WorldWideScience

Sample records for non-perturbative electric fields

  1. Non-perturbative background field calculations

    International Nuclear Information System (INIS)

    Stephens, C.R.; Department of Physics, University of Utah, Salt Lake City, Utah 84112)

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation: perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation. copyright 1988 Academic Press, Inc

  2. Non-perturbative background field calculations

    Science.gov (United States)

    Stephens, C. R.

    1988-01-01

    New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.

  3. Alien calculus and non perturbative effects in Quantum Field Theory

    Science.gov (United States)

    Bellon, Marc P.

    2016-12-01

    In many domains of physics, methods for dealing with non-perturbative aspects are required. Here, I want to argue that a good approach for this is to work on the Borel transforms of the quantities of interest, the singularities of which give non-perturbative contributions. These singularities in many cases can be largely determined by using the alien calculus developed by Jean Écalle. My main example will be the two point function of a massless theory given as a solution of a renormalization group equation.

  4. On non-perturbative effects of background fields

    International Nuclear Information System (INIS)

    Hosoda, Masataka; Yamakoshi, Hitoshi; Shimizu, Tadayoshi.

    1986-01-01

    APS-index of the Abelian Higgs model is at first obtained in a bounded domain of a disk with radius R. It is shown that the APS-index depends strongly on the behavior of the background fields and becomes integer when boundary effects are taken into account. Next, the electric charge of the vacuum is reconsidered in the momopole field coupled to a massive Dirac particle. It is reconfirmed that the monopole ground state has an electric charge θ/π which changes discontinuously to zero when the fermion mass is zero. (author)

  5. Lattice field theories: non-perturbative methods of analysis

    International Nuclear Information System (INIS)

    Weinstein, M.

    1978-01-01

    A lecture is given on the possible extraction of interesting physical information from quantum field theories by studying their semiclassical versions. From the beginning the problem of solving for the spectrum states of any given continuum quantum field theory is considered as a giant Schroedinger problem, and then some nonperturbative methods for diagonalizing the Hamiltonian of the theory are explained without recourse to semiclassical approximations. The notion of a lattice appears as an artifice to handle the problems associated with the familiar infrared and ultraviolet divergences of continuum quantum field theory and in fact for all but gauge theories. 18 references

  6. Non-perturbative subtractions in the heavy quark effective field theory

    International Nuclear Information System (INIS)

    Maiani, L.; Martinelli, G.; Sachrajda, C.T.

    1992-01-01

    We demonstrate the presence of ultraviolet power divergences in the O(1/m h ) corrections to matrix elements of hadronic operators containing a heavy quark field (where m h is the mass of the heavy quark). These power divergences must be subtracted non-perturbatively. The implications for lattice computations are discussed in detail. (orig.)

  7. Non-perturbative field theory/field theory on a lattice

    International Nuclear Information System (INIS)

    Ambjorn, J.

    1988-01-01

    The connection between the theory of critical phenomena in statistical mechanics and the renormalization of field theory is briefly outlined. The way of using this connection is described to get information about non-perturbative quantities in QCD and about more intelligent ways of doing the Monte Carlo (MC) simulations. The (MC) method is shown to be a viable one in high energy physics, but it is not a good substitute for an analytic understanding. MC-methods will be very valuable both for getting out hard numbers and for testing the correctness of new ideas

  8. Phase control of the probability of electronic transitions in the non-perturbative laser field intensity

    International Nuclear Information System (INIS)

    Yokoyama, Keiichi; Sugita, Akihiro; Yamada, Hidetaka; Teranishi, Yoshiaki; Yokoyama, Atsushi

    2007-01-01

    A preparatory study on the quantum control of the selective transition K(4S 1/2 ) → K(4P J ) (J=1/2, 3/2) in intense laser field is reported. To generate high average power femtosecond laser pulses with enough field intensity, a Ti:Sapphire regenerative amplifier system with a repetition rate of 1 kHz is constructed. The bandwidth and pulse energy are shown to qualify the required values for the completely selective transition with 100% population inversion. A preliminary experiment of the selective excitation shows that the fringe pattern formed by a phase related pulse pair depends on the laser intensity, indicating that the perturbative behavior of the excitation probabilities is not valid any more and the laser intensity reaches a non-perturbative region. (author)

  9. Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, Astrid

    2011-09-06

    In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}} from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the {beta} function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension

  10. Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity

    International Nuclear Information System (INIS)

    Eichhorn, Astrid

    2011-01-01

    In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F μν F μν from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the β function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension which we find to be negative at the

  11. Non-perturbative aspects of quantum field theory. From the quark-gluon plasma to quantum gravity

    International Nuclear Information System (INIS)

    Christiansen, Nicolai

    2015-01-01

    In this dissertation we investigate several aspects of non-perturbative quantum field theory. Two main parts of the thesis are concerned with non-perturbative renormalization of quantum gravity within the asymptotic safety scenario. This framework is based on a non-Gaussian ultraviolet fixed point and provides a well-defined theory of quantized gravity. We employ functional renormalization group (FRG) techniques that allow for the study of quantum fields even in strongly coupled regimes. We construct a setup for the computation of graviton correlation functions and analyze the ultraviolet completion of quantum gravity in terms of the properties of the two- and three point function of the graviton. Moreover, the coupling of gravity to Yang-Mills theories is discussed. In particular, we study the effects of graviton induced interactions on asymptotic freedom on the one hand, and the role of gluonic fluctuations in the gravity sector on the other hand. The last subject of this thesis is the physics of the quark-gluon plasma. We set-up a general non-perturbative strategy for the computation of transport coefficients in non-Abelian gauge theories. We determine the viscosity over entropy ratio η/s in SU(3) Yang-Mills theory as a function of temperature and estimate its behavior in full quantum chromodynamics (QCD).

  12. Non-Perturbative Renormalization

    CERN Document Server

    Mastropietro, Vieri

    2008-01-01

    The notion of renormalization is at the core of several spectacular achievements of contemporary physics, and in the last years powerful techniques have been developed allowing to put renormalization on a firm mathematical basis. This book provides a self-consistent and accessible introduction to the sophisticated tools used in the modern theory of non-perturbative renormalization, allowing an unified and rigorous treatment of Quantum Field Theory, Statistical Physics and Condensed Matter models. In particular the first part of this book is devoted to Constructive Quantum Field Theory, providi

  13. Instantons and large N an introduction to non-perturbative methods in quantum field theory

    CERN Document Server

    Marino, Marcos

    2015-01-01

    This highly pedagogical textbook for graduate students in particle, theoretical and mathematical physics, explores advanced topics of quantum field theory. Clearly divided into two parts; the first focuses on instantons with a detailed exposition of instantons in quantum mechanics, supersymmetric quantum mechanics, the large order behavior of perturbation theory, and Yang-Mills theories, before moving on to examine the large N expansion in quantum field theory. The organised presentation style, in addition to detailed mathematical derivations, worked examples and applications throughout, enables students to gain practical experience with the tools necessary to start research. The author includes recent developments on the large order behaviour of perturbation theory and on large N instantons, and updates existing treatments of classic topics, to ensure that this is a practical and contemporary guide for students developing their understanding of the intricacies of quantum field theory.

  14. Non-perturbative analysis of some simple field theories on a momentum space lattice

    International Nuclear Information System (INIS)

    Brooks, E.D. III.

    1984-01-01

    In this work, a new technique is developed for the numerical study of quantum field theory. The procedure, borrowed from nonrelativistic quantum mechanics, is that of finding the eigenvalues of a finite Hamiltonian matrix. The matrix is created by evaluating the matrix elements of the Hamiltonian operator on a finite basis of states. The eigenvalues and eigenvectors of the finite dimensional matrix become an accurate approximation to those of the physical system as the finite basis of states is extended to become more complete. A model of scalars coupled to fermions in 0 + 1 dimensions as a simple field theory is studied to consider in the course of developing the technique. Having developed the numerical and analytical techniques, a Fermi field coupled to a Bose field in 1 + 1 dimensions with the Yukawa coupling lambda anti-psi phi psi is considered. The large coupling limit basis of the 0 + 1 dimensional model is extended to this case using a Bogoliubov transformation on the fermions. It provides a handle on the behavior of the system in the large coupling limit. The effects of renormalization and the generation of bound states are considered

  15. New Methods in Non-Perturbative QCD

    Energy Technology Data Exchange (ETDEWEB)

    Unsal, Mithat [North Carolina State Univ., Raleigh, NC (United States)

    2017-01-31

    In this work, we investigate the properties of quantum chromodynamics (QCD), by using newly developing mathematics and physics formalisms. Almost all of the mass in the visible universe emerges from a quantum chromodynamics (QCD), which has a completely negligible microscopic mass content. An intimately related issue in QCD is the quark confinement problem. Answers to non-perturbative questions in QCD remained largely elusive despite much effort over the years. It is also believed that the usual perturbation theory is inadequate to address these kinds of problems. Perturbation theory gives a divergent asymptotic series (even when the theory is properly renormalized), and there are non-perturbative phenomena which never appear at any order in perturbation theory. Recently, a fascinating bridge between perturbation theory and non-perturbative effects has been found: a formalism called resurgence theory in mathematics tells us that perturbative data and non-perturbative data are intimately related. Translating this to the language of quantum field theory, it turns out that non-perturbative information is present in a coded form in perturbation theory and it can be decoded. We take advantage of this feature, which is particularly useful to understand some unresolved mysteries of QCD from first principles. In particular, we use: a) Circle compactifications which provide a semi-classical window to study confinement and mass gap problems, and calculable prototypes of the deconfinement phase transition; b) Resurgence theory and transseries which provide a unified framework for perturbative and non-perturbative expansion; c) Analytic continuation of path integrals and Lefschetz thimbles which may be useful to address sign problem in QCD at finite density.

  16. Non-perturbative description of quantum systems

    CERN Document Server

    Feranchuk, Ilya; Le, Van-Hoang; Ulyanenkov, Alexander

    2015-01-01

    This book introduces systematically the operator method for the solution of the Schrödinger equation. This method permits to describe the states of quantum systems in the entire range of parameters of Hamiltonian with a predefined accuracy. The operator method is unique compared with other non-perturbative methods due to its ability to deliver in zeroth approximation the uniformly suitable estimate for both ground and excited states of quantum system. The method has been generalized for the application to quantum statistics and quantum field theory.  In this book, the numerous applications of operator method for various physical systems are demonstrated. Simple models are used to illustrate the basic principles of the method which are further used for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.

  17. Non-perturbative methods applied to multiphoton ionization

    International Nuclear Information System (INIS)

    Brandi, H.S.; Davidovich, L.; Zagury, N.

    1982-09-01

    The use of non-perturbative methods in the treatment of atomic ionization is discussed. Particular attention is given to schemes of the type proposed by Keldysh where multiphoton ionization and tunnel auto-ionization occur for high intensity fields. These methods are shown to correspond to a certain type of expansion of the T-matrix in the intra-atomic potential; in this manner a criterium concerning the range of application of these non-perturbative schemes is suggested. A brief comparison between the ionization rate of atoms in the presence of linearly and circularly polarized light is presented. (Author) [pt

  18. Non-perturbative effects in supersymmetry

    International Nuclear Information System (INIS)

    Veneziano, G.

    1987-01-01

    Some non perturbative aspects of globally supersymmetric (SUSY) gauge theories are discussed. These share with their non-supersymmetric analogues interesting non perturbative features, such as the spontaneous breaking of chiral symmetries via condensates. What is peculiar about supersymmetric theories, however, is that one is able to say a lot about non-perturbative effects even without resorting to elaborate numerical calculations: general arguments, supersymmetric and chiral Ward identities and analytic, dynamical calculations will turn out to effectively determine most of the supersymmetric vacuum properties. 28 references, 5 figures

  19. A non-perturbative argument for the non-abelian Higgs mechanism

    Energy Technology Data Exchange (ETDEWEB)

    De Palma, G. [Scuola Normale Superiore, Pisa (Italy); INFN, Sezione di Pisa, Pisa (Italy); Strocchi, F., E-mail: franco.strocchi@sns.it [INFN, Sezione di Pisa, Pisa (Italy)

    2013-09-15

    The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge. -- Highlights: •The perturbative explanation of the Higgs mechanism (HM) is not under mathematical control. •We offer a non-perturbative proof of the absence of Goldstone bosons from the non-abelian HM. •Our non-perturbative proof in the BRST gauge avoids a mean field ansatz and expansion.

  20. A non-perturbative argument for the non-abelian Higgs mechanism

    International Nuclear Information System (INIS)

    De Palma, G.; Strocchi, F.

    2013-01-01

    The evasion of massless Goldstone bosons by the non-abelian Higgs mechanism is proved by a non-perturbative argument in the local BRST gauge. -- Highlights: •The perturbative explanation of the Higgs mechanism (HM) is not under mathematical control. •We offer a non-perturbative proof of the absence of Goldstone bosons from the non-abelian HM. •Our non-perturbative proof in the BRST gauge avoids a mean field ansatz and expansion

  1. Electric fields and electrical insulation

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    2002-01-01

    The adoption of a field-theoretical approach to problems arising in the framework of electrical insulation is discussed with reference to six main topics, which have been addressed over the last 30 years. These include uniform field electrodes, Green's differential equation, electrode surface...... roughness, induced charge, electrostatic probes, and partial discharge transients, together with several follow-on aspects. Each topic is introduced and thereafter the progress achieved through the use of a field-theoretical approach is reviewed. Because the topics cover a wide spectrum of conditions......, it is amply demonstrated that such an approach can lead to significant progress in many areas of electrical insulation....

  2. Electric Field Imaging

    Data.gov (United States)

    National Aeronautics and Space Administration — NDE historically has focused technology development in propagating wave phenomena with little attention to the field of electrostatics and emanating electric fields....

  3. Non-perturbative QCD correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Cyrol, Anton Konrad

    2017-11-27

    Functional methods provide access to the non-perturbative regime of quantum chromo- dynamics. Hence, they allow investigating confinement and chiral symmetry breaking. In this dissertation, correlation functions of Yang-Mills theory and unquenched two-flavor QCD are computed from the functional renormalization group. Employing a self-consistent vertex expansion of the effective action, Yang-Mills correlation functions are obtained in four as well as in three spacetime dimensions. To this end, confinement and Slavnov-Taylor identities are discussed. Our numerical results show very good agreement with corresponding lattice results. Next, unquenched two-flavor QCD is considered where it is shown that the unquenched two-flavor gluon propagator is insensitive to the pion mass. Furthermore, the necessity for consistent truncations is emphasized. Finally, correlation functions of finite-temperature Yang-Mills theory are computed in a truncation that includes the splitting of the gluon field into directions that are transverse and longitudinal to the heat bath. In particular, it includes the splitting of the three- and four-gluon vertices. The obtained gluon propagator allows to extract a Debye screening mass that coincides with the hard thermal loop screening mass at high temperatures, but is meaningful also at temperatures below the phase transition temperature.

  4. A non-perturbative study of matter field propagators in Euclidean Yang-Mills theory in linear covariant, Curci-Ferrari and maximal Abelian gauges

    Energy Technology Data Exchange (ETDEWEB)

    Capri, M.A.L.; Fiorentini, D.; Sorella, S.P. [UERJ - Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); Pereira, A.D. [UERJ - Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); UFF - Universidade Federal Fluminense, Instituto de Fisica, Niteroi, RJ (Brazil)

    2017-08-15

    In this work, we study the propagators of matter fields within the framework of the refined Gribov-Zwanziger theory, which takes into account the effects of the Gribov copies in the gauge-fixing quantization procedure of Yang-Mills theory. In full analogy with the pure gluon sector of the refined Gribov-Zwanziger action, a non-local long-range term in the inverse of the Faddeev-Popov operator is added in the matter sector. Making use of the recent BRST-invariant formulation of the Gribov-Zwanziger framework achieved in Capri et al. (Phys Rev D 92(4):045039, 2015), (Phys Rev D 94(2):025035, 2016), (Phys Rev D 93(6):065019, 2016), (arXiv:1611.10077 [hepth]), Pereira et al. (arXiv:1605.09747 [hep-th]), the propagators of scalar and quark fields in the adjoint and fundamental representations of the gauge group are worked out explicitly in the linear covariant, Curci-Ferrari and maximal Abelian gauges. Whenever lattice data are available, our results exhibit good qualitative agreement. (orig.)

  5. A non-perturbative study of matter field propagators in Euclidean Yang-Mills theory in linear covariant, Curci-Ferrari and maximal Abelian gauges

    Science.gov (United States)

    Capri, M. A. L.; Fiorentini, D.; Pereira, A. D.; Sorella, S. P.

    2017-08-01

    In this work, we study the propagators of matter fields within the framework of the refined Gribov-Zwanziger theory, which takes into account the effects of the Gribov copies in the gauge-fixing quantization procedure of Yang-Mills theory. In full analogy with the pure gluon sector of the refined Gribov-Zwanziger action, a non-local long-range term in the inverse of the Faddeev-Popov operator is added in the matter sector. Making use of the recent BRST-invariant formulation of the Gribov-Zwanziger framework achieved in Capri et al. (Phys Rev D 92(4):045039, 2015), (Phys Rev D 94(2):025035, 2016), (Phys Rev D 93(6):065019, 2016), (arXiv:1611.10077 [hep-th]), Pereira et al. (arXiv:1605.09747 [hep-th]),the propagators of scalar and quark fields in the adjoint and fundamental representations of the gauge group are worked out explicitly in the linear covariant, Curci-Ferrari and maximal Abelian gauges. Whenever lattice data are available, our results exhibit good qualitative agreement.

  6. Non-Perturbative Quantum Geometry III

    CERN Document Server

    Krefl, Daniel

    2016-08-02

    The Nekrasov-Shatashvili limit of the refined topological string on toric Calabi-Yau manifolds and the resulting quantum geometry is studied from a non-perturbative perspective. The quantum differential and thus the quantum periods exhibit Stockes phenomena over the combined string coupling and quantized Kaehler moduli space. We outline that the underlying formalism of exact quantization is generally applicable to points in moduli space featuring massless hypermultiplets, leading to non-perturbative band splitting. Our prime example is local P1xP1 near a conifold point in moduli space. In particular, we will present numerical evidence that in a Stockes chamber of interest the string based quantum geometry reproduces the non-perturbative corrections for the Nekrasov-Shatashvili limit of 4d supersymmetric SU(2) gauge theory at strong coupling found in the previous part of this series. A preliminary discussion of local P2 near the conifold point in moduli space is also provided.

  7. A non-perturbative definition of 2D quantum gravity by the fifth time action

    International Nuclear Information System (INIS)

    Ambjoern, J.; Greensite, J.; Varsted, S.

    1990-07-01

    The general formalism for stabilizing bottomless Euclidean field theories (the 'fifth-time' action) provides a natural non-perturbative definition of matrix models corresponding to 2d quantum gravity. The formalism allows, in principle, the use of lattice Monte Carlo techniques for non-perturbative computation of correlation functions. (orig.)

  8. Non-perturbative QCD and hadron physics

    International Nuclear Information System (INIS)

    Cobos-Martínez, J J

    2016-01-01

    A brief exposition of contemporary non-perturbative methods based on the Schwinger-Dyson (SDE) and Bethe-Salpeter equations (BSE) of Quantum Chromodynamics (QCD) and their application to hadron physics is given. These equations provide a non-perturbative continuum formulation of QCD and are a powerful and promising tool for the study of hadron physics. Results on some properties of hadrons based on this approach, with particular attention to the pion distribution amplitude, elastic, and transition electromagnetic form factors, and their comparison to experimental data are presented. (paper)

  9. On the non-perturbative effects

    International Nuclear Information System (INIS)

    Manjavidze, J.; Voronyuk, V.

    2004-01-01

    The quantum correspondence principle based on the time reversibility is adopted to take into account the non-Abelian symmetry constrains. The main properties of the new strong-coupling perturbation theory which take into account non-perturbative effects are described. (author)

  10. Non-perturbative Heavy Quark Effective Theory

    DEFF Research Database (Denmark)

    Della Morte, Michele; Heitger, Jochen; Simma, Hubert

    2015-01-01

    We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B...

  11. Earth's electric field

    International Nuclear Information System (INIS)

    Kelley, M.C.

    1978-01-01

    The earth becomes charged during thunderstorm activity and discharges through the weak conducting atmosphere. Balloon and rocket studies infer that a high altitude electric field penetrates virtually unattenuated through the atmosphere, at least as far as balloon heights. The field has two primary sources. At low and mid latitudes, interaction between the earth's magnetic field and the neutral wind creates electric fields. At latitudes above 60 0 , the high altitude electrical structure is dominated by the interaction between the solar wind and the earth's magnetic field. The auroral light is emitted by atmospheric atoms and molecules excited by electrons with potentials of many thousands volts. The potentials are induced by the solar wind. Recent satellite data shows that the electrons get this energy by passing through a localized electric field about 6000 km above the auroral zone. Several rocket and satellite experiments used to study the earth's electric field are discussed

  12. Non-perturbative Green functions in quantum gauge theories

    International Nuclear Information System (INIS)

    Shabanov, S.V.

    1991-01-01

    Non-perturbative Green functions for gauge invariant variables are considered. The Green functions are found to be modified as compared with the usual ones in a definite gauge because of a physical configuration space (PCS) reduction. In the Yang-Mills theory with fermions this phenomenon follows from the Singer theorem about the absence of a global gauge condition for the fields tensing to zero at spatial infinity. 20 refs

  13. Calibrated geometries and non perturbative superpotentials in M-theory

    International Nuclear Information System (INIS)

    Hernandez, R.

    1999-12-01

    We consider non perturbative effects in M-theory compactifications on a seven-manifold of G 2 holonomy arising from membranes wrapped on supersymmetric three-cycles. When membranes are wrapped on associative submanifolds they induce a superpotential that can be calculated using calibrated geometry. This superpotential is also derived from compactification on a seven-manifold, to four dimensional Anti-de Sitter spacetime, of eleven dimensional supergravity with non vanishing expectation value of the four-form field strength. (author)

  14. Pulsed electric fields

    Science.gov (United States)

    The concept of pulsed electric fields (PEF) was first proposed in 1967 to change the behavior or microorganisms. The electric field phenomenon was identified as membrane rupture theory in the 1980s. Increasing the membrane permeability led to the application of PEF assisted extraction of cellular co...

  15. Dielectrics in electric fields

    CERN Document Server

    Raju, Gorur G

    2003-01-01

    Discover nontraditional applications of dielectric studies in this exceptionally crafted field reference or text for seniors and graduate students in power engineering tracks. This text contains more than 800 display equations and discusses polarization phenomena in dielectrics, the complex dielectric constant in an alternating electric field, dielectric relaxation and interfacial polarization, the measurement of absorption and desorption currents in time domains, and high field conduction phenomena. Dielectrics in Electric Fields is an interdisciplinary reference and text for professionals and students in electrical and electronics, chemical, biochemical, and environmental engineering; physical, surface, and colloid chemistry; materials science; and chemical physics.

  16. A non-perturbative operator product expansion

    International Nuclear Information System (INIS)

    Bietenholz, W.; Cundy, N.; Goeckeler, M.

    2009-10-01

    Nucleon structure functions can be observed in Deep Inelastic Scattering experiments, but it is an outstanding challenge to confront them with fully non-perturbative QCD results. For this purpose we investigate the product of electromagnetic currents (with large photonmomenta) between quark states (of low momenta). By means of an Operator Product Expansion the structure function can be decomposed into matrix elements of local operators, and Wilson coefficients. For consistency both have to be computed non-perturbatively. Here we present precision results for a set of Wilson coefficients. They are evaluated from propagators for numerous quark momenta on the lattice, where the use of chiral fermions suppresses undesired operator mixing. This overdetermines the Wilson coefficients, but reliable results can be extracted by means of a Singular Value Decomposition. (orig.)

  17. Non-perturbative quark mass renormalization

    CERN Document Server

    Capitani, S.; Luescher, M.; Sint, S.; Sommer, R.; Weisz, P.; Wittig, H.

    1998-01-01

    We show that the renormalization factor relating the renormalization group invariant quark masses to the bare quark masses computed in lattice QCD can be determined non-perturbatively. The calculation is based on an extension of a finite-size technique previously employed to compute the running coupling in quenched QCD. As a by-product we obtain the $\\Lambda$--parameter in this theory with completely controlled errors.

  18. Non-perturbative aspects of string theory from elliptic curves

    International Nuclear Information System (INIS)

    Reuter, Jonas

    2015-08-01

    We consider two examples for non-perturbative aspects of string theory involving elliptic curves. First, we discuss F-theory on genus-one fibered Calabi-Yau manifolds with the fiber being a hypersurface in a toric fano variety. We discuss in detail the fiber geometry in order to find the gauge groups, matter content and Yukawa couplings of the corresponding supergravity theories for the four examples leading to gauge groups SU(3) x SU(2) x U(1), SU(4) x SU(2) x SU(2)/Z 2 , U(1) and Z 3 . The theories are connected by Higgsings on the field theory side and conifold transitions on the geometry side. We extend the discussion to the network of Higgsings relating all theories stemming from the 16 hypersurface fibrations. For the models leading to gauge groups SU(3) x SU(2) x U(1), SU(4) x SU(2) x SU(2)/Z 2 and U(1) we discuss the construction of vertical G 4 fluxes. Via the D3-brane tadpole cancelation condition we can restrict the minimal number of families in the first two of these models to be at least three. As a second example for non-perturbative aspects of string theory we discuss a proposal for a non-perturbative completion of topological string theory on local B-model geometries. We discuss in detail the computation of quantum periods for the examples of local F 1 , local F 2 and the resolution of C 3 /Z 5 . The quantum corrections are calculated order by order using second order differential operators acting on the classical periods. Using quantum geometry we calculate the refined free energies in the Nekrasov-Shatashvili limit. Finally we check the non-perturbative completion of topological string theory for the geometry of local F 2 against numerical calculations.

  19. Charged Hadron Properties in Background Electric Fields

    International Nuclear Information System (INIS)

    Detmold, William; Tiburzi, Brian C.; Walker-Loud, Andre

    2010-01-01

    We report on a lattice calculation demonstrating a novel new method to extract the electric polarizability of charged pseudo-scalar mesons by analyzing two point correlation functions computed in classical background electric fields. A staple component of any electrodynamics or quantum mechanics course is the electric polarizability. Neutral material immersed in a weak external field polarizes, internally setting up an electric dipole moment, aligned so as to minimize the energy. At the atomic level, the electron clouds are distorted creating these microscopic dipole moments. The same process occurs at the hadronic level but the polarization effects are now constrained by the strong force. Polarizabilities of these bound QCD states can be viewed as a distortion of the charged pion cloud of a given hadron. One can use lattice QCD to non-perturbatively compute the quark and gluon interactions in the presence of background electric (or magnetic) fields. For sufficiently weak background fields, the low energy properties of the hadrons can be rigorously computed using effective field theory. With this treatment, a picture of hadrons emerges from chiral dynamics: that of a hadronic core surrounded by a pseudoscalar meson cloud. As some pseudoscalar mesons are charged, polarizabilities of hadrons encode the stiffness of the charged meson cloud (as well as that of the core). The form of pseudoscalar meson polarizabilities is consequently strongly constrained by chiral dynamics. However, beyond the leading order, the results depend upon essentially unknown low-energy constants, which must currently be estimated in a model-dependent fashion. In the case of the charged pion, the experimental measurement of the polarizability has proven difficult, both in the original measurement as well as the most recent published result. Currently, there is a 2-3 sigma discrepancy between the two-loop cPT prediction and the measured charged pion polarizability. New results with higher

  20. Effects of a static electric field on two-color photoassociation between different atoms

    International Nuclear Information System (INIS)

    Chakraborty, Debashree; Deb, Bimalendu

    2014-01-01

    We study non-perturbative effects of a static electric field on two-color photoassociation of different atoms. A static electric field induces anisotropy in scattering between two different atoms and hybridizes field-free rotational states of heteronuclear dimers or polar molecules. In a previous paper [D. Chakraborty et al., J. Phys. B 44, 095201 (2011)], the effects of a static electric field on one-color photoassociation between different atoms has been described through field-modified ground-state scattering states, neglecting electric field effects on heteronuclear diatomic bound states. To study the effects of a static electric field on heteronuclear bound states, and the resulting influence on Raman-type two-color photoassociation between different atoms in the presence of a static electric field, we develop a non-perturbative numerical method to calculate static electric field-dressed heteronuclear bound states. We show that the static electric field induced scattering anisotropy as well as hybridization of rotational states strongly influence two-color photoassociation spectra, leading to significant enhancement in PA rate and large shift. In particular, for static electric field strengths of a few hundred kV/cm, two-color PA rate involving high-lying bound states in electronic ground-state increases by several orders of magnitude even in the weak photoassociative coupling regime

  1. Non-perturbative materialization of ghosts

    International Nuclear Information System (INIS)

    Emparan, Roberto; Garriga, Jaume

    2006-01-01

    In theories with a hidden ghost sector that couples to visible matter through gravity only, empty space can decay into ghosts and ordinary matter by graviton exchange. Perturbatively, such processes can be very slow provided that the gravity sector violates Lorentz invariance above some cut-off scale. Here, we investigate non-perturbative decay processes involving ghosts, such as the spontaneous creation of self-gravitating lumps of ghost matter, as well as pairs of Bondi dipoles (i.e. lumps of ghost matter chasing after positive energy objects). We find the corresponding instantons and calculate their Euclidean action. In some cases, the instantons induce topology change or have negative Euclidean action. To shed some light on the meaning of such peculiarities, we also consider the nucleation of concentrical domain walls of ordinary and ghost matter, where the Euclidean calculation can be compared with the canonical (Lorentzian) description of tunneling. We conclude that non-perturbative ghost nucleation processes can be safely suppressed in phenomenological scenarios

  2. Non-perturbative Debye mass in finite-T QCD

    CERN Document Server

    Kajantie, Keijo; Peisa, J; Rajantie, A; Rummukainen, K; Shaposhnikov, Mikhail E

    1997-01-01

    Employing a non-perturbative gauge invariant definition of the Debye screening mass m_D in the effective field theory approach to finite T QCD, we use 3d lattice simulations to determine the leading O(g^2) and to estimate the next-to-leading O(g^3) corrections to m_D in the high temperature region. The O(g^2) correction is large and modifies qualitatively the standard power-counting hierarchy picture of correlation lengths in high temperature QCD.

  3. Quark pair creation in color electric fields and effects of magnetic fields

    International Nuclear Information System (INIS)

    Tanji, Noato

    2010-01-01

    The time evolution of a system where a uniform and classical SU(3) color electric field and quantum fields of quarks interact with each other is studied focusing on non-perturbative pair creation and its back reaction. We characterize a color direction of an electric field in a gauge invariant way, and investigate its dependence. Momentum distributions of created quarks show plasma oscillation as well as quantum effects such as the Pauli blocking and interference. Pressure of the system is also calculated, and we show that pair creation moderates degree of anisotropy of pressure. Furthermore, enhancement of pair creation and induction of chiral charge under a color magnetic field which is parallel to an electric field are discussed.

  4. Thoughts on non-perturbative thermalization and jet quenching in heavy ion collisions

    International Nuclear Information System (INIS)

    Kovchegov, Yuri V.

    2006-01-01

    We start by presenting physical arguments for the impossibility of perturbative thermalization leading to (non-viscous) Bjorken hydrodynamic description of heavy ion collisions. These arguments are complimentary to our more formal argument presented in [Yu.V. Kovchegov, hep-ph/0503038]. We argue that the success of hydrodynamic models in describing the quark-gluon system produced in heavy ion collisions could only be due to non-perturbative strong coupling effects. We continue by studying non-perturbative effects in heavy ion collisions at high energies. We model non-perturbative phenomena by an instanton ensemble. We show that non-perturbative instanton vacuum fields may significantly contribute to jet quenching in nuclear collisions. At the same time, the instanton ensemble contribution to thermalization is likely to be rather weak, leading to non-perturbative thermalization time comparable to the time of hadronization. This example illustrates that jet quenching is not necessarily a signal of a thermalized medium. Indeed, since the instanton models do not capture all the effects of QCD vacuum (e.g., they do not account for confinement), there may be other non-perturbative effects facilitating thermalization of the system

  5. Non-perturbative approach for laser radiation interactions with solids

    International Nuclear Information System (INIS)

    Jalbert, G.

    1985-01-01

    Multiphoton transitions in direct-gap crystals are studied considering non-perturbative approaches. Two methods currently used for atoms and molecules are revised, generalized and applied to solids. In the first one, we construct an S-matrix which incorporates the eletromagnetic field to all orders in an approximated way leading to analytical solution for the multiphoton transition rates. In the second one, the transition probability is calculated within the Bloch-Floquet formalism applieed to the specific case of solids. This formalism is interpreted as a classical approximation to the quantum treatment of the field. In the weak field limit, we compare our results with the usual perturbation calculations. We also incorporate, in the first approach, the non homogeneity and the multimodes effects of a real laser. (author) [pt

  6. Introduction to non-perturbative heavy quark effective theory

    International Nuclear Information System (INIS)

    Sommer, R.

    2010-08-01

    My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti Λ and λ 1 lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m) n+1 if the theory was treated including (1/m) n terms. Clearly, the weakest point of HQET is that it intrinsically is an expansion. In practise, carrying it

  7. Introduction to non-perturbative heavy quark effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, R. [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2010-08-15

    My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti {lambda} and {lambda}{sub 1} lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m){sup n+1} if the theory was treated including (1/m){sup n} terms. Clearly, the weakest point of HQET is that it

  8. Non-perturbative aspects of nonlinear sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Flore, Raphael

    2012-12-07

    The aim of this thesis was the study and further development of non-perturbative methods of quantum field theory by means of their application to nonlinear sigma models. While a large part of the physical phenomena of quantum field theory can be successfully predicted by the perturbation theory, some aspects in the region of large coupling strengths are not definitively understood and require suited non-perturbative methods for its analysis. This thesis is concentrated on two approaches, the numerical treatment of field theories on discrete space-time lattices and the functional renormalization group (FRG) as description of the renormalization flux of effective actions. Considerations of the nonlinear O(N) models have shown that for the correct analysis of the critical properties in the framework of the FRG an approach must be chosen, which contained fourth-derivation orders. For this a covariant formalism was developed, which is based on a background-field expansion and the development of a heat kernel. Apart from a destabilizing coupling the results suggest a nontrivial fixed point and by this a non-perturbative renormalizability of these models. The resulting flow diagrams were finally still compared with the results of a numerical analysis of the renormalization flow by means of the Monte-Carlo renormalization group, and hereby qualitative agreement was found. Furthermore an alternative formulation of the FRG in phase-space coordinates was studied and their consistency tested on simple examples. Beyond this an alternative expansion of the effective action in orders of the canonical momenta was applied to the nonlinear O(N) models with the result of a stable non-trivial fixed point, the critical properties of which however show not the expected N-dependence. By means of the FRG finally still the renormalization of topological operators was studied by means of the winding number of the O(3){approx_equal}CP{sup 1} model. By the generalization of the topological

  9. Non-perturbative aspects of nonlinear sigma models

    International Nuclear Information System (INIS)

    Flore, Raphael

    2012-01-01

    The aim of this thesis was the study and further development of non-perturbative methods of quantum field theory by means of their application to nonlinear sigma models. While a large part of the physical phenomena of quantum field theory can be successfully predicted by the perturbation theory, some aspects in the region of large coupling strengths are not definitively understood and require suited non-perturbative methods for its analysis. This thesis is concentrated on two approaches, the numerical treatment of field theories on discrete space-time lattices and the functional renormalization group (FRG) as description of the renormalization flux of effective actions. Considerations of the nonlinear O(N) models have shown that for the correct analysis of the critical properties in the framework of the FRG an approach must be chosen, which contained fourth-derivation orders. For this a covariant formalism was developed, which is based on a background-field expansion and the development of a heat kernel. Apart from a destabilizing coupling the results suggest a nontrivial fixed point and by this a non-perturbative renormalizability of these models. The resulting flow diagrams were finally still compared with the results of a numerical analysis of the renormalization flow by means of the Monte-Carlo renormalization group, and hereby qualitative agreement was found. Furthermore an alternative formulation of the FRG in phase-space coordinates was studied and their consistency tested on simple examples. Beyond this an alternative expansion of the effective action in orders of the canonical momenta was applied to the nonlinear O(N) models with the result of a stable non-trivial fixed point, the critical properties of which however show not the expected N-dependence. By means of the FRG finally still the renormalization of topological operators was studied by means of the winding number of the O(3)≅CP 1 model. By the generalization of the topological operator and the

  10. Non-perturbative supersymmetry anomaly in supersymmetric QCD

    International Nuclear Information System (INIS)

    Shamir, Y.

    1991-03-01

    The zero modes of the Dirac operator in an instanton and other topologically non-trivial backgrounds are unstable in a large class of massless or partially massless supersymmetric gauge theories. We show that under a generic perturbation of the scalar fields all zero modes become resonances, and discuss the ensuing breakdown of conventional perturbation theory. As a result, despite of the presence of massless fermions, the field theoretic tunneling amplitude is not suppressed. In massless supersymmetric QCD with N c ≤ N f the effective potential is found to be negative and monotonically increasing in the weak coupling regime for scalar VEVs which lie on the perturbatively flat directions. Consequently, massless supersymmetric QCD with N c ≤ N f exhibits a non-perturbative supersymmetry anomaly and exists in a strongly interacting phase which closely resembles ordinary QCD. The same conclusions apply if small masses are added to the lagrangian and the massless limit is smooth. (author). 21 refs, 5 figs

  11. World-Line Formalism: Non-Perturbative Applications

    Directory of Open Access Journals (Sweden)

    Dmitry Antonov

    2016-11-01

    Full Text Available This review addresses the impact on various physical observables which is produced by confinement of virtual quarks and gluons at the level of the one-loop QCD diagrams. These observables include the quark condensate for various heavy flavors, the Yang-Mills running coupling with an infra-red stable fixed point, and the correlation lengths of the stochastic Yang-Mills fields. Other non-perturbative applications of the world-line formalism presented in the review are devoted to the determination of the electroweak phase-transition critical temperature, to the derivation of a semi-classical analogue of the relation between the chiral and the gluon QCD condensates, and to the calculation of the free energy of the gluon plasma in the high-temperature limit. As a complementary result, we demonstrate Casimir scaling of k-string tensions in the Gaussian ensemble of the stochastic Yang-Mills fields.

  12. An electric field in a gravitational field

    International Nuclear Information System (INIS)

    Harpaz, Amos

    2005-01-01

    The behaviour of an electric field in a gravitational field is analysed. It is found that due to the mass (energy) of the electric field, it is subjected to gravity and it falls in the gravitational field. This fall curves the electric field, a stress force (a reaction force) is created, and the interaction of this reaction force with the static charge gives rise to the creation of radiation

  13. Dynamically assisted Sauter-Schwinger effect in inhomogeneous electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Christian; Schützhold, Ralf [Fakultät für Physik, Universität Duisburg-Essen,Lotharstrasse 1, 47057 Duisburg (Germany)

    2016-02-24

    Via the world-line instanton method, we study electron-positron pair creation by a strong (but sub-critical) electric field of the profile E/cosh{sup 2} (kx) superimposed by a weaker pulse E{sup ′}/cosh{sup 2} (ωt). If the temporal Keldysh parameter γ{sub ω}=mω/(qE) exceeds a threshold value γ{sub ω}{sup crit} which depends on the spatial Keldysh parameter γ{sub k}=mk/(qE), we find a drastic enhancement of the pair creation probability — reporting on what we believe to be the first analytic non-perturbative result for the interplay between temporal and spatial field dependences E(t,x) in the Sauter-Schwinger effect. Finally, we speculate whether an analogous effect (drastic enhancement of tunneling probability) could occur in other scenarios such as stimulated nuclear decay, for example.

  14. Electric fields in the magnetosphere

    International Nuclear Information System (INIS)

    Falthammar, C.G.

    1989-01-01

    Electric field measurements on the satellites GEOS-1, GEOS-2, ISEE-1, and Viking have extended the empirical knowledge of electric fields in space so as to include the outer regions of the magnetosphere. While the measurements confirm some of the theoretically expected properties of the electric fields, they also reveal unexpected features and a high degree of complexity and variability. The existence of a magnetospheric dawn-to-dusk electric field, as expected on the basis of extrapolation from low altitude measurements, is confirmed in an average sense. However, the actual field exhibits large spatial and temporal variations, including strong fields of inductive origin. At the magnetopause, the average (dawn-to-dusk directed) tangential electric field component is typically obscured by irregular fluctuations of larger amplitude. The magnetic-field aligned component of the electric field, which is of particular importance for ionosphere-magnetosphere coupling and for auroral acceleration, is even now very difficult to measure directly. However, the data from electric field measurements provide further support for the conclusion, based on a variety of evidence, that a non-vanishing magnetic-field aligned electric field exists in the auroral acceleration region

  15. Non-perturbative heavy quark effective theory. Introduction and status

    International Nuclear Information System (INIS)

    Sommer, Rainer; Humboldt-Universitaet, Berlin

    2015-01-01

    We give an introduction to Heavy Quark Effective Theory (HQET). Our emphasis is on its formulation non-perturbative in the strong coupling, including the non-perturbative determination of the parameters in the HQET Lagrangian. In a second part we review the present status of HQET on the lattice, largely based on work of the ALPHA collaboration in the last few years. We finally discuss opportunities and challenges.

  16. Non-perturbative renormalization of HQET and QCD

    International Nuclear Information System (INIS)

    Sommer, Rainer

    2003-01-01

    We discuss the necessity of non-perturbative renormalization in QCD and HQET and explain the general strategy for solving this problem. A few selected topics are discussed in some detail, namely the importance of off shell improvement in the MOM-scheme on the lattice, recent progress in the implementation of finite volume schemes and then particular emphasis is put on the recent idea to carry out a non-perturbative renormalization of the Heavy Quark Effective Theory (HQET)

  17. Electric field gradients in metals

    International Nuclear Information System (INIS)

    Schatz, G.

    1979-01-01

    A review of the recent works on electric field gradient in metals is given. The main emphasis is put on the temperature dependence of the electric field gradient in nonmagnetic metals. Some methods of investigation of this effect using nuclear probes are described. One of them is nuclear accoustic resonance method. (S.B.)

  18. Cryosurgery with pulsed electric fields.

    Directory of Open Access Journals (Sweden)

    Charlotte S Daniels

    Full Text Available This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused

  19. Cryosurgery with Pulsed Electric Fields

    Science.gov (United States)

    Daniels, Charlotte S.; Rubinsky, Boris

    2011-01-01

    This study explores the hypothesis that combining the minimally invasive surgical techniques of cryosurgery and pulsed electric fields will eliminate some of the major disadvantages of these techniques while retaining their advantages. Cryosurgery, tissue ablation by freezing, is a well-established minimally invasive surgical technique. One disadvantage of cryosurgery concerns the mechanism of cell death; cells at high subzero temperature on the outer rim of the frozen lesion can survive. Pulsed electric fields (PEF) are another minimally invasive surgical technique in which high strength and very rapid electric pulses are delivered across cells to permeabilize the cell membrane for applications such as gene delivery, electrochemotherapy and irreversible electroporation. The very short time scale of the electric pulses is disadvantageous because it does not facilitate real time control over the procedure. We hypothesize that applying the electric pulses during the cryosurgical procedure in such a way that the electric field vector is parallel to the heat flux vector will have the effect of confining the electric fields to the frozen/cold region of tissue, thereby ablating the cells that survive freezing while facilitating controlled use of the PEF in the cold confined region. A finite element analysis of the electric field and heat conduction equations during simultaneous tissue treatment with cryosurgery and PEF (cryosurgery/PEF) was used to study the effect of tissue freezing on electric fields. The study yielded motivating results. Because of decreased electrical conductivity in the frozen/cooled tissue, it experienced temperature induced magnified electric fields in comparison to PEF delivered to the unfrozen tissue control. This suggests that freezing/cooling confines and magnifies the electric fields to those regions; a targeting capability unattainable in traditional PEF. This analysis shows how temperature induced magnified and focused PEFs could be used to

  20. The non-perturbative QCD Debye mass from a Wilson line operator

    CERN Document Server

    Laine, Mikko

    1999-01-01

    According to a proposal by Arnold and Yaffe, the non-perturbative g^2T-contribution to the Debye mass in the deconfined QCD plasma phase can be determined from a single Wilson line operator in the three-dimensional pure SU(3) gauge theory. We extend a previous SU(2) measurement of this quantity to the physical SU(3) case. We find a numerical coefficient which is more accurate and smaller than that obtained previously with another method, but still very large compared with the naive expectation: the correction is larger than the leading term up to T ~ 10^7 T_c, corresponding to g^2 ~ 0.4. At moderate temperatures T ~ 2 T_c, a consistent picture emerges where the Debye mass is m_D ~ 6T, the lightest gauge invariant screening mass in the system is ~ 3T, and the purely magnetic operators couple dominantly to a scale ~ 6T. Electric (~ gT) and magnetic (~ g^2T) scales are therefore strongly overlapping close to the phase transition, and the colour-electric fields play an essential role in the dynamics.

  1. Non perturbative aspects of strongly correlated electron systems

    International Nuclear Information System (INIS)

    Controzzi, D.

    2000-01-01

    In this thesis we report some selected works on Strongly Correlated Electron Systems. A common ingredient of these works is the use of non-perturbative techniques available in low dimensions. In the first part we use the Bethe Ansatz to study some properties of two families of integrable models introduced by Fateev. We calculate the Thermodynamics of the models and show how they can be interpreted as effective Landau-Ginzburg theories for coupled two-dimensional superconductors interacting with an insulating substrate. This allows us to study exactly the dependence of the critical temperature on the thickness of the insulating layer, and on the interaction between the order parameters of two different superconducting planes. In the second part of the thesis we study the optical conductivity of the sine-Gordon model using the Form Factor method and Conformal Perturbation Theory. This allows us to develop, for the first time, a complete theory of the optical conductivity of one-dimensional Mott insulators, in the Quantum Field Theory limit. (author)

  2. Electric fields in the magnetosphere

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1989-12-01

    The electric field plays an important role in the complex plasma system called the magnetosphere. In spite of this, direct measurement of this quantity are still scarce except in its lowest-altitude part, i.e. the ionosphere. The large scale ionospheric electric field has been determined from measurement on the ground and in low satellite orbit. For most of the magnetosphere, our concepts of the electric field have mostly been based on theoretical considerations and extrapolations of the ionspheric electric field. Direct, in situ, electric field measurements in the outer parts of the magnetosphere have been made only relatively recently. A few satellite missions. most recently the Viking mission, have extended the direct empirical knowledge so as to include major parts of the magnetosphere. These measurements have revealed a number of unexpected features. The actual electric field has been found to have unexpectedly strong space and time variations, which reflect the dynamic nature of the system. Examples are give of measured electric fields in the plasmasphere, the plasmasheet, the neutral sheet, the magnetotail, the flanks of the magnetosphere, the dayside magnetopause and the auroral acceleration region. (author)

  3. Introduction to non-perturbative quantum chromodynamics

    International Nuclear Information System (INIS)

    Pene, O.

    1995-01-01

    Quantum chromodynamics is considered to be the theory of strong interaction. The main peculiarity of this theory is that its asymptotic states (hadrons) are different from its elementary fields (quarks and gluons). This property plays a great part in any physical process involving small momentum-energy transfers. In such a range perturbative methods are no longer allowed. This work focuses on other tools such as QCD symmetry, the quark model, Green functions and the sum rules. To get hadron characteristics numerically, QCD on lattices is used but only in the case of simple process involving no more than one hadron in the initial and final states because of the complexity of the Green function. Some examples using a Monte-Carlo simulation are given. (A.C.)

  4. Non-perturbative effects and the refined topological string

    Energy Technology Data Exchange (ETDEWEB)

    Hatsuda, Yasuyuki [DESY Hamburg (Germany). Theory Group; Tokyo Institute of Technology (Japan). Dept. of Physics; Marino, Marcos [Geneve Univ. (Switzerland). Dept. de Physique Theorique et Section de Mathematiques; Moriyama, Sanefumi [Nagoya Univ. (Japan). Kobayashi Maskawa Inst.; Nagoya Univ. (Japan). Graduate School of Mathematics; Okuyama, Kazumi [Shinshu Univ., Matsumoto, Nagano (Japan). Dept. of Physics

    2013-06-15

    The partition function of ABJM theory on the three-sphere has non-perturbative corrections due to membrane instantons in the M-theory dual. We show that the full series of membrane instanton corrections is completely determined by the refined topological string on the Calabi-Yau manifold known as local P{sup 1} x P{sup 1}, in the Nekrasov-Shatashvili limit. Our result can be interpreted as a first-principles derivation of the full series of non-perturbative effects for the closed topological string on this Calabi-Yau background. Based on this, we make a proposal for the non-perturbative free energy of topological strings on general, local Calabi-Yau manifolds.

  5. Electric Field Fluctuations in Water

    Science.gov (United States)

    Thorpe, Dayton; Limmer, David; Chandler, David

    2013-03-01

    Charge transfer in solution, such as autoionization and ion pair dissociation in water, is governed by rare electric field fluctuations of the solvent. Knowing the statistics of such fluctuations can help explain the dynamics of these rare events. Trajectories short enough to be tractable by computer simulation are virtually certain not to sample the large fluctuations that promote rare events. Here, we employ importance sampling techniques with classical molecular dynamics simulations of liquid water to study statistics of electric field fluctuations far from their means. We find that the distributions of electric fields located on individual water molecules are not in general gaussian. Near the mean this non-gaussianity is due to the internal charge distribution of the water molecule. Further from the mean, however, there is a previously unreported Bjerrum-like defect that stabilizes certain large fluctuations out of equilibrium. As expected, differences in electric fields acting between molecules are gaussian to a remarkable degree. By studying these differences, though, we are able to determine what configurations result not only in large electric fields, but also in electric fields with long spatial correlations that may be needed to promote charge separation.

  6. Visualization of induced electric fields

    NARCIS (Netherlands)

    Deursen, van A.P.J.

    2005-01-01

    A cylindrical electrolytic tank between a set of Helmholtz coils provides a classroom demonstration of induced, nonconservative electric fields. The field strength is measured by a sensor consisting of a pair of tiny spheres immersed in the liquid. The sensor signal depends on position, frequency,

  7. Non-perturbative topological strings and conformal blocks

    NARCIS (Netherlands)

    Cheng, M.C.N.; Dijkgraaf, R.; Vafa, C.

    2011-01-01

    We give a non-perturbative completion of a class of closed topological string theories in terms of building blocks of dual open strings. In the specific case where the open string is given by a matrix model these blocks correspond to a choice of integration contour. We then apply this definition to

  8. Insights on non-perturbative aspects of TMDs from models

    Energy Technology Data Exchange (ETDEWEB)

    H. Avakian, A. Efremov, P. Schweitzer, O. Teryaev, F. Yuan, P. Zavada

    2009-12-01

    Transverse momentum dependent parton distribution functions are a key ingredient in the description of spin and azimuthal asymmetries in deep-inelastic scattering processes. Recent results from non-perturbative calculations in effective approaches are reviewed, with focus on relations among different parton distribution functions in QCD and models.

  9. Synaptic Effects of Electric Fields

    Science.gov (United States)

    Rahman, Asif

    Learning and sensory processing in the brain relies on the effective transmission of information across synapses. The strength and efficacy of synaptic transmission is modifiable through training and can be modulated with noninvasive electrical brain stimulation. Transcranial electrical stimulation (TES), specifically, induces weak intensity and spatially diffuse electric fields in the brain. Despite being weak, electric fields modulate spiking probability and the efficacy of synaptic transmission. These effects critically depend on the direction of the electric field relative to the orientation of the neuron and on the level of endogenous synaptic activity. TES has been used to modulate a wide range of neuropsychiatric indications, for various rehabilitation applications, and cognitive performance in diverse tasks. How can a weak and diffuse electric field, which simultaneously polarizes neurons across the brain, have precise changes in brain function? Designing therapies to maximize desired outcomes and minimize undesired effects presents a challenging problem. A series of experiments and computational models are used to define the anatomical and functional factors leading to specificity of TES. Anatomical specificity derives from guiding current to targeted brain structures and taking advantage of the direction-sensitivity of neurons with respect to the electric field. Functional specificity originates from preferential modulation of neuronal networks that are already active. Diffuse electric fields may recruit connected brain networks involved in a training task and promote plasticity along active synaptic pathways. In vitro, electric fields boost endogenous synaptic plasticity and raise the ceiling for synaptic learning with repeated stimulation sessions. Synapses undergoing strong plasticity are preferentially modulated over weak synapses. Therefore, active circuits that are involved in a task could be more susceptible to stimulation than inactive circuits

  10. Non-perturbative measurement of cross-field thermal diffusivity reduction at the O-point of 2/1 neoclassical tearing mode islands in the DIII-D tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Bardóczi, L.; Rhodes, T. L.; Carter, T. A.; Crocker, N. A.; Peebles, W. A. [University of California Los Angeles, Los Angeles, California 90095 (United States); Grierson, B. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2016-05-15

    Neoclassical tearing modes (NTMs) often lead to the decrease of plasma performance and can lead to disruptions, which makes them a major impediment in the development of operating scenarios in present toroidal fusion devices. Recent gyrokinetic simulations predict a decrease of plasma turbulence and cross-field transport at the O-point of the islands, which in turn affects the NTM dynamics. In this paper, a heat transport model of magnetic islands employing spatially non-uniform cross-field thermal diffusivity (χ{sub ⊥}) is presented. This model is used to derive χ{sub ⊥} at the O-point from electron temperature data measured across 2/1 NTM islands in DIII-D. It was found that χ{sub ⊥} at the O-point is 1 to 2 orders of magnitude smaller than the background plasma transport, in qualitative agreement with gyrokinetic predictions. As the anomalously large values of χ{sub ⊥} are often attributed to turbulence driven transport, the reduction of the O-point χ{sub ⊥} is consistent with turbulence reduction found in recent experiments. Finally, the implication of reduced χ{sub ⊥} at the O-point on NTM dynamics was investigated using the modified Rutherford equation that predicts a significant effect of reduced χ{sub ⊥} at the O-point on NTM saturation.

  11. Four-fluxes and non-perturbative superpotentials in two dimensions

    International Nuclear Information System (INIS)

    Lerche, W.

    1998-01-01

    We show how certain non-perturbative superpotentials W(Σ), which are the two-dimensional analogs of the Seiberg-Witten prepotential in 4d, can be computed via geometric engineering from 4-folds. We analyze an explicit example for which the relevant compact geometry of the 4-fold is given by P 1 fibered over P 2 . In the field theory limit, this gives an effective U(1) gauge theory with N=(2,2) supersymmetry in two dimensions. We find that the analog of the SW curve is a K3 surface, and that the complex FI coupling is given by the modular parameter of this surface. The FI potential itself coincides with the middle period of a meromorphic differential. However, it only shows up in the effective action if a certain 4-flux is switched on, and then supersymmetry appears to be non-perturbatively broken. (orig.)

  12. Non-perturbative approach to 2D-supergravity and super-Virasoro constraints

    CERN Document Server

    Becker, M

    1994-01-01

    The coupling of N=1 SCFT of type (4m,2) to two-dimensional supergravity can be formulated non-perturbatively in terms of a discrete super-eigenvalue model proposed by Alvarez-Gaum\\'e, et al. We derive the superloop equations that describe, in the double scaling limit, the non-perturbative solution of this model. These equations are equivalent to the double scaled super-Virasoro constraints satisfied by the partition function. They are formulated in terms of a \\widehat c=1 theory, with a \\IZ_2-twisted scalar field and a Weyl-Majorana fermion in the Ramond sector. We have solved the superloop equations to all orders in the genus expansion and obtained the explicit expressions for the correlation functions of gravitationally dressed scaling operators in the NS- and R-sector. In the double scaling limit, we obtain a formulation of the model in terms of a new supersymmetric extension of the KdV hierarchy.

  13. Electrophoresis in strong electric fields.

    Science.gov (United States)

    Barany, Sandor

    2009-01-01

    Two kinds of non-linear electrophoresis (ef) that can be detected in strong electric fields (several hundred V/cm) are considered. The first ("classical" non-linear ef) is due to the interaction of the outer field with field-induced ionic charges in the electric double layer (EDL) under conditions, when field-induced variations of electrolyte concentration remain to be small comparatively to its equilibrium value. According to the Shilov theory, the non-linear component of the electrophoretic velocity for dielectric particles is proportional to the cubic power of the applied field strength (cubic electrophoresis) and to the second power of the particles radius; it is independent of the zeta-potential but is determined by the surface conductivity of particles. The second one, the so-called "superfast electrophoresis" is connected with the interaction of a strong outer field with a secondary diffuse layer of counterions (space charge) that is induced outside the primary (classical) diffuse EDL by the external field itself because of concentration polarization. The Dukhin-Mishchuk theory of "superfast electrophoresis" predicts quadratic dependence of the electrophoretic velocity of unipolar (ionically or electronically) conducting particles on the external field gradient and linear dependence on the particle's size in strong electric fields. These are in sharp contrast to the laws of classical electrophoresis (no dependence of V(ef) on the particle's size and linear dependence on the electric field gradient). A new method to measure the ef velocity of particles in strong electric fields is developed that is based on separation of the effects of sedimentation and electrophoresis using videoimaging and a new flowcell and use of short electric pulses. To test the "classical" non-linear electrophoresis, we have measured the ef velocity of non-conducting polystyrene, aluminium-oxide and (semiconductor) graphite particles as well as Saccharomice cerevisiae yeast cells as a

  14. Microstickies agglomeration by electric field.

    Science.gov (United States)

    Du, Xiaotang Tony; Hsieh, Jeffery S

    2016-01-01

    Microstickies deposits on both paper machine and paper products when it agglomerates under step change in ionic strength, pH, temperature and chemical additives. These stickies increase the down time of the paper mill and decrease the quality of paper. The key property of microstickies is its smaller size, which leads to low removal efficiency and difficulties in measurement. Thus the increase of microstickies size help improve both removal efficiency and reduce measurement difficulty. In this paper, a new agglomeration technology based on electric field was investigated. The electric treatment could also increase the size of stickies particles by around 100 times. The synergetic effect between electric field treatment and detacky chemicals/dispersants, including polyvinyl alcohol, poly(diallylmethylammonium chloride) and lignosulfonate, was also studied.

  15. Electric fields and quantum wormholes

    NARCIS (Netherlands)

    Engelhardt, D.; Freivogel, B.; Iqbal, N.

    2015-01-01

    Electric fields can thread a classical Einstein-Rosen bridge. Maldacena and Susskind have recently suggested that in a theory of dynamical gravity the entanglement of ordinary perturbative quanta should be viewed as creating a quantum version of an Einstein-Rosen bridge between the particles, or a

  16. Elliptic CY3folds and non-perturbative modular transformation

    International Nuclear Information System (INIS)

    Iqbal, Amer; Shabbir, Khurram

    2016-01-01

    We study the refined topological string partition function of a class of toric elliptically fibered Calabi-Yau threefolds. These Calabi-Yau threefolds give rise to five dimensional quiver gauge theories and are dual to configurations of M5-M2-branes. We determine the Gopakumar-Vafa invariants for these threefolds and show that the genus g free energy is given by the weight 2 g Eisenstein series. We also show that although the free energy at all genera are modular invariant, the full partition function satisfies the non-perturbative modular transformation property discussed by Lockhart and Vafa in arXiv:1210.5909 and therefore the modularity of free energy is up to non-perturbative corrections. (orig.)

  17. Non-Perturbative Formulation of Time-Dependent String Solutions

    CERN Document Server

    Alexandre, J; Mavromatos, Nikolaos E; Alexandre, Jean; Ellis, John; Mavromatos, Nikolaos E.

    2006-01-01

    We formulate here a new world-sheet renormalization-group technique for the bosonic string, which is non-perturbative in the Regge slope alpha' and based on a functional method for controlling the quantum fluctuations, whose magnitudes are scaled by the value of alpha'. Using this technique we exhibit, in addition to the well-known linear-dilaton cosmology, a new, non-perturbative time-dependent background solution. Using the reparametrization invariance of the string S-matrix, we demonstrate that this solution is conformally invariant to alpha', and we give a heuristic inductive argument that conformal invariance can be maintained to all orders in alpha'. This new time-dependent string solution may be applicable to primordial cosmology or to the exit from linear-dilaton cosmology at large times.

  18. Elliptic CY3folds and non-perturbative modular transformation

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Amer [Government College University, Abdus Salam School of Mathematical Sciences, Lahore (Pakistan); Shabbir, Khurram [Government College University, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    We study the refined topological string partition function of a class of toric elliptically fibered Calabi-Yau threefolds. These Calabi-Yau threefolds give rise to five dimensional quiver gauge theories and are dual to configurations of M5-M2-branes. We determine the Gopakumar-Vafa invariants for these threefolds and show that the genus g free energy is given by the weight 2 g Eisenstein series. We also show that although the free energy at all genera are modular invariant, the full partition function satisfies the non-perturbative modular transformation property discussed by Lockhart and Vafa in arXiv:1210.5909 and therefore the modularity of free energy is up to non-perturbative corrections. (orig.)

  19. Non-perturbative power corrections to ghost and gluon propagators

    International Nuclear Information System (INIS)

    Boucaud, Philippe; Leroy, Jean-Pierre; Yaouanc, Alain Le; Lokhov, Alexey; Micheli, Jacques; Pene, Olivier; RodrIguez-Quintero, Jose; Roiesnel, Claude

    2006-01-01

    We study the dominant non-perturbative power corrections to the ghost and gluon propagators in Landau gauge pure Yang-Mills theory using OPE and lattice simulations. The leading order Wilson coefficients are proven to be the same for both propagators. The ratio of the ghost and gluon propagators is thus free from this dominant power correction. Indeed, a purely perturbative fit of this ratio gives smaller value ( ≅ 270MeV) of Λ M-barS-bar than the one obtained from the propagators separately( ≅ 320MeV). This argues in favour of significant non-perturbative ∼ 1/q 2 power corrections in the ghost and gluon propagators. We check the self-consistency of the method

  20. Non-perturbative versus perturbative renormalization of lattice operators

    International Nuclear Information System (INIS)

    Goeckeler, M.; Technische Hochschule Aachen; Horsley, R.; Ilgenfritz, E.M.; Oelrich, H.; Forschungszentrum Juelich GmbH; Schierholz, G.; Forschungszentrum Juelich GmbH; Perlt, H.; Schiller, A.; Rakow, P.

    1995-09-01

    Our objective is to compute the moments of the deep-inelastic structure functions of the nucleon on the lattice. A major source of uncertainty is the renormalization of the lattice operators that enter the calculation. In this talk we compare the renormalization constants of the most relevant twist-two bilinear quark operators which we have computed non-perturbatively and perturbatively to one loop order. Furthermore, we discuss the use of tadpole improved perturbation theory. (orig.)

  1. Non-perturbative particle dynamics in (2+1)-gravity

    CERN Document Server

    Bellini, A; Valtancoli, P

    1995-01-01

    We construct a non-perturbative, single-valued solution for the metric and the motion of two interacting particles in (2+1)-Gravity, by using a Coulomb gauge of conformal type. The method provides the mapping from multivalued ( minkowskian ) coordinates to single-valued ones, which solves the non-abelian monodromies due to particles's momenta and can be applied also to the general N-body case.

  2. Non-perturbative plaquette in 3d pure SU(3)

    CERN Document Server

    Hietanen, A; Laine, Mikko; Rummukainen, K; Schröder, Y

    2005-01-01

    We present a determination of the elementary plaquette and, after the subsequent ultraviolet subtractions, of the finite part of the gluon condensate, in lattice regularization in three-dimensional pure SU(3) gauge theory. Through a change of regularization scheme to MSbar and a matching back to full four-dimensional QCD, this result determines the first non-perturbative contribution in the weak-coupling expansion of hot QCD pressure.

  3. Apparatuses and methods for generating electric fields

    Science.gov (United States)

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  4. Non-perturbative inputs for gluon distributions in the hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Ermolaev, B.I. [Ioffe Physico-Technical Institute, Saint Petersburg (Russian Federation); Troyan, S.I. [St. Petersburg Institute of Nuclear Physics, Gatchina (Russian Federation)

    2017-03-15

    Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K{sub T}-and collinear factorizations. (orig.)

  5. Non-perturbative inputs for gluon distributions in the hadrons

    International Nuclear Information System (INIS)

    Ermolaev, B.I.; Troyan, S.I.

    2017-01-01

    Description of hadronic reactions at high energies is conventionally done in the framework of QCD factorization. All factorization convolutions comprise non-perturbative inputs mimicking non-perturbative contributions and perturbative evolution of those inputs. We construct inputs for the gluon-hadron scattering amplitudes in the forward kinematics and, using the optical theorem, convert them into inputs for gluon distributions in the hadrons, embracing the cases of polarized and unpolarized hadrons. In the first place, we formulate mathematical criteria which any model for the inputs should obey and then suggest a model satisfying those criteria. This model is based on a simple reasoning: after emitting an active parton off the hadron, the remaining set of spectators becomes unstable and therefore it can be described through factors of the resonance type, so we call it the resonance model. We use it to obtain non-perturbative inputs for gluon distributions in unpolarized and polarized hadrons for all available types of QCD factorization: basic, K_T-and collinear factorizations. (orig.)

  6. Non-perturbative scalar potential inspired by type IIA strings on rigid CY

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrov, Sergei [Laboratoire Charles Coulomb (L2C), UMR 5221, CNRS-Université de Montpellier,F-34095, Montpellier (France); Ketov, Sergei V. [Department of Physics, Tokyo Metropolitan University,1-1 Minami-ohsawa, Hachioji-shi, Tokyo 192-0397 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (IPMU), The University of Tokyo,Chiba 277-8568 (Japan); Institute of Physics and Technology, Tomsk Polytechnic University,30 Lenin Ave., Tomsk 634050 (Russian Federation); Wakimoto, Yuki [Department of Physics, Tokyo Metropolitan University,1-1 Minami-ohsawa, Hachioji-shi, Tokyo 192-0397 (Japan)

    2016-11-10

    Motivated by a class of flux compactifications of type IIA strings on rigid Calabi-Yau manifolds, preserving N=2 local supersymmetry in four dimensions, we derive a non-perturbative potential of all scalar fields from the exact D-instanton corrected metric on the hypermultiplet moduli space. Applying this potential to moduli stabilization, we find a discrete set of exact vacua for axions. At these critical points, the stability problem is decoupled into two subspaces spanned by the axions and the other fields (dilaton and Kähler moduli), respectively. Whereas the stability of the axions is easily achieved, numerical analysis shows instabilities in the second subspace.

  7. Non-perturbative O(a) improvement of lattice QCD

    CERN Document Server

    Lüscher, Martin; Sommer, Rainer; Weisz, P; Wolff, U; Luescher, Martin; Sint, Stefan; Sommer, Rainer; Weisz, Peter; Wolff, Ulli

    1997-01-01

    The coefficients multiplying the counterterms required for O($a$) improvement of the action and the isovector axial current in lattice QCD are computed non-perturbatively, in the quenched approximation and for bare gauge couplings $g_0$ in the range $0 \\leq g_0 \\leq 1$. A finite-size method based on the Schrödinger functional is employed, which enables us to perform all calculations at zero or nearly zero quark mass. As a by-product the critical hopping parameter $\\kappa_c$ is obtained at all couplings considered.

  8. Non-perturbative Aspects of QCD and Parameterized Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    HAN Ding-An; ZHOU Li-Juan; ZENG Ya-Guang; GU Yun-Ting; CAO Hui; MA Wei-Xing; MENG Cheng-Ju; PAN Ji-Huan

    2008-01-01

    Based on the Global Color Symmetry Model, the non-perturbative QCD vacuum is investigated in theparameterized fully dressed quark propagator. Our theoretical predictions for various quantities characterized the QCD vacuum are in agreement with those predicted by many other phenomenological QCD inspired models. The successful predictions clearly indicate the extensive validity of our parameterized quark propagator used here. A detailed discussion on the arbitrariness in determining the integration cut-off parameter of# in calculating QCD vacuum condensates and a good method, which avoided the dependence of calculating results on the cut-off parameter is also strongly recommended to readers.

  9. Pulsed electric field increases reproduction.

    Science.gov (United States)

    Panagopoulos, Dimitris J

    2016-01-01

    Purpose To study the effect of pulsed electric field - applied in corona discharge photography - on Drosophila melanogaster reproduction, possible induction of DNA fragmentation, and morphological alterations in the gonads. Materials and methods Animals were exposed to different field intensities (100, 200, 300, and 400 kV/m) during the first 2-5 days of their adult lives, and the effect on reproductive capacity was assessed. DNA fragmentation during early- and mid-oogenesis was investigated by application of the TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) assay. Sections of follicles after fixation and embedding in resins were observed for possible morphological/developmental abnormalities. Results The field increased reproduction by up to 30% by increasing reproductive capacity in both sexes. The effect increased with increasing field intensities. The rate of increase diminished at the strongest intensities. Slight induction of DNA fragmentation was observed exclusively in the nurse (predominantly) and follicle cells, and exclusively at the two most sensitive developmental stages, i.e., germarium and predominantly stage 7-8. Sections of follicles from exposed females at stages of early and mid-oogennesis other than germarium and stages 7-8 did not reveal abnormalities. Conclusions (1) The specific type of electric field may represent a mild stress factor, inducing DNA fragmentation and cell death in a small percentage of gametes, triggering the reaction of the animal's reproductive system to increase the rate of gametogenesis in order to compensate the loss of a small number of gametes. (2) The nurse cells are the most sensitive from all three types of egg chamber cells. (3) The mid-oogenesis checkpoint (stage 7-8) is more sensitive to this field than the early oogenesis one (germarium) in contrast to microwave exposure. (4) Possible therapeutic applications, or applications in increasing fertility, should be investigated.

  10. Tripolar electric field Structure in guide field magnetic reconnection

    Science.gov (United States)

    Fu, Song; Huang, Shiyong; Zhou, Meng; Ni, Binbin; Deng, Xiaohua

    2018-03-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  11. Tripolar electric field Structure in guide field magnetic reconnection

    Directory of Open Access Journals (Sweden)

    S. Fu

    2018-03-01

    Full Text Available It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection. In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg. Once the amplitude of a guide field exceeds 0.3 times the asymptotic magnetic field B0, the traditional bipolar Hall electric field is clearly replaced by a tripolar electric field, which consists of a newly emerged electric field and the bipolar Hall electric field. The newly emerged electric field is a convective electric field about one ion inertial length away from the neutral sheet. It arises from the disappearance of the Hall electric field due to the substantial modification of the magnetic field and electric current by the imposed guide field. The peak magnitude of this new electric field increases linearly with the increment of guide field strength. Possible applications of these results to space observations are also discussed.

  12. Electric field measurements in high pressure discharges

    International Nuclear Information System (INIS)

    Mitko, S.V.; Ochkin, V.N.; Serdyuchenko, A.Yu.; Tskhai, S.N.

    2001-01-01

    Electric fields define a wide range of interactions and phenomena at different phases of matter both on micro- and macro-level. Investigation of electric fields behavior provides a key for understanding of these phenomena and their application

  13. Testing QCD in the non-perturbative regime

    Energy Technology Data Exchange (ETDEWEB)

    A.W. Thomas

    2007-01-01

    This is an exciting time for strong interaction physics. We have a candidate for a fundamental theory, namely QCD, which has passed all the tests thrown at it in the perturbative regime. In the non-perturbative regime it has also produced some promising results and recently a few triumphs but the next decade will see enormous progress in our ability to unambiguously calculate the consequences of non-perturbative QCD and to test those predictions experimentally. Amongst the new experimental facilities being constructed, the hadronic machines at JPARC and GSI-FAIR and the 12 GeV Upgrade at Jefferson Lab, the major new electromagnetic facility worldwide, present a beautifully complementary network aimed at producing precise new measurements which will advance our knowledge of nuclear systems and push our ability to calculate the consequences of QCD to the limit. We will first outline the plans at Jefferson Lab for doubling the energy of CEBAF. The new facility presents some wonderful opportunities for discovery in strong interaction physics, as well as beyond the standard model. Then we turn to the theoretical developments aimed at extracting precise results for physical hadron properties from lattice QCD simulations. This discussion will begin with classical examples, such as the mass of the nucleon and ?, before dealing with a very recent and spectacular success involving information extracted from modern parity violating electron scattering.

  14. Electrical field of electrical appliances versus distance: A preliminary analysis

    International Nuclear Information System (INIS)

    Mustafa, Nur Badariah Ahmad; Nordin, Farah Hani; Ismail, Fakaruddin Ali Ahmad; Alkahtani, Ammar Ahmed; Balasubramaniam, Nagaletchumi; Hock, Goh Chin; Shariff, Z A M

    2013-01-01

    Every household electrical appliance that is plugged in emits electric field even if it is not operating. The source where the appliance is plugged into and the components of household electrical appliance contribute to electric field emission. The electric field may cause unknown disturbance to the environment or also affect the human health and the effect might depends on the strength of the electric field emitted by the appliance. This paper will investigate the strength of the electric field emitted by four different electrical appliances using spectrum analyser. The strength will be captured at three different distances; (i) 1m (ii) 2m and (iii) 3m and analysis of the strength of the electrical field is done based on the three different distances. The measurement results show that the strength of the electric field is strongest when it is captured at 1m and the weakest at 3m from the electrical appliance. The results proved that the farther an object is located from the electrical appliance; the less effect the magnetic field has.

  15. Two-dimensional sigma models: modelling non-perturbative effects of gauge theories

    International Nuclear Information System (INIS)

    Novikov, V.A.; Shifman, M.A.; Vainshtein, A.I.; Zakharov, V.I.

    1984-01-01

    The review is devoted to a discussion of non-perturbative effects in gauge theories and two-dimensional sigma models. The main emphasis is put on supersymmetric 0(3) sigma model. The instanton-based method for calculating the exact Gell-Mann-Low function and bifermionic condensate is considered in detail. All aspects of the method in simplifying conditions are discussed. The basic points are: the instanton measure from purely classical analysis; a non-renormalization theorem in self-dual external fields; existence of vacuum condensates and their compatibility with supersymmetry

  16. Orbital classical solutions, non-perturbative phenomena and singularity at the zero coupling constant point

    International Nuclear Information System (INIS)

    Vourdas, A.

    1982-01-01

    We try to extend previous arguments on orbital classical solutions in non-relativistic quantum mechanics to the 1/4lambda vertical stroke phi vertical stroke 4 complex relativistic field theory. The single valuedness of the Green function in the semiclassical (Planksche Konstante → 0) limit leads to a Bohr-Sommerfeld quantization. A path integral formalism for the Green functions analogous to that in non-relativistic quantum mechanics is employed and a semiclassical approach which uses our classical solutions indicates non-perturbative effects. They reflect an esub(1/lambda) singularity at the zero coupling constant point. (orig.)

  17. Inhomogeneous electric field air cleaner

    International Nuclear Information System (INIS)

    Schuster, B.G.

    1976-01-01

    For applications requiring the filtration of air contaminated with enriched uranium, plutonium or other transuranium compounds, it appears desirable to collect the material in a fashion more amenable to recovery than is now practical when material is collected on HEPA filters. In some instances, it may also be desirable to use an air cleaner of this type to substantially reduce the loading to which HEPA filters are subjected. A theoretical evaluation of such an air cleaner considers the interaction between an electrically neutral particle, dielectric or conducting, with an inhomogeneous electric field. An expression is derived for the force exerted on a particle in an electrode configuration of two concentric cylinders. Equations of motion are obtained for a particle suspended in a laminar flow of air passing through this geometry. An electrical quadrupole geometry is also examined and shown to be inferior to the cylindrical one. The results of two separate configurations of the single cell prototypes of the proposed air cleaner are described. These tests were designed to evaluate collection efficiencies using mono-disperse polystyrene latex and polydisperse NaCl aerosols. The advantages and problems of such systems in terms of a large scale air cleaning facility will be discussed

  18. Do neutrons feel electric fields?

    International Nuclear Information System (INIS)

    Klein, Tony; Werner, Sam

    1991-01-01

    An accounts is given of the results of a co-operative research carried out at the University of Melbourne in Australia and the University of Missouri, Columbia in the United States on the physics of neutrons and their interactions as a test of fundamental principles in quantum mechanics and electrodynamics. In particular it comments on the verification of the Aharonov-Casher effect in electric as well as magnetic fields in the case of neutral particles. It was demonstrated that neutrons have a magnetic moment which precess and acquire phase shifts when exposed to magnetic fields. The sign of the measured phase shift agreed with the theoretical prediction and the magnitude was within one and a half standard deviations of it. 12 refs., 4 figs

  19. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.; Park, Sun H.; Park, Jeong; Fujita, Osamu; Keel, Sang I.; Chung, Suk-Ho

    2017-01-01

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field

  20. H{sup +}{sub 2} ionization by ultra-short electromagnetic pulses investigated through a non-perturbative Coulomb-Volkov approach

    Energy Technology Data Exchange (ETDEWEB)

    RodrIguez, V D [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Macri, P [Departamento de Fisica, FCEyN, Universidad de Buenos Aires, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, Consejo Nacional de Investigaciones CientIficas y Tecnicas, 1428 Buenos Aires (Argentina); Gayet, R [CELIA, Centre Lasers Intenses et Applications, UMR 5107, Unite Mixte de Recherche CNRS-CEA-Universite Bordeaux 1, Universite Bordeaux 1, 351 Cours de la Liberation, 33405 Talence Cedex (France)

    2005-08-14

    The sudden Coulomb-Volkov theoretical approximation has been shown to well describe atomic ionization by intense and ultra-short electromagnetic pulses, such as pulses generated by very fast highly-charged ions. This approach is extended here to investigate single ionization of homonuclear diatomic molecules by such pulses in the framework of one-active electron. Under particular conditions, a Young-like interference formula can approximately be factored out. Present calculations show interference effects originating from the molecular two-centre structure. Fivefold differential angular distributions of the ejected electron are studied as a function of the molecular orientation and internuclear distance. Both non-perturbative and perturbative regimes are examined. In the non-perturbative case, an interference pattern is visible but a main lobe, opposite to the electric field polarization direction, dominates the angular distribution. In contrast, in perturbation conditions the structure of interferences shows analogies to the Young-like interference pattern obtained in ionization of molecules by fast electron impacts. Finally, the strong dependence of these Young-like angular distributions on the internuclear distance is addressed.

  1. A non-perturbative analysis in finite volume gauge theory

    International Nuclear Information System (INIS)

    Koller, J.; State Univ. of New York, Stony Brook; Van Baal, P.; State Univ. of New York, Stony Brook

    1988-01-01

    We discuss SU(2) gauge theory on a three-torus using a finite volume expansion. Our discovery of natural coordinates allows us to obtain continuum results in a region where Monte Carlo data are also available. The obtained results agree well with the perturbative and semiclassical analysis for small volumes, and there is fair agreement with the Monte Carlo results in intermediate volumes. The simple picture which emerges for the approximate low energy dynamics is that of three interacting particles enclosed in a sphere, with zero total 'angular momentum'. The validity of an adiabatic approximation is investigated. The fundamentally new understanding gained, is that non-perturbative dynamics can be incorporated by imposing boundary conditions which arise through the nontrivial topology of configuration space. (orig.)

  2. Non-perturbative construction of the Luttinger-Ward functional

    Directory of Open Access Journals (Sweden)

    M.Potthoff

    2006-01-01

    Full Text Available For a system of correlated electrons, the Luttinger-Ward functional provides a link between static thermodynamic quantities on the one hand and single-particle excitations on the other. The functional is useful in deriving several general properties of the system as well as in formulating the thermodynamically consistent approximations. Its original construction, however, is perturbative as it is based on the weak-coupling skeleton-diagram expansion. Here, it is shown that the Luttinger-Ward functional can be derived within a general functional-integral approach. This alternative and non-perturbative approach stresses the fact that the Luttinger-Ward functional is universal for a large class of models.

  3. Multiphoton transitions in semiconductors in the non-perturbative approach

    International Nuclear Information System (INIS)

    Iqbal, M.Z.; Hassan, A.R.

    1987-09-01

    Transition rates for multiphoton absorption via direct band-to-band excitation have been calculated using a non-perturbative approach due to Jones and Reiss, based on the Volkov type final state wave functions. Both cases of parabolic and non-parabolic energy bands have been included in our calculations. Absorption coefficients have been obtained for the cases of plane polarized and circularly polarized light. In particular, two-photon absorption coefficients are derived for the two cases of polarization for the parabolic band approximation as well as for non-parabolic bands and compared with the results based on perturbation theory. Numerical estimates of the two photon absorption coefficients resulting from our calculations are also provided. (author). 10 refs, 1 tab

  4. Non-perturbative renormalization of three-quark operators

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, Meinulf [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, Roger [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Kaltenbrunner, Thomas [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)

    2008-10-15

    High luminosity accelerators have greatly increased the interest in semi-exclusive and exclusive reactions involving nucleons. The relevant theoretical information is contained in the nucleon wavefunction and can be parametrized by moments of the nucleon distribution amplitudes, which in turn are linked to matrix elements of local three-quark operators. These can be calculated from first principles in lattice QCD. Defining an RI-MOM renormalization scheme, we renormalize three-quark operators corresponding to low moments non-perturbatively and take special care of the operator mixing. After performing a scheme matching and a conversion of the renormalization scale we quote our final results in the MS scheme at {mu}=2 GeV. (orig.)

  5. Probing non-perturbative effects in M-theory

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Okuyama, Kazumi

    2014-07-01

    The AdS/CFT correspondence enables us to probe M-theory on various backgrounds from the corresponding dual gauge theories. Here we investigate in detail a three-dimensional U(N) N=4 super Yang-Mills theory coupled to one adjoint hypermultiplet and N f fundamental hypermultiplets, which is large N dual to M-theory on AdS 4 x S 7 /Z N f . Using the localization and the Fermi-gas formulation, we explore non-perturbative corrections to the partition function. As in the ABJM theory, we find that there exists a non-trivial pole cancellation mechanism, which guarantees the theory to be well-defined, between worldsheet instantons and membrane instantons for all rational (in particular, physical or integral) values of N f .

  6. A non-perturbative study of massive gauge theories

    DEFF Research Database (Denmark)

    Della Morte, Michele; Hernandez, Pilar

    2013-01-01

    and the lightest degrees of freedom are spin one vector particles with the same quantum numbers as the conserved current, we argue that the most general effective theory describing their low-energy dynamics must be a massive gauge theory. We present results of a exploratory numerical simulation of the model......We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists...... and find indications for the presence of a scaling region where both a triplet vector and a scalar remain light....

  7. PREFACE: Loops 11: Non-Perturbative / Background Independent Quantum Gravity

    Science.gov (United States)

    Mena Marugán, Guillermo A.; Barbero G, J. Fernando; Garay, Luis J.; Villaseñor, Eduardo J. S.; Olmedo, Javier

    2012-05-01

    Loops 11 The international conference LOOPS'11 took place in Madrid from the 23-28 May 2011. It was hosted by the Instituto de Estructura de la Materia (IEM), which belongs to the Consejo Superior de Investigaciones Cientĺficas (CSIC). Like previous editions of the LOOPS meetings, it dealt with a wealth of state-of-the-art topics on Quantum Gravity, with special emphasis on non-perturbative background-independent approaches to spacetime quantization. The main topics addressed at the conference ranged from the foundations of Quantum Gravity to its phenomenological aspects. They encompassed different approaches to Loop Quantum Gravity and Cosmology, Polymer Quantization, Quantum Field Theory, Black Holes, and discrete approaches such as Dynamical Triangulations, amongst others. In addition, this edition celebrated the 25th anniversary of the introduction of the now well-known Ashtekar variables and the Wednesday morning session was devoted to this silver jubilee. The structure of the conference was designed to reflect the current state and future prospects of research on the different topics mentioned above. Plenary lectures that provided general background and the 'big picture' took place during the mornings, and the more specialised talks were distributed in parallel sessions during the evenings. To be more specific, Monday evening was devoted to Shape Dynamics and Phenomenology Derived from Quantum Gravity in Parallel Session A, and to Covariant Loop Quantum Gravity and Spin foams in Parallel Session B. Tuesday's three Parallel Sessions dealt with Black Hole Physics and Dynamical Triangulations (Session A), the continuation of Monday's session on Covariant Loop Quantum Gravity and Spin foams (Session B) and Foundations of Quantum Gravity (Session C). Finally, Thursday and Friday evenings were devoted to Loop Quantum Cosmology (Session A) and to Hamiltonian Loop Quantum Gravity (Session B). The result of the conference was very satisfactory and enlightening. Not

  8. An Electric Field Test Using the MRI

    Czech Academy of Sciences Publication Activity Database

    Fiala, P.; Bartušek, Karel

    2008-01-01

    Roč. 4, č. 7 (2008), s. 701-705 ISSN 1931-7360 Institutional research plan: CEZ:AV0Z20650511 Keywords : MRI * electric field * numerical modeling Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  9. Electric fields in plasmas under pulsed currents

    International Nuclear Information System (INIS)

    Tsigutkin, K.; Doron, R.; Stambulchik, E.; Bernshtam, V.; Maron, Y.; Fruchtman, A.; Commisso, R. J.

    2007-01-01

    Electric fields in a plasma that conducts a high-current pulse are measured as a function of time and space. The experiment is performed using a coaxial configuration, in which a current rising to 160 kA in 100 ns is conducted through a plasma that prefills the region between two coaxial electrodes. The electric field is determined using laser spectroscopy and line-shape analysis. Plasma doping allows for three-dimensional spatially resolved measurements. The measured peak magnitude and propagation velocity of the electric field is found to match those of the Hall electric field, inferred from the magnetic-field front propagation measured previously

  10. Two devices for atmospheric electric field measurement

    International Nuclear Information System (INIS)

    Colombet, Andre; Hubert, Pierre.

    1977-02-01

    Two instruments installed at St Privat d'Allier for electric field measurement in connection with the rocket triggered lighting experiment program are described. The first one is a radioactive probe electrometer used as a warning device. The second is a field mill used for tape recording of electric field variation during the triggering events. Typical examples of such records are given [fr

  11. Non-Perturbative Asymptotic Improvement of Perturbation Theory and Mellin-Barnes Representation

    Directory of Open Access Journals (Sweden)

    Samuel Friot

    2010-10-01

    Full Text Available Using a method mixing Mellin-Barnes representation and Borel resummation we show how to obtain hyperasymptotic expansions from the (divergent formal power series which follow from the perturbative evaluation of arbitrary ''N-point'' functions for the simple case of zero-dimensional φ4 field theory. This hyperasymptotic improvement appears from an iterative procedure, based on inverse factorial expansions, and gives birth to interwoven non-perturbative partial sums whose coefficients are related to the perturbative ones by an interesting resurgence phenomenon. It is a non-perturbative improvement in the sense that, for some optimal truncations of the partial sums, the remainder at a given hyperasymptotic level is exponentially suppressed compared to the remainder at the preceding hyperasymptotic level. The Mellin-Barnes representation allows our results to be automatically valid for a wide range of the phase of the complex coupling constant, including Stokes lines. A numerical analysis is performed to emphasize the improved accuracy that this method allows to reach compared to the usual perturbative approach, and the importance of hyperasymptotic optimal truncation schemes.

  12. Topological string theory, modularity and non-perturbative physics

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Marco

    2011-09-15

    In this thesis the holomorphic anomaly of correlators in topological string theory, matrix models and supersymmetric gauge theories is investigated. In the first part it is shown how the techniques of direct integration known from topological string theory can be used to solve the closed amplitudes of Hermitian multi-cut matrix models with polynomial potentials. In the case of the cubic matrix model, explicit expressions for the ring of non-holomorphic modular forms that are needed to express all closed matrix model amplitudes are given. This allows to integrate the holomorphic anomaly equation up to holomorphic modular terms that are fixed by the gap condition up to genus four. There is an one-dimensional submanifold of the moduli space in which the spectral curve becomes the Seiberg-Witten curve and the ring reduces to the non-holomorphic modular ring of the group {gamma}(2). On that submanifold, the gap conditions completely fix the holomorphic ambiguity and the model can be solved explicitly to very high genus. Using these results it is possible to make precision tests of the connection between the large order behavior of the 1/N expansion and non-perturbative effects due to instantons. Finally, it is argued that a full understanding of the large genus asymptotics in the multi-cut case requires a new class of non-perturbative sectors in the matrix model. In the second part a holomorphic anomaly equation for the modified elliptic genus of two M5-branes wrapping a rigid divisor inside a Calabi-Yau manifold is derived using wall-crossing formulae and the theory of mock modular forms. The anomaly originates from restoring modularity of an indefinite theta-function capturing the wall-crossing of BPS invariants associated to D4- D2-D0 brane systems. The compatibility of this equation with anomaly equations previously observed in the context of N=4 topological Yang-Mills theory on P{sup 2} and E-strings obtained from wrapping M5-branes on a del Pezzo surface which in

  13. Topological string theory, modularity and non-perturbative physics

    International Nuclear Information System (INIS)

    Rauch, Marco

    2011-09-01

    In this thesis the holomorphic anomaly of correlators in topological string theory, matrix models and supersymmetric gauge theories is investigated. In the first part it is shown how the techniques of direct integration known from topological string theory can be used to solve the closed amplitudes of Hermitian multi-cut matrix models with polynomial potentials. In the case of the cubic matrix model, explicit expressions for the ring of non-holomorphic modular forms that are needed to express all closed matrix model amplitudes are given. This allows to integrate the holomorphic anomaly equation up to holomorphic modular terms that are fixed by the gap condition up to genus four. There is an one-dimensional submanifold of the moduli space in which the spectral curve becomes the Seiberg-Witten curve and the ring reduces to the non-holomorphic modular ring of the group Γ(2). On that submanifold, the gap conditions completely fix the holomorphic ambiguity and the model can be solved explicitly to very high genus. Using these results it is possible to make precision tests of the connection between the large order behavior of the 1/N expansion and non-perturbative effects due to instantons. Finally, it is argued that a full understanding of the large genus asymptotics in the multi-cut case requires a new class of non-perturbative sectors in the matrix model. In the second part a holomorphic anomaly equation for the modified elliptic genus of two M5-branes wrapping a rigid divisor inside a Calabi-Yau manifold is derived using wall-crossing formulae and the theory of mock modular forms. The anomaly originates from restoring modularity of an indefinite theta-function capturing the wall-crossing of BPS invariants associated to D4- D2-D0 brane systems. The compatibility of this equation with anomaly equations previously observed in the context of N=4 topological Yang-Mills theory on P 2 and E-strings obtained from wrapping M5-branes on a del Pezzo surface which in turn is

  14. Tripolar electric field Structure in guide field magnetic reconnection

    OpenAIRE

    S. Fu; S. Huang; M. Zhou; B. Ni; X. Deng

    2018-01-01

    It has been shown that the guide field substantially modifies the structure of the reconnection layer. For instance, the Hall magnetic and electric fields are distorted in guide field reconnection compared to reconnection without guide fields (i.e., anti-parallel reconnection). In this paper, we performed 2.5-D electromagnetic full particle simulation to study the electric field structures in magnetic reconnection under different initial guide fields (Bg). Once the amplit...

  15. Electric fields in the ionosphere

    International Nuclear Information System (INIS)

    Kirchhoff, V.W.J.H.

    1975-01-01

    F-region drift velocities, measured by incoherent-scatter radar, were analyzed in terms of diurnal, seasonal, magnetic-activity, and solar-cycle effects. A comprehensive electric field model was developed that includes the effects of the E and F-region dynamos, magnetospheric sources, and ionospheric conductivities, for both the local and conjugate regions. The E-region dynamo dominates during the day, but at night the F-region and convection are more important. This model provides much better agreement with observations of the F-region drifts than previous models. Results indicate that larger magnitudes occur at night, and that daily variation is dominated by the diurnal mode. Seasonal variations in conductivities and thermospheric winds indicate a reversal in direction in the early morning during winter from south to northward. On magnetic perturbed days the drifts deviate rather strongly from the quiet days average, especially around 13 L.T. for the northward and 18 L.T. for the westward component

  16. Non-perturbative string theories and singular surfaces

    International Nuclear Information System (INIS)

    Bochicchio, M.

    1990-01-01

    Singular surfaces are shown to be dense in the Teichmueller space of all Riemann surfaces and in the grasmannian. This happens because a regular surface of genus h, obtained identifying 2h disks in pairs, can be approximated by a very large genus singular surface with punctures dense in the 2h disks. A scale ε is introduced and the approximate genus is defined as half the number of connected regions covered by punctures of radius ε. The non-perturbative partition function is proposed to be a scaling limit of the partition function on such infinite genus singular surfaces with a weight which is the coupling constant g raised to the approximate genus. For a gaussian model in any space-time dimension the regularized partition function on singular surfaces of infinite genus is the partition function of a two-dimensional lattice gas of charges and monopoles. It is shown that modular invariance of the partition function implies a version of the Dirac quantization condition for the values of the e/m charges. Before the scaling limit the phases of the lattice gas may be classified according to the 't Hooft criteria for the condensation of e/m operators. (orig.)

  17. Radial electric fields for improved tokamak performance

    International Nuclear Information System (INIS)

    Downum, W.B.

    1981-01-01

    The influence of externally-imposed radial electric fields on the fusion energy output, energy multiplication, and alpha-particle ash build-up in a TFTR-sized, fusing tokamak plasma is explored. In an idealized tokamak plasma, an externally-imposed radial electric field leads to plasma rotation, but no charge current flows across the magnetic fields. However, a realistically-low neutral density profile generates a non-zero cross-field conductivity and the species dependence of this conductivity allows the electric field to selectively alter radial particle transport

  18. Scale-invariant scalar metric fluctuations during inflation: non-perturbative formalism from a 5D vacuum

    International Nuclear Information System (INIS)

    Anabitarte, M.; Bellini, M.; Madriz Aguilar, Jose Edgar

    2010-01-01

    We extend to 5D an approach of a 4D non-perturbative formalism to study scalar metric fluctuations of a 5D Riemann-flat de Sitter background metric. In contrast with the results obtained in 4D, the spectrum of cosmological scalar metric fluctuations during inflation can be scale invariant and the background inflaton field can take sub-Planckian values. (orig.)

  19. Underwater electric field detection system based on weakly electric fish

    Science.gov (United States)

    Xue, Wei; Wang, Tianyu; Wang, Qi

    2018-04-01

    Weakly electric fish sense their surroundings in complete darkness by their active electric field detection system. However, due to the insufficient detection capacity of the electric field, the detection distance is not enough, and the detection accuracy is not high. In this paper, a method of underwater detection based on rotating current field theory is proposed to improve the performance of underwater electric field detection system. First of all, we built underwater detection system based on the theory of the spin current field mathematical model with the help of the results of previous researchers. Then we completed the principle prototype and finished the metal objects in the water environment detection experiments, laid the foundation for the further experiments.

  20. Pulsed electric field inactivation in a microreactor

    NARCIS (Netherlands)

    Fox, M.B.

    2006-01-01

    Pulsed electric fields (PEF) is a novel, non-thermal pasteurization method which uses short, high electric field pulses to inactivate microorganisms. The advantage of a pasteurization method like PEF compared to regular heat pasteurization is that the taste, flavour, texture and nutritional value

  1. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  2. The convection electric field in auroral substorms

    DEFF Research Database (Denmark)

    Gjerløv, Jesper Wittendorff; Hoffman, R.A.

    2001-01-01

    Dynamics Explorer 2 (DE 2) electric field and ion drift data are used in a statistical study of the ionospheric convection electric field in bulge-type auroral substorms. Thirty-one individual DE 2 substorm crossings were carefully selected and organized by the use of global auroral images obtained...... this database enabled us to compile a model of the ionospheric convection electric field. The characteristics of the premidnight convection reversal show a pronounced local time dependency. Far west of the surge it is a fairly well defined point reversal or convection shear. Approaching the surge and within...... the surge it is a region of weak electric fields increasing in width toward midnight that separates regions of equatorward and poleward electric fields. Therefore we adopt the term Harang region rather than the Harang discontinuity for the premidnight convection reversal. A relatively narrow convection...

  3. Holomorphic couplings in non-perturbative string compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Klevers, Denis Marco

    2011-06-15

    In this thesis we present an analysis of several aspects of four-dimensional, non-perturbative N = 1 compactifications of string theory. Our focus is on the study of brane dynamics and their effective physics as encoded in the holomorphic couplings of the low-energy N=1 effective action, most prominently the superpotential W. The thesis is divided into three parts. In part one we derive the effective action of a spacetime-filling D5-brane in generic Type IIB Calabi-Yau orientifold compactifications. In the second part we invoke tools from string dualities, namely from F-theory, heterotic/F-theory duality and mirror symmetry, for a more elaborate study of the dynamics of (p, q) 7-branes and heterotic five-branes. In this context we demonstrate exact computations of the complete perturbative effective superpotential, both due to branes and background fluxes. Finally, in the third part we present a novel geometric description of five-branes in Type IIB and heterotic M-theory Calabi-Yau compactifications via a non-Calabi-Yau threefold Z{sub 3}, that is canonically constructed from the original five-brane and Calabi-Yau threefold Z{sub 3} via a blow-up. We exploit the use of the blow-up threefold Z{sub 3} as a tool to derive open-closed Picard-Fuchs differential equations, that govern the complete effective brane and flux superpotential. In addition, we present first evidence to interpret Z{sub 3} as a flux compactification dual to the original five-brane by defining an SU(3)-structure on Z{sub 3}, that is generated dynamically by the five-brane backreaction. (orig.)

  4. Holomorphic couplings in non-perturbative string compactifications

    International Nuclear Information System (INIS)

    Klevers, Denis Marco

    2011-06-01

    In this thesis we present an analysis of several aspects of four-dimensional, non-perturbative N = 1 compactifications of string theory. Our focus is on the study of brane dynamics and their effective physics as encoded in the holomorphic couplings of the low-energy N=1 effective action, most prominently the superpotential W. The thesis is divided into three parts. In part one we derive the effective action of a spacetime-filling D5-brane in generic Type IIB Calabi-Yau orientifold compactifications. In the second part we invoke tools from string dualities, namely from F-theory, heterotic/F-theory duality and mirror symmetry, for a more elaborate study of the dynamics of (p, q) 7-branes and heterotic five-branes. In this context we demonstrate exact computations of the complete perturbative effective superpotential, both due to branes and background fluxes. Finally, in the third part we present a novel geometric description of five-branes in Type IIB and heterotic M-theory Calabi-Yau compactifications via a non-Calabi-Yau threefold Z 3 , that is canonically constructed from the original five-brane and Calabi-Yau threefold Z 3 via a blow-up. We exploit the use of the blow-up threefold Z 3 as a tool to derive open-closed Picard-Fuchs differential equations, that govern the complete effective brane and flux superpotential. In addition, we present first evidence to interpret Z 3 as a flux compactification dual to the original five-brane by defining an SU(3)-structure on Z 3 , that is generated dynamically by the five-brane backreaction. (orig.)

  5. Electric Potential and Electric Field Imaging with Applications

    Science.gov (United States)

    Generazio, Ed

    2016-01-01

    The technology and techniques for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for (illuminating) volumes to be inspected with EFI. The baseline sensor technology, electric field sensor (e-sensor), and its construction, optional electric field generation (quasistatic generator), and current e-sensor enhancements (ephemeral e-sensor) are discussed. Demonstrations for structural, electronic, human, and memory applications are shown. This new EFI capability is demonstrated to reveal characterization of electric charge distribution, creating a new field of study that embraces areas of interest including electrostatic discharge mitigation, crime scene forensics, design and materials selection for advanced sensors, dielectric morphology of structures, inspection of containers, inspection for hidden objects, tether integrity, organic molecular memory, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  6. Electric field mapping and auroral Birkeland currents

    International Nuclear Information System (INIS)

    Kaufmann, R.L.; Larson, D.J.

    1989-01-01

    Magnetic field lines, electric fields and equipotentials have been mapped throughout the magnetosphere in the vicinity of strong Birkeland currents. It was found that a uniform electric field at either the ionospheric or the equatorial end of a field line can map to a highly structured field at the other end if strong Birkeland currents are located nearby. The initiation of sheet currents of the region 1 - region 2 scale size and intensity resulted in magnetic field line displacements of about 1/2 hour in local time between equatorial and ionospheric end points. As a result, a uniform dawn to dusk electric field at the equator mapped to an ionospheric electric field with strong inward pointing components in the dusk hemisphere. Similar distortions were produced by Birkeland currents associated with narrow east-west-aligned auroral arcs. A specific model for the auroral current system, based on ionospheric measurements during a large substorm, was used to study effects seen during disturbed periods. An iterative procedure was developed to generate a self-consistent current system even in the presence of highly twisted field lines. The measured ionospheric electric field was projected tot he equatorial plane in the presence of the model Birkeland current system. Several physical processes were seen to influence ionospheric and equatorial electric fields, and the associated plasma convection, during a substorm

  7. Nanomechanical electric and electromagnetic field sensor

    Science.gov (United States)

    Datskos, Panagiotis George; Lavrik, Nickolay

    2015-03-24

    The present invention provides a system for detecting and analyzing at least one of an electric field and an electromagnetic field. The system includes a micro/nanomechanical oscillator which oscillates in the presence of at least one of the electric field and the electromagnetic field. The micro/nanomechanical oscillator includes a dense array of cantilevers mounted to a substrate. A charge localized on a tip of each cantilever interacts with and oscillates in the presence of the electric and/or electromagnetic field. The system further includes a subsystem for recording the movement of the cantilever to extract information from the electric and/or electromagnetic field. The system further includes a means of adjusting a stiffness of the cantilever to heterodyne tune an operating frequency of the system over a frequency range.

  8. On Schwinger mechanism for gluon pair production in the presence of arbitrary time dependent chromo-electric field

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Herzen State Pedagogical University of Russia, Department of General and Experimental Physics, St. Petersburg (Russian Federation); Gitman, D.M. [University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo, SP (Brazil)

    2009-11-15

    Recently the paper ''Schwinger mechanism for gluon pair production in the presence of arbitrary time dependent chromo-electric field'' by G. C. Nayak was published [Eur. Phys. J. C. 59: 715, 2009; arXiv: 0708.2439]. Its aim is to obtain an exact expression for the probability of non-perturbative gluon pair production per unit time per unit volume and per unit transverse momentum in an arbitrary time-dependent chromo-electric background field. We believe that the obtained expression is open to question. We demonstrate its inconsistency on some well-known examples. We think that this is a consequence of using the so-called ''shift theorem'' [arXiv: hep-th/0609192 ] in deriving the expression for the probability. We make some critical comments on the theorem and its applicability to the problem in question. (orig.)

  9. ELECTRIC AND MAGNETIC FIELDS ELECTRIC AND GASOLINE-POWERED VEHICLES.

    Science.gov (United States)

    Tell, Richard A; Kavet, Robert

    2016-12-01

    Measurements were conducted to investigate electric and magnetic fields (EMFs) from 120 Hz to 10 kHz and 1.2 to 100 kHz in 9 electric or hybrid vehicles and 4 gasoline vehicles, all while being driven. The range of fields in the electric vehicles enclosed the range observed in the gasoline vehicles. Mean magnetic fields ranged from nominally 0.6 to 3.5 µT for electric/hybrids depending on the measurement band compared with nominally 0.4 to 0.6 µT for gasoline vehicles. Mean values of electric fields ranged from nominally 2 to 3 V m -1 for electric/hybrid vehicles depending on the band, compared with 0.9 to 3 V m -1 for gasoline vehicles. In all cases, the fields were well within published exposure limits for the general population. The measurements were performed with Narda model EHP-50C/EHP-50D EMF analysers that revealed the presence of spurious signals in the EHP-50C unit, which were resolved with the EHP-50D model. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. ESTIMATING ELECTRIC FIELDS FROM VECTOR MAGNETOGRAM SEQUENCES

    International Nuclear Information System (INIS)

    Fisher, G. H.; Welsch, B. T.; Abbett, W. P.; Bercik, D. J.

    2010-01-01

    Determining the electric field distribution on the Sun's photosphere is essential for quantitative studies of how energy flows from the Sun's photosphere, through the corona, and into the heliosphere. This electric field also provides valuable input for data-driven models of the solar atmosphere and the Sun-Earth system. We show how observed vector magnetogram time series can be used to estimate the photospheric electric field. Our method uses a 'poloidal-toroidal decomposition' (PTD) of the time derivative of the vector magnetic field. These solutions provide an electric field whose curl obeys all three components of Faraday's Law. The PTD solutions are not unique; the gradient of a scalar potential can be added to the PTD electric field without affecting consistency with Faraday's Law. We then present an iterative technique to determine a potential function consistent with ideal MHD evolution; but this field is also not a unique solution to Faraday's Law. Finally, we explore a variational approach that minimizes an energy functional to determine a unique electric field, a generalization of Longcope's 'Minimum Energy Fit'. The PTD technique, the iterative technique, and the variational technique are used to estimate electric fields from a pair of synthetic vector magnetograms taken from an MHD simulation; and these fields are compared with the simulation's known electric fields. The PTD and iteration techniques compare favorably to results from existing velocity inversion techniques. These three techniques are then applied to a pair of vector magnetograms of solar active region NOAA AR8210, to demonstrate the methods with real data. Careful examination of the results from all three methods indicates that evolution of the magnetic vector by itself does not provide enough information to determine the true electric field in the photosphere. Either more information from other measurements, or physical constraints other than those considered here are necessary to find

  11. Vacuum instability in a random electric field

    International Nuclear Information System (INIS)

    Krive, I.V.; Pastur, L.A.

    1984-01-01

    The reaction of the vacuum on an intense spatially homogeneous random electric field is investigated. It is shown that a stochastic electric field always causes a breakdown of the boson vacuum, and the number of pairs of particles which are created by the electric field increases exponentially in time. For the choice of potential field in the form of a dichotomic random process we find in explicit form the dependence of the average number of pairs of particles on the time of the action of the source of the stochastic field. For the fermion vacuum the average number of pairs of particles which are created by the field in the lowest order of perturbation theory in the amplitude of the random field is independent of time

  12. Moderate and high intensity pulsed electric fields

    OpenAIRE

    Timmermans, Rian Adriana Hendrika

    2018-01-01

    Pulsed Electric Field (PEF) processing has gained a lot of interest the last decades as mild processing technology as alternative to thermal pasteurisation, and is suitable for preservation of liquid food products such as fruit juices. PEF conditions typically applied at industrial scale for pasteurisation are high intensity pulsed electric fields aiming for minimal heat load, with an electric field strength (E) in the range of 15 − 20 kV/cm and pulse width (τ) between 2 − 20 μs. Alternativel...

  13. Numerical Study of Electric Field Enhanced Combustion

    KAUST Repository

    Han, Jie

    2016-12-26

    Electric fields can be used to change and control flame properties, for example changing flame speed, enhancing flame stability, or reducing pollutant emission. The ions generated in flames are believed to play the primary role. Although experiments have been carried out to study electric field enhanced combustion, they are not sufficient to explain how the ions in a flame are affected by an electric field. It is therefore necessary to investigate the problem through numerical simulations. In the present work, the electric structure of stabilized CH4/air premixed flames at atmospheric pressure within a direct current field is studied using numerical simulations. This study consists of three parts. First, the transport equations are derived from the Boltzmann kinetic equation for each individual species. Second, a general method for computing the diffusivity and mobility of ions in a gas mixture is introduced. Third, the mechanisms for neutral and charged species are improved to give better predictions of the concentrations of charged species, based on experimental data. Following from this, comprehensive numerical results are presented, including the concentrations and fluxes of charged species, the distributions of the electric field and electric potential, and the electric current-voltage relation. Two new concepts introduced with the numerical results are the plasma sheath and dead zone in the premixed flame. A reactive plasma sheath and a Boltzmann relation sheath are discovered in the region near the electrodes. The plasma sheath penetrates into the flame gas when a voltage is applied, and penetrating further if the voltage is higher. The zone outside the region of sheath penetration is defined as the dead zone. With the two concepts, analytical solutions for the electric field, electric potential and current-voltage curve are derived. The solutions directly describe the electric structure of a premixed flame subject to a DC field. These analytical solutions

  14. Analysis of Surface Electric Field Measurements from an Array of Electric Field Mills

    Science.gov (United States)

    Lucas, G.; Thayer, J. P.; Deierling, W.

    2016-12-01

    Kennedy Space Center (KSC) has operated an distributed array of over 30 electric field mills over the past 18 years, providing a unique data set of surface electric field measurements over a very long timespan. In addition to the electric field instruments there are many meteorological towers around KSC that monitor the local meteorological conditions. Utilizing these datasets we have investigated and found unique spatial and temporal signatures in the electric field data that are attributed to local meteorological effects and the global electric circuit. The local and global scale influences on the atmospheric electric field will be discussed including the generation of space charge from the ocean surf, local cloud cover, and a local enhancement in the electric field that is seen at sunrise.

  15. Electropumping of water with rotating electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt; De Luca, Sergio; Todd, Billy

    2013-01-01

    exploiting the coupling of spin angular momentum to linear streaming momentum. A spatially uniform rotating electric field is applied to water molecules, which couples to their permanent electric dipole moments. The resulting molecular rotational momentum is converted into linear streaming momentum...

  16. Erythrocytes in alternating electric fields

    International Nuclear Information System (INIS)

    Morariu, V.V.; Chifu, A.; Simplaceanu, T.; Frangopol, P.T.

    1983-02-01

    The elastic and inelastic deformation of erythrocytes induced by alternating fields and the suggestion that moderate field intensities (1.2 kV/cm) when continuously applied can cause lysis by a different mechanism compared to the action of short intense field pulses is presented. The different experimental conditions can be used to approach various properties of the membrane such as those related to the dielectric polarization of the membrane or to the interfacial polarization, leading to the inelastic deformation of the cells. (authors)

  17. Axial Field Electric Motor and Method

    National Research Council Canada - National Science Library

    Cho, Chahee P

    2007-01-01

    .... A hybrid field, brushless, permanent magnet electric motor utilizing a rotor with two sets of permanent magnets oriented such that the flux produced by the two sets of magnets is perpendicular to each...

  18. Inductive electric field at the magnetopause

    International Nuclear Information System (INIS)

    Heikkila, W.J.

    1982-01-01

    The electric field data for two crossings of the magnetopause by ISEE-1 on November 20, 1977, have been analyzed with high time resolution. In both cases the electric field has a negative dawn-dusk component in the boundary layer, so it must reverse somewhere within the current layer to the positive value outside. If there is a component parallel to the moving magnetopause current it is small, and by no means obvious. In the case of the exit crossing from the boundary layer to the magnetosheath the data show that the electric field vector is turning for about two seconds at roughly the satellite spin rate; this changing direction suggests that the electric field has a curl. Such a curl could be caused by a travelling localized perturbation of the magnetopause surface current associated with impulsive plasma transport through the magnetopause

  19. Numerical Study of Electric Field Enhanced Combustion

    KAUST Repository

    Han, Jie

    2016-01-01

    Electric fields can be used to change and control flame properties, for example changing flame speed, enhancing flame stability, or reducing pollutant emission. The ions generated in flames are believed to play the primary role. Although experiments

  20. Electric field imaging of single atoms

    Science.gov (United States)

    Shibata, Naoya; Seki, Takehito; Sánchez-Santolino, Gabriel; Findlay, Scott D.; Kohno, Yuji; Matsumoto, Takao; Ishikawa, Ryo; Ikuhara, Yuichi

    2017-01-01

    In scanning transmission electron microscopy (STEM), single atoms can be imaged by detecting electrons scattered through high angles using post-specimen, annular-type detectors. Recently, it has been shown that the atomic-scale electric field of both the positive atomic nuclei and the surrounding negative electrons within crystalline materials can be probed by atomic-resolution differential phase contrast STEM. Here we demonstrate the real-space imaging of the (projected) atomic electric field distribution inside single Au atoms, using sub-Å spatial resolution STEM combined with a high-speed segmented detector. We directly visualize that the electric field distribution (blurred by the sub-Å size electron probe) drastically changes within the single Au atom in a shape that relates to the spatial variation of total charge density within the atom. Atomic-resolution electric field mapping with single-atom sensitivity enables us to examine their detailed internal and boundary structures. PMID:28555629

  1. Particle creation in colour-electric fields

    International Nuclear Information System (INIS)

    Ambjorn, J.; Hughes, R.J.

    1982-01-01

    The decay of the Yang-Mills vacuum in a uniform colour-electric field is calculated using the method of Bogoliubov transformations. The result does not agree with that obtained by summation of the corresponding perturbation series. (orig.)

  2. Molecular dynamics in high electric fields

    International Nuclear Information System (INIS)

    Apostol, M.; Cune, L.C.

    2016-01-01

    Highlights: • New method for rotation molecular spectra in high electric fields. • Parametric resonances – new features in spectra. • New elementary excitations in polar solids from dipolar interaction (“dipolons”). • Discussion about a possible origin of the ferroelectricity from dipolar interactions. - Abstract: Molecular rotation spectra, generated by the coupling of the molecular electric-dipole moments to an external time-dependent electric field, are discussed in a few particular conditions which can be of some experimental interest. First, the spherical-pendulum molecular model is reviewed, with the aim of introducing an approximate method which consists in the separation of the azimuthal and zenithal motions. Second, rotation spectra are considered in the presence of a static electric field. Two particular cases are analyzed, corresponding to strong and weak fields. In both cases the classical motion of the dipoles consists of rotations and vibrations about equilibrium positions; this motion may exhibit parametric resonances. For strong fields a large macroscopic electric polarization may appear. This situation may be relevant for polar matter (like pyroelectrics, ferroelectrics), or for heavy impurities embedded in a polar solid. The dipolar interaction is analyzed in polar condensed matter, where it is shown that new polarization modes appear for a spontaneous macroscopic electric polarization (these modes are tentatively called “dipolons”); one of the polarization modes is related to parametric resonances. The extension of these considerations to magnetic dipoles is briefly discussed. The treatment is extended to strong electric fields which oscillate with a high frequency, as those provided by high-power lasers. It is shown that the effect of such fields on molecular dynamics is governed by a much weaker, effective, renormalized, static electric field.

  3. Crystal growth under external electric fields

    International Nuclear Information System (INIS)

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo

    2014-01-01

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal

  4. Crystal growth under external electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Uda, Satoshi; Koizumi, Haruhiko; Nozawa, Jun; Fujiwara, Kozo [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577 (Japan)

    2014-10-06

    This is a review article concerning the crystal growth under external electric fields that has been studied in our lab for the past 10 years. An external field is applied electrostatically either through an electrically insulating phase or a direct injection of an electric current to the solid-interface-liquid. The former changes the chemical potential of both solid and liquid and controls the phase relationship while the latter modifies the transport and partitioning of ionic solutes in the oxide melt during crystallization and changes the solute distribution in the crystal.

  5. Electric Potential and Electric Field Imaging with Dynamic Applications & Extensions

    Science.gov (United States)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field made be used for volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. Extensions to environment, Space and subterranean applications will be presented, and initial results for quantitative characterizing material properties are shown. A wearable EFI system has been developed by using fundamental EFI concepts. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, manufacturing quality control, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of

  6. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    1997-10-01

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  7. Magnetospheric electric fields and auroral oval

    Science.gov (United States)

    Laakso, Harri; Pedersen, Arne; Craven, John D.; Frank, L. A.

    1992-01-01

    DC electric field variations in a synchronous orbit (GEOS 2) during four substorms in the time sector 19 to 01 LT were investigated. Simultaneously, the imaging photometer on board DE 1 provided auroral images that are also utilized. Substorm onset is defined here as a sudden appearance of large electric fields. During the growth phase, the orientation of the electric field begins to oscillate some 30 min prior to onset. About 10 min before the onset GEOS 2 starts moving into a more tenuous plasma, probably due to a thinning of the current sheet. The onset is followed by a period of 10 to 15 min during which large electric fields occur. This interval can be divided into two intervals. During the first interval, which lasts 4 to 8 min, very large fields of 8 to 20 mV/m are observed, while the second interval contains relatively large fields (2 to 5 mV/m). A few min after the onset, the spacecraft returns to a plasma region of higher electron fluxes which are usually larger than before substorm. Some 30 min after onset, enhanced activity, lasting about 10 min, appears in the electric field. One of the events selected offers a good opportunity to study the formation and development of the Westward Traveling Surge (WST). During the traversal of the leading edge of the WTS (approximately 8 min) a stable wave mode at 5.7 mHz is detected.

  8. Midday reversal of equatorial ionospheric electric field

    Directory of Open Access Journals (Sweden)

    R. G. Rastogi

    Full Text Available A comparative study of the geomagnetic and ionospheric data at equatorial and low-latitude stations in India over the 20 year period 1956–1975 is described. The reversal of the electric field in the ionosphere over the magnetic equator during the midday hours indicated by the disappearance of the equatorial sporadic E region echoes on the ionograms is a rare phenomenon occurring on about 1% of time. Most of these events are associated with geomagnetically active periods. By comparing the simultaneous geomagnetic H field at Kodaikanal and at Alibag during the geomagnetic storms it is shown that ring current decreases are observed at both stations. However, an additional westward electric field is superimposed in the ionosphere during the main phase of the storm which can be strong enough to temporarily reverse the normally eastward electric field in the dayside ionosphere. It is suggested that these electric fields associated with the V×Bz electric fields originate at the magnetopause due to the interaction of the solar wind and the interplanetary magnetic field.

  9. Electrically induced magnetic fields; a consistent approach

    Science.gov (United States)

    Batell, Brian; Ferstl, Andrew

    2003-09-01

    Electromagnetic radiation exists because changing magnetic fields induce changing electric fields and vice versa. This fact often appears inconsistent with the way some physics textbooks solve particular problems using Faraday's law. These types of problems often ask students to find the induced electric field given a current that does not vary linearly with time. A typical example involves a long solenoid carrying a sinusoidal current. This problem is usually solved as an example or assigned as a homework exercise. The solution offered by many textbooks uses the approximation that the induced, changing electric field produces a negligible magnetic field, which is only valid at low frequencies. If this approximation is not explicitly acknowledged, then the solution appears inconsistent with the description of electromagnetic radiation. In other cases, when the problem is solved without this approximation, the electric and magnetic fields are derived from the vector potential. We present a detailed calculation of the electric and magnetic fields inside and outside the long solenoid without using the vector potential. We then offer a comparison of our solution and a solution given in an introductory textbook.

  10. Detection of electric field around field-reversed configuration plasma

    International Nuclear Information System (INIS)

    Ikeyama, Taeko; Hiroi, Masanori; Nogi, Yasuyuki; Ohkuma, Yasunori

    2010-01-01

    Electric-field probes consisting of copper plates are developed to measure electric fields in a vacuum region around a plasma. The probes detect oscillating electric fields with a maximum strength of approximately 100 V/m through a discharge. Reproducible signals from the probes are obtained with an unstable phase dominated by a rotational instability. It is found that the azimuthal structure of the electric field can be explained by the sum of an n=2 mode charge distribution and a convex-surface electron distribution on the deformed separatrix at the unstable phase. The former distribution agrees with that anticipated from the diamagnetic drift motions of plasma when the rotational instability occurs. The latter distribution suggests that an electron-rich plasma covers the separatrix.

  11. Non-perturbative QCD Effect on K-Factor of Drell-Yan Process

    International Nuclear Information System (INIS)

    Hou Zhaoyu; Zhi Haisu; Chen Junxiao

    2006-01-01

    By using a non-perturbative quark propagator with the lowest-dimensional condensate contributions from the QCD vacuum, the non-perturbative effect to K-factor of the Drell-Yan process is numerically investigated for 12 6 C- 12 6 C collision at the center-of-mass energy (s) 1/2 = 200 GeV, 630 GeV respectively. Calculated results show that the non-perturbative QCD effect has just a weak influence on K-factor in the two cases.

  12. Hofstadter spectrum in electric and magnetic fields

    International Nuclear Information System (INIS)

    Kunold, Alejandro; Torres, Manuel

    2005-01-01

    The problem of Bloch electrons in two dimensions subjected to magnetic and intense electric fields is investigated. Magnetic translations, electric evolution, and energy translation operators are used to specify the solutions of the Schroedinger equation. For rational values of the magnetic flux quanta per unit cell and commensurate orientations of the electric field relative to the original lattice, an extended superlattice can be defined and a complete set of mutually commuting space-time symmetry operators is obtained. Dynamics of the system is governed by a finite difference equation that exactly includes the effects of: an arbitrary periodic potential, an electric field orientated in a commensurable direction of the lattice, and coupling between Landau levels. A weak periodic potential broadens each Landau level in a series of minibands, separated by the corresponding minigaps. The addition of the electric field induces a series of avoided and exact crossing of the quasienergies, for sufficiently strong electric field the spectrum evolves into equally spaced discreet levels, in this 'magnetic Stark ladder' the energy separation is an integer multiple of hE/aB, with a the lattice parameter

  13. Non-perturbative gravity at different length scales

    International Nuclear Information System (INIS)

    Folkerts, Sarah

    2013-01-01

    problem. Since the axion is the (pseudo-) Goldstone boson of a broken U(1) global symmetry, quantum gravitational global symmetry violations could reinstate the CP problem even in the presence of the axion. We show that in the presence of massless neutrinos possible conflicts with the axion solution can be resolved. Demanding a viable axion solution of the strong CP problem, we derive new bounds on neutrino masses. In addition, we investigate the QCD vacuum energy screening mechanism for light quarks. It is well-known that the θ-dependence of the QCD vacuum vanishes linearly with the lightest quark mass. By an analogy with Schwinger pair creation in a strong electric field, we consider vacuum screening by η' bubble nucleation. We find that using the standard instanton approximation for the η' potential, the linear dependence is not recovered. We take this as an indication for the non-analyticity of the QCD vacuum energy proposed by Witten. In the last part of this thesis, we are concerned with gravitational effects on cosmological scales. The recent Planck data indicate that one of the best motivated dark matter candidates, the axion, is in conflict with bounds on isocurvature perturbations. We show that the isocurvature fluctuations can be efficiently suppressed when introducing a non-minimal kinetic coupling for the axion field during inflation. Thus, the axion can be a viable dark matter candidate for a large range of parameters. We show that the same coupling allows for the Standard Model Higgs to drive inflation and the dark matter density to be produced by the axion. Gravitational effects on large scales would also be sensitive to a possible mass for the graviton. However, such a modification has been known to be plagued by inconsistencies. In light of the recent proposal of a ghost-free theory of massive gravity by de Rham, Gabadadze and Tolley, we investigate the cubic order interactions of this theory in terms of helicities of a massive spin-2

  14. Positrons trapped in polyethylene: Electric field effect

    International Nuclear Information System (INIS)

    Bertolaccini, M.; Bisi, A.; Gambarini, G.; Zappa, L.

    1978-01-01

    The intensity of the iot 2 -component of positrons annihilated in polyethylene is found to increase with increasing electric field, while the formation probability of the positron state responsible for this component remains independent of the field. (orig.) 891 HPOE [de

  15. Electric arc behaviour in dynamic magnetic fields

    International Nuclear Information System (INIS)

    Put'ko, V.F.

    2000-01-01

    The behaviour of an electric arc in different time-dependent (dynamic) magnetic fields was investigated. New possibilities were found for spatial and energy stabilisation of a discharge, for intensifying heat exchange, extending the electric arc and distributed control of electric arc plasma. Rotating, alternating and travelling magnetic fields were studied. It was found that under the effect of a relatively low frequency of variations of dynamic magnetic fields (f 1000 Hz) the arc stabilised at the axis of the discharge chamber, the pulsation level decreased and discharge stability increased. The borders between these two arc existence modes were formed by a certain critical field variation frequency the period of which was determined by the heat relaxation time of the discharge. (author)

  16. Non-perturbative treatment of relativistic quantum corrections in large Z atoms

    International Nuclear Information System (INIS)

    Dietz, K.; Weymans, G.

    1983-09-01

    Renormalised g-Hartree-Dirac equations incorporating Dirac sea contributions are derived. Their implications for the non-perturbative, selfconsistent calculation of quantum corrections in large Z atoms are discussed. (orig.)

  17. Quasi-Static Electric Field Generator

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2017-01-01

    A generator for producing an electric field for with an inspection technology system is provided. The generator provides the required variable magnitude quasi-static electric fields for the "illumination" of objects, areas and volumes to be inspected by the system, and produces human-safe electric fields that are only visible to the system. The generator includes a casing, a driven, non-conducting and triboelectrically neutral rotation shaft mounted therein, an ungrounded electrostatic dipole element which works in the quasi-static range, and a non-conducting support for mounting the dipole element to the shaft. The dipole element has a wireless motor system and a charging system which are wholly contained within the dipole element and the support that uses an electrostatic approach to charge the dipole element.

  18. Temperature/electric field scaling in Ferroelectrics

    International Nuclear Information System (INIS)

    Hajjaji, Abdelowahed; Guyomar, Daniel; Pruvost, Sebastien; Touhtouh, Samira; Yuse, Kaori; Boughaleb, Yahia

    2010-01-01

    The effects of the field amplitude (E) and temperature on the polarization and their scaling relations were investigated on rhombohedral PMN-xPT ceramics. The scaling law was based on the physical symmetries of the problem and rendered it possible to express the temperature variation (Δθ) as an electric field equivalent ΔE eq =(α+2βxP(E,θ 0 ))xΔθ. Consequently, this was also the case for the relationship between the entropy (Γ) and polarization (P). Rhombohedral Pb(Mg 1/3 Nb 2/3 ) 0.75 Ti 0.25 O 3 ceramics were used for the verification. It was found that such an approach permitted the prediction of the maximal working temperature, using only purely electrical measurements. It indicates that the working temperature should not exceed 333 K. This value corresponds to the temperature maximum before the dramatic decrease of piezoelectric properties. Reciprocally, the polarization behavior under electrical field can be predicted, using only purely thermal measurements. The scaling law enabled a prediction of the piezoelectric properties (for example, d 31 ) under an electrical field replacing the temperature variation (Δθ) by ΔE/(α+2βxp(E,θ 0 )). Inversely, predictions of the piezoelectric properties (d 31 ) as a function of temperature were permitted using purely only electrical measurements.

  19. Temperature/electric field scaling in Ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Hajjaji, Abdelowahed, E-mail: Hajjaji12@gmail.co [Laboratoire de Genie Electrique et Ferroelectricite, LGEF, INSA LYON, Bat. Gustave Ferrie, 69621 Villeurbanne Cedex (France); Guyomar, Daniel; Pruvost, Sebastien [Laboratoire de Genie Electrique et Ferroelectricite, LGEF, INSA LYON, Bat. Gustave Ferrie, 69621 Villeurbanne Cedex (France); Touhtouh, Samira [Laboratoire de Physique de la Matiere Condensee, LPMC, Departement de Physique, Faculte des Sciences, 24000 El-Jadida, Maroc (Morocco); Yuse, Kaori [Laboratoire de Genie Electrique et Ferroelectricite, LGEF, INSA LYON, Bat. Gustave Ferrie, 69621 Villeurbanne Cedex (France); Boughaleb, Yahia [Laboratoire de Physique de la Matiere Condensee, LPMC, Departement de Physique, Faculte des Sciences, 24000 El-Jadida, Maroc (Morocco)

    2010-07-01

    The effects of the field amplitude (E) and temperature on the polarization and their scaling relations were investigated on rhombohedral PMN-xPT ceramics. The scaling law was based on the physical symmetries of the problem and rendered it possible to express the temperature variation ({Delta}{theta}) as an electric field equivalent {Delta}E{sub eq}=({alpha}+2{beta}xP(E,{theta}{sub 0}))x{Delta}{theta}. Consequently, this was also the case for the relationship between the entropy ({Gamma}) and polarization (P). Rhombohedral Pb(Mg{sub 1/3}Nb{sub 2/3}){sub 0.75}Ti{sub 0.25}O{sub 3} ceramics were used for the verification. It was found that such an approach permitted the prediction of the maximal working temperature, using only purely electrical measurements. It indicates that the working temperature should not exceed 333 K. This value corresponds to the temperature maximum before the dramatic decrease of piezoelectric properties. Reciprocally, the polarization behavior under electrical field can be predicted, using only purely thermal measurements. The scaling law enabled a prediction of the piezoelectric properties (for example, d{sub 31}) under an electrical field replacing the temperature variation ({Delta}{theta}) by {Delta}E/({alpha}+2{beta}xp(E,{theta}{sub 0})). Inversely, predictions of the piezoelectric properties (d{sub 31}) as a function of temperature were permitted using purely only electrical measurements.

  20. Electric Field Quantitative Measurement System and Method

    Science.gov (United States)

    Generazio, Edward R. (Inventor)

    2016-01-01

    A method and system are provided for making a quantitative measurement of an electric field. A plurality of antennas separated from one another by known distances are arrayed in a region that extends in at least one dimension. A voltage difference between at least one selected pair of antennas is measured. Each voltage difference is divided by the known distance associated with the selected pair of antennas corresponding thereto to generate a resulting quantity. The plurality of resulting quantities defined over the region quantitatively describe an electric field therein.

  1. Non-perturbative effective potential: Lower bounds on the Higgs mass and dynamical applications

    International Nuclear Information System (INIS)

    Faivre, H.

    2006-01-01

    The purpose of this work was to assess the benefits of using non-perturbative methods to phenomenological issues in field theory. The exact equations of the Wilson renormalization group (RG) and the effective action have been used, we have computed the energy gap between the first 2 levels in double-well potential. We get a very good agreement with exact solutions inferring from the numerical solving of the Schroedinger equation. RG equations lead to a convex effective potential that is consistent with theory. We have considered the Higgs sector of the standard model. It is commonly acknowledged that the Yukawa coupling between the top quark and the Higgs boson generates the instability of the electroweak vacuum at high energy. We show that this instability does not exist, it is a mere consequence of the extrapolation of the RG equations beyond their validity range. We have also used the effective potential for the description of the time history of the mean value of the quantum field. We have defined the conditions under which the dynamics of the mean value can be described in the local potential approximation by classical equations of motion in which the effective potential replaces the classical potential. (A.C.)

  2. Turbulent mixing of a critical fluid: The non-perturbative renormalization

    Directory of Open Access Journals (Sweden)

    M. Hnatič

    2018-01-01

    Full Text Available Non-perturbative Renormalization Group (NPRG technique is applied to a stochastical model of a non-conserved scalar order parameter near its critical point, subject to turbulent advection. The compressible advecting flow is modeled by a random Gaussian velocity field with zero mean and correlation function 〈υjυi〉∼(Pji⊥+αPji∥/kd+ζ. Depending on the relations between the parameters ζ, α and the space dimensionality d, the model reveals several types of scaling regimes. Some of them are well known (model A of equilibrium critical dynamics and linear passive scalar field advected by a random turbulent flow, but there is a new nonequilibrium regime (universality class associated with new nontrivial fixed points of the renormalization group equations. We have obtained the phase diagram (d, ζ of possible scaling regimes in the system. The physical point d=3, ζ=4/3 corresponding to three-dimensional fully developed Kolmogorov's turbulence, where critical fluctuations are irrelevant, is stable for α≲2.26. Otherwise, in the case of “strong compressibility” α≳2.26, the critical fluctuations of the order parameter become relevant for three-dimensional turbulence. Estimations of critical exponents for each scaling regime are presented.

  3. Electric Field Effects in RUS Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Darling, Timothy W [Los Alamos National Laboratory; Ten Cate, James A [Los Alamos National Laboratory; Allured, Bradley [UNIV NEVADA, RENO; Carpenter, Michael A [CAMBRIDGE UNIV. UK

    2009-09-21

    Much of the power of the Resonant Ultrasound Spectroscopy (RUS) technique is the ability to make mechanical resonance measurements while the environment of the sample is changed. Temperature and magnetic field are important examples. Due to the common use of piezoelectric transducers near the sample, applied electric fields introduce complications, but many materials have technologically interesting responses to applied static and RF electric fields. Non-contact optical, buffered, or shielded transducers permit the application of charge and externally applied electric fields while making RUS measurements. For conducting samples, in vacuum, charging produces a small negative pressure in the volume of the material - a state rarely explored. At very high charges we influence the electron density near the surface so the propagation of surface waves and their resonances may give us a handle on the relationship of electron density to bond strength and elasticity. Our preliminary results indicate a charge sign dependent effect, but we are studying a number of possible other effects induced by charging. In dielectric materials, external electric fields influence the strain response, particularly in ferroelectrics. Experiments to study this connection at phase transformations are planned. The fact that many geological samples contain single crystal quartz suggests a possible use of the piezoelectric response to drive vibrations using applied RF fields. In polycrystals, averaging of strains in randomly oriented crystals implies using the 'statistical residual' strain as the drive. The ability to excite vibrations in quartzite polycrystals and arenites is explored. We present results of experimental and theoretical approaches to electric field effects using RUS methods.

  4. Parallel electric fields from ionospheric winds

    International Nuclear Information System (INIS)

    Nakada, M.P.

    1987-01-01

    The possible production of electric fields parallel to the magnetic field by dynamo winds in the E region is examined, using a jet stream wind model. Current return paths through the F region above the stream are examined as well as return paths through the conjugate ionosphere. The Wulf geometry with horizontal winds moving in opposite directions one above the other is also examined. Parallel electric fields are found to depend strongly on the width of current sheets at the edges of the jet stream. If these are narrow enough, appreciable parallel electric fields are produced. These appear to be sufficient to heat the electrons which reduces the conductivity and produces further increases in parallel electric fields and temperatures. Calculations indicate that high enough temperatures for optical emission can be produced in less than 0.3 s. Some properties of auroras that might be produced by dynamo winds are examined; one property is a time delay in brightening at higher and lower altitudes

  5. Electric field stimulated growth of Zn whiskers

    Science.gov (United States)

    Niraula, D.; McCulloch, J.; Warrell, G. R.; Irving, R.; Karpov, V. G.; Shvydka, Diana

    2016-07-01

    We have investigated the impact of strong (˜104 V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  6. Electric field stimulated growth of Zn whiskers

    Energy Technology Data Exchange (ETDEWEB)

    Niraula, D.; McCulloch, J.; Irving, R.; Karpov, V. G. [Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States); Warrell, G. R.; Shvydka, Diana, E-mail: diana.shvydka@utoledo.edu [Department of Radiation Oncology, University of Toledo Health Science Campus, Toledo, Ohio 43614 (United States)

    2016-07-15

    We have investigated the impact of strong (∼10{sup 4} V/cm) electric fields on the development of Zn whiskers. The original samples, with considerable whisker infestation were cut from Zn-coated steel floors and then exposed to electric fields stresses for 10-20 hours at room temperature. We used various electric field sources, from charges accumulated in samples irradiated by: (1) the electron beam of a scanning electron microscope (SEM), (2) the electron beam of a medical linear accelerator, and (3) the ion beam of a linear accelerator; we also used (4) the electric field produced by a Van der Graaf generator. In all cases, the exposed samples exhibited a considerable (tens of percent) increase in whiskers concentration compared to the control sample. The acceleration factor defined as the ratio of the measured whisker growth rate over that in zero field, was estimated to approach several hundred. The statistics of lengths of e-beam induced whiskers was found to follow the log-normal distribution known previously for metal whiskers. The observed accelerated whisker growth is attributed to electrostatic effects. These results offer promise for establishing whisker-related accelerated life testing protocols.

  7. Particle creation by peak electric field

    Energy Technology Data Exchange (ETDEWEB)

    Adorno, T.C. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Gavrilov, S.P. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Herzen State Pedagogical University of Russia, Department of General and Experimental Physics, St. Petersburg (Russian Federation); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, Moscow (Russian Federation); University of Sao Paulo, Institute of Physics, CP 66318, Sao Paulo, SP (Brazil)

    2016-08-15

    The particle creation by the so-called peak electric field is considered. The latter field is a combination of two exponential parts, one exponentially increasing and another exponentially decreasing. We find exact solutions of the Dirac equation with the field under consideration with appropriate asymptotic conditions and calculate all the characteristics of particle creation effect, in particular, differential mean numbers of created particle, total number of created particles, and the probability for a vacuum to remain a vacuum. Characteristic asymptotic regimes are discussed in detail and a comparison with the pure asymptotically decaying field is considered. (orig.)

  8. Pentacene Excitons in Strong Electric Fields.

    Science.gov (United States)

    Kuhnke, Klaus; Turkowski, Volodymyr; Kabakchiev, Alexander; Lutz, Theresa; Rahman, Talat S; Kern, Klaus

    2018-02-05

    Electroluminescence spectroscopy of organic semiconductors in the junction of a scanning tunneling microscope (STM) provides access to the polarizability of neutral excited states in a well-characterized molecular geometry. We study the Stark shift of the self-trapped lowest singlet exciton at 1.6 eV in a pentacene nanocrystal. Combination of density functional theory (DFT) and time-dependent DFT (TDDFT) with experiment allows for assignment of the observation to a charge-transfer (CT) exciton. Its charge separation is perpendicular to the applied field, as the measured polarizability is moderate and the electric field in the STM junction is strong enough to dissociate a CT exciton polarized parallel to the applied field. The calculated electric-field-induced anisotropy of the exciton potential energy surface will also be of relevance to photovoltaic applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Green functions in an external electric field

    International Nuclear Information System (INIS)

    Gavrilov, S.P.; Gitman, D.M.; Shvartsman, Sh.M.

    1979-01-01

    In the framework of scalar quantum electrodynamics, when vacuum is unstable as to the birth of electron-positron couples, calculated have been Green functions for the case of stable homogeneous electric field. By summing corresponding solutions of the Klein-Gordon equation of the Green function are obtained in the form of contour integrals according to the proper time. Operation representations of all the calculated Green functions in the mentioned field are presented

  10. Electrical circuit modeling of reversed field pinches

    International Nuclear Information System (INIS)

    Sprott, J.C.

    1988-02-01

    Equations are proposed to describe the radial variation of the magnetic field and current density in a circular, cylindrical RFP. These equations are used to derive the electrical circuit parameters (inductance, resistance, and coupling coefficient) for an RFP discharge. The circuit parameters are used to evaluate the flux and energy consumption for various startup modes and for steady-state operation using oscillating field current drive. The results are applied to the MST device. 32 refs., 14 figs., 1 tab

  11. Pulsed Electric Field treatment of packaged food

    NARCIS (Netherlands)

    Roodenburg, B.

    2011-01-01

    Food manufacturers are looking for new preservation techniques that don’t influence the fresh-like characteristics of products. Non-thermal pasteurisation of food with Pulsed Electric Fields (often referred to as PEF) is an emerging technology, where the change of the food is less than with thermal

  12. Moderate and high intensity pulsed electric fields

    NARCIS (Netherlands)

    Timmermans, Rian Adriana Hendrika

    2018-01-01

    Pulsed Electric Field (PEF) processing has gained a lot of interest the last decades as mild processing technology as alternative to thermal pasteurisation, and is suitable for preservation of liquid food products such as fruit juices. PEF conditions typically applied at industrial scale for

  13. Distribution of particles in stochastic electric fields

    International Nuclear Information System (INIS)

    Rolland, Paul.

    1979-11-01

    The distribution of one particle as well as an ensemble of particles submitted to a stochastic electric field obeying different kinds of laws is studied. A particular attention is devoted to the deviation from the gaussian distribution and to the consequences of this effect on diffusion and heating [fr

  14. Plasma instabilities in high electric fields

    DEFF Research Database (Denmark)

    Morawetz, K.; Jauho, Antti-Pekka

    1994-01-01

    expression is derived for the nonequilibrium dielectric function epsilon(K, omega). For certain values of momenta K and frequency omega, Imepsilon(K, omega) becomes negative, implying a plasma instability. This new instability exists only for strong electric fields, underlining its nonequilibrium origin....

  15. Silicon Photomultiplier Performance in High ELectric Field

    Science.gov (United States)

    Montoya, J.; Morad, J.

    2016-12-01

    Roughly 27% of the universe is thought to be composed of dark matter. The Large Underground Xenon (LUX) relies on the emission of light from xenon atoms after a collision with a dark matter particle. After a particle interaction in the detector, two things can happen: the xenon will emit light and charge. The charge (electrons), in the liquid xenon needs to be pulled into the gas section so that it can interact with gas and emit light. This allows LUX to convert a single electron into many photons. This is done by applying a high voltage across the liquid and gas regions, effectively ripping electrons out of the liquid xenon and into the gas. The current device used to detect photons is the photomultiplier tube (PMT). These devices are large and costly. In recent years, a new technology that is capable of detecting single photons has emerged, the silicon photomultiplier (SiPM). These devices are cheaper and smaller than PMTs. Their performance in a high electric fields, such as those found in LUX, are unknown. It is possible that a large electric field could introduce noise on the SiPM signal, drowning the single photon detection capability. My hypothesis is that SiPMs will not observe a significant increase is noise at an electric field of roughly 10kV/cm (an electric field within the range used in detectors like LUX). I plan to test this hypothesis by first rotating the SiPMs with no applied electric field between two metal plates roughly 2 cm apart, providing a control data set. Then using the same angles test the dark counts with the constant electric field applied. Possibly the most important aspect of LUX, is the photon detector because it's what detects the signals. Dark matter is detected in the experiment by looking at the ratio of photons to electrons emitted for a given interaction in the detector. Interactions with a low electron to photon ratio are more like to be dark matter events than those with a high electron to photon ratio. The ability to

  16. Conformal bootstrap: non-perturbative QFT's under siege

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    [Exceptionally in Council Chamber] Originally formulated in the 70's, the conformal bootstrap is the ambitious idea that one can use internal consistency conditions to carve out, and eventually solve, the space of conformal field theories. In this talk I will review recent developments in the field which have boosted this program to a new level. I will present a method to extract quantitative informations in strongly-interacting theories, such as 3D Ising, O(N) vector model and even systems without a Lagrangian formulation. I will explain how these techniques have led to the world record determination of several critical exponents. Finally, I will review exact analytical results obtained using bootstrap techniques.

  17. Plasmasheet boundary electric fields during substorms

    International Nuclear Information System (INIS)

    Pedersen, A.

    1985-01-01

    Electric field data from the ISEE-1 and GEOS-2 satellites have been studied during two substorms when ISEE-1 was in a favourable position in the magneto-tail and GEOS-2 was in the afternoon/evening sector of the geostationary orbit. Both electric field measurements were carried out with spherical double probes, separately by 73.5 m on ISEE-1, and 42 m on GEOS-2. In one case GEOS-2, in the afternoon sector, detected an increase of the dawn-to-dusk electric field during plasmasheet thinning and approximately 10 minutes prior to a substorm expansion. At the time of this expansion ISEE-1 was most likely near an X-line, on the Earthward side and detected Earthward antiE x antiB velocities, in excess of 500 km s -1 . In another example ISEE-1 was most likely near an X-line, on the tailward side, and observed tailward antiE x antiB velocities which were followed, 5-20 minutes later, by characteristic oscillating electric fields (time scales of 10s-30s) on GEOS-2 near 23 local time. Such signatures have on many occasions been connected with observations of westward travelling surges near the GEOS-2 conjugated area in Scandinavia. The ISEE-1 observations of large-dawn-to-dusk electric fields were concentrated to the outer boundary of the plasmasheet, and in the case of the westward travelling surge. GEOS-2 was most likely at the inner, Earthward edge of the plasmasheet. Time delays between ISEE-1 and GEOS-2 indicate a propagation velocity comparable to the antiE x antiB velocity

  18. {alpha}{sub s} from the non-perturbatively renormalised lattice three-gluon vertex

    Energy Technology Data Exchange (ETDEWEB)

    Alles, B. [Pisa Univ. (Italy). Dipt. di Fisica; Henty, D.S. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Panagopoulos, H. [Department of Natural Sciences, University of Cyprus, CY-1678 Nicosia (Cyprus); Parrinello, C. [Department of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX (United Kingdom); Pittori, C. [L.P.T.H.E., Universite de Paris Sud, Centre d`Orsay, 91405 Orsay (France); Richards, D.G. [Department of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)]|[Fermilab, P.O. Box 500, Batavia, IL 60510 (United States)

    1997-09-29

    We compute the running QCD coupling on the lattice by evaluating two-point and three-point off-shell gluon Green`s functions in a fixed gauge and imposing non-perturbative renormalisation conditions on them. Our exploratory study is performed in the quenched approximation at {beta}=6.0 on 16{sup 4} and 24{sup 4} lattices. We show that, for momenta in the range 1.8-2.3 GeV, our coupling runs according to the two-loop asymptotic formula, allowing a precise determination of the corresponding {Lambda} parameter. The role of lattice artifacts and finite-volume effects is carefully analysed and these appear to be under control in the momentum range of interest. Our renormalisation procedure corresponds to a momentum subtraction scheme in continuum field theory, and therefore lattice perturbation theory is not needed in order to match our results to the anti M anti S scheme, thus eliminating a major source of uncertainty in the determination of {alpha} {sub anti} {sub M} {sub anti} {sub S}. Our method can be applied directly to the unquenched case. (orig.). 20 refs.

  19. Non-perturbative measurement of low-intensity charged particle beams

    Science.gov (United States)

    Fernandes, M.; Geithner, R.; Golm, J.; Neubert, R.; Schwickert, M.; Stöhlker, T.; Tan, J.; Welsch, C. P.

    2017-01-01

    Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30 {nA}.

  20. Necessary and sufficient conditions for non-perturbative equivalences of large Nc orbifold gauge theories

    International Nuclear Information System (INIS)

    Kovtun, Pave; Uensal, Mithat; Yaffe, Laurence G.

    2005-01-01

    Large N coherent state methods are used to study the relation between U(N c ) gauge theories containing adjoint representation matter fields and their orbifold projections. The classical dynamical systems which reproduce the large N c limits of the quantum dynamics in parent and daughter orbifold theories are compared. We demonstrate that the large N c dynamics of the parent theory, restricted to the subspace invariant under the orbifold projection symmetry, and the large N c dynamics of the daughter theory, restricted to the untwisted sector invariant under 'theory space' permutations, coincide. This implies equality, in the large N c limit, between appropriately identified connected correlation functions in parent and daughter theories, provided the orbifold projection symmetry is not spontaneously broken in the parent theory and the theory space permutation symmetry is not spontaneously broken in the daughter. The necessity of these symmetry realization conditions for the validity of the large N c equivalence is unsurprising, but demonstrating the sufficiency of these conditions is new. This work extends an earlier proof of non-perturbative large N c equivalence which was only valid in the phase of the (lattice regularized) theories continuously connected to large mass and strong coupling

  1. Static electric fields modify the locomotory behaviour of cockroaches.

    Science.gov (United States)

    Jackson, Christopher W; Hunt, Edmund; Sharkh, Suleiman; Newland, Philip L

    2011-06-15

    Static electric fields are found throughout the environment and there is growing interest in how electric fields influence insect behaviour. Here we have analysed the locomotory behaviour of cockroaches (Periplaneta americana) in response to static electric fields at levels equal to and above those found in the natural environment. Walking behaviour (including velocity, distance moved, turn angle and time spent walking) were analysed as cockroaches approached an electric field boundary in an open arena, and also when continuously exposed to an electric field. On approaching an electric field boundary, the greater the electric field strength the more likely a cockroach would be to turn away from, or be repulsed by, the electric field. Cockroaches completely exposed to electric fields showed significant changes in locomotion by covering less distance, walking slowly and turning more often. This study highlights the importance of electric fields on the normal locomotory behaviour of insects.

  2. Tikekar superdense stars in electric fields

    Science.gov (United States)

    Komathiraj, K.; Maharaj, S. D.

    2007-04-01

    We present exact solutions to the Einstein-Maxwell system of equations with a specified form of the electric field intensity by assuming that the hypersurface {t=constant} are spheroidal. The solution of the Einstein-Maxwell system is reduced to a recurrence relation with variable rational coefficients which can be solved in general using mathematical induction. New classes of solutions of linearly independent functions are obtained by restricting the spheroidal parameter K and the electric field intensity parameter α. Consequently, it is possible to find exact solutions in terms of elementary functions, namely, polynomials and algebraic functions. Our result contains models found previously including the superdense Tikekar neutron star model [J. Math. Phys. 31, 2454 (1990)] when K=-7 and α=0. Our class of charged spheroidal models generalize the uncharged isotropic Maharaj and Leach solutions [J. Math. Phys. 37, 430 (1996)]. In particular, we find an explicit relationship directly relating the spheroidal parameter K to the electromagnetic field.

  3. Random surfaces: A non-perturbative regularization of strings?

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1989-12-01

    I review the basic properties of the theory of randum surfaces. While it is by now well known that the theory of (discretized) random surfaces correctly describes the (perturbative) aspects of non-critical strings in d 1. In these lectures I intend to show that the theory of dynamical triangulated random surfaces provides us with a lot of information about the dynamics of both the bosonic string and the superstring even for d>1. I also briefly review recent attempts to define a string field theory (sum over all genus) in this approach. (orig.)

  4. Non-perturbative transitions among intersecting-brane vacua

    CERN Document Server

    Angelantonj, Carlo; Dudas, Emilian; Pradisi, Gianfranco; 10.1007/JHEP07(2011)123

    2011-01-01

    We investigate the transmutation of D-branes into Abelian magnetic backgrounds on the world-volume of higher-dimensional branes, within the framework of global models with compact internal dimensions. The phenomenon, T-dual to brane recombination in the intersecting-brane picture, shares some similarities to inverse small-instanton transitions in non-compact spaces, though in this case the Abelian magnetic background is a consequence of the compactness of the internal manifold, and is not ascribed to a zero-size non-Abelian instanton growing to maximal size. We provide details of the transition in various supersymmetric orientifolds and non-supersymmetric tachyon-free vacua with Brane Supersymmetry Breaking, both from brane recombination and from a field theory Higgs mechanism viewpoints.

  5. Non-perturbative renormalization of static-light four-fermion operators in quenched lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Palombi, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Papinutto, M.; Pena, C. [CERN, Geneva (Switzerland). Physics Dept., Theory Div.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik

    2007-06-15

    We perform a non-perturbative study of the scale-dependent renormalization factors of a multiplicatively renormalizable basis of {delta}B=2 parity-odd four-fermion operators in quenched lattice QCD. Heavy quarks are treated in the static approximation with various lattice discretizations of the static action. Light quarks are described by nonperturbatively O(a) improved Wilson-type fermions. The renormalization group running is computed for a family of Schroedinger functional (SF) schemes through finite volume techniques in the continuum limit. We compute non-perturbatively the relation between the renormalization group invariant operators and their counterparts renormalized in the SF at a low energy scale. Furthermore, we provide non-perturbative estimates for the matching between the lattice regularized theory and all the SF schemes considered. (orig.)

  6. Electrical and magnetic fields of the power supply

    International Nuclear Information System (INIS)

    2017-01-01

    The availability of electrical energy in all areas of life is guaranteed by a widely ramified power grid. When electricity is transported, magnetic fields are created in addition to the electrical fields. In this brochure one will learn more about the causes and effects of electrical and magnetic fields as well as protection concepts and preventive measures. [de

  7. Pulsed Electric Field treatment of packaged food

    OpenAIRE

    Roodenburg, B.

    2011-01-01

    Food manufacturers are looking for new preservation techniques that don’t influence the fresh-like characteristics of products. Non-thermal pasteurisation of food with Pulsed Electric Fields (often referred to as PEF) is an emerging technology, where the change of the food is less than with thermal pasteurisation. With this method, pasteurisation is realised by electroporation of bacterial membranes, which prolong the shelf-life of the product. Existing PEF treatment is based on the applicati...

  8. Spontaneous electric fields in solid films: spontelectrics

    DEFF Research Database (Denmark)

    Field, David; Plekan, Oksana; Cassidy, Andrew

    2013-01-01

    When dipolar gases are condensed at sufficiently low temperature onto a solid surface, they form films that may spontaneously exhibit electric fields in excess of 108V/m. This effect, called the ‘spontelectric effect’, was recently revealed using an instrument designed to measure scattering....... Heterolayers may also be laid down creating potential wells on the nanoscale. A model is put forward based upon competition between dipole alignment and thermal disorder, which is successful in reproducing the variation of the degree of dipole alignment and the spontelectric field with deposition temperature...

  9. Non-perturbative improvement of stout-smeared three flavour clover fermions

    Energy Technology Data Exchange (ETDEWEB)

    Cundy, N.; Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R. [Edinburgh Univ. (GB). School of Physics and Astronomy] (and others)

    2009-01-15

    We discuss a 3-flavour lattice QCD action with clover improvement in which the fermion matrix has single level stout smearing for the hopping terms together with unsmeared links for the clover term. With the (tree-level) Symanzik improved gluon action this constitutes the Stout Link Non-perturbative Clover or SLiNC action. To cancel O(a) terms the clover term coefficient has to be tuned. We present here results of a non-perturbative determination of this coefficient using the Schroedinger functional and as a by-product a determination of the critical hopping parameter. Comparisons of the results are made with lowest order perturbation theory. (orig.)

  10. Controlling quark mass determinations non-perturbatively in three-flavour QCD

    CERN Document Server

    Campos, Isabel

    2017-01-01

    The determination of quark masses from lattice QCD simulations requires a non-perturbative renormalization procedure and subsequent scale evolution to high energies, where a conversion to the commonly used MS-bar scheme can be safely established. We present our results for the non-perturbative running of renormalized quark masses in Nf=3 QCD between the electroweak and a hadronic energy scale, where lattice simulations are at our disposal. Recent theoretical advances in combination with well-established techniques allows to follow the scale evolution to very high statistical accuracy, and full control of systematic effects.

  11. Ab initio approach to the non-perturbative scalar Yukawa model

    OpenAIRE

    Li, YangDepartment of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA; Karmanov, V.A.(Lebedev Physical Institute, Leninsky Prospekt 53, Moscow, 119991, Russia); Maris, P.(Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA); Vary, J.P.(Department of Physics and Astronomy, Iowa State University, Ames, IA, 50011, USA)

    2015-01-01

    We report on the first non-perturbative calculation of the scalar Yukawa model in the single-nucleon sector up to four-body Fock sector truncation (one "scalar nucleon" and three "scalar pions"). The light-front Hamiltonian approach with a systematic non-perturbative renormalization is applied. We study the $n$-body norms and the electromagnetic form factor. We find that the one- and two-body contributions dominate up to coupling $\\alpha \\approx 1.7$. As we approach the coupling $\\alpha \\appr...

  12. Liquid toroidal drop under uniform electric field

    Science.gov (United States)

    Zabarankin, Michael

    2017-06-01

    The problem of a stationary liquid toroidal drop freely suspended in another fluid and subjected to an electric field uniform at infinity is addressed analytically. Taylor's discriminating function implies that, when the phases have equal viscosities and are assumed to be slightly conducting (leaky dielectrics), a spherical drop is stationary when Q=(2R2+3R+2)/(7R2), where R and Q are ratios of the phases' electric conductivities and dielectric constants, respectively. This condition holds for any electric capillary number, CaE, that defines the ratio of electric stress to surface tension. Pairam and Fernández-Nieves showed experimentally that, in the absence of external forces (CaE=0), a toroidal drop shrinks towards its centre, and, consequently, the drop can be stationary only for some CaE>0. This work finds Q and CaE such that, under the presence of an electric field and with equal viscosities of the phases, a toroidal drop having major radius ρ and volume 4π/3 is qualitatively stationary-the normal velocity of the drop's interface is minute and the interface coincides visually with a streamline. The found Q and CaE depend on R and ρ, and for large ρ, e.g. ρ≥3, they have simple approximations: Q˜(R2+R+1)/(3R2) and CaE∼3 √{3 π ρ / 2 } (6 ln ⁡ρ +2 ln ⁡[96 π ]-9 )/ (12 ln ⁡ρ +4 ln ⁡[96 π ]-17 ) (R+1 ) 2/ (R-1 ) 2.

  13. Flame spread over inclined electrical wires with AC electric fields

    KAUST Repository

    Lim, Seung J.

    2017-07-21

    Flame spread over polyethylene-insulated electrical wires was studied experimentally with applied alternating current (AC) by varying the inclination angle (θ), applied voltage (VAC), and frequency (fAC). For the baseline case with no electric field applied, the flame spread rate and the flame width of downwardly spreading flames (DSFs) decreased from the horizontal case for −20° ≤ θ < 0° and maintained near constant values for −90° ≤ θ < −20°, while the flame spread rate increased appreciably as the inclination angle of upwardly spreading flames (USFs) increased. When an AC electric field was applied, the behavior of flame spread rate in DSFs (USFs) could be classified into two (three) sub-regimes characterized by various functional dependences on VAC, fAC, and θ. In nearly all cases of DSFs, a globular molten polyethylene formed ahead of the spreading flame edge, occasionally dripping onto the ground. In these cases, an effective flame spread rate was defined to represent the burning rate by measuring the mass loss due to dripping. This effective spread rate was independent of AC frequency, while it decreased linearly with voltage and was independent of the inclination angle. In DSFs, when excessively high voltage and frequency were applied, the dripping led to flame extinction during propagation and the extinction frequency correlated well with applied voltage. In USFs, when high voltage and frequency were applied, multiple globular molten PEs formed at several locations, leading to ejections of multiple small flame segments from the main flame, thereby reducing the flame spread rate, which could be attributed to the electrospray phenomenon.

  14. Low frequency electric and magnetic fields

    Science.gov (United States)

    Spaniol, Craig

    1989-01-01

    Following preliminary investigations of the low frequency electric and magnetic fields that may exists in the Earth-ionospheric cavity, measurements were taken with state-of-the art spectrum analyzers. As a follow up to this activity, an investigation was initiated to determine sources and values for possible low frequency signal that would appear in the cavity. The lowest cavity resonance is estimated at about 8 Hz, but lower frequencies may be an important component of our electromagnetic environment. The potential field frequencies produced by the electron were investigated by a classical model that included possible cross coupling of the electric and gravitation fields. During this work, an interesting relationship was found that related the high frequency charge field with the extremely low frequency of the gravitation field. The results of numerical calculations were surprisingly accurate and this area of investigation is continuing. The work toward continued development of a standardized monitoring facility is continuing with the potential of installing the prototype at West Virginia State College early in 1990. This installation would be capable of real time monitoring of ELF signals in the Earth-ionoshpere cavity and would provide some directional information. A high gain, low noise, 1/f frequency corrected preamplifier was designed and tested for the ferrite core magnetic sensor. The potential application of a super conducting sensor for the ELF magnetic field detection is under investigation. It is hoped that a fully operational monitoring network could pinpoint the location of ELF signal sources and provide new information on where these signals originate and what causes them, assuming that they are natural in origin.

  15. Non-perturbative heavy quark effective theory. An application to semi-leptonic B-decays

    International Nuclear Information System (INIS)

    Della Morte, Michele; Heitger, Jochen; Simma, Hubert; Sommer, Rainer; Humboldt-Universitaet, Berlin

    2015-01-01

    We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m h -corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B-decays at the leading order in 1/m h .

  16. Spectral zeta function and non-perturbative effects in ABJM Fermi-gas

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki

    2015-03-01

    The exact partition function in ABJM theory on three-sphere can be regarded as a canonical partition function of a non-interacting Fermi-gas with an unconventional Hamiltonian. All the information on the partition function is encoded in the discrete spectrum of this Hamiltonian. We explain how (quantum mechanical) non-perturbative corrections in the Fermi-gas system appear from a spectral consideration. Basic tools in our analysis are a Mellin-Barnes type integral representation and a spectral zeta function. From a consistency with known results, we conjecture that the spectral zeta function in the ABJM Fermi-gas has an infinite number of ''non-perturbative'' poles, which are invisible in the semi-classical expansion of the Planck constant. We observe that these poles indeed appear after summing up perturbative corrections. As a consequence, the perturbative resummation of the spectral zeta function causes non-perturbative corrections to the grand canonical partition function. We also present another example associated with a spectral problem in topological string theory. A conjectured non-perturbative free energy on the resolved conifold is successfully reproduced in this framework.

  17. Effects of AC Electric Field on Small Laminar Nonpremixed Flames

    KAUST Repository

    Xiong, Yuan

    2015-01-01

    Electric field can be a viable method in controlling various combustion properties. Comparing to traditional actuators, an application of electric field requires very small power consumption. Especially, alternating current (AC) has received

  18. Radial-Electric-Field Piezoelectric Diaphragm Pumps

    Science.gov (United States)

    Bryant, Robert G.; Working, Dennis C.; Mossi, Karla; Castro, Nicholas D.; Mane, Pooma

    2009-01-01

    In a recently invented class of piezoelectric diaphragm pumps, the electrode patterns on the piezoelectric diaphragms are configured so that the electric fields in the diaphragms have symmetrical radial (along-the-surface) components in addition to through-the-thickness components. Previously, it was accepted in the piezoelectric-transducer art that in order to produce the out-of-plane bending displacement of a diaphragm needed for pumping, one must make the electric field asymmetrical through the thickness, typically by means of electrodes placed on only one side of the piezoelectric material. In the present invention, electrodes are placed on both sides and patterned so as to produce substantial radial as well as through-the-thickness components. Moreover, unlike in the prior art, the electric field can be symmetrical through the thickness. Tests have shown in a given diaphragm that an electrode configuration according to this invention produces more displacement than does a conventional one-sided electrode pattern. The invention admits of numerous variations characterized by various degrees of complexity. Figure 1 is a simplified depiction of a basic version. As in other piezoelectric diaphragm pumps of similar basic design, the prime mover is a piezoelectric diaphragm. Application of a suitable voltage to the electrodes on the diaphragm causes it to undergo out-of-plane bending. The bending displacement pushes a fluid out of, or pulls the fluid into, a chamber bounded partly by the diaphragm. Also as in other diaphragm pumps in general, check valves ensure that the fluid flows only in through one port and only out through another port.

  19. Modelling electricity forward markets by ambit fields

    DEFF Research Database (Denmark)

    Barndorff-Nielsen, Ole; Fred Espen Benth, Fred Espen; Veraart, Almut

    This paper proposes a new modelling framework for electricity forward markets, which is based on ambit fields. The new model can capture many of the stylised facts observed in energy markets. One of the main differences to the traditional models lies in the fact that we do not model the dynamics......, but the forward price directly, where we focus on models which are stationary in time. We give a detailed account on the probabilistic properties of the new model and we discuss martingale conditions and change of measure within the new model class. Also, we derive a model for the spot price which is obtained...

  20. Electrostatic air filters generated by electric fields

    International Nuclear Information System (INIS)

    Bergman, W.; Biermann, A.H.; Hebard, H.D.; Lum, B.Y.; Kuhl, W.D.

    1981-01-01

    This paper presents theoretical and experimental findings on fibrous filters converted to electrostatic operation by a nonionizing electric field. Compared to a conventional fibrous filter, the electrostatic filter has a higher efficiency and a longer, useful life. The increased efficiency is attributed to a time independent attraction between polarized fibers and charged, polarized particles and a time dependent attraction between charged fibers and charged, polarized particles. The charge on the fibers results from a dynamic process of charge accumulation due to the particle deposits and a charge dissipation due to the fiber conductivity

  1. Hydrogenic donor in a quantum well with an electric field

    International Nuclear Information System (INIS)

    Jayakumar, K.; Balasubramanian, S.; Tomak, M.

    1985-08-01

    Variational calculations of the binding energy of a hydrogenic donor in a quantum well formed by GaAs and Gasub(1-x)A1sub(x)As with a constant electric field are performed for different electric fields and well widths. A critical electric field is defined and its variation with well width is presented. (author)

  2. Interaction between lf electric fields and biological bodies

    Directory of Open Access Journals (Sweden)

    Češelkoska Vesna C.

    2004-01-01

    Full Text Available In this paper the Equivalent electrodes method is used for electric field calculation in the proximity of the various biological subjects exposed to an electric field in the LF range. Several results of the electric field intensity on the body surface and numerous graphical results for equipotential and equienergetic curves are presented.

  3. Empirical high-latitude electric field models

    International Nuclear Information System (INIS)

    Heppner, J.P.; Maynard, N.C.

    1987-01-01

    Electric field measurements from the Dynamics Explorer 2 satellite have been analyzed to extend the empirical models previously developed from dawn-dusk OGO 6 measurements (J.P. Heppner, 1977). The analysis embraces large quantities of data from polar crossings entering and exiting the high latitudes in all magnetic local time zones. Paralleling the previous analysis, the modeling is based on the distinctly different polar cap and dayside convective patterns that occur as a function of the sign of the Y component of the interplanetary magnetic field. The objective, which is to represent the typical distributions of convective electric fields with a minimum number of characteristic patterns, is met by deriving one pattern (model BC) for the northern hemisphere with a +Y interplanetary magnetic field (IMF) and southern hemisphere with a -Y IMF and two patterns (models A and DE) for the northern hemisphere with a -Y IMF and southern hemisphere with a +Y IMF. The most significant large-scale revisions of the OGO 6 models are (1) on the dayside where the latitudinal overlap of morning and evening convection cells reverses with the sign of the IMF Y component, (2) on the nightside where a westward flow region poleward from the Harang discontinuity appears under model BC conditions, and (3) magnetic local time shifts in the positions of the convection cell foci. The modeling above was followed by a detailed examination of cases where the IMF Z component was clearly positive (northward). Neglecting the seasonally dependent cases where irregularities obscure pattern recognition, the observations range from reasonable agreement with the new BC and DE models, to cases where different characteristics appeared primarily at dayside high latitudes

  4. Planned waveguide electric field breakdown studies

    International Nuclear Information System (INIS)

    Wang Faya; Li Zenghai

    2012-01-01

    This paper presents an experimental setup for X-band rf breakdown studies. The setup is composed of a section of WR90 waveguide with a tapered pin located at the middle of the waveguide E-plane. Another pin is used to rf match the waveguide so it operates in a travelling wave mode. By adjusting the penetration depth of the tapered pin, different surface electric field enhancements can be obtained. The setup will be used to study the rf breakdown rate dependence on power flow in the waveguide for a constant maximum surface electric field on the pin. Two groups of pins have been designed. The Q of one group is different and very low. The other has a similar Q. With the test of the two groups of pins, we should be able to discern how the net power flow and Q affect the breakdown. Furthermore, we will apply an electron beam treatment to the pins to study its effect on breakdown. Overall, these experiments should be very helpful in understanding rf breakdown phenomena and could significantly benefit the design of high gradient accelerator structures.

  5. The induced electric field distribution in the solar atmosphere

    International Nuclear Information System (INIS)

    Chen Rong; Yang Zhi-Liang; Deng Yuan-Yong

    2013-01-01

    A method of calculating the induced electric field is presented. The induced electric field in the solar atmosphere is derived by the time variation of the magnetic field when the accumulation of charged particles is neglected. In order to derive the spatial distribution of the magnetic field, several extrapolation methods are introduced. With observational data from the Helioseismic and Magnetic Imager aboard NASA's Solar Dynamics Observatory taken on 2010 May 20, we extrapolate the magnetic field from the photosphere to the upper atmosphere. By calculating the time variation of the magnetic field, we can get the induced electric field. The derived induced electric field can reach a value of 10 2 V cm −1 and the average electric field has a maximum point at the layer 360 km above the photosphere. The Monte Carlo method is used to compute the triple integration of the induced electric field.

  6. Magnetic resonance electrical impedance tomography for determining electric field distribution during electroporation

    International Nuclear Information System (INIS)

    Kranjc, Matej; Miklavcic, Damijan; Bajd, Franci; Serša, Igor

    2013-01-01

    Electroporation is a phenomenon caused by externally applied electric field to cells that results in an increase of cell membrane permeability to various molecules. Accurate coverage of the tissue with a sufficiently large electric field presents one of the most important conditions for successful membrane permeabilization. Applications based on electroporation would greatly benefit with a method for monitoring the electric field, especially if it could be done in situ. As the membrane electroporation is a consequence of an induced transmembrane potential, which is directly proportional to the local electric field, we have been investigating current density imaging and magnetic resonance electrical impedance tomography techniques to determine the electric field distribution during electroporation. In this paper, we present comparison of current density and electric field distribution in an agar phantom and in a liver tissue exposed to electroporation pulses. As expected, a region of increased electrical conductivity was observed in the liver tissue exposed to sufficiently high electric field but not in agar phantom.

  7. Enhanced Dielectronic Recombination in Crossed Electric and Magnetic Fields

    International Nuclear Information System (INIS)

    Robicheaux, F.; Pindzola, M.S.

    1997-01-01

    The dependence of the dielectronic recombination cross section on crossed electric and magnetic fields is described. The enhancement of this cross section due to a static electric field is further increased when a magnetic field is added perpendicular to the electric field. Calculation of this field induced enhancement is presented for a realistic atomic model, and the mechanism for the enhancement is discussed. copyright 1997 The American Physical Society

  8. Manipulating colloids with charges and electric fields

    Science.gov (United States)

    Leunissen, M. E.

    2007-02-01

    This thesis presents the results of experimental investigations on a variety of colloidal suspensions. Colloidal particles are at least a hundred times larger than atoms or molecules, but suspended in a liquid they display the same phase behavior, including fluid and crystalline phases. Due to their relatively large size, colloids are much easier to investigate and manipulate, though. This makes them excellent condensed matter model systems. With this in mind, we studied micrometer-sized perspex (‘PMMA’) spheres, labeled with a fluorescent dye for high-resolution confocal microscopy imaging, and suspended in a low-polar mixture of the organic solvents cyclohexyl bromide and cis-decalin. This system offered us the flexibility to change the interactions between the particles from ‘hard-sphere-like’ to long-ranged repulsive (between like-charged particles), long-ranged attractive (between oppositely charged particles) and dipolar (in an electric field). We investigated the phase behavior of our suspensions as a function of the particle concentration, the ionic strength of the solvent and the particles’ charges. In this way, we obtained new insight in the freezing and melting behavior of like-charged and oppositely charged colloids. Interestingly, we found that the latter can readily form large crystals, thus defying the common belief that plus-minus interactions inevitably lead to aggregation. Moreover, we demonstrated that these systems can serve as a reliable model system for classical ionic matter (‘salts’), and that opposite-charge interactions can greatly facilitate the self-assembly of new structures with special properties for applications. On a slightly different note, we also studied electrostatic effects in mixtures of the cyclohexyl bromide solvent and water, both with and without colloidal particles present. This provided new insight in the stabilization mechanisms of oil-water emulsions and gave us control over the self-assembly of various

  9. A non-perturbative approach to jet cross-sections and a new model for hadron-hadron interactions

    International Nuclear Information System (INIS)

    Andersson, B.

    1986-01-01

    The author discusses two subjects in this work. The first is a description of a non-perturbative approach to calculate the probabilities to obtain a particular state of confined force field in a hard interaction like e/sup +/e/sup -/ annihilation. This approach has been discussed previously by the author. There are at this time many more results of the program, in particular, some rather puzzling and disturbing ones as compared to the results obtained in perturbative QCD. The second subject is a new approach to hadron-hadron inelastic scattering. A model for these interactions based upon multiple perturbative parton interactions and subsequent string-stretching and breaking has been formulated by others in earlier works

  10. Non-perturbative renormalisation of {delta}F=2 four-fermion operators in two-flavour QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dimopoulos, P.; Vladikas, A. [INFN, Sezione di Roma II (Italy)]|[Rome-3 Univ. (Italy). Dipt. di Fisica; Herdoiza, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Palombi, F.; Papinutto, M. [CERN, Geneva (Switzerland). Physics Dept., TH Division; Pena, C. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica C-XI]|[Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC C-XVI; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik

    2007-12-15

    Using Schroedinger Functional methods, we compute the non-perturbative renormalisation and renormalisation group running of several four-fermion operators, in the framework of lattice simulations with two dynamical Wilson quarks. Two classes of operators have been targeted: (i) those with left-left current structure and four propagating quark fields; (ii) all operators containing two static quarks. In both cases, only the parity-odd contributions have been considered, being the ones that renormalise multiplicatively. Our results, once combined with future simulations of the corresponding lattice hadronic matrix elements, may be used for the computation of phenomenological quantities of interest, such as B{sub K} and B{sub B} (the latter also in the static limit). (orig.)

  11. Inhibition of brain tumor cell proliferation by alternating electric fields

    International Nuclear Information System (INIS)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi; Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun; Koh, Eui Kwan

    2014-01-01

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields

  12. Experimental Investigation of Integrated Optical Intensive Impulse Electric Field Sensors

    International Nuclear Information System (INIS)

    Bao, Sun; Fu-Shen, Chen

    2009-01-01

    We design and fabricate an integrated optical electric field sensor with segmented electrode for intensive impulse electric field measurement. The integrated optical sensor is based on a Mach–Zehnder interferometer with segmented electrodes. The output/input character of the sensing system is analysed and measured. The maximal detectable electric field range (−75 kV/m to 245 kV/m) is obtained by analysing the results. As a result, the integrated optics electric field sensing system is suitable for transient intensive electric field measurement investigation

  13. Inhibition of brain tumor cell proliferation by alternating electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hyesun; Oh, Seung-ick; Hong, Sunghoi, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [School of Biosystem and Biomedical Science, Korea University, Seoul 136-703 (Korea, Republic of); Sung, Jiwon; Jeong, Seonghoon; Yoon, Myonggeun, E-mail: shong21@korea.ac.kr, E-mail: radioyoon@korea.ac.kr [Department of Bio-convergence Engineering, Korea University, Seoul 136-703 (Korea, Republic of); Koh, Eui Kwan [Seoul Center, Korea Basic Science Institute, Seoul 136-713 (Korea, Republic of)

    2014-11-17

    This study was designed to investigate the mechanism by which electric fields affect cell function, and to determine the optimal conditions for electric field inhibition of cancer cell proliferation. Low-intensity (<2 V/cm) and intermediate-frequency (100–300 kHz) alternating electric fields were applied to glioblastoma cell lines. These electric fields inhibited cell proliferation by inducing cell cycle arrest and abnormal mitosis due to the malformation of microtubules. These effects were significantly dependent on the intensity and frequency of applied electric fields.

  14. Liquid methanol under a static electric field

    Energy Technology Data Exchange (ETDEWEB)

    Cassone, Giuseppe, E-mail: giuseppe.cassone@impmc.upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7590, IMPMC, F-75005 Paris (France); CNRS, UMR 7590, IMPMC, F-75005 Paris (France); Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, 98166 Messina (Italy); CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina (Italy); Giaquinta, Paolo V., E-mail: paolo.giaquinta@unime.it [Università degli Studi di Messina, Dipartimento di Fisica e di Scienze della Terra, Contrada Papardo, 98166 Messina (Italy); Saija, Franz, E-mail: saija@ipcf.cnr.it [CNR-IPCF, Viale Ferdinando Stagno d’Alcontres 37, 98158 Messina (Italy); Saitta, A. Marco, E-mail: marco.saitta@impmc.upmc.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7590, IMPMC, F-75005 Paris (France); CNRS, UMR 7590, IMPMC, F-75005 Paris (France)

    2015-02-07

    We report on an ab initio molecular dynamics study of liquid methanol under the effect of a static electric field. We found that the hydrogen-bond structure of methanol is more robust and persistent for field intensities below the molecular dissociation threshold whose value (≈0.31 V/Å) turns out to be moderately larger than the corresponding estimate obtained for liquid water. A sustained ionic current, with ohmic current-voltage behavior, flows in this material for field intensities above 0.36 V/Å, as is also the case of water, but the resulting ionic conductivity (≈0.40 S cm{sup −1}) is at least one order of magnitude lower than that of water, a circumstance that evidences a lower efficiency of proton transfer processes. We surmise that this study may be relevant for the understanding of the properties and functioning of technological materials which exploit ionic conduction, such as direct-methanol fuel cells and Nafion membranes.

  15. Non-perturbative Heavy-Flavor Transport at RHIC and LHC

    Energy Technology Data Exchange (ETDEWEB)

    He, Min, E-mail: mhe@comp.tamu.edu; Fries, Rainer J.; Rapp, Ralf

    2013-08-15

    We calculate open heavy-flavor (HF) transport in relativistic heavy-ion collisions by applying a strong-coupling treatment in both macro- and microscopic dynamics (hydrodynamics and non-perturbative diffusion interactions). The hydrodynamic medium evolution is quantitatively constrained by bulk and multi-strange hadron spectra and elliptic flow. The heavy quark transport coefficient is evaluated from a non-perturbative T-matrix approach in the Quark–Gluon Plasma which, close to the critical temperature, leads to resonance formation and feeds into the recombination of heavy quarks on a hydrodynamic hypersurface. In the hadronic phase, the diffusion of HF mesons is obtained from effective hadronic theory. We compute observables at RHIC and LHC for non-photonic electrons and HF mesons, respectively.

  16. Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges

    Science.gov (United States)

    Pereira, A. D.; Sobreiro, R. F.; Sorella, S. P.

    2016-10-01

    In this paper we address the issue of the non-perturbative quantization of Euclidean Yang-Mills theories in the Curci-Ferrari gauge. In particular, we construct a refined Gribov-Zwanziger action for this gauge, which takes into account the presence of gauge copies as well as the dynamical formation of dimension-two condensates. This action enjoys a non-perturbative BRST symmetry recently proposed in Capri et al. (Phys. Rev. D 92(4), 045039. doi: 10.1103/PhysRevD.92.045039 arXiv:1506.06995 [hep-th], 2015). Finally, we pay attention to the gluon propagator in different space-time dimensions.

  17. Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges

    International Nuclear Information System (INIS)

    Pereira, A.D.; Sobreiro, R.F.; Sorella, S.P.

    2016-01-01

    In this paper we address the issue of the non-perturbative quantization of Euclidean Yang-Mills theories in the Curci-Ferrari gauge. In particular, we construct a refined Gribov-Zwanziger action for this gauge, which takes into account the presence of gauge copies as well as the dynamical formation of dimension-two condensates. This action enjoys a non-perturbative BRST symmetry recently proposed in Capri et al. (Phys. Rev. D 92(4), 045039. doi:10.1103/PhysRevD.92.045039. arXiv:1506.06995 [hepth], 2015). Finally, we pay attention to the gluon propagator in different space-time dimensions. (orig.)

  18. HQET at order 1/m. Pt. 1. Non-perturbative parameters in the quenched approximation

    Energy Technology Data Exchange (ETDEWEB)

    Blossier, Benoit [Paris XI Univ., 91 - Orsay (France). Lab. de Physique Theorique; Della Morte, Michele [Mainz Univ. (Germany). Inst. fuer Kernphysik; Garron, Nicolas [Universidad Autonoma de Madrid (Spain). Dept. Fisica Teorica y Inst. de Fisica Teorica UAM/CSIC; Edinburgh Univ. (United Kingdom). School of Physics and Astronomy - SUPA; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2010-01-15

    We determine non-perturbatively the parameters of the lattice HQET Lagrangian and those of heavy-light axial-vector and vector currents in the quenched approximation. The HQET expansion includes terms of order 1/m{sub b}. Our results allow to compute, for example, the heavy-light spectrum and B-meson decay constants in the static approximation and to order 1/m{sub b} in HQET. The determination of the parameters is separated into universal and non-universal parts. The universal results can be used to determine the parameters for various discretizations. The computation reported in this paper uses the plaquette gauge action and the ''HYP1/2'' action for the b-quark described by HQET. The parameters of the currents also depend on the light-quark action, for which we choose non-perturbatively O(a)-improved Wilson fermions. (orig.)

  19. HQET at order 1/m. Pt. 1. Non-perturbative parameters in the quenched approximation

    International Nuclear Information System (INIS)

    Blossier, Benoit; Della Morte, Michele; Garron, Nicolas; Edinburgh Univ.; Sommer, Rainer

    2010-01-01

    We determine non-perturbatively the parameters of the lattice HQET Lagrangian and those of heavy-light axial-vector and vector currents in the quenched approximation. The HQET expansion includes terms of order 1/m b . Our results allow to compute, for example, the heavy-light spectrum and B-meson decay constants in the static approximation and to order 1/m b in HQET. The determination of the parameters is separated into universal and non-universal parts. The universal results can be used to determine the parameters for various discretizations. The computation reported in this paper uses the plaquette gauge action and the ''HYP1/2'' action for the b-quark described by HQET. The parameters of the currents also depend on the light-quark action, for which we choose non-perturbatively O(a)-improved Wilson fermions. (orig.)

  20. Non-perturbative BRST quantization of Euclidean Yang-Mills theories in Curci-Ferrari gauges

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, A.D. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha, Niteroi, RJ (Brazil); Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Potsdam (Germany); UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil); Sobreiro, R.F. [UFF, Universidade Federal Fluminense, Instituto de Fisica, Campus da Praia Vermelha, Niteroi, RJ (Brazil); Sorella, S.P. [UERJ, Universidade do Estado do Rio de Janeiro, Departamento de Fisica Teorica, Rio de Janeiro (Brazil)

    2016-10-15

    In this paper we address the issue of the non-perturbative quantization of Euclidean Yang-Mills theories in the Curci-Ferrari gauge. In particular, we construct a refined Gribov-Zwanziger action for this gauge, which takes into account the presence of gauge copies as well as the dynamical formation of dimension-two condensates. This action enjoys a non-perturbative BRST symmetry recently proposed in Capri et al. (Phys. Rev. D 92(4), 045039. doi:10.1103/PhysRevD.92.045039. arXiv:1506.06995 [hepth], 2015). Finally, we pay attention to the gluon propagator in different space-time dimensions. (orig.)

  1. Large N non-perturbative effects in N=4 superconformal Chern-Simons theories

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Honda, Masazumi; Okuyama, Kazumi

    2015-07-01

    We investigate the large N instanton effects of partition functions in a class of N = 4 circular quiver Chern-Simons theories on a three-sphere. Our analysis is based on the supersymmetry localization and the Fermi-gas formalism. The resulting matrix model can be regarded as a two-parameter deformation of the ABJM matrix model, and has richer non-perturbative structures. Based on a systematic semi-classical analysis, we find analytic expressions of membrane instanton corrections. We also exactly compute the partition function for various cases and find some exact forms of worldsheet instanton corrections, which appear as quantum mechanical non-perturbative corrections in the Fermi-gas system.

  2. Control of the radial electric field shear by modification of the magnetic field configuration in LHD

    International Nuclear Information System (INIS)

    Ida, K.; Yoshinuma, M.; Yokoyama, M.

    2005-01-01

    Control of the radial electric field, E γ , is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. In general, the radial electric field can be controlled by changing the collisionality, and positive or negative electric field have been obtained by decreasing or increasing the electron density, respectively. Although the sign of the radial electric field can be controlled by changing the collisionality, modification of the magnetic field is required to achieve further control of the radial electric field, especially producing a strong radial electric field shear. In the Large Helical Device (LHD) the radial electric field profiles are shown to be controlled by the modification of the magnetic field by 1) changing the radial profile of the helical ripples, ε h , 2) creating a magnetic island with an external perturbation field coil and 3) changing the local island divertor coil current. (author)

  3. Control of the radial electric field shear by modification of the magnetic field configuration in LHD

    International Nuclear Information System (INIS)

    Ida, K.; Yoshinuma, M.; Yokoyama, M.

    2005-01-01

    Control of the radial electric field, E r , is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. In general, the radial electric field can be controlled by changing the collisionality, and positive or negative electric fields have been obtained by decreasing or increasing the electron density, respectively. Although the sign of the radial electric field can be controlled by changing the collisionality, modification of the magnetic field is required to achieve further control of the radial electric field, especially to produce a strong radial electric field shear. In the Large Helical Device (LHD) the radial electric field profiles are shown to be controlled by the modification of the magnetic field by (1) changing the radial profile of the effective helical ripples, ε h (2) creating a magnetic island with an external perturbation field coil and (3) changing the local island divertor coil current

  4. MTX microwave-electric-field diagnostic

    International Nuclear Information System (INIS)

    Odajima, Kazuo; Ohasa, Kazumi; Shiho, Makoto

    1990-06-01

    A joint Japan-U.S. project is in progress to measure the high electric fields produced by a free-electron laser beam of GW-peak-power level when injected into the plasma of the Microwave Tokamak Experiment (MTX) at the Lawrence Livermore National Laboratory in California. In this report, we discuss the planned method of measurement and the status of the work. The equipment needed is either well along in the design stage or is being built. We plan to test out the combined operation of all components in Japan before shipping to Livermore. Although the measurement appears difficult for a variety of technical and physics reasons, calculations indicate that it should be possible. (author)

  5. Topology Optimized Nanostrips for Electric Field Enhancements

    DEFF Research Database (Denmark)

    Vester-Petersen, Joakim; Christiansen, Rasmus E.; Julsgaard, Brian

    This work addresses efficiency improvements of solar cells by manipulating the spectrum of sunlight to bettermatch the range of efficient current generation. The intrinsic transmission losses in crystalline silicon can effectivelybe reduced using photon upconversion in erbium ions in which low...... energy photons are converted to higher energy photons able to bridge the band gap energy and contribute the energy generation. The upconversion process in erbium is inefficient under the natural solar irradiation, and without any electric field enhancements of the incident light, the process...... is negligible for photo-voltaic applications. However, the probability for upconversion can be increased by focusing the incident light onto the erbium ions using optimized metal nanostructures[1, 2, 3]. The aim of this work is to increase the photon upconversion yield by optimizing the design of metalic...

  6. High electric field conduction in low-alkali boroaluminosilicate glass

    Science.gov (United States)

    Dash, Priyanka; Yuan, Mengxue; Gao, Jun; Furman, Eugene; Lanagan, Michael T.

    2018-02-01

    Electrical conduction in silica-based glasses under a low electric field is dominated by high mobility ions such as sodium, and there is a transition from ionic transport to electronic transport as the electric field exceeds 108 V/m at low temperatures. Electrical conduction under a high electric field was investigated in thin low-alkali boroaluminosilicate glass samples, showing nonlinear conduction with the current density scaling approximately with E1/2, where E is the electric field. In addition, thermally stimulated depolarization current (TSDC) characterization was carried out on room-temperature electrically poled glass samples, and an anomalous discharging current flowing in the same direction as the charging current was observed. High electric field conduction and TSDC results led to the conclusion that Poole-Frenkel based electronic transport occurs in the mobile-cation-depleted region adjacent to the anode, and accounts for the observed anomalous current.

  7. Non-perturbative analytical solutions of the space- and time-fractional Burgers equations

    International Nuclear Information System (INIS)

    Momani, Shaher

    2006-01-01

    Non-perturbative analytical solutions for the generalized Burgers equation with time- and space-fractional derivatives of order α and β, 0 < α, β ≤ 1, are derived using Adomian decomposition method. The fractional derivatives are considered in the Caputo sense. The solutions are given in the form of series with easily computable terms. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed

  8. The FLUKA Monte Carlo, Non-Perturbative QCD and Cosmic Ray Cascades

    International Nuclear Information System (INIS)

    Battistoni, G.

    2005-01-01

    The FLUKA Monte Carlo code, presently used in cosmic ray physics, contains packages to sample soft hadronic processes which are built according to the Dual Parton Model. This is a phenomenological model capable of reproducing many of the features of hadronic collisions in the non perturbative QCD regime. The basic principles of the model are summarized and, as an example, the associated Lambda-K production is discussed. This is a process which has some relevance for the calculation of atmospheric neutrino fluxes

  9. Comments on exact quantization conditions and non-perturbative topological strings

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki

    2015-12-01

    We give some remarks on exact quantization conditions associated with quantized mirror curves of local Calabi-Yau threefolds, conjectured in arXiv:1410.3382. It is shown that they characterize a non-perturbative completion of the refined topological strings in the Nekrasov-Shatashvili limit. We find that the quantization conditions enjoy an exact S-dual invariance. We also discuss Borel summability of the semi-classical spectrum.

  10. Large x Behaviour and the Non-Perturbative Structure of Hadronic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Anthony W. Thomas

    2005-02-01

    While the traditional interest in structure functions has been the confirmation of the predictions of perturbative QCD, this data also contains a wealth of information on how QCD works in the infrared, or confinement, region. As the challenge of the strong force now turns to the study of QCD in the non-perturbative region, such information is extremely valuable.We outline some of the key issues for both nucleon and nuclear structure functions.

  11. Non-perturbative renormalisation of left-left four-fermion operators with Neuberger fermions

    International Nuclear Information System (INIS)

    Dimopoulos, P.; Giusti, L.; Hernandez, P.; Palombi, F.; Pena, C.; Vladikas, A.; Wennekers, J.; Wittig, H.

    2006-01-01

    We outline a general strategy for the non-perturbative renormalisation of composite operators in discretisations based on Neuberger fermions, via a matching to results obtained with Wilson-type fermions. As an application, we consider the renormalisation of the four-quark operators entering the ΔS=1 and ΔS=2 effective Hamiltonians. Our results are an essential ingredient for the determination of the low-energy constants governing non-leptonic kaon decays

  12. Physics beyond the standard model in the non-perturbative unification scheme

    International Nuclear Information System (INIS)

    Kapetanakis, D.; Zoupanos, G.

    1990-01-01

    The non-perturbative unification scenario predicts reasonably well the low energy gauge couplings of the standard model. Agreement with the measured low energy couplings is obtained by assuming certain kind of physics beyond the standard model. A number of possibilities for physics beyond the standard model is examined. The best candidates so far are the standard model with eight fermionic families and a similar number of Higgs doublets, and the supersymmetric standard model with five families. (author)

  13. A non-perturbative approach to the Coleman-Weinberg mechanism in massless scalar QED

    International Nuclear Information System (INIS)

    Malbouisson, A.P.C.; Nogueira, F.S.; Svaiter, N.F.

    1995-08-01

    We rederived non-perturbatively the Coleman-Weinberg expression for the effective potential for massless scalar QED. Our result is not restricted to small values of the coupling constants. This shows that the Coleman-Weinberg result can be established beyond the range of perturbation theory. Also, we derive it in a manifestly renormalization group invariant way. It is shown that with the derivation given no Landau ghost singularity arises. The finite temperature case is discussed. (author). 13 refs

  14. Electric field encephalography for brain activity monitoring.

    Science.gov (United States)

    Versek, Craig William; Frasca, Tyler; Zhou, Jianlin; Chowdhury, Kaushik; Sridhar, Srinivas

    2018-05-11

    Objective - We describe an early-stage prototype of a new wireless electrophysiological sensor system, called NeuroDot, which can measure neuroelectric potentials and fields at the scalp in a new modality called Electric Field Encephalography (EFEG). We aim to establish the physical validity of the EFEG modality, and examine some of its properties and relative merits compared to EEG. Approach - We designed a wireless neuroelectric measurement device based on the Texas Instrument ADS1299 Analog Front End platform and a sensor montage, using custom electrodes, to simultaneously measure EFEG and spatially averaged EEG over a localized patch of the scalp (2cm x 2cm). The signal properties of each modality were compared across tests of noise floor, Berger effect, steady-state Visually Evoked Potential (ssVEP), signal-to-noise ratio (SNR), and others. In order to compare EFEG to EEG modalities in the frequency domain, we use a novel technique to compute spectral power densities and derive narrow-band SNR estimates for ssVEP signals. A simple binary choice brain-computer-interface (BCI) concept based on ssVEP is evaluated. Also, we present examples of high quality recording of transient Visually Evoked Potentials and Fields (tVEPF) that could be used for neurological studies. Main results - We demonstrate the capability of the NeuroDot system to record high quality EEG signals comparable to some recent clinical and research grade systems on the market. We show that the locally-referenced EFEG metric is resistant to certain types of movement artifacts. In some ssVEP based measurements, the EFEG modality shows promising results, demonstrating superior signal to noise ratios than the same recording processed as an analogous EEG signal. We show that by using EFEG based ssVEP SNR estimates to perform a binary classification in a model BCI, the optimal information transfer rate (ITR) can be raised from 15 to 30 bits per minute - though these preliminary results are likely

  15. Introduction and overview to some topics in perturbative QCD and their relationship to non perturbative effects

    International Nuclear Information System (INIS)

    West, G.

    1990-01-01

    The main thrust of this talk is to review and discuss various topics in both perturbative and non-perturbative QCD that are, by and large, model independent. This inevitably means that we shall rely heavily on the renormalization group and asymptotic freedom. Although this usually means that one has to concentrate on high energy phenomena, there are some physical processes even involving bound states which are certainly highly non-perturbative, where one can make some progress without becoming overly model independent. Experience with the EMC effect, where there are about as many ''explanations'' as authors, has surely taught us that it may well be worth returning to ''basics'' and thinking about general properties of QCD rather than guessing, essentially arbitrarily, what we think is its low energy structure. No doubt we shall have to await further numerical progress or for some inspired theoretical insight before we can, with confidence, attack these extremely difficult problems. So, with this in mine, I shall review a smattering of problems which do have a non-perturbative component and where some rather modest progress can actually be made; I emphasize the adjective ''modest''exclamation point

  16. Non-perturbative QCD Effects and the Top Mass at the Tevatron

    CERN Document Server

    Wicke, Daniel

    2008-01-01

    The modelling of non-perturbative effects is an important part of modern collider physics simulations. In hadron collisions there is some indication that the modelling of the interactions of the beam remnants, the underlying event, may require non-trivial colour reconnection effects to be present. We recently introduced a universally applicable toy model of such reconnections, based on hadronising strings. This model, which has one free parameter, has been implemented in the Pythia event generator. We then considered several parameter sets (`tunes'), constrained by fits to Tevatron minimum-bias data, and determined the sensitivity of a simplified top mass analysis to these effects, in exclusive semi-leptonic top events at the Tevatron. A first attempt at isolating the genuine non-perturbative effects gave an estimate of order +-0.5GeV from non-perturbative uncertainties. The results presented here are an update to the original study and include recent bug fixes of Pythia that influenced the tunings investigat...

  17. Technical Note: Computation of Electric Field Strength Necessary for ...

    African Journals Online (AJOL)

    Obviously, electric field is established by this charge. The effects of this field on the objects lying within its vicinity depend on its intensity. In this paper, the electric field of 33kV overhead line is considered. The aim of the paper is to determine the maximum electric field strength or potential gradient, E of the 33kV overhead ...

  18. Role of random electric fields in relaxors

    Science.gov (United States)

    Phelan, Daniel; Stock, Christopher; Rodriguez-Rivera, Jose A.; Chi, Songxue; Leão, Juscelino; Long, Xifa; Xie, Yujuan; Bokov, Alexei A.; Ye, Zuo-Guang; Ganesh, Panchapakesan; Gehring, Peter M.

    2014-01-01

    PbZr1–xTixO3 (PZT) and Pb(Mg1/3Nb2/3)1–xTixO3 (PMN-xPT) are complex lead-oxide perovskites that display exceptional piezoelectric properties for pseudorhombohedral compositions near a tetragonal phase boundary. In PZT these compositions are ferroelectrics, but in PMN-xPT they are relaxors because the dielectric permittivity is frequency dependent and exhibits non-Arrhenius behavior. We show that the nanoscale structure unique to PMN-xPT and other lead-oxide perovskite relaxors is absent in PZT and correlates with a greater than 100% enhancement of the longitudinal piezoelectric coefficient in PMN-xPT relative to that in PZT. By comparing dielectric, structural, lattice dynamical, and piezoelectric measurements on PZT and PMN-xPT, two nearly identical compounds that represent weak and strong random electric field limits, we show that quenched (static) random fields establish the relaxor phase and identify the order parameter. PMID:24449912

  19. Plasma Flows in Crossed Magnetic and Electric Fields

    International Nuclear Information System (INIS)

    Belikov, A.G.

    2005-01-01

    The effect of the magnitude and direction of an external electric field on the plasma flowing through a magnetic barrier is studied by numerically solving two-fluid MHD equations. The drift velocity of the plasma flow and the distribution of the flow electrons over transverse velocities are found to depend on the magnitude and direction of the electric field. It is shown that the direction of the induced longitudinal electric field is determined by the direction of the external field and that the electric current generated by the plasma flow significantly disturbs the barrier field

  20. Determination of Moessbauer electric field gradient

    International Nuclear Information System (INIS)

    Garg, V.K.

    1980-01-01

    There are several reports of the electric quadrupole interactions available in the literature. 1 - 4 The present discussion is a short survey, introducing the electric quadrupole up to the experimental polarised studies. (Author) [pt

  1. The chromatographic separation of particles using optical electric fields

    DEFF Research Database (Denmark)

    Javier Alvarez, Nicolas; Jeppesen, Claus; Yvind, Kresten

    2013-01-01

    We introduce a new field-flow fractionation (FFF) technique, whereby molecules are separated based on their differential interaction (dielectrophoresis (DEP)) with optical electric fields, i.e. electric fields with frequencies in the visible and near-infrared range. The results show that a parall...

  2. ion in crossed gradient electric and magnetic fields

    Indian Academy of Sciences (India)

    Photodetachment cross-section for variousexternal fields and the laser polarization are calculated and displayed. A comparison with the photodetachment cross-section in crossed uniform electric and magnetic fields or in a single gradient electric field has been made.The agreement of our results with the above two special ...

  3. PHASE GRADIENT METHOD OF MAGNETIC FIELD MEASUREMENTS IN ELECTRIC VEHICLES

    Directory of Open Access Journals (Sweden)

    N. G. Ptitsyna

    2013-01-01

    Full Text Available Operation of electric and hybrid vehicles demands real time magnetic field control, for instance, for fire and electromagnetic safety. The article deals with a method of magnetic field measurements onboard electric cars taking into account peculiar features of these fields. The method is based on differential methods of measurements, and minimizes the quantity of magnetic sensors.

  4. Field-Induced Superconductivity in Electric Double Layer Transistors

    NARCIS (Netherlands)

    Ueno, Kazunori; Shimotani, Hidekazu; Yuan, Hongtao; Ye, Jianting; Kawasaki, Masashi; Iwasa, Yoshihiro

    Electric field tuning of superconductivity has been a long-standing issue in solid state physics since the invention of the field-effect transistor (FET) in 1960. Owing to limited available carrier density in conventional FET devices, electric-field-induced superconductivity was believed to be

  5. Problems related to macroscopic electric fields in the magnetosphere

    International Nuclear Information System (INIS)

    Faelthammar, C.

    1977-01-01

    The macroscopic electric fields in the magnetosphere originate from internal as well as external sources. The fields are intimately coupled with the dynamics of magnetospheric plasma convection. They also depend on the complicated electrical properties of the hot collisionless plasma. Macroscopic electric fields are responsible for some important kinds of energization of charged particles that take place in the magnetosphere and affect not only particles of auroral energy but also, by multistep processes, trapped high-energy particles. A particularly interesting feature of magnetospheric electric fields is that they can have substantial components along the geomagnetic field, as has recently been confirmed by observations. Several physical mechanisms have been identified by which such electric fields can be supported even when collisions between particles are negligible. Comments are made on the magnetic mirror effect, anomalous resistivity, the collisionless thermoelectric effect, and electric double layers, emphasizing key features and differences and their significance in the light of recent observational data

  6. Dynamics analysis of extraction of manganese intensified by electric field

    Science.gov (United States)

    Ma, Wenrui; Tao, Changyuan; Li, Huizhan; Liu, Zuohua; Liu, Renlong

    2018-06-01

    In this study, a process reinforcement technology for leaching process of pyrolusite was developed. The electric field was introduced to decrease reaction temperature and improve the leaching rate of pyrolusite. The mechanisms of electric field intensifying leaching process of pyrolusite were investigated through X-ray diffraction (XRD), and Brunauer Emmett Teller (BET) in detail. The results showed that the electric field could decrease obviously the apparent activation energy of leaching process of pyrolusite. The apparent activation energy of the leaching of pyrolusite intensified by electric field was calculated to be 53.76 kJ.mol-1. In addition, the leaching efficiency of manganese was effectively increased by 10% to 20% than that without electric field under the same conditions. This was because that the electron conduit between Fe (II)/Fe (III) and pyrite was dredged effectively by electric field.

  7. Influence of the oscillating electric field on the photodetachment of H− ion in a static electric field

    International Nuclear Information System (INIS)

    Wang, De-hua

    2017-01-01

    Highlights: • The photodetachment of H − in an oscillating electric field has been studied using the time-dependent closed orbit theory. • An analytical formula for calculating the photodetachement cross section has been put forward. • Our study provides a clear physical picture for the photodetachment of negative ion in an oscillating electric filed. • Our work is useful in guiding the experimental research for the photodetachment dynamics in the time-dependent field. - Abstract: Using the time-dependent closed orbit theory, we study the photodetachment of H − ion in a time-dependent electric field. The photodetachment cross section is specifically studied in the presence of a static electric field plus an oscillating electric field. We find that the photodetachment of negative ion in the time-dependent electric field becomes much more complicated than the case in a static electric field. The oscillating electric field can weaken the photodetachment cross section greatly when the strength of the oscillating electric field is less than the static electric field. However, as the strength of the oscillating electric field is larger than the static electric field, four types of closed orbits are identified for the detached electron, which makes the oscillating amplitude in the photodetachment cross section gets increased again. The connection between the detached electron’s closed orbit with the oscillating cross section is analyzed quantitatively. This study provides a clear and intuitive picture for the understanding of the connections between quantum and classical description for the time-dependent Hamiltonian systems and may guide the future experimental research for the photodetachment dynamics in the time-dependent electric field.

  8. Measurement of electric fields in the H-1NF heliac

    International Nuclear Information System (INIS)

    James, B.W.; Howard, J.

    1999-01-01

    There are a number of laser induced fluorescence techniques which can be used to measure internal plasma electric fields. It is planned to use a technique based on Stark mixing of energy levels in a supersonic beam containing metastable helium atoms to measure radial electric fields in H-1NF. Enhanced values of radial electric field are associated with improved confinement modes in H-1NF and other magnetically confined plasmas

  9. Effect of increased ionization on the atmospheric electric field

    International Nuclear Information System (INIS)

    Boeck, W.L.

    1980-01-01

    This study is a review of atmospheric electrical theory with the purpose of predicting the atmospheric electrical effects of increased ionization caused by radioactive inert gases. A time-independent perturbation model for the global atmospheric electric circuit precdicts that the electric field at the sea surface would be reduced to about 76% of its unperturbed value by a surface 85 Kr concentration of 3 nCi/m 3 . The electric field at a typical land station is predicted to be about 84% of its unperturbed value. Some scientists have suggested that the atmospheric electric field is part of a closed electrical feedback loop. The present model does not include such a closed feedback loop and may underestimate the total effects. This model is also useful for interpreting atmospheric electrical responses to natural fluctuations in the cosmic-ray component of background radiation

  10. Linear electric field time-of-flight ion mass spectrometer

    Science.gov (United States)

    Funsten, Herbert O [Los Alamos, NM; Feldman, William C [Los Alamos, NM

    2008-06-10

    A linear electric field ion mass spectrometer having an evacuated enclosure with means for generating a linear electric field located in the evacuated enclosure and means for injecting a sample material into the linear electric field. A source of pulsed ionizing radiation injects ionizing radiation into the linear electric field to ionize atoms or molecules of the sample material, and timing means determine the time elapsed between ionization of atoms or molecules and arrival of an ion out of the ionized atoms or molecules at a predetermined position.

  11. End-shorting and electric field in edge plasmas with application to field-reversed configurations

    International Nuclear Information System (INIS)

    Steinhauer, Loren C.

    2002-01-01

    The shorting of open field lines where they intersect external boundaries strongly modifies the transverse electric field all along the field lines. The modified electric field is found by an extension of the familiar Boltzmann relation for the electric potential. This leads to a prediction of the electric drift. Flow generation by electrical shorting is applied here to three aspects of elongated field-reversed configurations: plasma rotation rate; the particle-loss spin-up mechanism; and the sustainability of the rotating magnetic field current drive method

  12. Atomistic modeling of metal surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm

    CERN Document Server

    Djurabekova, Flyura; Pohjonen, Aarne; Nordlund, Kai

    2011-01-01

    The effect of electric fields on metal surfaces is fairly well studied, resulting in numerous analytical models developed to understand the mechanisms of ionization of surface atoms observed at very high electric fields, as well as the general behavior of a metal surface in this condition. However, the derivation of analytical models does not include explicitly the structural properties of metals, missing the link between the instantaneous effects owing to the applied field and the consequent response observed in the metal surface as a result of an extended application of an electric field. In the present work, we have developed a concurrent electrodynamic–molecular dynamic model for the dynamical simulation of an electric-field effect and subsequent modification of a metal surface in the framework of an atomistic molecular dynamics (MD) approach. The partial charge induced on the surface atoms by the electric field is assessed by applying the classical Gauss law. The electric forces acting on the partially...

  13. Surface electric fields for North America during historical geomagnetic storms

    Science.gov (United States)

    Wei, Lisa H.; Homeier, Nichole; Gannon, Jennifer L.

    2013-01-01

    To better understand the impact of geomagnetic disturbances on the electric grid, we recreate surface electric fields from two historical geomagnetic storms—the 1989 “Quebec” storm and the 2003 “Halloween” storms. Using the Spherical Elementary Current Systems method, we interpolate sparsely distributed magnetometer data across North America. We find good agreement between the measured and interpolated data, with larger RMS deviations at higher latitudes corresponding to larger magnetic field variations. The interpolated magnetic field data are combined with surface impedances for 25 unique physiographic regions from the United States Geological Survey and literature to estimate the horizontal, orthogonal surface electric fields in 1 min time steps. The induced horizontal electric field strongly depends on the local surface impedance, resulting in surprisingly strong electric field amplitudes along the Atlantic and Gulf Coast. The relative peak electric field amplitude of each physiographic region, normalized to the value in the Interior Plains region, varies by a factor of 2 for different input magnetic field time series. The order of peak electric field amplitudes (largest to smallest), however, does not depend much on the input. These results suggest that regions at lower magnetic latitudes with high ground resistivities are also at risk from the effect of geomagnetically induced currents. The historical electric field time series are useful for estimating the flow of the induced currents through long transmission lines to study power flow and grid stability during geomagnetic disturbances.

  14. A percolation approach to study the high electric field effect on electrical conductivity of insulating polymer

    Science.gov (United States)

    Benallou, Amina; Hadri, Baghdad; Martinez-Vega, Juan; El Islam Boukortt, Nour

    2018-04-01

    The effect of percolation threshold on the behaviour of electrical conductivity at high electric field of insulating polymers has been briefly investigated in literature. Sometimes the dead ends links are not taken into account in the study of the electric field effect on the electrical properties. In this work, we present a theoretical framework and Monte Carlo simulation of the behaviour of the electric conductivity at high electric field based on the percolation theory using the traps energies levels which are distributed according to distribution law (uniform, Gaussian, and power-law). When a solid insulating material is subjected to a high electric field, and during trapping mechanism the dead ends of traps affect with decreasing the electric conductivity according to the traps energies levels, the correlation length of the clusters, the length of the dead ends, and the concentration of the accessible positions for the electrons. A reasonably good agreement is obtained between simulation results and the theoretical framework.

  15. Effect of applied DC electric fields in flame spread over polyethylene-coated electrical wire

    KAUST Repository

    Jin, Young Kyu

    2011-03-01

    We experimentally investigated the effect of applied DC electric fields on the flame spread over polyethylene-coated electrical wire. The flame-spread rates over electrical wire with negative and positive DC electric fields from 0 to ±7 kV were measured and analyzed. We compared the results for DC electric fields with previous results for AC electric fields. We explored whether or not various flame shapes could be obtained with DC electric fields and the main reason for the flame-spread acceleration, particularly at the end of the electrical wire, for AC electric fields. We found that DC electric fields do not significantly affect the flame-spread rates. However, the flame shape is mildly altered by the ionic wind effect even for DC electric fields. The flame-spread rate is relevant to the flame shape and the slanted direction in spite of the mild impact. A possible explanation for the flame spread is given by a thermal-balance mechanism and fuel-vapor jet. © 2011 The Korean Society of Mechanical Engineers.

  16. Non-perturbative phenomena in QCD vacuum, hadrons, and quark-gluon plasma

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1983-01-01

    These lectures provide a brief review of recent progress in non-perturbative quantum chromodynamics (QCD). They are intended for non specialists, mainly experimentalists. The main object of discussion, the QCD vacuum, is a rather complicated medium. It may be studied either by infinitesimal probes producing microscopic excitations (=hadrons), or by finite excitations (say, heating some volume to a given temperature T). In the latter case, some qualitative changes (phase transitions) should take place. A summary is given of the extent to which such phenomena can be observed in the laboratory by proton-proton, proton-nucleus, and nucleus-nucleus collisions. (orig.)

  17. Non-perturbative computation of the strong coupling constant on the lattice

    International Nuclear Information System (INIS)

    Sommer, Rainer; Humboldt-Universitaet, Berlin; Wolff, Ulli

    2015-01-01

    We review the long term project of the ALPHA collaboration to compute in QCD the running coupling constant and quark masses at high energy scales in terms of low energy hadronic quantities. The adapted techniques required to numerically carry out the required multiscale non-perturbative calculation with our special emphasis on the control of systematic errors are summarized. The complete results in the two dynamical flavor approximation are reviewed and an outlook is given on the ongoing three flavor extension of the programme with improved target precision.

  18. New Results in {mathcal {N}}=2 N = 2 Theories from Non-perturbative String

    Science.gov (United States)

    Bonelli, Giulio; Grassi, Alba; Tanzini, Alessandro

    2018-03-01

    We describe the magnetic phase of SU(N) $\\mathcal{N}=2$ Super Yang-Mills theories in the self-dual Omega background in terms of a new class of multi-cut matrix models. These arise from a non-perturbative completion of topological strings in the dual four dimensional limit which engineers the gauge theory in the strongly coupled magnetic frame. The corresponding spectral determinants provide natural candidates for the tau functions of isomonodromy problems for flat spectral connections associated to the Seiberg-Witten geometry.

  19. Super Toeplitz operators and non-perturbative deformation quantization of supermanifolds

    Energy Technology Data Exchange (ETDEWEB)

    Borthwick, D.; Lesniewski, A.; Rinaldi, M. (Harvard Univ., Cambridge, MA (United States). Lyman Lab. of Physics); Klimek, S. (IUPUI, Indianapolis, IN (United States). Dept. of Mathematics)

    1993-04-01

    The purpose of this paper is to construct non-perturbative deformation quantizations of the algebras of smooth functions on Poisson supermanifolds. For the examples U[sup 1vertical] [sup stroke1] and C[sup mvertical] [sup stroken], algebras of super Toeplitz operators are defined with respect to certain Hilbert spaces of superholomorphic functions. Generators and relations for these algebras are given. The algebras can be thought of as algebras of 'quantized functions', and deformation conditions are proven which demonstrate the recovery of the super Piosson structures in a semi-classical limit. (orig.).

  20. Coulomb versus nuclear break-up of 11Be halo nucleus in a non perturbative framework

    International Nuclear Information System (INIS)

    Fallot, M.; Scarpaci, J.A.; Margueron, J.; Lacroix, D.; Chomaz, Ph.

    2000-01-01

    The 11 Be break-up is calculated using a non perturbative time-dependent quantum calculation. The evolution of the neutron halo wave function shows an emission of neutron at large angles for grazing impact parameters and at forward angles for large impact parameters. The neutron angular distribution is deduced for the different targets and compared to experimental data. We emphasize the diversity of diffraction mechanisms, in particular we discuss the interplay of the nuclear effects such as the towing mode and the Coulomb break-up. A good agreement is found with experimental data. (authors)

  1. Analyzing Bs - anti Bs mixing. Non-perturbative contributions to bag parameters from sum rules

    International Nuclear Information System (INIS)

    Mannel, T.; Pivovarov, A.A.; Russian Academy of Sciecnes, Moscow

    2007-03-01

    We use QCD sum rules to compute matrix elements of the ΔB=2 operators appearing in the heavy-quark expansion of the width difference of the B s mass eigenstates. Our analysis includes the leading-order operators Q and Q S , as well as the subleading operators R 2 and R 3 , which appear at next-to-leading order in the 1/m b expansion. We conclude that the violation of the factorization approximation for these matrix elements due to non-perturbative vacuum condensates is as low as 1-2%. (orig.)

  2. Non-perturbative effects in the transverse momentum distribution of electroweak bosons at the LHC

    CERN Document Server

    Siodmok, Andrzej; Seymour, Michael H

    2009-01-01

    The transverse momentum of electroweak bosons in a Drell-Yan process is an important quantity for the experimental program at the LHC. The new model of non-perturbative gluon emission in an initial state parton shower presented in this note gives a good description of this quantity for the data taken in previous experiments over a wide range of CM energy. The model's prediction for the transverse momentum distribution of Z bosons for the LHC is presented and used for a comparison with other approaches.

  3. Quasilocal quark models as effective theory of non-perturbative QCD

    International Nuclear Information System (INIS)

    Andrianov, A.A.

    2006-01-01

    We consider the Quasilocal Quark Model of NJL type (QNJLM) as effective theory of non-perturbative QCD including scalar (S), pseudo-scalar (P), vector (V) and axial-vector (A) four-fermion interaction with derivatives. In the presence of a strong attraction in the scalar channel the chiral symmetry is spontaneously broken and as a consequence the composite meson states are generated in all channels. With the help of Operator Product Expansion the appropriate set of Chiral Symmetry Restoration (CSR) Sum Rules in these channels are imposed as matching rules to QCD at intermediate energies. The mass spectrum and some decay constants for ground and excited meson states are calculated

  4. Non-perturbative renormalization of left-left four-fermion operators in quenched lattice QCD

    CERN Document Server

    Guagnelli, M; Peña, C; Sint, S; Vladikas, A

    2006-01-01

    We define a family of Schroedinger Functional renormalization schemes for the four-quark multiplicatively renormalizable operators of the $\\Delta F = 1$ and $\\Delta F = 2$ effective weak Hamiltonians. Using the lattice regularization with quenched Wilson quarks, we compute non-perturbatively the renormalization group running of these operators in the continuum limit in a large range of renormalization scales. Continuum limit extrapolations are well controlled thanks to the implementation of two fermionic actions (Wilson and Clover). The ratio of the renormalization group invariant operator to its renormalized counterpart at a low energy scale, as well as the renormalization constant at this scale, is obtained for all schemes.

  5. Gastric applications of electrical field stimulation.

    LENUS (Irish Health Repository)

    Hogan, Aisling M

    2012-02-01

    Advances in clinical applications of electricity have been vast since the launch of Hayman\\'s first cardiac pacemaker more than 70 years ago. Gastric electrical stimulation devices have been recently licensed for treatment of gastroparesis and preliminary studies examining their potential for use in refractory obesity yield promising results.

  6. Electric Field Measurements At The Magnetopause

    Science.gov (United States)

    Lindqvist, P.-A.; Dunlop, M.

    The quasi-thermal noise (QTN) is due to the thermal motions of the particles, which produce electrostatic fluctuations. This noise is detected by any sensitive receiver at the ports of an electric antenna immersed in a plasma and can be used to measure in-situ the plasma density, temperature and bulk velocity. The basic reason is that this noise can be formally calculated as a function of both the particle velocity distribu- tions and the antenna geometry. So, conversely, the "spectroscopy" of this noise re- veals the local plasma properties. This method is routinely used on various spacecraft (Ulysses, Wind) in the solar wind or in planetary magnetospheres/ionospheres (Image at Earth, Cassini at Venus, Earth and soon at Saturn). This method has the advantage of being relatively immune to spacecraft potential and photoelectrons pertubations, since it senses a large plasma volume. It provides an accurate measurement of the electron density (a few %) because it is based on the detection of the strong signal peak near the local plasma frequency (which is close to a resonance for electrostatic waves). We will show that QTN may be as well adapted to measure 1) magnetized (anisotropic) plasmas (and deduce the magnetic field strength), 2) suprathermal or non-thermal component (as for example a kappa distribution), and 3) a wide range of core temperature, i.e from ~10 eV, as in the solar wind, to rather low temperatures (tron density and temperature for comparison with our models of Mercury/solar wind interaction.

  7. Static and low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Thommesen, G.; Tynes, T.

    1994-01-01

    The biological effects of exposure to low frequency electric and magnetic fields are reviewed with the objective of summarizing effects directly relevant to considerations of the health and safety of exposed people. Static and low frequency electric and magnetic fields may elicit biological reactions. Whether exposure to such fields may affect human health at field strengths present in everyday or occupational life is still unsettled. There is unsufficient knowledge to establish any dose concept relevant to health risk. 196 refs., 6 tabs

  8. Geomagnetic storms and electric fields in the equatorial ionosphere

    International Nuclear Information System (INIS)

    Rastogi, R.G.

    1977-01-01

    Using direct measurements of equatorial electric field during a geomagnetic storm it is shown that the large decrease in the field observed near the dip equator is due to the reversal of the equatorial electrojet current. This is caused by the imposition of an additional westward electric field on the equatorial ionosphere which was originated by the interaction of solar wind with the interplanetary magnetic field. (author)

  9. Fetal exposure to low frequency electric and magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Cech, R; Leitgeb, N; Pediaditis, M [Institute of Clinical Engineering, Graz University of Technology, Inffeldgasse 18, 8010 Graz (Austria)

    2007-02-21

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary.

  10. Fetal exposure to low frequency electric and magnetic fields

    International Nuclear Information System (INIS)

    Cech, R; Leitgeb, N; Pediaditis, M

    2007-01-01

    To investigate the interaction of low frequency electric and magnetic fields with pregnant women and in particular with the fetus, an anatomical voxel model of an 89 kg woman at week 30 of pregnancy was developed. Intracorporal electric current density distributions due to exposure to homogeneous 50 Hz electric and magnetic fields were calculated and results were compared with basic restrictions recommended by ICNIRP guidelines. It could be shown that the basic restriction is met within the central nervous system (CNS) of the mother at exposure to reference level of either electric or magnetic fields. However, within the fetus the basic restriction is considerably exceeded. Revision of reference levels might be necessary

  11. Remote sensing of mesospheric electric fields using MF radars

    Science.gov (United States)

    Meek, C. E.; Manson, A. H.; Martynenko, S. I.; Rozumenko, V. T.; Tyrnov, O. F.

    2004-07-01

    Large mesospheric electric fields can play an essential role in middle atmospheric electrodynamics (see, e.g., Goldberg, R. A., Middle Atmospheric Electrodynamics during MAP, Adv. Space Res. 10 (10) (1990) 209). The V/m electric fields of atmospheric origin can be the possible cause of large variations in the electron collision frequency at mesospheric altitudes, and this provides a unique opportunity to take measurements of electric fields in the lower ionosphere by using remote sensing instruments employing radiowave techniques. A technique has been proposed for making estimates of large mesospheric electric field intensities on the lower edge of the ionosphere by using MF radar data and the inherent effective electron collision frequency. To do this, data collected in Canada and Ukraine were utilized. The developed technique permits the changes in mesospheric electric field intensities to be derived from MF radar data in real time. The statistical analysis of data consistent with large mesospheric electric field intensities in the 60-67km region resulted in the following inferences. There are at least two mechanisms for the generation of large mesospheric electric fields in the mesosphere. The most likely mechanism, with a probability of 60-70%, is the summation of random fields from a large number of elementary small-scale mesospheric generators, which results in a one-parameter Rayleigh distribution of the total large mesospheric electric field intensity E with a mean value of approximately 0.7-0.9V/m in the 60-67km altitude region, or in the corresponding one-parameter exponential distribution of the intensity squared E2 of large mesospheric electric fields. The second mechanism of unknown nature, with 5-15% probability, gives rise to the sporadic appearance of large mesospheric electric field intensities E>2.5V/m with a mean of 4V/m. Statistically significant seasonal differences in the averaged large mesospheric electric field parameters have not been

  12. A simplified model of polar cap electric fields

    International Nuclear Information System (INIS)

    D'Angelo, N.

    1977-01-01

    A simple-minded 'model' is used in order to visualize the gross features of polar cap electric fields, in particular the 'diode' effect which had emerged already from earlier observations and the asymmetry between the electric fields observed on the dawn and dusk sides of the polar cap, which depends on Bsub(y)

  13. Electric field induced dewetting at polymer/polymer interfaces

    NARCIS (Netherlands)

    Lin, Z.Q.; Kerle, T.; Russell, T.P.; Schäffer, E.; Steiner, U

    2002-01-01

    External electric fields were used to amplify interfacial fluctuations in the air/polymer/polymer system where one polymer dewets the other. Two different hydrodynamic regimes were found as a function of electric field strength. If heterogeneous nucleation leads to the formation of holes before the

  14. Effect of electric field (at different temperatures) on germination of ...

    African Journals Online (AJOL)

    Chickpea (Cicer arietinum) seeds were exposed to electric field from zero to 1300 V for 15 min at three different temperatures (13, 16 and 19°C). It was found that the exposure of chickpea seeds to the electric field caused a change in water uptake capacity (and its coefficient) as compared to control. A new theoretical model ...

  15. Incompressible Einstein–Maxwell fluids with specified electric fields

    Indian Academy of Sciences (India)

    The Einstein–Maxwell equations describing static charged spheres with uniform density and variable electric field intensity are studied. The special case of constant electric field is also studied. The evolution of the model is governed by a hypergeometric differential equation which has a general solution in terms of special ...

  16. Study of electric field pulsation in helical plasmas

    International Nuclear Information System (INIS)

    Toda, S; Itoh, K

    2011-01-01

    A model for the experimental results of the periodic oscillation of the electric field, so-called the electric field pulsation, observed in the Compact Helical Device (Fujisawa et al 1998 Phys. Rev. Lett. 81 2256) and the Large Helical Device (Shimizu et al 2010 Plasma Fusion Res. 5 S1015) is presented. A self-generated oscillation of the radial electric field is shown as the simulation result in helical plasmas. The reduction of the anomalous transport diffusivity in the core region is observed due to the strong shear of the radial electric field when the positive electric field is shown in the core region in the periodic oscillation of E r . Two different time scales are found in the self-generated oscillation, which are the transport time scale and the fast time scale at the transition of the radial electric field. This oscillation because of the hysteresis characteristic is attributed to the electric field pulsation observed in helical plasmas. The parameter region of the condition for the self-generated oscillation is derived. It is shown that the multiple solutions of the radial electric field for the ambipolar condition are necessary but not sufficient for obtaining the self-generated oscillation.

  17. Effects of Radial Electric Fields on ICRF Waves

    International Nuclear Information System (INIS)

    Phillips, C.K.; Hosea, J.C.; Ono, M.; Wilson, J.R.

    2001-01-01

    Equilibrium considerations infer that large localized radial electric fields are associated with internal transport barrier structures in tokamaks and other toroidal magnetic confinement configurations. In this paper, the effects of an equilibrium electric field on fast magnetosonic wave propagation are considered in the context of a cold plasma model

  18. Phonon-assisted transitions in crossed electric and magnetic fields

    International Nuclear Information System (INIS)

    Hassan, A.R.

    1980-05-01

    A theory of the effect of a crossed electric, E, and magnetic, H, fields in the indirect transitions in semiconductors is developed. A semi-classical treatment is adopted where the electric field is considered as a small perturbation. A numerical application to GaP gives the limiting values of E/H valid to this approach. (author)

  19. High School Students' Representations and Understandings of Electric Fields

    Science.gov (United States)

    Cao, Ying; Brizuela, Bárbara M.

    2016-01-01

    This study investigates the representations and understandings of electric fields expressed by Chinese high school students 15 to 16 years old who have not received high school level physics instruction. The physics education research literature has reported students' conceptions of electric fields post-instruction as indicated by students'…

  20. The effect of pulsed electric fields on carotenoids bioaccessibility

    NARCIS (Netherlands)

    Bot, Francesca; Verkerk, Ruud; Mastwijk, Hennie; Anese, Monica; Fogliano, Vincenzo; Capuano, Edoardo

    2018-01-01

    Tomato fractions were subjected to pulsed electric fields treatment combined or not with heating. Results showed that pulsed electric fields and heating applied in combination or individually induced permeabilization of cell membranes in the tomato fractions. However, no changes in β-carotene and

  1. Electric field measurements in a xenon discharge using Spark spectroscopy

    NARCIS (Netherlands)

    Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

    2005-01-01

    Measurements of electric field distributions in a low-pressure xenon discharge are presented. The measurement technique is based on Stark spectroscopy, using a 2 + 1 excitation scheme with fluorescence dip detection. Electric fields can be measured by detecting Stark shifts of high-lying Rydberg

  2. Effect of a background electric field on the Hagedorn temperature

    International Nuclear Information System (INIS)

    Ferrer, E.J.; Incera, V. de la; Fradkin, E.S.

    1990-07-01

    We compute the one-loop free energy of the open neutral string gas in a constant electromagnetic background. Starting from this result we show that the Hagedorn temperature of this hot string gas depends on the background electric field. The larger the electric field, the lower the Hagedorn temperature is. (author). 13 refs

  3. Electric Field-Assisted Pressureless Sintering of Ceramic Protonic Conductors

    DEFF Research Database (Denmark)

    Muccillo, R.; Esposito, Vincenzo; Zanetti De Florio, Daniel

    2017-01-01

    Gadolinium, yttrium and samarium-doped barium cerate (BCGd, BCY and BCSm, respectively) polycrystalline green pellets were submitted to electric field-assisted pressureless sintering experiments isothermally in the temperature range 800-1200oC under 100-200 V cm-1 electric fields, limiting to 1-5...

  4. An effective field theory for the neutron electric dipole moment

    International Nuclear Information System (INIS)

    Chang, D.; Kephart, T.W.; Keung, W.Y.; Yuan, T.C.

    1992-01-01

    We derive a CP-odd effective field theory involving the field strengths of the gluon and the photon and their duals as a result of integrating out a heavy quark which carries both the chromo-electric dipole moment and electric dipole moment. The coefficients of the induced gluonic, photonic, and mixed gluon-photon operators with dimension ≤ 8 are determined. Implications of some of these operators on the neutron electric dipole moment are also discussed. (orig.)

  5. Electric field measurements in the auroral E region

    International Nuclear Information System (INIS)

    Mahon, H.P.; Smiddy, M.; Sagalyn, R.C.

    1975-01-01

    Dipole electric field, positive ion and electron densities and temperatures, vehicle potential, and plasma sheath measurements have been made in the auroral E region by means of rockets flown from Fort Churchill, Canada. These results are described and compared over the altitude region 100 to 165 km. On a rocket flight launched on 10 December 1969 during very quiet conditions, adjacent to a stable, low intensity auroral arc, the plasma density and temperatures are found to be high and the electric fields large and steady. Electric field components of the order of -17 mv m -1 to +6 mv m -1 were measured along the Earth's magnetic field. The plasma results indicate that these fields may be contributing to enhanced electron temperatures. On a flight of 9 March 1970 during a large magnetic storm with widespread auroral activity, lower plasma densities and temperatures and much smaller and more erratic electric fields were observed with no significant component parallel to the magnetic field. (auth)

  6. Electric field numerical simulation of disc type electrostatic spinning spinneret

    Science.gov (United States)

    Wei, L.; Deng, ZL; Qin, XH; Liang, ZY

    2018-01-01

    Electrospinning is a new type of free-end spinning built on electric field. Different from traditional single needle spinneret, in this study, a new disc type free surface spinneret is used to produce multiple jets, this will greatly improve production efficiency of nanofiber. The electric-field distribution of spinneret is the crux of the formation and trajectory of jets. In order to probe the electric field intensity of the disc type spinneret, computational software of Ansoft Maxwell 12 is adopted for a precise and intuitive analysis. The results showed that the whole round cambered surface of the spinning solution at edge of each layer of the spinneret with the maximum curvature has the highest electric field intensity, and through the simulation of the electric field distribution of different spinneret parameters such as layer, the height and radius of the spinneret. Influences of various parameters on the electrostatic spinning are obtained.

  7. Fundamental parameters of QCD from non-perturbative methods for two and four flavors

    International Nuclear Information System (INIS)

    Marinkovic, Marina

    2013-01-01

    The non-perturbative formulation of Quantumchromodynamics (QCD) on a four dimensional space-time Euclidean lattice together with the finite size techniques enable us to perform the renormalization of the QCD parameters non-perturbatively. In order to obtain precise predictions from lattice QCD, one needs to include the dynamical fermions into lattice QCD simulations. We consider QCD with two and four mass degenerate flavors of O(a) improved Wilson quarks. In this thesis, we improve the existing determinations of the fundamental parameters of two and four flavor QCD. In four flavor theory, we compute the precise value of the Λ parameter in the units of the scale L max defined in the hadronic regime. We also give the precise determination of the Schroedinger functional running coupling in four flavour theory and compare it to the perturbative results. The Monte Carlo simulations of lattice QCD within the Schroedinger Functional framework were performed with a platform independent program package Schroedinger Funktional Mass Preconditioned Hybrid Monte Carlo (SF-MP-HMC), developed as a part of this project. Finally, we compute the strange quark mass and the Λ parameter in two flavour theory, performing a well-controlled continuum limit and chiral extrapolation. To achieve this, we developed a universal program package for simulating two flavours of Wilson fermions, Mass Preconditioned Hybrid Monte Carlo (MP-HMC), which we used to run large scale simulations on small lattice spacings and on pion masses close to the physical value.

  8. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.

    Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  9. Effects of geomagnetic activity on the mesospheric electric fields

    Directory of Open Access Journals (Sweden)

    A. M. Zadorozhny

    1998-12-01

    Full Text Available The results of three series of rocket measurements of mesospheric electric fields carried out under different geomagnetic conditions at polar and high middle latitudes are analysed. The measurements show a clear dependence of the vertical electric fields on geomagnetic activity at polar and high middle latitudes. The vertical electric fields in the lower mesosphere increase with the increase of geomagnetic indexes Kp and ∑Kp. The simultaneous increase of the vertical electric field strength and ion conductivity was observed in the mesosphere during geomagnetic disturbances. This striking phenomenon was displayed most clearly during the solar proton events of October, 1989 accompanied by very strong geomagnetic storm (Kp=8+. A possible mechanism of generation of the vertical electric fields in the mesosphere caused by gravitational sedimentation of charged aerosol particles is discussed. Simultaneous existence in the mesosphere of both the negative and positive multiply charged aerosol particles of different sizes is assumed for explanation of the observed V/m vertical electric fields and their behaviour under geomagnetically disturbed conditions.Keywords. Atmospheric composition and structure (aerosols and particles · Ionosphere (electric fields and currents · Meteorology and atmospheric dynamics (atmospheric electricity

  10. Electric field with bipolar structure during magnetic reconnection without a guide field

    Science.gov (United States)

    Guo, Jun

    2014-05-01

    We present a study on the polarized electric field during the collisionless magnetic reconnection of antiparallel fields using two dimensional particle-in-cell simulations. The simulations demonstrate clearly that electron holes and electric field with bipolar structure are produced during magnetic reconnection without a guide field. The electric field with bipolar structure can be found near the X-line and on the separatrix and the plasma sheet boundary layer, which is consistent with the observations. These structures will elongate electron's time staying in the diffusion region. In addition, the electric fields with tripolar structures are also found in our simulation.

  11. Radiation of an electron in an electric field. 1

    International Nuclear Information System (INIS)

    Fedosov, N.I.; Flesher, G.I.

    1976-01-01

    The problem of electron radiation in a field of a travelling electric wave is solved by methods of classical electrodynamics. Such a field may serve as a model of a field on the linear accelerator axis. It is shown that the total radiation power, as well as the spectral-angular distribution of the radiation energy of an electron travelling in a longitudinal electric wave coincide with radiation in a stationary uniform electric field with the strength equal to that of the wave at the point where the particle velocity becomes close to the velocity of light [ru

  12. Neoclassical transport and radial electric fields in TJ-K

    International Nuclear Information System (INIS)

    Rahbarnia, K.; Greiner, F.; Ramisch, M.; Stroth, U.; Greiner, F.

    2003-01-01

    The neoclassical transport is investigated in the torsatron TJ-K, which is operated with a low-temperature plasma. In the low-collisionality regime neoclassical losses are not intrinsically ambipolar, leading to the formation of a radial electric field which acts on both neoclassical and turbulent transport. This electric field is measured with a combination of Langmuir and emissive probes. The data are compared with the ambipolar electric field calculated with an analytic model. The experimental fields are positive and larger than the calculated ones. Direct losses of the fast electrons might explain this discrepancy. (orig.)

  13. Laser ablation of titanium in liquid in external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, “Moscow Institute of Physics and Technology (State University)”, 9 Institutskiy per., 141700, Dolgoprudny, Moscow Region (Russian Federation); Barmina, E.V., E-mail: barminaev@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Shafeev, G.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 31, Kashirskoye Highway, 115409 Moscow (Russian Federation); Voronov, V.V. [A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation)

    2015-09-01

    Highlights: • Ablation of a bulk Ti target by 10 ps laser pulses in liquid is experimentally studied in external DC electric field. • Applied cathodic bias leads to increase in average size of self-organized nanostructures formed upon ablation of titanium target. • Laser ablation of Ti target in external electric field results in generation of elongated titanium oxide nanoparticles. - Abstract: Ablation of a bulk Ti target by 10 ps laser pulses in water is experimentally studied in external DC electric field. It is demonstrated that both lateral size of nanostructures (NS) on Ti surface and their density depend on the electric field applied to the target. Scanning Electron Microscopy of NS reveals the shift of their size distribution function toward larger sizes with applied field (cathodic bias, 25 V DC). Density of mushroom-like NS with applied electric field amounts to 10{sup 10} cm{sup −2}. X-ray diffraction of generated nanoparticles (NPs) shows difference in the crystallographic structure of NPs of non-stoichiometric Ti oxides generated with and without electric field. This conclusion is corroborated with the optical absorption spectroscopy of obtained colloids. Transmission Electron Microscopy of NPs also shows difference in morphology of particles produced with and without cathodic bias. The results are interpreted on the basis of instability of the melt on Ti surface in the electric field.

  14. Should we be afraid of magnetic fields related to electricity?

    International Nuclear Information System (INIS)

    Souques, M.

    2009-01-01

    After having recalled that the main sources of 50 Hz electric field are high voltage lines while such a field around any electrical equipment is null because of a presence of insulation, the author comments the magnetic field level at the vicinity of common electrical equipment (refrigerator, hi-fi, computer, television, and so on) and at some distance (30 or 100 meters) of high-voltage and low-voltage lines. She comments the knowledge on the effects of exposure to a 50 Hz magnetic field, and recalls that a publication suggested in 1979 that there was a risk of leukaemia for children living close to electrical lines. More recent studies proposed to apply to magnetic fields an existing classification of products with respect to cancer risk (known, likely, possible, insufficient knowledge, not carcinogen). Some studies put the risk of leukaemia associated to magnetic fields into question again

  15. On an effect of interplanetary magnetic field on a distribution electric fields in the polar ionosphere

    International Nuclear Information System (INIS)

    Uvarov, V.M.; Barashkov, P.D.

    1985-01-01

    The problem on the effect of the interplanetary magnetic field (IMF) on the distribution of electric fields in polar ionosphere is discussed. The problem on excitation of electric fields is reduced to the solution of the system of continuity equations for the current in three regions-northern polar cap, southern cap and the region outside the caps. It is shown that one succeeds in reproducing the observed types of distributions of electric fields

  16. Effects of an electric field on white sharks: in situ testing of an electric deterrent.

    Directory of Open Access Journals (Sweden)

    Charlie Huveneers

    Full Text Available Elasmobranchs can detect minute electromagnetic fields, <1 nV cm(-1, using their ampullae of Lorenzini. Behavioural responses to electric fields have been investigated in various species, sometimes with the aim to develop shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1 the behaviour of 18 white sharks (Carcharodon carcharias near a static bait, and (2 the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks.

  17. Probing Surface Electric Field Noise with a Single Ion

    Science.gov (United States)

    2013-07-30

    potentials is housed inside a Faraday cage providing more than 40 dB of attenuation for electromagnetic fields in the range of frequencies between 200...and measuring the ion quantum state [16]. Thus, by measuring the effect of electric field noise on the motional quantum state of the ion, one can probe...understand these effects . In summary, we have probed the electric field noise near an aluminum-copper surface at room temperature using a single trapped ion

  18. Determinants of the electric field during transcranial direct current stimulation

    DEFF Research Database (Denmark)

    Opitz, Alexander; Paulus, Walter; Will, Susanne

    2015-01-01

    Transcranial direct current stimulation (tDCS) causes a complex spatial distribution of the electric current flow in the head which hampers the accurate localization of the stimulated brain areas. In this study we show how various anatomical features systematically shape the electric field...... over the motor cortex in small steps to examine the resulting changes of the electric field distribution in the underlying cortex. We examined the effect of skull thickness and composition on the passing currents showing that thinner skull regions lead to higher electric field strengths. This effect...... fluid and the skull, the gyral depth and the distance to the anode and cathode. These factors account for up to 50% of the spatial variation of the electric field strength. Further, we demonstrate that individual anatomical factors can lead to stimulation "hotspots" which are partly resistant...

  19. Noninvasive Deep Brain Stimulation via Temporally Interfering Electric Fields.

    Science.gov (United States)

    Grossman, Nir; Bono, David; Dedic, Nina; Kodandaramaiah, Suhasa B; Rudenko, Andrii; Suk, Ho-Jun; Cassara, Antonino M; Neufeld, Esra; Kuster, Niels; Tsai, Li-Huei; Pascual-Leone, Alvaro; Boyden, Edward S

    2017-06-01

    We report a noninvasive strategy for electrically stimulating neurons at depth. By delivering to the brain multiple electric fields at frequencies too high to recruit neural firing, but which differ by a frequency within the dynamic range of neural firing, we can electrically stimulate neurons throughout a region where interference between the multiple fields results in a prominent electric field envelope modulated at the difference frequency. We validated this temporal interference (TI) concept via modeling and physics experiments, and verified that neurons in the living mouse brain could follow the electric field envelope. We demonstrate the utility of TI stimulation by stimulating neurons in the hippocampus of living mice without recruiting neurons of the overlying cortex. Finally, we show that by altering the currents delivered to a set of immobile electrodes, we can steerably evoke different motor patterns in living mice. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Electric field measurements at subcritical, oblique bow shock crossings

    International Nuclear Information System (INIS)

    Wygant, J.R.; Bensadoun, M.; Mozer, F.S.

    1987-01-01

    Electric field measurements at oblique, subcritical bow shock crossings are presented from the ISEE 1 University of California, Berkeley, double-probe electric field experiment. The measurements averaged over the 3-s spin period of the spacecraft provide the first observations of the large-scale (100 km) laminar oscillations in the longitudinal component of the electric field associated with the whistler precursor which is characteristic of these dispersive shocks. The amplitude of the oscillations increases from ∼0.5 mV/m to a maximum of 6 mV/m across the magnetic ramp of the shock (directed along the shock normal). The calculated electric potential drops across the shocks varied from 340 to 550 volts, which is 40-60% of the observed loss of kinetic energy associated with the bulk flow of the ions. These measurements suggest that at these shocks the additional deceleration of incident ions is due to the Lorentz force. The contributions to the normal component of the large-scale electric field at the shock due to the parallel and perpendicular components (relative to the magnetic field) of the electric field are evaluated. It is shown that the perpendicular component of the electric field dominates, accounting for most of the cross-shock potential, but that there is a nonnegligible parallel component. This large-scale parallel component has a magnitude of 1-2 mV/m which sometimes results in a potential well for electrons with a depth of ∼150 eV. It is experimentally demonstrated that the dominance of the perpendicular over the parallel component of the electric field resulted in a correlation between the longitudinal component of the large-scale electric field and the fluctuations in the magnetic field component perpendicular to the coplanarity plane

  1. Nonpremixed flame in a counterflow under electric fields

    KAUST Repository

    Park, Daegeun

    2016-05-08

    Electrically assisted combustion has been studied in order to control or improve flame characteristics, and emphasizing efficiency and emission regulation. Many phenomenological observations have been reported on the positive impact of electric fields on flame, however there is a lack of detailed physical mechanisms for interpreting these. To clarify the effects of electric fields on flame, I have investigated flame structure, soot formation, and flow field with ionic wind electrical current responses in nonpremixed counterflow flames. The effects of direct current (DC) electric field on flame movement and flow field was also demonstrated in premixed Bunsen flames. When a DC electric field was applied to a lower nozzle, the flames moved toward the cathode side due to Lorentz force action on the positive ions, soot particles simultaneously disappeared completely and laser diagnostics was used to identify the results from the soot particles. To understand the effects of an electric field on flames, flow visualization was performed by Mie scattering to check the ionic wind effect, which is considered to play an important role in electric field assisted combustion. Results showed a bidirectional ionic wind, with a double-stagnant flow configuration, which blew from the flame (ionic source) toward both the cathode and the anode. This implies that the electric field affects strain rate and the axial location of stoichiometry, important factors in maintaining nonpremixed counterflow flames; thus, soot formation of the counterflow flame can also be affected by the electric field. In a test of premixed Bunsen flames having parallel electrodes, flame movement toward the cathode and bidirectional ionic wind were observed. Using PIV measurement it was found that a created radial velocity caused by positive ions (i.e. toward a cathode), was much faster than the velocity toward the anode. Even in a study of alternating current (AC) electric fields, bidirectional ionic wind could

  2. Electric conductivity of TlInTe2 monocrystal in strong electric fields

    International Nuclear Information System (INIS)

    Zarbaliev, M.M.; Godzhaev, Eh.M.; Gadzhiev, V.A.

    1980-01-01

    Electric condUctivity of the TlInTe 2 single crystal in strong electric fields has been studied in the range of 77-300 K. The electron part of the TlInTe 2 dielectric constant has been found to be 4. The dependence of the activation energy of current carriers on the electric field strength is constructed and the value of the activation energy of current carriers in the absence of an electric field is determined by the extrapolation method. The results of the experiments are in good agreement with the Frenkel-Pool theory, and this affords grounds for asserting that the obtained dependences of electric conductivity on temperature and the electric field strength are defined by variation in the current carrier concentration due to action of the thermal-electron ionization mechanism

  3. Electric field prediction for a human body-electric machine system.

    Science.gov (United States)

    Ioannides, Maria G; Papadopoulos, Peter J; Dimitropoulou, Eugenia

    2004-01-01

    A system consisting of an electric machine and a human body is studied and the resulting electric field is predicted. A 3-phase induction machine operating at full load is modeled considering its geometry, windings, and materials. A human model is also constructed approximating its geometry and the electric properties of tissues. Using the finite element technique the electric field distribution in the human body is determined for a distance of 1 and 5 m from the machine and its effects are studied. Particularly, electric field potential variations are determined at specific points inside the human body and for these points the electric field intensity is computed and compared to the limit values for exposure according to international standards.

  4. Electric-field-induced superconductivity detected by magnetization measurements of an electric-double-layer capacitor

    International Nuclear Information System (INIS)

    Kasahara, Yuichi; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro; Nishimura, Takahiro; Sato, Tatsuya

    2010-01-01

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization measurements at low temperatures as a method to detect the novel electric-field-induced superconducting state. The results showed excellent agreement with a previous report using a transistor configuration, demonstrating that the present technique is a novel method for investigating the nonequilibrium phase induced by electric fields. (author)

  5. The relationship between anatomically correct electric and magnetic field dosimetry and published electric and magnetic field exposure limits

    International Nuclear Information System (INIS)

    Kavet, R.; Dovan, T.; Patrick Reilly, J.

    2012-01-01

    Electric and magnetic field exposure limits published by International Commission for Non-Ionizing Radiation Protection and Inst. of Electrical and Electronics Engineers are aimed at protection against adverse electro-stimulation, which may occur by direct coupling to excitable tissue and, in the case of electric fields, through indirect means associated with surface charge effects (e.g. hair vibration, skin sensations), spark discharge and contact current. For direct coupling, the basic restriction (BR) specifies the not-to-be-exceeded induced electric field. The key results of anatomically based electric and magnetic field dosimetry studies and the relevant characteristics of excitable tissue were first identified. This permitted us to assess the electric and magnetic field exposure levels that induce dose in tissue equal to the basic restrictions, and the relationships of those exposure levels to the limits now in effect. We identify scenarios in which direct coupling of electric fields to peripheral nerve could be a determining factor for electric field limits. (authors)

  6. Nucleation of superconductivity under rapid cycling of an electric field

    International Nuclear Information System (INIS)

    Bandyopadhyay, Malay

    2008-01-01

    The effect of an externally applied high-frequency oscillating electric field on the critical nucleation field of superconductivity in the bulk as well as at the surface of a superconductor is investigated in detail in this work. Starting from the linearized time-dependent Ginzburg-Landau (TDLG) theory, and using the variational principle, I have shown the analogy between a quantum harmonic oscillator with that of the nucleation of superconductivity in the bulk and a quantum double oscillator with that of the nucleation at the surface of a finite sample. The effective Hamiltonian approach of Cook et al (1985 Phys. Rev. A 31 564) is employed to incorporate the effect of an externally applied highly oscillating electric field. The critical nucleation field ratio is also calculated from the ground state energy method. The results obtained from these two approximate theories agree very well with the exact results for the case of an undriven system, which establishes the validity of these two approximate theories. It is observed that the highly oscillating electric field actually increases the bulk critical nucleation field (H c 2 ) as well as the surface critical nucleation field (H c 3 ) of superconductivity as compared to the case of absent electric field (ε 0 = 0). But the externally applied rapidly oscillating electric field accentuates the surface critical nucleation field more than the bulk critical nucleation field, i.e. the increase of H c 3 is 1.6592 times larger than that of H c 2

  7. Effects of an electric field on interaction of aromatic systems.

    Science.gov (United States)

    Youn, Il Seung; Cho, Woo Jong; Kim, Kwang S

    2016-04-30

    The effect of uniform external electric field on the interactions between small aromatic compounds and an argon atom is investigated using post-HF (MP2, SCS-MP2, and CCSD(T)) and density functional (PBE0-D3, PBE0-TS, and vdW-DF2) methods. The electric field effect is quantified by the difference of interaction energy calculated in the presence and absence of the electric field. All the post-HF methods describe electric field effects accurately although the interaction energy itself is overestimated by MP2. The electric field effect is explained by classical electrostatic models, where the permanent dipole moment from mutual polarization mainly determines its sign. The size of π-conjugated system does not have significant effect on the electric field dependence. We found out that PBE0-based methods give reasonable interaction energies and electric field response in every case, while vdW-DF2 sometimes shows spurious artifact owing to its sensitivity toward the real space electron density. © 2015 Wiley Periodicals, Inc.

  8. Nanoscale electron manipulation in metals with intense THz electric fields

    Science.gov (United States)

    Takeda, Jun; Yoshioka, Katsumasa; Minami, Yasuo; Katayama, Ikufumi

    2018-03-01

    Improved control over the electromagnetic properties of metals on a nanoscale is crucial for the development of next-generation nanoelectronics and plasmonic devices. Harnessing the terahertz (THz)-electric-field-induced nonlinearity for the motion of electrons is a promising method of manipulating the local electromagnetic properties of metals, while avoiding undesirable thermal effects and electronic transitions. In this review, we demonstrate the manipulation of electron delocalization in ultrathin gold (Au) films with nanostructures, by intense THz electric-field transients. On increasing the electric-field strength of the THz pulses, the transmittance in the THz-frequency region abruptly decreases around the percolation threshold. The observed THz-electric-field-induced nonlinearity is analysed, based on the Drude-Smith model. The results suggest that ultrafast electron delocalization occurs by electron tunnelling across the narrow insulating bridge between the Au nanostructures, without material breakdown. In order to quantitatively discuss the tunnelling process, we perform scanning tunnelling microscopy with carrier-envelope phase (CEP)-controlled single-cycle THz electric fields. By applying CEP-controlled THz electric fields to the 1 nm nanogap between a metal nanotip and graphite sample, many electrons could be coherently driven through the quantum tunnelling process, either from the nanotip to the sample or vice versa. The presented concept, namely, electron tunnelling mediated by CEP-controlled single-cycle THz electric fields, can facilitate the development of nanoscale electron manipulation, applicable to next-generation ultrafast nanoelectronics and plasmonic devices.

  9. A corotation electric field model of the Earth derived from Swarm satellite magnetic field measurements

    Science.gov (United States)

    Maus, Stefan

    2017-08-01

    Rotation of the Earth in its own geomagnetic field sets up a primary corotation electric field, compensated by a secondary electric field of induced electrical charges. For the geomagnetic field measured by the Swarm constellation of satellites, a derivation of the global corotation electric field inside and outside of the corotation region is provided here, in both inertial and corotating reference frames. The Earth is assumed an electrical conductor, the lower atmosphere an insulator, followed by the corotating ionospheric E region again as a conductor. Outside of the Earth's core, the induced charge is immediately accessible from the spherical harmonic Gauss coefficients of the geomagnetic field. The charge density is positive at high northern and southern latitudes, negative at midlatitudes, and increases strongly toward the Earth's center. Small vertical electric fields of about 0.3 mV/m in the insulating atmospheric gap are caused by the corotation charges located in the ionosphere above and the Earth below. The corotation charges also flow outward into the region of closed magnetic field lines, forcing the plasmasphere to corotate. The electric field of the corotation charges further extends outside of the corotating regions, contributing radial outward electric fields of about 10 mV/m in the northern and southern polar caps. Depending on how the magnetosphere responds to these fields, the Earth may carry a net electric charge.

  10. Longitudinal and transverse electric field measurements in resonant cavities

    International Nuclear Information System (INIS)

    Tong Dechun; Chen Linfeng; Zheng Xiaoyue

    1994-01-01

    The paper presents a measuring technique for the electric field distribution of high order modes in resonant cavities. A perturbing bead-like cage made with metallic wires are developed for S-band field measurements, which can be used to detect a small electric field component in the presence of other strong electric or magnetic field components (That means high sensitivity and high directivity). In order to avoid orientation error for the cage with very high directivity, two parallel threads were used for supporting the perturbing cage. A simple mechanical set-up is described. The cage can be driven into the cavity on-axis or off-axis in any azimuth for the longitudinal and transverse electric field measurements

  11. Galvanotactic behavior of Tetrahymena pyriformis under electric fields

    International Nuclear Information System (INIS)

    Kim, Dal Hyung; Kim, Paul Seung Soo; Kim, Min Jun; Lee, Kyoungwoo; Kim, JinSeok

    2013-01-01

    Tetrahymena pyriformis, a eukaryotic ciliate, swims toward a cathode in straight or cross-shaped microchannels under an applied electric field, a behavioral response called cathodal galvanotaxis. In straight channel experiments, a one-dimensional electric field was applied, and the galvanotactic swimming behavior of Tetrahymena pyriformis was observed and described in detail while the polarity of this field is switched. In most individual cases, the cell would immediately switch its direction toward the cathode; however, exceptional cases have been observed where cells exhibit a turning delay or do not turn after a polarity switch. In cross-channel experiments, feedback control using vision-based tracking was used to steer a cell in the microchannel intersection using a two-dimensional electric field generated by four electrodes placed at four ends of the cross channel. The motivation for this work is to study the swimming behavior of Tetrahymena pyriformis as a microrobot under the control of electric fields. (paper)

  12. Optical Remote Sensing of Electric Fields Above Thunderstorms

    Science.gov (United States)

    Burns, B. M.; Carlson, B. E.; Lauben, D.; Cohen, M.; Smith, D.; Inan, U. S.

    2010-12-01

    Measurement of thunderstorm electric fields typically require balloon-borne measurements in the region of interest. Such measurements are cumbersome and provide limited information at a single point. Remote sensing of electric fields by Kerr-effect induced optical polarization changes of background skylight circumvents many of these difficulties and can in principle provide a high-speed movie of electric field behavior. Above-thundercloud 100 kV/m quasi-static electric fields are predicted to produce polarization changes at above the part in one million level that should be detectable at a ground instrument featuring 1 cm2sr geometric factor and 1 kHz bandwidth (though more sensitivity is nonetheless desired). Currently available optical and electronic components may meet these requirements. We review the principles of this measurement and discuss the current status of a field-ready prototype instrument currently in construction.

  13. Nonlinear piezoelectricity in epitaxial ferroelectrics at high electric fields.

    Science.gov (United States)

    Grigoriev, Alexei; Sichel, Rebecca; Lee, Ho Nyung; Landahl, Eric C; Adams, Bernhard; Dufresne, Eric M; Evans, Paul G

    2008-01-18

    Nonlinear effects in the coupling of polarization with elastic strain have been predicted to occur in ferroelectric materials subjected to high electric fields. Such predictions are tested here for a PbZr0.2Ti0.8O3 ferroelectric thin film at electric fields in the range of several hundred MV/m and strains reaching up to 2.7%. The piezoelectric strain exceeds predictions based on constant piezoelectric coefficients at electric fields from approximately 200 to 400 MV/m, which is consistent with a nonlinear effect predicted to occur at corresponding piezoelectric distortions.

  14. Initial plasma production by induction electric field on QUEST tokamak

    International Nuclear Information System (INIS)

    Hasegawa, Makoto; Nakamura, Kazuo; Sato, Kohnosuke

    2007-01-01

    Induction electric field by center solenoid coil plays a roll to produce initial plasma. According to Townsend avalanche theory, minimum electric field for plasma breakdown depends on neutral gas pressure and connection length. On QUEST spherical tokamak, a connection length is evaluated as 966m on null point neighborhood with coil current ratio I PF26 /I CS =0.1, and induction electric field considering eddy current of vacuum vessel is evaluated as about 0.1 V/m on null point neighborhood. With Townsend avalanche theory, these values manage to produce initial plasma on QUEST. (author)

  15. Distributions of electric and elastic fields at domain boundaries

    International Nuclear Information System (INIS)

    Novak, Josef; Fousek, Jan; Maryska, Jiri; Marvan, Milan

    2005-01-01

    In this paper we describe the application of the finite element method (FEM) in modelling spatial distributions of electric and elastic fields in a ferroelectric crystals with two domains separated by a 90 deg. domain wall. The domain boundary is idealized as a two-dimensional defect in an electro-elastic continuum. It represents the source of inhomogenity and internal distortion in both elastic and electric fields. The main results are distributions of electric field, strain and mechanical force along the domain boundary

  16. [Mechanism of ablation with nanosecond pulsed electric field].

    Science.gov (United States)

    Cen, Chao; Chen, Xin-hua; Zheng, Shu-sen

    2015-11-01

    Nanosecond pulsed electric field ablation has been widely applied in clinical cancer treatment, while its molecular mechanism is still unclear. Researchers have revealed that nanosecond pulsed electric field generates nanopores in plasma membrane, leading to a rapid influx of Ca²⁺; it has specific effect on intracellular organelle membranes, resulting in endoplasmic reticulum injuries and mitochondrial membrane potential changes. In addition, it may also change cellular morphology through damage of cytoskeleton. This article reviews the recent research advances on the molecular mechanism of cell membrane and organelle changes induced by nanosecond pulsed electric field ablation.

  17. Electric field studies: TLE-induced waveforms and ground conductivity impact on electric field propagation

    Science.gov (United States)

    Farges, Thomas; Garcia, Geraldine; Blanc, Elisabeth

    2010-05-01

    We review in this paper main results obtained from electric field (from VLF to HF) measurement campaigns realized by CEA in the framework of the Eurosprite program [Neubert et al., 2005, 2008] from 2003 to 2009 in France in different configurations. Two main topics have been studied: sprite or elve induced phenomena (radiation or perturbation) and wave propagation. Using a network of 4 stations, VLF radiations from sprite have been successfully located at 10 km from the sprite parent lightning, in agreement with possible sprite location, generally displaced from the parent lightning. The MF (300 kHz - 3 MHz) source bursts were identified simultaneously with the occurrence of sprites observed with cameras [Farges et al., 2004; Neubert et al., 2008]. These observations are compared to recent broadband measurements, assumed to be due to relativistic electron beam radiation related to sprites [Fullekrug et al., 2009]. Recently, in 2009, with a new instrumentation, an ELF tail has been clearly measured after the lightning waveform, while sprites were observed at about 500 km from our station. This ELF tail is usually observed at distances higher than thousand km and is associated to sprite generation. This opens the capacity to measure the charge moment of the parent-lightning, using such measurement close to the source. Farges et al. [2007] showed that just after a lightning return stroke, a strong transient attenuation is very frequently observed in the MF waves of radio transmissions. They showed that this perturbation is due to heating of the lower ionosphere by the lightning-induced EMP during few milliseconds. These perturbations are then the MF radio signature of the lightning EMP effects on the lower ionosphere, in the same way as elves correspond to their optical signature. The experiment also provided the electric field waveforms directly associated to elves, while lightning were not detected by Météorage. Many of them present a double peak feature. The

  18. Effects of a static electric field on nonsequential double ionization

    International Nuclear Information System (INIS)

    Li Hongyun; Wang Bingbing; Li Xiaofeng; Fu Panming; Chen Jing; Liu Jie; Jiang Hongbing; Gong Qihuang; Yan Zongchao

    2007-01-01

    Using a three-dimensional semiclassical method, we perform a systematic analysis of the effects of an additional static electric field on nonsequential double ionization (NSDI) of a helium atom in an intense, linearly polarized laser field. It is found that the static electric field influences not only the ionization rate, but also the kinetic energy of the ionized electron returning to the parent ion, in such a way that, if the rate is increased, then the kinetic energy of the first returning electron is decreased, and vice versa. These two effects compete in NSDI. Since the effect of the static electric field on the ionization of the first electron plays a more crucial role in the competition, the symmetric double-peak structure of the He 2+ momentum distribution parallel to the polarization of the laser field is destroyed. Furthermore, the contribution of the trajectories with multiple recollisions to the NSDI is also changed dramatically by the static electric field. As the static electric field increases, the trajectories with two recollisions, which start at the time when the laser and the static electric field are in the same direction, become increasingly important for the NSDI

  19. Non-perturbative construction of 2D and 4D supersymmetric Yang-Mills theories with 8 supercharges

    International Nuclear Information System (INIS)

    Hanada, Masanori; Matsuura, So; Sugino, Fumihiko

    2012-01-01

    In this paper, we consider two-dimensional N=(4,4) supersymmetric Yang-Mills (SYM) theory and deform it by a mass parameter M with keeping all supercharges. We further add another mass parameter m in a manner to respect two of the eight supercharges and put the deformed theory on a two-dimensional square lattice, on which the two supercharges are exactly preserved. The flat directions of scalar fields are stabilized due to the mass deformations, which gives discrete minima representing fuzzy spheres. We show in the perturbation theory that the lattice continuum limit can be taken without any fine tuning. Around the trivial minimum, this lattice theory serves as a non-perturbative definition of two-dimensional N=(4,4) SYM theory. We also discuss that the same lattice theory realizes four-dimensional N=2U(k) SYM on R 2 ×(Fuzzy R 2 ) around the minimum of k-coincident fuzzy spheres.

  20. B-physics from non-perturbatively renormalized HQET in two-flavour lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bernardoni, Fabio; Simma, Hubert [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Blossier, Benoit; Gerardin, Antoine [Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique; CNRS, Orsay (France); Bulava, John [CERN, Geneva (Switzerland). Physics Department; Della Morte, Michele; Hippel, Georg M. von [Mainz Univ. (Germany). Inst. fuer Kernphysik; Fritzsch, Patrick [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Garron, Nicolas [Trinity College, Dublin (Ireland). School of Mathematics; Heitger, Jochen [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Collaboration: ALPHA Collaboration

    2012-10-15

    We report on the ALPHA Collaboration's lattice B-physics programme based on N{sub f}=2 O(a) improved Wilson fermions and HQET, including all NLO effects in the inverse heavy quark mass, as well as non-perturbative renormalization and matching, to fix the parameters of the effective theory. Our simulations in large physical volume cover 3 lattice spacings a {approx} (0.08-0.05) fm and pion masses down to 190 MeV to control continuum and chiral extrapolations. We present the status of results for the b-quark mass and the B{sub (s)}-meson decay constants, f{sub B} and f{sub B{sub s}}.

  1. A Non-Perturbative, Finite Particle Number Approach to Relativistic Scattering Theory

    Energy Technology Data Exchange (ETDEWEB)

    Lindesay, James V

    2001-05-11

    We present integral equations for the scattering amplitudes of three scalar particles, using the Faddeev channel decomposition, which can be readily extended to any finite number of particles of any helicity. The solution of these equations, which have been demonstrated to be calculable, provide a non-perturbative way of obtaining relativistic scattering amplitudes for any finite number of particles that are Lorentz invariant, unitary, cluster decomposable and reduce unambiguously in the non-relativistic limit to the non-relativistic Faddeev equations. The aim of this program is to develop equations which explicitly depend upon physically observable input variables, and do not require ''renormalization'' or ''dressing'' of these parameters to connect them to the boundary states.

  2. Non-perturbative running of quark masses in three-flavour QCD

    CERN Document Server

    Campos, Isabel; Pena, Carlos; Preti, David; Ramos, Alberto; Vladikas, Anastassios

    2016-01-01

    We present our preliminary results for the computation of the non-perturbative running of renormalized quark masses in $N_f = 3$ QCD, between the electroweak and hadronic scales, using standard finite-size scaling techniques. The computation is carried out to very high precision, using massless $\\mathcal{O}(a)$-improved Wilson quarks. Following the strategy adopted by the ALPHA Collaboration for the running coupling, different schemes are used above and below a scale $\\mu_0 \\sim m_b$, which differ by using either the Schr\\"odinger Functional or Gradient Flow renormalized coupling. We discuss our results for the running in both regions, and the procedure to match the two schemes.

  3. From Faddeev-Kulish to LSZ. Towards a non-perturbative description of colliding electrons

    Science.gov (United States)

    Dybalski, Wojciech

    2017-12-01

    In a low energy approximation of the massless Yukawa theory (Nelson model) we derive a Faddeev-Kulish type formula for the scattering matrix of N electrons and reformulate it in LSZ terms. To this end, we perform a decomposition of the infrared finite Dollard modifier into clouds of real and virtual photons, whose infrared divergencies mutually cancel. We point out that in the original work of Faddeev and Kulish the clouds of real photons are omitted, and consequently their wave-operators are ill-defined on the Fock space of free electrons. To support our observations, we compare our final LSZ expression for N = 1 with a rigorous non-perturbative construction due to Pizzo. While our discussion contains some heuristic steps, they can be formulated as clear-cut mathematical conjectures.

  4. 1/4 BPS States and Non-Perturbative Couplings in N=4 String Theories

    CERN Document Server

    Lerche, W.

    1999-01-01

    We compute certain 2K+4-point one-loop couplings in the type IIA string compactified on K3 x T^2, which are related a topological index on this manifold. Their special feature is that they are sensitive to only short and intermediate BPS multiplets. The couplings derive from underlying prepotentials of the form G(T,U)=d^{2K}V ln[chi10(T,U,V)], where chi10(T,U,V) is the helicity partition function of 1/4 BPS states. In the dual heterotic string on T^6, the amplitudes describe non-perturbative gravitational corrections due to bound states of fivebrane instantons with heterotic world-sheet instantons. We argue, as a consequence, that our results give information about instanton configurations in six dimensional Sp(2k) gauge theories on T^6.

  5. Non-perturbative QCD. Renormalization, O(a)-improvement and matching to heavy quark effective theory

    International Nuclear Information System (INIS)

    Sommer, R.

    2006-11-01

    We give an introduction to three topics in lattice gauge theory: I. The Schroedinger Functional and O(a) improvement. O(a) improvement has been reviewed several times. Here we focus on explaining the basic ideas in detail and then proceed directly to an overview of the literature and our personal assessment of what has been achieved and what is missing. II. The computation of the running coupling, running quark masses and the extraction of the renormalization group invariants. We focus on the basic strategy and on the large effort that has been invested in understanding the continuum limit. We point out what remains to be done. III. Non-perturbative Heavy Quark Effective Theory. Since the literature on this subject is still rather sparse, we go beyond the basic ideas and discuss in some detail how the theory works in principle and in practice. (orig.)

  6. Non-perturbative QCD. Renormalization, O(a)-improvement and matching to heavy quark effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, R.

    2006-11-15

    We give an introduction to three topics in lattice gauge theory: I. The Schroedinger Functional and O(a) improvement. O(a) improvement has been reviewed several times. Here we focus on explaining the basic ideas in detail and then proceed directly to an overview of the literature and our personal assessment of what has been achieved and what is missing. II. The computation of the running coupling, running quark masses and the extraction of the renormalization group invariants. We focus on the basic strategy and on the large effort that has been invested in understanding the continuum limit. We point out what remains to be done. III. Non-perturbative Heavy Quark Effective Theory. Since the literature on this subject is still rather sparse, we go beyond the basic ideas and discuss in some detail how the theory works in principle and in practice. (orig.)

  7. Electric field induced instabilities in free emulsion films

    Energy Technology Data Exchange (ETDEWEB)

    Tchoukov, P.; Dabros, T. [Natural Resources Canada, Devon, AB (Canada); Mostowfi, F. [Schlumberger DBR Technology Center, Edmonton, AB (Canada); Panchev, N. [Champion Technologies Inc., Houston, TX (United States); Czarnecki, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2009-07-01

    This presentation reported on a study that investigated the mechanism of electric field-induced breakdown of free emulsion films. Instability patterns were observed on the plane of a water-oil-water film following electric polarization. The length-scales of the instabilities were measured by analyzing images immediately after applying the electric field. Linear stability analysis was used to calculate the theoretical dominant wavelengths. The calculated values were found to be in good agreement with measured values. The films were formed in a thin film apparatus modified so that the oil film separated 2 aqueous phase compartments, each in contact with a platinum electrode. This enabled the measurement of disjoining pressure while applying the electric field to the film. It was concluded that breakdown of thin films induced by electric field has many applications, including electrostatic de-emulsification/desalination of crude oil and emulsion stability measurements. It was concluded that electroporation and dielectric breakdown may be responsible for electric field-induced breakdown. This study also presented evidence of an increase in electric field-induced instabilities in emulsion films resulting in rupture. tabs., figs.

  8. Quantum particle in a potential well field and in an electric field

    International Nuclear Information System (INIS)

    Gyunter, U.; Olejnik, V.P.

    1990-01-01

    Solutions of the Dirac equation in the field of δ-like potential well with arbitrary symmetry and in uniform electric field were obtained and analyzed. It is shown that wave function and energy of electron in bound state in the absence of electric field depend sufficiently on the type of potential well symmetry. 1 ref

  9. Manipulation of positron orbits in a dipole magnetic field with fluctuating electric fields

    Science.gov (United States)

    Saitoh, H.; Horn-Stanja, J.; Nißl, S.; Stenson, E. V.; Hergenhahn, U.; Pedersen, T. Sunn; Singer, M.; Dickmann, M.; Hugenschmidt, C.; Stoneking, M. R.; Danielson, J. R.; Surko, C. M.

    2018-01-01

    We report the manipulation of positron orbits in a toroidal dipole magnetic field configuration realized with electric fields generated by segmented electrodes. When the toroidal circulation motion of positrons in the dipole field is coupled with time-varying electric fields generated by azimuthally segmented outer electrodes, positrons undergo oscillations of their radial positions. This enables quick manipulation of the spatial profiles of positrons in a dipole field trap by choosing appropriate frequency, amplitude, phase, and gating time of the electric fields. According to numerical orbit analysis, we applied these electric fields to positrons injected from the NEPOMUC slow positron facility into a prototype dipole field trap experiment with a permanent magnet. Measurements with annihilation γ-rays clearly demonstrated the efficient compression effects of positrons into the strong magnetic field region of the dipole field configuration. This positron manipulation technique can be used as one of essential tools for future experiments on the formation of electron-positron plasmas.

  10. Enhanced electrical conductivity in graphene and boron nitride nanoribbons in large electric fields

    Science.gov (United States)

    Chegel, Raad

    2018-02-01

    Based on data of density function theory (DFT) as the input of tight binding model, the electrical conductivity (σ(T)) of graphene nanoribbos (GNRs) and Boron Nitride nanoribbos (BNNRs) under external electric fields with different wide are studied using the Green's function method. The BNNRs are wide band gap semiconductor and they are turned into metal depending on their electric field strength. The σ(T) shows increasing in low temperature region and after reaching the maximum value, it will decrease in high temperature region. In lower temperature ranges, the electrical conductivity of the GNRs is greater than that of the BNNRs. In a low temperature region, the σ(T) of GNRs increases linearly with temperature unlike the BNNRs. The electrical conductivity are strongly dependent on the electric field strength.

  11. On the electric field model for an open magnetosphere

    Science.gov (United States)

    Wang, Zhi; Ashour-Abdalla, Maha; Walker, Raymond J.

    1993-01-01

    We have developed a new canonical separator line type magnetospheric magnetic field and electric field model for use in magnetospheric calculations, we determine the magnetic and electric field by controlling the reconnection rate at the subsolar magnetopause. The model is applicable only for purely southward interplanetary magnetic field (IMF). We have obtained a more realistic magnetotail configuration by applying a stretch transformation to an axially symmetric field solution. We also discuss the Stern singularity in which there is an electric field singlarity in the canonical separate line models for B(sub y) not = to 0 by using a new technique that solves for the electric field along a field line directly instead of determining it by a potential mapping. The singularity not only causes an infinite electric field on the polar cap, but also causes the boundary conditions at plus infinity and minus infinity in the solar wind to contradict each other. This means that the canonical separator line models do not represent the open magnetosphere well, except for the case of purely southward IMF.

  12. Effects of an Electric Field on White Sharks: In Situ Testing of an Electric Deterrent

    Science.gov (United States)

    Huveneers, Charlie; Rogers, Paul J.; Semmens, Jayson M.; Beckmann, Crystal; Kock, Alison A.; Page, Brad; Goldsworthy, Simon D.

    2013-01-01

    Elasmobranchs can detect minute electromagnetic fields, shark deterrents to improve human safety. The present study tested the effects of the Shark Shield Freedom7™ electric deterrent on (1) the behaviour of 18 white sharks (Carcharodon carcharias) near a static bait, and (2) the rates of attacks on a towed seal decoy. In the first experiment, 116 trials using a static bait were performed at the Neptune Islands, South Australia. The proportion of baits taken during static bait trials was not affected by the electric field. The electric field, however, increased the time it took them to consume the bait, the number of interactions per approach, and decreased the proportion of interactions within two metres of the field source. The effect of the electric field was not uniform across all sharks. In the second experiment, 189 tows using a seal decoy were conducted near Seal Island, South Africa. No breaches and only two surface interactions were observed during the tows when the electric field was activated, compared with 16 breaches and 27 surface interactions without the electric field. The present study suggests that the behavioural response of white sharks and the level of risk reduction resulting from the electric field is contextually specific, and depends on the motivational state of sharks. PMID:23658766

  13. The bee, the flower and the electric field

    Directory of Open Access Journals (Sweden)

    Robert Daniel

    2016-01-01

    Full Text Available Insects use several different senses to forage on flowers, and detect floral cues such as color, shape, pattern, humidity and chemical volatiles. This presentation will present our discovery of a previously unappreciated sensory capacity in bumblebees (Bombus terrestris: the detection of floral electric fields. We show that these floral fields act as informational cues, and that they can be affected by the visit of naturally electrically charged bees. Like visual cues, floral electric fields exhibit variations in pattern and structure, which can be discriminated by bumblebees. We also show that such electric field information contributes to the complex array of floral cues that together improve a pollinator’s memory of floral rewards. Floral electric fields arise from complex interactions with the surrounding atmosphere, an interaction between plants and their environment that not well understood. Because floral electric fields can change within seconds, this new sensory modality - electrostatic field detection- may facilitate rapid and dynamic communication between flowers and their pollinators.

  14. Electric and magnetic fields in medicine and biology

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    Papers Include: The effects of low frequency (50 Hz) magnetic fields on neuro-chemical transmission in vitro; Morphological changes in E Coli subjected to DC electrical fields; An investigation of some claimed biological effects of electromagnetic fields; Electrical phenomena and bone healing - a comparison of contemporary techniques; Clinical evaluations of a portable module emitting pulsed RF energy; The design, construction and performance of a magnetic nerve stimulator; The principle of electric field tomography and its application to selective read-out of information from peripheral nerves; Applied potential tomography - clinical applications; Impendance imaging using a linear electrode array; Mathematics as an aid to experiment: human body currents induced by power frequency electric fields; Effects of electric field near 750KV transmission line and protection against their harmful consequences; Leukemia and electromagnetic fields: a case-control study; Overhead power lines and childhood cancer; Magnetic measurement of nerve action currents - a new intraoperative recording technique; The potential use of electron spin resonance or impedance measurement to image neuronal electrical activity in the human brain

  15. The transient electric field measurement system for EAST device

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wayong@ipp.ac.cn [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Ji, Z.S. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China); Zhu, C.M. [The Experiment & Verification Center of State Grid Electric Power Research Institute (The Automation Equipment EMC Lab. of State Grid Co.), Nanjing, Jiangsu (China); Zhang, Z.C.; Ma, T.F.; Xu, Z.H. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui (China)

    2016-11-15

    The electromagnetic environment around the Experimental Advanced Superconducting Tokamak (EAST) device is very complex during plasma discharge experiment. In order to fully monitor the changes of electric field around the EAST device during plasma discharge, a transient electric field measurement system based on PCI eXtensions for Instrumentation (PXI) platform has been designed. A digitizer is used for high-speed data acquisition of raw signals from electric field sensors, and a Field Programmable Gate Array (FPGA) module is used for realizing an on-the-fly fast Fourier transform (FFT) and inverse fast Fourier transform (IFFT) algorithm including a beforehand identified antenna factor (AF) to achieve finally a calibrated and filtered electric field measurement, then these signals can be displayed and easily analyzed. The raw signals from electric field sensors are transferred through optical fiber by optical isolation to reduce electromagnetic interference (EMI). The high speed data streaming technology is used for data storage. A prototype of this system has been realized to measure the transient electric field strength, with the real-time processing and continuous acquisition ability of one channel of 14-bit resolution and up to 50 MHz sampling rate, and 6 KHz FFT frequency resolution.

  16. Vector optical fields with polarization distributions similar to electric and magnetic field lines.

    Science.gov (United States)

    Pan, Yue; Li, Si-Min; Mao, Lei; Kong, Ling-Jun; Li, Yongnan; Tu, Chenghou; Wang, Pei; Wang, Hui-Tian

    2013-07-01

    We present, design and generate a new kind of vector optical fields with linear polarization distributions modeling to electric and magnetic field lines. The geometric configurations of "electric charges" and "magnetic charges" can engineer the spatial structure and symmetry of polarizations of vector optical field, providing additional degrees of freedom assisting in controlling the field symmetry at the focus and allowing engineering of the field distribution at the focus to the specific applications.

  17. Streamer discharges can move perpendicularly to the electric field

    NARCIS (Netherlands)

    Nijdam, S.; Takahashi, E.; Teunissen, J.; Ebert, U.

    2014-01-01

    Streamer discharges are a primary mode of electric breakdown in thunderstorms and high voltage technology; they are generally believed to grow along electric field lines. However, we here give experimental and numerical evidence that streamers can propagate nearly perpendicularly to the background

  18. Electric field effects in hyperexcitable neural tissue: A review

    International Nuclear Information System (INIS)

    Durand, D.M.

    2003-01-01

    Uniform electric fields applied to neural tissue can modulate neuronal excitability with a threshold value of about 1mV mm -1 in normal physiological conditions. However, electric fields could have a lower threshold in conditions where field sensitivity is enhanced, such as those simulating epilepsy. Uniform electrical fields were applied to hippocampal brain slices exposed to picrotoxin, high potassium or low calcium solutions. The results in the low calcium medium show that neuronal activity can be completely blocked in 10% of the 30 slices tested with a field amplitude of 1mV mm -1 . These results suggest that the threshold for this effect is clearly smaller than 1mV mm -1 . The hypothesis that the extracellular resistance could affect the sensitivity to the electrical fields was tested by measuring the effect of the osmolarity of the extracellular solution on the efficacy of the field. A 10% decrease on osmolarity resulted in a 56% decrease ( n =4) in the minimum field required for full suppression. A 14% in osmolarity produced an 81% increase in the minimum field required for full suppression. These results show that the extracellular volume can modulate the efficacy of the field and could lower the threshold field amplitudes to values lower than ∼1mmV mm -. (author)

  19. Communication: Control of chemical reactions using electric field gradients

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, Shivaraj D.; Tsori, Yoav, E-mail: tsori@bgu.ac.il [Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  20. Impact of electric field on Hofmeister effects in aggregation of ...

    Indian Academy of Sciences (India)

    Electric field; Hofmeister effects; ionic polarization; colloidal minerals; electrostatic interaction. 1. Introduction. Aggregation .... sions containing a given quantity of colloidal minerals ..... account to explain the observed Hofmeister effects. On the ...

  1. Ion-storage in radiofrequency electric quadrupole field

    International Nuclear Information System (INIS)

    Gheorghe, V.

    1976-01-01

    The confinement of charged particles in a quadrupole radiofrequency electric field are presented. The stability diagrams and phase space trajectories for the quadrupole mass spectrometer and for the ion trap are represented and their main characteristics are discussed. (author)

  2. Communication: Control of chemical reactions using electric field gradients.

    Science.gov (United States)

    Deshmukh, Shivaraj D; Tsori, Yoav

    2016-05-21

    We examine theoretically a new idea for spatial and temporal control of chemical reactions. When chemical reactions take place in a mixture of solvents, an external electric field can alter the local mixture composition, thereby accelerating or decelerating the rate of reaction. The spatial distribution of electric field strength can be non-trivial and depends on the arrangement of the electrodes producing it. In the absence of electric field, the mixture is homogeneous and the reaction takes place uniformly in the reactor volume. When an electric field is applied, the solvents separate and the reactants are concentrated in the same phase or separate to different phases, depending on their relative miscibility in the solvents, and this can have a large effect on the kinetics of the reaction. This method could provide an alternative way to control runaway reactions and to increase the reaction rate without using catalysts.

  3. Roles of electric field on toroidal magnetic confinement

    International Nuclear Information System (INIS)

    Itoh, Kimitaka; Itoh, Sanae; Sanuki, Heiji; Fukuyama, Atsushi.

    1992-11-01

    Theoretical research on the influence of the electric field on the toroidal magnetic confinement is surveyed. The static electric field is first described. Physics pictures on the generation of the radial electric field and the influence on the confinement are shown. Neoclassical effects as well as the nonclassical processes are discussed. Emphasis is made on the connection with the improved confinement. Convective cell, i.e. the nonuniform potential on the magnetic surface is also discussed. The roles of the fluctuating electric field are then reviewed. The progress in the recent theories on the anomalous transport is addressed. Through these surveys, the impact of the experiments using the heavy ion beam probes on the modern plasma physics is illustrated. (author) 66 refs

  4. Pulsed electric fields for pasteurization: defining processing conditions

    Science.gov (United States)

    Application of pulsed electric fields (PEF) technology in food pasteurization has been extensively studied. Optimal PEF treatment conditions for maximum microbial inactivation depend on multiple factors including PEF processing conditions, production parameters and product properties. In order for...

  5. Interferometric methods for mapping static electric and magnetic fields

    DEFF Research Database (Denmark)

    Pozzi, Giulio; Beleggia, Marco; Kasama, Takeshi

    2014-01-01

    The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensi......) the model-independent determination of the locations and magnitudes of field sources (electric charges and magnetic dipoles) directly from electron holographic data.......The mapping of static electric and magnetic fields using electron probes with a resolution and sensitivity that are sufficient to reveal nanoscale features in materials requires the use of phase-sensitive methods such as the shadow technique, coherent Foucault imaging and the Transport of Intensity...... on theoretical models that form the basis of the quantitative interpretation of electron holographic data. We review the application of electron holography to a variety of samples (including electric fields associated with p–n junctions in semiconductors, quantized magnetic flux in superconductors...

  6. Static electric field enhancement in nanoscale structures

    Energy Technology Data Exchange (ETDEWEB)

    Lepetit, Bruno, E-mail: bruno.lepetit@irsamc.ups-tlse.fr; Lemoine, Didier, E-mail: didier.lemoine@irsamc.ups-tlse.fr [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Márquez-Mijares, Maykel, E-mail: mmarquez@instec.cu [Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse (France); CNRS, UMR 5589, F-31062 Toulouse (France); Instituto Superior de Tecnologías y Ciencias Aplicadas, Avenida Salvador Allende 1110, Quinta de los Molinos, La Habana (Cuba)

    2016-08-28

    We study the effect of local atomic- and nano-scale protrusions on field emission and, in particular, on the local field enhancement which plays a key role as known from the Fowler-Nordheim model of electronic emission. We study atomic size defects which consist of right angle steps forming an infinite length staircase on a tungsten surface. This structure is embedded in a 1 GV/m ambient electrostatic field. We perform calculations based upon density functional theory in order to characterize the total and induced electronic densities as well as the local electrostatic fields taking into account the detailed atomic structure of the metal. We show how the results must be processed to become comparable with those of a simple homogeneous tungsten sheet electrostatic model. We also describe an innovative procedure to extrapolate our results to nanoscale defects of larger sizes, which relies on the microscopic findings to guide, tune, and improve the homogeneous metal model, thus gaining predictive power. Furthermore, we evidence analytical power laws for the field enhancement characterization. The main physics-wise outcome of this analysis is that limited field enhancement is to be expected from atomic- and nano-scale defects.

  7. Equatorial ionospheric electric fields during the November 2004 magnetic storm

    OpenAIRE

    Fejer, Bela G.; Jensen, J. W.; Kikuchi, T.; Abdu, M. A.; Chau, J. L.

    2007-01-01

    [1] We use radar measurements from the Jicamarca Radio Observatory, magnetometer observations from the Pacific sector and ionosonde data from Brazil to study equatorial ionospheric electric fields during the November 2004 geomagnetic storm. Our data show very large eastward and westward daytime electrojet current perturbations with lifetimes of about an hour (indicative of undershielding and overshielding prompt penetration electric fields) in the Pacific equatorial region during the November...

  8. Effect of External Electric Field Stress on Gliadin Protein Conformation

    OpenAIRE

    Singh, Ashutosh; Munshi, Shirin; Raghavan, Vijaya

    2013-01-01

    A molecular dynamic (MD) modeling approach was applied to evaluate the effect of external electric field on gliadin protein structure and surface properties. Static electric field strengths of 0.001 V/nm and 0.002 V/nm induced conformational changes in the protein but had no significant effect on its surface properties. The study of hydrogen bond evolution during the course of simulation revealed that the root mean square deviation, radius of gyration and secondary structure formation, all de...

  9. 3D Modeling of Electric Fields in the LUX Detector

    OpenAIRE

    LUX Collaboration; Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.

    2017-01-01

    This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data during two periods of searching for weakly interacting massive particle (WIMP) searches. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, g...

  10. 3D modeling of electric fields in the LUX detector

    OpenAIRE

    Akerib, DS; Alsum, S; Araújo, HM; Bai, X; Bailey, AJ; Balajthy, J; Beltrame, P; Bernard, EP; Bernstein, A; Biesiadzinski, TP; Boulton, EM; Brás, P; Byram, D; Cahn, SB; Carmona-Benitez, MC

    2017-01-01

    © 2017 IOP Publishing Ltd and Sissa Medialab. This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the de...

  11. Ionizing gas breakdown waves in strong electric fields.

    Science.gov (United States)

    Klingbeil, R.; Tidman, D. A.; Fernsler, R. F.

    1972-01-01

    A previous analysis by Albright and Tidman (1972) of the structure of an ionizing potential wave driven through a dense gas by a strong electric field is extended to include atomic structure details of the background atoms and radiative effects, especially, photoionization. It is found that photoionization plays an important role in avalanche propagation. Velocities, electron densities, and temperatures are presented as a function of electric field for both negative and positive breakdown waves in nitrogen.

  12. Vacuum radiation induced by time dependent electric field

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2017-04-01

    Full Text Available Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  13. Vacuum radiation induced by time dependent electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bo, E-mail: zhangbolfrc@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Zhang, Zhi-meng; Hong, Wei; He, Shu-Kai; Teng, Jian [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Gu, Yu-qiu, E-mail: yqgu@caep.cn [Department of High Energy Density Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China); Laboratory of Science and Technology on Plasma Physics, Research Center of Laser Fusion, 621900, Mianyang, Sichuan (China)

    2017-04-10

    Many predictions of new phenomena given by strong field quantum electrodynamics (SFQED) will be tested on next generation multi-petawatt laser facilities in the near future. These new phenomena are basis to understand physics in extremely strong electromagnetic fields therefore have attracted wide research interest. Here we discuss a new SFQED phenomenon that is named as vacuum radiation. In vacuum radiation, a virtual electron loop obtain energy from time dependent external electric field and radiate an entangled photon pair. Features of vacuum radiation in a locally time dependent electric field including spectrum, characteristic temperature, production rate and power are given.

  14. Spiking patterns of a hippocampus model in electric fields

    International Nuclear Information System (INIS)

    Men Cong; Wang Jiang; Qin Ying-Mei; Wei Xi-Le; Deng Bin; Che Yan-Qiu

    2011-01-01

    We develop a model of CA3 neurons embedded in a resistive array to mimic the effects of electric fields from a new perspective. Effects of DC and sinusoidal electric fields on firing patterns in CA3 neurons are investigated in this study. The firing patterns can be switched from no firing pattern to burst or from burst to fast periodic firing pattern with the increase of DC electric field intensity. It is also found that the firing activities are sensitive to the frequency and amplitude of the sinusoidal electric field. Different phase-locking states and chaotic firing regions are observed in the parameter space of frequency and amplitude. These findings are qualitatively in accordance with the results of relevant experimental and numerical studies. It is implied that the external or endogenous electric field can modulate the neural code in the brain. Furthermore, it is helpful to develop control strategies based on electric fields to control neural diseases such as epilepsy. (interdisciplinary physics and related areas of science and technology)

  15. Effect of the radial electric field on turbulence

    International Nuclear Information System (INIS)

    Carreras, B.A.; Lynch, V.E.

    1990-01-01

    For many years, the neoclassical transport theory for three- dimensional magnetic configurations, such as magnetic mirrors, ELMO Bumpy Tori (EBTs), and stellarators, has recognized the critical role of the radial electric field in the confinement. It was in these confinement devices that the first experimental measurements of the radial electric field were made and correlated with confinement losses. In tokamaks, the axisymmetry implies that the neoclassical fluxes are ambipolar and, as a consequence, independent of the radial electric field. However, axisymmetry is not strict in a tokamak with turbulent fluctuations, and near the limiter ambipolarity clearly breaks down. Therefore, the question of the effect of the radial electric field on tokamak confinement has been raised in recent years. In particular, the radial electric field has been proposed to explain the transition from L-mode to H-mode confinement. There is some initial experimental evidence supporting this type of explanation, although there is not yet a self-consistent theory explaining the generation of the electric field and its effect on the transport. Here, a brief review of recent results is presented. 27 refs., 4 figs

  16. Enhance soil bioremediation with electric fields

    International Nuclear Information System (INIS)

    Acar, Y.B.; Rabbi, M.F.; Gale, R.J.; Ozsu, E.E.; Alshawabkeh, A.N.

    1996-01-01

    Electrokinetic remediation is an in situ remediation technique that uses low-level direct-current electric potential differences (on the order of volts per centimeter) or an electric current (on the order of milliamps per square centimeter of cross-sectional area between electrodes) applied across a soil mass by electrodes placed in an open- or closed-flow arrangement. In electrokinetic methods, the groundwater in the boreholes or an externally supplied fluid (processing fluid) is used as the conductive medium. Electrokinetic remediation technology for metal extraction is expected to decrease the cost of remediating contaminated soils to the lower end of the $100--$1,000/m 3 range. This would be a significant savings in the $350 billion hazardous waste site cleanup and remediation market. The environmental restoration cost for the mixed (radioactive)-waste market is separately estimated to be $65 billion. The potential of the electrokinetic remediation technique in remediating soils contaminated with radioactive mixed waste using depolarization agents and complexing agents is noteworthy. The authors have removed uranyl ions from spiked kaolinite using the technique

  17. Electric fields and monopole currents in compact QED

    International Nuclear Information System (INIS)

    Zach, M.; Faber, M.; Kainz, W.; Skala, P.

    1995-01-01

    The confinement in compact QED is known to be related to magnetic monopoles. Magnetic currents form a solenoid around electric flux lines between a pair of electric charges. This behaviour can be described by the dual version of Maxwell-London equations including a fluctuating string. We use a definition of magnetic monopole currents adjusted to the definition of the electric field strength on a lattice and get good agreement for field and current distributions between compact QED and the predictions of dual Maxwell-London equations. Further we show that the monopole fluctuations in the vacuum are suppressed by the flux tube. ((orig.))

  18. Electric field and temperature effects in irradiated MOSFETs

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, M. A. G., E-mail: marcilei@fei.edu.br; Santos, R. B. B.; Leite, F. G.; Araújo, N. E.; Cirne, K. H.; Melo, M. A. A.; Rallo, A. [Centro Universitário da FEI, São Bernardo do Campo, S.P. (Brazil); Aguiar, Vitor A. P.; Aguirre, F.; Macchione, E. L. A.; Added, N.; Medina, N. H. [Instituto de Física da USP, São Paulo, S.P. (Brazil)

    2016-07-07

    Electronic devices exposed to ionizing radiation exhibit degradation on their electrical characteristics, which may compromise the functionality of the device. Understanding the physical phenomena responsible for radiation damage, which may be specific to a particular technology, it is of extreme importance to develop methods for testing and recovering the devices. The aim of this work is to check the influence of thermal annealing processes and electric field applied during irradiation of Metal Oxide Semiconductor Field Effect Transistors (MOSFET) in total ionizing dose experiments analyzing the changes in the electrical parameters in these devices.

  19. Action potential propagation: ion current or intramembrane electric field?

    Science.gov (United States)

    Martí, Albert; Pérez, Juan J; Madrenas, Jordi

    2018-01-01

    The established action potential propagation mechanisms do not satisfactorily explain propagation on myelinated axons given the current knowledge of biological channels and membranes. The flow across ion channels presents two possible effects: the electric potential variations across the lipid bilayers (action potential) and the propagation of an electric field through the membrane inner part. The proposed mechanism is based on intra-membrane electric field propagation, this propagation can explain the action potential saltatory propagation and its constant delay independent of distance between Ranvier nodes in myelinated axons.

  20. Critical electric field for maximum tunability in nonlinear dielectrics

    Science.gov (United States)

    Akdogan, E. K.; Safari, A.

    2006-09-01

    The authors develop a self-consistent thermodynamic theory to compute the critical electric field at which maximum tunability is attained in a nonlinear dielectric. They then demonstrate that the stored electrostatic free energy functional has to be expanded at least up to the sixth order in electric field so as to define the critical field, and show that it depends solely on the fourth and sixth order permittivities. They discuss the deficiency of the engineering tunability metric in describing nonlinear dielectric phenomena, introduce a critical field renormalized tunability parameter, and substantiate the proposed formalism by computing the critical electric field for prototypical 0.9Pb(Mg1/3,Nb2/3)-0.1PbTiO3 and Ba(Ti0.85,Sn0.15)O3 paraelectrics.

  1. Low-pressure gas breakdown in longitudinal combined electric fields

    International Nuclear Information System (INIS)

    Lisovskiy, V A; Kharchenko, N D; Yegorenkov, V D

    2010-01-01

    This paper contains the complete experimental and analytical picture of gas breakdown in combined electric fields for arbitrary values of rf and dc fields. To obtain it, we continued the study of the discharge ignition modes in nitrogen with simultaneous application of dc and rf electric fields presented in Lisovskiy et al (2008 J. Phys. D: Appl. Phys. 41 125207). To this end, we studied the effect of rf voltage on dc discharge ignition. When we applied an rf voltage exceeding the one corresponding to the minimum breakdown voltage of a self-sustained rf discharge, the curve of dependence of the dc breakdown voltage of a combined discharge on gas pressure was found to consist of two sections. We got the generalized gas breakdown criterion in the combined field valid for arbitrary values of rf and dc electric fields. The calculation results agree with experimental data satisfactorily.

  2. Electric fields in nonhomogeneously doped silicon. Summary of simulations

    International Nuclear Information System (INIS)

    Kotov, I.V.; Humanic, T.J.; Nouais, D.; Randel, J.; Rashevsky, A.

    2006-01-01

    Variations of the doping concentration inside a silicon device result in electric field distortions. These distortions, 'parasitic' fields, have been observed in Silicon Drift Detectors [D. Nouais, et al., Nucl. Instr. and Meth. A 501 (2003) 119; E. Crescio, et al., Nucl. Instr. and Meth. A 539 (2005) 250]. Electric fields inside a silicon device can be calculated for a given doping profile. In this study, the ATLAS device simulator. [Silvaco International, 4701 Patrick Henry Drive, Bldg.2, Santa Clara, CA 95054, USA and s imulation/atlas.html>] was used to calculate the electric field inside an inhomogeneously doped device. Simulations were performed for 1D periodic doping profiles. Results show strong dependence of the parasitic field strength on the 'smoothness' of the doping profile

  3. Electric fields in nonhomogeneously doped silicon. Summary of simulations

    Energy Technology Data Exchange (ETDEWEB)

    Kotov, I.V. [Ohio State University, Columbus, OH 43210 (United States)]. E-mail: kotov@mps.ohio-state.edu; Humanic, T.J. [Ohio State University, Columbus, OH 43210 (United States); Nouais, D. [INFN, Sezione di Torino, I-10125 Turin (Italy); Randel, J. [Ohio State University, Columbus, OH 43210 (United States); Rashevsky, A. [INFN, Sezione di Triste, I-34127 Trieste (Italy)

    2006-11-30

    Variations of the doping concentration inside a silicon device result in electric field distortions. These distortions, 'parasitic' fields, have been observed in Silicon Drift Detectors [D. Nouais, et al., Nucl. Instr. and Meth. A 501 (2003) 119; E. Crescio, et al., Nucl. Instr. and Meth. A 539 (2005) 250]. Electric fields inside a silicon device can be calculated for a given doping profile. In this study, the ATLAS device simulator. [Silvaco International, 4701 Patrick Henry Drive, Bldg.2, Santa Clara, CA 95054, USA and ] was used to calculate the electric field inside an inhomogeneously doped device. Simulations were performed for 1D periodic doping profiles. Results show strong dependence of the parasitic field strength on the 'smoothness' of the doping profile.

  4. Sparse Reconstruction of Electric Fields from Radial Magnetic Data

    International Nuclear Information System (INIS)

    Yeates, Anthony R.

    2017-01-01

    Accurate estimates of the horizontal electric field on the Sun’s visible surface are important not only for estimating the Poynting flux of magnetic energy into the corona but also for driving time-dependent magnetohydrodynamic models of the corona. In this paper, a method is developed for estimating the horizontal electric field from a sequence of radial-component magnetic field maps. This problem of inverting Faraday’s law has no unique solution. Unfortunately, the simplest solution (a divergence-free electric field) is not realistically localized in regions of nonzero magnetic field, as would be expected from Ohm’s law. Our new method generates instead a localized solution, using a basis pursuit algorithm to find a sparse solution for the electric field. The method is shown to perform well on test cases where the input magnetic maps are flux balanced in both Cartesian and spherical geometries. However, we show that if the input maps have a significant imbalance of flux—usually arising from data assimilation—then it is not possible to find a localized, realistic, electric field solution. This is the main obstacle to driving coronal models from time sequences of solar surface magnetic maps.

  5. Sparse Reconstruction of Electric Fields from Radial Magnetic Data

    Energy Technology Data Exchange (ETDEWEB)

    Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, Durham, DH1 3LE (United Kingdom)

    2017-02-10

    Accurate estimates of the horizontal electric field on the Sun’s visible surface are important not only for estimating the Poynting flux of magnetic energy into the corona but also for driving time-dependent magnetohydrodynamic models of the corona. In this paper, a method is developed for estimating the horizontal electric field from a sequence of radial-component magnetic field maps. This problem of inverting Faraday’s law has no unique solution. Unfortunately, the simplest solution (a divergence-free electric field) is not realistically localized in regions of nonzero magnetic field, as would be expected from Ohm’s law. Our new method generates instead a localized solution, using a basis pursuit algorithm to find a sparse solution for the electric field. The method is shown to perform well on test cases where the input magnetic maps are flux balanced in both Cartesian and spherical geometries. However, we show that if the input maps have a significant imbalance of flux—usually arising from data assimilation—then it is not possible to find a localized, realistic, electric field solution. This is the main obstacle to driving coronal models from time sequences of solar surface magnetic maps.

  6. New Method for Solving Inductive Electric Fields in the Ionosphere

    Science.gov (United States)

    Vanhamäki, H.

    2005-12-01

    We present a new method for calculating inductive electric fields in the ionosphere. It is well established that on large scales the ionospheric electric field is a potential field. This is understandable, since the temporal variations of large scale current systems are generally quite slow, in the timescales of several minutes, so inductive effects should be small. However, studies of Alfven wave reflection have indicated that in some situations inductive phenomena could well play a significant role in the reflection process, and thus modify the nature of ionosphere-magnetosphere coupling. The input to our calculation method are the time series of the potential part of the ionospheric electric field together with the Hall and Pedersen conductances. The output is the time series of the induced rotational part of the ionospheric electric field. The calculation method works in the time-domain and can be used with non-uniform, time-dependent conductances. In addition no particular symmetry requirements are imposed on the input potential electric field. The presented method makes use of special non-local vector basis functions called Cartesian Elementary Current Systems (CECS). This vector basis offers a convenient way of representing curl-free and divergence-free parts of 2-dimensional vector fields and makes it possible to solve the induction problem using simple linear algebra. The new calculation method is validated by comparing it with previously published results for Alfven wave reflection from uniformly conducting ionosphere.

  7. Surface states in an external electric field

    International Nuclear Information System (INIS)

    Steslicka, M.

    1975-10-01

    Under conditions typical for field ion microscopy, true surface states can exist. Their shift towards higher energies can be quite significant and, moreover, additional surface levels at still higher energies can appear. The latter can play an important role in the process of tunneling of image gas electrons into surface states

  8. Limiting electric fields of HVDC overhead power lines.

    Science.gov (United States)

    Leitgeb, N

    2014-05-01

    As a consequence of the increased use of renewable energy and the now long distances between energy generation and consumption, in Europe, electric power transfer by high-voltage (HV) direct current (DC) overhead power lines gains increasing importance. Thousands of kilometers of them are going to be built within the next years. However, existing guidelines and regulations do not yet contain recommendations to limit static electric fields, which are one of the most important criteria for HVDC overhead power lines in terms of tower design, span width and ground clearance. Based on theoretical and experimental data, in this article, static electric fields associated with adverse health effects are analysed and various criteria are derived for limiting static electric field strengths.

  9. Time development of electric fields and currents in space plasmas

    Directory of Open Access Journals (Sweden)

    A. T. Y. Lui

    2006-05-01

    Full Text Available Two different approaches, referred to as Bu and Ej, can be used to examine the time development of electric fields and currents in space plasmas based on the fundamental laws of physics. From the Bu approach, the required equation involves the generalized Ohm's law with some simplifying assumptions. From the Ej approach, the required equation can be derived from the equation of particle motion, coupled self-consistently with Maxwell's equation, and the definition of electric current density. Recently, some strong statements against the Ej approach have been made. In this paper, we evaluate these statements by discussing (1 some limitations of the Bu approach in solving the time development of electric fields and currents, (2 the procedure in calculating self-consistently the time development of the electric current in space plasmas without taking the curl of the magnetic field in some cases, and (3 the dependency of the time development of magnetic field on electric current. It is concluded that the Ej approach can be useful to understand some magnetospheric problems. In particular, statements about the change of electric current are valid theoretical explanations of change in magnetic field during substorms.

  10. Electric field measurements in a near atmospheric pressure nanosecond pulse discharge with picosecond electric field induced second harmonic generation

    Science.gov (United States)

    Goldberg, Benjamin M.; Chng, Tat Loon; Dogariu, Arthur; Miles, Richard B.

    2018-02-01

    We present an optical electric field measurement method for use in high pressure plasma discharges. The method is based upon the field induced second harmonic generation technique and can be used for localized electric field measurements with sub-nanosecond resolution in any gaseous species. When an external electric field is present, a dipole is induced in the typically centrosymmetric medium, allowing for second harmonic generation with signal intensities which scale by the square of the electric field. Calibrations have been carried out in 100 Torr room air, and a minimum sensitivity of 450 V/cm is demonstrated. Measurements were performed with nanosecond or faster temporal resolution in a 100 Torr room air environment both with and without a plasma present. It was shown that with no plasma present, the field follows the applied voltage to gap ratio, as measured using the back current shunt method. When the electric field is strong enough to exceed the breakdown threshold, the measured field was shown to exceed the anticipated voltage to gap ratio which is taken as an indication of the ionization wave front as it sweeps through the plasma volume.

  11. Effect of Electric Field on Outwardly Propagating Spherical Flame

    KAUST Repository

    Mannaa, Ossama

    2012-06-01

    The thesis comprises effects of electric fields on a fundamental study of spheri­cal premixed flame propagation.Outwardly-propagating spherical laminar premixed flames have been investigated in a constant volume combustion vessel by applying au uni-directional electric potential.Direct photography and schlieren techniques have been adopted and captured images were analyzed through image processing. Unstretched laminar burning velocities under the influence of electric fields and their associated Markstein length scales have been determined from outwardly prop­agating spherical flame at a constant pressure. Methane and propane fuels have been tested to assess the effect of electric fields on the differential diffusion of the two fuels.The effects of varying equivalence ratios and applied voltages have been in­vestigated, while the frequency of AC was fixed at 1 KHz. Directional propagating characteristics were analyzed to identify the electric filed effect. The flame morphology varied appreciably under the influence of electric fields which in turn affected the burning rate of mixtures.The flame front was found to propagate much faster toward to the electrode at which the electric fields were supplied while the flame speeds in the other direction were minimally influenced. When the voltage was above 7 KV the combustion is markedly enhanced in the downward direction since intense turbulence is generated and as a result the mixing process or rather the heat and mass transfer within the flame front will be enhanced.The com­bustion pressure for the cases with electric fields increased rapidly during the initial stage of combustion and was relatively higher since the flame front was lengthened in the downward direction.

  12. On a Correlation between the Ionospheric Electric Field and the Time Derivative of the Magnetic Field

    Directory of Open Access Journals (Sweden)

    R. R. Ilma

    2012-01-01

    Full Text Available A correlation of the ionospheric electric field and the time derivative of the magnetic field was noticed over thirty years ago and has yet to be explained. Here we report on another set of examples during the superstorm of November 2004. The electric field in the equatorial ionosphere, measured with the Jicamarca incoherent scatter radar, exhibited a 3 mV/m electric field pulse that was not seen in the interplanetary medium. It was, however, accompanied by a correlation with the time derivative of the magnetic field measured at two points in Peru. Our inclination was to assume that the field was inductive. However, the time scale of the pulse was too short for the magnetic field to penetrate the crust of the Earth. This means that the area threaded by ∂B/∂t was too small to create the observed electric field by induction. We suggest that the effect was caused by a modulation of the ring current location relative to the Earth due to the electric field. This electric field is required, as the magnetic field lines are considered frozen into the plasma in the magnetosphere. The closer location of the ring current to the Earth in turn increased the magnetic field at the surface.

  13. Electrical resistivity of UBe13 in high magnetic fields

    International Nuclear Information System (INIS)

    Schmiedeshoff, G.M.; Lacerda, A.; Fisk, Z.; Smith, J.L.

    1996-01-01

    We have measured the temperature dependent electrical resistivity of single and polycrystal samples of UBe 13 in high magnetic fields. Two maxima in the resistivity are observed at T M1 and T M2 . T M1 , the temperature of the colder maximum, increases quadratically with magnetic field H, a field dependence previously observed under hydrostatic pressure. The high temperature maximum at T M2 emerges in fields above about 4 T and increases linearly with H, a behavior which may be due to a sharpening of the crystal field levels associated with a depression of the Kondo effect by high magnetic fields. copyright 1996 The American Physical Society

  14. Asymmetry of neoclassical transport by dipole electric field

    International Nuclear Information System (INIS)

    Wang Zhongtian; Wang Long

    2004-01-01

    Effects of dipole electric fields on neoclassical transport are studied. Large asymmetry in transport is created. The dipole fields, which are in a negative R-direction, reduce the ion drift, increase electron drift, and change the steps of excursion due to collisions. It is found that different levels of dipole field intensities have different types of transport. For the lowest level of the dipole field, the transport returns to the neoclassical one. For the highest level of the dipole field, the transport is turned to be the turbulence transport similar to the pseudo-classical transport. Experimental data may be corresponded to a large level of the dipole field intensity. (authors)

  15. Statistical analysis of the ratio of electric and magnetic fields in random fields generators

    NARCIS (Netherlands)

    Serra, R.; Nijenhuis, J.

    2013-01-01

    In this paper we present statistical models of the ratio of random electric and magnetic fields in mode-stirred reverberation chambers. This ratio is based on the electric and magnetic field statistics derived for ideal reverberation conditions. It provides a further performance indicator for

  16. Electric-Field-Induced Superconductivity Detected by Magnetization Measurements of an Electric-Double-Layer Capacitor

    NARCIS (Netherlands)

    Kasahara, Yuichi; Nishijima, Takahiro; Sato, Tatsuya; Takeuchi, Yuki; Ye, Jianting; Yuan, Hongtao; Shimotani, Hidekazu; Iwasa, Yoshihiro

    We report evidence for superconductivity induced by the application of strong electric fields onto the surface of a band insulator, ZrNCl, provided by the observation of a shielding diamagnetic signal. We introduced an electric-double-layer capacitor configuration and in situ magnetization

  17. Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates

    DEFF Research Database (Denmark)

    Opitz, Alexander; Falchier, Arnaud; Yan, Chao-Gan

    2016-01-01

    Transcranial electric stimulation (TES) is an emerging technique, developed to non-invasively modulate brain function. However, the spatiotemporal distribution of the intracranial electric fields induced by TES remains poorly understood. In particular, it is unclear how much current actually reac...

  18. Electric field dependence of excess electrical conductivity below transition temperature in thin superconducting lead films

    Energy Technology Data Exchange (ETDEWEB)

    Ashwini Kumar, P K; Duggal, V P [Delhi Univ. (India). Dept. of Physics and Astrophysics

    1976-01-26

    Results of measurements of the electric field dependence of the excess electrical conductivity are reported in thin superconducting lead films below the transition temperature. It is observed that the normal state sheet resistance has some effect on the nonlinearity but the theory of Yamaji still fits well to the experimental data.

  19. Optimized design of micromachined electric field mills to maximize electrostatic field sensitivity

    OpenAIRE

    Zhou, Yu; Shafai, Cyrus

    2016-01-01

    This paper describes the design optimization of a micromachined electric field mill, in relation to maximizing its output signal. The cases studied are for a perforated electrically grounded shutter vibrating laterally over sensing electrodes. It is shown that when modeling the output signal of the sensor, the differential charge on the sense electrodes when exposed to vs. visibly shielded from the incident electric field must be considered. Parametric studies of device dimensions show that t...

  20. 3D modeling of electric fields in the LUX detector

    Science.gov (United States)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.

    2017-11-01

    This work details the development of a three-dimensional (3D) electric field model for the LUX detector. The detector took data to search for weakly interacting massive particles (WIMPs) during two periods. After the first period completed, a time-varying non-uniform negative charge developed in the polytetrafluoroethylene (PTFE) panels that define the radial boundary of the detector's active volume. This caused electric field variations in the detector in time, depth and azimuth, generating an electrostatic radially-inward force on electrons on their way upward to the liquid surface. To map this behavior, 3D electric field maps of the detector's active volume were generated on a monthly basis. This was done by fitting a model built in COMSOL Multiphysics to the uniformly distributed calibration data that were collected on a regular basis. The modeled average PTFE charge density increased over the course of the exposure from -3.6 to -5.5 μC/m2. From our studies, we deduce that the electric field magnitude varied locally while the mean value of the field of ~200 V/cm remained constant throughout the exposure. As a result of this work the varying electric fields and their impact on event reconstruction and discrimination were successfully modeled.

  1. Electric and magnetic fields at extremely low frequencies

    International Nuclear Information System (INIS)

    Anderson, L.E.; Kaune, W.T.

    1989-01-01

    Whole-body exposure to extremely low frequency (ELF, 30-300 Hz) electric fields may involve effects related to stimulation of the sensory apparatus at the body surface (hair vibration, possible direct neural stimulation) and effects within the body caused by the flow of current. Magnetic fields may interact predominantly by the induction of internal current flow. Biological effects observed in a living organism may depend on the electric fields induced inside the body, possibly on the magnetic fields penetrating into the body, and on the fields acting at the surface of the body. Areas in which effects have been observed often appear to be associated with the nervous system, including altered neuronal excitability and neurochemical changes, altered hormone levels, changes in behavioural responses, and changes in biological rhythms. No studies unequivocably demonstrate deleterious effects of ELF electric or magnetic field exposure on mammalian reproduction and development, but several suggest such effects. Exposure to ELF electric and magnetic fields does produce biological effects. However, except for fields strong enough to induce current densities above the threshold for the stimulation of nerve tissues, there is no consensus as to whether these effects constitute a hazard to human health. Human data from epidemiological studies, including reported effects on cancer promotion, congenital malformations, reproductive performance and general health, though somewhat suggestive of adverse health effects, are not conclusive. 274 refs, 13 figs, 6 tabs

  2. Production of pulsed electric fields using capacitively coupled electrodes

    Science.gov (United States)

    Kendall, B. R. F.; Schwab, F. A. S.

    1980-01-01

    It is shown that pulsed electric fields can be produced over extended volumes by taking advantage of the internal capacitances in a stacked array of electrodes. The design, construction, and performance of practical arrays are discussed. The prototype arrays involved fields of 100-1000 V/cm extending over several centimeters. Scaling to larger physical dimensions is straightforward.

  3. Endogenous Cortical Oscillations Constrain Neuromodulation by Weak Electric Fields

    Science.gov (United States)

    Schmidt, Stephen L.; Iyengar, Apoorva K.; Foulser, A. Alban; Boyle, Michael R.; Fröhlich, Flavio

    2014-01-01

    Background Transcranial alternating current stimulation (tACS) is a non-invasive brain stimulation modality that may modulate cognition by enhancing endogenous neocortical oscillations with the application of sine-wave electric fields. Yet, the role of endogenous network activity in enabling and shaping the effects of tACS has remained unclear. Objective We combined optogenetic stimulation and multichannel slice electrophysiology to elucidate how the effect of weak sine-wave electric field depends on the ongoing cortical oscillatory activity. We hypothesized that the structure of the response to stimulation depended on matching the stimulation frequency to the endogenous cortical oscillation. Methods We studied the effect of weak sine-wave electric fields on oscillatory activity in mouse neocortical slices. Optogenetic control of the network activity enabled the generation of in vivo like cortical oscillations for studying the temporal relationship between network activity and sine-wave electric field stimulation. Results Weak electric fields enhanced endogenous oscillations but failed to induce a frequency shift of the ongoing oscillation for stimulation frequencies that were not matched to the endogenous oscillation. This constraint on the effect of electric field stimulation imposed by endogenous network dynamics was limited to the case of weak electric fields targeting in vivo-like network dynamics. Together, these results suggest that the key mechanism of tACS may be enhancing but not overriding of intrinsic network dynamics. Conclusion Our results contribute to understanding the inconsistent tACS results from human studies and propose that stimulation precisely adjusted in frequency to the endogenous oscillations is key to rational design of non-invasive brain stimulation paradigms. PMID:25129402

  4. Effects of pulsed electric field on ULQ and RFP plasmas

    International Nuclear Information System (INIS)

    Watanabe, M.; Saito, K.; Suzuki, T.

    1997-01-01

    Dynamo activity and self-organization processes are investigated using the application of pulsed poloidal and toroidal electric fields on ULQ and RFP plasmas. Synchronized to the application of the pulsed electric fields, the remarkable responses of the several plasma parameters are observed. The plasma has a preferential magnetic field structure, and the external perturbation activates fluctuation to maintain the structure through dynamo effect. This process changes the total dissipation with the variation of magnetic helicity in the system, showing that self organization accompanies an enhanced dissipation. (author)

  5. Relativistic Bosons in Time-Harmonic Electric Fields

    Science.gov (United States)

    Buhucianu, Ovidiu; Dariescu, Marina-Aura; Dariescu, Ciprian

    2012-02-01

    In the present paper, we consider a bi-dimensional thin sample, placed in a strong harmonically oscillating electric field and a static magnetic induction, both directed along the normal to the sample's plane. The Klein-Gordon equation describing the relativistic bosons leads to a Mathieu's type equation for the temporal part of the wave functions. It follows that, for the electric field pulsation inside a computable range, depending on the external fields intensities, the amplitude functions are turning from oscillatory to exponentially growing modes. For ultra-relativistic particles, one can recover the periodic stationary amplitude behavior.

  6. 3D electric field calculation with surface charge method

    International Nuclear Information System (INIS)

    Yamada, S.

    1992-01-01

    This paper describes an outline and some examples of three dimensional electric field calculations with a computer code developed at NIRS. In the code, a surface charge method is adopted because of it's simplicity in the mesh establishing procedure. The charge density in a triangular mesh is assumed to distribute with a linear function of the position. The electric field distribution is calculated for a pair of drift tubes with the focusing fingers on the opposing surfaces. The field distribution in an acceleration gap is analyzed with a Fourier-Bessel series expansion method. The calculated results excellently reproduces the measured data with a magnetic model. (author)

  7. High-electric-field quantum transport theory for semiconductor superlattices

    International Nuclear Information System (INIS)

    Nguyen Hong Shon; Nazareno, H.N.

    1995-12-01

    Based on the Baym-Kadanoff-Keldysh nonequilibrium Green's functions technique, a quantum transport theory for semiconductor superlattices under high-electric field is developed. This theory is capable of considering collisional broadening, intra-collisional field effects and band transport and hopping regimes simultaneously. Numerical calculations for narrow-miniband superlattices in high electric field, when the hopping regime dominates are in reasonable agreement with experimental results and show a significant deviation from the Boltzmann theory. A semiphenomenological formula for current density in hopping regime is proposed. (author). 60 refs, 4 figs

  8. Ab initio molecular dynamics in a finite homogeneous electric field.

    Science.gov (United States)

    Umari, P; Pasquarello, Alfredo

    2002-10-07

    We treat homogeneous electric fields within density functional calculations with periodic boundary conditions. A nonlocal energy functional depending on the applied field is used within an ab initio molecular dynamics scheme. The reliability of the method is demonstrated in the case of bulk MgO for the Born effective charges, and the high- and low-frequency dielectric constants. We evaluate the static dielectric constant by performing a damped molecular dynamics in an electric field and avoiding the calculation of the dynamical matrix. Application of this method to vitreous silica shows good agreement with experiment and illustrates its potential for systems of large size.

  9. Premixed combustion under electric field in a constant volume chamber

    KAUST Repository

    Cha, Min Suk

    2012-12-01

    The effects of electric fields on outwardly propagating premixed flames in a constant volume chamber were experimentally investigated. An electric plug, subjected to high electrical voltages, was used to generate electric fields inside the chamber. To minimize directional ionic wind effects, alternating current with frequency of 1 kHz was employed. Lean and rich fuel/air mixtures for both methane and propane were tested to investigate various preferential diffusion conditions. As a result, electrically induced instability showing cracked structure on the flame surface could be observed. This cracked structure enhanced flame propagation speed for the initial period of combustion and led to reduction in flame initiation and overall combustion duration times. However, by analyzing pressure data, it was found that overall burning rates are not much affected from the electric field for the pressurized combustion period. The reduction of overall combustion time is less sensitive to equivalence ratio for methane/air mixtures, whereas the results demonstrate pronounced effects on a lean mixture for propane. The improvement of combustion characteristics in lean mixtures will be beneficial to the design of lean burn engines. Two hypothetical mechanisms to explain the electrically induced instability were proposed: 1) ionic wind initiated hydrodynamic instability and 2) thermodiffusive instability through the modification of transport property such as mass diffusivity. © 2012 IEEE.

  10. Premixed combustion under electric field in a constant volume chamber

    KAUST Repository

    Cha, Min; Lee, Yonggyu

    2012-01-01

    The effects of electric fields on outwardly propagating premixed flames in a constant volume chamber were experimentally investigated. An electric plug, subjected to high electrical voltages, was used to generate electric fields inside the chamber. To minimize directional ionic wind effects, alternating current with frequency of 1 kHz was employed. Lean and rich fuel/air mixtures for both methane and propane were tested to investigate various preferential diffusion conditions. As a result, electrically induced instability showing cracked structure on the flame surface could be observed. This cracked structure enhanced flame propagation speed for the initial period of combustion and led to reduction in flame initiation and overall combustion duration times. However, by analyzing pressure data, it was found that overall burning rates are not much affected from the electric field for the pressurized combustion period. The reduction of overall combustion time is less sensitive to equivalence ratio for methane/air mixtures, whereas the results demonstrate pronounced effects on a lean mixture for propane. The improvement of combustion characteristics in lean mixtures will be beneficial to the design of lean burn engines. Two hypothetical mechanisms to explain the electrically induced instability were proposed: 1) ionic wind initiated hydrodynamic instability and 2) thermodiffusive instability through the modification of transport property such as mass diffusivity. © 2012 IEEE.

  11. Ionization and recombination in attosecond electric field pulses

    International Nuclear Information System (INIS)

    Dimitrovski, Darko; Solov'ev, Eugene A.; Briggs, John S.

    2005-01-01

    Based on the results of a previous communication [Dimitrovski et al., Phys. Rev. Lett. 93, 083003 (2004)], we study ionization and excitation of a hydrogenic atom from the ground and first excited states in short electric field pulses of several cycles. A process of ionization and recombination which occurs periodically in time is identified, for both small and extremely large peak electric field strengths. In the limit of large electric peak fields closed-form analytic expressions for the population of the initial state after single- and few-cycle pulses are derived. These formulas, strictly valid for asymptotically large momentum transfer from the field, give excellent agreement with fully numerical calculations for all momentum transfers

  12. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm, Martin C., Jr.; Austen, William G., Jr.; Yarmush, Martin L.

    2015-05-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases.

  13. Skin Rejuvenation with Non-Invasive Pulsed Electric Fields

    Science.gov (United States)

    Golberg, Alexander; Khan, Saiqa; Belov, Vasily; Quinn, Kyle P.; Albadawi, Hassan; Felix Broelsch, G.; Watkins, Michael T.; Georgakoudi, Irene; Papisov, Mikhail; Mihm Jr., Martin C.; Austen Jr., William G.; Yarmush, Martin L.

    2015-01-01

    Degenerative skin diseases affect one third of individuals over the age of sixty. Current therapies use various physical and chemical methods to rejuvenate skin; but since the therapies affect many tissue components including cells and extracellular matrix, they may also induce significant side effects, such as scarring. Here we report on a new, non-invasive, non-thermal technique to rejuvenate skin with pulsed electric fields. The fields destroy cells while simultaneously completely preserving the extracellular matrix architecture and releasing multiple growth factors locally that induce new cells and tissue growth. We have identified the specific pulsed electric field parameters in rats that lead to prominent proliferation of the epidermis, formation of microvasculature, and secretion of new collagen at treated areas without scarring. Our results suggest that pulsed electric fields can improve skin function and thus can potentially serve as a novel non-invasive skin therapy for multiple degenerative skin diseases. PMID:25965851

  14. Manipulation of red blood cells with electric field

    Science.gov (United States)

    Saboonchi, Hossain; Esmaeeli, Asghar

    2009-11-01

    Manipulation of bioparticles and macromolecules is the central task in many biological and biotechnological processes. The current methods for physical manipulation takes advantage of different forces such as acoustic, centrifugal, magnetic, electromagnetic, and electric forces, as well as using optical tweezers or filtration. Among all these methods, however, the electrical forces are particularly attractive because of their favorable scale up with the system size which makes them well-suited for miniaturization. Currently the electric field is used for transportation, poration, fusion, rotation, and separation of biological cells. The aim of the current research is to gain fundamental understanding of the effect of electric field on the human red blood cells (RBCs) using direct numerical simulation. A front tracking/finite difference technique is used to solve the fluid flow and electric field equations, where the fluid in the cell and the blood (plasma) is modeled as Newtonian and incompressible, and the interface separating the two is treated as an elastic membrane. The behavior of RBCs is investigated as a function of the controlling parameters of the problem such as the strength of the electric field.

  15. Electric field confinement effect on charge transport in organic field-effect transistors

    NARCIS (Netherlands)

    Li, X.; Kadashchuk, A.; Fishchuk, I.I.; Smaal, W.T.T.; Gelinck, G.H.; Broer, D.J.; Genoe, J.; Heremans, P.; Bässler, H.

    2012-01-01

    While it is known that the charge-carrier mobility in organic semiconductors is only weakly dependent on the electric field at low fields, the experimental mobility in organic field-effect transistors using silylethynyl-substituted pentacene is found to be surprisingly field dependent at low

  16. Relationships between the Birkeland currents, ionospheric currents, and electric fields

    International Nuclear Information System (INIS)

    Bleuler, E.; Li, C.H.; Nisbet, J.S.

    1982-01-01

    Calculations are made of the currents and electric fields in the ionosphere by using a global model of the electron densities including conjugate coupling along field lines. Incoherent scatter and rocket measurements of high-latitude electron densities have been used to derive realistic variations of the polar conductivities as a function of magnetic activity. The Birkeland currents have been specified in terms of three indices, the total current into and out of the hemisphere, the ratio of the magnitudes of the currents in the AM and PM sectors, R/sub ap/ , and R 12 , the ratio of the magnitudes of the currents in region 1 and 2. The relationship between these parameters of the Birkeland current systems and the auroral electrojet indices AE, AL, and AU is examined as well as the polar cap potential and the electric field at lower latitudes. The cusp currents have been modeled in relation to the interplanetary magnetic field and calculations are given of their effect on electric field and current patterns. One aim of this study is to produce a mathematical model of the currents, electric fields and energy inputs produced by field aligned currents that is consistent with, and specifiable in terms of, measured geophysical indices

  17. Non-Perturbative QCD Coupling and Beta Function from Light Front Holography

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins; de Teramond, Guy F.; /Costa Rica U.; Deur, Alexandre; /Jefferson Lab

    2010-05-26

    The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling {alpha}{sub s}{sup AdS} (Q{sup 2}). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on {alpha}{sub s}{sup AdS} (Q{sup 2}).

  18. Non-perturbative Approach to Equation of State and Collective Modes of the QGP

    Directory of Open Access Journals (Sweden)

    Y.F. Liu Shuai

    2018-01-01

    Full Text Available We discuss a non-perturbative T-matrix approach to investigate the microscopic structure of the quark-gluon plasma (QGP. Utilizing an effective Hamiltonian which includes both light- and heavy-parton degrees of freedoms. The basic two-body interaction includes color-Coulomb and confining contributions in all available color channels, and is constrained by lattice-QCD data for the heavy-quark free energy. The in-medium T-matrices and parton spectral functions are computed selfconsistently with full account of off-shell properties encoded in large scattering widths. We apply the T-matrices to calculate the equation of state (EoS for the QGP, including a ladder resummation of the Luttinger-Ward functional using a matrix-log technique to account for the dynamical formation of bound states. It turns out that the latter become the dominant degrees of freedom in the EoS at low QGP temperatures indicating a transition from parton to hadron degrees of freedom. The calculated spectral properties of one- and two-body states confirm this picture, where large parton scattering rates dissolve the parton quasiparticle structures while broad resonances start to form as the pseudocritical temperature is approached from above. Further calculations of transport coefficients reveal a small viscosity and heavy-quark diffusion coefficient.

  19. Non-Perturbative QCD Coupling and Beta Function from Light Front Holography

    International Nuclear Information System (INIS)

    Brodsky, Stanley J.

    2010-01-01

    The light-front holographic mapping of classical gravity in AdS space, modified by a positive-sign dilaton background, leads to a non-perturbative effective coupling α s AdS (Q 2 ). It agrees with hadron physics data extracted from different observables, such as the effective charge defined by the Bjorken sum rule, as well as with the predictions of models with built-in confinement and lattice simulations. It also displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale ∼ 1 GeV. The resulting β-function appears to capture the essential characteristics of the full β-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD. Commensurate scale relations relate observables to each other without scheme or scale ambiguity. In this paper we extrapolate these relations to the nonperturbative domain, thus extending the range of predictions based on α s AdS (Q 2 ).

  20. G-fluxes and non-perturbative stabilisation of heterotic M-theory

    International Nuclear Information System (INIS)

    Curio, Gottfried; Krause, Axel

    2002-01-01

    We examine heterotic M-theory compactified on a Calabi-Yau manifold with an additional parallel M5-brane. The dominant non-perturbative effect stems from open membrane instantons connecting the M5 with the boundaries. We derive the four-dimensional low-energy supergravity potential for this situation including subleading contributions as it turns out that the leading term vanishes after minimisation. At the minimum of the potential the M5 gets stabilised at the middle of the orbifold interval while the vacuum energy is shown to be manifestly positive. Moreover, induced by the non-trivial running of the Calabi-Yau volume along the orbifold which is driven by the G-fluxes, we find that the orbifold-length and the Calabi-Yau volume modulus are stabilised at values which are related by the G-flux of the visible boundary. Finally we determine the supersymmetry-breaking scale and the gravitino mass for this open membrane vacuum

  1. Infrared behavior of the effective coupling in quantum chromodynamics: A non-perturbative approach

    International Nuclear Information System (INIS)

    Bar-Gadda, U.

    1980-01-01

    In this paper we examine a different viewpoint, based on a self-consistent approach. This means that rather than attempting to identify any particular physical mechanism as dominating the QCD vacuum state we use the non-perturbative Schwinger-Dyson equations and Slavnov-Taylor identities of QCD as well as the renormalization group equation to obtain the self-consistent behavior of the effective coupling in the infrared region. We show that the infrared effective coupling behavior anti g(q 2 /μ 2 , gsub(R)(μ)) = (μ 2 /q 2 )sup(lambda/2)gsub(R)(μ) in the infrared limit q 2 /μ 2 → 0, where μ 2 is the euclidean subtraction point; lambda = 1/2(d - 2), where d is the space-time dimension, is the preferred solution if a sufficient self-consistency condition is satisfied. Finally we briefly discuss the nature of the dynamical mass Λ and the 1/N expansion as well as an effective bound state equation. (orig.)

  2. Non perturbative method for radiative corrections applied to lepton-proton scattering

    International Nuclear Information System (INIS)

    Chahine, C.

    1979-01-01

    We present a new, non perturbative method to effect radiative corrections in lepton (electron or muon)-nucleon scattering, useful for existing or planned experiments. This method relies on a spectral function derived in a previous paper, which takes into account both real soft photons and virtual ones and hence is free from infrared divergence. Hard effects are computed perturbatively and then included in the form of 'hard factors' in the non peturbative soft formulas. Practical computations are effected using the Gauss-Jacobi integration method which reduce the relevant integrals to a rapidly converging sequence. For the simple problem of the radiative quasi-elastic peak, we get an exponentiated form conjectured by Schwinger and found by Yennie, Frautschi and Suura. We compare also our results with the peaking approximation, which we derive independantly, and with the exact one-photon emission formula of Mo and Tsai. Applications of our method to the continuous spectrum include the radiative tail of the Δ 33 resonance in e + p scattering and radiative corrections to the Feynman scale invariant F 2 structure function for the kinematics of two recent high energy muon experiments

  3. A complete non-perturbative renormalization prescription for quasi-PDFs

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Constantinou, Martha [Temple Univ., Philadelphia, PA (United States). Dept. of Physics; Hadjiyiannakou, Kyriakos [The Cyprus Institute, Nicosia (Cyprus); Jansen, Karl; Steffens, Fernanda [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Panagopoulos, Haralambos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Collaboration: European Twisted Mass Collaboration

    2017-06-15

    In this work we present, for the first time, the non-perturbative renormalization for the unpolarized, helicity and transversity quasi-PDFs, in an RI{sup '} scheme. The proposed prescription addresses simultaneously all aspects of renormalization: logarithmic divergences, finite renormalization as well as the linear divergence which is present in the matrix elements of fermion operators with Wilson lines. Furthermore, for the case of the unpolarized quasi-PDF, we describe how to eliminate the unwanted mixing with the twist-3 scalar operator. We utilize perturbation theory for the one-loop conversion factor that brings the renormalization functions to the MS-scheme at a scale of 2 GeV. We also explain how to improve the estimates on the renormalization functions by eliminating lattice artifacts. The latter can be computed in one-loop perturbation theory and to all orders in the lattice spacing. We apply the methodology for the renormalization to an ensemble of twisted mass fermions with N{sub f}=2+1+1 dynamical quarks, and a pion mass of around 375 MeV.

  4. Towards a non-perturbative matching of HQET and QCD with dynamical light quarks

    International Nuclear Information System (INIS)

    Della Morte, M.; Simma, H.; Sommer, R.

    2007-10-01

    We explain how the strategy of solving renormalization problems in HQET non-perturbatively by a matching to QCD in finite volume can be implemented to include dynamical fermions. As a primary application, some elements of an HQET computation of the mass of the b-quark beyond the leading order with N f =2 are outlined. In particular, the matching of HQET and QCD requires relativistic QCD simulations in a volume with L∼0.5 fm, which will serve to quantitatively determine the heavy quark mass dependence of heavy-light meson observables in the continuum limit of finite-volume two-flavour lattice QCD. As a preparation for the latter, we report on our determination of the renormalization constants and improvement coefficients relating the renormalized current and subtracted bare quark mass in the relevant weak coupling region. The calculation of these coefficients employs a constant physics condition in the Schrodinger functional scheme, where the box size L is fixed by working at a prescribed value of the renormalized coupling. (orig.)

  5. Exact quantization conditions, toric Calabi-Yau and non-perturbative topological string

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Kaiwen [Department of Mathematics, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui 230026 (China); Wang, Xin; Huang, Min-xin [Interdisciplinary Center for Theoretical Study,Department of Modern Physics, University of Science and Technology of China,96 Jinzhai Road, Hefei, Anhui 230026 (China)

    2017-01-16

    We establish the precise relation between the Nekrasov-Shatashvili (NS) quantization scheme and Grassi-Hatsuda-Mariño conjecture for the mirror curve of arbitrary toric Calabi-Yau threefold. For a mirror curve of genus g, the NS quantization scheme leads to g quantization conditions for the corresponding integrable system. The exact NS quantization conditions enjoy a self S-duality with respect to Planck constant ℏ and can be derived from the Lockhart-Vafa partition function of non-perturbative topological string. Based on a recent observation on the correspondence between spectral theory and topological string, another quantization scheme was proposed by Grassi-Hatsuda-Mariño, in which there is a single quantization condition and the spectra are encoded in the vanishing of a quantum Riemann theta function. We demonstrate that there actually exist at least g nonequivalent quantum Riemann theta functions and the intersections of their theta divisors coincide with the spectra determined by the exact NS quantization conditions. This highly nontrivial coincidence between the two quantization schemes requires infinite constraints among the refined Gopakumar-Vafa invariants. The equivalence for mirror curves of genus one has been verified for some local del Pezzo surfaces. In this paper, we generalize the correspondence to higher genus, and analyze in detail the resolved ℂ{sup 3}/ℤ{sub 5} orbifold and several SU(N) geometries. We also give a proof for some models at ℏ=2π/k.

  6. Towards a non-perturbative matching of HQET and QCD with dynamical light quarks

    Energy Technology Data Exchange (ETDEWEB)

    Della Morte, M. [CERN, Geneva (Switzerland). Physics Dept.; Fritzsch, P.; Heitger, J. [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Meyer, H.B. [Massachusets Institute of Technology, Center for Theoretical Physics, Cambridge, MA (United States); Simma, H.; Sommer, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2007-10-15

    We explain how the strategy of solving renormalization problems in HQET non-perturbatively by a matching to QCD in finite volume can be implemented to include dynamical fermions. As a primary application, some elements of an HQET computation of the mass of the b-quark beyond the leading order with N{sub f} =2 are outlined. In particular, the matching of HQET and QCD requires relativistic QCD simulations in a volume with L{approx}0.5 fm, which will serve to quantitatively determine the heavy quark mass dependence of heavy-light meson observables in the continuum limit of finite-volume two-flavour lattice QCD. As a preparation for the latter, we report on our determination of the renormalization constants and improvement coefficients relating the renormalized current and subtracted bare quark mass in the relevant weak coupling region. The calculation of these coefficients employs a constant physics condition in the Schrodinger functional scheme, where the box size L is fixed by working at a prescribed value of the renormalized coupling. (orig.)

  7. Carrier heating in disordered conjugated polymers in electric field

    Energy Technology Data Exchange (ETDEWEB)

    Vukmirovic, Nenad; Wang, Lin-Wang

    2010-01-26

    The electric field dependence of charge carrier transport and the effect of carrier heating in disordered conjugated polymers were investigated. A parameter-free multiscale methodology consisting of classical molecular dynamics simulation for the generation of the atomic structure, large system electronic structure and electron-phonon coupling constants calculations and the procedure for extracting the bulk polymer mobility, was used. The results suggested that the mobility of a fully disordered poly(3-hexylthiophene) (P3HT) polymer increases with electric field which is consistent with the experimental results on samples of regiorandom P3HT and different from the results on more ordered regioregular P3HT polymers, where the opposite trend is often observed at low electric fields. We calculated the electric field dependence of the effective carrier temperature and showed however that the effective temperature cannot be used to replace the joint effect of temperature and electric field, in contrast to previous theoretical results from phenomenological models. Such a difference was traced to originate from the use of simplified Miller-Abrahams hopping rates in phenomenological models in contrast to our considerations that explicitly take into account the electronic state wave functions and the interaction with all phonon modes.

  8. Measurement of Anisotropic Particle Interactions with Nonuniform ac Electric Fields.

    Science.gov (United States)

    Rupp, Bradley; Torres-Díaz, Isaac; Hua, Xiaoqing; Bevan, Michael A

    2018-02-20

    Optical microscopy measurements are reported for single anisotropic polymer particles interacting with nonuniform ac electric fields. The present study is limited to conditions where gravity confines particles with their long axis parallel to the substrate such that particles can be treated using quasi-2D analysis. Field parameters are investigated that result in particles residing at either electric field maxima or minima and with long axes oriented either parallel or perpendicular to the electric field direction. By nonintrusively observing thermally sampled positions and orientations at different field frequencies and amplitudes, a Boltzmann inversion of the time-averaged probability of states yields kT-scale energy landscapes (including dipole-field, particle-substrate, and gravitational potentials). The measured energy landscapes show agreement with theoretical potentials using particle conductivity as the sole adjustable material property. Understanding anisotropic particle-field energy landscapes vs field parameters enables quantitative control of local forces and torques on single anisotropic particles to manipulate their position and orientation within nonuniform fields.

  9. Electric field enhanced hydrogen storage on polarizable materials substrates

    Science.gov (United States)

    Zhou, J.; Wang, Q.; Sun, Q.; Jena, P.; Chen, X. S.

    2010-01-01

    Using density functional theory, we show that an applied electric field can substantially improve the hydrogen storage properties of polarizable substrates. This new concept is demonstrated by adsorbing a layer of hydrogen molecules on a number of nanomaterials. When one layer of H2 molecules is adsorbed on a BN sheet, the binding energy per H2 molecule increases from 0.03 eV/H2 in the field-free case to 0.14 eV/H2 in the presence of an electric field of 0.045 a.u. The corresponding gravimetric density of 7.5 wt% is consistent with the 6 wt% system target set by Department of Energy for 2010. The strength of the electric field can be reduced if the substrate is more polarizable. For example, a hydrogen adsorption energy of 0.14 eV/H2 can be achieved by applying an electric field of 0.03 a.u. on an AlN substrate, 0.006 a.u. on a silsesquioxane molecule, and 0.007 a.u. on a silsesquioxane sheet. Thus, application of an electric field to a polarizable substrate provides a novel way to store hydrogen; once the applied electric field is removed, the stored H2 molecules can be easily released, thus making storage reversible with fast kinetics. In addition, we show that materials with rich low-coordinated nonmetal anions are highly polarizable and can serve as a guide in the design of new hydrogen storage materials. PMID:20133647

  10. Resistance switching induced by electric fields in manganite thin films

    International Nuclear Information System (INIS)

    Villafuerte, M; Juarez, G; Duhalde, S; Golmar, F; Degreef, C L; Heluani, S P

    2007-01-01

    In this work, we investigate the polarity-dependent Electric Pulses Induced Resistive (EPIR) switching phenomenon in thin films driven by electric pulses. Thin films of 0.5 Ca 0.5 MnO 3 (manganite) were deposited by PLD on Si substrate. The transport properties at the interface between the film and metallic electrode are characterized in order to study the resistance switching. Sample thermal treatment and electrical field history are important to be considered for get reproducible EPIR effect. Carriers trapping at the interfaces are considered as a possible explanation of our results

  11. Electric Field Structures in Thin Films: Formation and Properties

    DEFF Research Database (Denmark)

    Cassidy, Andrew; Plekan, Oksana; Balog, Richard

    2014-01-01

    A newly discovered class of molecular materials, so-called “spontelectrics”, display spontaneous electric fields. Here we show that the novel properties of spontelectrics can be used to create composite spontelectrics, illustrating how electric fields in solid films may be structured on the nanoscale...... by combining layers of different spontelectric materials. This is demonstrated using the spontelectric materials nitrous oxide, toluene, isoprene, isopentane, and CF2Cl2. These yield a variety of tailored electric field structures, with individual layers harboring fields between 107 and 108 V/m. Fields may...

  12. Modelling of radial electric field profile for different divertor configurations

    International Nuclear Information System (INIS)

    Rozhansky, V; Kaveeva, E; Voskoboynikov, S; Counsell, G; Kirk, A; Meyer, H; Coster, D; Conway, G; Schirmer, J; Schneider, R

    2006-01-01

    The impact of divertor configuration on the structure of the radial electric field has been simulated by the B2SOLPS5.0 transport fluid code. It is shown that the change in the parallel flows in the scrape-off layer, which are transported through the separatrix due to turbulent viscosity and diffusivity, should result in variation of the radial electric field and toroidal rotation in the separatrix vicinity. The modelling predictions are compared with the measurements of the radial electric field for the low field side equatorial mid-plane of ASDEX Upgrade in lower, upper and double-null (DN) divertor configurations. The parallel (toroidal) flows in the scrape-off layer and mechanisms for their formation are analysed for different geometries. It is demonstrated that a spike in the electric field exists at the high field side equatorial mid-plane in the connected DN divertor configuration. Its origin is connected with different potential drops between the separatrix vicinity and divertor plates in the two disconnected scrape-off layers, while the separatrix should be at almost the same potential. The spike might be important for additional turbulent suppression

  13. On the ionospheric coupling of auroral electric fields

    Directory of Open Access Journals (Sweden)

    G. T. Marklund

    2009-04-01

    Full Text Available The quasi-static coupling of high-altitude potential structures and electric fields to the ionosphere is discussed with particular focus on the downward field-aligned current (FAC region. Results are presented from a preliminary analysis of a selection of electric field events observed by Cluster above the acceleration region. The degree of coupling is here estimated as the ratio between the magnetic field-aligned potential drop, ΔΦII, as inferred from the characteristic energy of upward ion (electron beams for the upward (downward current region and the high-altitude perpendicular (to B potential, ΔΦbot, as calculated by integrating the perpendicular electric field across the structure. For upward currents, the coupling can be expressed analytically, using the linear current-voltage relation, as outlined by Weimer et al. (1985. This gives a scale size dependent coupling where structures are coupled (decoupled above (below a critical scale size. For downward currents, the current-voltage relation is highly non-linear which complicates the understanding of how the coupling works. Results from this experimental study indicate that small-scale structures are decoupled, similar to small-scale structures in the upward current region. There are, however, exceptions to this rule as illustrated by Cluster results of small-scale intense electric fields, correlated with downward currents, indicating a perfect coupling between the ionosphere and Cluster altitude.

  14. Pulsed electric field sensor based on original waveform measurement

    International Nuclear Information System (INIS)

    Ma Liang; Wu Wei; Cheng Yinhui; Zhou Hui; Li Baozhong; Li Jinxi; Zhu Meng

    2010-01-01

    The paper introduces the differential and original waveform measurement principles for pulsed E-field, and develops an pulsed E-field sensor based on original waveform measurement along with its theoretical correction model. The sensor consists of antenna, integrator, amplifier and driver, optic-electric/electric-optic conversion module and transmission module. The time-domain calibration in TEM cell indicates that, its risetime response is shorter than 1.0 ns, and the output pulse width at 90% of the maximum amplitude is wider than 10.0 μs. The output amplitude of the sensor is linear to the electric field intensity in a dynamic range of 20 dB. The measurement capability can be extended to 10 V/m or 50 kV/m by changing the system's antenna and other relative modules. (authors)

  15. Controlling turbulent drag across electrolytes using electric fields.

    Science.gov (United States)

    Ostilla-Mónico, Rodolfo; Lee, Alpha A

    2017-07-01

    Reversible in operando control of friction is an unsolved challenge that is crucial to industrial tribology. Recent studies show that at low sliding velocities, this control can be achieved by applying an electric field across electrolyte lubricants. However, the phenomenology at high sliding velocities is yet unknown. In this paper, we investigate the hydrodynamic friction across electrolytes under shear beyond the transition to turbulence. We develop a novel, highly parallelised numerical method for solving the coupled Navier-Stokes Poisson-Nernst-Planck equation. Our results show that turbulent drag cannot be controlled across dilute electrolytes using static electric fields alone. The limitations of the Poisson-Nernst-Planck formalism hint at ways in which turbulent drag could be controlled using electric fields.

  16. The electric field of a uniformly charged cubic shell

    Science.gov (United States)

    McCreery, Kaitlin; Greenside, Henry

    2018-01-01

    As an integrative and insightful example for undergraduates learning about electrostatics, we discuss how to use symmetry, Coulomb's law, superposition, Gauss's law, and visualization to understand the electric field E (x ,y ,z ) produced by a uniformly charged cubic shell. We first discuss how to deduce qualitatively, using freshman-level physics, the perhaps surprising fact that the interior electric field is nonzero and has a complex structure, pointing inwards from the middle of each face of the shell and pointing outwards towards each edge and corner. We then discuss how to understand the quantitative features of the electric field by plotting an analytical expression for E along symmetry lines and on symmetry surfaces of the shell.

  17. Time dependent convection electric fields and plasma injection

    International Nuclear Information System (INIS)

    Kaye, S.M.; Kivelson, M.G.

    1979-01-01

    Large-scale electric fields associated with storms or substorms are responsible for inward convection and energization of plasma sheet plasma. Calculations based on steady state convection theory show that the response to such electric fields qualitatively accounts for many features of the injected particle distribution, but quantitative agreement with the theory has not yet been obtained. It is known that the predictions can be improved by introducing the concept of convection in response to a time dependent electric field. On the other hand, time dependent calculations are sensitive to the choice of initial conditions, and most models have failed to incorporate these conditions in a realistic and self-consistent manner. In this paper we present a more complete model consisting of realisic initial conditions and time dependent convection to explain a typical substorm-associated electron injection event. We find very good agreement between the observed electron flux changes and those predicted by our model

  18. Anomalous Capacitive Sheath with Deep Radio Frequency Electric Field Penetration

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.

    2002-01-01

    A novel nonlinear effect of anomalously deep penetration of an external radio-frequency electric field into a plasma is described. A self-consistent kinetic treatment reveals a transition region between the sheath and the plasma. Because of the electron velocity modulation in the sheath, bunches in the energetic electron density are formed in the transition region adjusted to the sheath. The width of the region is of order V(subscript T)/omega, where V(subscript T) is the electron thermal velocity, and w is frequency of the electric field. The presence of the electric field in the transition region results in a cooling of the energetic electrons and an additional heating of the cold electrons in comparison with the case when the transition region is neglected

  19. Properties of partially ionized hydrogen plasmas in high electric fields

    International Nuclear Information System (INIS)

    Morawetz, K.

    1993-03-01

    In this thesis the fundamental equations of many-particle quantum-statistics of nonequilibrium are treated in respect to arbitrary high electric fields. Generalizations are found for the T-matrix approximation as well as for the shielded potential approximation valid for any field strength. These result in a non-Markovian behavior of the obtained collision integrals, also known as intra-collisional-field-effect (ICFE), and in a broadening of the energy conservation, the so-called collisional broadening (CB), caused by applied electric fields. In linear response it is shown in a new way, how the Debye-Onsager relaxation effect can be rederived from these collision integrals. Furthermore the complete quantum result is presented. Both effects, ICFE and CB, contribute to the right classical limit. The quantum result yields an surprising maximum of this field effects in dependence of the interacting mass ratio, which may be important in exciton-plasmas and semiconductors. (orig.)

  20. Electric and magnetic field reduction by alternative transmission line options

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, J.R. (Power Technologies, Inc., Schenectady, NY (United States)); Dale, S.J. (Oak Ridge National Lab., TN (United States)); Klein, K.W. (Energetics, Inc., Columbia, MD (United States))

    1991-01-01

    Ground level electric, and more recently magnetic, fields from overhead power transmission lines are increasingly important considerations in right of way specification, with states setting or planning to set edge of right of way limits. Research has been conducted in high phase order power transmission wherein six of twelve phases are used to transmit power in less physical space and with reduced electrical environmental effects than conventional designs. The first magnetic field testing, as reported in this paper, has verified predictive methods for determination of magnetic fields from high phase order lines. Based on these analytical methods, field profiles have been determined for lines of different phase order of comparable power capacity. Potential advantages of high phase order as a means of field mitigation are discussed. 10 refs., 12 figs., 3 tabs.

  1. Phenomenon of the time-reversal violating magnetic field generation by a static electric field in a medium and vacuum

    OpenAIRE

    Baryshevsky, Vladimir G.

    1999-01-01

    It is shown that the T- and P-odd weak interactions yield to the existence of both electric field and magnetic (directed along the electric field) field around an electric charge. Similarly the assotiated magnetic field is directed along the vector of strength of stationary gravitational field.

  2. An explanation for parallel electric field pulses observed over thunderstorms

    Science.gov (United States)

    Kelley, M. C.; Barnum, B. H.

    2009-10-01

    Every electric field instrument flown on sounding rockets over a thunderstorm has detected pulses of electric fields parallel to the Earth's magnetic field associated with every strike. This paper describes the ionospheric signatures found during a flight from Wallops Island, Virginia, on 2 September 1995. The electric field results in a drifting Maxwellian corresponding to energies up to 1 eV. The distribution function relaxes because of elastic and inelastic collisions, resulting in electron heating up to 4000-5000 K and potentially observable red line emissions and enhanced ISR electron temperatures. The field strength scales with the current in cloud-to-ground strikes and falls off as r -1 with distance. Pulses of both polarities are found, although most electric fields are downward, parallel to the magnetic field. The pulse may be the reaction of ambient plasma to a current pulse carried at the whistler packet's highest group velocity. The charge source required to produce the electric field is very likely electrons of a few keV traveling at the packet velocity. We conjecture that the current source is the divergence of the current flowing at mesospheric heights, the phenomenon called an elve. The whistler packet's effective radiated power is as high as 25 mW at ionospheric heights, comparable to some ionospheric heater transmissions. Comparing the Poynting flux at the base of the ionosphere with flux an equal distance away along the ground, some 30 db are lost in the mesosphere. Another 10 db are lost in the transition from free space to the whistler mode.

  3. Improving NASICON Sinterability through Crystallization under High Frequency Electrical Fields

    Directory of Open Access Journals (Sweden)

    Ilya eLisenker

    2016-03-01

    Full Text Available The effect of high frequency (HF electric fields on the crystallization and sintering rates of a lithium aluminum germanium phosphate (LAGP ion conducting ceramic was investigated. LAGP with the nominal composition Li1.5Al0.5Ge1.5(PO43 was crystallized and sintered, both conventionally and under effect of electrical field. Electrical field application, of 300V/cm at 1MHz, produced up to a 40% improvement in sintering rate of LAGP that was crystallized and sintered under the HF field. Heat sink effect of the electrodes appears to arrest thermal runaway and subsequent flash behavior. Sintered pellets were characterized using XRD, SEM, TEM and EIS to compare conventionally and field sintered processes. The as-sintered structure appears largely unaffected by the field as the sintering curves tend to converge beyond initial stages of sintering. Differences in densities and microstructure after 1 hour of sintering were minor with measured sintering strains of 31% vs. 26% with and without field, respectively . Ionic conductivity of the sintered pellets was evaluated and no deterioration due to the use of HF field was noted, though capacitance of grain boundaries due to secondary phases was significantly increased.

  4. Control of magnetism in Co by an electric field

    Science.gov (United States)

    Chiba, D.; Ono, T.

    2013-05-01

    In this paper, we review the recent experimental developments on electric-field switching of ferromagnetism in ultra-thin Co films. The application of an electric field changes the electron density at the surface of the Co film, which results in modulation of its Curie temperature. A capacitor structure consisting of a gate electrode, a solid-state dielectric insulator and a Co bottom electrode is used to observe the effect. To obtain a larger change in the electron density, we also fabricated an electric double-layer capacitor structure using an ionic liquid. A large change in the Curie temperature of ∼100 K across room temperature is achieved with this structure. The application of the electric field influences not only the Curie temperature but also the domain-wall motion. A change in the velocity of a domain wall prepared in a Co micro-wire of more than one order of magnitude is observed. Possible mechanisms to explain the above-mentioned electric-field effects in Co ultra-thin films are discussed.

  5. Control of magnetism in Co by an electric field

    International Nuclear Information System (INIS)

    Chiba, D; Ono, T

    2013-01-01

    In this paper, we review the recent experimental developments on electric-field switching of ferromagnetism in ultra-thin Co films. The application of an electric field changes the electron density at the surface of the Co film, which results in modulation of its Curie temperature. A capacitor structure consisting of a gate electrode, a solid-state dielectric insulator and a Co bottom electrode is used to observe the effect. To obtain a larger change in the electron density, we also fabricated an electric double-layer capacitor structure using an ionic liquid. A large change in the Curie temperature of ∼100 K across room temperature is achieved with this structure. The application of the electric field influences not only the Curie temperature but also the domain-wall motion. A change in the velocity of a domain wall prepared in a Co micro-wire of more than one order of magnitude is observed. Possible mechanisms to explain the above-mentioned electric-field effects in Co ultra-thin films are discussed. (topical review)

  6. Effects of radial electrical field on neoclassical transport in tokamaks

    International Nuclear Information System (INIS)

    Wang Zhongtian; Le Clair, G.

    1996-07-01

    Neoclassical transport theory for tokamaks in presence of a radial electrical field with shear is developed using Hamiltonian formalism. Diffusion coefficients are derived in both plateau regime including a large electric field and banana regime including the squeezing factor which can greatly affect diffusion at the plasma edge. The scaling on squeezing factor is different from the one given by Shaing and Hazeltine. Rotation speeds are calculated in the scrape-off region. They are in good agreement with measurements on TdeV Tokamak. (2 figs.)

  7. Electric field effects in scanning tunneling microscope imaging

    DEFF Research Database (Denmark)

    Stokbro, Kurt; Quaade, Ulrich; Grey, Francois

    1998-01-01

    We present a high-voltage extension of the Tersoff-Hamann theory of scanning tunneling microscope (STM) images, which includes the effect of the electric field between the tip and the sample. The theoretical model is based on first-principles electronic structure calculations and has no adjustable...... parameters. We use the method to calculate theoretical STM images of the monohydrate Si(100)-H(2x1) surface with missing hydrogen defects at -2V and find an enhanced corrugation due to the electric field, in good agreement with experimental images....

  8. Reduced dielectric response in spatially varying electric fields

    DEFF Research Database (Denmark)

    Hansen, Jesper Schmidt

    2015-01-01

    relations between the flux and the gradient of the polarization. Comparison between the theory and molecular dynamics simulations confirms this effect. The effect is significant for small length scale electric field variations and the inclusion of the flux is thus important in nanoscale modeling......In this paper, the dynamical equation for polarization is derived. From this the dielectric response to a spatially varying electric field is analyzed showing a reduced response due to flux of polarization in the material. This flux is modeled as a diffusive process through linear constitutive...

  9. Magnetic fluid droplet in a harmonic electric field

    Energy Technology Data Exchange (ETDEWEB)

    Kvasov, D., E-mail: kvasovdmitry@gmail.com [Lomonosov Moscow State University, Moscow (Russian Federation); Naletova, V. [Lomonosov Moscow State University, Moscow (Russian Federation); Beketova, E.; Dikanskii, Yu. [North-Caucasus Federal University, Stavropol (Russian Federation)

    2017-06-01

    A magnetic fluid droplet immersed in oil in an applied harmonic electric field is studied experimentally and theoretically. It is shown that deformations of the droplet observed experimentally are not described by the well-known theory. New double-layer droplet model which describes experimental data well is proposed. - Highlights: • The magnetic fluid droplet in the oil in a harmonic electric field is studied. • The paradoxical flattening effect of the droplet is observed experimentally. • For explaining this effect the model of the double-layer droplet is proposed. • Numerical and experimental data coincide qualitatively and quantitatively.

  10. Laterally coupled circular quantum dots under applied electric field

    Science.gov (United States)

    Duque, C. M.; Correa, J. D.; Morales, A. L.; Mora-Ramos, M. E.; Duque, C. A.

    2016-03-01

    The optical response of a system of two laterally coupled quantum dots with circular cross-sectional shape is investigated within the effective mass approximation, taking into account the effects of the change in the geometrical configuration, the application of an external static electric field, and the presence of a donor impurity center. The first-order dielectric susceptibility is calculated in order to derive the corresponding light absorption and relative refractive index coefficients. The possibility of tuning these optical properties by means of changes in the quantum dot symmetry and the electric field intensity is particularly discussed.

  11. Dependence of electric field on STM tip preparation

    DEFF Research Database (Denmark)

    Huang, D.H.; Grey, Francois; Aono, M.

    1998-01-01

    Voltage pulses applied between an STM tip and a surface can modify the surface on the nanometer scale due to electric-field-induced evaporation. However, at present, different groups have achieved surface modification with quite different bias conditions, and it is still difficult to obtain high...... reproducibility in such experiments. In this paper, we measure the tip displacement during a pulse at constant tunnelling current, and deduce that the electric field produced by the pulse depends in a systematic way on tip preparation, The results show how differences in tip preparation can be a major source...

  12. Electric field measuring and display system. [for cloud formations

    Science.gov (United States)

    Wojtasinski, R. J.; Lovall, D. D. (Inventor)

    1974-01-01

    An apparatus is described for monitoring the electric fields of cloud formations within a particular area. It utilizes capacitor plates that are alternately shielded from the clouds for generating an alternating signal corresponding to the intensity of the electric field of the clouds. A synchronizing signal is produced for controlling sampling of the alternating signal. Such samplings are fed through a filter and converted by an analogue to digital converter into digital form and subsequently fed to a transmitter for transmission to the control station for recording.

  13. Electric field-decoupled electroosmotic pump for microfluidic devices.

    Science.gov (United States)

    Liu, Shaorong; Pu, Qiaosheng; Lu, Joann J

    2003-09-26

    An electric field-free electroosmotic pump has been constructed and its pumping rate has been measured under various experimental conditions. The key component of the pump is an ion-exchange membrane grounding joint that serves two major functions: (i) to maintain fluid continuity between pump channels and microfluidic conduit and (ii) to ground the solution in the microfluidic channel at the joint through an external electrode, and hence to decouple the electric field applied to the pump channels from the rest of the microfluidic system. A theoretical model has been developed to calculate the pumping rates and its validity has been demonstrated.

  14. Characterization of complementary electric field coupled resonant surfaces

    Science.gov (United States)

    Hand, Thomas H.; Gollub, Jonah; Sajuyigbe, Soji; Smith, David R.; Cummer, Steven A.

    2008-11-01

    We present angle-resolved free-space transmission and reflection measurements of a surface composed of complementary electric inductive-capacitive (CELC) resonators. By measuring the reflection and transmission coefficients of a CELC surface with different polarizations and particle orientations, we show that the CELC only responds to in-plane magnetic fields. This confirms the Babinet particle duality between the CELC and its complement, the electric field coupled LC resonator. Characterization of the CELC structure serves to expand the current library of resonant elements metamaterial designers can draw upon to make unique materials and surfaces.

  15. Effect of AC electric fields on flame spread over electrical wire

    KAUST Repository

    Kim, Minkuk

    2011-01-01

    The effect of electric fields on the characteristics of flame spread over insulated electrical wire has been investigated experimentally by varying AC voltage and frequency applied to the wire in the normal gravity condition. The polyethylene (PE) insulated electrical wire was placed horizontally on electrically non-conducting posts and one end of the wire was connected to the high voltage terminal. Thus, the electrical system is the single electrode configuration. The wire was ignited at one end and the flame spread rate along the wire has been measured from the images using a video camera. Two distinct regimes existed depending on the applied AC frequency. In the low frequency regime, the flame spread rate decreased with the frequency and voltage. While in the high frequency regime, it decreased initially with voltage and then increased. At high frequency, the spread rate was even over that without applying electric fields. This result implies that fire safety codes developed without considering the effect of electric fields may require modifications. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  16. Electroporation of Mammalian Cells by Nanosecond Electric Field Oscillations and its Inhibition by the Electric Field Reversal

    Science.gov (United States)

    2015-09-08

    Report 3. DATES COVERED (From – To) March 2013 to July 2015 4. TITLE AND SUBTITLE Electroporation of mammalian cells by nanosecond electric field...Prescribed by ANSI Std. Z39.18 1Scientific RepoRts | 5:13818 | DOi: 10.1038/srep13818 www.nature.com/scientificreports Electroporation of mammalian cells...first to demonstrate that mammalian cells can be electroporated by damped sine wave electric stimuli of nanosecond duration. By comparing the

  17. Effect of radial electric field inhomogeneity on anomalous cross field plasma flux in Heliotron/Torsatron

    International Nuclear Information System (INIS)

    Yamagishi, Tomejiro; Sanuki, Heiji.

    1996-01-01

    Anomalous cross field plasma fluxes induced by the electric field fluctuations has been evaluated in a rotating plasma with shear flow in a helical system. The anomalous ion flux is evaluated by the contribution from ion curvature drift resonance continuum in the test particle model. The radial electric field induces the Doppler frequency shift which disappears in the frequency integrated anomalous flux. The inhomogeneity of the electric field (shear flow effect), however, induces a new force term in the flux. The curvature drift resonance also induces a new force term '/ which, however, did not make large influence in the ion flux in the CHS configuration. The shear flow term in the flux combined with the electric field in neoclassical flux reduces to a first order differential equation which governs the radial profile of the electric field. Numerical results indicate that the shear flow effect is important for the anomalous cross field flux and for determination of the radial electric field particularly in the peripheral region. (author)

  18. Acceleration of auroral particles by magnetic-field aligned electric fields

    International Nuclear Information System (INIS)

    Block, L.P.

    1988-01-01

    Measurements on the S3-3 and Viking satellites appear to show that at least a large fraction of magnetic field-aligned potential drops are made up of multiple double layers. Solitons and double layers in U-shaped potential structures give rise to spiky electric fields also perpendicular to the magnetic field in agreement with satellite measurements. The large scale potential structures associated with inverted V-events are built up of many similar short-lived structures on a small scale. Viking measurements indicate that electric fields parallel to the magnetic field are almost always directed upward

  19. Effects of the reconnection electric field on crescent electron distribution functions in asymmetric guide field reconnection

    Science.gov (United States)

    Bessho, N.; Chen, L. J.; Hesse, M.; Wang, S.

    2017-12-01

    In asymmetric reconnection with a guide field in the Earth's magnetopause, electron motion in the electron diffusion region (EDR) is largely affected by the guide field, the Hall electric field, and the reconnection electric field. The electron motion in the EDR is neither simple gyration around the guide field nor simple meandering motion across the current sheet. The combined meandering motion and gyration has essential effects on particle acceleration by the in-plane Hall electric field (existing only in the magnetospheric side) and the out-of-plane reconnection electric field. We analyze electron motion and crescent-shaped electron distribution functions in the EDR in asymmetric guide field reconnection, and perform 2-D particle-in-cell (PIC) simulations to elucidate the effect of reconnection electric field on electron distribution functions. Recently, we have analytically expressed the acceleration effect due to the reconnection electric field on electron crescent distribution functions in asymmetric reconnection without a guide field (Bessho et al., Phys. Plasmas, 24, 072903, 2017). We extend the theory to asymmetric guide field reconnection, and predict the crescent bulge in distribution functions. Assuming 1D approximation of field variations in the EDR, we derive the time period of oscillatory electron motion (meandering + gyration) in the EDR. The time period is expressed as a hybrid of the meandering period and the gyro period. Due to the guide field, electrons not only oscillate along crescent-shaped trajectories in the velocity plane perpendicular to the antiparallel magnetic fields, but also move along parabolic trajectories in the velocity plane coplanar with magnetic field. The trajectory in the velocity space gradually shifts to the acceleration direction by the reconnection electric field as multiple bounces continue. Due to the guide field, electron distributions for meandering particles are bounded by two paraboloids (or hyperboloids) in the

  20. Electric field tuning of phase separation in manganite thin films

    KAUST Repository

    Lourembam, James; Wu, Jianchun; Ding, Junfeng; Lin, Weinan; Wu, Tao

    2014-01-01

    In this paper, we investigate the electric field effect on epitaxial Pr0.65(Ca0.75Sr0.25)0.35MnO3 thin films in electric double-layer transistors. Different from the conventional transistors with semiconducting channels, the sub(micrometer)-scale phase separation in the manganite channels is expected to result in inhomogeneous distribution of mobile carriers and local enhancement of electric field. The field effect is much larger in the low-temperature phase separation region compared to that in the high-temperature polaron transport region. Further enhancement of electroresistance is achieved by applying a magnetic field, and a 250% modulation of resistance is observed at 80 K, equivalent to an increase of the ferromagnetic metallic phase fraction by 0.51%, as estimated by the general effective medium model. Our results illustrate the complementary nature of electric and magnetic field effects in phase-separated manganites, providing insights on such novel electronic devices based on complex oxides.

  1. AC Electric Field Communication for Human-Area Networking

    Science.gov (United States)

    Kado, Yuichi; Shinagawa, Mitsuru

    We have proposed a human-area networking technology that uses the surface of the human body as a data transmission path and uses an AC electric field signal below the resonant frequency of the human body. This technology aims to achieve a “touch and connect” intuitive form of communication by using the electric field signal that propagates along the surface of the human body, while suppressing both the electric field radiating from the human body and mutual interference. To suppress the radiation field, the frequency of the AC signal that excites the transmitter electrode must be lowered, and the sensitivity of the receiver must be raised while reducing transmission power to its minimally required level. We describe how we are developing AC electric field communication technologies to promote the further evolution of a human-area network in support of ubiquitous services, focusing on three main characteristics, enabling-transceiver technique, application-scenario modeling, and communications quality evaluation. Special attention is paid to the relationship between electro-magnetic compatibility evaluation and regulations for extremely low-power radio stations based on Japan's Radio Law.

  2. Electric fields and energetic particle precipitation in an auroral arc

    International Nuclear Information System (INIS)

    Edwards, T.; Bryant, D.A.; Smith, M.J.; Fahleson, U.; Faelthammer, C.G.; Pedersen, A.

    1975-01-01

    Preliminary results are presented from a rocket flight across a single discrete auroral arc extending from early evening to magnetic midnight. The rocket was fired at the end of the growth phase of an isolated auroral substorm. It carried a separating payload to make simultaneous measurements of electrons (0.6 - 25 keV, pitch angle 0 - 60 0 ) at two points. From the main vehicle measurements were also made of ions (same energy range) as well as of the electric field vector and plasma parameters. The electron spectra were hardest towards the centre of the arc, where the peak intensity was at 9.5 keV. The precipitation structure observed was similar to that of an 'inverted V' but on a smaller scale. The electric field was northward south of the arc, southward within the arc and somewhat north of it, then again northward. At the northern edge of the precipitation region the field was very irregular. The field strength reached a maximum of about 50 mV/m some distance north of the arc. The line integral of the electric field across the arc was of the order of a kilovolt, too small to be responsible for the changes observed in the electron energy spectrum. An electric potential distribution, consistent with the results obtained, is present. (Auth.)

  3. Plasmasphere and ring current electric fields observed by GEOS 2

    International Nuclear Information System (INIS)

    Schmidt, R.; Pedersen, A.

    1988-01-01

    The electric field double probe data from GEOS 2 have been statistically examined to study the consecutive passage of the afternoon plasmaspheric bulge and the trough at the geostationary orbit. It was found that the average location of the bulge depends on the magnetic activity and was encountered at earlier local times for higher magnetospheric activity. Within the bulge the electric field showed very frequently a typical directional change from dawnward outside to duskward inside the bulge. The magnitude of the magnetic field was frequently much smaller near the outbound crossing of the plasmaspheric bulge than is expected from a long-term average. The E x B/B-squared drift pointed azimuthally eastward prior to the encounter of the bulge and rotated into the sunward direction within the bulge. Following its passage through the dense, cold plasma in the bulge, GEOS 2 encountered a hot and tenuous plasma sheet-type plasma in the trough that occasionally corrupted the electric field measurements. Generally, the electric field in the trough is much smaller than in the bulge. A possible cause of the sunward plasma flow within the bulge is discussed on the basis of these data. 13 references

  4. Electric field tuning of phase separation in manganite thin films

    KAUST Repository

    Lourembam, James

    2014-01-29

    In this paper, we investigate the electric field effect on epitaxial Pr0.65(Ca0.75Sr0.25)0.35MnO3 thin films in electric double-layer transistors. Different from the conventional transistors with semiconducting channels, the sub(micrometer)-scale phase separation in the manganite channels is expected to result in inhomogeneous distribution of mobile carriers and local enhancement of electric field. The field effect is much larger in the low-temperature phase separation region compared to that in the high-temperature polaron transport region. Further enhancement of electroresistance is achieved by applying a magnetic field, and a 250% modulation of resistance is observed at 80 K, equivalent to an increase of the ferromagnetic metallic phase fraction by 0.51%, as estimated by the general effective medium model. Our results illustrate the complementary nature of electric and magnetic field effects in phase-separated manganites, providing insights on such novel electronic devices based on complex oxides.

  5. Properties of bare strange stars associated with surface electric fields

    International Nuclear Information System (INIS)

    Picanco Negreiros, Rodrigo; Mishustin, Igor N.; Schramm, Stefan; Weber, Fridolin

    2010-01-01

    In this paper we investigate the electrodynamic surface properties of bare strange quark stars. The surfaces of such objects are characterized by the formation of ultrahigh electric surface fields which might be as high as ∼10 19 V/cm. These fields result from the formation of electric dipole layers at the stellar surfaces. We calculate the increase in gravitational mass associated with the energy stored in the electric dipole field, which turns out to be only significant if the star possesses a sufficiently strong net electric charge distribution. In the second part of the paper, we explore the intriguing possibility of what happens when the electron layer (sphere) rotates with respect to the stellar strange matter body. We find that in this event magnetic fields can be generated which, for moderate effective rotational frequencies between the electron layer and the stellar body, agree with the magnetic fields inferred for several central compact objects. These objects could thus be comfortably interpreted as strange stars whose electron atmospheres rotate at frequencies that are moderately different (∼10 Hz) from the rotational frequencies of the strange star itself.

  6. Correlations in double parton distributions: perturbative and non-perturbative effects

    Energy Technology Data Exchange (ETDEWEB)

    Rinaldi, Matteo; Scopetta, Sergio [Dipartimento di Fisica e Geologia, Università degli Studi di Perugia andIstituto Nazionale di Fisica Nucleare, Sezione di Perugia, via A. Pascoli, I-06123 Perugia (Italy); Traini, Marco [Institut de Physique Théorique CEA-Saclay, F-91191 Gif-sur-Yvette (France); INFN - TIFPA, Dipartimento di Fisica, Università degli Studi di Trento,Via Sommarive 14, I-38123 Povo (Trento) (Italy); Vento, Vicente [Departament de Física Teòrica, Universitat de València and Institut de Física Corpuscular,Consejo Superior de Investigaciones Científicas, 46100 Carrer del Dr. Moliner 50 València (Spain)

    2016-10-12

    The correct description of Double Parton Scattering (DPS), which represents a background in several channels for the search of new Physics at the LHC, requires the knowledge of double parton distribution functions (dPDFs). These quantities represent also a novel tool for the study of the three-dimensional nucleon structure, complementary to the possibilities offered by electromagnetic probes. In this paper we analyze dPDFs using Poincaré covariant predictions obtained by using a Light-Front constituent quark model proposed in a recent paper, and QCD evolution. We study to what extent factorized expressions for dPDFs, which neglect, at least in part, two-parton correlations, can be used. We show that they fail in reproducing the calculated dPDFs, in particular in the valence region. Actually measurable processes at existing facilities occur at low longitudinal momenta of the interacting partons; to have contact with these processes we have analyzed correlations between pairs of partons of different kind, finding that, in some cases, they are strongly suppressed at low longitudinal momenta, while for other distributions they can be sizeable. For example, the effect of gluon-gluon correlations can be as large as 20 %. We have shown that these behaviors can be understood in terms of a delicate interference of non-perturbative correlations, generated by the dynamics of the model, and perturbative ones, generated by the model independent evolution procedure. Our analysis shows that at LHC kinematics two-parton correlations can be relevant in DPS, and therefore we address the possibility to study them experimentally.

  7. A Non-Perturbative Treatment of Quantum Impurity Problems in Real Lattices

    Science.gov (United States)

    Allerdt, Andrew C.

    Historically, the RKKY or indirect exchange, interaction has been accepted as being able to be described by second order perturbation theory. A typical universal expression is usually given in this context. This approach, however, fails to incorporate many body effects, quantum fluctuations, and other important details. In Chapter 2, a novel numerical approach is developed to tackle these problems in a quasi-exact, non-perturbative manner. Behind the method lies the main concept of being able to exactly map an n-dimensional lattice problem onto a 1-dimensional chain. The density matrix renormalization group algorithm is then employed to solve the newly cast Hamiltonian. In the following chapters, it is demonstrated that conventional RKKY theory does not capture the crucial physics. It is found that the Kondo effect, i.e. the screening of an impurity spin, tends to dominate over a ferromagnetic interaction between impurity spins. Furthermore, it is found that the indirect exchange interaction does not decay algebraically. Instead, there is a crossover upon increasing JK, where impurities favor forming their own independent Kondo states after just a few lattice spacings. This is not a trivial result, as one may naively expect impurities to interact when their conventional Kondo clouds overlap. The spin structure around impurities coupled to the edge of a 2D topological insulator is investigated in Chapter 7. Modeled after materials such as silicine, germanene, and stanene, it is shown with spatial resolution of the lattice that the specific impurity placement plays a key role. Effects of spin-orbit interactions are also discussed. Finally, in the last chapter, transition metal complexes are studied. This really shows the power and versatility of the method developed throughout the work. The spin states of an iron atom in the molecule FeN4C 10 are calculated and compared to DFT, showing the importance of inter-orbital coulomb interactions. Using dynamical DMRG, the

  8. Experimental investigations of strong interaction in the non-perturbative QCD region

    International Nuclear Information System (INIS)

    Lindenbaum, S.J.; Samuel, S.

    1993-09-01

    A critical investigation of non-perturbative QCD require investigating glueballs, search for a Quark Gluon Plasma (OGP), and search for strangelets. In the glueball area the data obtained (E- 881) at 8 GeV/c were analyzed for π - + p → φφn (OZI forbidden), φK + K - n (OZI allowed), K - p → φφ(ΛΣ) (OZI allowed), and bar pp → φφ → φφπ 0 (OZI forbidden), φK + K - π 0 (OZI allowed). By comparing the OZI forbidden (glueball filter reactions) with the OZI allowed and previous 22 GeV/c π - p → φφn or φK + K - n data a further critical test of the so far unsuccessfully challenged hypothesis that our g T (2010), g T '(2300) and g T double-prime(2340) all with I G J PC = 0 + 2 ++ are produced by 1-3 2 ++ glueballs will be made. In the QGP search with a large-solid-angle TPC a good Ξ signal was observed. The ratio of Ξ to single strange quark particles such as λ is a better indication of strangeness enhancement in QGP formation. The data indicate enhancement by a factor ∼ 2 over cascade model (corrected to observed strangeness) predictions, but it is definitely far from conclusive at this stage since the result is model dependent. Double λ topologies of the type needed to discover light strangelets in the nanosecond lifetime region were found. In addition, research has been accomplished in three main areas: bosonic technicolor and strings, buckministerfullerene C 60 and neutrino oscillations in a dense neutrino gas

  9. AdS/QCD, LIight-Front Holography, and the Non-perturbative Running Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC; de Teramond, Guy; /Costa Rica U.; Deur, Alexandre; /Jefferson Lab

    2010-04-29

    The combination of Anti-de Sitter space (AdS) methods with light-front (LF) holography provides a remarkably accurate first approximation for the spectra and wavefunctions of meson and baryon light-quark bound states. The resulting bound-state Hamiltonian equation of motion in QCD leads to relativistic light-front wave equations in terms of an invariant impact variable {zeta} which measures the separation of the quark and gluonic constituents within the hadron at equal light-front time. These equations of motion in physical space-time are equivalent to the equations of motion which describe the propagation of spin-J modes in anti-de Sitter (AdS) space. The eigenvalues give the hadronic spectrum, and the eigenmodes represent the probability distributions of the hadronic constituents at a given scale. A positive-sign confining dilaton background modifying AdS space gives a very good account of meson and baryon spectroscopy and form factors. The light-front holographic mapping of this model also leads to a non-perturbative effective coupling {alpha}{sub s}{sup Ads} (Q{sup 2}) which agrees with the effective charge defined by the Bjorken sum rule and lattice simulations. It displays a transition from perturbative to nonperturbative conformal regimes at a momentum scale {approx} 1 GeV. The resulting {beta}-function appears to capture the essential characteristics of the full {beta}-function of QCD, thus giving further support to the application of the gauge/gravity duality to the confining dynamics of strongly coupled QCD.

  10. A non-perturbative exploration of the high energy regime in Nf=3 QCD. ALPHA Collaboration

    Science.gov (United States)

    Dalla Brida, Mattia; Fritzsch, Patrick; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    2018-05-01

    Using continuum extrapolated lattice data we trace a family of running couplings in three-flavour QCD over a large range of scales from about 4 to 128 GeV. The scale is set by the finite space time volume so that recursive finite size techniques can be applied, and Schrödinger functional (SF) boundary conditions enable direct simulations in the chiral limit. Compared to earlier studies we have improved on both statistical and systematic errors. Using the SF coupling to implicitly define a reference scale 1/L_0≈ 4 GeV through \\bar{g}^2(L_0) =2.012, we quote L_0 Λ ^{N_f=3}_{{\\overline{MS}}} =0.0791(21). This error is dominated by statistics; in particular, the remnant perturbative uncertainty is negligible and very well controlled, by connecting to infinite renormalization scale from different scales 2^n/L_0 for n=0,1,\\ldots ,5. An intermediate step in this connection may involve any member of a one-parameter family of SF couplings. This provides an excellent opportunity for tests of perturbation theory some of which have been published in a letter (ALPHA collaboration, M. Dalla Brida et al. in Phys Rev Lett 117(18):182001, 2016). The results indicate that for our target precision of 3 per cent in L_0 Λ ^{N_f=3}_{{\\overline{MS}}}, a reliable estimate of the truncation error requires non-perturbative data for a sufficiently large range of values of α _s=\\bar{g}^2/(4π ). In the present work we reach this precision by studying scales that vary by a factor 2^5= 32, reaching down to α _s≈ 0.1. We here provide the details of our analysis and an extended discussion.

  11. Non-perturbative investigation of current correlators in twisted mass lattice QCD

    International Nuclear Information System (INIS)

    Petschlies, Marcus

    2013-01-01

    We present an investigation of hadronic current-current correlators based on the first principles of Quantum Chromodynamics. Specifically we apply the non-perturbative methods of twisted mass lattice QCD with dynamical up and down quark taking advantage of its automatic O(a) improvement. As a special application we discuss the calculation of the hadronic leading order contribution to the muon anomalous magnetic moment. The latter is regarded as a promising quantity for the search for physics beyond the standard model. The origin of the strong interest in the muon anomaly lies in the persistent discrepancy between the standard model estimate and its experimental measurement. In the theoretical determination the hadronic leading order part is currently afflicted with the largest uncertainty and a dedicated lattice investigation of the former can be of strong impact on future estimates. We discuss our study of all systematic uncertainties in the lattice calculation, including three lattice volumes, two lattice spacings, pion masses from 650 MeV to 290 MeV and the quark-disconnected contribution. We present a new method for the extrapolation to the physical point that softens the pion mass dependence of a μ hlo and allows for a linear extrapolation with small statistical uncertainty at the physical point. We determine the contribution of up and down quark as a μ hlo (N f =2)=5.69(15)10 -8 . The methods used for the muon are extended to the electron and tau lepton and we find a e hlo (N f =2)=1.512(43)10 -12 and a τ hlo (N f =2)=2.635(54)10 -6 . We estimate the charm contribution to a μ hlo in partially quenched tmLQCD with the result a μ hlo (charm)=1.447(24)(30)10 -9 in very good agreement with a dispersion-relation based result using experimental data for the hadronic R-ratio.

  12. Extraction of the Electric Field in Field Plate Assisted RESURF Devices

    NARCIS (Netherlands)

    Boksteen, B.K.; Dhar, S.; Heringa, A.; Koops, G.E.J.; Hueting, Raymond Josephus Engelbart

    2012-01-01

    It has previously been reported that the lateral electric field (Ex) in the drain extension of thin SOI HV (700V) field plate assisted RESURF devices can be extracted from their ID-VD characteristics in the subthreshold regime. In this work the prerequisites for valid field extraction and the

  13. Design of Electric Field Sensors for Measurement of Electromagnetic Pulse

    Directory of Open Access Journals (Sweden)

    Hui ZHANG

    2014-01-01

    Full Text Available In this paper, a D-dot electric field sensor and a fiber-optic transmission electric field sensor are developed for measurement of electromagnetic pulse. The D-dot sensor is a differential model sensor without source and has a simple structure. The fiber-optic transmission sensor is in the type of small dipole antenna, which uses its outside shielding layer as a pair of antennas. Design of the sensor circuit and the test system are introduced in this paper. A calibration system for these pulsed field sensors is established and the test results verified the ability of the developed sensors for measurement of the standard electromagnetic pulse field (the half peak width is 25 ns and the rising time is 2.5 ns.

  14. Low frequency electric and magnetic fields - the topic of cancer

    International Nuclear Information System (INIS)

    Thommesen, G.

    1988-01-01

    A review is made of the literature about the biological effects of low frequency electric and magnetic fields. It is still an unsettled question whether extremely low frequency magnetic fields may increase the incidence of cancer. Experimental data arise mainly from exposure to field strengths or frequencies seldom or never encountered by people. The results give no clear explanation to the increase in cancer incidence reported in epidemiological works. The spectre of possible mechanisms imply that no simple dose/effect relationship should be expected, as conflicting mechanisms may dominate at different exposure levels. There is therefore no basis at present for giving numerical value to cancer risk from exposure to low frequency electric or magnetic fields

  15. Inactivation of Listeria monocytogenes in milk by pulsed electric field.

    Science.gov (United States)

    Reina, L D; Jin, Z T; Zhang, Q H; Yousef, A E

    1998-09-01

    Pasteurized whole, 2%, and skim milk were inoculated with Listeria monocytogenes Scott A and treated with high-voltage pulsed electric field (PEF). The effects of milk composition (fat content) and PEF parameters (electric field strength, treatment time, and treatment temperature) on the inactivation of the bacterium were studied. No significant differences were observed in the inactivation of L. monocytogenes Scott A in three types of milk by PEF treatment. With treatment at 25 degrees C, 1- to 3-log reductions of L. monocytogenes were observed. PEF lethal effect was a function of field strength and treatment time. Higher field strength or longer treatment time resulted in a greater reduction of viable cells. A 4-log reduction of the bacterium was obtained by increasing the treatment temperature to 50 degrees C. Results indicate that the use of a high-voltage PEF is a promising technology for inactivation of foodborne pathogens.

  16. Control of colloids with gravity, temperature gradients, and electric fields

    CERN Document Server

    Sullivan, M; Harrison, C; Austin, R H; Megens, M; Hollingsworth, A; Russel, W B; Cheng Zhen; Mason, T; Chaikin, P M

    2003-01-01

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  17. Control of colloids with gravity, temperature gradients, and electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Matt [Department of Physics, Princeton University, Princeton, NJ (United States); Zhao Kun [Department of Physics, Princeton University, Princeton, NJ (United States); Harrison, Christopher [Department of Physics, Princeton University, Princeton, NJ (United States); Austin, Robert H [Department of Physics, Princeton University, Princeton, NJ (United States); Megens, Mischa [Department of Physics, Princeton University, Princeton, NJ (United States); Hollingsworth, Andrew [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Russel, William B [Department of Chemical Engineering, Princeton University, Princeton, NJ (United States); Cheng Zhengdong [ExxonMobil Research, Annandale, NJ (United States); Mason, Thomas [ExxonMobil Research, Annandale, NJ (United States); Chaikin, P M [Department of Physics, Princeton University, Princeton, NJ (United States)

    2003-01-15

    We have used a variety of different applied fields to control the density, growth, and structure of colloidal crystals. Gravity exerts a body force proportional to the buoyant mass and in equilibrium produces a height-dependent concentration profile. A similar body force can be obtained with electric fields on charged particles (electrophoresis), a temperature gradient on all particles, or an electric field gradient on uncharged particles (dielectrophoresis). The last is particularly interesting since its magnitude and sign can be changed by tuning the applied frequency. We study these effects in bulk (making 'dielectrophoretic bottles' or traps), to control concentration profiles during nucleation and growth and near surfaces. We also study control of non-spherical and optically anisotropic particles with the light field from laser tweezers.

  18. Calculation of the Magnetic Fields of the Electric Power Line

    Directory of Open Access Journals (Sweden)

    Patsiuk V.

    2016-12-01

    Full Text Available The task of calculation of per unit length parameters of multi-conductor electrical overhead transmission lines has been treated in the paper. The calculation of distribution of electric and magnetic fields has been performed by means of the finite volume method for entire span of the line. The theoretical justification of the method for calculation the parameters of electromagnetic field taking into account the change of the vector of magnetic potential along the line has been given. The problems of electrostatic and magnetostatic for a single electric conductor and unlimited long conductor with current have been solved. For the inner and total inductivities of a single conductor under the current have been obtained relationships and drawn dependences. Dependence between the speeds of light and of electromagnetic wave’s propagation has been presented. Based on the characteristics of distribution of electric and magnetic fields of multi-conductor lines has been provided the method of calculation of the matrix of own and mutual capacitances and inductivities the calculated values of per unit length parameters of compact 110 kV electric line which is in concordance with one of basic physical constant – the speed of light.

  19. Electric field vector measurements in a surface ionization wave discharge

    International Nuclear Information System (INIS)

    Goldberg, Benjamin M; Adamovich, Igor V; Lempert, Walter R; Böhm, Patrick S; Czarnetzki, Uwe

    2015-01-01

    This work presents the results of time-resolved electric field vector measurements in a short pulse duration (60 ns full width at half maximum), surface ionization wave discharge in hydrogen using a picosecond four-wave mixing technique. Electric field vector components are measured separately, using pump and Stokes beams linearly polarized in the horizontal and vertical planes, and a polarizer placed in front of the infrared detector. The time-resolved electric field vector is measured at three different locations across the discharge gap, and for three different heights above the alumina ceramic dielectric surface, ∼100, 600, and 1100 μm (total of nine different locations). The results show that after breakdown, the discharge develops as an ionization wave propagating along the dielectric surface at an average speed of 1 mm ns −1 . The surface ionization wave forms near the high voltage electrode, close to the dielectric surface (∼100 μm). The wave front is characterized by significant overshoot of both vertical and horizontal electric field vector components. Behind the wave front, the vertical field component is rapidly reduced. As the wave propagates along the dielectric surface, it also extends further away from the dielectric surface, up to ∼1 mm near the grounded electrode. The horizontal field component behind the wave front remains quite significant, to sustain the electron current toward the high voltage electrode. After the wave reaches the grounded electrode, the horizontal field component experiences a secondary rise in the quasi-dc discharge, where it sustains the current along the near-surface plasma sheet. The measurement results indicate presence of a cathode layer formed near the grounded electrode with significant cathode voltage fall, ≈3 kV, due to high current density in the discharge. The peak reduced electric field in the surface ionization wave is 85–95 Td, consistent with dc breakdown field estimated from the Paschen

  20. Fluorescence excitation studies of molecular photoionization in external electric fields

    International Nuclear Information System (INIS)

    Poliakoff, E.D.; Dehmer, J.L.; Parr, A.C.; Leroi, G.E.

    1985-01-01

    Using molecular nitrogen as an example, we show that fluorescence excitation spectroscopy can be used to measure partial photoionization cross sections of free molecules in external electric fields. The production of the N 2 + (B 2 Σ/sub u/ + ) state was studied and the threshold for this process was found to shift linearly with the square root of the applied field. This behavior is compared with the hydrogenic case and with previously studied systems

  1. Modeling electric fields in two dimensions using computer aided design

    International Nuclear Information System (INIS)

    Gilmore, D.W.; Giovanetti, D.

    1992-01-01

    The authors describe a method for analyzing static electric fields in two dimensions using AutoCAD. The algorithm is coded in LISP and is modeled after Coloumb's Law. The software platform allows for facile graphical manipulations of field renderings and supports a wide range of hardcopy-output and data-storage formats. More generally, this application is representative of the ability to analyze data that is the solution to known mathematical functions with computer aided design (CAD)

  2. Local electric field screening in bi-layer graphene devices

    Directory of Open Access Journals (Sweden)

    Vishal ePanchal

    2014-02-01

    Full Text Available We present experimental studies of both local and macroscopic electrical effects in uniform single- (1LG and bi-layer graphene (2LG devices as well as in devices with non-uniform graphene coverage, under ambient conditions. DC transport measurements on sub-micron scale Hall bar devices were used to show a linear rise in carrier density with increasing amounts of 2LG coverage. Electrical scanning gate microscopy was used to locally top gate uniform and non-uniform devices in order to observe the effect of local electrical gating. We experimentally show a significant level of electric field screening by 2LG. We demonstrate that SGM technique is an extremely useful research tool for studies of local screening effects, which provides a complementary view on phenomena that are usually considered only within a macroscopic experimental scheme.

  3. Field distribution and DNA transport in solid tumors during electric field-mediated gene delivery.

    Science.gov (United States)

    Henshaw, Joshua W; Yuan, Fan

    2008-02-01

    Gene therapy has a great potential in cancer treatment. However, the efficacy of cancer gene therapy is currently limited by the lack of a safe and efficient means to deliver therapeutic genes into the nucleus of tumor cells. One method under investigation for improving local gene delivery is based on the use of pulsed electric field. Despite repeated demonstration of its effectiveness in vivo, the underlying mechanisms behind electric field-mediated gene delivery remain largely unknown. Without a thorough understanding of these mechanisms, it will be difficult to further advance the gene delivery. In this review, the electric field-mediated gene delivery in solid tumors will be examined by following individual transport processes that must occur in vivo for a successful gene transfer. The topics of examination include: (i) major barriers for gene delivery in the body, (ii) distribution of electric fields at both cell and tissue levels during the application of external fields, and (iii) electric field-induced transport of genes across each of the barriers. Through this approach, the review summarizes what is known about the mechanisms behind electric field-mediated gene delivery and what require further investigations in future studies.

  4. Fast electric field waveforms and near-surface electric field images of lightning discharges detected on Mt. Aragats in Armenia

    International Nuclear Information System (INIS)

    Chilingarian, A.; Khanikyants, Y.; Kozliner, L.; Soghomonyan, S.

    2016-01-01

    We present the observational data on fast electric waveforms that are detected at 3200 m altitudes above sea level on Mt. Aragats in Armenia during thunderstorms. We analyse the relations of these forms with count rates of particle flux (during Thunderstorm Ground Enhancements -TGEs); to the slow disturbance of the near-surface electrostatic field; and to the lightning location data from the World Wide Lightning Location Network (WWLLN). An observed negative lightning that decreases a negative charge overhead often abruptly terminates TGEs. By analysing the recorded fast electric field waveforms and comparing them with similar classified waveforms reported previously, we could identify the type and polarity of the observed lightnings. (author)

  5. Unified analytical treatment of multicentre electron attraction, electric field and electric field gradient integrals over Slater orbitals

    International Nuclear Information System (INIS)

    Guseinov, I I

    2004-01-01

    The new central and noncentral potential functions (CPFs and NCPFs) of a molecule depending on the coordinates of the nuclei are introduced. Using complete orthonormal sets of Ψ α -exponential-type orbitals (Ψ α -ETOs) introduced by the author, the series expansion formulae for the multicentre electronic attraction (EA), electric field (EF) and electric field gradient (EFG) integrals over Slater-type orbitals (STOs) in terms of CPFs and NCPFs are derived. The relationships obtained are valid for the arbitrary location, quantum numbers and screening constants of STOs

  6. An Optimal Electric Dipole Antenna Model and Its Field Propagation

    Directory of Open Access Journals (Sweden)

    Yidong Xu

    2016-01-01

    Full Text Available An optimal electric dipole antennas model is presented and analyzed, based on the hemispherical grounding equivalent model and the superposition principle. The paper also presents a full-wave electromagnetic simulation for the electromagnetic field propagation in layered conducting medium, which is excited by the horizontal electric dipole antennas. Optimum frequency for field transmission in different depth is carried out and verified by the experimental results in comparison with previously reported simulation over a digital wireless Through-The-Earth communication system. The experimental results demonstrate that the dipole antenna grounding impedance and the output power can be efficiently reduced by using the optimal electric dipole antenna model and operating at the optimum frequency in a vertical transmission depth up to 300 m beneath the surface of the earth.

  7. Electric field driven fractal growth dynamics in polymeric medium

    Energy Technology Data Exchange (ETDEWEB)

    Dawar, Anit; Chandra, Amita, E-mail: achandra@physics.du.ac.in

    2014-08-14

    This paper reports the extension of earlier work (Dawar and Chandra, 2012) [27] by including the influence of low values of electric field on diffusion limited aggregation (DLA) patterns in polymer electrolyte composites. Subsequently, specified cut-off value of voltage has been determined. Below the cut-off voltage, the growth becomes direction independent (i.e., random) and gives rise to ramified DLA patterns while above the cut-off, growth is governed by diffusion, convection and migration. These three terms (i.e., diffusion, convection and migration) lead to structural transition that varies from dense branched morphology (DBM) to chain-like growth to dendritic growth, i.e., from high field region (A) to constant field region (B) to low field region (C), respectively. The paper further explores the growth under different kinds of electrode geometries (circular and square electrode geometry). A qualitative explanation for fractal growth phenomena at applied voltage based on Nernst–Planck equation has been proposed. - Highlights: • The paper is an extension of earlier work [Phys. Lett. A 376 (2012) 3604] on effect of electric field on DLA. • Threshold value of electric field has been determined. • Below the threshold, growth is random. • Above the threshold, the growth is governed by diffusion, migration and convection. • Different kinds of electrode geometries have been used to simulate the growth.

  8. Electric field driven fractal growth dynamics in polymeric medium

    International Nuclear Information System (INIS)

    Dawar, Anit; Chandra, Amita

    2014-01-01

    This paper reports the extension of earlier work (Dawar and Chandra, 2012) [27] by including the influence of low values of electric field on diffusion limited aggregation (DLA) patterns in polymer electrolyte composites. Subsequently, specified cut-off value of voltage has been determined. Below the cut-off voltage, the growth becomes direction independent (i.e., random) and gives rise to ramified DLA patterns while above the cut-off, growth is governed by diffusion, convection and migration. These three terms (i.e., diffusion, convection and migration) lead to structural transition that varies from dense branched morphology (DBM) to chain-like growth to dendritic growth, i.e., from high field region (A) to constant field region (B) to low field region (C), respectively. The paper further explores the growth under different kinds of electrode geometries (circular and square electrode geometry). A qualitative explanation for fractal growth phenomena at applied voltage based on Nernst–Planck equation has been proposed. - Highlights: • The paper is an extension of earlier work [Phys. Lett. A 376 (2012) 3604] on effect of electric field on DLA. • Threshold value of electric field has been determined. • Below the threshold, growth is random. • Above the threshold, the growth is governed by diffusion, migration and convection. • Different kinds of electrode geometries have been used to simulate the growth

  9. Pulsed and streamer discharges in air above breakdown electric field

    NARCIS (Netherlands)

    A.B. Sun (Anbang); H.J. Teunissen (Jannis); U. M. Ebert (Ute)

    2013-01-01

    htmlabstractA 3D particle model is developed to investigate the streamer formation in electric fields above the breakdown threshold, in atmospheric air (1bar, 300 Kelvin). Adaptive particle management, adaptive mesh refinement and parallel computing techniques are used in the code. Photoionization

  10. Direct numerical simulation of noninvasive channel healing in electrical field

    KAUST Repository

    Wang, Yi; Sun, Shuyu

    2017-01-01

    Noninvasive channel healing is a new idea to repair the broken pipe wall, using external electric fields to drive iron particles to the destination. The repair can be done in the normal operation of the pipe flow without any shutdown of the pipeline

  11. Electric field deformation in diamond sensors induced by radiation defects

    Energy Technology Data Exchange (ETDEWEB)

    Kassel, Florian; Boer, Wim de; Boegelspacher, Felix; Dierlamm, Alexander; Mueller, Thomas; Steck, Pia [Institut fuer Experimentelle Kernphysik (IEKP), Karlsruher Institut fuer Technologie (KIT) (Germany); Dabrowski, Anne; Guthoff, Moritz [CERN (Switzerland)

    2016-07-01

    The BCML system is a beam monitoring device in the CMS experiment at the LHC. As detectors 32 poly-crystalline CVD diamond sensors are positioned in a ring around the beam pipe at a distance of ±1.8 m and ±14.4 m from the interaction point. The radiation hardness of the diamond sensors in terms of measured signal during operation was significantly lower than expected from laboratory measurements. At high particle rates, such as those occurring during the operation of the LHC, a significant fraction of the defects act as traps for charge carriers. This space charge modifies the electrical field in the sensor bulk leading to a reduction of the charge collection efficiency (CCE). A diamond irradiation campaign was started to investigate the rate dependent electrical field deformation with respect to the radiation damage. Besides the electrical field measurements via the Transient Current Technique, the CCE was measured. The experimental results were used to create an effective trap model that takes the radiation damage into account. Using this trap model the rate dependent electrical field deformation and the CCE were simulated with the software ''SILVACO TCAD''. This talk compares the experimental measurement results with the simulations.

  12. Abnormally large magnetospheric electric field on 9 November 2004 ...

    Indian Academy of Sciences (India)

    The F-region at Ascension Island (19–21 LT), an off-equatorial station ... Electrodynamics plays an important role in the ..... Thus electric field was largest at ..... and Japanese–Asian longitude sectors. .... the Pacific during 10 November 2004.

  13. Dielectric permittivity of a plasma in an external electric field

    International Nuclear Information System (INIS)

    Schweigert, V.A.

    2001-01-01

    The ion contribution to the dielectric function of a plasma in an external electric field is determined by applying a kinetic approach to the ions in a parent gas in which the main mechanism for ion scattering is resonant charge exchange. The ion scattering frequency is assumed to be constant

  14. Complex Colloidal Structures by Self-assembly in Electric Fields

    NARCIS (Netherlands)

    Vutukuri, H.R.

    2012-01-01

    The central theme of this thesis is exploiting the directed self-assembly of both isotropic and anisotropic colloidal particles to achieve the fabrication of one-, two-, and three-dimensional complex colloidal structures using external electric fields and/or a simple in situ thermal annealing

  15. Enhancement of the Performance of a Transfer Field Electric ...

    African Journals Online (AJOL)

    This paper reports the enhancement of the output power and power factor of a transfer field machine operating in the asynchronous mode by direct capacitance injection into the auxiliary winding of the machine, which is electrically isolated from the main winding but magnetically coupled to it. It is shown that by proper ...

  16. Electrical field stimulation-induced excitatory responses of ...

    African Journals Online (AJOL)

    effect of the endothelium on electrical field stimulation (EFS)-induced excitatory responses of pulmonary artery segments from pulmonary hypertensive rats. Methods: Pulmonary hypertension was induced in rats with a single dose of monocrotaline (60 mg/kg) and 21 days later, arterial rings were set up for isometric tension ...

  17. Electric field distribution and simulation of avalanche formation due ...

    Indian Academy of Sciences (India)

    Electric field distributions and their role in the formation of avalanche due to the passage of heavy ions in parallel grid avalanche type wire chamber detectors are evaluated using a Monte Carlo simulation. The relative merits and demerits of parallel and crossed wire grid configurations are studied. It is found that the crossed ...

  18. Technical report: Electric field in not completely symmetric systems

    International Nuclear Information System (INIS)

    Vila, F.

    1994-08-01

    In this paper it is studied theoretically the electric field in the not completely symmetric system earthed metallic sphere-uniformly charged dielectric plan, for sphere surface points situated in the plan that contains sphere's center and vertical symmetry axe of dielectric plan. (author). 11 refs, 1 fig

  19. Evaluations of electric field in laser-generated pulsed plasma

    Czech Academy of Sciences Publication Activity Database

    Torrisi, L.; Gammino, S.; Láska, Leoš; Krása, Josef; Rohlena, Karel; Wolowski, J.

    2006-01-01

    Roč. 56, Suppl. B (2006), B580-B585 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /22./. Prague, 26.06.2006-29.06.2006] Institutional research plan: CEZ:AV0Z10100523 Keywords : electric field in plasma * debye length * plasma temperature * plasma density Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.568, year: 2006

  20. Sensing electric and magnetic fields with Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Wildermuth, Stefan; Hofferberth, S.; Lesanovsky, Igor

    2006-01-01

    We experimentally demonstrate that one-dimensional Bose-Einstein condensates brought close to microfabricated wires on an atom chip are a very sensitive sensor for magnetic and electric fields reaching a sensitivity to potential variations of ∼ 10-14 eV at 3 μm spatial resolution. We measure a two...

  1. Pulsed electric field processing for fruit and vegetables

    Science.gov (United States)

    This month’s column reviews the theory and current applications of pulsed electric field (PEF) processing for fruits and vegetables to improve their safety and quality. This month’s column coauthor, Stefan Toepfl, is advanced research manager at the German Institute of Food Technologies and professo...

  2. Pulsed electric field (PEF)research at USDA, ARS, ERRC

    Science.gov (United States)

    This article summarizes the effects of pulsed electric fields on the microbiological safety and quality aspects of various liquid food matrices, obtained at USDA, ARS, Eastern Regional Research Center under CRIS Project No. 1935-41420-013-00D, Processing Intervention Technologies for Enhancing the S...

  3. The electric field of a current-carrying conductor

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1991-01-01

    A subject concerning the relativistic invariance of the Gauss theorem has been discussed. The appearance of the electric field around the neutral conductor after excitation of current in it doesn't signify the change of its charge. 8 refs.; 1 fig

  4. Holographic gratings in photorefractive polymers without external electric field

    DEFF Research Database (Denmark)

    Kukhtarev, N.; Lyuksyutov, S.; Buchhave, Preben

    1997-01-01

    Using anomalous large diffusion we report a recording of reflection type gratings in a PVK-based photorefractive polymer without any external electric field. The diffraction efficiency of the gratings was measured to be 7%. An efficient modulation of beams during two-beam coupling up to 12...

  5. Electric field measurements in moving ionization fronts during plasma breakdown

    NARCIS (Netherlands)

    Wagenaars, E.; Bowden, M.D.; Kroesen, G.M.W.

    2006-01-01

    We have performed time-resolved, direct measurements of electric field strengths in moving ionization fronts during the breakdown phase of a pulsed plasma. Plasma breakdown, or plasma ignition, is a highly transient process marking the transition from a gas to a plasma. Some aspects of plasma

  6. Control of radial electric field in torus plasma

    International Nuclear Information System (INIS)

    Ida, K.; Idei, H.; Sanuki, H.

    1994-09-01

    The radial electric fields is controlled by changing the direction of neutral beam from co to counter to plasma current in tokamak, while it is controlled by the 2nd harmonic ECH and NBI and pellet injection in heliotron/torsatron. (author)

  7. A Power-Frequency Electric Field Sensor for Portable Measurement.

    Science.gov (United States)

    Xiao, Dongping; Ma, Qichao; Xie, Yutong; Zheng, Qi; Zhang, Zhanlong

    2018-03-31

    In this paper, a new type of electric field sensor is proposed for the health and safety protection of inspection staff in high-voltage environments. Compared with the traditional power frequency electric field measurement instruments, the portable instrument has some special performance requirements and, thus, a new kind of double spherical shell sensor is presented. First, the mathematical relationships between the induced voltage of the sensor, the output voltage of the measurement circuit, and the original electric field in free space are deduced theoretically. These equations show the principle of the proposed sensor to measure the electric field and the effect factors of the measurement. Next, the characteristics of the sensor are analyzed through simulation. The simulation results are in good agreement with the theoretical analysis. The influencing rules of the size and material of the sensor on the measurement results are summarized. Then, the proposed sensor and the matching measurement system are used in a physical experiment. After calibration, the error of the measurement system is discussed. Lastly, the directional characteristic of the proposed sensor is experimentally tested.

  8. Study of Dynamic Membrane Behavior in Applied DC Electric Field

    Science.gov (United States)

    Dutta, Prashanta; Morshed, Adnan; Hossan, Mohammad

    2017-11-01

    Electrodeformation of vesicles can be used as a useful tool to understand the characteristics of biological soft matter, where vesicles immersed in a fluid medium are subjected to an applied electric field. The complex response of the vesicle membrane strongly depends on the conductivity of surrounding fluid, vesicle size and shape, and applied electric field We studied the electrodeformation of vesicles immersed in a fluid media under a short DC electric pulse. An immersed interface method is used to solve the electric field over the domain with conductive or non-conductive vesicles while an immersed boundary scheme is employed to solve fluid flow, fluid-solid interaction, membrane mechanics and vesicle movement. Force analysis on the membrane surface reveals almost linear relation with vesicle size, but highly nonlinear influence of applied field as well as the conductivity ratios inside and outside of the vesicle. Results also point towards an early linear deformation regime followed by an equilibrium stage for the membranes. Moreover, significant influence of the initial aspect ratio of the vesicle on the force distribution is observed across a range of conductivity ratios. Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM122081.

  9. Hall-effect electric fields in semiconducting rings. II

    International Nuclear Information System (INIS)

    Gorodzha, L.V.; Emets, Yu.P.; Stril'ko, S.I.

    1987-01-01

    A calculation is presented for the current density distribution in a semiconducting ring with two electrodes symmetrically located on the outer boundary (system II, Fig. 1). The difference between this electrode position and that on the ring considered previously (system I) leads to substantial changes in the shape of the electric field

  10. Cubic to hexagonal phase transition induced by electric field

    Czech Academy of Sciences Publication Activity Database

    Giacomelli, F. C.; Silveira, N.; Nallet, F.; Černoch, Peter; Steinhart, Miloš; Štěpánek, Petr

    2010-01-01

    Roč. 43, č. 9 (2010), s. 4261-4267 ISSN 0024-9297 R&D Projects: GA ČR GAP208/10/1600 Institutional research plan: CEZ:AV0Z40500505 Keywords : order to order transition (OOT) * electric field * block copolymers Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.838, year: 2010

  11. Electric Field-Assisted Pressureless Sintering of Ceramic Protonic Conductors

    DEFF Research Database (Denmark)

    Muccillo, R.; Esposito, Vincenzo; de Florio, D. Z.

    2017-01-01

    Gadolinium, yttrium and samarium-doped barium cerate pressed pellets were submitted to flash sintering experiments isothermally in the temperature range 800-1300oC under 200 V cm-1 electric field. The pellets were positioned inside a dilatometer furnace with Pt-Ir electrodes connected either to a...

  12. Tool for the control management of electric and magnetic fields of electrical companies

    International Nuclear Information System (INIS)

    Arnera, Patricia; Barbieri, Beatriz

    2008-01-01

    The use of electricity involves a wide range of activities that, because of its diversity, characteristics and relative importance causes different environmental impacts during the extraction, processing, transport and consuming activities. It is the role of the government to elaborate the rules for the incorporation of environmental aspects in the different segments of the market for different electrical energy sources and in all the stages of the process, from the initial evaluation to the construction and exploitation phases. Among the environmental key aspects to considerate, are the electric and magnetic fields, in which society has taken special interest as they are believed to be involved in health hazard. The faculties of the regulatory authority are dictate regulations and technique procedures to be fulfilled by the agents, and check their compliance. In the course of time since the mentioned obligations, the authority has gathered information regarding electric and magnetic fields that includes those planned in the Companies Environmental Planning and those obtained ad-hoc in the role of controller. In order to systematize this information, a data base has been designed considering different types of electric installations, the company which they belong to, equipment used in the measurements, representative layouts with measure points and profiles of the electric and magnetic fields that were obtained. (author)

  13. Tool for the control management of electric and magnetic fields of electrical companies

    Energy Technology Data Exchange (ETDEWEB)

    Arnera, Patricia; Barbieri, Beatriz [La Plata Univ. Nacional (Argentina). Facultad de Ingenieria, Instituto de Investigaciones Tecnologicas para Redes y Equipos; Turco, Joaquin; Messina, Juan; Postiglioni, Osvaldo [Ente Nacional Regulador de la Electricidad, Buenos Aires (Argentina)

    2008-07-01

    The use of electricity involves a wide range of activities that, because of its diversity, characteristics and relative importance causes different environmental impacts during the extraction, processing, transport and consuming activities. It is the role of the government to elaborate the rules for the incorporation of environmental aspects in the different segments of the market for different electrical energy sources and in all the stages of the process, from the initial evaluation to the construction and exploitation phases. Among the environmental key aspects to considerate, are the electric and magnetic fields, in which society has taken special interest as they are believed to be involved in health hazard. The faculties of the regulatory authority are dictate regulations and technique procedures to be fulfilled by the agents, and check their compliance. In the course of time since the mentioned obligations, the authority has gathered information regarding electric and magnetic fields that includes those planned in the Companies Environmental Planning and those obtained ad-hoc in the role of controller. In order to systematize this information, a data base has been designed considering different types of electric installations, the company which they belong to, equipment used in the measurements, representative layouts with measure points and profiles of the electric and magnetic fields that were obtained. (author)

  14. The role of magnetic-field-aligned electric fields in auroral acceleration

    International Nuclear Information System (INIS)

    Block, L.P.; Faelthammar, C.G.

    1990-01-01

    Electric field measurements on the Swedish satellite Viking have confirmed and extended earlier observations on S3-3 and provided further evidence of the role of dc electric fields in auroral acceleration processes. On auroral magnetic field lines the electric field is strongly fluctuating both transverse and parallel to the magnetic field. The significance of these fluctuations for the auroral acceleration process is discussed. A definition of dc electric fields is given in terms of their effects on charged particles. Fluctuations below several hertz are experienced as dc by typical auroral electrons if the acceleration length is a few thousand kilometers. For ions the same is true below about 0.1 Hz. The magnetic-field-aligned (as well as the transverse) component of the electric field fluctuations has a maximum below 1 Hz, in a frequency range that appears as dc to the electrons but not to the ions. This allows it to cause a selective acceleration, which may be important in explaining some of the observed characteristics of auroral particle distributions. The electric field observations on Viking support the conclusion that magnetic-field-aligned potential drops play an important role in auroral acceleration, in good agreement with particle observations boht on Viking and on the DE satellites. They also show that a large part, or even all, of the accelerating potential drop may be accounted for by numerous weak (about a volt) electric double layers, in agreement with earlier observations on the S3-3 satellite and with an early theoretical suggestion by L. Block

  15. Tunable electric properties of bilayer InSe with different interlayer distances and external electric field

    Science.gov (United States)

    Shang, Jimin; Pan, Longfei; Wang, Xiaoting; Li, Jingbo; Wei, Zhongming

    2018-03-01

    Using density functional theory we explore the band structure of bilayer Indium selenide (InSe), and we find that the van der Waals interaction has significant effects on the electric and optical properties. We then explore the tuning electronic properties by different interlayer distances and by an external vertical electric field. Our results demonstrate that the band gaps of bilayer InSe can be continuously tuned by different interlayer coupling. With decreasing interlayer distances, the tunable band gaps of bilayer decrease linearly, owing to the enhancement of the interlayer interaction. Additionally, the band structure of bilayer InSe under external vertical fields is discussed. The presence of a small external electric field can make a new spatial distribution of electron-hole pairs. A well separation based on the electrons and holes, localized in different layers can be obtained using this easy method. These properties of bilayer InSe indicates potential applications in designing new optoelectronic devices.

  16. Design of exposure systems for ELF electric field bioeffects research

    International Nuclear Information System (INIS)

    Kaune, W.T.; Decker, J.R.; Phillips, R.D.; Gillis, M.F.

    1978-01-01

    Two systems for exposure and sham-exposure of large numbers of rats and mice to uniform, vertical, 60-Hz electric fields have been constructed. The rat system contains four racks of four rectangular 1.0m x 2.2m exposure-electrodes that are stacked vertically with a separation between adjacent electrodes of 0.41 m. Any two of the four exposure racks may be energized to a maximum field strength of 150 kV/m. Each exposure electrode is equipped with 24 Lexan cages, each of which holds a single rat. The cage floor is a stainless steel screen that serves as one electrode. The system for watering animals is contained entirely within the electrode and does not protrude above the cage's floor, thereby preventing distortion of the exposure field and electrical shock or discharge as the animal drinks. The total capacity of the system is 288 rats. A similar system of two racks of five electrodes each is used to expose as many as 450 mice to fields at a maximum strength of 150 kV/m while sham exposing an equal number. Measurements of the electric field reveal an overall uniformity within 4% over the area to be occupied by experimental animals. The field inside a Lexan cage is reduced by about 3%. No corona-discharge has been detected. Measurements of ozone concentration in the rat and mouse exposure systems show no difference from background levels. Harmonic distortion has been eliminated by damping and filtering the high-voltage supply. Animals housed in close proximity are partially shielded from the electric field; the total body current in a rat model is reduced by 35 ± 5% when rats are placed in adjacent cages. (author)

  17. Electric Potential and Electric Field Imaging with Dynamic Applications: 2017 Research Award Innovation

    Science.gov (United States)

    Generazio, Ed

    2017-01-01

    The technology and methods for remote quantitative imaging of electrostatic potentials and electrostatic fields in and around objects and in free space is presented. Electric field imaging (EFI) technology may be applied to characterize intrinsic or existing electric potentials and electric fields, or an externally generated electrostatic field may be used for illuminating volumes to be inspected with EFI. The baseline sensor technology (e-Sensor) and its construction, optional electric field generation (quasi-static generator), and current e- Sensor enhancements (ephemeral e-Sensor) are discussed. Critical design elements of current linear and real-time two-dimensional (2D) measurement systems are highlighted, and the development of a three dimensional (3D) EFI system is presented. Demonstrations for structural, electronic, human, and memory applications are shown. Recent work demonstrates that phonons may be used to create and annihilate electric dipoles within structures. Phonon induced dipoles are ephemeral and their polarization, strength, and location may be quantitatively characterized by EFI providing a new subsurface Phonon-EFI imaging technology. Initial results from real-time imaging of combustion and ion flow, and their measurement complications, will be discussed. These new EFI capabilities are demonstrated to characterize electric charge distribution creating a new field of study embracing areas of interest including electrostatic discharge (ESD) mitigation, crime scene forensics, design and materials selection for advanced sensors, combustion science, on-orbit space potential, container inspection, remote characterization of electronic circuits and level of activation, dielectric morphology of structures, tether integrity, organic molecular memory, atmospheric science, and medical diagnostic and treatment efficacy applications such as cardiac polarization wave propagation and electromyography imaging.

  18. Probe branes thermalization in external electric and magnetic fields

    International Nuclear Information System (INIS)

    Ali-Akbari, M.; Ebrahim, H.; Rezaei, Z.

    2014-01-01

    We study thermalization on rotating probe branes in AdS 5 ×S 5 background in the presence of constant external electric and magnetic fields. In the AdS/CFT framework this corresponds to thermalization in the flavour sector in field theory. The horizon appears on the worldvolume of the probe brane due to its rotation in one of the sphere directions. For both electric and magnetic fields the behaviour of the temperature is independent of the probe brane dimension. We also study the open string metric and the fluctuations of the probe brane in such a set-up. We show that the temperatures obtained from open string metric and observed by the fluctuations are larger than the one calculated from the induced metric

  19. Electric-field effects in optically generated spin transport

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.

  20. Electric-field effects in optically generated spin transport

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish [Nanoscale Science and Technology Centre and School of Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia); Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)], E-mail: m.miah@griffith.edu.au

    2009-05-25

    Transport of spin-polarized electrons in semiconductors is studied experimentally. Spins are generated by optical excitation because of the selection rules governing optical transitions from heavy-hole and light-hole states to conduction-band states. Experiments designed for the control of spins in semiconductors investigate the bias-dependent spin transport process and detect the spin-polarized electrons during transport. A strong bias dependence is observed. The electric-field effects on the spin-polarized electron transport are also found to be depended on the excitation photon energy and temperature. Based on a field-dependent spin relaxation mechanism, the electric-field effects in the transport process are discussed.