bench-scale and pilot plant scale operations are not representative of commercial-size facility operation. It is recommended that coal gasification demonstration plants, and other commercial-size facilities that generate similar wastewaters, be used to test advanced wastewater treatment technologies during operation by using sidestreams or collected wastewater samples in addition to the plant's own primary treatment system. Advanced wastewater treatment processes are needed to degrade refractory organics and to concentrate and remove dissolved solids to allow for wastewater reuse. Further study of reverse osmosis, evaporation, electrodialysis, ozonation, activated carbon, and ultrafiltration should take place at bench-scale.

  1. Trends in advanced wastewater treatment

    DEFF Research Database (Denmark)

    Henze, M.

    1997-01-01

    The paper examines the present trends within wastewater handling and treatment. The trend is towards the extremes, either local low-tech treatment or centralized advanced treatment plants. The composition of the wastewater will change and it will be regarded as a resource. There will be more...

  2. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit o

  3. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit o

  4. Physico-chemical wastewater treatment

    NARCIS (Netherlands)

    Mels, A.R.; Teerikangas, E.

    2002-01-01

    Wastewater reclamation strategies aimed at closing industrial water cycles and recovery of valuable components will in most cases require a combination of wastewater treatment unit operations. Biological unit operations are commonly applied as the core treatment. In addition, physico-chemical unit

  5. Resourceful Utilization of Tannery Wastewater

    Institute of Scientific and Technical Information of China (English)

    Wang Chen; Wang Xikui; Ding Maochen; Zhang Chaoyu

    2012-01-01

    Leather industry is an important light industry in China. Leather making requires a series of chemical treatment. Degreasing, unhairing and chrome tanning wastewaters are the main portions of tannery wastewater. Reclaiming and reusing these wastewaters can eliminate 80% of COD, 75% of BOD, 95% of chromium and 93% of sulfuret, furthermore reduce environment impact, decrease treatment costs, save chemicals and water. Some application methods of wastewater reclamation and reuse for dif- ferent operations were reported. The suitable reclamation and reuse technologies can enable leather making processes more ra- tional, and realize the recovery and recycle of several chemicals in the tannery. Resourceful utilization of tannery wastewater should mate with renovating production technology, updating equipment, and must be guaranteed sufficiently by environmental protection measures.

  6. 40 CFR 63.133 - Process wastewater provisions-wastewater tanks.

    Science.gov (United States)

    2010-07-01

    ..., manages, or treats a Group 1 wastewater stream or a residual removed from a Group 1 wastewater stream, the... fixed roof except that if the wastewater tank is used for heating wastewater, or treating by means of an... 40 Protection of Environment 9 2010-07-01 2010-07-01 false Process wastewater...

  7. Potential effects of desalinated water quality on the operation stability of wastewater treatment plants.

    Science.gov (United States)

    Lew, Beni; Cochva, Malka; Lahav, Ori

    2009-03-15

    Desalinated water is expected to become the major source of drinking water in many places in the near future, and thus the major source of wastewater to arrive at wastewater treatment plants. The paper examines the effect of the alkalinity value with which the water is released from the desalination plant on the alkalinity value that would develop within the wastewater treatment process under various nitrification-denitrification operational scenarios. The main hypothesis was that the difference in the alkalinity value between tap water and domestic wastewater is almost exclusively a result of the hydrolysis of urea (NH(2)CONH(2), excreted in the human urine) to ammonia (NH(3)), regardless of the question what fraction of NH(3(aq)) is transformed to NH(4)(+). Results from a field study show that the ratio between the alkalinity added to tap water when raw wastewater is formed (in meq/l units) and the TAN (total ammonia nitrogen, mole/l) concentration in the raw wastewater is almost 1:1 in purely domestic sewage and close to 1:1 in domestic wastewater streams mixed with light industry wastewaters. Having established the relationship between TAN and total alkalinity in raw wastewater the paper examines three theoretical nitrification-denitrification treatment scenarios in the wastewater treatment plant (WWTP). The conclusion is that if low-alkalinity desalinated water constitutes the major water source arriving at the WWTP, external alkalinity will have to be added in order to avoid pH drop and maintain process stability. The results lead to the conclusion that supplying desalinated water with a high alkalinity value (e.g. > or =100 mg/l as CaCO(3)) would likely prevent the need to add costly basic chemicals in the WWTP, while, in addition, it would improve the chemical and biological stability of the drinking water in the distribution system.

  8. ADVANCED TECHNOLOGY WASTEWATER TREATMENT OF NITRITE IONS

    Directory of Open Access Journals (Sweden)

    E.G. Morozov

    2012-06-01

    Full Text Available The main reason for high concentration of nitrite ions in water is the existence of sources of industrial and agricultural pollution. Contamination of drinking water, juices, wine and other liquids of nitrite ions as a result of improper use of nitrogen fertilizers has an adverse effect on living organism, because under the influence of enzymes nitrite ions in living organisms form high carcinogenic nitrosamines, and the interaction of nitrite ions from blood hemoglobin causes such toxicity that leads to disease cyanosis [1]. Therefore removal of nitrite ions from water has received increased attention. The paper discusses an innovative wastewater treatment technology from the nitrite ion with hypochlorite produced during electrolysis.

  9. Health Effects Associated with Wastewater Treatment, Reuse, and Disposal.

    Science.gov (United States)

    Qu, Xiaoyan; Zhao, Yuanyuan; Yu, Ruoren; Li, Yuan; Falzone, Charles; Smith, Gregory; Ikehata, Keisuke

    2016-10-01

    A review of the literature published in 2015 on topics relating to public and environmental health risks associated with wastewater treatment, reuse, and disposal is presented. This review is divided into the following sections: wastewater management, microbial hazards, chemical hazards, wastewater treatment, wastewater reuse, agricultural reuse in different regions, greywater reuse, wastewater disposal, hospital wastewater, industrial wastewater, and sludge and biosolids.

  10. Electrochemical treatment of pharmaceutical and industrial wastewater by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Menapace, H. M.; Fellerer, M.; Treschnitzer, M.

    2009-07-01

    In modern medicine pharmaceuticals play a decisive role: because of an increased life expectancy and intensive care medicine an increasing amount of pharmaceuticals is produced. thus these substances are consumed in a mass of tons per year in industrialized countries. Wastewater effluents from sewage treatment plants (STP) are important point sources for residues of pharmaceuticals and complexing agents in the aquatic environment. For this reason a research project, which started in December 2006, was established to eliminate pharmaceutical substances and complexing agents found in wastewater as micropollutants. (Author)

  11. Environmental assessment of urban wastewater reuse: treatment alternatives and applications.

    Science.gov (United States)

    Meneses, Montse; Pasqualino, Jorgelina C; Castells, Francesc

    2010-09-01

    The main function of a Wastewater Treatment Plant is to minimize the environmental impact of discharging untreated water into natural water systems. Also a Wastewater Treatment Plant may get a resource from wastewater carrying out a tertiary treatment on the treated wastewater which can be reused in non-potable applications. Water reuse strategies are intended to address the problem of water scarcity without aggravating other environmental problems, thus reflecting the need of their environmental assessment. In this paper we used Life Cycle Assessment to evaluate different disinfection treatments (chlorination plus ultraviolet treatment, ozonation and ozonation plus hydrogen peroxide) and to assess the environmental advantages and drawbacks of urban wastewater reuse in non-potable applications. To do so, we compared the environmental impacts of producing 1m(3) of water for non-potable uses from reclaimed water, potable water and desalinated water sources. The calculation has used current operating data from a Wastewater Treatment Plant located in the Mediterranean area, although the results can be applied to any other plant with similar technology. The ozonation and ozonation plus hydrogen peroxide disinfection treatment technologies have similar environmental profiles. However most of the indicators are about 50% higher than the ultraviolet disinfection except for the acidification (100% higher) and photochemical oxidation (less than 5%). Non-potable uses (both agricultural and urban uses) of reclaimed water have environmental and economical advantages. Reuse of treated wastewater is particularly beneficial when it can replace desalinated water. Consequently, reclaimed water should be promoted for non-potable uses, when there is scarcity of freshwater.

  12. 40 CFR 421.125 - Pretreatment standards for existing sources.

    Science.gov (United States)

    2010-07-01

    ... silver produced from leaching or silver precipitated Copper 5.671 2.703 Zinc 4.519 1.861 Ammonia (as N...) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Secondary Silver... existing sources. The mass of wastewater pollutants in secondary silver process wastewater introduced...

  13. 40 CFR 421.276 - Pretreatment standards for new sources.

    Science.gov (United States)

    2010-07-01

    ... GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary Rare Earth Metals... source subject to this subpart which introduces pollutants into a publicly owned treatment works must... wastewater pollutants in primary rare earth metals process wastewater introduced into a POTW shall not exceed...

  14. Process Integration Design Methods for Water Conservation and Wastewater Reduction in Industry

    DEFF Research Database (Denmark)

    Overcash, Michael; Russell, Dunn; Wenzel, Henrik

    2002-01-01

    ” or “warehouses”) to process water users (referred to as “sinks”, “demands” or “customers”). A detailed case study of industrial significance, highlighting land treatment technology, is included to illustrate the proposed methodology and various process scenarios are evaluated within this case study......This paper addresses operational techniques for applying mass integration design in industry with special focus on water conservation and wastewater reduction. This paper presents a design technique for any number of wastewater streams containing multiple contaminants. The technique comprises...... a single non-linear optimization program to minimize the wastewater discharged (or maximize the amount of recycled wastewater). This program is developed based on general water allocation principles and uses the transshipment model theory to allow the “shipment” of wastewater (referred to as “sources...

  15. Effective Biological Nitrogen Removal Treatment Processes for Domestic Wastewaters with Low C/N Ratios: A Review

    DEFF Research Database (Denmark)

    Sun, Sheng-Peng; Pellicer i Nàcher, Carles; Merkey, Brian

    2010-01-01

    with high efficiency and relative low costs. However, the removal of nitrogen from domestic wastewater with a low carbon/nitrogen (C/N) ratio can often be limited in municipal wastewater plants (WWTPs) because organic carbon is a limiting factor for denitrification. The present work reviews innovative....... They can effectively be used for nitrogen removal from low C/N domestic wastewater without external carbon addition. In addition, conventional and alternative carbon sources for enhanced biological nitrogen removal were also reviewed. We conclude that alternative carbon sources such as wine distillery...... at large scale for nitrogen removal from low C/N domestic wastewater, (2) further method logic are explored to introduce the Anammox pathway into domestic wastewater treatment, and (3) alternative carbon sources are explored and optimized for supporting the denitrification. With these efforts, cost...

  16. Non-targeted analyses of organic compounds in urban wastewater.

    Science.gov (United States)

    Alves Filho, Elenilson G; Sartori, Luci; Silva, Lorena M A; Silva, Bianca F; Fadini, Pedro S; Soong, Ronald; Simpson, Andre; Ferreira, Antonio G

    2015-09-01

    A large number of organic pollutants that cause damage to the ecosystem and threaten human health are transported to wastewater treatment plants (WWTPs). The problems regarding water pollution in Latin America have been well documented, and there is no evidence of substantive efforts to change the situation. In the present work, two methods to study wastewater samples are employed: non-targeted 1D ((13)C and (1)H) and 2D NMR spectroscopic analysis to characterize the largest possible number of compounds from urban wastewater and analysis by HPLC-(UV/MS)-SPE-ASS-NMR to detect non-specific recalcitrant organic compounds in treated wastewater without the use of common standards. The set of data is composed of several compounds with the concentration ranging considerably with treatment and seasonality. An anomalous discharge, the influence of stormwater on the wastewater composition and the presence of recalcitrant compounds (linear alkylbenzene sulfonate surfactant homologs) in the effluent were further identified. The seasonal variations and abnormality in the composition of organic compounds in sewage indicated that the procedure that was employed can be useful in the identification of the pollution source and to enhance the effectiveness of WWTPs in designing preventive action to protect the equipment and preserve the environment.

  17. Chemical Analysis of Wastewater from Unconventional Drilling Operations

    Directory of Open Access Journals (Sweden)

    Jonathan B. Thacker

    2015-04-01

    Full Text Available Trillions of liters of wastewater from oil and gas extraction are generated annually in the US. The contribution from unconventional drilling operations (UDO, such as hydraulic fracturing, to this volume will likely continue to increase in the foreseeable future. The chemical content of wastewater from UDO varies with region, operator, and elapsed time after production begins. Detailed chemical analyses may be used to determine its content, select appropriate treatment options, and identify its source in cases of environmental contamination. In this study, one wastewater sample each from direct effluent, a disposal well, and a waste pit, all in West Texas, were analyzed by gas chromatography-mass spectrometry, inductively coupled plasma-optical emission spectroscopy, high performance liquid chromatography-high resolution mass spectrometry, high performance ion chromatography, total organic carbon/total nitrogen analysis, and pH and conductivity analysis. Several compounds known to compose hydraulic fracturing fluid were detected among two of the wastewater samples including 2-butoxyethanol, alkyl amines, and cocamide diethanolamines, toluene, and o-xylene. Due both to its quantity and quality, proper management of wastewater from UDO will be essential.

  18. Xenobiotic organic compounds in wastewater

    DEFF Research Database (Denmark)

    Eriksson, Eva; Baun, Anders; Henze, Mogens

    2002-01-01

    Information regarding the contents of xenobiotic organic compounds (XOCs) in wastewater is limited, but it has been shown that at least 900 different compounds / compound groups could potentially be present in grey wastewater. Analyses of Danish grey wastewater revealed the presence of several...... hundred of XOCs, among them mainly originating from hygiene products: chlorophenols, detergents and phthalates. Several compounds not deriving from hygiene products were also identified e.g. flame-retardants and drugs. A environmental hazard identification showed that a large number of compounds with high...... aquatic toxicity were present and that data for environmental fate could only be retrieved for about half of the compounds....

  19. Constructed Wetlands for Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Jan Vymazal

    2010-08-01

    Full Text Available The first experiments using wetland macrophytes for wastewater treatment were carried out in Germany in the early 1950s. Since then, the constructed wetlands have evolved into a reliable wastewater treatment technology for various types of wastewater. The classification of constructed wetlands is based on: the vegetation type (emergent, submerged, floating leaved, free-floating; hydrology (free water surface and subsurface flow; and subsurface flow wetlands can be further classified according to the flow direction (vertical or horizontal. In order to achieve better treatment performance, namely for nitrogen, various types of constructed wetlands could be combined into hybrid systems.

  20. Caffeine in an Urbanized Estuary: Past and Present Influence of Wastewater Effluents in Boston Harbor, MA, USA

    Science.gov (United States)

    Caffeine has been identified by previous research as a potential tracer of sanitary wastewater. To further assess the utility of caffeine as a tracer of wastewater sources, samples from 25 sites throughout Boston Harbor were collected and analyzed for caffeine by LC-MS/MS. Caff...

  1. Sequential anaerobic-aerobic biological treatment of colored wastewaters: case study of a textile dyeing factory wastewater.

    Science.gov (United States)

    Abiri, Fardin; Fallah, Narges; Bonakdarpour, Babak

    2017-03-01

    In the present study the feasibility of the use of a bacterial batch sequential anaerobic-aerobic process, in which activated sludge was used in both parts of the process, for pretreatment of wastewater generated by a textile dyeing factory has been considered. Activated sludge used in the process was obtained from a municipal wastewater treatment plant and adapted to real dyeing wastewater using either an anaerobic-only or an anaerobic-aerobic process over a period of 90 days. The use of activated sludge adapted using the anaerobic-aerobic process resulted in a higher overall decolorization efficiency compared to that achieved with activated sludge adapted using the anaerobic-only cycles. Anaerobic and aerobic periods of around 34 and 22 hours respectively resulted in an effluent with chemical oxygen demand (COD) and color content which met the standards for discharge into the centralized wastewater treatment plant of the industrial estate in which the dyeing factory was situated. Neutralization of the real dyeing wastewater and addition of carbon source to it, both of which results in significant increase in the cost of the bacterial treatment process, was not found to be necessary to achieve the required discharge standards.

  2. 臭氧技术在废水处理中的研究进展%Technology of Ozone Developments in the Research of Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    李军; 刘清毅; 井良宵

    2014-01-01

    The technique of ozonation and combined treatment in the area of wastewater treatment is widelyapplicated, such as,tanker wastewater, aniline wastewater,refinery wastewater, pesticide wastewater,textile wastewater,dyeing wastewater, coke plant wastewater,phenolic compounds wastewater,steroid hormones, low-concentration organic wastewater, pharmaceutical wastewater, petrochemical wastewater, photographic waste water, waste seepage filtrate, micro-polluted source water and drinking waterand so on.There are some analysis and commentary to its application andresearch, andintroducedthe new progress of the technique of ozonation and combined treatmentinrecent years.%对臭氧技术在废水处理领域的文献迚行了跟踪研究,综述了臭氧及其联合处理技术在化工废水、农业废水、生活废水及其他生产废水等多个领域内的国内外技术研究现状和应用迚展。分析幵指出了臭氧在废水处理中存在的问题和今后的主要収展方向。

  3. Electricity Production and Characterization of High-Strength Industrial Wastewaters in Microbial Fuel Cell.

    Science.gov (United States)

    Cetinkaya, Afsin Y; Ozdemir, Oguz Kaan; Demir, Ahmet; Ozkaya, Bestami

    2016-11-23

    Microbial fuel cells (MFCs) convert electrochemical energy into electrical energy immediately and have a big potential usage for the same time wastewater treatment and energy recovery via electro-active microorganisms. However, MFCs must be efficiently optimized due to its limitations such as high cost and low power production. Finding new materials to increase the cell performance and reduce cost for MFC anodes is mandatory. In the first step of this study, different inoculation sludges such as anaerobic gum industry wastewater, anaerobic brewery wastewater and anaerobic phosphate were tested, and MFC that was set up with anaerobic gum industry wastewater inoculation sludge exhibited the highest performance. In the second step of this study, various wastewaters such as chocolate industry, gum industry and slaughterhouse industry were investigated for anode bacteria sources. Several electrochemical techniques have been employed to elucidate how wastewaters affect the MFCs' performance. Among all the mentioned wastewaters, the best performance was achieved by the MFCs fed with slaughterhouse wastewater; this device produced a maximum power density of 267 mW·m(-2).

  4. Monitoring of slaughterhouse wastewater biodegradation in a SBR using fluorescence and UV-Visible absorbance.

    Science.gov (United States)

    Louvet, J N; Homeky, B; Casellas, M; Pons, M N; Dagot, C

    2013-04-01

    The aim of this study was to demonstrate that the effectiveness of slaughterhouse wastewater treatment by activated sludge could be enhanced through the use of optical techniques, such as UV-Visible absorbance and fluorescence spectroscopy, to estimate the hydraulic retention time necessary to remove the biodegradable chemical oxygen demand (COD). Two experiments were conducted. First, a batch aerobic degradation was performed on four wastewater samples collected from four different cattle processing sites in order to study the changes in the spectroscopic properties of wastewater during biodegradation. Second, a sequencing batch reactor was used in order to confirm that the wastewater fluorescence could be successfully used to monitor wastewater biodegradation in a pilot-scale experiment. Residual blood was the main source of organic matter in the wastewater samples. The absorbance at 416 nm, related to porphyrins, was correlated to the COD during wastewater biodegradation. The tryptophan-like/fulvic-like fluorescence intensity ratio was related to the extent of biodegradation. The COD removal efficiency ranged from 74% to 94% with an hydraulic retention time (HRT) of 23 h. A ratio of tryptophan-like/fulvic-like fluorescence intensities higher than 1.2 indicated incomplete biodegradation of the wastewater and the need to increase the HRT.

  5. Construction and Operation Costs of Wastewater Treatment and Implications for the Paper Industry in China.

    Science.gov (United States)

    Niu, Kunyu; Wu, Jian; Yu, Fang; Guo, Jingli

    2016-11-15

    This paper aims to develop a construction and operation cost model of wastewater treatment for the paper industry in China and explores the main factors that determine these costs. Previous models mainly involved factors relating to the treatment scale and efficiency of treatment facilities for deriving the cost function. We considered the factors more comprehensively by adding a regional variable to represent the economic development level, a corporate ownership factor to represent the plant characteristics, a subsector variable to capture pollutant characteristics, and a detailed-classification technology variable. We applied a unique data set from a national pollution source census for the model simulation. The major findings include the following: (1) Wastewater treatment costs in the paper industry are determined by scale, technology, degree of treatment, ownership, and regional factors; (2) Wastewater treatment costs show a large decreasing scale effect; (3) The current level of pollutant discharge fees is far lower than the marginal treatment costs for meeting the wastewater discharge standard. Key implications are as follows: (1) Cost characteristics and impact factors should be fully recognized when planning or making policies relating to wastewater treatment projects or technology development; (2) There is potential to reduce treatment costs by centralizing wastewater treatment via industrial parks; (3) Wastewater discharge fee rates should be increased; (4) Energy efficient technology should become the future focus of wastewater treatment.

  6. Caffeine as an indicator for the quantification of untreated wastewater in karst systems.

    Science.gov (United States)

    Hillebrand, Olav; Nödler, Karsten; Licha, Tobias; Sauter, Martin; Geyer, Tobias

    2012-02-01

    Contamination from untreated wastewater leakage and related bacterial contamination poses a threat to drinking water quality. However, a quantification of the magnitude of leakage is difficult. The objective of this work is to provide a highly sensitive methodology for the estimation of the mass of untreated wastewater entering karst aquifers with rapid recharge. For this purpose a balance approach is adapted. It is based on the mass flow of caffeine in spring water, the load of caffeine in untreated wastewater and the daily water consumption per person in a spring catchment area. Caffeine is a source-specific indicator for wastewater, consumed and discharged in quantities allowing detection in a karst spring. The methodology was applied to estimate the amount of leaking and infiltrating wastewater to a well investigated karst aquifer on a daily basis. The calculated mean volume of untreated wastewater entering the aquifer was found to be 2.2 ± 0.5 m(3) d(-1) (undiluted wastewater). It corresponds to approximately 0.4% of the total amount of wastewater within the spring catchment.

  7. The impacts of a linear wastewater reservoir on groundwater recharge and geochemical evolution in a semi-arid area of the Lake Baiyangdian watershed, North China Plain.

    Science.gov (United States)

    Wang, Shiqin; Tang, Changyuan; Song, Xianfang; Wang, Qinxue; Zhang, Yinghua; Yuan, Ruiqiang

    2014-06-01

    Sewage leakage has become an important source of groundwater recharge in urban areas. Large linear wastewater ponds that lack anti-seepage measures can act as river channels that cause the deterioration of groundwater quality. This study investigated the groundwater recharge by leakage of the Tanghe Wastewater Reservoir, which is the largest industrial wastewater channel on the North China Plain. Additionally, water quality evolution was investigated using a combination of multivariate statistical methods, multi-tracers and geochemical methods. Stable isotopes of hydrogen and oxygen indicated high levels of wastewater evaporation. Based on the assumption that the wastewater was under an open system and fully mixed, an evaporation model was established to estimate the evaporation of the wastewater based on isotope enrichments of the Rayleigh distillation theory using the average isotope values for dry and rainy seasons. Using an average evaporation loss of 26.5% for the input wastewater, the estimated recharge fraction of wastewater leakage and irrigation was 73.5% of the total input of wastewater. The lateral regional groundwater inflow was considered to be another recharge source. Combing the two end-members mix model and cluster analysis revealed that the mixture percentage of the wastewater decreased from the Highly Affected Zone (76%) to the Transition Zone (5%). Ion exchange and redox reaction were the dominant geochemical processes when wastewater entered the aquifer. Carbonate precipitation was also a major process affecting evolution of groundwater quality along groundwater flow paths.

  8. Wastewater treatment by flotation

    Directory of Open Access Journals (Sweden)

    F.P. Puget

    2000-12-01

    Full Text Available This work deals with the performance analysis of a separation set-up characterized by the ejector-hydrocyclone association, applied in the treatment of a synthetic dairy wastewater effluent. The results obtained were compared with the results from a flotation column (cylindrical body of a hydrocyclone operated both batch and continuously. As far as the experimental set-up studied in this work and the operating conditions imposed to the process, it is possible to reach a 25% decrease in the total effluent chemical oxygen demand (COD. This corresponds approximately to 60% of the COD of the material in suspension. The best results are obtained for ratios air flow rate-feed flow rate (Qair/Q L greater then 0.15 and for ratios underflow rate-overflow rate (Qu/Qo lower than 1.0.

  9. Treating Wastewater With Immobilized Enzymes

    Science.gov (United States)

    Jolly, Clifford D.

    1991-01-01

    Experiments show enzymes are immobilized on supporting materials to make biocatalyst beds for treatment of wastewater. With suitable combination of enzymes, concentrations of various inorganic and organic contaminants, including ammonia and urea, reduced significantly.

  10. Economic Analysis on Wastewater Reuse

    Institute of Scientific and Technical Information of China (English)

    Yushan WAN; Na LI

    2012-01-01

    Abstract The shortage of water resources social development. Wastewater reuse is an has become a major limiting factor for effective solution to solve water short- ages, which not only has economic benefits, but also has significant social and en- vironmental benefits. The economic evaluation is an important component in the study of wastewater reuse feasibility and the basis for the program optimization and economic feasibility determination.

  11. High levels of endocrine pollutants in US streams during low flow due to insufficient wastewater dilution

    Science.gov (United States)

    Rice, Jacelyn; Westerhoff, Paul

    2017-08-01

    Wastewater discharges from publicly owned treatment works are a significant source of endocrine disruptors and other contaminants to the aquatic environment in the US. Although remaining pollutants in wastewater pose environmental risks, treated wastewater is also a primary source of stream flow, which in turn is critical in maintaining many aquatic and riparian wildlife habitats. Here we calculate the dilution factor--the ratio of flow in the stream receiving discharge to the flow of wastewater discharge--for over 14,000 receiving streams in the continental US using streamflow observations and a spatially explicit watershed-scale hydraulic model. We found that wastewater discharges make up more than 50% of in-stream flow for over 900 streams. However, in 1,049 streams that experienced exceptional low-flow conditions, the dilution factors in 635 of those streams fell so low during those conditions that the safety threshold for concentrations of one endocrine disrupting compound was exceeded, and in roughly a third of those streams, the threshold was exceeded for two compounds. We suggest that streams are vulnerable to public wastewater discharge of contaminants under low-flow conditions, at a time when wastewater discharges are likely to be most important for maintaining stream flow for smaller sized river systems.

  12. Estimation on the Soil Erosion Type Non-point Pollution based on the DEM%基于 DEM 的水土流失型非点源污染估算

    Institute of Scientific and Technical Information of China (English)

    陈邦雄

    2014-01-01

    Soil erosion is not only the non -point pollution form but also the carrier of other non -point pollutant los-ses.Taking the Daya Bay watershed as the example , the basic materials were gained by using the Digital Elevation Model( DEM) .Based on the analogy of the related research findings at home and abroad , it was discussed the rapid appraisal method to the large scale soil erosion type non -point pollution load to get of the parameters of export coeffi-cient model for the estimation of the soil erosion type non -point pollution load .%水土流失既是一种非点源污染形式,同时又是其他非点源污染物流失的载体。本文以大亚湾流域为例,利用数字高程模型( DEM)获取基础资料,通过类比国内外的相关研究成果而获得的输出系数模型参数,采用输出系数模型法估算水土流失型非点源污染负荷,探讨快速评估大尺度水土流失型非点源污染负荷的方法。

  13. Wastewater treatment and public health in Nunavut: a microbial risk assessment framework for the Canadian Arctic

    DEFF Research Database (Denmark)

    Daley, Kiley; Jamieson, Rob; Rainham, Daniel

    2017-01-01

    -level pathogen removal. These systems are typically reliant solely on natural environmental processes for treatment and make use of existing lagoons, wetlands, and bays. They are operated in a manner such that partially treated wastewater still containing potentially hazardous microorganisms is released...... into the terrestrial and aquatic environment at random times. Northern communities rely heavily on their local surroundings as a source of food, drinking water, and recreation, thus creating the possibility of human exposure to wastewater effluent. Human exposure to microbial hazards present in municipal wastewater...

  14. A