WorldWideScience

Sample records for non-methane organic gases

  1. Non-methane volatile organic compound flux from a subarctic mire in Northern Sweden

    OpenAIRE

    Bäckstrand, Kristina; Crill, Patrick M.; Mastepanov, Mikhail; Christensen, Torben R.; Bastviken, David

    2011-01-01

    Biogenic NMVOCs are mainly formed by plants and microorganisms. They have strong impact on the local atmospheric chemistry when emitted to the atmosphere. The objective of this study was to determine if there are significant emissions of non-methane volatile organic compounds (NMVOCs) from a subarctic mire in northern Sweden. Subarctic peatlands in discontinuous permafrost regions are undergoing substantial environmental changes due to their high sensitivity to climate warming and there is ne...

  2. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles...

  3. CARIBIC observations of greenhouse gases and non-methane hydrocarbons on flights between Germany and South Africa

    Science.gov (United States)

    Brenninkmeijer, C. A.; Schuck, T. J.; Baker, A. K.; van Velthoven, P.

    2012-12-01

    Since May 2005 the CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container, www.caribic-atmospheric.com) has made near-monthly deployments of an atmospheric observatory making measurements from aboard a Lufthansa Airbus A340-600 during routine passenger flights. Flights originate in Frankfurt, Germany and serve a large number of destinations, among them Cape Town and Johannesburg in South Africa. On these flights, which took place primarily during northern hemisphere winter 2010/2011, a near-meridional profile was obtained over Europe and Africa, in similar fashion to HIPPO flight tracks over the Pacific, be it without vertical profiles. Over Central Africa, deep convection transports boundary layer air to the free troposphere, linking observations at cruise altitude to surface emissions and allowing for the investigation of emissions and sources of atmospherically relevant species in Africa. Mixing ratios of greenhouse gases (methane, carbon dioxide, sulfur hexafluoride and nitrous oxide) and a suite of C2-C8 non-methane hydrocarbons (NMHC) are measured from flask samples collected at cruise altitude during flight. Several tracers, for example methane, carbon monoxide, and various NMHC, exhibit enhanced mixing ratios over tropical Africa. Using tracer-tracer correlations to characterize methane emissions from Africa, we find that biomass burning made a major contribution to the methane burden, but that also biogenic sources, such as wetlands, play a significant role. We also compare these measurements to those conducted earlier over India, which were used to investigate sources and emissions of greenhouse gases during the South Asian summer monsoon.

  4. Speciation of Total Organic Gas and Particulate Matter Emissions from Onroad Vehicles in the Next Version of MOVES

    Science.gov (United States)

    Calculation of organic gas measures used in MOVES (total hydrocarbons, methane, non-methane hydrocarbons, volatile organic compounds, non-methane organic gases, and total organic gases). Incorporation of speciation within MOVES to produce total organic gas and particulate matte...

  5. Non-methane volatile organic compound flux from a subarctic mire in Northern Sweden

    Science.gov (United States)

    Bäckstrand, Kristina; Crill, Patrick M.; Mastepanov, Mikhail; Christensen, Torben R.; Bastviken, David

    2008-04-01

    Biogenic NMVOCs are mainly formed by plants and microorganisms. They have strong impact on the local atmospheric chemistry when emitted to the atmosphere. The objective of this study was to determine if there are significant emissions of non-methane volatile organic compounds (NMVOCs) from a subarctic mire in northern Sweden. Subarctic peatlands in discontinuous permafrost regions are undergoing substantial environmental changes due to their high sensitivity to climate warming and there is need for including NMVOCs in the overall carbon budget. Automatic and manual chamber measurements were used to estimate NMVOC fluxes from three dominating subhabitats on the mire during three growing seasons. Emission rates varied and were related to plant species distribution and seasonal net ecosystem exchange of carbon dioxide. The highest fluxes were observed from wetter sites dominated by Eriophorum and Sphagnum spp. Total NMVOC emissions from the mire (~17 ha) is estimated to consist of ~150 kgC during a growing season with 150 d. NMVOC fluxes can account for ~5% of total net carbon exchange (-3177 kgC) at the mire during the same period. NMVOC emissions are therefore a significant component in a local carbon budget for peatlands.

  6. Emissions of non-methane organic compounds from a grassland site

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Yoshiko; Doskey, P.V.

    1996-03-01

    A mixture of oxygenated hydrocarbons (OxHCs), isoprene, and monoterpenes was detected in the emissions from a grassland site in the Midwestern United States. A plot dominated by crown vetch (Coronilla varia) and bluegrass (Poa spp.), exhibited a constant decrease in emissions of total non-methane organic compounds (NMOCs) from 580 {mu}g m{sup -2} hr{sup -1} in June 1992 to 150 {mu}g m{sup - 2} hr{sup -1} in October 1992, except for a slight increase in August. Oxygenated hydrocarbons (methanol, acetaldehyde, and acetone) and terpenes (isoprene, limonene, myrcene, {alpha}-pinene, and {beta}- pinene) composed about 90% and 10% of the identified NMOC emissions, respectively. Isoprene represented about 10% of the terpene emissions. Total NMOC emission rates based on vegetative biomass averaged 2.3 {mu}g g{sup -1} hr{sup -1}, with 10% of the identified NMOCs attributed to monoterpenes and the remainder mainly OxHCs. Over the course of the investigation, the relationship between the monoterpene emission rate and the temperature for a single plot was logarithmic and similar to the one between compound vapor pressure and temperature. However, emission rates normalized to temperature decreased throughout the summer and fall, indicating that parameterizations of emission rates from herbaceous plants must include a factor to compensate for environmental conditions such as soil moisture and nutrient deposition, which affect plant phenology and the seasonal pattern of species dominance.

  7. Total non-methane volatile organic compounds (TNMVOC) in the atmosphere of Delhi

    Science.gov (United States)

    Kumar Padhy, Pratap; Varshney, C. K.

    Volatile organic compounds (VOC), more specifically, non-methane volatile organic compounds (NMVOC) play a critical role in the atmospheric chemistry. NMVOC, through complex photochemical reactions, contribute to the formation of toxic oxidants, such as tropospheric ozone and PAN, which are injurious to health and highly phytotoxic. Certain NMVOC have been shown to be highly toxic, mutagenic and carcinogenic. NMVOC are receiving increasing attention in the west on account of their implication for human health and air quality. On the other hand, information on NMVOC in India and other developing countries is not available. As a result, appreciation of potential threat from NMVOC in relation to air quality and public health is sadly lacking among planners and policy makers. The paper deals with the estimation of total NMVOC at 13 sites in the urban environment of Delhi during November 1994 to June 1995. An inexpensive, labour intensive manual sample collection device was used and the air samples were analysed using GC-FID. The results show that the amount of NMVOC in the ambient environment of Delhi varied between 1.3 and 32.5 ppmv exhibiting wide temporal and seasonal variation. NMVOC levels mostly peaked at 0900 h, which coincide with the peak traffic hour. The implications of NMVOC build-up in the urban atmosphere are obvious for air quality. The results of this preliminary study make out a strong case for developing a regular monitoring programme for NMVOC in the urban environment of Delhi as well as in other major cities in the region.

  8. Performance of commercial non-methane hydrocarbon analyzers in monitoring polar volatile organic compounds

    Science.gov (United States)

    Quantifying non-methane hydrocarbons (NMHC) from animal feeding operations (AFOs) is challenging due to the broad spectrum of compounds and the polar nature of the most abundant compounds. The purpose of this study was to determine the performance of commercial NMHC analyzers for measuring volatile ...

  9. Non-methane volatile organic compounds in Africa: A view from space

    Science.gov (United States)

    Marais, Eloise Ann

    Isoprene emissions affect human health, air quality, and the oxidative capacity of the atmosphere. Globally anthropogenic non-methane volatile organic compounds (NMVOC) emissions are lower than that of isoprene, but local hotspots are hazardous to human health and air quality. In Africa the tropics are a large source of isoprene, while Nigeria appears as a large contributor to regional anthropogenic NMVOC emissions. I make extensive use of space-based formaldehyde (HCHO) observations from the Ozone Monitoring Instrument (OMI) and the chemical transport model (CTM) GEOS-Chem to estimate and examine seasonality of isoprene emissions across Africa, and identify sources and air quality consequences of anthropogenic NMVOC emissions in Nigeria. To estimate isoprene emissions I first developed a filtering scheme to remove (1) contamination from biomass burning and anthropogenic influences; and (2) displacement of HCHO from the isoprene emission source diagnosed with the GEOS-Chem CTM. Conversion to isoprene emissions is with NOx-dependent GEOS-Chem HCHO yields, obtained as the local sensitivity S of the HCHO column ΩHCHO to a perturbation Delta in isoprene emissions EISOP (S = DeltaΩHCHO/DeltaE ISOP). The error in OMI-derived isoprene emissions is 40% at low levels of NOx and 40-90% under high-NOx conditions and is reduced by spatial and temporal averaging to the extent that errors are random. Weak isoprene emission seasonality in equatorial forests is driven predominantly by temperature, while large seasonality in northern and southern savannas is driven by temperature and leaf area index. The largest contribution of African isoprene emissions to surface ozone and particulate matter, determined with GEOS-Chem, of 8 ppbv and 1.5 μg m-3, respectively, is over West Africa. The OMI HCHO data feature a large enhancement over Nigeria that is due to anthropogenic NMVOC emissions. With the OMI HCHO data, coincident satellite observations of atmospheric composition, aircraft

  10. Characterizing non-methane volatile organic compounds emissions from a swine concentrated animal feeding operation

    Science.gov (United States)

    Rumsey, Ian C.; Aneja, Viney P.; Lonneman, William A.

    2012-02-01

    Emissions of non-methane volatile organic compounds (NMVOCs) were determined from a swine concentrated animal feeding operation (CAFO) in North Carolina. NMVOCs were measured in air samples collected in SUMMA and fused-silica lined (FSL) canisters and were analyzed using a gas chromatography flame ionization detection (GC-FID) system. Measurements were made from both an anaerobic lagoon and barn in each of the four seasonal sampling periods during the period June 2007 through April 2008. In each sampling period, nine to eleven canister samples were taken from both the anaerobic lagoon and barn over a minimum of four different days during a period of ˜1 week. Measurements of meteorological and physiochemical parameters were also made during the sampling period. In lagoon samples, six NMVOCs were identified that had significantly larger emissions in comparison to other NMVOCs. This included three alcohols (ethanol, 2-ethyl-1-hexanol, and methanol), two ketones (acetone and methyl ethyl ketone (MEK)) and an aldehyde (acetaldehyde). The overall average fluxes for these NMVOCs, ranged from 0.18 μg m -2 min -1 for 2-ethyl-1-hexanol to 2.11 μg m -2 min -1 for acetone, with seasonal fluxes highest in the summer for four (acetone, acetaldehyde, 2-ethyl-1-hexanol and MEK) of the six compounds In barn samples, there were six NMVOCs that had significantly larger concentrations and emissions in comparison to other NMVOCs. These consisted of two alcohols (methanol and ethanol), an aldehyde (acetaldehyde), two ketones (acetone and 2,3-butanedione), and a phenol (4-methylphenol). Overall average barn concentration ranged from 2.87 ppb for 4-methylphenol to 16.12 ppb for ethanol. Overall average normalized barn emission rates ranged from 0.10 g day -1 AU -1 (1 AU (animal unit) = 500 kg of live animal weight) for acetaldehyde to 0.45 g day -1 AU -1 for ethanol. The NMVOCs, 4-methylphenol and 2,3-butanedione, which have low odor thresholds (odor thresholds = 1.86 ppb and 0

  11. Multi-instrument comparison and compilation of non-methane organic gas emissions from biomass burning and implications for smoke-derived secondary organic aerosol precursors

    Science.gov (United States)

    Hatch, Lindsay E.; Yokelson, Robert J.; Stockwell, Chelsea E.; Veres, Patrick R.; Simpson, Isobel J.; Blake, Donald R.; Orlando, John J.; Barsanti, Kelley C.

    2017-01-01

    Multiple trace-gas instruments were deployed during the fourth Fire Lab at Missoula Experiment (FLAME-4), including the first application of proton-transfer-reaction time-of-flight mass spectrometry (PTR-TOFMS) and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GC × GC-TOFMS) for laboratory biomass burning (BB) measurements. Open-path Fourier transform infrared spectroscopy (OP-FTIR) was also deployed, as well as whole-air sampling (WAS) with one-dimensional gas chromatography-mass spectrometry (GC-MS) analysis. This combination of instruments provided an unprecedented level of detection and chemical speciation. The chemical composition and emission factors (EFs) determined by these four analytical techniques were compared for four representative fuels. The results demonstrate that the instruments are highly complementary, with each covering some unique and important ranges of compositional space, thus demonstrating the need for multi-instrument approaches to adequately characterize BB smoke emissions. Emission factors for overlapping compounds generally compared within experimental uncertainty, despite some outliers, including monoterpenes. Data from all measurements were synthesized into a single EF database that includes over 500 non-methane organic gases (NMOGs) to provide a comprehensive picture of speciated, gaseous BB emissions. The identified compounds were assessed as a function of volatility; 6-11 % of the total NMOG EF was associated with intermediate-volatility organic compounds (IVOCs). These atmospherically relevant compounds historically have been unresolved in BB smoke measurements and thus are largely missing from emission inventories. Additionally, the identified compounds were screened for published secondary organic aerosol (SOA) yields. Of the total reactive carbon (defined as EF scaled by the OH rate constant and carbon number of each compound) in the BB emissions, 55-77 % was associated with compounds for

  12. Speciation of anthropogenic emissions of non-methane volatile organic compounds: a global gridded data set for 1970–2012

    Directory of Open Access Journals (Sweden)

    G. Huang

    2017-06-01

    Full Text Available Non-methane volatile organic compounds (NMVOCs include a large number of chemical species which differ significantly in their chemical characteristics and thus in their impacts on ozone and secondary organic aerosol formation. It is important that chemical transport models (CTMs simulate the chemical transformation of the different NMVOC species in the troposphere consistently. In most emission inventories, however, only total NMVOC emissions are reported, which need to be decomposed into classes to fit the requirements of CTMs. For instance, the Emissions Database for Global Atmospheric Research (EDGAR provides spatially resolved global anthropogenic emissions of total NMVOCs. In this study the EDGAR NMVOC inventory was revised and extended in time and in sectors. Moreover the new version of NMVOC emission data in the EDGAR database were disaggregated on a detailed sector resolution to individual species or species groups, thus enhancing the usability of the NMVOC emission data by the modelling community. Region- and source-specific speciation profiles of NMVOC species or species groups are compiled and mapped to EDGAR processes (detailed resolution of sectors, with corresponding quality codes specifying the quality of the mapping. Individual NMVOC species in different profiles are aggregated to 25 species groups, in line with the common classification of the Global Emissions Initiative (GEIA. Global annual grid maps with a resolution of 0.1°  ×  0.1° for the period 1970–2012 are produced by sector and species. Furthermore, trends in NMVOC composition are analysed, taking road transport and residential sources in Germany and the United Kingdom (UK as examples.

  13. Characterizing reduced sulfur compounds and non-methane volatile organic compounds emissions from a swine concentrated animal feeding operation

    Science.gov (United States)

    Rumsey, Ian Cooper

    Reduced sulfur compounds (RSCs) and non-methane volatile organic compounds (NMVOCs) emissions from concentrated animal feeding operations (CAFOs) have become a potential environmental and human health concern. Both RSCs and NMVOCs contribute to odor. In addition, RSCs also have the potential to form fine particulate matter (PMfine) and NMVOCs the potential to form ozone. Measurements of RSCs and NMVOCs emissions were made from both an anaerobic lagoon and barn at a swine CAFO in North Carolina. Emission measurements were made over all four seasonal periods. In each seasonal period, measurements were made from both the anaerobic lagoon and barn for ˜1 week. RSC and NMVOCs samples were collected using passivated canisters. Nine to eleven canister samples were taken from both the lagoon and barn over each sampling period. The canisters were analyzed ex-situ using gas chromatography flame ionization detection (GC-FID). Hydrogen sulfide (H2S) measurements were made in-situ using a pulsed fluorescence H2S/SO2 analyzer. During sampling, measurements of meteorological and physiochemical parameters were made. H2S had the largest RSC flux, with an overall average lagoon flux of 1.33 mug m-2 min-1. The two main RSCs identified by the GC-FID, dimethyl sulfide (DMS) and dimethyl disulfide (DMDS), had overall average lagoon fluxes an order of magnitude lower, 0.12 and 0.09 mug m-2 min-1, respectively. Twelve significant NMVOCs were identified in lagoon samples (ethanol, 2-ethyl-1-hexanol, methanol, acetaldehyde, decanal, heptanal, hexanal, nonanal, octanal, acetone, methyl ethyl ketone, and 4-methylphenol). The overall average fluxes for these NMVOCs, ranged from 0.08 mug m-2 min-1 (4-methylphenol) to 2.11 mug m-2 min-1 (acetone). Seasonal H2S barn concentrations ranged from 72-631 ppb. DMS and DMDS seasonal concentrations were 2-3 orders of magnitude lower. There were six significant NMVOCs identified in barn samples (methanol, ethanol, acetone 2-3 butanedione, acetaldehyde

  14. PTR-MS measurements of non-methane volatile organic compounds during an intensive field campaign at the summit of Mount Tai, China, in June 2006

    Science.gov (United States)

    Inomata, S.; Tanimoto, H.; Kato, S.; Suthawaree, J.; Kanaya, Y.; Pochanart, P.; Liu, Y.; Wang, Z.

    2010-08-01

    Owing to recent industrialization, Central East China has become a significant source of air pollutants. To examine the processes controlling the chemistry and transport of tropospheric ozone, we performed on-line measurements of non-methane volatile organic compounds (NMVOCs) as part of an intensive field campaign at Mount Tai, China, in June 2006 (MTX2006), using proton transfer reaction mass spectrometry (PTR-MS). Temporal variations of NMVOCs were recorded in mass-scan mode from m/z17 to m/z 300 during 12-30 June 2006. More than thirty kinds of NMVOCs were detected up to m/z 160, including alkenes, aromatics, alcohols, aldehydes, and ketones. In combination with non-methane hydrocarbon data obtained by a gas chromatography with flame ionization detection, it was found that oxygenated VOCs were the predominant NMVOCs. Diurnal variations depending mainly on local photochemistry were observed during 24-28 June. During the night of 12 June, we observed an episode of high NMVOCs concentrations attributed to the burning of agricultural biomass. The ΔNMVOCs/ΔCO ratios derived by PTR-MS measurements for this episode (with biomass burning (BB) plume) and during 16-23 June (without BB plume) are compared to emission ratios from various types of biomass burning as reviewed by Andreae and Merlet (2001) and to ratios recently measured by PTR-MS in tropical forests (Karl et al., 2007) and at urban sites (Warneke et al., 2007).

  15. Emission, speciation, and evaluation of impacts of non-methane volatile organic compounds from open dump site.

    Science.gov (United States)

    Majumdar, Dipanjali; Ray, Sandipan; Chakraborty, Sucharita; Rao, Padma S; Akolkar, A B; Chowdhury, M; Srivastava, Anjali

    2014-07-01

    Surface emission from Dhapa, the only garbage disposal ground in Kolkata, is a matter of concern to the local environment and also fuels the issues of occupational and environmental health. Surface emission of the Dhapa landfill site was studied using a flux chamber measurement for nonmethane volatile organic compounds (NMVOCs). Eighteen noncarbonyl volatile organic compounds (VOCs) and 14 carbonyl VOCs, including suspected and known carcinogens, were found in appreciable concentrations. The concentrations of the target species in the flux chamber were found to be significantly higher for most of the species in summer than winter. Surface emission rate of landfill gas was estimated by using two different approaches to assess the applicability for an open landfill site. It was found that the emissions predicted using the model Land GEM version 3.02 is one to two orders less than the emission rate calculated from flux chamber measurement for the target species. Tropospheric ozone formation has a serious impact for NMVOC emission. The total ozone-forming potential (OFP) of the Dhapa dumping ground considering all target NMVOCs was estimated to be 4.9E+04 and 1.2E+05 g/day in winter and summer, respectively. Also, it was found that carbonyl VOCs play a more important role than noncarbonyl VOCs for tropospheric ozone formation. Cumulative cancer risk estimated for all the carcinogenic species was found to be 2792 for 1 million population, while the total noncancer hazard index (HI) was estimated to be 246 for the occupational exposure to different compounds from surface emission to the dump-site workers at Dhapa. Implications: This paper describes the real-time surface emission of NMVOCs from an open municipal solid waste (MSW) dump site studied using a flux chamber. Our study findings indicate that while planning for new landfill site in tropical meteorology, real-time emission data must be considered, rather than relying on modeled data. The formation of tropospheric

  16. Improved provincial emission inventory and speciation profiles of anthropogenic non-methane volatile organic compounds: a case study for Jiangsu, China

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2017-06-01

    Full Text Available Non-methane volatile organic compounds (NMVOCs are the key precursors of ozone (O3 and secondary organic aerosol (SOA formation. Accurate estimation of their emissions plays a crucial role in air quality simulation and policy making. We developed a high-resolution anthropogenic NMVOC emission inventory for Jiangsu in eastern China from 2005 to 2014, based on detailed information of individual local sources and field measurements of source profiles of the chemical industry. A total of 56 NMVOCs samples were collected in nine chemical plants and were then analyzed with a gas chromatography – mass spectrometry system (GC-MS. Source profiles of stack emissions from synthetic rubber, acetate fiber, polyether, vinyl acetate and ethylene production, and those of fugitive emissions from ethylene, butanol and octanol, propylene epoxide, polyethylene and glycol production were obtained. Various manufacturing technologies and raw materials led to discrepancies in source profiles between our domestic field tests and foreign results for synthetic rubber and ethylene production. The provincial NMVOC emissions were calculated to increase from 1774 Gg in 2005 to 2507 Gg in 2014, and relatively large emission densities were found in cities along the Yangtze River with developed economies and industries. The estimates were larger than those from most other available inventories, due mainly to the complete inclusion of emission sources and to the elevated activity levels from plant-by-plant investigation in this work. Industrial processes and solvent use were the largest contributing sectors, and their emissions were estimated to increase, respectively, from 461 to 958 and from 38 to 966 Gg. Alkanes, aromatics and oxygenated VOCs (OVOCs were the most important species, accounting for 25.9–29.9, 20.8–23.2 and 18.2–21.0 % to annual total emissions, respectively. Quantified with a Monte Carlo simulation, the uncertainties of annual NMVOC emissions

  17. Improved provincial emission inventory and speciation profiles of anthropogenic non-methane volatile organic compounds: a case study for Jiangsu, China

    Science.gov (United States)

    Zhao, Yu; Mao, Pan; Zhou, Yaduan; Yang, Yang; Zhang, Jie; Wang, Shekou; Dong, Yanping; Xie, Fangjian; Yu, Yiyong; Li, Wenqing

    2017-06-01

    Non-methane volatile organic compounds (NMVOCs) are the key precursors of ozone (O3) and secondary organic aerosol (SOA) formation. Accurate estimation of their emissions plays a crucial role in air quality simulation and policy making. We developed a high-resolution anthropogenic NMVOC emission inventory for Jiangsu in eastern China from 2005 to 2014, based on detailed information of individual local sources and field measurements of source profiles of the chemical industry. A total of 56 NMVOCs samples were collected in nine chemical plants and were then analyzed with a gas chromatography - mass spectrometry system (GC-MS). Source profiles of stack emissions from synthetic rubber, acetate fiber, polyether, vinyl acetate and ethylene production, and those of fugitive emissions from ethylene, butanol and octanol, propylene epoxide, polyethylene and glycol production were obtained. Various manufacturing technologies and raw materials led to discrepancies in source profiles between our domestic field tests and foreign results for synthetic rubber and ethylene production. The provincial NMVOC emissions were calculated to increase from 1774 Gg in 2005 to 2507 Gg in 2014, and relatively large emission densities were found in cities along the Yangtze River with developed economies and industries. The estimates were larger than those from most other available inventories, due mainly to the complete inclusion of emission sources and to the elevated activity levels from plant-by-plant investigation in this work. Industrial processes and solvent use were the largest contributing sectors, and their emissions were estimated to increase, respectively, from 461 to 958 and from 38 to 966 Gg. Alkanes, aromatics and oxygenated VOCs (OVOCs) were the most important species, accounting for 25.9-29.9, 20.8-23.2 and 18.2-21.0 % to annual total emissions, respectively. Quantified with a Monte Carlo simulation, the uncertainties of annual NMVOC emissions vary slightly through the years

  18. Emission inventory of NMVOC (Non Methane Volatile Organic Compounds) and simulations of ozone formation due to emissions of NO{sub x} and NMVOC in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Janhaell, S.; Andersson-Skoeld, Y.

    1997-01-01

    An emission inventory, covering the different source categories of ozone precursors in Sweden, has been performed. The emissions from each category, road traffic, working machinery, other mobile sources, wood combustion, energy production, industry, domestic use and pesticides, have been separated into 81 organic compounds and NO{sub x}. The emission data have been used in model simulations to predict the ozone formation due to the emission from different source categories. Four different ambient conditions have been treated. The results from this study indicate, as expected, that the road traffic is the single most important emitter of precursors significant in regional ozone production. POCP, or Photochemical Ozone Creation Potential, defined as the change in photochemical ozone production due to a change in the emission of that particular VOC, is used to compare different VOC in connection with ozone production. In this study the POCP was calculated for the whole group of compounds emitted from a specific source category. The results indicate that there is a big variety of ozone formation ability among source categories due to differences in composition, which clearly demonstrate the importance of a detailed description of the emissions. 48 refs, 5 figs, 6 tabs

  19. Use of chloroflurocarbons as internal standards for the measurement of atmospheric non-methane volatile organic compounds sampled onto solid adsorbent cartridges.

    Science.gov (United States)

    Karbiwnyk, Christine M; Mills, Craig S; Helmig, Detlev; Birks, John W

    2003-03-01

    Solid adsorbents have proven useful for determining the vertical profiles of volatile organic compounds (VOCs) using sampling platforms such as balloons, kites, and light aircraft, and those profiles provide valuable information about the sources, sinks, transformations, and transport of atmospheric VOCs. One of the largest contributions to error in VOC concentrations is the estimation of the volume of air sampled on the adsorbent cartridge. These errors arise from different sources, such as variations in pumping flow rates from changes in ambient temperature and pressure with altitude, and decrease in the sampling pump battery power. Another significant source for sampling rate variations are differences in the flow resistance of individual sampling cartridges. To improve the accuracy and precision of VOC measurements, the use of ambient chlorofluorocarbons (CFCs) as internal standards was investigated. A multibed solid adsorbent, AirToxic (Supelco), was chosen for its wide sampling range (C3-C12). Analysis was accomplished by thermal desorption and dual detection GC/FID/ECD, resulting in sensitive and selective detection of both VOCs and CFCs in the same sample. Long-lived chlorinated compounds (CFC-11, CFC-12, CFC-113, CCl4 and CH3CCl3) banned by the Montreal Protocol and subsequent amendments were studied for their ability to predict sample volumes using both ground-based and vertical profiling platforms through the boundary layer and free troposphere. Of these compounds, CFC-113 and CCl4 were found to yield the greatest accuracy and precision for sampling volume determination. Use of ambient CFC-113 and CCl4 as internal standards resulted in accuracy and precision of generally better than 10% for the prediction of sample volumes in ground-, balloon-, and aircraft-based measurements. Consequently, use of CFCs as reference compounds can yield a significant improvement of accuracy and precision for ambient VOC measurements in situations where accurate flow

  20. A refined method for the calculation of the Non-Methane Volatile Organic Compound emission estimate from Domestic Solvent Usage in Ireland from 1992 to 2014 - A case study for Ireland

    Science.gov (United States)

    Barry, Stephen; O'Regan, Bernadette

    2016-08-01

    This study describes a new methodology to calculate Non-Methane Volatile Organic Compounds from Domestic Solvent Use including Fungicides over the period 1992-2014. Improved emissions data compiled at a much more refined level can help policy-makers develop more effective policy's to address environmental issues. However, a number of problems were found when member states attempt to use national statistics for Domestic Solvent Use including Fungicides. For instance, EMEP/EEA (2013) provides no guidance regarding which activity data should be used, resulting in emission estimates being potentially inconsistent and un-comparable. Also, previous methods and emission factors described in the EMEP/EEA (2013) guidebook do not exactly match data collected by state agencies. This makes using national statistics difficult. In addition, EMEP/EEA (2013) use broader categories than necessary (e.g. Cosmetics Aerosol/Non Aerosol) to estimate emissions while activity data is available at a more refined level scale (e.g. Personal Cleaning Products, Hair Products, Cosmetics, Deodorants and Perfumes). This can make identifying the drivers of emissions unclear. This study builds upon Tzanidakis et al. (2012) whereby it provides a method for collecting activity data from state statistics, developed country specific emission factors based on a survey of 177 Irish products and importantly, used a new method to account for the volatility of organic compounds found in commonly available domestic solvent containing products. This is the first study to account for volatility based on the characteristics of organic compounds and therefore is considered a more accurate method of accounting for emissions from this emission source. The results of this study can also be used to provide a simple method for other member parties to account for the volatility of organic compounds using sectorial adjustment factors described here. For comparison purposes, emission estimates were calculated using the

  1. Self-organization in cold atomic gases: a synchronization perspective.

    Science.gov (United States)

    Tesio, E; Robb, G R M; Oppo, G-L; Gomes, P M; Ackemann, T; Labeyrie, G; Kaiser, R; Firth, W J

    2014-10-28

    We study non-equilibrium spatial self-organization in cold atomic gases, where long-range spatial order spontaneously emerges from fluctuations in the plane transverse to the propagation axis of a single optical beam. The self-organization process can be interpreted as a synchronization transition in a fully connected network of fictitious oscillators, and described in terms of the Kuramoto model. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  2. Measurement of stable carbon isotope ratios of non-methane hydrocarbons and halocarbons

    NARCIS (Netherlands)

    Zuiderweg, A.T.

    2012-01-01

    Within the realm of volatile organic compounds, hydrocarbons and halocarbons form a sizable proportion of carbon input to the atmosphere. Within these compound categories, the light non-methane hydrocarbons (NMHC, two to seven carbon atoms) and monocarbon halocarbons have a special place as these

  3. Organic microporous materials and their interactions with different gases

    Energy Technology Data Exchange (ETDEWEB)

    Shepodd, T.J.; Miller, D.L. [Sandia National Labs., Livermore, CA (United States). Materials Chemistry Dept.; Lagasse, R.R. [Sandia National Labs., Albuquerque, NM (United States). Organic Materials Processing Dept.

    1997-04-01

    This work explored the interactions of various organic microporous materials with different gases. The authors were attempting to make substances that could separate gases through differential adsorption or store gases at reduced pressures. They synthesized xerogels that were highly crosslinked, allowing relatively large amounts of micro- and mesopores within the organic polymers. The monomers were polymerized in a solvent which was removed forming xerogels. Then exhaustive drying was performed to yield the tested microporous materials. The xerogels were exposed to four gases to observe their gas adsorption affinities (methane, carbon dioxide, hydrogen, and isobutane). For each microporous polymer the authors measured BET surface area, nitrogen isotherm, bulk density, pycnometric density, and equilibrium gas adsorption. Pore volume and pore size distribution were also calculated for some samples. Adsorption characteristics paralleled, but were not directly proportional to surface area or pore size distribution changes. Changes in adsorption magnitude and selectivity have been made through various formulations and derivatization. Increasing polarity showed increased affinities towards carbon dioxide, slightly increased affinities towards isobutane, and unchanged affinities towards methane and hydrogen. These materials could adsorb significant amounts of gas; about half the amount of some commercial carbons. Considering the minimal processing involved in their synthesis, these materials could be cost effective replacements for carbons in low-cost applications where high adsorption efficiencies are not a priority.

  4. Adsorption of Gases on Graphene and Metal Organic Frameworks

    Science.gov (United States)

    Maiga, Sidi Mohamed

    Separation and adsorption of harmful gases from the environment are of great importance to industry and society. For this purpose, several materials are being explored. A large active surface area in the solid state candidates is an important requirement for efficient removal of gases. Owing to their large surface areas, Metal organic frameworks ( 2900 m2/g) and graphene ( 2600 m2/g), have emerged as two promising candidates for gas adsorption, separation and storage. The goal of this research is to investigate the capability of Metal Organic Frameworks and graphene for gas adsorption and separation; also to understand the properties of the molecules adsorbed on these two materials. We explore the adsorption of noble gases on graphene using Grand Canonical Monte Carlo simulations and also investigate the behavior of the monolayers on graphene. We obtain the phase diagrams of argon, krypton and xenon. We study the adsorption of carbon dioxide and methane molecules on graphene. Using Monte Carlo simulations and the Ideal Adsorb Solution Theory, we explore the selectivity of a binary mixture of CO2 and CH4 on graphene and estimate how the selectivity varies with temperature. We found high selectivity for CO2 at low temperature. At room temperature however the selectivity is low. We investigate the adsorption of CO2 and CH4 on a simplified model of the MOF-5 with systematic variations in the charge distribution, size and Lennard Jones parameters. We then test the selectivity of CO2 over CH4 and how it varies when we insert dipoles or quadrupole moments at the corners of the MOF-5. Our finding shows that the selectivity can be improved with adding dipoles or compressing the cell of the MOFs.

  5. Observations and analysis of organic aerosol evolution in some prescribed fire smoke plumes

    Science.gov (United States)

    A. A. May; T. Lee; G. R. McMeeking; S. Akagi; A. P. Sullivan; S. Urbanski; R. J. Yokelson; S. M. Kreidenweis

    2015-01-01

    Open biomass burning is a significant source of primary air pollutants such as particulate matter (PM) and non-methane organic gases (NMOG). However, the physical and chemical atmospheric processing of these emissions during transport is poorly understood. Atmospheric transformations of biomass burning emissions have been investigated in environmental chambers, but...

  6. Characterization of non-methane hydrocarbons in Asian summer monsoon outflow observed by the CARIBIC aircraft

    Directory of Open Access Journals (Sweden)

    A. K. Baker

    2010-07-01

    Full Text Available Between April and December 2008 the CARIBIC commercial aircraft conducted monthly measurement flights between Frankfurt, Germany and Chennai, India. These flights covered the period of the Asian summer monsoon (June–September, during which enhancements in a number of atmospheric species were observed in monsoon outflow. In addition to in situ measurements of trace gases and aerosols, whole air samples were collected during the flights, and these were subsequently analyzed for a suite of trace gases that included the non-methane hydrocarbons. Non-methane hydrocarbons are relatively short-lived compounds and the large enhancements in their mixing ratios in the upper troposphere over Southwest Asia between June and September, sometimes more than double their spring and fall means, provides qualitative evidence for the influence of convectively uplifted boundary layer air. The particularly large enhancements of the combustion tracers benzene and ethyne, along with the similarity of their ratios to carbon monoxide and emission ratios from the burning of household biofuels, indicate a strong influence of biofuel burning to NMHC emissions in this region. Conversely, the ratios of ethane and propane to carbon monoxide, along with the ratio between i-butane and n-butane, indicate a significant source of these compounds from the use of LPG and natural gas, and comparison to previous campaigns suggests that this source could be increasing. Photochemical aging patterns of NMHCs showed that the CARIBIC samples were collected in two distinctly different regions of the monsoon circulation: a southern region where air masses had been recently influenced by low level contact and a northern region, where air parcels had spent substantial time in transit in the upper troposphere before being probed. Estimates of age using ratios of individual NMHCs have ranges of 3–6 d in the south and 9–12 d in the north.

  7. Metal-organic frameworks for adsorption and separation of noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Allendorf, Mark D.; Greathouse, Jeffery A.; Staiger, Chad

    2017-05-30

    A method including exposing a gas mixture comprising a noble gas to a metal organic framework (MOF), including an organic electron donor and an adsorbent bed operable to adsorb a noble gas from a mixture of gases, the adsorbent bed including a metal organic framework (MOF) including an organic electron donor.

  8. Metal-organic materials (MOMs) for adsorption of polarizable gases and methods of using MOMs

    Energy Technology Data Exchange (ETDEWEB)

    Zaworotko, Michael; Mohamed, Mona H.; Elsaidi, Sameh

    2017-06-14

    Embodiments of the present disclosure provide for multi-component metal-organic materials (MOMs), systems including the MOM, systems for separating components in a gas, methods of separating polarizable gases from a gas mixture, and the like.

  9. Degradation of organic gases using ultrasonic mist generated from TiO2 suspension.

    Science.gov (United States)

    Sekiguchi, Kazuhiko; Noshiroya, Daisuke; Handa, Misako; Yamamoto, Keisuke; Sakamoto, Kazuhiko; Namiki, Norikazu

    2010-09-01

    The photocatalytic degradation of organic gases with mist particles that were formed by ultrasonic atomization of a TiO(2) suspension was performed with three different ultraviolet light sources. Three aromatic volatile organic compounds (VOCs; toluene, p-xylene, and styrene) and aldehydes (formaldehyde and acetaldehyde) were chosen as model organic gases for the degradation experiment. Under UV(365) irradiation, toluene was decomposed by a photocatalytic reaction on the surface of mist particles. Under UV(254+185) irradiation, the removal efficiency and mineralization ratio of the VOC gases were higher than those under UV(365) or UV(254) irradiation. Under UV(254+185) irradiation, it was found that VOC gases were immediately degraded and converted to water-soluble intermediates by not only direct photolysis but also oxidation by OH radical, since the removal efficiency of several organic gases depended on the reaction rate with OH radical and the primary effect of generated ozone was to complete the mineralization of the intermediates. On the other hand, water-soluble aldehyde gases were rapidly trapped by mist particles before reaction on their surface. Furthermore, water-soluble intermediates that formed via the decomposition of VOC gases were completely trapped in the mist and were not detected at the reactor exit. Therefore, notable secondary particle generation was not observed, even under UV(254+185) irradiation. Based on these results as well as the size distribution of the mist droplets, it was found that primarily submicron-scale droplets contributed to the photocatalytic reaction. Lastly, we propose a mechanism for the degradation of organic gaseous pollutants on the surface of mist particles.

  10. Modeling the selectivity of indoor pollution gases over N2 on covalent organic frameworks.

    Science.gov (United States)

    Li, Wenliang; Pang, Yujia; Zhang, Jingping

    2014-07-01

    The selectivity of indoor pollution gases (including formaldehyde, benzene, and toluene) over N2 on a set of 37 covalent organic frameworks (COFs) was modeled by combining classical grand canonical Monte Carlo (GCMC) methods and periodic density functional theory with dispersion correction (DFT-D2). The pore volume, pore size, and the isosteric heat (Q st) of gases on COFs were investigated to explore the origin of the high selectivity of pollution gases over N2. We found that the size match between the pore of the COFs and the corresponding pollution gases is the key factor for high selectivity. Additionally, the Q st for the investigated four gases follows the order of toluene > benzene > formaldehyde > N2, which is consistent with the order of selectivity. Furthermore, the favorite sites and interaction energies of pollution gases on COFs were calculated by the periodic DFT-D2 method. Our simulation procedure offers an alternative approach with which to evaluate or design the best candidate porous materials in capture pollution gases.

  11. Design and Analysis of SAW Based MEMS Gas Sensor for the Detection of Volatile Organic Gases

    Directory of Open Access Journals (Sweden)

    Staline Johnson

    2014-03-01

    Full Text Available This paper portrays the design and analysis of SAW based MEMS gas sensor for the detection of volatile organic gases. The gas sensor consists of interdigitated transducers modeled on a piezoelectric substrate and covered by a thin film of polyisobutylene (PIB which acts as the sensing layer. The piezoelectric substrate material used is YZ cut Lithium Niobate (LiNbO3 and electrodes used are made of Aluminium (Al. Mass loading effect on the sensing layer is used for the detection of volatile organic gases. The design and simultions were carried out by using comsol multiphysics software based on Finite Element Method (FEM for analytical simulations. The resonant frequency of the SAW device was determined and simulations are carried out by exposing the sensor to 100 ppm of various volatile organic gases and corresponding shift in resonant frequency for various gases are determined. The reduction in the resonant frequency is used for the detection of volatile organic gases such as chloromethane, dichloromethane, trichloromethane, tetrachloroethene, carbon tetrachloride and trichloroethylene.

  12. Adsorption of gases and large polycyclic organic molecules in metal-organic frameworks

    Science.gov (United States)

    Siberio-Perez, Diana Yazmin

    Metal-organic frameworks (MOFs) are a class of porous materials with unique properties, including size tunable pores and cavities that allow for high surface areas and high levels of porosity. These properties make MOFs appealing for a number of traditional processes such as separations and catalysis, and for areas of current interest such as gas storage. The implementation of these frameworks into these areas first requires an understanding of the adsorbene-adsorbent interactions. For this reason, the adsorption behavior of CH4, N2, and CO2 (298 K, 30 bar) in a series of isoreticular MOFs (IRMOFs) was investigated by Raman spectroscopy. The data were marked by different shifts to the normal vibrational modes of the gases, depending on the IRMOF to which they were adsorbed. These shifts arise due to interactions within the framework pores, and not with the outer crystal surface. In all cases, Raman spectra at pressures up to 30 bar showed that saturation of the sorption sites does not occur. The observed shifts of the vibrational modes for each gas indicate different chemical environments within different IRMOFs, pointing to the important role the linkers play in the adsorption of gases. Despite the fact that MOFs possess surface areas that exceed those of other porous materials, no method of determining the upper limit in surface area for a material had yet been determined. Here, a general strategy is presented that has allowed for the realization of a structure that has one of the highest surface areas reported to date. The design and inclusion properties of crystalline Zn4O(1,3,5-benzenetribenzoate)2, a framework with a surface area measured to exceed 4,500 m2/g, is reported. This framework, named MOF-177, combines this exceptional level of surface area with an ordered structure that has extra-large pores capable of binding polycyclic organic guest molecules, that include C60 and several dyes. Size and isomer selectivity may also be achieved with MOF-177, as

  13. Removal of organic contaminants from water or wastewater with liquefied gases

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This study utilized liquefied gases (LG) as extractant to remove various organic contaminants including halogenated hydrocarbons and phenols as well as aromatic compounds from aqueousmatrices. Orthogonal experiments were performed to optimize theoperating conditions such as temperature, co-solvents and so on.Under favorable conditions, high removal efficiencies can bereadily achieved for a great number of representative model organiccontaminants, the removal efficiencies for most of the hydrophobiccontaminants were greater than 90% in a single extraction stage.Tentative effort was also done for the removal of extractedcontaminants from recycled liquefied gases.

  14. Seasonal behavior of non-methane hydrocarbons in the firn air at Summit, Greenland

    Science.gov (United States)

    Helmig, D.; Stephens, C. R.; Caramore, J.; Hueber, J.

    2014-03-01

    Non-methane hydrocarbons (NMHC) were measured in the ambient air and in the snowpack interstitial firn air at ˜1 m depth continuously for nearly two years at Summit, Greenland, from fall 2008 through summer 2010. Additionally, five firn air depth profiles were conducted to a depth of 3 m spanning winter, spring, and summer seasons. Here we report measurements of ethane, ethene, ethyne, propane, propene, i-butane, n-butane, i-pentane, n-pentane, and benzene and discuss the seasonal behavior of these species in the ambient and firn air. The alkanes, ethyne, and benzene in the firn air closely reflect the ambient air concentrations during all the seasons of the year. In spring and summer seasons, ethene and propene were enhanced in the near-surface firn over that in the ambient air, indicating a photochemical production mechanism for these species within the snowpack interstitial air. Evaluation of the NMHC ratios of i-butane/n-butane, i-pentane/n-pentane, and benzene/ethyne in both ambient and firn air does not provide evidence for chlorine or bromine radical chemistry significantly affecting these gases, except in a few summer samples, where individual data points may suggest bromine oxidation influence.

  15. Observing Organic Molecules in Interstellar Gases: Non Equilibrium Excitation.

    Science.gov (United States)

    Wiesenfeld, Laurent; Faure, Alexandre; Remijan, Anthony; Szalewicz, Krzysztof

    2014-06-01

    In order to observe quantitatively organic molecules in interstellar gas, it is necessary to understand the relative importance of photonic and collisional excitations. In order to do so, collisional excitation transfer rates have to be computed. We undertook several such studies, in particular for H_2CO and HCOOCH_3. Both species are observed in many astrochemical environments, including star-forming regions. We found that those two molecules behave in their low-lying rotational levels in an opposite way. For cis methyl-formate, a non-equilibrium radiative transfer treatment of rotational lines is performed, using a new set of theoretical collisional rate coefficients. These coefficients have been computed in the temperature range 5 to 30 K by combining coupled-channel scattering calculations with a high accuracy potential energy surface for HCOOCH_3 -- He. The results are compared to observations toward the Sagittarius B2(N) molecular cloud. A total of 2080 low-lying transitions of methyl formate, with upper levels below 25 K, were treated. These lines are found to probe a cold (30 K), moderately dense (n ˜ 104 cm-3) interstellar gas. In addition, our calculations indicate that all detected emission lines with a frequency below 30 GHz are collisionally pumped weak masers amplifying the background of Sgr B2(N). This result demonstrates the generality of the inversion mechanism for the low-lying transitions of methyl formate. For formaldehyde, we performed a similar non-equilibrium treatment, with H_2 as the collisional partner, thanks to the accurate H_2CO - H_2 potential energy surface . We found very different energy transfer rates for collisions with para-H_2 (J=0) and ortho-H_2 (J=1). The well-known absorption against the cosmological background of the 111→ 101 line is shown to depend critically on the difference of behaviour between para and ortho-H_2, for a wide range of H_2 density. We thank the CNRS-PCMI French national program for continuous support

  16. Metal-organic frameworks with high capacity and selectivity for harmful gases

    OpenAIRE

    Britt, David; Tranchemontagne, David; Yaghi, Omar M.

    2008-01-01

    Benchmarks have been established for the performance of six metal-organic frameworks (MOFs) and isoreticular MOFs (IRMOFs, which have the same underlying topology as MOF-5), MOF-5, IRMOF-3, MOF-74, MOF-177, MOF-199, and IRMOF-62, as selective adsorbents for eight harmful gases: sulfur dioxide, ammonia, chlorine, tetrahydrothiophene, benzene, dichloromethane, ethylene oxide, and carbon monoxide. Kinetic breakthrough measurements are used to determine the calculated dynamic adsorption capacity ...

  17. Emissions of non-methane hydrocarbons from cars in China

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This study investigated the exhaust emission of non-methane hydrocarbons(NMHCs) from cars in China at the Beijing driving cycle on the chassis dynamometer.The emission factor average of NMHCs was 0.9 g/km,which was over twice that from the Australian car fleet and 2-4 times that of the American car emission in the 1990s-2000s.The emission profile of Beijing cars showed higher fractions of aromatics and C4?C7 HCs,and lower percentages of C2?C3 HCs,compared with those of the US car fleet.The average ratio of benzene/toluene for cars tested was 0.5,the average benzene/toluene/ethyl benzene/xylenes(BTEX) ratios were 1/2.2/0.1/1.8,which were consistent with those of the Tanyugou tunnel located in the suburb of Beijing.α-pinene and β-pinene were detected from the exhaust gas on dynamometer for the first time,and had likely similar exhaust emission characteristics with C2?C3 HCs and styrene,giving an evidence that air pinenes may be related to human activities.Isoprene was also detected directly.These observations suggest that the procedure regarding pinenes and isoprene as coming from biologic sources of VOCs in the atmosphere should be applied with great care,especially in the core of the big city like Beijing.The specific reactivity of NMHCs was higher than that of cars of US,and the specific reactivity of volatile aromatic compounds was higher than that of the US SPECIATE database.

  18. Multiscale simulation of pollution gases adsorption in porous organic cage CC3.

    Science.gov (United States)

    Li, Wenliang; Zhang, Jingping

    2014-01-15

    A general multiscale simulation procedure is proposed to accurately predict the uptakes of pollution gases such as CO2, SO2, H2S, and CO in one of the most investigated porous organic cages CC3 by using a sophisticated force field vdW3 fitted by double hybrid functional (B2PLYP) with a dispersion correction (D3) separately for gas-gas and CC3-gas interactions. The fitted vdW3 was used in grand canonical Monte Carlo simulations. Good comparison with the coupled cluster single and double excitation and the perturbative triples (CCSD(T))/complete basis set (CBS) limit interaction energies make the B2PLYP-D3 results reliable for our purpose. The good agreement of simulated CO2 loading with experimental one and the low deviation in the fitting procedure for H2S and CO make our approach available in predicting gases in novel porous materials.

  19. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    Energy Technology Data Exchange (ETDEWEB)

    Goodson, Boyd McLean [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  20. Sulfurous Gases As Biological Messengers and Toxins: Comparative Genetics of Their Metabolism in Model Organisms

    Directory of Open Access Journals (Sweden)

    Neal D. Mathew

    2011-01-01

    Full Text Available Gasotransmitters are biologically produced gaseous signalling molecules. As gases with potent biological activities, they are toxic as air pollutants, and the sulfurous compounds are used as fumigants. Most investigations focus on medical aspects of gasotransmitter biology rather than toxicity toward invertebrate pests of agriculture. In fact, the pathways for the metabolism of sulfur containing gases in lower organisms have not yet been described. To address this deficit, we use protein sequences from Homo sapiens to query Genbank for homologous proteins in Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae. In C. elegans, we find genes for all mammalian pathways for synthesis and catabolism of the three sulfur containing gasotransmitters, H2S, SO2 and COS. The genes for H2S synthesis have actually increased in number in C. elegans. Interestingly, D. melanogaster and Arthropoda in general, lack a gene for 3-mercaptopyruvate sulfurtransferase, an enzym for H2S synthesis under reducing conditions.

  1. Analysis of non-methane hydrocarbons in air samples collected aboard the CARIBIC passenger aircraft

    Directory of Open Access Journals (Sweden)

    A. K. Baker

    2009-10-01

    Full Text Available The CARIBIC project (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container is a long-term monitoring program making regular atmospheric measurements from an instrument container installed monthly aboard a passenger aircraft. Typical cruising altitudes of the aircraft allow for the study of the free troposphere and the extra-tropical upper troposphere as well as the lowermost stratosphere. CARIBIC measurements include a number of real time analyses as well as the collection of aerosol and whole air samples. These whole air samples are analyzed post-flight for a suite of trace gases, which includes non-methane hydrocarbons (NMHC.

    The NMHC measurement system and its analytical performance are described here. Precision was found to vary slightly by compound, and is less than 2% for the C2–C6 alkanes and ethyne, and between 1 and 6% for C7–C8 alkanes and aromatic compounds. Preliminary results from participation in a Global Atmospheric Watch (WMO VOC audit indicate accuracies within the precision of the system. Limits of detection are 1 pptv for most compounds, and up to 3 pptv for some aromatics. These are sufficiently low to measure mixing ratios typically observed in the upper troposphere and lowermost stratosphere for the longer-lived NMHC, however, in air samples from these regions many of the compounds with shorter lifetimes (<5 d were frequently below the detection limit. Observed NMHC concentrations span many orders of magnitude, dependent on atmospheric region and air mass history, with concentrations typically decreasing with shorter chemical lifetimes.

  2. Adsorption of selected gases on metal-organic frameworks and covalent organic frameworks: A comparative grand canonical Monte Carlo simulation

    Science.gov (United States)

    Wang, Lili; Wang, Lu; Zhao, Jijun; Yan, Tianying

    2012-06-01

    The adsorption properties of H2, CO, NO, and NO2 in several typical nanoporous materials (covalent organic framework (COF)-105, COF-108, metal-organic framework (MOF)-5, and MOF-177) at 298 K were investigated by grand canonical Monte Carlo simulations. Good agreement between simulated results and experimental data has been achieved for H2 adsorption on MOF-5 and MOF-177, indicating the reliability of the theoretical approach. The simulated adsorption isotherms for these four gases show analogical trend, i.e., increasing nearly linearly with pressure. Among the four host materials, COF-108 exhibits the highest hydrogen uptake (˜0.89 wt. % at 100 bars) owing to its low densities and high surface area. The adsorption amounts of NO2 in these materials are higher than those of the other three gases because of the stronger gas-sorbent interaction. In particular, NO2 adsorption amount in MOF-177 can reach as high as 10.7 mmol/g at 298 K and 10 bars. The interaction between the four gases (H2, CO, NO, and NO2) and the COF/MOF adsorbents is further discussed in terms of the isosteric heat.

  3. Separation of rare gases and chiral molecules by selective binding in porous organic cages

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Linjiang; Reiss, Paul S.; Chong, Samantha Y.; Holden, Daniel; Jelfs, Kim E.; Hasell, Tom; Little, Marc A.; Kewley, Adam; Briggs, Michael E.; Stephenson, Andrew; Thomas, K. M.; Armstrong, Jayne A.; Bell, Jon; Busto, Jose; Noel, Raymond; Liu, Jian; Strachan, Denis M.; Thallapally, Praveen K.; Cooper, Andrew I.

    2014-10-31

    Abstract: The rare gases krypton, xenon, and radon pose both an economic opportunity and a potential environmental hazard. Xenon is used in commercial lighting, medical imaging, and anesthesia, and can sell for $5,000 per kilogram. Radon, by contrast, Is naturally radioactive and the second largest cause of lung cancer, and radioactive xenon, 133Xe, was a major pollutant released In the Fukushima Daiichi Nuclear Power Plant disaster. We describe an organic cage molecule that can capture xenon and radon with unprecedented selectivity, suggesting new technologies for environmental monitoring, removal of pollutants, or the recovery of rare, valuable elements from air.

  4. Dissolved Gases and Ice Fracturing During the Freezing of a Multicellular Organism: Lessons from Tardigrades.

    Science.gov (United States)

    Kletetschka, Gunther; Hruba, Jolana

    2015-01-01

    Three issues are critical for successful cryopreservation of multicellular material: gases dissolved in liquid, thermal conductivity of the tissue, and localization of microstructures. Here we show that heat distribution is controlled by the gas amount dissolved in liquids and that when changing the liquid into solid, the dissolved gases either form bubbles due to the absence of space in the lattice of solids and/or are migrated toward the concentrated salt and sugar solution at the cost of amount of heat required to be removed to complete a solid-state transition. These factors affect the heat distribution in the organs to be cryopreserved. We show that the gas concentration issue controls fracturing of ice when freezing. There are volumetric changes not only when changing the liquid into solid (volume increases) but also reduction of the volume when reaching lower temperatures (volume decreases). We discuss these issues parallel with observations of the cryosurvivability of multicellular organisms, tardigrades, and discuss their analogy for cryopreservation of large organs.

  5. New off-line aircraft instrumentation for non-methane hydrocarbon measurements.

    Science.gov (United States)

    Bechara, Joelle; Borbon, Agnès; Jambert, Corinne; Perros, Pascal E

    2008-11-01

    New off-line instrumentation was developed to implement measurements of non-methane hydrocarbons (NMHC) on (French) research aircraft. NMHC are collected on multisorbent tubes by AMOVOC (Airborne Measurements Of Volatile Organic Compounds), a new automatic sampler. AMOVOC is a versatile and portable sampler targeting a wide range of NMHC at high frequency (sampling time of 10 min). Multisorbent tubes are analyzed on the ground by short-path thermal desorption coupled with gas chromatography and mass spectrometry. The development and optimization of both NMHC sampling and analysis are reported here. On the one hand, the paper points out technical choices that were made according to aircraft constraints and avoiding sample loss or contamination. On the other hand, it describes analytical optimization, tube storage stability, and moisture removal. The method shows high selectivity, sensitivity (limit of detection less than 10 ppt) and precision (less than 24%). Finally, NMHC data collected on French aircraft during the African Monsoon Multidisciplinary Analysis campaign are reported for the first time. The results highlight instrumentation validity and protocol efficiency for NMHC measurements in the lower and upper troposphere.

  6. Observations of the release of non-methane hydrocarbons from fractured shale.

    Science.gov (United States)

    Sommariva, Roberto; Blake, Robert S; Cuss, Robert J; Cordell, Rebecca L; Harrington, Jon F; White, Iain R; Monks, Paul S

    2014-01-01

    The organic content of shale has become of commercial interest as a source of hydrocarbons, owing to the development of hydraulic fracturing ("fracking"). While the main focus is on the extraction of methane, shale also contains significant amounts of non-methane hydrocarbons (NMHCs). We describe the first real-time observations of the release of NMHCs from a fractured shale. Samples from the Bowland-Hodder formation (England) were analyzed under different conditions using mass spectrometry, with the objective of understanding the dynamic process of gas release upon fracturing of the shale. A wide range of NMHCs (alkanes, cycloalkanes, aromatics, and bicyclic hydrocarbons) are released at parts per million or parts per billion level with temperature- and humidity-dependent release rates, which can be rationalized in terms of the physicochemical characteristics of different hydrocarbon classes. Our results indicate that higher energy inputs (i.e., temperatures) significantly increase the amount of NMHCs released from shale, while humidity tends to suppress it; additionally, a large fraction of the gas is released within the first hour after the shale has been fractured. These findings suggest that other hydrocarbons of commercial interest may be extracted from shale and open the possibility to optimize the "fracking" process, improving gas yields and reducing environmental impacts.

  7. Halocarbons and other trace heteroatomic organic compounds in volcanic gases from Vulcano (Aeolian Islands, Italy)

    Science.gov (United States)

    Schwandner, Florian M.; Seward, Terry M.; Giże, Andrew P.; Hall, Keith; Dietrich, Volker J.

    2013-01-01

    Adsorbent-trapped volcanic gases, sublimates and condensates from active vents of the La Fossa crater on the island of Vulcano (Aeolian Islands, Italy) as well as ambient and industrial air were quantitatively analyzed by Short-Path Thermal Desorption-Solid Phase Microextraction-Cryotrapping-Gas Chromatography/Mass Spectrometry (SPTD-SPME-CF-GC-MS). Among the over 200 detected and quantified compounds are alkanes, alkenes, arenes, phenols, aldehydes, carboxylic acids, esters, ketones, nitriles, PAHs and their halogenated, methylated and sulfonated derivatives, as well as various heterocyclic compounds including thiophenes and furans. Most compounds are found at concentrations well above laboratory, ambient air, adsorbent and field blank levels. For some analytes (e.g., CFC-11, CH2Cl2, CH3Br), concentrations are up to several orders of magnitude greater than even mid-latitudinal industrial urban air maxima. Air or laboratory contamination is negligible or absent on the basis of noble gas measurements and their isotopic ratios. The organic compounds are interpreted as the product of abiogenic gas-phase radical reactions. On the basis of isomer abundances, n-alkane distributions and substitution patterns the compounds are thought to have formed by high-temperature (e.g., 900 °C) alkyl free radical reactions and halide electrophilic substitution on arenes, alkanes and alkenes. The apparent abiogenic organic chemistry of volcanic gases may give insights into metal transport processes during the formation and alteration of hydrothermal ore deposits, into the natural volcanic source strength of ozone-depleting atmospheric trace gases (i.e., halocarbons), into possibly sensitive trace gas redox pairs as potential early indicators of subsurface changes on volcanoes in the state of imminent unrest, and into the possible hydrothermal origin of early life on Earth, as indicated by the presence of simple amino acids, nitriles, and alkanoic acids.

  8. The response of quartz crystals coated with thin fatty acid film to organic gases

    CERN Document Server

    Jin, C N; Kim, K H; Kwon, Y S

    1999-01-01

    We tried to apply a quartz crystal as a sensor by using the resonant frequency and the resistance properties of quartz crystals. Four kinds of fatty acids that have the same head groups were coated on the surfaces of the quartz crystals, and the shift of the resonant frequency and the resistance were observed based on the lengths of the tail groups. Myristic acid (C sub 1 sub 4), palmitic acid (C sub 1 sub 6), stearic acid (C sub 1 sub 8), and arachidic acid (C sub 2 sub 0) were deposited on the surfaces of quartz crystals by using the Langmuir-Blodgett (LB) method. As a result, the resonant frequency change was more sensitive to high molecular-weight fatty acids than to low molecular-weight ones. We also observed the effect of temperature on stearic acid LB films, and the response properties of quartz crystals coated with stearic-acid LB films to organic gases were investigated. As a result, the sensitivity of quartz crystals to organic gases was higher for higher molecular-weight gas, and we found that quar...

  9. Measurements of organic gases during aerosol formation events in the boreal forest atmosphere during QUEST

    Directory of Open Access Journals (Sweden)

    K. Sellegri

    2004-08-01

    Full Text Available Biogenic VOCs are important in the growth and possibly also in the formation of atmospheric aerosol particles. In this work, we present 10 min-time resolution measurements of organic trace gases at Hyytiälä, Finland during March 2002. The measurements were part of the project QUEST (Quantification of Aerosol Nucleation in the European Boundary Layer and took place during a two-week period when nucleation events occurred with various intensities nearly every day. Using a ground-based Chemical Ionization Mass Spectrometer (CIMS instrument, the following trace gases were detected: acetone, TMA, DMA, mass 68 amu (candidate=isoprene, monoterpenes, Methyl Vinyl Ketone (MVK and Methacrolein (MaCR, cis-3-hexenyl acetate and MonoTerpene Oxidation Products (MTOP. For all of them except for the amines, we present daily variations during different classes of event days, and non-event days. Isoprene, monoterpenes, MVK+MaCR, cis-3-hexenyl acetate and MTOP are found to show significant correlations with the condensational sink (CS, which indicates that a fraction of these compounds are participating to the growth of the nucleated particles and generally secondary organic aerosol formation. Moreover, the terpene oxidation products (TOP (MVK, MaCR and MTOP show a higher ratio to the CS on event days compared to non-event days, indicating that their abundance relative to the surface of aerosol available is higher on nucleation days.

  10. MEMBRANE SYSTEM FOR RECOVERY OF VOLATILE ORGANIC COMPOUNDS FROM REMEDIATION OFF-GASES

    Energy Technology Data Exchange (ETDEWEB)

    J.G. Wijmans

    2003-11-17

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used to remediate soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Currently, carbon adsorption and catalytic incineration are the most common methods of treating these gas streams. Membrane Technology and Research, Inc. (MTR) proposed an alternative treatment technology based on selective membranes that separate the organic components from the gas stream, producing a VOC-free air stream. This technology can be applied to off-gases produced by various remediation activities and the systems can be skid-mounted and automated for easy transportation and unattended operation. The target performance for the membrane systems is to produce clean air (less than 10 ppmv VOC) for discharge or recycle, dischargeable water (less than 1 ppmw VOC), and a concentrated liquid VOC phase. This report contains the results obtained during Phase II of a two-phase project. In Phase I, laboratory experiments were carried out to demonstrate the feasibility of the proposed approach. In the subsequent Phase II project, a demonstration system was built and operated at the McClellan Air Force Base near Sacramento, California. The membrane system was fed with off-gas from a Soil Vacuum Extraction (SVE) system. The work performed in Phase II demonstrated that the membrane system can reduce the VOC concentration in remediation off-gas to 10 ppmv, while producing a concentrated VOC phase and dischargeable water containing less than 1 ppmw VOC. However, the tests showed that the presence of 1 to 3% carbon dioxide in the SVE off-gas reduced the treatment capacity of the system by a factor of three to four. In an economic analysis, treatment costs of the membrane

  11. The contribution of drained organic soils to the globally emitted greenhouse gases and emission hotspots

    Science.gov (United States)

    Barthelmes, Alexandra; Couwenberg, John; Joosten, Hans

    2016-04-01

    Key words: organic soils, peatlands, drainage, emissions, globally Peatlands cover only 3% of the global land surface. Some 15% of these peatlands have been drained for agriculture, forestry and grazing, which leads to the release of huge amounts of carbon. The '2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands' (IPCC 2014) offers up-to-date default emission factors for different land use types on organic soil and thus enables proper reporting. For this, realistic area data of drained organic soils are needed at a national scale. We analysed the drained organic soil areas and related emissions as reported to the UNFCCC in 2014 for several Nordic-Baltic countries . The analysis revealed that the areas often seem to be underestimated and that several countries use outdated emission factors. The re-assessment of the drained area and the application of the IPCC (2014) default emission factors resulted in 5-10 x higher emissions from drained organic soils for some countries. Out of 9 Nordic-Baltic countries only 1 country seems to have overestimated the drainage related organic soil emissions. If adopting the default emission factors from IPCC (2014) globally, the emissions from drained and degrading organic soils (~ 1,600 Mt CO2-eq.) amount to almost double the amount of CO2 emissions from aviation, even when emissions from peat fires are not included . By far the top single emitter of drained peatland related greenhouse gases is Indonesia, followed by the European Union and Russia. 25 countries are together responsible for 95% of global emissions from peatland drainage, excluding fires. Fires raise the importance of particularly Indonesia and Russian Federation. In 25 countries emissions from peatland degradation are over 50% of the emissions from fossil fuels and cement production combined, hence peatland emissions are of national significance.

  12. Variation of ambient non-methane hydrocarbons in Beijing city in summer 2008

    Directory of Open Access Journals (Sweden)

    B. Wang

    2010-02-01

    Full Text Available In conjunction with hosting the 2008 Beijing Olympics, the municipal government implemented a series of stringent air quality control measures. To assess the impacts on variation of ambient non-methane hydrocarbons (NMHCs, the whole air was sampled by canisters at one urban site and two suburban sites in Beijing, and 55 NMHC species were quantified by gas chromatography equipped with a quadrupole mass spectrometer and a flame ionization detector (GC/MSD/FID as parts of the field Campaign for the Beijing Olympic Games Air Quality program (CareBeijing. According to the control measures, the data were presented according to four periods: 18–30 June, 8–19 July, 15–24 August (during the Olympic Games, and 6–15 September (during the Paralympic Games. Compared with the levels in June, the mixing ratios of NMHCs obtained in the Olympic and Paralympic Games periods were reduced by 35% and 25%, respectively. Source contributions were calculated using a chemical mass balance model (CMB 8.2. After implementing the control measures, emissions from target sources were obviously reduced, and reductions in vehicle exhaust could explain 48–82% of the reductions of ambient NMHCs. Reductions in emissions from gasoline evaporation, paint and solvent use, and the chemical industry contributed 9–40%, 3–24%, and 1–5%, respectively, to reductions of ambient NMHCs. Sources of liquefied petroleum gas (LPG and biogenic emissions were not controlled, and contributions from these sources from July to September were stable or even higher than in June. Ozone formation potentials (OFPs were calculated for the measured NMHCs. The total OFPs during the Olympic and Paralympic Games were reduced by 48% and 32%, respectively, compared with values in June. Reductions in the OFPs of alkenes and aromatics explained 77–92% of total OFP reductions. The alkenes and aromatics were mainly from vehicle exhausts, and reductions of vehicle exhaust gases explained 67–87% of

  13. Locating Gases in Porous Materials: Cryogenic Loading of Fuel-Related Gases Into a Sc-based Metal-Organic Framework under Extreme Pressures.

    Science.gov (United States)

    Sotelo, Jorge; Woodall, Christopher H; Allan, Dave R; Gregoryanz, Eugene; Howie, Ross T; Kamenev, Konstantin V; Probert, Michael R; Wright, Paul A; Moggach, Stephen A

    2015-11-02

    An alternative approach to loading metal organic frameworks with gas molecules at high (kbar) pressures is reported. The technique, which uses liquefied gases as pressure transmitting media within a diamond anvil cell along with a single-crystal of a porous metal-organic framework, is demonstrated to have considerable advantages over other gas-loading methods when investigating host-guest interactions. Specifically, loading the metal-organic framework Sc2BDC3 with liquefied CO2 at 2 kbar reveals the presence of three adsorption sites, one previously unreported, and resolves previous inconsistencies between structural data and adsorption isotherms. A further study with supercritical CH4 at 3-25 kbar demonstrates hyperfilling of the Sc2 BDC3 and two high-pressure displacive and reversible phase transitions are induced as the filled MOF adapts to reduce the volume of the system. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Glass shell manufacturing in space. [residual gases in spherical shells made from metal-organic gels

    Science.gov (United States)

    Nolen, R. J.; Ebner, M. A.; Downs, R. L.

    1980-01-01

    Residual gases always found in glass shells are CO2, O2 and N2. In those cases where high water vapor pressure is maintained in the furnace, water is also found in the shells. Other evidence for the existence of water in shells is the presence of water-induced surface weathering of the interior shell surface. Water and CO2 are the predominant volatiles generated by the pyrolysis of both inorganic and hydrolyzed metal-organic gels. The pyrolysates of unhydrolyzed metal-organic gels also contain, in addition to water and CO2, significant levels of organic volatiles, such as ethanol and some hydrocarbons; on complete oxidation, these produce CO2 and water as well. Water is most likely the initial blowing agent, it is produced copiously during the initial stages of heating. In the later stages, CO2 becomes the dominant gas as H2O is lost at increasing rates. Water in the shell arises mainly from gel dehydration, CO2 by sodium bicarbonate/carbonate decomposition and carbon oxidation, and O2 and N2 by permeation of the ambient furnace air through the molten shell wall.

  15. Non Methane Hydrocarbons (NMHCs) at the centre of Athens: variability and relative contribution of traffic and wood burning

    Science.gov (United States)

    Panopoulou, Anastasia; Liakakou, Eleni; Psiloglou, Basil; Gros, Valerie; Bonsang, Bernard; Sauvage, Stephane; Locoge, Nadine; Lianou, Maria; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2016-04-01

    Non-methane hydrocarbons (NMHC) can be found in significant concentrations in urban areas. They are emitted by biogenic and anthropogenic sources like vehicle exhaust, gasoline evaporation and solvent use. Once emitted they mainly react with hydroxyl radicals (OH) and in the presence of nitrogen oxides (NOx) lead to the formation of secondary pollutants such as ozone (O3), peroxy acetyl nitrate (PAN) and secondary organic aerosols. In Great Athens Area (GAA) despite the numerous air quality issues especially with exceedances in ozone and particulate matter (PM), continuous monitoring of NMHCs is absent. This work presents the first results of a ChArMEX/TRANSEMED project dealing with VOC source apportionment and emission inventory evaluation in megacities around the Mediterranean basin. A representative site in the centre of Athens is progressively equipped with high performance instruments in order to measure continuously NMHCs (time resolution of 30 min) over a long period. The main objective of this presentation is the determination of the ambient level and temporal variability of C2-C6 NMHCs, as well as the impact of the sources controlling their variability. The importance of this work is attributed to the high time resolution measurements providing a detailed light hydrocarbons profile of the area for first time in the GAA. An automatic gas chromatograph (airmoVOC C2-C6 Chromatrap GC, Chromatotec, France) equipped with a flame ionization detector (FID) has been used for the in-situ measurements of NMHCS with two to six carbon atoms (C2-C6 NMHCs) during the period from the 16 of October to end of December 2015. In addition, meteorological and auxiliary data for major gases (CO, O3, NOx) and particulates (PM and Black Carbon (BC) are also available. Atmospheric concentrations of NMHCs range from below the detection limit to a few ppbs, for example almost 14 ppb, 20 ppb and 25 ppb for ethane, propane and acetylene respectively. Between the NMHCs being monitored

  16. Reconstruction of Northern Hemisphere 1950-2010 atmospheric non-methane hydrocarbons

    NARCIS (Netherlands)

    Helmig, D.; Petrenko, V.; Martinerie, P.; Witrant, E.; Rockmann, T.; Zuiderweg, A.; Holzinger, R.; Hueber, J.; Thompson, C.; White, J. W. C.; Sturges, W.; Baker, A.; Blunier, T.; Etheridge, D.; Rubino, M.; Tans, P.

    2014-01-01

    The short-chain non-methane hydrocarbons (NMHC) are mostly emitted into the atmosphere by anthropogenic processes. Recent studies have pointed out a tight linkage between the atmospheric mole fractions of the NMHC ethane and the atmospheric growth rate of methane. Consequently, atmospheric NMHC are

  17. Reconstruction of Northern Hemisphere 1950-2010 atmospheric non-methane hydrocarbons

    NARCIS (Netherlands)

    Helmig, D.; Petrenko, V.; Martinerie, P.; Witrant, E.; Rockmann, T.; Zuiderweg, A.; Holzinger, R.; Hueber, J.; Thompson, C.; White, J. W. C.; Sturges, W.; Baker, A.; Blunier, T.; Etheridge, D.; Rubino, M.; Tans, P.

    2014-01-01

    The short-chain non-methane hydrocarbons (NMHC) are mostly emitted into the atmosphere by anthropogenic processes. Recent studies have pointed out a tight linkage between the atmospheric mole fractions of the NMHC ethane and the atmospheric growth rate of methane. Consequently, atmospheric NMHC are

  18. Non-methane hydrocarbons over the Eastern Mediterranean during summer, measured from northwest Cyprus

    Science.gov (United States)

    Sauvage, Carina; Derstroff, Bettina; Bourtsoukidis, Efstratios; Keßel, Stephan; Thorenz, Ute; Baker, Angela; Williams, Jonathan; Lelieveld, Jos

    2015-04-01

    In summer 2014 the CYprus Photochemistry EXperiment (CYPHEX) field campaign took place at an elevated (600m) measurement site in the north western part of Cyprus close (10 km) to the coast (35,96N, 32,4E) in order to investigate the photochemistry and air mass transport of the eastern Mediterranean. Non-methane hydrocarbons were measured with a commercial GC-FID (AMA instruments GmbH, Ulm, Germany) with a final dataset consisting of two weeks of continuous, hourly measurements for 10 NMHC. NMHCs are a class of volatile organic compounds (VOC) which are emitted by both anthropogenic and natural sources. Their predominant sink in the atmosphere is photochemically driven oxidation by OH radicals. Their atmospheric lifetimes, which range from a few days for more reactive compounds such as pentanes and butanes and up to a month for less reactive ones like ethane, make it possible to deduce photochemical histories and transport regimes from NMHC observations. Furthermore, in the presence of NOx they are important precursors for tropospheric ozone. Backward trajectories show that the airmasses reaching the measurement site had been influenced periodically by emissions from western continental Europe (France, Spain) that crossed the Mediterranean Sea and from eastern continental Europe (Greece and Turkey) more recently influenced by industrial emissions. Varying patterns in NMHC data delineates these two regimes very well, with aged western European air masses being characterized by low level ethane and with toluene and benzene being higher and more variable in plumes from eastern Europe. Additionally, atypical n-butane and i-butane ratios suggest a deviation from the expected predominant oxidation by OH, possibly indicating reaction with chlorine radicals (Cl). The dataset has been evaluated with respect to NMHC sources and oxidative history using different methods of approach.

  19. Membrane System for Recovery of Volatile Organic Compounds from Remediation Off-Gases.: Phase 1.

    Energy Technology Data Exchange (ETDEWEB)

    Wijmans, J.G.; Goakey, S.; Wang, X.; Baker, R.W.; Kaschemekat, J.H.

    1997-04-01

    In situ vacuum extraction, air or steam sparging, and vitrification are widely used methods of remediating soil contaminated with volatile organic compounds (VOCs). All of these processes produce a VOC-laden air stream from which the VOC must be removed before the air can be discharged or recycled to the generating process. Treatment of these off-gases is often a major portion of the cost of the remediation project. Carbon adsorption and catalytic incineration, the most common methods of treating these gas streams, suffer from significant drawbacks. This report covers the first phase of a two-phase project. The first phase involved the laboratory demonstration of the water separation section of the unit, the production and demonstration of new membrane modules to improve the separation, the design studies required for the demonstration system, and initial contacts with potential field sites. In the second phase, the demonstration system will be built and, after a short laboratory evaluation, will be tested at two field sites.

  20. Biological elimination of volatile, organic compounds from waste gases in a biofilter

    Energy Technology Data Exchange (ETDEWEB)

    Wu, G.; Chabot, J.C.; Caron, J.J.; Heitz, M. [Universite de Sherbrooke, Sherbrooke, PQ (Canada). Dept. de Genie Chimique

    1998-01-01

    A great deal of research has been directed towards the problem of reduction and control of volatile organic compounds (VOCs). The aim of this research is to find a process that is both efficient and inexpensive in comparison with traditional air treatment technologies. The biofilter used, a one stage system, 2 m in height, is an aerobic system for waste gases containing VOC`s using the degradation properties of microbial flora (assorted cultures of Bacillus, Micrococcus, Acinetobacter and yeast). In this process, polluted gas diffuses across a filter bed into which a microbial culture has previously been introduced. Peat is the medium of choice for inoculation with microorganisms because of its adsorption and absorption properties, ability to retain moisture, and buffering capacity. Furthermore, the peat utilized is spherical in shape; thus, it is possible to avoid problems related to compacting. The objective of this study was to eliminate VOCs emitted from a rotogravure process. The team was able to achieve promising results from biofiltration of two types of VOCs (a mixed solvent containing isopropyl acetate and 1-nitropropane, and the solvent: 1-nitropropane). The results obtained indicate that the elimination of nitropropane and the mixed solvent in the biofilter are considered to follow zero-order kinetics with reaction rate limitation and diffusion rate limitation, respectively. 8 refs., 5 figs.

  1. Network monitoring of speciated vs. total non-methane hydrocarbon measurements

    Science.gov (United States)

    Chen, Sheng-Po; Liao, Wei-Cheng; Chang, Chih-Chung; Su, Yuan-Chang; Tong, Yu-Huei; Chang, Julius S.; Wang, Jia-Lin

    2014-06-01

    The total non-methane hydrocarbon (TNMHC) level in the atmosphere is defined as the level of total hydrocarbons minus the level of methane. TNMHC observations are made in selected air quality stations (AQS) of Environmental Protection Agency (EPA) across Taiwan. The AQS network is also complemented by a network of photochemical assessment monitoring stations (PAMS) to provide hourly observations of 56 speciated non-methane hydrocarbons (NMHCs). In this study, the relationship between the AQS and PAMS TNMHC values was cross-examined for the period of 2007-2011 at four sites that conducted both types of measurements. Although the two observations differ in their methods of collection, the variations in the two datasets showed high synchronicity. However, because some of the NMHCs were missed in the summation of 56 species, the PAMS TNMHC values were consistently lower than those of the AQS TNMHC by an average of 30%.

  2. Trends of non-methane hydrocarbons (NMHC emissions in Beijing during 2002–2013

    Directory of Open Access Journals (Sweden)

    M. Wang

    2014-07-01

    Full Text Available Non-methane hydrocarbons (NMHCs play a critical role in the photochemical production of ozone (O3 and organic aerosols. Obtaining an accurate understanding on NMHC emission trends is essential for predicting air quality changes and evaluating the effectiveness of current control measures. In this study, we evaluated temporal trends in NMHC emissions in Beijing based on ambient measurements during the summer at an urban site in Beijing from 2002 to 2013. In contrast to the results of the most recent inventory (Multi-resolution Emission Inventory for China, MEIC, which reported that total NMHC emissions increased at a rate of ~4% yr−1, mixing ratios of NMHCs measured at this urban site displayed an obvious decrease (~30% during the last decade. A Positive Matrix Factorization (PMF model was applied to the NMHC measurements for source apportionment, and the results showed a decrease in the concentrations contributed by transportation-related sources to total NMHC emissions by 66% during 2004–2012, which was comparable to the relative decline of 65% reported by the MEIC inventory. This finding indicates that the implementation of stricter emissions standards and control measures has been effective for reducing transportation-related NMHC emissions. In addition, the PMF results suggested that there were no significant temporal changes in NMHC concentrations from paint and solvent use during 2004–2012, in contrast with the rapid rate of increase (27.5% yr−1 reported by the MEIC inventory. To re-evaluate the NMHC emissions trends for paint and solvent use, annual variations in NMHC / NOx ratios were compared between ambient measurements and the MEIC inventory. In contrast to the significant rise in NMHC / NOx ratios from the inventory, the measured ratios declined by 14% during 2005–2012. However, the inferred NMHC / NOx ratios based on PMF results exhibited a comparable decline of 11% to measurements. These results indicate that the increase

  3. Methods for calculation of engineering parameters for gas separation. [vapor pressure and solubility of gases in organic liquids

    Science.gov (United States)

    Lawson, D. D.

    1979-01-01

    A group additivity method is generated which allows estimation, from the structural formulas alone, of the energy of vaporization and the molar volume at 25 C of many nonpolar organic liquids. Using these two parameters and appropriate thermodynamic relations, the vapor pressure of the liquid phase and the solubility of various gases in nonpolar organic liquids are predicted. It is also possible to use the data to evaluate organic and some inorganic liquids for use in gas separation stages or liquids as heat exchange fluids in prospective thermochemical cycles for hydrogen production.

  4. Can Positive Matrix Factorization identify sources of organic trace gases at the continental GAW site Hohenpeissenberg?

    Directory of Open Access Journals (Sweden)

    M. Leuchner

    2014-03-01

    Full Text Available From the rural Global Atmosphere Watch (GAW site Hohenpeissenberg in the pre-alpine area of Southern Germany, a dataset of 24 C2–C8 non-methane hydrocarbons over a period of seven years was analyzed. Receptor modeling was performed by Positive Matrix Factorization (PMF and the resulting factors were compared to literature source profiles. Photochemical aging during transport to the relatively remote site violates the PMF prerequisite of mass conservation from source to receptor. However, previous studies showed plausible results with this method at remote sites; the applicability and restrictions of the PMF model to such a remote dataset and the influence of photochemical processing on the interpretability of the results are discussed. A six factor solution showed a high stability and the most plausible results. In addition to biogenic sources and remote sources of very stable compounds – reflecting the continental background – four additional anthropogenic factors were resolved that could be divided into two short- and two long-lived patterns from evaporative sources and incomplete combustion processes, respectively. A method to increase the uncertainty for each individual compound by including photochemical reactivity did not improve the results, but decreased the stability of the model output. The contribution of the different source categories at the site over the entire period was, in decreasing order: remote sources, long-lived evaporative sources, residential heating and long-lived combustion sources, short-lived evaporative sources, short-lived combustion sources, and biogenic sources. Despite a low overall impact, biogenic sources played an important role during summer, in particular in terms of reactivity.

  5. Calibration of an in situ membrane inlet mass spectrometer for measurements of dissolved gases and volatile organics in seawater.

    Science.gov (United States)

    Bell, Ryan J; Short, R Timothy; van Amerom, Friso H W; Byrne, Robert H

    2007-12-01

    Use of membrane inlet mass spectrometers (MIMS) for quantitative measurements of dissolved gases and volatile organics over a wide range of ocean depths requires characterization of the influence of hydrostatic pressure on the permeability of MIMS inlet systems. To simulate measurement conditions in the field, a laboratory apparatus was constructed for control of sample flow rate, temperature, pressure, and the concentrations of a variety of dissolved gases and volatile organic compounds. MIMS data generated with this apparatus demonstrated thatthe permeability of polydimethylsiloxane (PDMS) membranes is strongly dependent on hydrostatic pressure. For the range of pressures encountered between the surface and 2000 m ocean depths, the pressure dependent behavior of PDMS membranes could not be satisfactorily described using previously published theoretical models of membrane behavior. The observed influence of hydrostatic pressure on signal intensity could, nonetheless, be quantitatively modeled using a relatively simple semiempirical relationship between permeability and hydrostatic pressure. The semiempirical MIMS calibration developed in this study was applied to in situ underwater mass spectrometer (UMS) data to generate high-resolution, vertical profiles of dissolved gases in the Gulf of Mexico. These measurements constitute the first quantitative observations of dissolved gas profiles in the oceans obtained by in situ membrane inlet mass spectrometry. Alternative techniques used to produce dissolved gas profiles were in good accord with UMS measurements.

  6. Occupational exposure to gases, polycyclic aromatic hydrocarbons and volatile organic compounds in biomass-fired power plants.

    Science.gov (United States)

    Jumpponen, M; Rönkkömäki, H; Pasanen, P; Laitinen, J

    2013-01-01

    The combustion of fuels produces air pollutants in the form of gases, organic compounds, and particulate matter. However, although the environmental aspect of these agents has been examined, workers' exposure to them is still a neglected issue. The purpose of this study was to measure maintenance and ash removal workers' multiple exposures to gases, volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) during their work tasks in biomass-fired power plants. Our hygienic measurements revealed that carbon monoxide, nitric oxide, ammonia and sulfur dioxide were the most common gases that the workers were exposed to during their tasks. Their average concentrations were 0.45 ppm, 0.06 ppm, 0.11 ppm and 0.42 ppm, respectively. Phenanthrene and naphthalene were the most prominent PAHs. At the same sampling points, the most commonly found VOCs were aromatic and aliphatic hydrocarbons and turpentines. The calculated total PAH concentrations were less than 7% of benzo[a]pyrene's eight-hour occupational exposure limit, and the total VOC concentrations were below the Finnish reference value for the normal industrial level in all measured work tasks. The most evident health effect caused by multiple exposures to gases was upper respiratory track irritation, followed by the disruption of oxygen transport, and finally central nervous system disorders. We recommend powered air respirators with ABEK+P3 cartridges and carbon monoxide gas detectors as the minimum requirement for those working inside biomass-fired power plant boilers, and compressed air breathing apparatus as the best form of protection.

  7. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2-C10 volatile organic compounds (VOCs), CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    Science.gov (United States)

    Simpson, I. J.; Blake, N. J.; Barletta, B.; Diskin, G. S.; Fuelberg, H. E.; Gorham, K.; Huey, L. G.; Meinardi, S.; Rowland, F. S.; Vay, S. A.; Weinheimer, A. J.; Yang, M.; Blake, D. R.

    2010-12-01

    Oil sands comprise 30% of the world's oil reserves and the crude oil reserves in Canada's oil sands deposits are second only to Saudi Arabia. The extraction and processing of oil sands is much more challenging than for light sweet crude oils because of the high viscosity of the bitumen contained within the oil sands and because the bitumen is mixed with sand and contains chemical impurities such as sulphur. Despite these challenges, the importance of oil sands is increasing in the energy market. To our best knowledge this is the first peer-reviewed study to characterize volatile organic compounds (VOCs) emitted from Alberta's oil sands mining sites. We present high-precision gas chromatography measurements of 76 speciated C2-C10 VOCs (alkanes, alkenes, alkynes, cycloalkanes, aromatics, monoterpenes, oxygenated hydrocarbons, halocarbons and sulphur compounds) in 17 boundary layer air samples collected over surface mining operations in northeast Alberta on 10 July 2008, using the NASA DC-8 airborne laboratory as a research platform. In addition to the VOCs, we present simultaneous measurements of CO2, CH4, CO, NO, NO2, NOy, O3 and SO2, which were measured in situ aboard the DC-8. Carbon dioxide, CH4, CO, NO, NO2, NOy, SO2 and 53 VOCs (e.g., non-methane hydrocarbons, halocarbons, sulphur species) showed clear statistical enhancements (1.1-397×) over the oil sands compared to local background values and, with the exception of CO, were greater over the oil sands than at any other time during the flight. Twenty halocarbons (e.g., CFCs, HFCs, halons, brominated species) either were not enhanced or were minimally enhanced (polluted megacities such as Mexico City and are attributed to coke combustion. By contrast, relatively poor correlations between CH4, ethane and propane suggest low levels of natural gas leakage despite its heavy use at the surface mining sites. Instead the elevated CH4 levels are attributed to methanogenic tailings pond emissions. In addition to the

  8. Evaluation of organical fertilizers in relation to minimalization of air polution by greenhouse gases and amonia

    Directory of Open Access Journals (Sweden)

    Patrik Burg

    2006-01-01

    Full Text Available Agricultural production presents one of the biggest producers of greenhouse gases. Between the most significant belongs carbon dioxide (CO2, methane (CH4, nitrous oxide (N2O, ozon (O3 and hydrogen sulphide (H2S. The work deals with classification of quantity by liberate emissions in relation to different variants of fertilization by cultivation of horticultural crops (head cabbage. For the metering was exploited gas analyzer INNOVA 1312. The results demonstrate significant difference between experimental variants by quantity of liberate emission, but also in the height of production.

  9. Degradation Pathways for Geogenic Volatile Organic Compounds (VOCs) in Soil Gases from the Solfatara Crater (Campi Flegrei, Southern Italy).

    Science.gov (United States)

    Tassi, F.; Venturi, S.; Cabassi, J.; Capecchiacci, F.; Nisi, B., Sr.; Vaselli, O.

    2014-12-01

    The chemical composition of volatile organic compounds (VOCs) in soil gases from the Solfatara crater (Campi Flegrei, Southern Italy) was analyzed to investigate the effects of biogeochemical processes occurring within the crater soil on gases discharged from the hydrothermal reservoir and released into the atmosphere through diffuse degassing. In this system, two fumarolic vents (namely Bocca Grande and Bocca Nuova) are the preferential pathways for hydrothermal fluid uprising. For our goal, the chemistry of VOCs discharged from these sites were compared to that of soil gases. Our results highlighted that C4-C9 alkanes, alkenes, S-bearing compounds and alkylated aromatics produced at depth were the most prone to degradation processes, such as oxidation-reduction and hydration-dehydration reactions, as well as to microbial activity. Secondary products, which were enriched in sites characterized by low soil gas fluxes, mostly consisted of aldheydes, ketons, esters, ethers, organic acids and, subordinately, alcohols. Benzene, phenol and hydrofluorocarbons (HCFCs) produced at depth were able to transit through the soil almost undisturbed, independently on the emission rate of diffuse degassing. The presence of cyclics was possibly related to an independent low-temperature VOC source, likely within sedimentary formations overlying the hydrothermal reservoir. Chlorofluorocarbons (CFCs) were possibly due to air contamination. This study demonstrated the strict control of biogeochemical processes on the behaviour of hydrothermal VOCs that, at least at a local scale, may have a significant impact on air quality. Laboratory experiments conducted at specific chemical-physical conditions and in presence of different microbial populations may provide useful information for the reconstruction of the degradation pathways controlling fate and behaviour of VOCs in the soil.

  10. Review of the National Reduction Plan for NMVOM [Non-Methane Volatile Organic Materials]. Sectors industry, energy, TSG [trade, services and government] and building; Terugblik op het Nationaal Reductieplan NMVOS [Niet-Methaan Vluchtige Organische Stoffen]. Industrie, energie, HDO [handel, diensten en overheid] en bouw

    Energy Technology Data Exchange (ETDEWEB)

    Locht, G.

    2012-09-15

    The title project aims to reduce emissions of Volatile Organic Compounds (VOC) from several sectors in the period 2000-2010. This report is a review of the project and is based on the definitive data over these years in the Dutch Pollutant Release and Transfer Register (PRTR). Compared to the start of the NRP-NMVOS, there are now less instruments for environmental policy. There are more general binding environmental rules and less environmental permits. Furthermore, several agreements between governments and branches have ended. May 2012 the Gothenburg protocol was revised. It shows a VOC emission reduction for the Netherlands of 8% in 2020 compared to 2005. It is expected this will be achieved by means of the current policy and legislation [Dutch] Het titel project is opgesteld om de VOS-emissies van deze sectoren tereduceren. Het NRP-NMVOS heeft betrekking op de jaren 2000 tot en met 2010. Dit rapport is een terugblik op het project en gaat uit van de medio 2012 beschikbare definitieve emissiegegevens over al deze jaren. In vergelijking met de start van het NRP-NMVOS zijn er minder milieubeleidsinstrumenten. Er zijn meer algemene milieuregels en minder vergunningen en diverse convenanten tussen overheden en bedrijfsleven zijn afgelopen. In het herziene Gothenburg protocol van mei 2012 is voor Nederland voor 2020 en verder een NMVOS reductie van 8% ten opzichte van het 2005 niveau afgesproken. Het ligt in de verwachting dat dit gehaald gaat worden bij voortzetting van het huidige beleid en instrumentatie.

  11. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere

    Directory of Open Access Journals (Sweden)

    J. W. Chi

    2015-06-01

    Full Text Available Sea salt aerosols (SSA are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO32, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C14N− mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C14N− line scans further show that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces determines their hygroscopic and optical properties. These abundant SSA, whose reactive surfaces absorb inorganic and organic acidic gases in the arctic troposphere, need to be incorporated into atmospheric chemical models.

  12. Pathways for the decay of organic dichloramines and liberation of antimicrobial chloramine gases.

    Science.gov (United States)

    Coker, Melanie S A; Hu, Wan-Ping; Senthilmohan, Senti T; Kettle, Anthony J

    2008-12-01

    When neutrophils phagocytose bacteria, they generate the cytotoxic agent hypochlorous acid (HOCl). The specific role that HOCl plays in bacterial killing is unclear. In the phagosome, it should react with neutrophil proteins to form protein chloramines and dichloramines. We investigated the stability of model dichloramines that are likely to be formed on N-terminal amino acids and Lys residues of proteins contained within phagosomes. Dichloramines were much more unstable than their analogous monochloramines. The stability was affected by substituents on the alpha-carbon. Amino acid dichloramines were extremely unstable, indicating that an alpha-carboxyl group facilitated decomposition. In general, the absence of a substituent enhanced stability. The carboxyl group on N-terminal Glu residues favored break down, but this effect was not apparent with Asp residues. Unstable dichloramines that contained a substituent on their alpha-carbon were cytotoxic and killed 50% of 10(5) Staphylococcus aureus (LD50) at a dose of approximately 2.5 nmol. Their cytotoxicity declined with time. The dichloramines of N-alpha-acetyl Lys and taurine were not bactericidal up to 10 nmol per 10(5) S. aureus. None of the analogous monochloramines were cytotoxic at this dose. Dichloramines decomposed to yield chlorimines, aldehydes, and the inorganic gases ammonia monochloramine (NH2Cl) and ammonia dichloramine (NHCl2). The LD50 values were determined for NH2Cl (0.37 +/- 0.14 nmol), NHCl2 (0.08 +/- 0.02 nmol), and HOCl (0.14 +/- 0.04 nmol). Stable products formed during the breakdown of dichloramines were not bactericidal. We propose a potential antimicrobial mechanism that explains in part how HOCl can react mainly with neutrophil components but still promote killing of phagocytosed bacteria. HOCl produced in phagosomes will react with amine groups on neutrophil proteins to form unstable dichloramines that will liberate cytotoxic NH2Cl and NHCl2. These gases will contribute to killing of

  13. ACTRIS non-methane hydrocarbon intercomparison experiment in Europe to support WMO-GAW and EMEP observation networks

    Directory of Open Access Journals (Sweden)

    C. C. Hoerger

    2014-10-01

    Full Text Available The performance of 20 European laboratories involved in long-term non-methane hydrocarbon (NMHC measurements within the framework of Global Atmosphere Watch (GAW and European Monitoring and Evaluation Programme (EMEP was assessed with respect to the ACTRIS (Aerosols, Clouds, and Trace gases Research InfraStructure Network and GAW data quality objectives (DQOs. Compared to previous intercomparisons the DQOs of ACTRIS are much more demanding with deviations to a reference value of less than 5% and repeatability of better than 2% for mole fractions above 0.1 nmol mol−1. The participants were asked to measure both a 30 component NMHC mixture in nitrogen (NMHC_N2 at approximately 1 nmol mol−1 and whole air (NMHC_air, following a standardised operation procedure including zero- and calibration gas measurements. Furthermore, they had to report details on their instruments and they were asked to assess measurement uncertainties. The NMHCs were analysed either by gas chromatography-flame ionisation detection or gas chromatography-mass spectrometer methods. Most systems performed well for the NMHC_N2 measurements (88% of the reported values were within the GAW DQOs and even 58% within the ACTRIS DQOs. For NMHC_air generally more frequent and larger deviations to the assigned values were observed compared to NMHC_N2 (77% of the reported values were within the GAW DQOs, but only 48% within the ACTRIS DQOs. Important contributors to the poorer performance in NMHC_air compared to NMHC_N2 were a more complex matrix and a larger span of NMHC mole fractions (0.03–2.5 nmol mol−1. Issues, which affected both NMHC mixtures, are the usage of direct vs. two-step calibration, breakthrough of C2–C3 hydrocarbons, blank values in zero-gas measurements (especially for those systems using a Nafion® Dryer, adsorptive losses of aromatic compounds, and insufficient chromatographic resolution. Essential for high-quality results are experienced operators, a

  14. Development of an In-Fiber Nanocavity Towards Detection of Volatile Organic Gases

    OpenAIRE

    Arregui, Francisco J.; Candido Bariain; Matias, Ignacio R; Cesar Elosua

    2006-01-01

    A fiber optic sensor for Volatile Organic Compounds (VOCs) detection has been developed and characterized for some organic gasses. The sensor is based on a novel vapochromic material, which is able to change its optical properties in presence of organic vapors in a reversely way. A nano Fabry Perot is constructed onto a cleaved ended optical fiber pigtail by Electrostatic Self Assembly method (ESA), doping this structure with the vapochromic material. Employing a reflection scheme, a chang...

  15. Draft Genome Sequence of Methylophaga muralis Bur 1, a Haloalkaliphilic (Non-Methane-Utilizing) Methylotroph Isolated from a Soda Lake

    Science.gov (United States)

    Trotsenko, Yuri A.; Shmareva, Maria N.; Tarlachkov, Sergey V.; Mustakhimov, Ildar I.

    2016-01-01

    The draft genome sequence of Methylophaga muralis strain Bur 1 (VKM B-3046T), a non-methane-utilizing methylotroph isolated from a soda lake, is reported here. Strain Bur 1 possesses genes for methanol and methylamine (methylamine dehydrogenase and N-methylglutamate pathway) oxidation. Genes for the biosynthesis of ectoine were also found. PMID:27811106

  16. Assessing methods to estimate emissions of non-methane organic compounds from landfills

    DEFF Research Database (Denmark)

    Saquing, Jovita M.; Chanton, Jeffrey P.; Yazdani, Ramin

    2014-01-01

    in estimating speciated NMOC flux from landfills; (2) determine for what types of landfills the ratio method may be in error and why, using recent field data to quantify the spatial variation of (CNMOCs/CCH4) in landfills; and (3) formulate alternative models for estimating NMOC emissions from landfills...

  17. Development of an In-Fiber Nanocavity Towards Detection of Volatile Organic Gases

    Directory of Open Access Journals (Sweden)

    Francisco J. Arregui

    2006-06-01

    Full Text Available A fiber optic sensor for Volatile Organic Compounds (VOCs detection has beendeveloped and characterized for some organic gasses. The sensor is based on a novelvapochromic material, which is able to change its optical properties in presence of organicvapors in a reversely way. A nano Fabry Perot is constructed onto a cleaved ended opticalfiber pigtail by Electrostatic Self Assembly method (ESA, doping this structure with thevapochromic material. Employing a reflection scheme, a change in the intensity modulatedreflected signal at 850 nm have been registered. The response of the sensor has beenevaluated for five different VOCs, and a deeper study has been made for vapors of threedifferent alcohols.

  18. Self-organization of high intensity laser pulses propagating in gases

    Energy Technology Data Exchange (ETDEWEB)

    Koga, James [Japan Atomic Energy Research Inst., Kizu, Kyoto (Japan). Kansai Research Establishment

    2001-10-01

    In recent years the development of high intensity short pulse lasers has opened up wide fields of science which had previously been difficult to study. Recent experiments of short pulse lasers propagating in air have shown that these laser pulses can propagate over very long distances (up to 12 km) with little or no distortion of the pulse. Here we present a model of this propagation using a modified version of the self-organized criticality model developed for sandpiles by Bak, Tang, and Weisenfeld. The additions to the sandpile model include the formation of plasma which acts as a threshold diffusion term and self-focusing by the nonlinear index of refraction which acts as a continuous inverse diffusion. Results of this simple model indicate that a strongly self-focusing laser pulse shows self-organized critical behavior. (author)

  19. Seasonal and Diurnal Variations of Atmospheric Non-Methane Hydrocarbons in Guangzhou, China

    Directory of Open Access Journals (Sweden)

    Longfeng Li

    2012-05-01

    Full Text Available In recent decades, high ambient ozone concentrations have become one of the major regional air quality issues in the Pearl River Delta (PRD region. Non-methane hydrocarbons (NMHCs, as key precursors of ozone, were found to be the limiting factor in photochemical ozone formation for large areas in the PRD. For source apportioning of NMHCs as well as ozone pollution control strategies, it is necessary to obtain typical seasonal and diurnal patterns of NMHCs with a large pool of field data. To date, few studies have focused on seasonal and diurnal variations of NMHCs in urban areas of Guangzhou. This study explored the seasonal variations of most hydrocarbons concentrations with autumn maximum and spring minimum in Guangzhou. The diurnal variations of most anthropogenic NMHCs typically showed two-peak pattern with one at 8:00 in the morning and another at 20:00 in the evening, both corresponding to traffic rush hours in Guangzhou, whereas isoprene displayed a different bimodal diurnal curve. Propene, ethene, m, p-xylene and toluene were the four largest contributors to ozone formation in Guangzhou, based on the evaluation of individual NMHCs’ photochemical reactivity. Therefore, an effective strategy for controlling ozone pollution may be achieved by the reduction of vehicle emissions in Guangzhou.

  20. The carbon isotopic compositions of Non-methane Hydrocarbons in atmosphere

    Institute of Scientific and Technical Information of China (English)

    PENG Lin; ZHANG HuiMin; REN ZhaoFang; MU Ling; SHI RuiLiang; CHANG LiPing; LI Fan

    2009-01-01

    Carbon isotopic compositions of atmospheric Non-methane Hydrocarbons (NMHCs) in the urban areas of Taiyuan and Lanzhou in summer were reported and the sources of NMHCs are discussed.Carbon isotopic ratios (δ13C) of vehicle exhaust,coal-combustion exhaust,fuel volatiles and cooking exhaust were also measured with thermal desorption-gas chromatography-isotope ratio-mass spectrometry (TD-GC-IR-MS).δ13C values of NMHCs in the urban areas of Lanzhou and Taiyuan range from -32.3‰ to -22.3‰ and from -32.8‰ to -18.1‰.δ13C values of vehicle exhaust,coal-combustion exhaust,fuel volatiles and cooking exhaust are -32.5‰--21.7‰,-24.5‰--22.3‰,-32.5%--27.4‰ and -31.6‰--24.5‰,respectively.The data indicate that vehicle exhaust and cooking exhaust make a significant contribution to the atmospheric NMHCs.Therefore,to reduce emissions of vehicle exhaust and cook-ing exhaust is critical for controlling atmospheric NMHCs pollution in summer.

  1. Tropospheric OH and Cl levels deduced from non-methane hydrocarbon measurements in a marine site

    Directory of Open Access Journals (Sweden)

    C. Arsene

    2007-09-01

    Full Text Available In situ continuous hourly measurements of C2–C8 non-methane hydrocarbons (NMHCS have been performed from March to October 2006 at two coastal locations (natural and rural on the island of Crete, in the Eastern Mediterranean. Well defined diel variations were observed for several short lived NMHCS (including ethene, propene, n-butane, n-pentane, n-hexane, 2-methyl-pentane. The daytime concentration of hydroxyl (OH radicals estimated from these experimental data varied from 1.3×106 to ~4.0×106 radical cm−3, in good agreement with box-model simulations. In addition the relative variability of various hydrocarbon pairs (at least 7 was used to derive the tropospheric levels of Cl atoms. The Cl atom concentration has been estimated to range between 0.6×104 and 4.7×104 atom cm−3, in good agreement with gaseous hydrochloric acid (HCl observations in the area. Such levels of Cl atoms can be of considerable importance for the oxidation capacity of the troposphere on a regional scale.

  2. Estimates for biogenic non-methane hydrocarbons and nitric oxide emissions in the Valley of Mexico

    Science.gov (United States)

    Velasco, Erik

    Biogenic non-methane hydrocarbons (NMHC), 2-methyl-3-buten-2-ol (methylbutenol or MBO) and nitrogen oxide (NO) emissions were estimated for the Valley of Mexico developing a spatially and temporally resolved emission inventory for air quality models. The modeling domain includes all the Metropolitan Mexico City Area, the surrounding forests and agriculture fields. The estimates were based on several sources of land use and land cover data and a biogenic emission model; the biomass density and tree characteristics were obtained from reforestation program data. The biogenic emissions depend also on climatic conditions, mainly temperature and solar radiation. The temperature was obtained from a statistical revision of the last 10 yr data reported by the Mexico City Automatic Atmospheric Monitoring Network, while the solar radiation data were obtained from measurements performed in a typical oak forest in the Valley and from sources of total solar radiation data for Mexico City. The results indicated that 7% of total hydrocarbon emissions in Mexico Valley are due to vegetation and NO emissions from soil contribute with 1% to the total NO x emissions.

  3. Long term trends of methane, non methane hydrocarbons, and carbon monoxide in urban atmosphere.

    Science.gov (United States)

    Ahmed, Ezaz; Kim, Ki-Hyun; Jeon, Eui-Chan; Brown, Richard J C

    2015-06-15

    The concentrations of methane (CH4), non-methane hydrocarbons (NMHC), and carbon monoxide (CO) were measured at two urban locations (Guro (GR) and Nowon (NW)) in Seoul, Korea between 2004 and 2013. The mean amount fractions of CH4, NMHC, and CO, measured at GR over this period were 2.06±0.02, 0.32±0.03, and 0.61±0.05 ppm, respectively, while at NW they were 2.08±0.06, 0.33±0.05, and 0.54±0.06 ppm, respectively. The ratio of CH4 to the total hydrocarbon amount fraction remained constant across the study years: 0.82 to 0.90 at GR and 0.81 to 0.89 at NW. Similarly, stable ratios were also observed between NMHC and THC at the two sites. In contrast, the annual mean ratios for CH4/NMHC showed a larger variation: between 4.55 to 8.67 at GR and 4.25 to 8.45 at NW. The seasonality of CO was characterized by wintertime maxima, while for CH4 and NMHC the highest amount fractions were found in fall. The analysis of their long-term trends based on Mann-Kendall and Sen's methods showed an overall increase of THC and CH4, whereas a decreasing trend was observed for NMHC and CO.

  4. Trapping gases in metal-organic frameworks with a selective surface molecular barrier layer

    Science.gov (United States)

    Tan, Kui; Zuluaga, Sebastian; Fuentes, Erika; Mattson, Eric C.; Veyan, Jean-François; Wang, Hao; Li, Jing; Thonhauser, Timo; Chabal, Yves J.

    2016-12-01

    The main challenge for gas storage and separation in nanoporous materials is that many molecules of interest adsorb too weakly to be effectively retained. Instead of synthetically modifying the internal surface structure of the entire bulk--as is typically done to enhance adsorption--here we show that post exposure of a prototypical porous metal-organic framework to ethylenediamine can effectively retain a variety of weakly adsorbing molecules (for example, CO, CO2, SO2, C2H4, NO) inside the materials by forming a monolayer-thick cap at the external surface of microcrystals. Furthermore, this capping mechanism, based on hydrogen bonding as explained by ab initio modelling, opens the door for potential selectivity. For example, water molecules are shown to disrupt the hydrogen-bonded amine network and diffuse through the cap without hindrance and fully displace/release the retained small molecules out of the metal-organic framework at room temperature. These findings may provide alternative strategies for gas storage, delivery and separation.

  5. A method for real-time profiling of organic trace gases in the planetary boundary layer

    Directory of Open Access Journals (Sweden)

    R. Schnitzhofer

    2009-07-01

    Full Text Available A method for real time profiling of volatile organic compounds (VOCs was developed combining the advantages of a tethered balloon as a research platform and of proton transfer reaction mass spectrometry (PTR-MS as an analytical technique for fast and highly sensitive VOC measurements. A 200 m Teflon tube was used to draw sampling air from a tethered aerodynamic balloon to the PTR-MS instrument. Potential positive and negative VOC artifacts of the inlet line were characterized in the laboratory and in the field and were found to be insignificant for most compounds. The method was successfully deployed during a winter field campaign to determine the small scale spatial and temporal pattern of air pollutants under winter inversion conditions.

  6. Trapping Planetary Noble Gases During the Fischer-Tropsch-Type Synthesis of Organic Materials

    Science.gov (United States)

    Nuth, Joseph A.; Johnson, N. M.; Meshik, A.

    2010-01-01

    When hydrogen, nitrogen and CO arc exposed to amorphous iron silicate surfaces at temperatures between 500 - 900K, a carbonaceous coating forms via Fischer-Tropsch type reactions!, Under normal circumstances such a catalytic coating would impede or stop further reaction. However, we find that this coating is a better catalyst than the amorphous iron silicates that initiate these rcactions:u . The formation of a self-perpetuating catalytic coating on grain surfaces could explain the rich deposits of macromolecular carbon found in primitive meteorites and would imply that protostellar nebulae should be rich in organic materiaL Many more experiments are needed to understand this chemical system and its application to protostellar nebulae.

  7. Changes in Grain Yield of Rice and Emission of Greenhouse Gases from Paddy Fields after Application of Organic Fertilizers Made from Maize Straw

    Institute of Scientific and Technical Information of China (English)

    MA Yi-hu; GU Dao-jian; LIU Li-jun; WANG Zhi-qin; ZHANG Hao; YANG Jian-chang

    2014-01-01

    A field experiment was conducted at the farm of Yangzhou University, Yangzhou, China, to study the effects of organic fertilizers made from maize straw on rice grain yield and the emission of greenhouse gases. Four organic fertilizer treatments were as follows:maize straw (MS), compost made from maize straw (MC), methane-generating maize residue (MR), and black carbon made from maize straw (BC). These organic fertilizers were applied separately to paddy fields before rice transplanting. No organic fertilizer was applied to the control (CK). The effects of each organic fertilizer on rice grain yield and emission of greenhouse gases were investigated under two conditions, namely, no nitrogen (N) application (0N) and site-specific N management (SSNM). Rice grain yields were significantly higher in the MS, MC and MR treatments than those in CK under either 0N or SSNM. The MS treatment resulted in the highest grain yield and agronomic N use efficiency. However, no significant difference was observed for these parameters between the BC treatment and CK. The changes in the emissions of methane (CH4), carbon dioxide (CO2), or nitrous oxide (N2O) from the fields were similar among all organic fertilizer treatments during the entire rice growing season. The application of each organic fertilizer significantly increased the emission of each greenhouse gas (except N2O emission in the BC treatment) and global warming potential (GWP). Emissions of all the greenhouse gases and GWP increased under the same organic fertilizer treatment in the presence of N fertilizer, whereas GWP per unit grain yield decreased. The results indicate that the application of organic fertilizer (MS, MC or MR) could increase grain yield, but also could enhance the emissions of greenhouse gases from paddy fields. High grain yield and environmental efficiency could be achieved by applying SSNM with MR.

  8. Can positive matrix factorization help to understand patterns of organic trace gases at the continental Global Atmosphere Watch site Hohenpeissenberg?

    Science.gov (United States)

    Leuchner, M.; Gubo, S.; Schunk, C.; Wastl, C.; Kirchner, M.; Menzel, A.; Plass-Dülmer, C.

    2015-02-01

    From the rural Global Atmosphere Watch (GAW) site Hohenpeissenberg in the pre-alpine area of southern Germany, a data set of 24 C2-C8 non-methane hydrocarbons over a period of 7 years was analyzed. Receptor modeling was performed by positive matrix factorization (PMF) and the resulting factors were interpreted with respect to source profiles and photochemical aging. Differing from other studies, no direct source attribution was intended because, due to chemistry along transport, mass conservation from source to receptor is not given. However, at remote sites such as Hohenpeissenberg, the observed patterns of non-methane hydrocarbons can be derived from combinations of factors determined by PMF. A six-factor solution showed high stability and the most plausible results. In addition to a biogenic and a background factor of very stable compounds, four additional anthropogenic factors were resolved that could be divided into two short- and two long-lived patterns from evaporative sources/natural gas leakage and incomplete combustion processes. The volume or mass contribution at the site over the entire period was, in decreasing order, from the following factor categories: background, gas leakage and long-lived evaporative, residential heating and long-lived combustion, short-lived evaporative, short-lived combustion, and biogenic. The importance with respect to reactivity contribution was generally in reverse order, with the biogenic and the short-lived combustion factors contributing most. The seasonality of the factors was analyzed and compared to results of a simple box model using constant emissions and the photochemical decay calculated from the measured annual cycles of OH radicals and ozone. Two of the factors, short-lived combustion and gas leakage/long-lived evaporative, showed winter/summer ratios of about 9 and 7, respectively, as expected from constant source estimations. Contrarily, the short-lived evaporative emissions were about 3 times higher in summer

  9. Effect of sorption on exposures to organic gases from environmental tobacco smoke (ETS)

    Energy Technology Data Exchange (ETDEWEB)

    Singer, B.C.; Hodgson, A.T.; Nazaroff, W.W.

    2002-01-01

    The effects of sorption processes on dynamic ETS organic gas concentrations and potential exposures were studied in a carpeted and furnished 50-m{sup 3} room ventilated at 0.6 h{sup -1}. Ten cigarettes were machine-smoked on six of every seven days over four weeks. Concentrations of ETS-specific tracers and regulated toxic compounds were quantified during daily smoking, post-smoking and background periods. Potential exposures were calculated by period and day. Large sorption effects were observed for the widely used tracers 3-ethenylpyridine and nicotine, and for several toxic compounds including naphthalene and cresol isomers. Short-term adsorption to indoor surfaces reduced concentrations and potential exposures during smoking, while later reemission increased concentrations and exposures hours after smoking ended. Concentrations during nonsmoking periods rose from day to day over the first few weeks, presumably from increased reemission associated with increased sorbed mass concentrations. For sorbing compounds, more than half of daily potential exposures occurred during nonsmoking periods.

  10. Effect of ambient temperature on species lumping for total organic gases in gasoline exhaust emissions

    Science.gov (United States)

    Roy, Anirban; Choi, Yunsoo

    2017-03-01

    Volatile organic compound (VOCs) emissions from sources often need to be compressed or "lumped" into species classes for use in emissions inventories intended for air quality modeling. This needs to be done to ensure computational efficiency. The lumped profiles are usually reported for one value of ambient temperature. However, temperature-specific detailed profiles have been constructed in the recent past - the current study investigates how the lumping of species from those profiles into different atmospheric chemistry mechanisms is affected by temperature, considering three temperatures (-18 °C, -7 °C and 24 °C). The mechanisms considered differed on the assumptions used for lumping: CB05 (carbon bond type), SAPRC (ozone formation potential) and RACM2 (molecular surrogate and reactivity weighting). In this space, four sub-mechanisms for SAPRC were considered. Scaling factors were developed for each lumped model species and mechanism in terms of moles of lumped species per unit mass. Species which showed a direct one-to-one mapping (SAPRC/RACM2) reported scaling factors that were unchanged across mechanisms. However, CB05 showed different trends since one compound often is mapped onto multiple model species, out of which the paraffinic double bond (PAR) is predominant. Temperature-dependent parameterizations for emission factors pertaining to each lumped species class and mechanism were developed as part of the study. Here, the same kind of model species showed varying lumping parameters across the different mechanisms. These differences could be attributed to differing approaches in lumping. The scaling factors and temperature-dependent parameterizations could be used to update emissions inventories such as MOVES or SMOKE for use in chemical transport modeling.

  11. A five year record of high-frequency in situ measurements of non-methane hydrocarbons at Mace Head, Ireland

    Directory of Open Access Journals (Sweden)

    A. Grant

    2011-02-01

    Full Text Available Continuous high-frequency in situ measurements of a range of non-methane hydrocarbons have been made at Mace Head since January 2005. Mace Head is a background Northern Hemispheric site situated on the eastern edge of the Atlantic. Five year measurements (2005–2009 of eleven non-methane hydrocarbons, namely C2–C5 alkanes, benzene, toluene, ethyl-benzene and the xylenes, have been separated into baseline Northern Hemispheric and European polluted air masses, among other sectors. Seasonal cycles in baseline Northern Hemispheric air masses and European polluted air masses arriving at Mace Head have been studied. Baseline air masses show a broad summer minima between June and September for shorter lived species, longer lived species show summer minima in July/August. All species displayed a winter maxima in February. European air masses showed baseline elevated mole fractions for all non-methane hydrocarbons, largest elevations (of up to 360 ppt for ethane maxima from baseline data were observed in winter maxima, with smaller elevations observed during the summer. Analysis of temporal trends using the Mann-Kendall test showed small (<6%/year but statistically significant decreases in the butanes, i-pentane and o-xylene between 2005 and 2009 in European air. Toluene was found to have an increasing trend of 34%/year in European air. No significant trends were found for any species in baseline air.

  12. High emissions of greenhouse gases from grasslands on peat and other organic soils.

    Science.gov (United States)

    Tiemeyer, Bärbel; Albiac Borraz, Elisa; Augustin, Jürgen; Bechtold, Michel; Beetz, Sascha; Beyer, Colja; Drösler, Matthias; Ebli, Martin; Eickenscheidt, Tim; Fiedler, Sabine; Förster, Christoph; Freibauer, Annette; Giebels, Michael; Glatzel, Stephan; Heinichen, Jan; Hoffmann, Mathias; Höper, Heinrich; Jurasinski, Gerald; Leiber-Sauheitl, Katharina; Peichl-Brak, Mandy; Roßkopf, Niko; Sommer, Michael; Zeitz, Jutta

    2016-12-01

    Drainage has turned peatlands from a carbon sink into one of the world's largest greenhouse gas (GHG) sources from cultivated soils. We analyzed a unique data set (12 peatlands, 48 sites and 122 annual budgets) of mainly unpublished GHG emissions from grasslands on bog and fen peat as well as other soils rich in soil organic carbon (SOC) in Germany. Emissions and environmental variables were measured with identical methods. Site-averaged GHG budgets were surprisingly variable (29.2 ± 17.4 t CO2 -eq. ha(-1)  yr(-1) ) and partially higher than all published data and the IPCC default emission factors for GHG inventories. Generally, CO2 (27.7 ± 17.3 t CO2  ha(-1)  yr(-1) ) dominated the GHG budget. Nitrous oxide (2.3 ± 2.4 kg N2 O-N ha(-1)  yr(-1) ) and methane emissions (30.8 ± 69.8 kg CH4 -C ha(-1)  yr(-1) ) were lower than expected except for CH4 emissions from nutrient-poor acidic sites. At single peatlands, CO2 emissions clearly increased with deeper mean water table depth (WTD), but there was no general dependency of CO2 on WTD for the complete data set. Thus, regionalization of CO2 emissions by WTD only will remain uncertain. WTD dynamics explained some of the differences between peatlands as sites which became very dry during summer showed lower emissions. We introduced the aerated nitrogen stock (Nair ) as a variable combining soil nitrogen stocks with WTD. CO2 increased with Nair across peatlands. Soils with comparatively low SOC concentrations showed as high CO2 emissions as true peat soils because Nair was similar. N2 O emissions were controlled by the WTD dynamics and the nitrogen content of the topsoil. CH4 emissions can be well described by WTD and ponding duration during summer. Our results can help both to improve GHG emission reporting and to prioritize and plan emission reduction measures for peat and similar soils at different scales.

  13. A survey of carbon monoxide and non-methane hydrocarbons in the Arctic Ocean during summer 2010

    Directory of Open Access Journals (Sweden)

    S. Tran

    2013-03-01

    Full Text Available During the ARK XXV 1 + 2 expedition in the Arctic Ocean carried out in June–July 2010 aboard the R/V Polarstern, we measured carbon monoxide (CO, non-methane hydrocarbons (NMHC and phytoplankton pigments at the sea surface and down to a depth of 100 m. The CO and NMHC sea-surface concentrations were highly variable; CO, propene and isoprene levels ranged from 0.6 to 17.5 nmol L−1, 1 to 322 pmol L−1 and 1 to 541 pmol L−1, respectively. The CO and alkene concentrations as well as their sea–air fluxes were enhanced in polar waters off of Greenland, which were more stratified because of ice melting and richer in chromophoric dissolved organic matter (CDOM than typical North Atlantic waters. The spatial distribution of the surface concentrations of CO was consistent with our current understanding of CO-induced UV photoproduction in the sea. The vertical distributions of the CO and alkenes were comparable and followed the trend of light penetration, with the concentrations displaying a relatively regular exponential decrease down to non-measurable values below 50 m. However, no diurnal variations of CO or alkene concentrations were observed in the stratified and irradiated surface layers. On several occasions, we observed the existence of subsurface CO maxima at the level of the deep chlorophyll maximum. This finding suggests the existence of a non-photochemical CO production pathway, most likely of phytoplanktonic origin. The corresponding production rates normalized to the chlorophyll content were in the range of those estimated from laboratory experiments. In general, the vertical distributions of isoprene followed that of the phytoplankton biomass. These data support the existence of a dominant photochemical source of CO and light alkenes enhanced in polar waters of the Arctic Ocean, with a minor contribution of a biological source of CO. The biological source of isoprene is observed in the different water masses but significantly

  14. Interaction of biochar and organic residues from sugarcane industry in soil chemical attributes and greenhouse gases emissions.

    Science.gov (United States)

    Fernanda Abbruzzini, Thalita; Feola Conz, Rafaela; Pellegrino Cerri, Carlos Eduardo

    2014-05-01

    Researchers have highlighted the importance of providing soil quality in agricultural systems, besides mitigating greenhouse gases (GHG) emissions to the atmosphere and increasing soil carbon sequestration. Therefore, several studies have demonstrated the effectiveness of biochar as a soil conditioner, both in relation to increased C sequestration and improvements in soil chemical, physical and biological attributes, resulting in better conditions for plant growth. The aim of this study was to assess the impact of applying biochar produced from sugarcane straw to soils in relation to changes in soil chemical attributes and mitigation of greenhouse gases emissions into the atmosphere. To do so, we conducted a laboratory incubation under controlled environmental conditions (ie temperature and humidity) with and without the application of filter cake and vinasse (ie organic residues from sugarcane industry) and rates of biochar application (0, 10, 20 and 50 Mg ha-1). The fluxes of CO2, N2O and CH4 of each incubation unity were measured periodically (in days 1, 2, 5, 9, 13, 16, 20, 24, 28, 30, 47, 60, 91, 105, 123, 130, 138 and 150). Each treatment consisted of eight replicates with destructive samples evaluated at 30, 60, 90 and 150 days after incubation to characterize the chemical attributes of the incubated soil, besides GHG (CO2, N2O and CH4) emissions. In general, there was an increase in carbon dioxide (CO2) fluxes over time due to the application of filter cake and vinasse and increasing dose of biochar. Regarding nitrous oxide (N2O) emissions, there was an increase of 82.35% with the application of vinasse and filter cake compared to the control treatment. However, different doses of biochar (10, 20 and 50 Mg ha-1) reduced N2O emissions by 29, 38.7 and 70.9%, respectively. The methane (CH4) flux was negligible in all treatments. We observed improvements in soil chemical attributes, such as higher pH, a substantial increase in the soil CEC, reduced exchangeable

  15. Seasonal variability of atmospheric nitrogen oxides and non-methane hydrocarbons at the GEOSummit station, Greenland

    Directory of Open Access Journals (Sweden)

    L. J. Kramer

    2014-05-01

    Full Text Available Measurements of atmospheric NOx (NOx = NO + NO2, peroxyacetyl nitrate (PAN, NOy and non-methane hydrocarbons (NMHC were taken at the GEOSummit Station, Greenland (72.34° N, 38.29° W, 3212 m.a.s.l from July 2008 to July 2010. The data set represents the first year-round concurrent record of these compounds sampled at a high latitude Arctic site in the free troposphere. Here, the study focused on the seasonal variability of these important ozone (O3 precursors in the Arctic free troposphere and the impact from transported anthropogenic and biomass burning emissions. Our analysis shows that PAN is the dominant NOy species in all seasons at Summit, varying from 49% to 78%, however, we find that odd NOy species (odd NOy = NOy − PAN-NOx contribute a large amount to the total NOy speciation with monthly means of up to 95 pmol mol−1 in the winter and ∼40 pmol mol−1 in the summer, and that the level of odd NOy species at Summit during summer is greater than that of NOx. We hypothesize that the source of this odd NOy is most likely alkyl nitrates from transported pollution, and photochemically produced species such as HNO3 and HONO. FLEXPART retroplume analysis and tracers for anthropogenic and biomass burning emissions, were used to identify periods when the site was impacted by polluted air masses. Europe contributed the largest source of anthropogenic emissions during the winter and spring months, with up to 82% of the simulated anthropogenic black carbon originating from this region between December 2009 and March 2010, whereas, North America was the primary source of biomass burning emissions. Polluted air masses were typically aged, with median transport times to the site from the source region of 11 days for anthropogenic events in winter, and 14 days for BB plumes. Overall we find that the transport of polluted air masses to the high altitude Arctic typically resulted in high variability in levels of O3 and O3 precursors. During winter

  16. Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds

    Science.gov (United States)

    Kolak, J.J.; Burruss, R.C.

    2006-01-01

    Coal samples of different rank (lignite to anthracite) were extracted in the laboratory with supercritical CO2 (40 ??C; 10 MPa) to evaluate the potential for mobilizing non-methane hydrocarbons during CO2 storage (sequestration) or enhanced coal bed methane recovery from deep (???1-km depth) coal beds. The total measured alkane concentrations mobilized from the coal samples ranged from 3.0 to 64 g tonne-1 of dry coal. The highest alkane concentration was measured in the lignite sample extract; the lowest was measured in the anthracite sample extract. Substantial concentrations of polycyclic aromatic hydrocarbons (PAHs) were also mobilized from these samples: 3.1 - 91 g tonne-1 of dry coal. The greatest amounts of PAHs were mobilized from the high-volatile bituminous coal samples. The distributions of aliphatic and aromatic hydrocarbons mobilized from the coal samples also varied with rank. In general, these variations mimicked the chemical changes that occur with increasing degrees of coalification and thermal maturation. For example, the amount of PAHs mobilized from coal samples paralleled the general trend of bitumen formation with increasing coal rank. The coal samples yielded hydrocarbons during consecutive extractions with supercritical CO2, although the amount of hydrocarbons mobilized declined with each successive extraction. These results demonstrate that the potential for supercritical CO2 to mobilize non-methane hydrocarbons from coal beds, and the effect of coal rank on this process, are important to consider when evaluating deep coal beds for CO2 storage.

  17. Irritant gases

    NARCIS (Netherlands)

    Meulenbelt, J

    2016-01-01

    Acute inhalation injury can result from the use of household cleaning agents (e.g. chlorine, ammonia), industrial or combustion gases (e.g. sulfur dioxide, nitrogen oxides) or bioterrorism. The severity of the injury is to a great extent determined by the circumstances of exposure. If exposure was i

  18. Greenhouse Gases

    Science.gov (United States)

    ... life. Governments all around the world ban and control production and use of several industrial gases that destroy atmospheric ozone and create a hole in the ozone layer . At lower elevations of the atmosphere (the troposphere), ozone is harmful to ... for Future Emissions FAQs How much carbon dioxide is produced when ...

  19. Irritant gases

    NARCIS (Netherlands)

    Meulenbelt, J

    Acute inhalation injury can result from the use of household cleaning agents (e.g. chlorine, ammonia), industrial or combustion gases (e.g. sulfur dioxide, nitrogen oxides) or bioterrorism. The severity of the injury is to a great extent determined by the circumstances of exposure. If exposure was

  20. Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US

    Science.gov (United States)

    Gilman, J. B.; Lerner, B. M.; Kuster, W. C.; Goldan, P. D.; Warneke, C.; Veres, P. R.; Roberts, J. M.; de Gouw, J. A.; Burling, I. R.; Yokelson, R. J.

    2015-12-01

    A comprehensive suite of instruments was used to quantify the emissions of over 200 organic gases, including methane and volatile organic compounds (VOCs), and 9 inorganic gases from 56 laboratory burns of 18 different biomass fuel types common in the southeastern, southwestern, or northern US. A gas chromatograph-mass spectrometry (GC-MS) instrument provided extensive chemical detail of discrete air samples collected during a laboratory burn and was complemented by real-time measurements of organic and inorganic species via an open-path Fourier transform infrared spectroscopy (OP-FTIR) instrument and three different chemical ionization-mass spectrometers. These measurements were conducted in February 2009 at the US Department of Agriculture's Fire Sciences Laboratory in Missoula, Montana and were used as the basis for a number of emission factors reported by Yokelson et al. (2013). The relative magnitude and composition of the gases emitted varied by individual fuel type and, more broadly, by the three geographic fuel regions being simulated. Discrete emission ratios relative to carbon monoxide (CO) were used to characterize the composition of gases emitted by mass; reactivity with the hydroxyl radical, OH; and potential secondary organic aerosol (SOA) precursors for the 3 different US fuel regions presented here. VOCs contributed less than 0.78 % ± 0.12 % of emissions by mole and less than 0.95 % × 0.07 % of emissions by mass (on average) due to the predominance of CO2, CO, CH4, and NOx emissions; however, VOCs contributed 70-90 (±16) % to OH reactivity and were the only measured gas-phase source of SOA precursors from combustion of biomass. Over 82 % of the VOC emissions by mole were unsaturated compounds including highly reactive alkenes and aromatics and photolabile oxygenated VOCs (OVOCs) such as formaldehyde. OVOCs contributed 57-68 % of the VOC mass emitted, 41-54 % of VOC-OH reactivity, and aromatic-OVOCs such as benzenediols, phenols, and benzaldehyde

  1. Toxic gas removal--metal-organic frameworks for the capture and degradation of toxic gases and vapours.

    Science.gov (United States)

    Barea, Elisa; Montoro, Carmen; Navarro, Jorge A R

    2014-08-21

    The release of anthropogenic toxic pollutants into the atmosphere is a worldwide threat of growing concern. In this regard, it is possible to take advantage of the high versatility of MOFs materials in order to develop new technologies for environmental remediation purposes. Consequently, one of the main scientific challenges to be achieved in the field of MOF research should be to maximize the performance of these solids towards the sensing, capture and catalytic degradation of harmful gases and vapors by means of a rational control of size and reactivity of the pore walls that are directly accessible to guest molecules.

  2. Noble Gases

    Science.gov (United States)

    Podosek, F. A.

    2003-12-01

    The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the

  3. 定型机有机废气余热回收问题的探讨%The discussions of organic waste gases heat recovery from setting machine

    Institute of Scientific and Technical Information of China (English)

    狄育慧; 黄银鹏; 周林园

    2015-01-01

    热定型机是印染工艺后整理工序中的重要设备,也是印染行业中的能耗“大户”,但是热定型机能源有效利用率太低,超过50%的能量被有机废气带走,对这部分余热的回收势在必行。主要对有机废气余热回收过程中存在的问题提出建设性意见,有效地减少油烟冷凝,提高换热器的热回收效率。%Heat-setting machine is an important equipment in the finishing process and a large part of energy consumption in the dyeing and printing industry. However, the energy efficiency of heat-setting machine is too low:more than 50%of the energy is taken away by organic waste gases. It is necessary to recovery this part of waste heat. The paper focuses on proposing some constructive comments for the process of organic waste gases heat recovery to reduce the oil fume condensate effectively and improve the thermal efficiency of the heat exchanger.

  4. Anthropogenic non-methane volatile hydrocarbons at Mt. Cimone (2165 m a.s.l., Italy): Impact of sources and transport on atmospheric composition

    Science.gov (United States)

    Lo Vullo, Eleonora; Furlani, Francesco; Arduini, Jgor; Giostra, Umberto; Graziosi, Francesco; Cristofanelli, Paolo; Williams, Martin L.; Maione, Michela

    2016-09-01

    To advance our understanding of the factors that affect pollution in mountainous areas, long-term, high frequency measurements of thirteen Non Methane Volatile Organic Compounds (NMVOCs) have been carried out at the atmospheric observatory on the top of Mt. Cimone (2165 m a.s.l.), whose location is ideal for sampling both aged air masses representing the regional background and polluted air masses coming from nearby sources of anthropogenic pollution. An analysis of the NMVOC time series available at Mt. Cimone during 2010-2014 was used to examine the influence of transport processes on NMVOC atmospheric composition and to derive information on the emission sources. We performed a multifactor principal component analysis whose results allowed us to identify the source categories emitting the NMVOCs measured at Mt. Cimone as well as to assess transport ranges in winter and summer. Aged air masses, due to long-range transport and related to vehicular traffic exhaust emissions accounted for 78% of the NMVOC variability in winter and 62% in summer, whereas evaporative emissions, likely to be associated with fresh emissions from nearby sources, accounted for 12% of the NMVOC variability and 24% in winter and summer, respectively. Such results have been confirmed by a further analysis in which the NMVOC variability as a function of their atmospheric lifetimes has been evaluated. The ratios of alkane isomers potentially provides a metric to investigate seasonal changes in NMVOCs composition and in the emission fields of butanes and pentanes, suggesting that during the summer the butanes are originating mainly from the European domain and that for pentanes non-anthropogenic sources may be contributing to the measured concentrations.

  5. Effect of ultraviolet illumination and ambient gases on the photoluminescence and electrical properties of nanoporous silicon layer for organic vapor sensor.

    Science.gov (United States)

    Atiwongsangthong, Narin

    2012-08-01

    The purpose of this research, the nanoporous silicon layer were fabricated and investigated the physical properties such as photoluminescence and the electrical properties in order to develop organic vapor sensor by using nanoporous silicon. The Changes in the photoluminescence intensity of nanoporous silicon samples are studied during ultraviolet illumination in various ambient gases such as nitrogen, oxigen and vacuum. In this paper, the nanoporous silicon layer was used as organic vapor adsorption and sensing element. The advantage of this device are simple process compatible in silicon technology and usable in room temperature. The structure of this device consists of nanoporous silicon layer which is formed by anodization of silicon wafer in hydrofluoric acid solution and aluminum electrode which deposited on the top of nanoporous silicon layer by evaporator. The nanoporous silicon sensors were placed in a gas chamber with various organic vapor such as ethanol, methanol and isopropyl alcohol. From studying on electrical characteristics of this device, it is found that the nanoporous silicon layer can detect the different organic vapor. Therefore, the nanoporous silicon is important material for organic vapor sensor and it can develop to other applications about gas sensors in the future.

  6. Pulsed Nd:YAG laser deposition of indium tin oxide thin films in different gases and organic light emitting device applications

    Energy Technology Data Exchange (ETDEWEB)

    Yong, T.Y. [Faculty of Engineering, Multimedia University, Cyberjaya, 63100 Selangor (Malaysia); Tou, T.Y. [Faculty of Engineering, Multimedia University, Cyberjaya, 63100 Selangor (Malaysia)], E-mail: tytou@mmu.edu.my; Yow, H.K. [Faculty of Engineering, Multimedia University, Cyberjaya, 63100 Selangor (Malaysia); Safran, G. [Research Institute for Technical Physics and Materials Science, Hungarian Academy of Sciences, 1121 Konkoly-Thege ut 29-33, Budapest XII (Hungary)

    2008-04-30

    The microstructures, electrical and optical properties of indium-doped tin oxide (ITO) films, deposited on glass substrates in different background gases by a pulsed Nd:YAG laser, were characterized. The optimal pressure for obtaining the lowest resistivity in ITO thin film is inversely proportional to the molecular weight of the background gases, namely the argon (Ar), oxygen (O{sub 2}), nitrogen (N{sub 2}) and helium (He). While substrate heating to 250 deg. C decreased the ITO resistivity to < 4 x 10{sup -4} {omega} cm, obtaining the optical transmittance of higher than 90% depended mainly on the background gas pressure for O{sub 2} and Ar. Obtaining the lowest ITO resistivity, however, did not beget a high optical transmittance for ITO deposition in N{sub 2} and He. Scanning electron microscope pictures show distinct differences in microstructures due to the background gas: nanostructures when using Ar and N{sub 2} but polycrystalline for using O{sub 2} and He. The ITO surface roughness varied with the deposition distance. The effects on the molecularly doped, single-layer organic light emitting device (OLED) operation and performance were also investigated. Only ITO thin films prepared in O{sub 2} and Ar are suitable for the fabrication OLED with performance comparable to that fabricated on the commercially available, magnetron-sputtered ITO.

  7. Non-methane biogenic volatile organic compound emissions from boreal peatland microcosms under warming and water table drawdown

    DEFF Research Database (Denmark)

    Faubert, P; Tiiva, P; Nakam, TA

    2011-01-01

    BVOC groups. Only isoprene emission was significantly increased by warming, parallel to the increased leaf number of the dominant sedge Eriophorum vaginatum. BVOC emissions from peat soil were higher under the control and warming treatments than water table drawdown, suggesting an increased activity...... assessed the combined effect of warming and water table drawdown on the BVOC emissions from boreal peatland microcosms. We also assessed the treatment effects on the BVOC emissions from the peat soil after the 7-week long experiment. Emissions of isoprene, monoterpenes, sesquiterpenes, other reactive VOCs...... and other VOCs were sampled using a conventional chamber technique, collected on adsorbent and analyzed by GC–MS. Carbon emitted as BVOCs was less than 1% of the CO2 uptake and up to 3% of CH4 emission. Water table drawdown surpassed the direct warming effect and significantly decreased the emissions of all...

  8. Greenhouse effect gases inventory in France during the years 1990-1999; Inventaire des emissions de gaz a effet de serre en France au cours de la periode 1990-1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    The present report supplies emission data, for France and for the period 1990-1999, concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF{sub 6}). Emissions of sulphur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. The emissions of the six gases that directly contribute to the greenhouse effect are expressed in terms of Global Warming Potential (GWP) which decreased by 2.1 % in 1999 compared to 1990. The emissions of the four gases that indirectly contribute to the greenhouse effect are moving towards decrease: this is by 17% for NO{sub x}, 23% as regards NMVOCs, 33% for CO and by 44% regarding SO{sub 2}. Out of the six greenhouse gases covered by the Kyoto Protocol, CO{sub 2} accounts for the largest share in total GWP emissions (70 %), followed by N{sub 2}O (16 %), CH{sub 4} (12 %), HFCs (0.99 %), SF{sub 6} (0.5 %), and PFCs (0.39 %). (author)

  9. GREENOUSE GASES FROM SMALL-SCALE COMBUSTION DEVICES IN DEVELOPING COUNTRIES, PHASE IIA. HOUSEHOLD STOVES IN INDIA

    Science.gov (United States)

    The report contains a systematic set of measurements of carbon dioxide (CO2), carbon monoxide, methane, total non-methane organic compounds, nitrous oxide, sulfur dioxide, nitrogen dioxide, and total suspended particulate emissions from the commonest combustion devices in the wor...

  10. Biogenic non-methane hydrocarbons (NMHC). Nature`s contribution to regional and global atmospheric chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Klockow, D.; Hoffman, T. [Inst. of Spectrochemistry and Applied Spectroscopy, Dortmund (Germany)

    1995-12-31

    Terrestrial vegetation provides an important source of volatile hydrocarbons, especially isoprene, monoterpenes and in addition possibly sesquiterpenes as well as oxygenated compounds. Although there exist considerable uncertainties in the estimation of the magnitude of these biogenic NMHC emissions, it is generally accepted that the majority of global NMHC release is from natural and not from anthropogenic sources. Taking into consideration the high reactivity of the mostly unsaturated biogenic emissions, their impact on tropospheric processes can be assumed to be of great importance. Together with anthropogenic NO{sub x} emissions, the highly reactive natural alkenes can act as precursors in photochemical oxidant formation and contribute to regional-scale air pollution. Their oxidation in the atmosphere and the subsequent gas-to-particle conversion of the products lead to the formation of organic aerosols. Because of the formation of phytotoxic compounds, the interaction of the biogenic hydrocarbons with ozone inside or outside the leaves and needles of plants has been suggested to play a role in forest decline. (author)

  11. Implications of changing urban and rural emissions on non-methane hydrocarbons in the Pearl River Delta region of China

    Science.gov (United States)

    Tang, J. H.; Chan, L. Y.; Chan, C. Y.; Li, Y. S.; Chang, C. C.; Wang, X. M.; Zou, S. C.; Barletta, Barbara; Blake, D. R.; Wu, Dui

    2008-05-01

    Guangzhou (GZ) is one of the highly industrialized and economically vibrant cities in China, yet it remains relatively understudied in terms of its air quality, which has become severely degraded. In this study, extensive air sampling campaigns had been conducted at GZ urban sites and in Dinghu Mountain (DM), a rural site, in the Pearl River Delta (PRD) during the spring of 2001 and 2005. Additionally, roadside and tunnel samples were collected in GZ in 2000 and 2005. Later, exhaust samples from liquefied petroleum gas (LPG)- and gasoline-fueled taxis were collected in 2006. All samples were analyzed for C2-C10 non-methane hydrocarbons (NMHCs). NMHC profiles showed significant differences in the exhaust samples between gasoline- and LPG-fueled taxis. Propane (47%) was the dominant hydrocarbon in the exhaust of the LPG-fueled taxis, while ethene (35%) was the dominant one in that of gasoline-fueled taxis. The use of LPG-fueled buses and taxis since 2003 and the leakage from these LPG-fueled vehicles were the major factors for the much higher level of propane in GZ urban area in 2005 compared to 2001. The mixing ratios of toluene, ethylbenzene, m/p-xylene and o-xylene decreased at the GZ and DM sites between 2001 and 2005, especially for toluene in GZ, despite the sharp increase in the number of registered motor vehicles in GZ. This phenomenon was driven in part by the closure of polluting industries as well as the upgrading of the road network in urban GZ and in part by the implementation of more stringent emission standards for polluting industries and motor vehicles in the PRD region.

  12. Influence of oil and gas emissions on ambient atmospheric non-methane hydrocarbons in residential areas of Northeastern Colorado

    Directory of Open Access Journals (Sweden)

    Chelsea R. Thompson

    2014-11-01

    Full Text Available Abstract The Northern Front Range (NFR region of Colorado has experienced rapid expansion of oil and gas extraction from shale and tight sands reservoirs in recent years due to advances in hydraulic fracturing technology, with over 25,000 wells currently in operation. This region has also been designated as a federal ozone non-attainment area by the U.S. EPA. High ozone levels are a significant health concern, as are potential health impacts from chronic exposure to primary emissions of non-methane hydrocarbons (NMHC for residents living near wells. From measurements of ambient atmospheric NMHC present in residential areas located in close proximity to wells in Erie, Colorado, we find that mean mole fractions of the C2–C5 alkanes are enhanced by a factor of 18–77 relative to the regional background, and present at higher levels than typically found in large urban centers. When combined with NMHC observations from downtown Denver and Platteville, it is apparent that these compounds are elevated across the NFR, with highest levels within the Greater Wattenberg Gas Field. This represents a large area source for ozone precursors in the NFR. The BTEX aromatic compounds in Erie were comparable to (e.g., benzene or lower than (e.g., toluene, ethylbenzene, xylene in large urban centers, however, benzene was significantly higher in Platteville, and within the range of chronic health-based exposure levels. An initial look at comparisons with data sets from previous years reveal that ambient levels for oil and gas-related NMHC in Erie, as well as further downwind in Boulder, have not decreased, but appear to have been increasing, despite tightening of emissions standards for the oil and gas industries in 2008.

  13. Non-methane hydrocarbons in the atmosphere of Mexico City: Results of the 2012 ozone-season campaign

    Science.gov (United States)

    Jaimes-Palomera, Mónica; Retama, Armando; Elias-Castro, Gabriel; Neria-Hernández, Angélica; Rivera-Hernández, Olivia; Velasco, Erik

    2016-05-01

    With the aim to strengthen the verification capabilities of the local air quality management, the air quality monitoring network of Mexico City has started the monitoring of selected non-methane hydrocarbons (NMHCs). Previous information on the NMHC characterization had been obtained through individual studies and comprehensive intensive field campaigns, in both cases restricted to sampling periods of short duration. This new initiative will address the NMHC pollution problem during longer monitoring periods and provide robust information to evaluate the effectiveness of new control measures. The article introduces the design of the monitoring network and presents results from the first campaign carried out during the first six months of 2012 covering the ozone-season (Mar-May). Using as reference data collected in 2003, results show reductions during the morning rush hour (6-9 h) in the mixing ratios of light alkanes associated with the consumption and distribution of liquefied petroleum gas and aromatic compounds related with the evaporation of fossil fuels and solvents, in contrast to olefins from vehicular traffic. The increase in mixing ratios of reactive olefins is of relevance to understand the moderate success in the ozone and fine aerosols abatement in recent years in comparison to other criteria pollutants. In the case of isoprene, the typical afternoon peak triggered by biogenic emissions was clearly observed for the first time within the city. The diurnal profiles of the monitored compounds are analyzed in terms of the energy balance throughout the day as a surrogate of the boundary layer evolution. Particular features of the diurnal profiles and correlation between individual NMHCs and carbon monoxide are used to investigate the influence of specific emission sources. The results discussed here highlight the importance of monitoring NMHCs to better understand the drivers and impacts of air pollution in large cities like Mexico City.

  14. A survey of carbon monoxide and non-methane hydrocarbons in the Arctic Ocean during summer 2010: assessment of the role of phytoplankton

    Directory of Open Access Journals (Sweden)

    S. Tran

    2012-04-01

    Full Text Available During the ARK XXV 1+2 expedition in the Arctic Ocean carried out in June–July 2010 aboard the R/V Polarstern, we measured carbon monoxide (CO, non-methane hydrocarbons (NMHC and phytoplankton pigments at the sea surface and down to a depth of 100 m. The CO and NMHC sea-surface concentrations were highly variable; CO, propene and isoprene levels ranged from 0.6 to 17.5 nmol l−1, 1 to 322 pmol l−1 and 1 to 541 pmol l−1, respectively. The CO and alkene concentrations were enhanced in polar waters off of Greenland, which were more stratified because of ice melting and richer in chromophoric dissolved organic matter (CDOM than typical North Atlantic waters. The spatial distribution of the surface concentrations of CO was consistent with our current understanding of CO-induced UV photo-production in the sea. The vertical distributions of the CO and alkenes followed the trend of light penetration, with the concentrations displaying a relatively regular exponential decrease down to non-measurable values below 50 m. However, no diurnal variations of CO or alkene concentrations were observed in the stratified and irradiated surface layers. This finding suggests that the production and removal processes of CO and alkenes were tightly coupled. We tentatively determined a first-order rate constant for the microbial consumption of CO of 0.5 d−1, which is in agreement with previous studies. On several occasions, we observed the existence of subsurface CO maxima at the level of the deep chlorophyll maximum. This finding represents field evidence for the existence of a non-photochemical CO production pathway, most likely of phytoplanktonic origin. The corresponding production rates normalized to the chlorophyll content were in the range of those estimated from laboratory experiments. In general, the vertical distributions of isoprene followed that of the phytoplankton biomass. Hence, oceanic data

  15. Organic Gases in Fluid Inclusions of Ore Minerals and Their Constraints on Ore Genesis: A Case Study of the Changkeng Au-Ag Deposit, Guangdong, China

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The newly discovered Changkeng Au-Ag deposit is a new type of sediment-hosted precious metal deposit. Most of the previous researchers believed that the deposit was formed by meteoric water convection. By using a high vacuum quadrupole gas mass spectrometric system, nine light hydrocarbons have been recognized in the fluid inclusions in ore minerals collected from the Changkeng deposit. The hydrocarbons are composed mainly of saturated alkanes C1-4 and unsaturated alkenes C2-4 and aromatic hydrocarbons, in which the alkanes are predominant, while the contents of alkenes and aromatic hydrocarbons are very low. The Σalka/Σalke ratio of most samples is higher than 100, suggesting that those hydrocarbons are mainly generated by pyrolysis of kerogens in sedimentary rocks caused by water-rock interactions at medium-low temperatures, and the metallogenic processes might have not been affected by magmatic activity. A thermodynamic calculation shows that the light hydrocarbons have reached chemical equilibrium at temperatures higher than 200?C, and they may have been generated in the deep part of sedimentary basins (e.g., the Sanzhou basin) and then be transported by ore-forming fluids to a shallow position of the basin via a long distance. Most of the organic gases are generated by pyrolysis of the type II kerogens (kukersite) in sedimentary host rocks, only a few by microorganism activity. The compositions and various parameters of light hydrocarbons in gold ores are quite similar to those in silver ores, suggesting that the gold and silver ores may have similar metallogenic processes. Based on the compositions of organic gases in fluid inclusions, the authors infer that the Changkeng deposit may be of a tectonic setting of continental rift. The results of this study support from one aspect the authors' opinion that the Changkeng deposit is not formed by meteoric water convection, and that its genesis has a close relationship with the evolution of the Sanzhou basin, so

  16. Development and application of a hybrid inert/organic packing material for the biofiltration of composting off-gases mimics

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Jeronimo; Prado, Oscar J. [Chemical Engineering Department, Escola d' Enginyeria, Universitat Autonoma de Barcelona, Edifici Q, 08193 Bellaterra, Barcelona (Spain); Almarcha, Manuel [Sistemas y Tecnologias Ambientales S.A., c/Mao 22, 1o 2a, 08022 Barcelona (Spain); Lafuente, Javier [Chemical Engineering Department, Escola d' Enginyeria, Universitat Autonoma de Barcelona, Edifici Q, 08193 Bellaterra, Barcelona (Spain); Gabriel, David, E-mail: david.gabriel@uab.es [Chemical Engineering Department, Escola d' Enginyeria, Universitat Autonoma de Barcelona, Edifici Q, 08193 Bellaterra, Barcelona (Spain)

    2010-06-15

    The performance of three biofilters (BF1-BF3) packed with a new hybrid (inert/organic) packing material that consists of spherical argyle pellets covered with compost was examined in different operational scenarios and compared with a biofilter packed with pine bark (BF4). BF1, BF2 and BF4 were inoculated with an enriched microbial population, while BF3 was inoculated with sludge from a wastewater treatment plant. A gas mixture containing ammonia and six VOCs was fed to the reactors with N-NH{sub 3} loads ranging from 0 to 10 g N/m{sup 3} h and a VOCs load of around 10 g C/m{sup 3} h. A profound analysis of the fate of nitrogen was performed in all four reactors. Results show that the biofilters packed with the hybrid packing material and inoculated with the microbial pre-adapted population (BF1 and BF2) achieved the highest nitrification rates and VOCs removal efficiencies. In BF3, nitratation was inhibited during most of the study, while only slight evidence of nitrification could be observed in BF4. All four reactors were able to treat the VOCs mixture with efficiencies greater than 80% during the entire experimental period, regardless of the inlet ammonia load.

  17. Gram-scale, high-yield synthesis of a robust metal-organic framework for storing methane and other gases

    Energy Technology Data Exchange (ETDEWEB)

    Wilmer, CE; Farha, OK; Yildirim, T; Eryazici, I; Krungleviciute, V; Sarjeant, AA; Snurr, RQ; Hupp, JT

    2013-04-01

    We have synthesized and characterized a new metal-organic framework (MOF) material, NU-125, that, in the single-crystal limit, achieves a methane storage density at 58 bar (840 psi) and 298 K corresponding to 86% of that obtained with compressed natural gas tanks (CNG) used in vehicles today, when the latter are pressurized to 248 bar (3600 psi). More importantly, the deliverable capacity (58 bar to 5.8 bar) for NU-125 is 67% of the deliverable capacity of a CNG tank that starts at 248 bar. (For crystalline granules or powders, particle packing inefficiencies will yield densities and deliverable capacities lower than 86% and 67% of high-pressure CNG.) This material was synthesized in high yield on a gram-scale in a single-batch synthesis. Methane adsorption isotherms were measured over a wide pressure range (0.1-58 bar) and repeated over twelve cycles on the same sample, which showed no detectable degradation. Adsorption of CO2 and H-2 over a broad range of pressures and temperatures are also reported and agree with our computational findings.

  18. Oxidation and reduction rates for organic carbon in the Amazon mainstream tributary and floodplain, inferred from distributions of dissolved gases

    Science.gov (United States)

    Richey, Jeffrey E.; Devol, Allan H.; Wofsy, Steven C.; Victoria, Reynaldo; Riberio, Maria N. G.

    1986-01-01

    Concentrations of CO2, O2, CH4, and N2O in the Amazon River system reflect an oxidation-reduction sequence in combination with physical mixing between the floodplain and the mainstem. Concentrations of CO2 ranged from 150 microM in the Amazon mainstem to 200 to 300 microM in aerobic waters of the floodplain, and up to 1000 microM in oxygen-depleted environments. Apparent oxygen utilization (AOU) ranged from 80 to 250 microM. Methane was highly supersaturated, with concentrations ranging from 0.06 microM in the mainstem to 100 microM on the floodplain. Concentrations of N2O were slightly supersaturated in the mainstem, but were undersaturated on the floodplain. Fluxes calculated from these concentrations indicated decomposition of 1600 g C sq m y(-1) of organic carbon in Amazon floodplain waters. Analysis of relationships between CH4, O2, and CO2 concentrations indicated that approximately 50 percent of carbon mineralization on the floodplain is anaerobic, with 20 percent lost to the atmoshphere as CH4. The predominance of anaerobic metabolism leads to consumption of N2O on the flood plane. Elevated concentrations of CH4 in the mainstem probably reflect imput from the floodplain, while high levels of CO2 in the mainstem are derived from a combination of varzea drainage and in situ respiration.

  19. Inventory of greenhouse effect gases in France under the united nation framework convention on climatic change; Inventaire des emissions de gaz a effet de serre en France au titre de la convention cadre des nations unies sur le changement climatique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-12-01

    The present report supplies emission data, for France and for the period 1990 - 2000 concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO{sub 2}), methane (CH{sub 4}), nitrous oxide (N{sub 2}O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF{sub 6}). Emissions of sulphur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. For the period 1990 - 1999 as a whole, estimates provided in the previous inventories have been reviewed and corrected to take into account updated statistics, improved knowledge, possible changes in methodology and specifications contained in the guidelines (FCCC/CP/1999/7) defined by the UNFCCC on reporting for inventories of emissions, in particular the use of the Common Reporting Format (CRF). (author)

  20. Insights into Surface Interactions between Metal Organic Frameworks and Gases during Transient Adsorption and Diffusion by In-Situ Small Angle X-ray Scattering

    Science.gov (United States)

    Dumée, Ludovic F.; He, Li; Hodgson, Peter; Kong, Lingxue

    2016-01-01

    The fabrication of molecular gas sieving materials with specific affinities for a single gas species and able to store large quantities of materials at a low or atmospheric pressure is desperately required to reduce the adverse effects of coal and oil usage in carbon capture. Fundamental understanding of the dynamic adsorption of gas, the diffusion mechanisms across thin film membranes, and the impact of interfaces play a vital role in developing these materials. In this work, single gas permeation tests across micro-porous membrane materials, based on metal organic framework crystals grown on the surface of carbon nanotubes (ZiF-8@CNT), were performed for the first time in-situ at the Australian Synchrotron on the small angle X-ray scattering beamline in order to reveal molecular sieving mechanisms and gas adsorption within the material. The results show that specific chemi-sorption of CO2 across the ZiF-8 crystal lattices affected the morphology and unit cell parameters, while the sieving of other noble or noble like gases across the ZiF-8@CNT membranes was found to largely follow Knudsen diffusion. This work demonstrates for the first time a novel and effective technique to assess molecular diffusion at the nano-scale across sub-nano-porous materials by probing molecular flexibility across crystal lattice and single cell units. PMID:27598211

  1. Insights into Surface Interactions between Metal Organic Frameworks and Gases during Transient Adsorption and Diffusion by In-Situ Small Angle X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumée

    2016-09-01

    Full Text Available The fabrication of molecular gas sieving materials with specific affinities for a single gas species and able to store large quantities of materials at a low or atmospheric pressure is desperately required to reduce the adverse effects of coal and oil usage in carbon capture. Fundamental understanding of the dynamic adsorption of gas, the diffusion mechanisms across thin film membranes, and the impact of interfaces play a vital role in developing these materials. In this work, single gas permeation tests across micro-porous membrane materials, based on metal organic framework crystals grown on the surface of carbon nanotubes (ZiF-8@CNT, were performed for the first time in-situ at the Australian Synchrotron on the small angle X-ray scattering beamline in order to reveal molecular sieving mechanisms and gas adsorption within the material. The results show that specific chemi-sorption of CO2 across the ZiF-8 crystal lattices affected the morphology and unit cell parameters, while the sieving of other noble or noble like gases across the ZiF-8@CNT membranes was found to largely follow Knudsen diffusion. This work demonstrates for the first time a novel and effective technique to assess molecular diffusion at the nano-scale across sub-nano-porous materials by probing molecular flexibility across crystal lattice and single cell units.

  2. The levels, variation characteristics, and sources of atmospheric non-methane hydrocarbon compounds during wintertime in Beijing, China

    Science.gov (United States)

    Liu, Chengtang; Ma, Zhuobiao; Mu, Yujing; Liu, Junfeng; Zhang, Chenglong; Zhang, Yuanyuan; Liu, Pengfei; Zhang, Hongxing

    2017-09-01

    Atmospheric non-methane hydrocarbon compounds (NMHCs) were measured at a sampling site in Beijing city from 15 December 2015 to 14 January 2016 to recognize their pollution levels, variation characteristics, and sources. We quantified 53 NMHCs, and the proportions of alkanes, alkenes, acetylene, and aromatics to the total NMHCs were 49.8-55.8, 21.5-24.7, 13.5-15.9, and 9.3-10.7 %, respectively. The variation trends in the NMHC concentrations were basically identical and exhibited remarkable fluctuation, which was mainly ascribed to the variation in meteorological conditions, especially wind speed. The diurnal variations in NMHCs on clear days exhibited two peaks during the morning and evening rush hours, whereas the rush hours' peaks diminished or even disappeared on the haze days, implying that the relative contribution of the vehicular emissions to atmospheric NMHCs depended on the pollution status. Two evident peaks of the propane / propene ratios appeared in the early morning before sun rise and at noontime on clear days, whereas only one peak occurred in the afternoon during the haze days, which were attributed to the relatively fast reactions of propene with OH, NO3, and O3. Based on the chemical kinetic equations, the daytime OH concentrations were calculated to be in the range of 3. 47 × 105-1. 04 × 106 molecules cm-3 on clear days and 6. 42 × 105-2. 35 × 106 molecules cm-3 on haze days. The nighttime NO3 concentrations were calculated to be in the range of 2. 82 × 109-4. 86 × 109 molecules cm-3 on clear days. The correlation coefficients of typical hydrocarbon pairs (benzene / toluene, o-xylene / m,p-xylene, isopentane / n-pentane, etc.) revealed that vehicular emissions and coal combustion were important sources for atmospheric NMHCs in Beijing during the wintertime. Five major emission sources for atmospheric NMHCs in Beijing during the wintertime were further identified by positive matrix factorization (PMF), including gasoline-related emissions

  3. Non-methane hydrocarbons (NMHCs) and their contribution to ozone formation potential in a petrochemical industrialized city, Northwest China

    Science.gov (United States)

    Jia, Chenhui; Mao, Xiaoxuan; Huang, Tao; Liang, Xiaoxue; Wang, Yanan; Shen, Yanjie; Jiang, Wanyanhan; Wang, Huiqin; Bai, Zhilin; Ma, Minquan; Yu, Zhousuo; Ma, Jianmin; Gao, Hong

    2016-03-01

    Hourly air concentrations of fifty-three non-methane hydrocarbons (NMHCs) were measured at downtown and suburb of Lanzhou, a petrochemical industrialized city, Northwest China in 2013. The measured data were used to investigate the seasonal characteristics of NMHCs air pollution and their contributions to the ozone formation in Lanzhou. Annually averaged NMHCs concentration was 38.29 ppbv in downtown Lanzhou. Among 53 NMHCs, alkanes, alkenes, and aromatics accounted for 57%, 23% and 20% of the total NMHCs air concentration, respectively. The atmospheric levels of toluene and propane with mean values of 4.62 and 4.56 ppbv were higher than other NMHCs, respectively. The ambient levels of NMHCs in downtown Lanzhou were compared with measured NMHCs data collected at a suburban site of Lanzhou, located near a large-scale petrochemical industry. Results show that the levels of alkanes, alkenes, and aromatics in downtown Lanzhou were lower by factors of 3-11 than that in west suburb of the city. O3-isopleth plots show that ozone was formed in VOCs control area in downtown Lanzhou and NOx control area at the west suburban site during the summertime. Propylene-equivalent (Prop-Equiv) concentration and the maximum incremental reactivity (MIR) in downtown Lanzhou indicate that cis-2-butene, propylene, and m/p-xylene were the first three compounds contributing to ozone formation potentials whereas in the petrochemical industrialized west suburb, ethane, propene, and trans-2-Butene played more important role in the summertime ozone formation. Principal component analysis (PCA) and multiple linear regression (MLR) were further applied to identify the dominant emission sources and examine their fractions in total NMHCs. Results suggest that vehicle emission, solvent usage, and industrial activities were major sources of NMHCs in the city, accounting for 58.34%, 22.19%, and 19.47% of the total monitored NMHCs in downtown Lanzhou, respectively. In the west suburb of the city

  4. Agricultural fires in the southeastern U.S. during SEAC4RS: Emissions of trace gases and particles and evolution of ozone, reactive nitrogen, and organic aerosol

    Science.gov (United States)

    Liu, Xiaoxi; Zhang, Y.; Huey, L. G.; Yokelson, R. J.; Wang, Y.; Jimenez, J. L.; Campuzano-Jost, P.; Beyersdorf, A. J.; Blake, D. R.; Choi, Y.; St. Clair, J. M.; Crounse, J. D.; Day, D. A.; Diskin, G. S.; Fried, A.; Hall, S. R.; Hanisco, T. F.; King, L. E.; Meinardi, S.; Mikoviny, T.; Palm, B. B.; Peischl, J.; Perring, A. E.; Pollack, I. B.; Ryerson, T. B.; Sachse, G.; Schwarz, J. P.; Simpson, I. J.; Tanner, D. J.; Thornhill, K. L.; Ullmann, K.; Weber, R. J.; Wennberg, P. O.; Wisthaler, A.; Wolfe, G. M.; Ziemba, L. D.

    2016-06-01

    Emissions from 15 agricultural fires in the southeastern U.S. were measured from the NASA DC-8 research aircraft during the summer 2013 Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. This study reports a detailed set of emission factors (EFs) for 25 trace gases and 6 fine particle species. The chemical evolution of the primary emissions in seven plumes was examined in detail for ~1.2 h. A Lagrangian plume cross-section model was used to simulate the evolution of ozone (O3), reactive nitrogen species, and organic aerosol (OA). Observed EFs are generally consistent with previous measurements of crop residue burning, but the fires studied here emitted high amounts of SO2 and fine particles, especially primary OA and chloride. Filter-based measurements of aerosol light absorption implied that brown carbon (BrC) was ubiquitous in the plumes. In aged plumes, rapid production of O3, peroxyacetyl nitrate (PAN), and nitrate was observed with ΔO3/ΔCO, ΔPAN/ΔNOy, and Δnitrate/ΔNOy reaching ~0.1, ~0.3, and ~0.3. For five selected cases, the model reasonably simulated O3 formation but underestimated PAN formation. No significant evolution of OA mass or BrC absorption was observed. However, a consistent increase in oxygen-to-carbon (O/C) ratios of OA indicated that OA oxidation in the agricultural fire plumes was much faster than in urban and forest fire plumes. Finally, total annual SO2, NOx, and CO emissions from agricultural fires in Arkansas, Louisiana, Mississippi, and Missouri were estimated (within a factor of ~2) to be equivalent to ~2% SO2 from coal combustion and ~1% NOx and ~9% CO from mobile sources.

  5. Airborne measurements of reactive organic trace gases in the atmosphere - with a focus on PTR-MS measurements onboard NASA's flying laboratories

    Science.gov (United States)

    Wisthaler, Armin; Mikoviny, Tomas; Müller, Markus; Schiller, Sven Arne; Feil, Stefan; Hanel, Gernot; Jordan, Alfons; Mutschlechner, Paul; Crawford, James H.; Singh, Hanwant B.; Millet, Dylan

    2017-04-01

    Reactive organic gases (ROGs) play an important role in atmospheric chemistry as they affect the rates of ozone production, particle formation and growth, and oxidant consumption. Measurements of ROGs are analytically challenging because of their large variety and low concentrations in the Earth's atmosphere, and because they are easily affected by measurement artefacts. On aircraft, ROGs are typically measured by canister sampling followed by off-line analysis in the laboratory, fast online gas chromatography or online chemical ionization mass spectrometry. In this work, we will briefly sum up the state-of-the-art in this field before focusing on proton-transfer-reaction mass spectrometry (PTR-MS) and its deployment onboard NASA's airborne science laboratories. We will show how airborne PTR-MS was successfully used in NASA missions for characterizing emissions of ROGs from point sources, for following the photochemical evolution of ROGs in a biomass burning plume, for determining biosphere-atmosphere fluxes of selected ROGs and for validating satellite data. We will also present the airborne PTR-MS instrument in its most recent evolution which includes a radiofrequency ion funnel and ion guide combined with a compact time-of-flight mass spectrometer and discuss its superior performance characteristics. The development of the airborne PTR-MS instrument was supported by the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit) through the Austrian Space Applications Programme (ASAP) of the Austrian Research Promotion Agency (FFG) (grants #833451, #847967). This work was also partly supported by NASA under grant #NNX14AP89G.

  6. Mechanics of gases; Mechanik der Gase

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Dieter [Helmholtz-Zentrum Berlin fuer Materialien und Energie, Berlin (Germany). BESSY II

    2010-07-01

    Compact synopsis for natural scientists, engineers and vacuum specialists. Application-oriented presentation with many practical examples and exercises. Ideal for bachelor study programmes. Knowledge on the movement, speed and energy of gas particles are an important prerequisite for an understanding of modern technologies such as vacuum engineering, or, closely related to the former, of vacuum physics or the handling of gases. This book presents the mechanics of gases in a readily understandable manner. The mathematics used is no more complex than necessary. The material is presented in coherent manner and follows a logical progression. The book begins with a description of Maxwell's velocity distribution. This is followed by a derivation of the equations of state for ideal gases as well as a description of the most important equations of state for real gases. Next the author derives relationships for all important gas kinetic parameters and shows how they can be determined experimentally. The presentation ends with explanations of selected calculations and a synopsis of all important formulas. The book contains a number of examples which are oriented towards questions as they arise in engineering or applied physics. The content level is ''Upper Undergraduate''. Keywords: gas dynamics; gas kinetics; ideal and real gas; kinetic gases; textbook of gas dynamics; textbook of gas kinetics; textbook of gas mechanics; Maxwell's law; gas mechanics; fluid mechanics; equations of state for gases. [German] - Kompakte Zusammenfassung fuer Naturwissenschaftler, Ingenieure und Vakuumspezialisten. - Anwendungsorientierte Praesentation mit vielen Praxisbeispielen und Aufgaben. - Ideal fuer das Bachelor-Studium Kenntnisse ueber die Bewegung von Gasteilchen, deren Geschwindigkeit und Energie sind eine wichtige Voraussetzung zum Verstaendnis moderner Technologien, z. B. der Vakuumtechnik, und eng damit verknuepft der Vakuumphysik oder der Handhabung von

  7. In situ measurements and modeling of reactive trace gases in a small biomass burning plume

    Science.gov (United States)

    Müller, Markus; Anderson, Bruce E.; Beyersdorf, Andreas J.; Crawford, James H.; Diskin, Glenn S.; Eichler, Philipp; Fried, Alan; Keutsch, Frank N.; Mikoviny, Tomas; Thornhill, Kenneth L.; Walega, James G.; Weinheimer, Andrew J.; Yang, Melissa; Yokelson, Robert J.; Wisthaler, Armin

    2016-03-01

    An instrumented NASA P-3B aircraft was used for airborne sampling of trace gases in a plume that had emanated from a small forest understory fire in Georgia, USA. The plume was sampled at its origin to derive emission factors and followed ˜ 13.6 km downwind to observe chemical changes during the first hour of atmospheric aging. The P-3B payload included a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS), which measured non-methane organic gases (NMOGs) at unprecedented spatiotemporal resolution (10 m spatial/0.1 s temporal). Quantitative emission data are reported for CO2, CO, NO, NO2, HONO, NH3, and 16 NMOGs (formaldehyde, methanol, acetonitrile, propene, acetaldehyde, formic acid, acetone plus its isomer propanal, acetic acid plus its isomer glycolaldehyde, furan, isoprene plus isomeric pentadienes and cyclopentene, methyl vinyl ketone plus its isomers crotonaldehyde and methacrolein, methylglyoxal, hydroxy acetone plus its isomers methyl acetate and propionic acid, benzene, 2,3-butanedione, and 2-furfural) with molar emission ratios relative to CO larger than 1 ppbV ppmV-1. Formaldehyde, acetaldehyde, 2-furfural, and methanol dominated NMOG emissions. No NMOGs with more than 10 carbon atoms were observed at mixing ratios larger than 50 pptV ppmV-1 CO. Downwind plume chemistry was investigated using the observations and a 0-D photochemical box model simulation. The model was run on a nearly explicit chemical mechanism (MCM v3.3) and initialized with measured emission data. Ozone formation during the first hour of atmospheric aging was well captured by the model, with carbonyls (formaldehyde, acetaldehyde, 2,3-butanedione, methylglyoxal, 2-furfural) in addition to CO and CH4 being the main drivers of peroxy radical chemistry. The model also accurately reproduced the sequestration of NOx into peroxyacetyl nitrate (PAN) and the OH-initiated degradation of furan and 2-furfural at an average OH concentration of 7.45 ± 1.07 × 106 cm-3 in the

  8. Genetic classification of natural gases in the Bozhong Depression, Bohai Bay, China

    Institute of Scientific and Technical Information of China (English)

    TANG Youjun; WEN Zhigang

    2007-01-01

    The geochemical characteristics of natural gases discovered in the Bozhong Depression are systematically described in this paper. The natural gases are composed mainly of hydrocarbon gases. Natural gases occurring in the Paleogene and older reservoirs are wet gases, whereas those in the Neogene reservoirs are dry gases. Methane and ethane in the gases are significantly different in carbon isotopic composition. The methane carbon isotopic composition of the gases in structure BZ28-1 and the ethane carbon isotopic composition of the gases in structure QHD30-1 are characterized by the heaviest values, respectively. The natural gases are in the mature to highly mature stages. The hydrocarbon gases are of organic origin and can be classified as oil-type gases, coal-derived gases and mixed gases with the third one accounting for the major portion.

  9. Online technique for isotope and mixing ratios of CH4, N2O, Xe and mixing ratios of organic trace gases on a single ice core sample

    Directory of Open Access Journals (Sweden)

    J. Schmitt

    2014-03-01

    Full Text Available Polar ice cores enclosing trace gas species offer a unique archive to study changes in the past atmosphere and in terrestrial/marine source regions. Here we present a new online technique for ice core and air samples to measure a suite of isotope ratios and mixing ratios of trace gas species on a single small sample. Isotope ratios are determined on methane, nitrous oxide and xenon with reproducibilities for ice core samples of 0.15‰ for δ13C-CH4, 0.22‰ for δ15N-N2O, 0.34 ‰ for δ18O-N2O, and 0.05‰ for δ136Xe. Mixing ratios are determined on methane, nitrous oxide, xenon, ethane, propane, methyl chloride and dichloro-difluoromethane with reproducibilities of 7 ppb for CH4, 3 ppb for N2O, 50 ppt for 136Xe, 70 ppt for C2H6, 70 ppt for C3H8, 20 ppt for CH3Cl, and 2 ppt for CCl2F2. The system consists of a vacuum extraction device, a preconcentration unit and a gas chromatograph coupled to an isotope ratio mass spectrometer. CH4 is combusted to CO2 prior to detection while we bypassed the oven for all other species. The highly automated system uses only ~160 g ice, equivalent to ~16 mL air, which is less than previous methods. This large suite of parameters on a single ice sample is new and helpful to study phase relationships of parameters which are usually not measured together. A multi-parameter dataset is also key to understand in situ production processes of organic species in the ice, a critical issue observable in many organic trace gases. Novel is the determination of xenon isotope ratios using doubly charged Xe ions. The attained precision for δ136Xe is suitable to correct the isotopic ratios and mixing ratios for gravitational firn effects, with the benefit that this information is derived from the same sample. Lastly, anomalies in the Xe mixing ratio, δXe/air, can be used to detect melt layers.

  10. Study of organic trace gases in the troposphere: global distributions, seasonal variations and long term trends; Untersuchung organischer Spurengase in der Troposphaere: Globale Verteilungen, jahreszeitliche Variationen und langfristige Trends

    Energy Technology Data Exchange (ETDEWEB)

    Gautrois, M.

    2000-04-01

    In this study the spatial and temporal variations of the mixing ratios of organic trace gases in the lower troposphere were investigated. Air samples were collected in stainless steel canisters and analyzed for their contents of carbon dioxide, carbon monoxide, methane, nonmethane hydrocarbons and halocarbons. Characterizations of the used gas chromatographic systems and the results of international intercomparison experiments showed that the analytical methods are suitable for the measurement of organic trace gases at low concentration levels. The latitudinal distribution of trace gases in the boundary layer over the Atlantic was measured during the cruise of the German research vessel 'Polarstern' as part of the ALBATROSS campaign (October/November 1996). The measurements covered a latitude range between 67 N and 45 S. In this work the distribution of some halogenated hydrocarbons in marine air was measured for the first time. Highest mixing ratios of hydrocarbons and several anthropogenic halocarbons (CH{sub 2}Cl{sub 2}, CHCl{sub 3}, 1,2-C{sub 2}H{sub 4}Cl{sub 2}, C{sub 2}HCl{sub 3}, C{sub 2}Cl{sub 4} und CH{sub 3}Br) were observed in the northern hemisphere between 42 N to 67 N latitude. The mixing ratios of 1,1-dichloroethene, 1,1,1-trichloroethane, dibromomethane, tribromomethane and iodomethane showed a rather uniform distribution in both hemispheres. The observed mixing ratios of methylchloride and tetrachloromethane showed low maxima near the equator. (orig.)

  11. Gases in molten salts

    CERN Document Server

    Tomkins, RPT

    1991-01-01

    This volume contains tabulated collections and critical evaluations of original data for the solubility of gases in molten salts, gathered from chemical literature through to the end of 1989. Within the volume, material is arranged according to the individual gas. The gases include hydrogen halides, inert gases, oxygen, nitrogen, hydrogen, carbon dioxide, water vapor and halogens. The molten salts consist of single salts, binary mixtures and multicomponent systems. Included also, is a special section on the solubility of gases in molten silicate systems, focussing on slags and fluxes.

  12. Handbook of purified gases

    CERN Document Server

    Schoen, Helmut

    2015-01-01

    Technical gases are used in almost every field of industry, science and medicine and also as a means of control by government authorities and institutions and are regarded as indispensable means of assistance. In this complete handbook of purified gases the physical foundations of purified gases and mixtures as well as their manufacturing, purification, analysis, storage, handling and transport are presented in a comprehensive way. This important reference work is accompanied with a large number of Data Sheets dedicated to the most important purified gases.  

  13. Simultaneous monitoring of atmospheric methane and speciated non-methane hydrocarbon concentrations using Peltier effect sub-ambient pre-concentration and gas chromatography.

    Science.gov (United States)

    Harrison, D; Seakins, P W; Lewis, A C

    2000-02-01

    Sub-ambient trapping, used to pre-concentrate atmospheric samples for non-methane hydrocarbon (NMHC) analysis by gas chromatography, can also be used to measure ambient methane concentrations. Above a sample volume of 40 ml, a dynamic equilibrium is established between ambient and trapped methane allowing for simultaneous quantitative determinations of methane and NMHC. The temperature stability of the trap is critical for quantitative methane analysis and this can be achieved by Peltier effect cooling. Simultaneous measurements of methane and NMHC reduce the equipment required for field trips and can ease the interpretation and modelling of atmospheric data. The feasibility for deployment of the system in remote locations was demonstrated by running the apparatus virtually unattended for a 5-day period. The correlations between the concentrations of methane, ethane and ethene measured during this period are discussed.

  14. Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO3 radical chemistry, and N2O5 heterogeneous hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, R.A.; Kleinman, L.; Berkowitz, C. M.; Brechtel, F. J.; Gilles, M. K.; Hubbe, J. M.; Jayne, J. T.; Laskin, A.; Madronich, S.; Onasch, T. B.; Pekour, M. S.; Springston, S. R.; Thornton, J. A.; Tivanski, A. V.; Worsnop, D. R.

    2010-06-01

    Nighttime chemical evolution of aerosol and trace gases in a coal-fired power plant plume was monitored with the Department of Energy Grumman Gulfstream-1 aircraft during the 2002 New England Air Quality Study field campaign. Quasi-Lagrangian sampling in the plume at increasing downwind distances and processing times was guided by a constant-volume balloon that was released near the power plant at sunset. While no evidence of fly ash particles was found, concentrations of particulate organics, sulfate, and nitrate were higher in the plume than in the background air. The enhanced sulfate concentrations were attributed to direct emissions of gaseous H{sub 2}SO{sub 4}, some of which had formed new particles as evidenced by enhanced concentrations of nucleation-mode particles in the plume. The aerosol species were internally mixed and the particles were acidic, suggesting that particulate nitrate was in the form of organic nitrate. The enhanced particulate organic and nitrate masses in the plume were inferred as secondary organic aerosol, which was possibly formed from NO{sub 3} radical-initiated oxidation of isoprene and other trace organic gases in the presence of acidic sulfate particles. Microspectroscopic analysis of particle samples suggested that some sulfate was in the form of organosulfates. Microspectroscopy also revealed the presence of sp{sup 2} hybridized C = C bonds, which decreased with increasing processing time in the plume, possibly because of heterogeneous chemistry on particulate organics. Constrained plume modeling analysis of the aircraft and tetroon observations showed that heterogeneous hydrolysis of N{sub 2}O{sub 5} was negligibly slow. These results have significant implications for several issues related to the impacts of power plant emissions on air quality and climate.

  15. Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO₃ radical chemistry, and N₂O₅ heterogeneous hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, Rahul A.; Berkowitz, Carl M.; Brechtel, Fred J.; Gilles, Marry K.; Hubbe, John M.; Jayne, J. T.; Kleinman, Lawrence I.; Laskin, Alexander; Madronich, Sasha; Onasch, Timothy B.; Pekour, Mikhail S.; Springston, Stephen R.; Thornton, Joel A.; Tivanski, Alexei V.; Worsnop, Douglas R.

    2010-06-22

    Chemical evolution of aerosols and trace gases in the Salem Harbor power plant plume was monitored with the DOE G-1 aircraft on the night of July 30-31, 2002. Quasi-Lagrangian sampling in the plume at increasing downwind distances/processing times was guided by a constant-volume tetroon that was released near the power plant at sunset. While no evidence of fly ash particles was found, concentrations of particulate organics, sulfate, and nitrate were higher in the plume than in the nearby background air. These species were internally mixed and the particles were acidic, suggesting that particulate nitrate was in the form of organic nitrate. The enhanced particulate organic and nitrate masses in the plume were inferred to be as secondary organic aerosol, possibly formed from the NO3 radical-initiated oxidation of isoprene and other trace organic gases in the presence of acidic sulfate particles. The enhanced particulate sulfate concentrations observed in the plume were attributed to direct emissions of gaseous SO3/H2SO4 from the power plant. Furthermore, concentration of nucleation mode particles was significantly higher in the plume than in background air, suggesting that some of the emitted H2SO4 had nucleated to form new particles. Spectromicroscopic analyses of particle samples suggested that some sulfate was likely in the form of organosulfates. Constrained Lagrangian model analysis of the aircraft and tetroon observations showed that heterogeneous hydrolysis of N2O5 was negligibly slow. These results have significant implications for several scientific and regulatory issues related to the impacts of power plant emissions on atmospheric chemistry, air quality, visibility, and climate.

  16. Blood Gases Test

    Science.gov (United States)

    ... known as: Arterial Blood Gases; ABGs Formal name: Arterial Blood Gas Analysis Related tests: Electrolytes , Bicarbonate , BUN , Creatinine , Emergency and ... lives higher than sea level. Results from an arterial blood gas analysis are not diagnostic; they should be used in ...

  17. Kinetic theory of gases

    CERN Document Server

    Kauzmann, Walter

    2012-01-01

    Monograph and text supplement for first-year students of physical chemistry focuses chiefly on the molecular basis of important thermodynamic properties of gases, including pressure, temperature, and thermal energy. 1966 edition.

  18. On Classical Ideal Gases

    National Research Council Canada - National Science Library

    Jacques Arnaud; Laurent Chusseau; Fabrice Philippe

    2013-01-01

      We show that the thermodynamics of ideal gases may be derived solely from the Democritean concept of corpuscles moving in vacuum plus a principle of simplicity, namely that these laws are independent...

  19. Gases, liquids and solids

    CERN Document Server

    Tabor, David

    1969-01-01

    It has been tradional to treat gases, liquids and solids as if they were completely unrelated material. However, this book shows that many of their bulk properties can been explained in terms of intermolecular forces.

  20. Voluntary reporting of greenhouse gases, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The Voluntary Reporting Program for greenhouse gases is part of an attempt by the U.S. Government to develop innovative, low-cost, and nonregulatory approaches to limit emissions of greenhouse gases. It is one element in an array of such programs introduced in recent years as part of the effort being made by the United States to comply with its national commitment to stabilize emissions of greenhouse gases under the Framework Convention on Climate Change. The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report to the Energy Information Administration (EIA) on actions taken that have reduced or avoided emissions of greenhouse gases.

  1. Influence of oil and gas field operations on spatial and temporal distributions of atmospheric non-methane hydrocarbons and their effect on ozone formation in winter

    Directory of Open Access Journals (Sweden)

    R. A. Field

    2014-09-01

    Full Text Available Emissions from oil and natural gas development during winter in the Upper Green River Basin of Wyoming are known to drive episodic ozone (O3 production. Contrasting O3 distributions were observed in the winters of 2011 and 2012, with numerous episodes in 2011 compared to none in 2012. During 2011 wintertime O3 episodes at two sites near Boulder Wyoming, situated ∼5 km apart, were observed to sometimes differ. In 2012 the lack of O3 episodes coincided with a reduction in ambient levels of total non-methane hydrocarbons (NMHC. Measurements of speciated NMHC, and other air quality parameters, were performed to better understand emission sources and to determine which compounds are most active in promoting O3 formation. Positive Matrix Factorization (PMF analyses of the data were carried out to help achieve these goals. PMF analyses revealed three contributing factors that were identified with different emission source types: factor 1, combustion/traffic; factor 2, fugitive natural gas; and factor 3, fugitive condensate. Compositional signatures of three contributing factors were identified through comparison with independently derived emission source profiles. Fugitive emissions of natural gas and of condensate were the two principal emission source types for NMHC. A water treatment and recycling facility was found to be a significant source of condensate range NMHC, in particular toluene and m+p-xylene. Emissions from water treatment have an influence upon peak O3 mixing ratios at downwind measurement sites.

  2. Strongly correlated Bose gases

    Science.gov (United States)

    Chevy, F.; Salomon, C.

    2016-10-01

    The strongly interacting Bose gas is one of the most fundamental paradigms of quantum many-body physics and the subject of many experimental and theoretical investigations. We review recent progress on strongly correlated Bose gases, starting with a description of beyond mean-field corrections. We show that the Efimov effect leads to non universal phenomena and to a metastability of the low temperature Bose gas through three-body recombination to deeply bound molecular states. We outline differences and similarities with ultracold Fermi gases, discuss recent experiments on the unitary Bose gas, and finally present a few perspectives for future research.

  3. Emissions of organic trace gases from savanna fires in southern Africa during the 1992 Southern African Fire Atmosphere Research Initiative and their impact on the formation of tropospheric ozone

    Science.gov (United States)

    Koppmann, R.; Khedim, A.; Rudolph, J.; Poppe, D.; Andreae, M. O.; Helas, G.; Welling, M.; Zenker, T.

    1997-08-01

    CO, CH4, and organic trace gases were measured in air samples collected during several flights with a DC-3 aircraft through the plumes from savanna fires and agricultural fires during the SAFARI 92 campaign in southern Africa in September and October 1992. In all samples a variety of higher molecular weight organic compounds was found, most of which are very reactive. More than 70 of the roughly 140 major components present could be identified. Typically, mixing ratios of several hundred parts per billion carbon of organic compounds were measured inside the plumes, corresponding to an emission ratio of total organic carbon relative to CO2 of up to 1%. About 50% of these emissions were in the form of oxygenated and unsaturated compounds. The contributions of still unknown compounds to the total emission of organic compounds add up to another 20-30%. The observed emission ratios relative to CO2 show a considerable variation depending on the fuel type and the burning stages of the fire. The lowest value of the emission ratio of the sum of all identified organic compounds relative to CO2 was found for a sugar cane fire with (1.7±0.7)×10-3 (ppb C/ppb CO2). For a large savanna fire in Kruger National Park the ratio was (7.4±1.6)×10-3 (ppb C/ppb CO2). The highest value was (13.7±0.9)×10-3 (ppb C/ppb CO2) for an uncontrolled fire of mainly wood and shrub in the Drakensberg region. Results of model calculations show that in biomass-burning plumes, reactive organic compounds contribute significantly to the formation of ozone, especially during the initial phase of photochemical processing.

  4. Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley

    Science.gov (United States)

    Gentner, D. R.; Ford, T. B.; Guha, A.; Boulanger, K.; Brioude, J.; Angevine, W. M.; de Gouw, J. A.; Warneke, C.; Gilman, J. B.; Ryerson, T. B.; Peischl, J.; Meinardi, S.; Blake, D. R.; Atlas, E.; Lonneman, W. A.; Kleindienst, T. E.; Beaver, M. R.; St. Clair, J. M.; Wennberg, P. O.; VandenBoer, T. C.; Markovic, M. Z.; Murphy, J. G.; Harley, R. A.; Goldstein, A. H.

    2014-05-01

    consistent with fugitive emissions of condensate during storage or processing of associated gas following extraction and methane separation. Aircraft observations of concentration hotspots near oil wells and dairies are consistent with the statistical source footprint determined via our FLEXPART-WRF-based modeling method and ground-based data. We quantitatively compared our observations at Bakersfield to the California Air Resources Board emission inventory and find consistency for relative emission rates of reactive organic gases between the aforementioned sources and motor vehicles in the region. We estimate that petroleum and dairy operations each comprised 22% of anthropogenic non-methane organic carbon at Bakersfield and were each responsible for 8-13% of potential precursors to ozone. Yet, their direct impacts as potential secondary organic aerosol (SOA) precursors were estimated to be minor for the source profiles observed in the San Joaquin Valley.

  5. Relationship between total Non-Methane Hydrocarbons (NMHC) and Speciated NMHCs by Photochemical Assessment Monitoring Station (PAMS)

    Science.gov (United States)

    Chen, S.; Ou Yang, C.; Chang, J.; Wang, J.

    2012-12-01

    Total NMHC observations were made in some of the EPA air quality stations (AQS) across Taiwan, along with measurements of ozone, CO, NOx, SO2 and PM10. This network is also complimented by another eight-station network, called photochemical assessment monitoring stations (PAMS), to provide hourly observations of 56 individual volatile organic compounds (VOCs). In this study, the relationship of the total NMHC and PAMS NMHC observations for the period of 2007-2011 at four sites were cross-examined. It was found that both the hourly mixing ratios and variations of the summed PAMS NMHC values were in excellent agreement with the total NMHC data, with the summed PAMS NMHC observations accounted for at least 80% of the total NMHC observations. However, when looking into the VOC emission database, the PAMS NMHC emissions only contributed 58% of the total NMHC emissions. This then leads to about 30% difference in the traditionally observed NMHCs and estimated emissions. The three-dimensional Eulerian air quality model (PAMS-AQM) was used to simulate both the total NMHC and individual PAMS NMHCs, which showed that the sum of the simulated PAMS NMHCs agreed well with the observed PAMS values. However, the modeled total VOC values were significantly higher than the observed total NMHC values, and such findings were consistent among all four stations. This and the above findings combine to suggest that the customarily labeled "total NMHC" reported by almost all air quality stations are underestimates by about 30%. This underestimate is rather uncertain for two reasons: One, both total NMHC and PAMS speciated NMHC measurements underestimate VOC levels in ambient air. Since both types of measurements use the same method of flame ionization detection, it is less sensitive to oxygen containing VOCs (OVOCs), e.g., aldehydes, esters, ketones, ether, acids, etc. than other VOCs. In contrast, the PAMS measurements only target 56 PAMS NMHCs although more directly, and OVOCs also are

  6. Strongly interacting Fermi gases

    Directory of Open Access Journals (Sweden)

    Bakr W.

    2013-08-01

    Full Text Available Strongly interacting gases of ultracold fermions have become an amazingly rich test-bed for many-body theories of fermionic matter. Here we present our recent experiments on these systems. Firstly, we discuss high-precision measurements on the thermodynamics of a strongly interacting Fermi gas across the superfluid transition. The onset of superfluidity is directly observed in the compressibility, the chemical potential, the entropy, and the heat capacity. Our measurements provide benchmarks for current many-body theories on strongly interacting fermions. Secondly, we have studied the evolution of fermion pairing from three to two dimensions in these gases, relating to the physics of layered superconductors. In the presence of p-wave interactions, Fermi gases are predicted to display toplogical superfluidity carrying Majorana edge states. Two possible avenues in this direction are discussed, our creation and direct observation of spin-orbit coupling in Fermi gases and the creation of fermionic molecules of 23Na 40K that will feature strong dipolar interactions in their absolute ground state.

  7. Synthetic gases production

    Energy Technology Data Exchange (ETDEWEB)

    Mazaud, J.P.

    1996-06-01

    The natural gas or naphtha are the main constituents used for the production of synthetic gases. Several production ways of synthetic gases are industrially used as for example the natural gas or naphtha catalytic reforming, the selective oxidation of natural gas or heavy fuels and the coal oxy-vapo-gasification. The aim of this work is to study the different steps of production and treatment of the synthetic gases by the way of catalytic reforming. The first step is the desulfurization of the hydrocarbons feedstocks. The process used in industry is described. Then is realized the catalytic hydrocarbons reforming process. After having recalled some historical data on the catalytic reforming, the author gives the reaction kinetics and thermodynamics. The possible reforming catalysts, industrial equipments and furnaces designs are then exposed. The carbon dioxide is a compound easily obtained during the reforming reactions. It is a wasteful and harmful component which has to be extracted of the gaseous stream. The last step is then the gases de-carbonation. Two examples of natural gas or naphtha reforming reactions are at last given: the carbon monoxide conversion by steam and the carbon oxides reactions with hydrogen (methanization). (O.M.). 8 figs., 6 tabs.

  8. Isotopic compositional Characteristics of Terrigenous Natural Gases in China

    Institute of Scientific and Technical Information of China (English)

    沈平; 徐永昌

    1993-01-01

    The C and H isotopic compositions of the methane in more than 160 gas samples from 10 basins in China are presented in this paper.The natural gases are classified as four types: biogenic gas ,bio-thermocatalytic transitional gas, gas associated with condensate oil ,and coal-type gas. The isotopic compositions of these gases closely related to the depositional basins, the types of organic matter,the stages of thermal evolution and the genetic characteristics of different gas reservoirs.Studies of the C and H isotopic compositions of terrigenous natural gases will provide valua-ble information on the prospecting and development of natural gases of different genetic types.

  9. Springtime depletion of tropospheric ozone, gaseous elemental mercury and non-methane hydrocarbons in the European Arctic, and its relation to atmospheric transport

    Science.gov (United States)

    Eneroth, Kristina; Holmén, Kim; Berg, Torunn; Schmidbauer, Norbert; Solberg, Sverre

    Using a trajectory climatology for the period 1992-2001 we have examined how seasonal changes in transport cause changes in the concentrations of tropospheric ozone (O 3), gaseous elemental mercury (GEM) and non-methane hydrocarbons (NMHCs) observed at the Mt. Zeppelin station, Ny-Ålesund (78.9°N, 11.9°E). During April-June O 3 depletion events were frequently observed in connection with air transport across the Arctic Basin. The O 3 loss was most pronounced in air masses advected close to the surface. This result supports the idea that the O 3 depletion reactions take place in the lowermost part of the atmosphere in the central Arctic Basin. A strong positive correlation between springtime O 3 depletion events and the oxidation of GEM to divalent mercury was found. During air mass advection from Siberia, the Barents Sea and the Norwegian Sea the strongest correlation was observed during April-May, whereas air masses originating from the Canadian Arctic and the central Arctic areas showed the highest O 3-GEM correlation in May-June. We suggest that this 1-month lag could either be due to the position of the marginal ice zone or temperature differences between the northwestern and northeastern air masses. In connection with springtime O 3 depletion events low concentrations of some NMHCs, especially ethane and ethyne, were observed, indicating that both bromine (ethyne oxidant) and chlorine radicals (ethane oxidant) are present in the Arctic atmosphere during spring. In winter, negative correlations between O 3 and NMHCs were found in connection with air transport from Europe and Siberia, which we interpret as O 3 destruction taking place in industrially contaminated plumes.

  10. Emissions of organic carbon and methane from petroleum and dairy operations in California's San Joaquin Valley

    Directory of Open Access Journals (Sweden)

    D. R. Gentner

    2013-10-01

    negligible coincident methane emissions Aircraft observations of emission hotspots from operations at oil wells and dairies are consistent with the statistical source footprint determined via transport modeling and ground-based data. At Bakersfield, petroleum and dairy operations each comprised 22–23% of anthropogenic non-methane organic carbon and were each responsible for ~12% of potential precursors to ozone, but their direct impacts as potential SOA precursors were estimated to be minor. A comparison with the California Air Resources Board emission inventory supports the current relative emission rates of reactive organic gases from these sources in the region.

  11. Characterization of non-methane hydrocarbons emitted from Chinese cooking%中式餐饮业油烟中非甲烷碳氢化合物排放特征研究

    Institute of Scientific and Technical Information of China (English)

    张春洋; 马永亮

    2011-01-01

    使用挥发性有机物采样标准方法TO-14/15,选择了北京市5家不同菜系、不同营业规模的餐馆,在其营业时段,连续采集油烟中非甲烷碳氢(NMHCs)样品,使用气相色谱质谱联用仪(GC/MS)进行样品分析.研究了4大类72种NMHCs排放浓度和组分组成特点.不同采样餐馆的NMHCs排放浓度存在差异,与菜系类型、规模、上座率、档次高低均有关系.用基准风量折算后,采样餐馆NMHCs基准排放浓度变化范围为9.13×103~14.2×103μg·m-3.在组分分布上,烷烃、烯烃和芳香烃在采样餐馆NMHCs组分组成中占主%EPA Method TO-14/15 for measurement of toxic organics in air samples was applied to examine non-methane hydrocarbon(NMHC) emissions from 5 Chinese restaurants in Beijing.The 5 restaurants use 4 different cooking styles.A total of 72 components of VOCs were observed.The distinguishing characteristics of NMHC emissions from different restaurants are attributed to their cooking style,business scale,number of customers and restaurant grade.Based on the calibrated baseline ventilation volume,the NMHC concentrations of the examined restaurants were in the range of 9.13×103~14.2×103μg · m-3.Alkanes,alkenes and aromatics were the major NMHC components,which were in the ranges of 28.4%~47.9%,8.9%~58.3% and 10.8%~50.4%,respectively,according to the specified parameters set for the individual restaurant.However,the proportion of chlorohydrocarbons and naphthalene varied significantly,especially that of naphthalene.Based on our sampling results and catering industry data from the Beijing statistical yearbook the total amount of NMHCs emitted from commercial restaurants in Beijing was roughly estimated,to be 10559 tons per year.The data suggest that commercial cooking might be an important source of ozone precursors.

  12. Physics of ionized gases

    CERN Document Server

    Smirnov, Boris M

    2001-01-01

    A comprehensive textbook and reference for the study of the physics of ionized gasesThe intent of this book is to provide deep physical insight into the behavior of gases containing atoms and molecules from which one or more electrons have been ionized. The study of these so-called plasmas begins with an overview of plasmas as they are found in nature and created in the laboratory. This serves as a prelude to a comprehensive study of plasmas, beginning with low temperature and "ideal" plasmas and extending to radiation and particle transport phenomena, the response of plasmas to external fields, and an insightful treatment of plasma waves, plasma instabilities, nonlinear phenomena in plasmas, and the study of plasma interactions with surfaces

  13. The greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Clarke, R.

    1987-01-01

    The main greenhouse gases are carbon dioxide, methane, nitrous oxide, CFCs and ozone. They are greenhouse gases as they absorb radiation from the Earth and thus impede its emission back to space. CO{sub 2} is responsible for about half the enhanced greenhouse effect. A global warming of only a few degrees would have a profound effect on climate. Increased levels of CO{sub 2} promote plant growth, but may not benefit agriculture overall. Sea levels may rise. It is difficult to predict the effects of global warming in society. It would be possible to reduce the scale of the greenhouse effect by energy conservation, using alternative energy sources, and possibly by capturing CO{sub 2} from fossil fuel power stations and disposing of it on the ocean floor. 13 refs., 19 figs., 1 tab.

  14. Strongly interacting ultracold quantum gases

    Institute of Scientific and Technical Information of China (English)

    Hui ZHAI

    2009-01-01

    This article reviews recent progresses in ul- tracold quantum gases, and it includes three subjects which are the Fermi gases across a Feshbach resonance, quantum gases in the optical lattices and the fast ro- tating quantum gases. In this article, we discuss many basic physics pictures and concepts in quantum gases, for examples, the resonant interaction, universality and condensation in the lowest Landau level; we introduce fundamental theoretical tools for studying these systems, such as mean-field theory for BEC-BCS crossover and for the boson Hubbard model; also, we emphasize the im- portant unsolved problems in the forefront of this field, for instance, the temperature effect in optical lattices.

  15. Real-time profiling of organic trace gases in the planetary boundary layer by PTR-MS using a tethered balloon

    Directory of Open Access Journals (Sweden)

    R. Schnitzhofer

    2009-12-01

    Full Text Available A method for real-time profiling of volatile organic compounds (VOCs was developed combining the advantages of a tethered balloon as a research platform and of proton transfer reaction mass spectrometry (PTR-MS as an analytical technique for fast and highly sensitive VOC measurements. A 200 m Teflon tube was used to draw sampling air from a tethered aerodynamic balloon to the PTR-MS instrument. Positive and negative artefacts (i.e. formation and loss of VOCs in the tube were characterised in the laboratory and in the field by a set of 11 atmospherically relevant VOCs including both pure and oxygenated hydrocarbons. The only two compounds that increased or decreased when sampled through the tube were acetone (+7% and xylene (-6%. The method was successfully deployed during a winter field campaign to determine the small scale spatial and temporal patterns of air pollutants under winter inversion conditions.

  16. [The general analytical methods for gases dissolved in liquids: sonoluminescence].

    Science.gov (United States)

    Deng, Jiu-Shuai; Liu, Yan

    2009-10-01

    How to analyze the gases dissolved in water or organic liquids is a challenging problem in analytical chemistry. Till the present time, only the dissolved oxygen in water can be analyzed by chemical and instrumental methods, while other gases, e. g. CO2, N2, CH4, Ar, He, Ke, still can not be analyzed by chemical or instrumental methods. The present paper gives a review on using sonoluminescence for gas analysis in water or organic liquids.

  17. Deployment of a ground-based CIMS apparatus for the detection of organic gases in the boreal forest during the QUEST campaign

    Directory of Open Access Journals (Sweden)

    K. Sellegri

    2005-01-01

    Full Text Available Measurements of atmospheric volatile organic compounds were performed in the Finnish Boreal forest atmosphere during spring 2003, as part of the project QUEST (Quantification of Aerosol Nucleation in the European Boundary Layer, using a ground-based Chemical Ionization Mass Spectrometer (CIMS instrument. Based on the study of their hydrate distribution, methanol, acetonitrile, acetaldehyde, dimethyl amine (DMA, ethanol/formic acid, acetone, trimethyl amine (TMA, propanol/acetic acid, isoprene, methyl vinyl ketone (MVK and metacrolein (MaCR, monoterpenes and monoterpene oxidation product (MTOP are proposed as candidates for masses 32, 41, 44, 45, 46, 58, 59, 60, 68, 70, 136, and 168amu, respectively. It would be, to our knowledge, the first time DMA, TMA and MTOP are measured with this method. Most compounds show a clear diurnal variation with a maximum in the early night, corresponding to the onset of the noctural inversion and in agreement with independant measurements of CO. Biogenic compounds are highly correlated with each other and the ratio monoterpene/oxidation product shows a typical daily pattern of nightime maxima. However, because isoprene mixing ratios are also maximum during the early night, it is likely that it suffers of the interference from another unidentified biogenic compound. Hence mass 68amu is identified as isoprene+compound X.

  18. Deployment of a ground-based CIMS apparatus for the detection of organic gases in the boreal forest during the QUEST campaign

    Directory of Open Access Journals (Sweden)

    K. Sellegri

    2004-07-01

    Full Text Available Measurements of atmospheric volatile organic compounds were performed in the Finnish Boreal forest atmosphere during spring 2003, as part of the project QUEST (Quantification of Aerosol Nucleation in the European Boundary Layer, using a ground-based Chemical Ionization Mass Spectrometer (CIMS instrument. Based on the study of their hydrate distribution, Methanol, Acetonitrile, Acetaldehyde, Dimethyl Amine (DMA, Ethanol/Formic Acid, Acetone, Trimethyl Amine TMA, Propanol/Acetic Acid, Methyl Vinyl Ketone (MVK and Metacrolein (MaCR, Monoterpenes, Cis-3-hexenyl Acetate and Monoterpene Oxidation Products (MTOP are proposed as candidates for masses 33, 41, 44, 45, 46, 58, 59, 60, 70, 136, 142 and 168 amu, respectively. It would be, to our knowledge, the first time DMA, TMA, MTOP and Cis-3-hexenyl Acetate are measured with this method. A compound with mass 68 amu, which could be Isoprene has also been identified. Most compounds show a clear diurnal variation with higher concentrations at night, starting at the onset of the nocturnal inversion and in agreement with independent measurements of CO. Biogenic compounds are highly correlated with each other and the ratio monoterpene/oxidation product shows a typical daily pattern of nighttime maxima. Cis-3-hexenyl Acetate has a diurnal variation similar to the ones of Isoprene and Monoterpenes, and especially close to the diurnal variation of their oxidation products.

  19. Testing the accuracy of correlations for multicomponent mass transport of adsorbed gases in metal-organic frameworks: diffusion of H2/CH4 mixtures in CuBTC.

    Science.gov (United States)

    Keskin, Seda; Liu, Jinchen; Johnson, J Karl; Sholl, David S

    2008-08-05

    Mass transport of chemical mixtures in nanoporous materials is important in applications such as membrane separations, but measuring diffusion of mixtures experimentally is challenging. Methods that can predict multicomponent diffusion coefficients from single-component data can be extremely useful if these methods are known to be accurate. We present the first test of a method of this kind for molecules adsorbed in a metal-organic framework (MOF). Specifically, we examine the method proposed by Skoulidas, Sholl, and Krishna (SSK) ( Langmuir, 2003, 19, 7977) by comparing predictions made with this method to molecular simulations of mixture transport of H 2/CH 4 mixtures in CuBTC. These calculations provide the first direct information on mixture transport of any species in a MOF. The predictions of the SSK approach are in good agreement with our direct simulations of binary diffusion, suggesting that this approach may be a powerful one for examining multicomponent diffusion in MOFs. We also use our molecular simulation data to test the ideal adsorbed solution theory method for predicting binary adsorption isotherms and a method for predicting mixture self-diffusion coefficients.

  20. Fischer-Tropsch-Type Production of Organic Materials in the Solar Nebula: Studies Using Graphite Catalysts and Measuring the Trapping of Noble Gases

    Science.gov (United States)

    Nuth, Joseph A., III; Ferguson, Frank T.; Lucas, Christopher; Kimura, Yuki; Hohenberg, Charles

    2009-01-01

    The formation of abundant carbonaceous material in meteorites is a long standing problem and an important factor in the debate on the potential for the origin of life in other stellar systems. The Fischer-Tropsch-type (FTT) catalytic reduction of CO by hydrogen was once the preferred model for production of organic materials in the primitive solar nebula. We have demonstrated that many grain surfaces can catalyze both FTT and HB-type reactions, including amorphous iron and magnesium silicates, pure silica smokes as well as several minerals. Graphite is not a particularly good FTT catalyst, especially compared to iron powder or to amorphous iron silicate. However, like other silicates that we have studied, it gets better with exposure to CO. N2 and H2 over time: e.g., after formation of a macromolecular carbonaceous layer on the surfaces of the underlying gains. While amorphous iron silicates required only 1 or 2 experimental runs to achieve steady state reaction rates, graphite only achieved steady state after 6 or more experiments. We will present results showing the catalytic action of graphite grains increasing with increasing number of experiments and will also discuss the nature of the final "graphite" grains aster completion of our experiments.

  1. On Classical Ideal Gases

    Directory of Open Access Journals (Sweden)

    Laurent Chusseau

    2013-02-01

    Full Text Available We show that the thermodynamics of ideal gases may be derived solely from the Democritean concept of corpuscles moving in vacuum plus a principle of simplicity, namely that these laws are independent of the laws of motion, aside from the law of energy conservation. Only a single corpuscle in contact with a heat bath submitted to a z and t-invariant force is considered. Most of the end results are known but the method appears to be novel. The mathematics being elementary, the present paper should facilitate the understanding of the ideal gas law and of classical thermodynamics even though not-usually-taught concepts are being introduced.

  2. New global fire emission estimates and evaluation of volatile organic compounds

    Science.gov (United States)

    C. Wiedinmyer; L. K. Emmons; S. K. Akagi; R. J. Yokelson; J. J. Orlando; J. A. Al-Saadi; A. J. Soja

    2010-01-01

    A daily, high-resolution, global fire emissions model has been built to estimate emissions from open burning for air quality modeling applications: The Fire INventory from NCAR (FINN version 1). The model framework uses daily fire detections from the MODIS instruments and updated emission factors, specifically for speciated non-methane organic compounds (NMOC). Global...

  3. Physics of Ionized Gases

    Science.gov (United States)

    Reiss, Howard R.; Smirnov, Boris M.

    2001-03-01

    A comprehensive textbook and reference for the study of the physics of ionized gases The intent of this book is to provide deep physical insight into the behavior of gases containing atoms and molecules from which one or more electrons have been ionized. The study of these so-called plasmas begins with an overview of plasmas as they are found in nature and created in the laboratory. This serves as a prelude to a comprehensive study of plasmas, beginning with low temperature and "ideal" plasmas and extending to radiation and particle transport phenomena, the response of plasmas to external fields, and an insightful treatment of plasma waves, plasma instabilities, nonlinear phenomena in plasmas, and the study of plasma interactions with surfaces. In all cases, the emphasis is on a clear and unified understanding of the basic physics that underlies all plasma phenomena. Thus, there are chapters on plasma behavior from the viewpoint of atomic and molecular physics, as well as on the macroscopic phenomena involved in physical kinetics of plasmas and the transport of radiation and of charged particles within plasmas. With this grounding in the fundamental physics of plasmas, the notoriously difficult subjects of nonlinear phenomena and of instabilities in plasmas are then treated with comprehensive clarity.

  4. Using a Simulation Tool to Model the Ground Level Concentrations of Green House Gases Emitted by Flaring in Petroleum Production in Kuwait Oilfields

    Directory of Open Access Journals (Sweden)

    Khaireyah K.A Hamad

    2008-01-01

    Full Text Available Air pollution and its effects on the ecosystem has been a source of concern for many environmental pollution organizations in the world. In particular climatologists who are not directly involved in petroleum industry sometimes express concerns about the environmental impacts of gas emissions from flaring at well heads. For environmental and resource conservation reasons, flaring should always be minimized as much as practicable and consistent with safety considerations. However, any level of flaring has a local environmental impact, as well as producing emissions which have the potential to contribute to the global warming. In the present research the Industrial Source Complex (ISCST3 Dispersion Model is used to calculate the ground level concentrations of two selected primary pollutants (i.e. methane and non-methane hydrocarbons emitted due to flaring in all of Kuwait Oilfields. In additional, the performance of the ISCST3 model is assessed, by comparing the model prediction with the observed concentration of methane and non-methane hydrocarbons obtained from the monitoring sites. The described model evaluation is based on the comparison of 50 highest daily measured and predicted concentrations of methane and non-methane hydrocarbons. The overall conclusion of this comparison is that the model predictions are in good agreement with the observed data (accuracy range of 60-95% from the monitoring stations maintained by the Kuwait Environmental Public Authority (EPA. A specific important conclusion of this study is that, there is a need for a proper emission inventory strategy for Kuwait Oil Company (KOC as means of monitoring and minimizing the impact of methane and non-methane hydrocarbons released because of flaring activities.

  5. Origins of geothermal gases at Yellowstone

    Science.gov (United States)

    Lowenstern, Jacob B.; Bergfeld, Deborah; Evans, William C.; Hunt, Andrew G.

    2015-01-01

    Gas emissions at the Yellowstone Plateau Volcanic Field (YPVF) reflect open-system mixing of gas species originating from diverse rock types, magmas, and crustal fluids, all combined in varying proportions at different thermal areas. Gases are not necessarily in chemical equilibrium with the waters through which they vent, especially in acid sulfate terrain where bubbles stream through stagnant acid water. Gases in adjacent thermal areas often can be differentiated by isotopic and gas ratios, and cannot be tied to one another solely by shallow processes such as boiling-induced fractionation of a parent liquid. Instead, they inherit unique gas ratios (e.g., CH4/He) from the dominant rock reservoirs where they originate, some of which underlie the Quaternary volcanic rocks. Steam/gas ratios (essentially H2O/CO2) of Yellowstone fumaroles correlate with Ar/He and N2/CO2, strongly suggesting that H2O/CO2 is controlled by addition of steam boiled from water rich in atmospheric gases. Moreover, H2O/CO2 varies systematically with geographic location, such that boiling is more enhanced in some areas than others. The δ13C and 3He/CO2 of gases reflect a dominant mantle origin for CO2 in Yellowstone gas. The mantle signature is most evident at Mud Volcano, which hosts gases with the lowest H2O/CO2, lowest CH4 concentrations and highest He isotope ratios (~16Ra), consistent with either a young subsurface intrusion or less input of crustal and meteoric gas than any other location at Yellowstone. Across the YPVF, He isotope ratios (3He/4He) inversely vary with He concentrations, and reflect varied amounts of long- stored, radiogenic He added to the magmatic endmember within the crust. Similarly, addition of CH4 from organic-rich sediments is common in the eastern thermal areas at Yellowstone. Overall, Yellowstone gases reflect addition of deep, high-temperature magmatic gas (CO2-rich), lower-temperatures crustal gases (4He- and CH4-bearing), and those gases (N2, Ne, Ar) added

  6. Studies on the influence of combustion exhaust gases and the products of their reaction with ammonia on the living organism. I. The influence on DNA, RNA and soluble proteins in the liver of guinea pig

    Energy Technology Data Exchange (ETDEWEB)

    Stanosek, J.; Lewandowska-Tokarz, A.; Ludyga, K.; Pietras, A.; Kula, B.

    1981-01-01

    The paper presents the behaviour of DNA, RNA and soluble proteins in whole homogenate as well as the nuclear, mitochondrial and postmitochondrial liver fractions in guinea pigs exposed to combustion exhaust gases and the products of their reaction with ammonia. A decrease of RNA level was found in the liver of animals exposed to combustion exhaust gases together with a decrease of soluble proteins in all the studied fractions. On the other hand, in the group of animals subjected to the action of neutralization products of combustion gases by ammonia, the studied components were increased.

  7. Studies on the influence of combustion exhaust gases and the products of their reaction with ammonia on the living organism. I. The influence on DNA, RNA and soluble proteins in the liver of guinea pig.

    Science.gov (United States)

    Stanosek, J; Lewandowska-Tokarz, A; Ludyga, K; Pietras, A; Kula, B

    1981-01-01

    The paper presents the behaviour of DNA, RNA and soluble proteins in whole homogenate as well as the nuclear, mitochondrial and postmitochondrial liver fractions in guinea pigs exposed to combustion exhaust gases and the products of their reaction with ammonia. A decrease of RNA level was found in the liver of animals exposed to combustion exhaust gases together with a decrease of soluble proteins in all the studied fractions. On the other hand, in the group of animals subjected to the action of neutralization products of combustion gases by ammonia, the studied components were increased. This increase may be the result of the simultaneous action of industrial noise.

  8. Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS version 2

    Directory of Open Access Journals (Sweden)

    J. Kurokawa

    2013-04-01

    Full Text Available We have updated the Regional Emission inventory in ASia (REAS as version 2.1. REAS 2.1 includes most major air pollutants and greenhouse gases from each year during 2000 and 2008 and following areas of Asia: East, Southeast, South, and Central Asia and the Asian part of Russia. Emissions are estimated for each country and region using updated activity data and parameters. Monthly gridded data with a 0.25 × 0.25° resolution are also provided. Asian emissions for each species in 2008 are as follows (with their growth rate from 2000 to 2008: 56.9 Tg (+34% for SO2, 53.9 Tg (+54% for NOx, 359.5 Tg (+34% for CO, 68.5 Tg (+46% for non-methane volatile organic compounds, 32.8 Tg (+17% for NH3, 36.4 Tg (+45% for PM10, 24.7 Tg (+42% for PM2.5, 3.03 Tg (+35% for black carbon, 7.72 Tg (+21% for organic carbon, 182.2 Tg (+32% for CH4, 5.80 Tg (+18% for N2O, and 16.7 Pg (+59% for CO2. By country, China and India were respectively the largest and second largest contributors to Asian emissions. Both countries also had higher growth rates in emissions than others because of their continuous increases in energy consumption, industrial activities, and infrastructure development. In China, emission mitigation measures have been implemented gradually. Emissions of SO2 in China increased from 2000 to 2006 and then began to decrease as flue-gas desulfurization was installed to large power plants. On the other hand, emissions of air pollutants in total East Asia except for China decreased from 2000 to 2008 owing to lower economic growth rates and more effective emission regulations in Japan, South Korea, and Taiwan. Emissions from other regions generally increased from 2000 to 2008, although their relative shares of total Asian emissions are smaller than those of China and India. Tables of annual emissions by country and region broken down by sub-sector and fuel type, and monthly gridded emission data with a resolution of 0.25 × 0.25° for the major sectors are

  9. NMR Hyperpolarization Techniques of Gases.

    Science.gov (United States)

    Barskiy, Danila A; Coffey, Aaron M; Nikolaou, Panayiotis; Mikhaylov, Dmitry M; Goodson, Boyd M; Branca, Rosa T; Lu, George J; Shapiro, Mikhail G; Telkki, Ville-Veikko; Zhivonitko, Vladimir V; Koptyug, Igor V; Salnikov, Oleg G; Kovtunov, Kirill V; Bukhtiyarov, Valerii I; Rosen, Matthew S; Barlow, Michael J; Safavi, Shahideh; Hall, Ian P; Schröder, Leif; Chekmenev, Eduard Y

    2017-01-18

    Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. WMO WDCGG data catalogue. GAW data. Volume IV - Greenhouse gases and other atmospheric gases

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The fourth issue of the data catalogue gives information on measurement methods, instruments, and data handling procedures for recording data on greenhouse gases at the observation stations submitting data to the WDCGG up to December 2000. Chapter 1 gives details of the observation stations; Chapter 2, the data index, is prepared to give notice of the data. Chapter 3 contains detail of the observation programme: category and location, date when observation started, instrument manufacturers, characteristics of instrument system calibration methods, and data selection procedures. It gives references on the observation programme at each station. Gases measured are: carbon dioxide, methane, nitrous oxide, chlorofluorocarbons, hydrochlorofluorocarbons, hydrofluorocarbons, tetrachloromethane, trichloroethane, trichloromethane, carbon monoxide, nitrogen monoxide, nitrogen oxides, odd nitrogen, nitrogen dioxide, sulphur dioxide, volatile organic compounds (VOCs), organic peroxides, hydrogen peroxide, and isotopes ({sup 13}C). 3 apps.

  11. Process of cleaning phthalic and maleic anhydrides from gases

    Energy Technology Data Exchange (ETDEWEB)

    Pavlovich, L.B.; Karbainov, A.D.; Morozkina, N.A.; Smokotin, N.E.; Syskin, V.A.

    1981-01-02

    A process is described for cleaning phthalic and maleic anhydrides from gases by oxidation of them at elevated temperature on a catalyst, being characterized by the fact that with the aim of simultaneously cleaning 1,4-naphthoquinone from the gases and simplifying the process, a vanadium slag of the following composition is used as the catalyst: (wt%) MnO 8-9, U/sub 2/O/sub 5/ 13-19, Tio 9-10 A1/sub 2/O/sub 3/ 1-4, Cr/sub 2/O/sub 3/ 7-9, phosphorus 0.05-0.1, SiO/sub 2/ 15-25, CaO 1.0-2.0, Mgo 0.5-1.5; FeO the remainder. The process can be used for catalytic cleaning from gases of organic substances, for example waste gases from phthalic anhydride production.

  12. Multiple carriers of Q noble gases in primitive meteorites

    Science.gov (United States)

    Marrocchi, Yves; Avice, Guillaume; Estrade, Nicolas

    2015-04-01

    The main carrier of primordial heavy noble gases in chondrites is thought to be an organic phase, known as phase Q, whose precise characterization has resisted decades of investigation. Indirect techniques have revealed that phase Q might be composed of two subphases, one of them associated with sulfide. Here we provide experimental evidence that noble gases trapped within meteoritic sulfides present chemically and thermally driven behavior patterns that are similar to Q gases. We therefore suggest that phase Q is likely composed of two subcomponents: carbonaceous phases and sulfides. In situ decay of iodine at concentration levels consistent with those reported for meteoritic sulfides can reproduce the 129Xe excess observed for Q gases relative to fractionated solar wind. We suggest that the Q-bearing sulfides formed at high temperature and could have recorded the conditions that prevailed in the chondrule-forming region(s).

  13. THE USE OF BIOFILTERS FOR DEODORISATION OF THE NOXIOUS GASES

    Directory of Open Access Journals (Sweden)

    Monika Wierzbińska

    2015-01-01

    Full Text Available One of the methods of deodorization of noxious gases is biofiltration. This method consists of pollutants biodegradation by using micro-organisms, what leads to the formation of nontoxic and innoxious compounds. In comparison with conventional techniques, bio-filtration requires lower investments and exploitation costs, moreover it is nature friendly. This technique is still developing. Scientists have carried out research on the optimization of biofiltration process, biofilters and selecting parameters of purified gases or improving the method of efficiency. However, industrial application of biofilters is still difficult for many reasons. In this paper we present the mechanism of biofiltration process, the parameters and conditions which have to be fulfilled by purified gases, installation structure for gases biofiltration, application field of this method and specific example of exploited biofilters, including practical operational guidelines.

  14. Multiple carriers of Q noble gases in primitive meteorites

    CERN Document Server

    Marrocchi, Yves; Estrade, Nicolas

    2015-01-01

    The main carrier of primordial heavy noble gases in chondrites is thought to be an organic phase, known as phase Q, whose precise characterization has resisted decades of investigation. Indirect techniques have revealed that phase Q might be composed of two subphases, one of them associated with sulfide. Here we provide experimental evidence that noble gases trapped within meteoritic sulfides present chemically- and thermally-driven behavior patterns that are similar to Q-gases. We therefore suggest that phase Q is likely composed of two subcomponents: carbonaceous phases and sulfides. In situ decay of iodine at concentrations levels consistent with those reported for meteoritic sulfides can reproduce the 129Xe excess observed for Q-gases relative to fractionated Solar Wind. We suggest that the Q-bearing sulfides formed at high temperature and could have recorded the conditions that prevailed in the chondrule-forming region(s).

  15. Shock instability in dissipative gases

    OpenAIRE

    Radulescu, Matei I.; Sirmas, Nick

    2011-01-01

    Previous experiments have revealed that shock waves in thermally relaxing gases, such as ionizing, dissociating and vibrationally excited gases, can become unstable. To date, the mechanism controlling this instability has not been resolved. Previous accounts of the D'yakov-Kontorovich instability, and Bethe-Zel'dovich-Thompson behaviour could not predict the experimentally observed instability. To address the mechanism controlling the instability, we study the propagation of shock waves in a ...

  16. Shallow vs. Deep Fluid Sources In Hydrothermal Systems: New Insights From VOC Composition In Fumarolic Discharges And Soil Gases Of Yellowstone National Park (USA)

    Science.gov (United States)

    Tassi, F.; Capecchiacci, F.; Montegrossi, G.; Caliro, S.; Chiodini, G.; Vaselli, O.

    2008-12-01

    The origin of non-methane volatile organic compounds (VOCs) in hydrothermal fluids is related to two distinct mechanisms regulated by different thermodynamic conditions (e.g. Des Marais et al., 1981; Mango, 2000; Capaccioni and Mangani, 2001): i) thermogenic reactions, such as catalytic reforming and/or thermal cracking, which proceed within the main reservoir at medium-to-high temperature (150-350°C) and reduced conditions; ii) biodegradation processes, occurring at relatively shallow depth, where uprising fluids have oxidizing conditions. According to these considerations, the main aim of the present investigation is to discriminate the different fluid sources feeding the hydrothermal system on the basis of the C2-C15 organic compounds in fumarolic discharges and soil gases collected at the Yellowstone National Park (USA). A total of 64 and 66 different species were identified in the gas discharges and in the soil gas samples, respectively. The composition of the organic gas fraction in the fumarolic fluids is relatively homogeneous, being dominated by C2-C6 alkanes (81 %) and showing relatively high concentrations of alkenes (13 %), aromatics (3.7 %) and cyclics (1.4 %). Differently, the relative percentages of alkanes and alkenes in the soil gas, where VOC abundances are about two orders of magnitude less abundant than those in the gas discharges, are significantly lower (64 and 6.8 %, respectively) and cyclics are absent. On the other hand, oxygenated species (17.8 %), aromatics (5.6 %) and Cl-bearing compounds (4.5 %) results to be enriched with respect to those measured in the gas vents. Such compositional differences are likely to be due to the bacterial activity in the soil that causes the production of ketones, esters, alcohols, aldehydes and organic acids from the C-H species (hydrocarbons sensu strictu). Organic acids, mainly constituted by ossalic acid and traces of tartaric, malonic citric and succinic ones, were also determined in the fumarolic

  17. Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania

    Science.gov (United States)

    Lawson, S. J.; Keywood, M. D.; Galbally, I. E.; Gras, J. L.; Cainey, J. M.; Cope, M. E.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Bentley, S. T.; Meyer, C. P.; Ristovski, Z.; Goldstein, A. H.

    2015-12-01

    Biomass burning (BB) plumes were measured at the Cape Grim Baseline Air Pollution Station during the 2006 Precursors to Particles campaign, when emissions from a fire on nearby Robbins Island impacted the station. Measurements made included non-methane organic compounds (NMOCs) (PTR-MS), particle number size distribution, condensation nuclei (CN) > 3 nm, black carbon (BC) concentration, cloud condensation nuclei (CCN) number, ozone (O3), methane (CH4), carbon monoxide (CO), hydrogen (H2), carbon dioxide (CO2), nitrous oxide (N2O), halocarbons and meteorology. During the first plume strike event (BB1), a 4 h enhancement of CO (max ~ 2100 ppb), BC (~ 1400 ng m-3) and particles > 3 nm (~ 13 000 cm-3) with dominant particle mode of 120 nm were observed overnight. A wind direction change lead to a dramatic reduction in BB tracers and a drop in the dominant particle mode to 50 nm. The dominant mode increased in size to 80 nm over 5 h in calm sunny conditions, accompanied by an increase in ozone. Due to an enhancement in BC but not CO during particle growth, the presence of BB emissions during this period could not be confirmed. The ability of particles > 80 nm (CN80) to act as CCN at 0.5 % supersaturation was investigated. The ΔCCN / ΔCN80 ratio was lowest during the fresh BB plume (56 ± 8 %), higher during the particle growth period (77 ± 4 %) and higher still (104 ± 3 %) in background marine air. Particle size distributions indicate that changes to particle chemical composition, rather than particle size, are driving these changes. Hourly average CCN during both BB events were between 2000 and 5000 CCN cm-3, which were enhanced above typical background levels by a factor of 6-34, highlighting the dramatic impact BB plumes can have on CCN number in clean marine regions. During the 29 h of the second plume strike event (BB2) CO, BC and a range of NMOCs including acetonitrile and hydrogen cyanide (HCN) were clearly enhanced and some enhancements in O3 were observed

  18. Assessing the impact on global climate from general anesthetic gases

    DEFF Research Database (Denmark)

    Andersen, Mads P. Sulbæk; Nielsen, Ole John; Wallington, Timothy J.

    2012-01-01

    Although present in the atmosphere with a combined concentration approximately 100,000 times lower than carbon dioxide (i.e., the principal anthropogenic driver of climate change), halogenated organic compounds are responsible for a warming effect of approximately 10% to 15% of the total...... regarding the impact of anesthetic gas release on the environment, with particular focus on its contribution to the radiative forcing of climate change....... anthropogenic radiative forcing of climate, as measured relative to the start of the industrial era (approximately 1750). The family of anesthetic gases includes several halogenated organic compounds that are strong greenhouse gases. In this short report, we provide an overview of the state of knowledge...

  19. 40 CFR 1065.750 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Analytical gases. 1065.750 Section... ENGINE-TESTING PROCEDURES Engine Fluids, Test Fuels, Analytical Gases and Other Calibration Standards § 1065.750 Analytical gases. Analytical gases must meet the accuracy and purity specifications of...

  20. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  1. Abiogenic hydrocarbons in commercial gases from the Songliao Basin, China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    This paper discusses the kinetic fractionation, composition and distribution characteristics of carbon and hydrogen isotopes for various alkane gases formed in different environments, by different mecha- nisms and from different sources in nature. It is demonstrated that the biodegradation or thermode- gradation of complex high-molecule sedimentary organic material can form microbial gas or thermogenic gas. The δ 13C1 value ranges from -110‰ to -50‰ for microbial gases but from -50‰ to -35‰ (even heavier) for thermogenic gases. Controlled by the kinetic isotope fractionation, both microbial and thermogenic gases have δ 13C and δ D values characterized by normal distribution, i.e. δ 13C1< δ 13C2< δ 13C3< δ 13C4 and δ DCH4< δ DC2H6< δ DC3H8<δ DC4H10, and by a positive correlation between the δ 13C and δ D values. Simple carbonbearing molecules (CH4, CO and CO2) can form abiogenic alkane gases via polymerization in the abiological chemical process in nature, with δ 13C1 heavier than -30‰. Moreover, controlled by the kinetic isotope fractionation, abiogenic alkane gases are characterized by a reverse distribution of δ 13C values and a normal trend of δ D values, namely δ 13C1> δ 13C2> δ 13C3> δ 13C4 and δ DCH4<δ DC2H6< δ DC3H8< δ DC4H10. The δ 13C values and δ D values are negatively correlated. Natural gases from 26 commercial gas wells distributed in the Xujiaweizi and Yingshan-Miaotaizi faulted depressions in the Songliao Basin, China, show δ13C1 values ranging from -30.5‰ to -16.7‰ with a very narrow δ D range between -203‰―-196‰. These gases are characterized by a reverse distribution of δ 13C values but a normal distribution of δ D values, and a negative correlation between their δ 13C and δ D values, indicating an abiological origin. The present study has revealed that abiogenic hydrocarbons not only exist in nature but also can make significant contribution to commercial gas reserviors. It is estimated that

  2. Characterization of trace gases measured over Alberta oil sands mining operations: 76 speciated C2–C10 volatile organic compounds (VOCs, CO2, CH4, CO, NO, NO2, NOy, O3 and SO2

    Directory of Open Access Journals (Sweden)

    A. J. Weinheimer

    2010-08-01

    Full Text Available Oil sands comprise 30% of the world's oil reserves and the crude oil reserves in Canada's oil sands deposits are second only to Saudi Arabia. The extraction and processing of oil sands is much more challenging than for light sweet crude oils because of the high viscosity of the bitumen contained within the oil sands and because the bitumen is mixed with sand and contains chemical impurities such as sulphur. Despite these challenges, the importance of oil sands is increasing in the energy market. To our best knowledge this is the first peer-reviewed study to characterize volatile organic compounds (VOCs emitted from Alberta's oil sands mining sites. We present high-precision gas chromatography measurements of 76 speciated C2–C10 VOCs (alkanes, alkenes, alkynes, cycloalkanes, aromatics, monoterpenes, oxygenates, halocarbons, and sulphur compounds in 17 boundary layer air samples collected over surface mining operations in northeast Alberta on 10 July 2008, using the NASA DC-8 airborne laboratory as a research platform. In addition to the VOCs, we present simultaneous measurements of CO2, CH4, CO, NO, NO2, NOy, O3 and SO2, which were measured in situ aboard the DC-8. Methane, CO, CO2, NO, NO2, NOy, SO2 and 53 VOCs (e.g., halocarbons, sulphur species, NMHCs showed clear statistical enhancements (up to 1.1–397× over the oil sands compared to local background values and, with the exception of CO, were higher over the oil sands than at any other time during the flight. Twenty halocarbons (e.g., CFCs, HFCs, halons, brominated species either were not enhanced or were minimally enhanced (4–C9 alkanes, C5–C6 cycloalkanes, C6–C8 aromatics, together with CO; and (2 emissions associated with the mining effort (i.e., CO2, CO, CH4, NO, NO2, NOy, SO2, C2–C4 alkanes, C2–C4 alkenes, C9 aromatics, short-lived solvents such as C2Cl4 and C2HCl3, and longer-lived species such as HCFC-22 and HCFC-142b. Prominent in the second group, SO2 and NO were

  3. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    Science.gov (United States)

    Akagi, S. K.; Yokelson, R. J.; Burling, I. R.; Meinardi, S.; Simpson, I.; Blake, D. R.; McMeeking, G. R.; Sullivan, A.; Lee, T.; Kreidenweis, S.; Urbanski, S.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Weise, D. R.

    2013-02-01

    In October-November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC), US, using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling platforms, making this one of the most detailed field studies of fire emissions to date. The measurements include the first emission factors for a suite of monoterpenes produced by heating vegetative fuels during field fires. The first quantitative FTIR observations of limonene in smoke are reported along with an expanded suite of monoterpenes measured by WAS including α-pinene, β-pinene, limonene, camphene, 4-carene, and myrcene. The known chemistry of the monoterpenes and their measured abundance of 0.4-27.9% of non-methane organic compounds (NMOCs) and ~ 21% of organic aerosol (mass basis) suggests that they impacted secondary formation of ozone (O3), aerosols, and small organic trace gases such as methanol and formaldehyde in the sampled plumes in the first few hours after emission. The variability in the initial terpene emissions in the SC fire plumes was high and, in general, the speciation of the initially emitted gas-phase NMOCs was 13-195% different from that observed in a similar study in nominally similar pine forests in North Carolina ~ 20 months earlier. It is likely that differences in stand structure and environmental conditions contributed to the high variability observed within and between these studies. Similar factors may explain much of the variability in initial emissions in the literature. The ΔHCN/ΔCO emission ratio, however, was found to be fairly consistent with previous airborne fire measurements in other coniferous-dominated ecosystems, with the mean for these studies being 0.90 ± 0.06%, further confirming the value of HCN as a biomass burning tracer. The SC results also

  4. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    Directory of Open Access Journals (Sweden)

    D. W. T. Griffith

    2013-02-01

    Full Text Available In October–November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC, US, using two Fourier transform infrared spectrometer (FTIR systems and whole air sampling (WAS into canisters followed by gas-chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling platforms, making this one of the most detailed field studies of fire emissions to date. The measurements include the first emission factors for a suite of monoterpenes produced by heating vegetative fuels during field fires. The first quantitative FTIR observations of limonene in smoke are reported along with an expanded suite of monoterpenes measured by WAS including α-pinene, β-pinene, limonene, camphene, 4-carene, and myrcene. The known chemistry of the monoterpenes and their measured abundance of 0.4–27.9% of non-methane organic compounds (NMOCs and ~ 21% of organic aerosol (mass basis suggests that they impacted secondary formation of ozone (O3, aerosols, and small organic trace gases such as methanol and formaldehyde in the sampled plumes in the first few hours after emission. The variability in the initial terpene emissions in the SC fire plumes was high and, in general, the speciation of the initially emitted gas-phase NMOCs was 13–195% different from that observed in a similar study in nominally similar pine forests in North Carolina ~ 20 months earlier. It is likely that differences in stand structure and environmental conditions contributed to the high variability observed within and between these studies. Similar factors may explain much of the variability in initial emissions in the literature. The ΔHCN/ΔCO emission ratio, however, was found to be fairly consistent with previous airborne fire measurements in other coniferous-dominated ecosystems, with the mean for these studies being 0.90 ± 0.06%, further confirming the value of HCN as a biomass burning tracer. The

  5. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    Directory of Open Access Journals (Sweden)

    D. W. T. Griffith

    2012-09-01

    Full Text Available In October–November 2011 we measured trace gas emission factors from seven prescribed fires in South Carolina (SC, US, using two Fourier transform infrared spectrometer (FTIR systems and whole air sampling (WAS into canisters followed by gas-chromatographic analysis. A total of 97 trace gas species were quantified from both airborne and ground-based sampling platforms, making this one of the most detailed field studies of fire emissions to date. The measurements include the first emission factors for a suite of monoterpenes produced by heating vegetative fuels during field fires. The first quantitative FTIR observations of limonene in smoke are reported along with an expanded suite of monoterpenes measured by WAS including α-pinene, β-pinene, limonene, camphene, 4-carene, and myrcene. The known chemistry of the monoterpenes and their measured abundance of 0.4–27.9% of non-methane organic compounds (NMOCs and ~21% of organic aerosol (mass basis suggests that they impacted secondary formation of ozone (O3, aerosols, and small organic trace gases such as methanol and formaldehyde in the sampled plumes in first few hours after emission. The variability in the initial terpene emissions in the SC fire plumes was high and, in general, the speciation of the initially emitted gas-phase NMOCs was 13–195% different from that observed in a similar study in nominally similar pine forests in North Carolina ~20 months earlier. It is likely that differences in stand structure and environmental conditions contributed to the high variability observed within and between these studies. Similar factors may explain much of the variability in initial emissions in the literature. The ΔHCN/ΔCO emission ratio, however, was found to be fairly consistent with previous airborne fire measurements in other coniferous-dominated ecosystems, with the mean for these studies being 0.90 ± 0.06%, further confirming the value of HCN as a biomass burning tracer. The SC

  6. Emissions of Trace Gases and Particles from Two Ships in the Southern Atlantic Ocean

    Science.gov (United States)

    Sinha, Parikhit; Hobbs, Peter V.; Yokelson, Robert J.; Christian, Ted J.; Kirchstetter, Thomas W.; Bruintjes, Roelof

    2003-01-01

    Measurements were made of the emissions of particles and gases from two diesel-powered ships in the southern Atlantic Ocean off the coast of Namibia. The measurements are used to derive emission factors from ships of three species not reported previously, namely, black carbon, accumulation-mode particles, and cloud condensation nuclei (CCN), as well as for carbon dioxide, carbon monoxide (CO), methane (CH4), non-methane hydrocarbons, sulfur dioxide (SO2), nitrogen oxides (NOx), and condensation nuclei. The effects of fuel grade and engine power on ship emissions are discussed. The emission factors are combined with fuel usage data to obtain estimates of global annual emissions of various particles and gases from ocean-going ships. Global emissions of black carbon, accumulation- mode particles, and CCN from ocean-going ships are estimated to be 19-26 Gg yr(sup -1), (4.4-6.1) x 10(exp 26) particles yr(sup -1), and (1.0-1.5) x l0(exp 26) particles yr(sup -1), respectively. Black carbon emissions from ocean-going ships are approximately 0.2% of total anthropogenic emissions. Emissions of NOx and SO2 from ocean-going ships are approximately 10-14% and approximately 3-4%, respectively, of the total emissions of these species from the burning of fossil fuels, and approximately 40% and approximately 70%, respectively, of the total emissions of these species from the burning of biomass. Global annual emissions of CO and CH4 from ocean-going ships are approximately 2% and approximately 2-5%, respectively, of natural oceanic emissions of these species.

  7. Green-Kubo Representation of the Viscosity of Granular Gases

    Science.gov (United States)

    2005-07-13

    Green-Kubo representation of the viscosity of granular gases J. Javier Brey Área de Física Teórica, Universidad de Sevilla. Apartado de Correos 1065...NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Área de Física Teórica, Universidad de Sevilla. Apartado de Correos

  8. Explosion limits for combustible gases

    Institute of Scientific and Technical Information of China (English)

    TONG Min-ming; WU Guo-qing; HAO Ji-fei; DAI Xin-lian

    2009-01-01

    Combustible gases in coal mines are composed of methane, hydrogen, some multi-carbon alkane gases and other gases. Based on a numerical calculation, the explosion limits of combustible gases were studied, showing that these limits are related to the concentrations of different components in the mixture. With an increase of C4H10 and C6H14, the Lower ExplosionLimit (LEL) and Upper Explosion-Limit (UEL) of a combustible gas mixture will decrease clearly. For every 0.1% increase in C4H10 and C6H14, the LEL decreases by about 0.19% and the UEL by about 0.3%. The results also prove that, by increasing the amount of H2, the UEL of a combustible gas mixture will increase considerably. If the level of H2 increases by 0.1%, the UEL will increase by about 0.3%. However, H2 has only a small effect on the LEL of the combustible gas mixture. Our study provides a theoretical foundation for judging the explosion risk of an explosive gas mixture in mines.

  9. Hydrophobic encapsulation of hydrocarbon gases.

    Science.gov (United States)

    Leontiev, Alexander V; Saleh, Anas W; Rudkevich, Dmitry M

    2007-04-26

    [reaction: see text] Encapsulation data for hydrophobic hydrocarbon gases within a water-soluble hemicarcerand in aqueous solution are reported. It is concluded that hydrophobic interactions serve as the primary driving force for the encapsulation, which can be used for the design of gas-separating polymers with intrinsic inner cavities.

  10. Imbalanced Fermi gases at unitarity

    NARCIS (Netherlands)

    Gubbels, K.B.; Stoof, H.T.C.

    2013-01-01

    We consider imbalanced Fermi gases with strong attractive interactions, for which Cooper-pair formation plays an important role. The two-component mixtures consist either of identical fermionic atoms in two different hyperfine states, or of two different atomic species both occupying only a single

  11. Study of electron transport in hydrocarbon gases

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, H. [Tomakomai National College of Technology, Tomakomai 059-1275 (Japan); Date, H. [Faculty of Health Sciences, Hokkaido University, Sapporo 060-0812 (Japan)

    2015-04-07

    The drift velocity and the effective ionization coefficient of electrons in the organic gases, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, CH{sub 3}OH, C{sub 2}H{sub 5}OH, C{sub 6}H{sub 6}, and C{sub 6}H{sub 5}CH{sub 3}, have been measured over relatively wide ranges of density-reduced electric fields (E/N) at room temperature (around 300 K). The drift velocity was measured, based on the arrival-time spectra of electrons by using a double-shutter drift tube over the E/N range from 300 to 2800 Td, and the effective ionization coefficient (α − η) was determined by the steady-state Townsend method from 150 to 3000 Td. Whenever possible, these parameters were compared with those available in the literature. It has been shown that the swarm parameters for these gases have specific tendencies, depending on their molecular configurations.

  12. Classification and origin of natural gases from Lishui Sag,the East China Sea Basin

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Natural gases discovered up to now in Lishui Sag,the East China Sea Basin,differ greatly in gaseous compositions,of which hydrocarbon gases amount to 2%―94%while non-hydrocarbon gases are dominated by CO2.Their hydrocarbon gases,without exception,contain less than 90%of methane and over 10%of C2 + heavier hydrocarbons,indicating a wet gas.Carbon isotopic analyses on these hydrocarbon gases showed thatδ13C 1 ,δ13C 2 andδ13C 3 are basically lighter than-44‰,-29‰and-26‰, respectively.The difference in carbon isotopic values between methane and ethane is great,suggesting a biogenic oil-type gas produced by the mixed organic matter at peak generation.δ13C CO2 values of nonhydrocarbon gases are all heavier than-10‰,indicating a typical abiogenic gas.The simulation experiment on hydrocarbon generation of organic matter in a closed gold-tube system showed that the proportion of methane in natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit is obviously higher than that in natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit,consequently the proportion of heavier hydrocarbons of the former is remarkably lower than that of the latter.Moreover, δ13C 1 values of natural gases produced by terrigenous organic matter in the Lingfeng Formation marine deposit are about 5‰heavier than those of natural gases derived from the aquatic and terrigenous mixed organic matter in the Yueguifeng Formation lacustrine deposit whileδ13C 2 andδ13C 3 values of the former are over 9‰heavier than those of the latter.Currently the LS36-1 oil-gas pool is the only commercial oil-gas reservoir in Lishui Sag,where carbon isotopic compositions of various hydrocarbon components differ greatly from those of natural gases produced by the Lingfeng Formation organic matter but are very similar to those of natural gases derived from the Yueguifeng Formation organic matter

  13. 40 CFR 90.312 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... expiration date stated by the gas supplier must be recorded. (b) Pure gases. The required purity of the gases... a concentration of propane higher than what a gas supplier considers to be safe may be substituted... choice of diluent (zero air or purified nitrogen) between the calibration and span gases. If...

  14. Atmospheric Chemistry and Greenhouse Gases

    Energy Technology Data Exchange (ETDEWEB)

    Ehhalt, D.; Prather, M.; Dentener, F.; Derwent, R.; Dlugokencky, Edward J.; Holland, E.; Isaksen, I.; Katima, J.; Kirchhoff, V.; Matson, P.; Midgley, P.; Wang, M.; Berntsen, T.; Bey, I.; Brasseur, G.; Buja, L.; Collins, W. J.; Daniel, J. S.; DeMore, W. B.; Derek, N.; Dickerson, R.; Etheridge, D.; Feichter, J.; Fraser, P.; Friedl, R.; Fuglestvedt, J.; Gauss, M.; Grenfell, L.; Grubler, Arnulf; Harris, N.; Hauglustaine, D.; Horowitz, L.; Jackman, C.; Jacob, D.; Jaegle, L.; Jain, Atul K.; Kanakidou, M.; Karlsdottir, S.; Ko, M.; Kurylo, M.; Lawrence, M.; Logan, J. A.; Manning, M.; Mauzerall, D.; McConnell, J.; Mickley, L. J.; Montzka, S.; Muller, J. F.; Olivier, J.; Pickering, K.; Pitari, G.; Roelofs, G.-J.; Rogers, H.; Rognerud, B.; Smith, Steven J.; Solomon, S.; Staehelin, J.; Steele, P.; Stevenson, D. S.; Sundet, J.; Thompson, A.; van Weele, M.; von Kuhlmann, R.; Wang, Y.; Weisenstein, D. K.; Wigley, T. M.; Wild, O.; Wuebbles, D.J.; Yantosca, R.; Joos, Fortunat; McFarland, M.

    2001-10-01

    Chapter 4 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 2414.1 Introduction 2434.2 Trace Gases: Current Observations, Trends and Budgets 2484.3 Projections of Future Emissions 2664.4 Projections of Atmospheric Composition for the 21st Century 2674.5 Open Questions 2774.6 Overall Impact of Global Atmospheric Chemistry Change 279

  15. Global warming and greenhouse gases

    OpenAIRE

    Belić Dragoljub S.

    2006-01-01

    Global warming or Climate change refers to long-term fluctuations in temperature, precipitation, wind, and other elements of the Earth's climate system. Natural processes such as solar-irradiance variations, variations in the Earth's orbital parameters, and volcanic activity can produce variations in climate. The climate system can also be influenced by changes in the concentration of various gases in the atmosphere, which affect the Earth's absorption of radiation.

  16. Theoretical Insight into Shocked Gases

    Energy Technology Data Exchange (ETDEWEB)

    Leiding, Jeffery Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-29

    I present the results of statistical mechanical calculations on shocked molecular gases. This work provides insight into the general behavior of shock Hugoniots of gas phase molecular targets with varying initial pressures. The dissociation behavior of the molecules is emphasized. Impedance matching calculations are performed to determine the maximum degree of dissociation accessible for a given flyer velocity as a function of initial gas pressure.

  17. Measurement of biogenic sulfur gases emission from some Chinese and Japanese soils

    Science.gov (United States)

    Yang, Z.; Kanda, K.; Tsuruta, H.; Minami, K.

    Emission of volatile sulfur gases from waterlogged paddy soils and upland soils of China and Japan was studied in the laboratory. Emission of hydrogen sulfide (H 2S), carbonyl sulfide (COS), methyl mercaptan (CH 3SH), dimethyl sulfide (DMS), carbon disulfide (CS 2) and dimethyl disulfide (DMDS) were detected. Emission of sulfur gases from paddy soil was more than that from upland, and emission from the Chinese paddy soils was more than that from Japanese. At the same soil, emission of sulfur gases, when both organic manure and chemical fertilizer were applied was higher than when only organic manure or only chemical fertilizer was applied. Under anaerobic conditions, detected biogenic sulfur gases were far more than that under aerobic conditions, H 2S was the most obvious. The results have also shown that, at higher temperature, emission and expiration rate of volatile sulfur gases were higher than that at lower temperature.

  18. Voluntary reporting of greenhouse gases 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The Voluntary Reporting of Greenhouse Gases Program, required by Section 1605(b) of the Energy Policy Act of 1992, records the results of voluntary measures to reduce, avoid, or sequester greenhouse gas emissions. In 1998, 156 US companies and other organizations reported to the Energy information Administration that, during 1997, they had achieved greenhouse gas emission reductions and carbon sequestration equivalent to 166 million tons of carbon dioxide, or about 2.5% of total US emissions for the year. For the 1,229 emission reduction projects reported, reductions usually were measured by comparing an estimate of actual emissions with an estimate of what emissions would have been had the project not been implemented.

  19. Development and Application of a Fast Chromatography Technique for Analysis of Biogenic Volatile Organic Compounds in Plant Emissions

    Science.gov (United States)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Yamazakii, S.; Kajii, Y. J.

    2011-12-01

    Biogenic volatile organic compounds (BVOCs) emitted from vegetation constitute the largest fraction (>90 %) of total global non-methane VOC supplied to the atmosphere, yet the chemical complexity of these emissions means that achieving comprehensive measurements of BVOCs, and in particular the less volatile terpenes, is not straightforward. As such, there is still significant uncertainty associated with the contribution of BVOCs to the tropospheric oxidation budget, and to atmospheric secondary organic aerosol (SOA) formation. The rate of BVOC emission from vegetation is regulated by environmental conditions such as light intensity and temperature, and thus can be highly variable, necessitating high time-resolution BVOC measurements. In addition, the numerous monoterpene and sesquiterpene isomers, which are indistinguishable by some analytical techniques, have greatly varying lifetimes with respect to atmospheric oxidants, and as such quantification of each individual isomer is fundamental to achieving a comprehensive characterisation of the impact of BVOCs upon the atmospheric oxidation capacity. However, established measurement techniques for these trace gases typically offer a trade-off between sample frequency and the level of speciation; detailed information regarding chemical composition may be obtained, but with reduced time resolution, or vice versa. We have developed a Fast-GC-FID technique for quantification of a range of monoterpene, sesquiterpene and oxygenated C10 BVOC isomers, which retains the separation capability of conventional gas chromatography, yet offers considerably improved sample frequency. Development of this system is ongoing, but currently a 20 m x 0.18 mm i.d resistively heated metal column is employed to achieve chromatographic separation of thirteen C10-C15 BVOCs, within a total cycle time of ~15 minutes. We present the instrument specifications and analytical capability, together with the first application of this Fast-GC technique

  20. Abiogenic hydrocarbons in commercial gases from the Songliao Basin, China

    Institute of Scientific and Technical Information of China (English)

    WANG XianBin; WANG LianSheng; LIU ChunXue; YAN Hong; LI LiWu; ZHOU XiaoFeng; WANG YongLi; YANG Hui; WANG Guang; GUO ZhanQian; TUO JinCai; GUO HongYan; LI ZhenXi; ZHUO ShengGuang; JIANG HongLiang; ZENG LongWei; ZHANG MingJie

    2009-01-01

    This paper discusses the kinetic fractionation, composition and distribution characteristics of carbon and hydrogen isotopes for various alkane gases formed in different environments, by different mecha-nisms and from different sources in nature. It is demonstrated that the biodegradation or thermode-gradation of complex high-molecule sedimentary organic material can form microbial gas or ther-mogenic gas. The δ13C1 value ranges from -110‰ to -50‰ for microbial gases but from -51‰ to -35‰ (even heavier) for thermogenic gases. Controlled by the kinetic isotope fractionation, both microbial and thermogenic gases have δ13C and δD values characterized by normal distribution, i.e. δ13C1 δ13C2> δ13C3> δ13C4 and δDCH4<δDC2H6< δDC3H8< δDC4H10. The δ13C values and δD values are negatively correlated. Natural gases from 26 commercial gas wells distributed in the Xujiaweizi and Yingshan-Miaotaizi faulted de-pressions in the Songliao Basin, China, show δ13C1 values ranging from -30.5‰. to -16.7‰, with a very narrow δD range between -203‰--196‰. These gases are characterized by a reverse distribution of δ13C values but a normal distribution of δD values, and a negative correlation between their δ13C and δD values, indicating an abiological origin. The present study has revealed that abiogenic hydrocar-bons not only exist in nature but also can make significant contribution to commercial gas reserviors. It is estimated that the reserve volume of alkane gases with abiogenic characteristics in these 26 gas wells in the Songliao Basin is over 500×108 m3, The prospecting practice in the Songliao Basin has demonstrated that abiogenic alkane gases are of a promising resource, and it provides an example for the investigation of and search for abiogenic commercial natural gases worldwide.

  1. Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania, 41° S

    Directory of Open Access Journals (Sweden)

    S. J. Lawson

    2015-07-01

    Full Text Available Biomass burning (BB plumes were measured at the Cape Grim Baseline Air Pollution Station during the 2006 Precursors to Particles campaign, when emissions from a fire on nearby Robbins Island impacted the station. Measurements made included non methane organic compounds (NMOCs (PTR-MS, particle number size distribution, condensation nuclei (CN > 3 nm, black carbon (BC concentration, cloud condensation nuclei (CCN number, ozone (O3, methane (CH4, carbon monixide (CO, hydrogen (H2, carbon dioxide (CO2, nitrous oxide (N2O, halocarbons and meteorology. During the first plume strike event (BB1, a four hour enhancement of CO (max ~ 2100 ppb, BC (~ 1400 ng m−3 and particles > 3 nm (~ 13 000 cm−3 with dominant particle mode of 120 nm were observed overnight. Dilution of the plume resulted in a drop in the dominant particle mode to 50 nm, and then growth to 80 nm over 5 h. This was accompanied by an increase in O3, suggesting that photochemical processing of air and condensation of low volatility oxidation products may be driving particle growth. The ability of particles > 80 nm (CN80 to act as CCN at 0.5 % supersaturation was investigated. The ΔCCN / ΔCN80 ratio was lowest during the fresh BB plume (56 %, higher during the particle growth event (77 % and higher still (104 % in background marine air. Particle size distributions indicate that changes to particle chemical composition, rather than particle size, are driving these changes. Hourly average CCN during both BB events were between 2000–5000 CCN cm−3, which were enhanced above typical background levels by a factor of 6–34, highlighting the dramatic impact BB plumes can have on CCN number in clean marine regions. During the 29 h of the second plume strike event (BB2 CO, BC and a range of NMOCs including acetonitrile and hydrogen cyanide (HCN were clearly enhanced and some enhancements in O3 were observed (ΔO3 / ΔCO 0.001–0.074. A shortlived increase in NMOCs by a factor of 10

  2. Biomass burning emissions of trace gases and particles in marine air at Cape Grim, Tasmania, 41° S

    Science.gov (United States)

    Lawson, S. J.; Keywood, M. D.; Galbally, I. E.; Gras, J. L.; Cainey, J. M.; Cope, M. E.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Bentley, S. T.; Meyer, C. P.; Ristovski, Z.; Goldstein, A. H.

    2015-07-01

    Biomass burning (BB) plumes were measured at the Cape Grim Baseline Air Pollution Station during the 2006 Precursors to Particles campaign, when emissions from a fire on nearby Robbins Island impacted the station. Measurements made included non methane organic compounds (NMOCs) (PTR-MS), particle number size distribution, condensation nuclei (CN) > 3 nm, black carbon (BC) concentration, cloud condensation nuclei (CCN) number, ozone (O3), methane (CH4), carbon monixide (CO), hydrogen (H2), carbon dioxide (CO2), nitrous oxide (N2O), halocarbons and meteorology. During the first plume strike event (BB1), a four hour enhancement of CO (max ~ 2100 ppb), BC (~ 1400 ng m-3) and particles > 3 nm (~ 13 000 cm-3) with dominant particle mode of 120 nm were observed overnight. Dilution of the plume resulted in a drop in the dominant particle mode to 50 nm, and then growth to 80 nm over 5 h. This was accompanied by an increase in O3, suggesting that photochemical processing of air and condensation of low volatility oxidation products may be driving particle growth. The ability of particles > 80 nm (CN80) to act as CCN at 0.5 % supersaturation was investigated. The ΔCCN / ΔCN80 ratio was lowest during the fresh BB plume (56 %), higher during the particle growth event (77 %) and higher still (104 %) in background marine air. Particle size distributions indicate that changes to particle chemical composition, rather than particle size, are driving these changes. Hourly average CCN during both BB events were between 2000-5000 CCN cm-3, which were enhanced above typical background levels by a factor of 6-34, highlighting the dramatic impact BB plumes can have on CCN number in clean marine regions. During the 29 h of the second plume strike event (BB2) CO, BC and a range of NMOCs including acetonitrile and hydrogen cyanide (HCN) were clearly enhanced and some enhancements in O3 were observed (ΔO3 / ΔCO 0.001-0.074). A shortlived increase in NMOCs by a factor of 10 corresponded

  3. Kinetic approach to granular gases.

    Science.gov (United States)

    Puglisi, A; Loreto, V; Marini Bettolo Marconi, U; Vulpiani, A

    1999-05-01

    We address the problem of the so-called "granular gases," i.e., gases of massive particles in rapid movement undergoing inelastic collisions. We introduce a class of models of driven granular gases for which the stationary state is the result of the balance between the dissipation and the random forces which inject energies. These models exhibit a genuine thermodynamic limit, i.e., at fixed density the mean values of kinetic energy and dissipated energy per particle are independent of the number N of particles, for large values of N. One has two regimes: when the typical relaxation time tau of the driving Brownian process is small compared with the mean collision time tau(c) the spatial density is nearly homogeneous and the velocity probability distribution is Gaussian. In the opposite limit tau>tau(c) one has strong spatial clustering, with a fractal distribution of particles, and the velocity probability distribution strongly deviates from the Gaussian one. Simulations performed in one and two dimensions under the Stosszahlansatz Boltzmann approximation confirm the scenario. Furthermore, we analyze the instabilities bringing to the spatial and the velocity clusterization. Firstly, in the framework of a mean-field model, we explain how the existence of the inelasticity can lead to a spatial clusterization; on the other hand, we discuss, in the framework of a Langevin dynamics treating the collisions in a mean-field way, how a non-Gaussian distribution of velocity can arise. The comparison between the numerical and the analytical results exhibits an excellent agreement.

  4. Mechanics of liquids and gases

    CERN Document Server

    Loitsyanskii, L G; Jones, W P

    1966-01-01

    Mechanics of Liquids and Gases, Second Edition is a 10-chapter text that covers significant revisions concerning the dynamics of an ideal gas, a viscous liquid and a viscous gas.After an expanded introduction to the fundamental properties and methods of the mechanics of fluids, this edition goes on dealing with the kinetics and general questions of dynamics. The next chapters describe the one-dimensional pipe flow of a gas with friction, the elementary theory of the shock tube; Riemann's theory of the wave propagation of finite intensity, and the theory of plane subsonic and supersonic flows.

  5. Veracruz State Preliminary Greenhouse Gases Emissions Inventory

    Science.gov (United States)

    Welsh Rodriguez, C.; Rodriquez Viqueira, L.; Guzman Rojas, S.

    2007-05-01

    At recent years, the international organisms such as United Nations, has discussed that the temperature has increased slightly and the pattern of precipitations has changed in different parts of the world, which cause either extreme droughts or floods and that the extreme events have increased. These are some of the risks of global climate change because of the increase of gas concentration in the atmosphere such as carbon dioxides, nitrogen oxides and methane - which increase the greenhouse effect. Facing the consequences that could emerge because of the global temperature grown, there is a genuine necessity in different sectors of reduction the greenhouse gases and reduced the adverse impacts of climate change. To solve that, many worldwide conventions have been realized (Rio de Janeiro, Kyoto, Montreal) where different countries have established political compromises to stabilize their emissions of greenhouse gases. The mitigation and adaptation policies merge as a response to the effects that the global climate change could have, on the humans as well as the environment. That is the reason to provide the analysis of the areas and geographic zones of the country that present major vulnerability to the climate change. The development of an inventory of emissions that identifies and quantifies the principal sources of greenhouse gases of a country, and also of a region is basic to any study about climate change, also to develop specific political programs that allow to preserve and even improve a quality of the atmospheric environment, and maybe to incorporate to international mechanisms such as the emissions market. To estimate emissions in a systematic and consistent way on a regional, national and international level is a requirement to evaluate the feasibility and the cost-benefit of instrumented possible mitigation strategies and to adopt politics and technologies to reduce emissions. Mexico has two national inventories of emissions, 1990 and 1995, now it is

  6. Capturing Gases in Carbon Honeycomb

    Science.gov (United States)

    Krainyukova, Nina V.

    2017-04-01

    In our recent paper (Krainyukova and Zubarev in Phys Rev Lett 116:055501, 2016. doi: 10.1103/PhysRevLett.116.055501) we reported the observation of an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. A family of structures can be built from absolutely dominant {sp}2-bonded carbon atoms, and may be considered as three-dimensional graphene. Such structures demonstrate high absorption capacity for gases and liquids. In this work we show that the formation of honeycomb structures is highly sensitive to the carbon evaporation temperature and deposition rates. Both parameters are controlled by the electric current flowing through thin carbon rods. Two distinctly different regimes were found. At lower electric currents almost pure honeycomb structures form owing to sublimation. At higher currents the surface-to-bulk rod melting is observed. In the latter case densification of the carbon structures and a large contribution of glassy graphite emerge. The experimental diffraction patterns from honeycomb structures filled with absorbed gases and analyzed by the advanced method are consistent with the proposed models for composites which are different for Ar, Kr and Xe atoms in carbon matrices.

  7. Cloud processing of soluble gases

    Science.gov (United States)

    Laj, P.; Fuzzi, S.; Facchini, M. C.; Lind, J. A.; Orsi, G.; Preiss, M.; Maser, R.; Jaeschke, W.; Seyffer, E.; Helas, G.; Acker, K.; Wieprecht, W.; Möller, D.; Arends, B. G.; Mols, J. J.; Colvile, R. N.; Gallagher, M. W.; Beswick, K. M.; Hargreaves, K. J.; Storeton-West, R. L.; Sutton, M. A.

    Experimental data from the Great Dun Fell Cloud Experiment 1993 were used to investigate interactions between soluble gases and cloud droplets. Concentrations of H 2O 2, SO 2, CH 3COOOH, HCOOH, and HCHO were monitored at different sites within and downwind of a hill cap cloud and their temporal and spatial evolution during several cloud events was investigated. Significant differences were found between in-cloud and out-of-cloud concentrations, most of which could not be explained by simple dissolution into cloud droplets. Concentration patterns were analysed in relation to the chemistry of cloud droplets and the gas/liquid equilibrium. Soluble gases do not undergo similar behaviour: CH 3COOH simply dissolves in the aqueous phase and is outgassed upon cloud dissipation; instead, SO 2 is consumed by its reaction with H 2O 2. The behaviour of HCOOH is more complex because there is evidence for in-cloud chemical production. The formation of HCOOH interferes with the odd hydrogen cycle by enhancing the liquid-phase production of H 2O 2. The H 2O 2 concentration in cloud therefore results from the balance of consumption by oxidation of SO 2 in-cloud production, and the rate by which it is supplied to the system by entrainment of new air into the clouds.

  8. Capturing Gases in Carbon Honeycomb

    Science.gov (United States)

    Krainyukova, Nina V.

    2016-12-01

    In our recent paper (Krainyukova and Zubarev in Phys Rev Lett 116:055501, 2016. doi: 10.1103/PhysRevLett.116.055501) we reported the observation of an exceptionally stable honeycomb carbon allotrope obtained by deposition of vacuum-sublimated graphite. A family of structures can be built from absolutely dominant {sp}2 -bonded carbon atoms, and may be considered as three-dimensional graphene. Such structures demonstrate high absorption capacity for gases and liquids. In this work we show that the formation of honeycomb structures is highly sensitive to the carbon evaporation temperature and deposition rates. Both parameters are controlled by the electric current flowing through thin carbon rods. Two distinctly different regimes were found. At lower electric currents almost pure honeycomb structures form owing to sublimation. At higher currents the surface-to-bulk rod melting is observed. In the latter case densification of the carbon structures and a large contribution of glassy graphite emerge. The experimental diffraction patterns from honeycomb structures filled with absorbed gases and analyzed by the advanced method are consistent with the proposed models for composites which are different for Ar, Kr and Xe atoms in carbon matrices.

  9. Genetic Classification of Natural Gases in the Oil—Gas Zone and Its Application in the Sichuan Basin

    Institute of Scientific and Technical Information of China (English)

    黄籍中

    1993-01-01

    On the basis of the carbon isotopic compositions of methane(CH4) and its homologues and the differences in isotopic values for CH4 and ethane (C2H6) and the correlation and compositional char-acteristics of hydrocarbon gases, the author has proposed a genetic classification of natural gases in the oil-gas zone.They are classified as biogenetic and abiogenetic gases in terms of the types of hydrocarbon-generating precursors (or parent materials) and their thermal evolution stages.Biogenetic gases can also be further divided into two series: biochemical and thermochemical gases,with the lat-ter formed at different evolution stages.Gases generated from type-I and -II1 organic matter are called oil-series gases, those from type-III, coal -series ,and those type -II2,mixture-type gases.Gases generated from two or more than two types of precursors are called mixture-source gases.According to those mentioned above, natural gases from the major oil-gas pools in the Sichuan Basin have been discriminantly analyzed,and the results are concordant with the distribution and de-velopment of hydrocarbon-source rocks as well as with their characteristics, indicating a prospective application.

  10. Supercritical hydrogenation and acid-catalysed reactions "without gases".

    Science.gov (United States)

    Hyde, Jason R; Poliakoff, Martyn

    2004-07-07

    The high temperature catalytic decomposition of HCO2H and HCO2Et are used to generate the high pressure H2 and the supercritical fluids needed for micro-scale hydrogenation of organic compounds; our approach overcomes the problems and limitations of handling high pressure gases on a small-scale and opens the way to the widespread use of continuous supercritical reactions in the laboratory.

  11. The Global Atmosphere Watch reactive gases measurement network

    Directory of Open Access Journals (Sweden)

    Martin G. Schultz

    2015-10-01

    Full Text Available Abstract Long-term observations of reactive gases in the troposphere are important for understanding trace gas cycles and the oxidation capacity of the atmosphere, assessing impacts of emission changes, verifying numerical model simulations, and quantifying the interactions between short-lived compounds and climate change. The World Meteorological Organization’s (WMO Global Atmosphere Watch (GAW program coordinates a global network of surface stations some of which have measured reactive gases for more than 40 years. Gas species included under this umbrella are ozone, carbon monoxide, nitrogen oxides, and volatile organic compounds (VOCs. There are many challenges involved in setting-up and maintaining such a network over many decades and to ensure that data are of high quality, regularly updated and made easily accessible to users. This overview describes the GAW surface station network of reactive gases, its unique quality management framework, and discusses the data that are available from the central archive. Highlights of data use from the published literature are reviewed, and a brief outlook into the future of GAW is given. This manuscript constitutes the overview of a special feature on GAW reactive gases observations with individual papers reporting on research and data analysis of particular substances being covered by the program.

  12. New perspectives for noble gases in oceanography

    Science.gov (United States)

    Aeschbach, Werner

    2016-08-01

    Conditions prevailing in regions of deep water formation imprint their signature in the concentrations of dissolved noble gases, which are conserved in the deep ocean. Such "recharge conditions" including temperature, salinity, and interactions with sea ice are important in view of ocean-atmosphere CO2 partitioning. Noble gases, especially the temperature sensitive Kr and Xe, are well-established tracers to reconstruct groundwater recharge conditions. In contrast, tracer oceanography has traditionally focused on He isotopes and the light noble gases Ne and Ar, which could be analyzed at the required high precision. Recent developments of analytical and data interpretation methods now provide fresh perspectives for noble gases in oceanography.

  13. Comparison of natural gases accumulated in Oligocene strata with hydrous pyrolysis gases from Menilite Shales of the Polish Outer Carpathians

    Science.gov (United States)

    Kotarba, M.J.; Curtis, John B.; Lewan, M.D.

    2009-01-01

    This study examined the molecular and isotopic compositions of gases generated from different kerogen types (i.e., Types I/II, II, IIS and III) in Menilite Shales by sequential hydrous pyrolysis experiments. The experiments were designed to simulate gas generation from source rocks at pre-oil-cracking thermal maturities. Initially, rock samples were heated in the presence of liquid water at 330 ??C for 72 h to simulate early gas generation dominated by the overall reaction of kerogen decomposition to bitumen. Generated gas and oil were quantitatively collected at the completion of the experiments and the reactor with its rock and water was resealed and heated at 355 ??C for 72 h. This condition simulates late petroleum generation in which the dominant overall reaction is bitumen decomposition to oil. This final heating equates to a cumulative thermal maturity of 1.6% Rr, which represents pre-oil-cracking conditions. In addition to the generated gases from these two experiments being characterized individually, they are also summed to characterize a cumulative gas product. These results are compared with natural gases produced from sandstone reservoirs within or directly overlying the Menilite Shales. The experimentally generated gases show no molecular compositions that are distinct for the different kerogen types, but on a total organic carbon (TOC) basis, oil prone kerogens (i.e., Types I/II, II and IIS) generate more hydrocarbon gas than gas prone Type III kerogen. Although the proportionality of methane to ethane in the experimental gases is lower than that observed in the natural gases, the proportionality of ethane to propane and i-butane to n-butane are similar to those observed for the natural gases. ??13C values of the experimentally generated methane, ethane and propane show distinctions among the kerogen types. This distinction is related to the ??13C of the original kerogen, with 13C enriched kerogen generating more 13C enriched hydrocarbon gases than

  14. Instability in Shocked Granular Gases

    CERN Document Server

    Sirmas, Nick; Radulescu, Matei

    2013-01-01

    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.

  15. Instability in shocked granular gases

    Science.gov (United States)

    Sirmas, Nick; Falle, Sam; Radulescu, Matei

    2014-05-01

    Shocks in granular media, such as vertically oscillated beds, have been shown to develop instabilities. Similar jet formation has been observed in explosively dispersed granular media. Our previous work addressed this instability by performing discrete-particle simulations of inelastic media undergoing shock compression. By allowing finite dissipation within the shock wave, instability manifests itself as distinctive high density non-uniformities and convective rolls within the shock structure. In the present study we have extended this work to investigate this instability at the continuum level. We modeled the Euler equations for granular gases with a modified cooling rate to include an impact velocity threshold necessary for inelastic collisions. Our results showed a fair agreement between the continuum and discrete-particle models. Discrepancies, such as higher frequency instabilities in our continuum results may be attributed to the absence of higher order effects.

  16. Greenhouse effect gases (GEI) by energy consumption; Gases efecto invernadero (GEI) por consumo de energia

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Ledo C, Ramon; Bazan N, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The purpose of this article is to present the calculation methodology of greenhouse effect gases (GEI) emissions that are produced by the power sector in Mexico, as well as to discuss its possible impact in the subject of climatic change and the possible mitigating actions to lower the amount of emissions that can be taken and, therefore, the possible climate changes. In Mexico GEI inventories have been made since 1991, year in which the National Inventory of Gases with Greenhouse Effect was obtained for year 1988. The GEI include carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), methane (CH4), nitrous oxide (NO) and volatile organic carbides that are not methane (NMVOC) and are secondary products and harmful that are obtained from the processes that turn fuels into energy (combustion). The main sources of GEI are: fixed sources (industries, residences, commerce, public services and energy transformation, such as power generation); movable sources (that include all type of transport that uses fuel). The fuels that, by their volume and efficiency, generate more emissions of GEI are crude oil, natural gas and solid biomass (firewood-cane bagasse). Any effort to reduce these emissions is very important and remarkable if it affects the consumption of these fuels. [Spanish] El proposito de este articulo es presentar la metodologia de calculo de las emisiones de los gases con efecto invernadero (GEI) que son producidos por el sector energetico en Mexico, asi como discutir su posible impacto en las cuestiones de cambio climatico y las posibles acciones de mitigacion que se pueden realizar para abatir la cantidad de emisiones y, por ende, los posibles cambios de clima. En Mexico se han realizado inventarios de GEI desde 1991, ano en que se obtuvo el Inventario Nacional de Gases con Efecto Invernadero para el ano de 1988. Los GEI comprenden al dioxido de carbono (CO2), monoxido de carbono (CO), oxidos de nitrogeno (NOx), metano (CH4), oxido nitroso (N2O) y

  17. Explorative analysis of microbes, colloids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB, Goeteborg (Sweden))

    2008-08-15

    potential to transport radionuclides in groundwater. The aim of the study of colloids in the Forsmark 2.3 site investigation was to quantify and determine the composition of colloids in groundwater samples from the boreholes. There are both inorganic and organic colloids, and the site investigation measured both types. - Gases (Chapter 3): Dissolved gases in groundwater contribute to the mass of dissolved species. The distribution and composition of dissolved gases in deep groundwater are important to understand in the safety assessment of a deep geological nuclear waste repository: Micro bubbles of gas may potentially transport radionuclides from the repository to the surface. Oxygen, hydrogen sulphide and carbon dioxide are parts of fundamental redox couples that participate in several solid-aqueous phase transformations such as the precipitation of ferric iron oxides, iron sulphide and calcite. Methane and hydrogen, may serve as sources of energy to various microbiological processes

  18. Measurements of reactive trace gases and variable O3 formation rates in some South Carolina biomass burning plumes

    Energy Technology Data Exchange (ETDEWEB)

    Akagi, S. K.; Yokelson, R. J.; Burling, I. R.; Meinardi, S.; Simpson, I.; Blake, D. R.; McMeeking, G. R.; Sullivan, A.; Lee, T.; Kreidenweis, S.; Urbanski, S.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Weise, D. R.

    2013-02-01

    In October-November 2011 we measured the trace gas emission factors from 7 prescribed fires in South Carolina, U.S. using two Fourier transform infrared spectrometer (FTIR) systems and whole air sampling (WAS) into canisters followed by gas-chromatographic analyses. The fires were intended to emulate high-intensity burns as they were lit during the dry season and in most cases represented stands that had not been treated with prescribed burns in 10+ years, if at all. A total of 97 trace gas species are reported here from both airborne and ground-based platforms making this one of the most detailed field studies of fire emissions to date. The measurements included the first data for a suite of monoterpene compounds emitted via distillation of plant tissues during real fires. The known chemistry of the monoterpenes and their measured abundance of ~0.40% of CO (molar basis), ~3.9% of NMOC (molar basis), and ~21% of organic aerosol (mass basis), suggests that they impacted post-emission formation of ozone, aerosol, and small organic trace gases such as methanol and formaldehyde in the sampled plumes. The variability in the terpene emissions in South Carolina (SC) fire plumes was high and, in general, the speciation of the emitted gas-phase non-methane organic compounds was surprisingly different from that observed in a similar study in nominally similar pine forests in North Carolina ~20 months earlier. It is likely that the slightly different ecosystems, time of year and the precursor variability all contributed to the variability in plume chemistry observed in this study and in the literature. The ΔHCN/ΔCO emission ratio, however, is fairly consistent at 0.9 ± 0.06 % for airborne fire measurements in coniferous-dominated ecosystems further confirming the value of HCN as a good biomass burning indicator/tracer. The SC results also support an earlier finding that C3-C4 alkynes may be of use as biomass burning indicators on the time-scale of

  19. Specific heats of degenerate ideal gases

    OpenAIRE

    Caruso, Francisco; Oguri, Vitor; Silveira, Felipe

    2017-01-01

    From arguments based on Heisenberg's uncertainty principle and Pauli's exclusion principle, the molar specific heats of degenerate ideal gases at low temperatures are estimated, giving rise to values consistent with the Nerst-Planck Principle (third law of Thermodynamics). The Bose-Einstein condensation phenomenon based on the behavior of specific heat of massive and non-relativistic boson gases is also presented.

  20. 40 CFR 86.1514 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... carbon monoxide on a dry basis. (b) If the raw CO sampling system specified in 40 CFR part 1065 is used, the analytical gases specified in 40 CFR part 1065, subpart H, shall be used. (c) If a CVS sampling system is used, the analytical gases specified in 40 CFR part 1065, subpart H, shall be used....

  1. 40 CFR 91.312 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... stated by the gas supplier for each calibration gas. (b) Pure gases. The required purity of the gases is... purified synthetic air which contains a concentration of propane higher than what a gas supplier considers... manufacturer must be consistent in the choice of diluent (zero air or purified nitrogen) between...

  2. Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño

    Science.gov (United States)

    Stockwell, Chelsea E.; Jayarathne, Thilina; Cochrane, Mark A.; Ryan, Kevin C.; Putra, Erianto I.; Saharjo, Bambang H.; Nurhayati, Ati D.; Albar, Israr; Blake, Donald R.; Simpson, Isobel J.; Stone, Elizabeth A.; Yokelson, Robert J.

    2016-09-01

    Peat fires in Southeast Asia have become a major annual source of trace gases and particles to the regional-global atmosphere. The assessment of their influence on atmospheric chemistry, climate, air quality, and health has been uncertain partly due to a lack of field measurements of the smoke characteristics. During the strong 2015 El Niño event we deployed a mobile smoke sampling team in the Indonesian province of Central Kalimantan on the island of Borneo and made the first, or rare, field measurements of trace gases, aerosol optical properties, and aerosol mass emissions for authentic peat fires burning at various depths in different peat types. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared spectroscopy, whole air sampling, photoacoustic extinctiometers (405 and 870 nm), and a small subset of the data from analyses of particulate filters. The trace gas measurements provide emission factors (EFs; grams of a compound per kilogram biomass burned) for up to ˜ 90 gases, including CO2, CO, CH4, non-methane hydrocarbons up to C10, 15 oxygenated organic compounds, NH3, HCN, NOx, OCS, HCl, etc. The modified combustion efficiency (MCE) of the smoke sources ranged from 0.693 to 0.835 with an average of 0.772 ± 0.053 (n = 35), indicating essentially pure smoldering combustion, and the emissions were not initially strongly lofted. The major trace gas emissions by mass (EF as g kg-1) were carbon dioxide (1564 ± 77), carbon monoxide (291 ± 49), methane (9.51 ± 4.74), hydrogen cyanide (5.75 ± 1.60), acetic acid (3.89 ± 1.65), ammonia (2.86 ± 1.00), methanol (2.14 ± 1.22), ethane (1.52 ± 0.66), dihydrogen (1.22 ± 1.01), propylene (1.07 ± 0.53), propane (0.989 ± 0.644), ethylene (0.961 ± 0.528), benzene (0.954 ± 0.394), formaldehyde (0.867 ± 0.479), hydroxyacetone (0.860 ± 0.433), furan (0.772 ± 0.035), acetaldehyde (0.697 ± 0.460), and acetone (0.691 ± 0.356). These field data support significant revision

  3. Thermalization of Gases: A First Principles Approach

    CERN Document Server

    Chafin, Clifford

    2015-01-01

    Previous approaches of emergent thermalization for condensed matter based on typical wavefunctions are extended to generate an intrinsically quantum theory of gases. Gases are fundamentally quantum objects at all temperatures, by virtue of rapid delocalization of their constituents. When there is a sufficiently broad spread in the energy of eigenstates, a well-defined temperature is shown to arise by photon production when the samples are optically thick. This produces a highly accurate approximation to the Planck distribution so that thermalization arises from the initial data as a consequence of purely quantum and unitary dynamics. These results are used as a foil for some common hydrodynamic theory of ultracold gases. It is suggested here that strong history dependence typically remains in these gases and so limits the validity of thermodynamics in their description. These problems are even more profound in the extension of hydrodynamics to such gases when they are optically thin, even when their internal ...

  4. Driven fragmentation of granular gases.

    Science.gov (United States)

    Cruz Hidalgo, Raúl; Pagonabarraga, Ignacio

    2008-06-01

    The dynamics of homogeneously heated granular gases which fragment due to particle collisions is analyzed. We introduce a kinetic model which accounts for correlations induced at the grain collisions and analyze both the kinetics and relevant distribution functions these systems develop. The work combines analytical and numerical studies based on direct simulation Monte Carlo calculations. A broad family of fragmentation probabilities is considered, and its implications for the system kinetics are discussed. We show that generically these driven materials evolve asymptotically into a dynamical scaling regime. If the fragmentation probability tends to a constant, the grain number diverges at a finite time, leading to a shattering singularity. If the fragmentation probability vanishes, then the number of grains grows monotonously as a power law. We consider different homogeneous thermostats and show that the kinetics of these systems depends weakly on both the grain inelasticity and driving. We observe that fragmentation plays a relevant role in the shape of the velocity distribution of the particles. When the fragmentation is driven by local stochastic events, the long velocity tail is essentially exponential independently of the heating frequency and the breaking rule. However, for a Lowe-Andersen thermostat, numerical evidence strongly supports the conjecture that the scaled velocity distribution follows a generalized exponential behavior f(c) approximately exp(-cn) , with n approximately 1.2 , regarding less the fragmentation mechanisms.

  5. Greenhouse Trace Gases in Deadwood

    Science.gov (United States)

    Covey, Kristofer; Bueno de Mesquita, Cliff; Oberle, Brad; Maynard, Dan; Bettigole, Charles; Crowther, Thomas; Duguid, Marlyse; Steven, Blaire; Zanne, Amy; Lapin, Marc; Ashton, Mark; Oliver, Chad; Lee, Xuhui; Bradford, Mark

    2016-04-01

    Deadwood, long recognized as playing an important role in carbon cycling in forest ecosystems, is more recently drawing attention for its potential role in the cycling of other greenhouse trace gases. We report data from four independent studies measuring internal gas concentrations in deadwood in in three Quercus dominated upland forest systems in the Northeastern and Central United States. Mean methane concentrations in deadwood were 23 times atmospheric levels, indicating a lower bound, mean radial wood surface area flux of ~6 x 10-4 μmol CH4 m-2 s-1. Site, decay class, diameter, and species were all highly significant predictors of methane abundance in deadwood, and log diameter and decay stage interacted as important controls limiting methane concentrations in the smallest and most decayed logs. Nitrous oxide concentrations were negatively correlated with methane and on average ~25% lower than ambient, indicating net consumption of nitrous oxide. These data suggest nonstructural carbohydrates fuel archaeal methanogens and confirm the potential for widespread in situ methanogenesis in both living and deadwood. Applying this understanding to estimate methane emissions from microbial activity in living trees implies a potential global flux of 65.6±12.0 Tg CH4 yr-1, more than 20 times greater than currently considered.

  6. A kinetic approach to granular gases

    OpenAIRE

    Puglisi, A.; Loreto, V.; Marconi, U. Marini Bettolo; Vulpiani, A.

    1998-01-01

    We address the problem of the so-called ``granular gases'', i.e. gases of massive particles in rapid movement undergoing inelastic collisions. We introduce a class of models of driven granular gases for which the stationary state is the result of the balance between the dissipation and the random forces which inject energies. These models exhibit a genuine thermodynamic limit, i.e. at fixed density the mean values of kinetic energy and dissipated energy per particle are independent of the num...

  7. Organizations

    DEFF Research Database (Denmark)

    Hatch, Mary Jo

    Most of us recognize that organizations are everywhere. You meet them on every street corner in the form of families and shops, study in them, work for them, buy from them, pay taxes to them. But have you given much thought to where they came from, what they are today, and what they might become...... in the future? How and why do they have so much influence over us, and what influences them? How do they contribute to and detract from the meaningfulness of lives, and how might we improve them so they better serve our needs and desires? This Very Short Introductions addresses all of these questions...

  8. Center for Corporate Climate Leadership: Direct Fugitive Emissions from Refrigeration, Air Conditioning, Fire Suppression, and Industrial Gases

    Science.gov (United States)

    This guidance document focuses on several fugitive emissions sources that are common for organizations in many sectors: refrigeration and air conditioningsystems, fire suppression systems, and the purchase and release of industrial gases.

  9. Phase space methods for degenerate quantum gases

    CERN Document Server

    Dalton, Bryan J; Barnett, Stephen M

    2015-01-01

    Recent experimental progress has enabled cold atomic gases to be studied at nano-kelvin temperatures, creating new states of matter where quantum degeneracy occurs - Bose-Einstein condensates and degenerate Fermi gases. Such quantum states are of macroscopic dimensions. This book presents the phase space theory approach for treating the physics of degenerate quantum gases, an approach already widely used in quantum optics. However, degenerate quantum gases involve massive bosonic and fermionic atoms, not massless photons. The book begins with a review of Fock states for systems of identical atoms, where large numbers of atoms occupy the various single particle states or modes. First, separate modes are considered, and here the quantum density operator is represented by a phase space distribution function of phase space variables which replace mode annihilation, creation operators, the dynamical equation for the density operator determines a Fokker-Planck equation for the distribution function, and measurable...

  10. Optical anisotropy in GaSe

    Energy Technology Data Exchange (ETDEWEB)

    Seyhan, A.; Karabulut, O.; Akinoglu, B.G.; Aslan, B.; Turan, R. [Department of Physics, Middle East Technical University, 06531, Ankara (Turkey)

    2005-09-01

    Optical anisotropy of the layer semiconductor GaSe has been studied by photoluminescence (PL) and Fourier Transform Infrared Spectroscopy (FTIR). The PL spectra are dominated by two closely positioned emission bands resulting from the free exciton and the bound exciton connected direct band edge of GaSe. Photoluminescence and transmission spectra of GaSe crystals have been measured for two cases in which the propagation vector k is perpendicular (k perpendicular to c) and parallel to the c-axis (k//c). Peak position of the PL emission band and the onset of the transmission have been found to be significantly different for these two cases. This observed anisotropy is related to anisotropic band structure and the selection rules for the optical absorption in layered GaSe. FTIR transmission spectrum is in good agreement with PL results. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Noble Gases in the Lunar Regolith

    Institute of Scientific and Technical Information of China (English)

    邹永廖; 徐琳; 欧阳自远

    2003-01-01

    The most fundamental character of lunar soil is its high concentrations of solar-windimplanted dements,and the concentrations and behavior of the noble gases He,Ne,Ar,and Xe,which provide unique and extensive information about a broad range of fundamental problems. In this paper,the authors studied the forming mechanism of lunar regolith,and proposed that most of the noble gases in lunar regolith come from the solar wind. Meteoroid bombardment controls the maturity of lunar soil,with the degree of maturation decreasing with grain size; the concentrations of the noble gases would be of slight variation with the depth of lunar soil but tend to decrease with grain size. In addition,the concentrations of noble gases in lunar soil also show a close relationship with its mineral and chemical compositions. The utilization prospects of the noble gas s He in lunar regolith will be further discussed.

  12. Genetic Types and Distribution of CO2 Gases in the Huanghua Depression

    Institute of Scientific and Technical Information of China (English)

    JinZhenkui; BaiWuhou; ZhangXiangxiang

    2005-01-01

    CO2 gas is a nonhydroearbon gas, with a high economic value and a broad prospect for application. In the Huanghua Depression, there exist many genetic types of CO2 gases, i.e. organic CO2, thermal metamorphic CO2 and crust-mantle mixed CO2. The distribution of different types of CO2 gases is controlled by different factors. Organic CO2 that occurs mainly around the oil-generating center is associated with hydrocarbon gases as a secondary product and commonly far away from large faults. Thermal metamorphic CO2 occurs mainly in areas where carbonate strata are developed and igneous activity is strong, and tends to accumulate near large faults. CO2 of such an origin is higher in concentration than organic CO2, but lower than crust-mantle mixed CO2. Crust-mantle mixed CO2 occurs mainly along large faults. Its distribution is limited, but its purity is the highest.

  13. Discrimination of abiogenic and biogenic alkane gases

    Institute of Scientific and Technical Information of China (English)

    DAI JinXing; MI JingKui; LI ZhiSheng; HU AnPing; YANG Chun; ZHOU QingHua; SHUAI YanHua; ZHANG Ying; MA ChengHua; ZOU CaiNeng; ZHANG ShuiChang; LI Jian; NI YunYan; HU GuoYi; LUO Xia; TAO ShiZhen; ZHU GuangYou

    2008-01-01

    We have combined the analytical data of the carbon isotope distribution pattern, R/Ra and cliche values of abiogenic and biogenic (referring to the therrnogenic and bacterial or microbial) alkane gases in China with those of alkane gases from USA, Russia, Germany, Australia and other countries. Four discrimination criteria are derived from this comparative study: 1) Carbon isotopic composition is generally greater than -30‰ for abiogenic methane and less than -30‰ for biogenic methane; 2)Abiogenic alkane gases have a carbon isotopic reversal trend (Δ13c1>Δ13c2>Δ13c3>Δ13c4) with Δ13c1>-30‰ in general; 3) Gases with R/Ra>0.5 and Δ13c1- Δ13c2>0 are of abiogenic origin; 4) Gases (methane) with CH4/3He≤106 are of abiogenic origin, whereas gases with CH4/3He≥1011 are of biogenic origin.

  14. Discrimination of abiogenic and biogenic alkane gases

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    We have combined the analytical data of the carbon isotope distribution pattern, R/Ra and CH4/3He values of abiogenic and biogenic (referring to the thermogenic and bacterial or microbial) alkane gases in China with those of alkane gases from USA, Russia, Germany, Australia and other countries. Four discrimination criteria are derived from this comparative study: 1) Carbon isotopic composition is generally greater than -30‰ for abiogenic methane and less than -30‰ for biogenic methane; 2) Abiogenic alkane gases have a carbon isotopic reversal trend (δ 13C1> δ 13C2> δ 13C3> δ 13C4) with δ 13C1>-30‰ in general; 3) Gases with R/Ra >0.5 and δ 13C11 δ 13C2>0 are of abiogenic origin; 4) Gases (meth- ane) with CH4/3He≤106 are of abiogenic origin, whereas gases with CH4/3He≥1011 are of biogenic origin.

  15. Thermal maps of gases in heterogeneous reactions

    Science.gov (United States)

    Jarenwattananon, Nanette N.; Glöggler, Stefan; Otto, Trenton; Melkonian, Arek; Morris, William; Burt, Scott R.; Yaghi, Omar M.; Bouchard, Louis-S.

    2013-10-01

    More than 85 per cent of all chemical industry products are made using catalysts, the overwhelming majority of which are heterogeneous catalysts that function at the gas-solid interface. Consequently, much effort is invested in optimizing the design of catalytic reactors, usually by modelling the coupling between heat transfer, fluid dynamics and surface reaction kinetics. The complexity involved requires a calibration of model approximations against experimental observations, with temperature maps being particularly valuable because temperature control is often essential for optimal operation and because temperature gradients contain information about the energetics of a reaction. However, it is challenging to probe the behaviour of a gas inside a reactor without disturbing its flow, particularly when trying also to map the physical parameters and gradients that dictate heat and mass flow and catalytic efficiency. Although optical techniques and sensors have been used for that purpose, the former perform poorly in opaque media and the latter perturb the flow. NMR thermometry can measure temperature non-invasively, but traditional approaches applied to gases produce signals that depend only weakly on temperature are rapidly attenuated by diffusion or require contrast agents that may interfere with reactions. Here we present a new NMR thermometry technique that circumvents these problems by exploiting the inverse relationship between NMR linewidths and temperature caused by motional averaging in a weak magnetic field gradient. We demonstrate the concept by non-invasively mapping gas temperatures during the hydrogenation of propylene in reactors packed with metal nanoparticles and metal-organic framework catalysts, with measurement errors of less than four per cent of the absolute temperature. These results establish our technique as a non-invasive tool for locating hot and cold spots in catalyst-packed gas-solid reactors, with unprecedented capabilities for testing

  16. Thermal maps of gases in heterogeneous reactions.

    Science.gov (United States)

    Jarenwattananon, Nanette N; Glöggler, Stefan; Otto, Trenton; Melkonian, Arek; Morris, William; Burt, Scott R; Yaghi, Omar M; Bouchard, Louis-S

    2013-10-24

    More than 85 per cent of all chemical industry products are made using catalysts, the overwhelming majority of which are heterogeneous catalysts that function at the gas-solid interface. Consequently, much effort is invested in optimizing the design of catalytic reactors, usually by modelling the coupling between heat transfer, fluid dynamics and surface reaction kinetics. The complexity involved requires a calibration of model approximations against experimental observations, with temperature maps being particularly valuable because temperature control is often essential for optimal operation and because temperature gradients contain information about the energetics of a reaction. However, it is challenging to probe the behaviour of a gas inside a reactor without disturbing its flow, particularly when trying also to map the physical parameters and gradients that dictate heat and mass flow and catalytic efficiency. Although optical techniques and sensors have been used for that purpose, the former perform poorly in opaque media and the latter perturb the flow. NMR thermometry can measure temperature non-invasively, but traditional approaches applied to gases produce signals that depend only weakly on temperature are rapidly attenuated by diffusion or require contrast agents that may interfere with reactions. Here we present a new NMR thermometry technique that circumvents these problems by exploiting the inverse relationship between NMR linewidths and temperature caused by motional averaging in a weak magnetic field gradient. We demonstrate the concept by non-invasively mapping gas temperatures during the hydrogenation of propylene in reactors packed with metal nanoparticles and metal-organic framework catalysts, with measurement errors of less than four per cent of the absolute temperature. These results establish our technique as a non-invasive tool for locating hot and cold spots in catalyst-packed gas-solid reactors, with unprecedented capabilities for testing

  17. Kinetic theory the nature of gases and of heat

    CERN Document Server

    Brush, Stephen G

    1965-01-01

    Kinetic Theory, Volume I: The Nature of Gases and of Heat covers the developments in area of kinetic theory, statistical mechanics, and thermodynamics. This book is organized into two parts encompassing 11 chapters. The book starts with an overview of the history of atomism, the caloric theory, the conservation of energy, the virial theorem, and atomic magnitudes. The second part deals first with the delineation of observed phenomena of motions through the repulsion theory. This part also considers other forces of nature, including fire and heat, with emphasis on the nature of motion of these

  18. 40 CFR 86.514-78 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Analytical gases. 86.514-78 Section 86.514-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Later New Motorcycles; Test Procedures § 86.514-78 Analytical gases. (a) Analyzer gases. (1) Gases...

  19. 40 CFR 86.114-94 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Analytical gases. 86.114-94 Section 86.114-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED...-Duty Vehicles; Test Procedures § 86.114-94 Analytical gases. (a) Analyzer gases. (1) Gases for the...

  20. 40 CFR 86.1214-85 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Analytical gases. 86.1214-85 Section 86.1214-85 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Methanol-Fueled Heavy-Duty Vehicles § 86.1214-85 Analytical gases. (a) Analyzer gases. (1) Gases for...

  1. Processes to remove acid forming gases from exhaust gases

    Science.gov (United States)

    Chang, S.G.

    1994-09-20

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO[sub 2]; (B) contacting the gas sample of step (A) comprising NO[sub 2] with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0 and 100 C at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environmentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed. 16 figs.

  2. Emission factors for open and domestic biomass burning for use in atmospheric models

    Science.gov (United States)

    S. K. Akagi; R. J. Yokelson; C. Wiedinmyer; M. J. Alvarado; J. S. Reid; T. Karl; J. D. Crounse; P. O. Wennberg

    2010-01-01

    Biomass burning (BB) is the second largest source of trace gases and the largest source of primary fine carbonaceous particles in the global troposphere. Many recent BB studies have provided new emission factor (EF) measurements. This is especially 5 true for non methane organic compounds (NMOC), which influence secondary organic aerosol (SOA) and ozone formation. New...

  3. Broader perspectives for comparing different greenhouse gases.

    Science.gov (United States)

    Manning, Martin; Reisinger, Andy

    2011-05-28

    Over the last 20 years, different greenhouse gases have been compared, in the context of climate change, primarily through the concept of global warming potentials (GWPs). This considers the climate forcing caused by pulse emissions and integrated over a fixed time horizon. Recent studies have shown that uncertainties in GWP values are significantly larger than previously thought and, while past literature in this area has raised alternative means of comparison, there is not yet any clear alternative. We propose that a broader framework for comparing greenhouse gases has become necessary and that this cannot be addressed by using simple fixed exchange rates. From a policy perspective, the framework needs to be clearly aligned with the goal of climate stabilization, and we show that comparisons between gases can be better addressed in this context by the forcing equivalence index (FEI). From a science perspective, a framework for comparing greenhouse gases should also consider the full range of processes that affect atmospheric composition and how these may alter for climate stabilization at different levels. We cover a basis for a broader approach to comparing greenhouse gases by summarizing the uncertainties in GWPs, linking those to uncertainties in the FEIs consistent with stabilization, and then to a framework for addressing uncertainties in the corresponding biogeochemical processes.

  4. Emissions of greenhouse gases in the United States, 1985--1990

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-10

    The Earth`s capacity to support life depends on the moderating influences of gases that envelop the planet and warm its surface and protect it from harmful radiation. These gases are referred to as ``greenhouse gases.`` Their warming capacity, called ``the greenhouse effect,`` is essential to maintaining a climate hospitable to all plant, animal, and human life. In recent years, however, there has been increasing concern that human activity may be affecting the intricate balance between the Earth`s absorption of heat from the sun and its capacity to reradiate excess heat back into space. Emissions of greenhouse gases from human activities may be an important mechanism that affects global climate. Thus, research is intensifying to improve our understanding of the role human activities might play in influencing atmospheric concentrations of greenhouse gases. On the basis of scientific findings of the past few decades, the US Government and the international community at large are now taking steps toward stabilizing greenhouse gas emissions. This report contributes to that process. Mandated by Congress this report provides estimates of US emissions of the principal greenhouse gases--carbon dioxide, methane, nitrous oxide, chlorofluorcarbons, carbon monoxide, nitrogen oxides, and nonmethane volatile organic compounds. Estimates are for the period 1985 to 1990. Preliminary estimates for 1991 have also been included, whenever data were available.

  5. Methanol production from fermentor off-gases

    Science.gov (United States)

    Dale, B. E.; Moreira, A. R.

    The off gases from an acetone butanol fermentation facility are composed mainly of CO2 and H2. Such a gas stream is an ideal candidate as a feed to a methanol synthesis plant utilizing modern technology recently developed and known as the CDH-methanol process. A detailed economic analysis for the incremental cost of a methanol synthesis plant utilizing the off gases from an acetone butanol fermentation indicates a profitable rate of return of 25 to 30% under the most likely production conditions. Bench scale studies at different fermentor mixing rates indicate that the volume of gases released during the fermentation is a strong function of the agitation rate and point to a potential interaction between the volume of H2 evolved and the levels of butanol present in the final fermented broth. Such interaction may require establishing optimum operating conditions for an integrated butanol fermentation methanol synthesis plant.

  6. Absorption of Soluble Gases by Atmospheric Nanoaerosols

    CERN Document Server

    Elperin, Tov; Krasovitov, Boris; Lushnikov, Alexey

    2012-01-01

    We investigate mass transfer during absorption of atmospheric trace soluble gases by a single droplet whose size is comparable to the molecular mean free path in air at normal conditions. It is assumed that the trace reactant diffuses to the droplet surface and then reacts with the substances inside the droplet according to the first order rate law. Our analysis applies a flux-matching theory of transport processes in gases and assumes constant thermophysical properties of the gases and liquids. We derive an integral equation of Volterra type for the transient molecular flux density to a liquid droplet and solve it numerically. Numerical calculations are performed for absorption of sulfur dioxide (SO2), dinitrogen trioxide (N2O3) and chlorine (Cl2) by liquid nanoaerosols accompanied by chemical dissociation reaction. It is shown that during gas absorption by nanoaerosols the kinetic effects play significant role, and neglecting kinetic effects leads to significant overestimation of the soluble gas flux into a...

  7. GREENHOUSE GASES AND MEANS OF PREVENTION

    Directory of Open Access Journals (Sweden)

    Dušica Stojanović

    2013-09-01

    Full Text Available The greenhouse effect can be defined as the consequence of increased heating of the Earth's surface, as well as the lower atmosphere by carbon dioxide, water vapor, and other trace amounts gases. It is well-known that human industrial activities have released large amounts of greenhouse gases in the atmosphere, about 900 billion tons of carbon dioxide, and it is estimated that up to 450 billion are still in the atmosphere. In comparison to greenhouse gases water vapor is one of the greatest contributors to the greenhouse effect on Earth. Many projects, as does the PURGE project, have tendences to build on the already conducted research and to quantify the positive and negative impacts on health and wellbeing of the population with greenhouse gas reduction strategies that are curently being implemented and should be increasingly applied in various sectors and urban areas, having offices in Europe, China and India.

  8. Dark lump excitations in superfluid Fermi gases

    Institute of Scientific and Technical Information of China (English)

    Xu Yan-Xia; Duan Wen-Shan

    2012-01-01

    We study the linear and nonlinear properties of two-dimensional matter-wave pulses in disk-shaped superfluid Fermi gases.A Kadomtsev Petviashvili I (KPI) solitary wave has been realized for superfluid Fermi gases in the limited cases of Bardeen-Cooper-Schrieffer (BCS) regime,Bose-Einstein condensate (BEC) regime,and unitarity regime.Onelump solution as well as one-line soliton solutions for the KPI equation are obtained,and two-line soliton solutions with the same amplitude are also studied in the limited cases.The dependence of the lump propagating velocity and the sound speed of two-dimensional superfluid Fermi gases on the interaction parameter are investigated for the limited cases of BEC and unitarity.

  9. Epiphytic cryptogams as a source of bioaerosols and trace gases

    Science.gov (United States)

    Ruckteschler, Nina; Hrabe de Angelis, Isabella; Zartman, Charles E.; Araùjo, Alessandro; Pöschl, Ulrich; Manzi, Antonio O.; Andreae, Meinrat O.; Pöhlker, Christopher; Weber, Bettina

    2016-04-01

    Cryptogamic covers comprise (cyano-)bacteria, algae, lichens, bryophytes, fungi, and archaea in varying proportions. These organisms do not form flowers, but reproduce by spores or cell cleavage with these reproductive units being dispersed via the atmosphere. As so-called poikilohydric organisms they are unable to regulate their water content, and their physiological activity pattern mainly follows the external water conditions. We hypothesize, that both spore dispersal and the release of trace gases are governed by the moisture patterns of these organisms and thus they could have a greater impact on the atmosphere than previously thought. In order to test this hypothesis, we initiated experiments at the study site Amazonian Tall Tower Observatory (ATTO) in September 2014. We installed microclimate sensors in epiphytic cryptogams at four different heights of a tree to monitor the activity patterns of these organisms. Self-developed moisture probes are used to analyze the water status of the organisms accompanied by light and temperature sensors. The continuously logged data are linked to ongoing measurements of trace gases and particulate bioaerosols to analyze these for the relevance of cryptogams. Here, we are particularly interested in diurnal cycles of coarse mode particles and the atmospheric abundance of fine potassium-rich particles from a currently unknown biogenic source. Based upon the results of this field study we also investigate the bioaerosol and trace gas release patterns of cryptogamic covers under controlled conditions. With this combined approach of field and laboratory experiments we aim to disclose the role of cryptogamic covers in bioaerosol and trace gas release patterns in the Amazonian rainforest.

  10. Nanoclusters and Microparticles in Gases and Vapors

    CERN Document Server

    Smirnov, Boris M

    2012-01-01

    Research of processes involving Nanoclusters and Microparticleshas been developing fastin many fields of rescent research, in particular in materials science. To stay at the cutting edge of this development, a sound understanding of the processes is needed. In this work, several processes involving small particles are described, such as transport processes in gases, charging of small particles in gases, chemical processes, atom attachment and quenching of excited atomic particles on surfaces, nucleation, coagulation, coalescence and growth processes for particles and aggregates. This work pres

  11. Blackbody Radiation in Optically Thick Gases?

    Directory of Open Access Journals (Sweden)

    Robitaille P.-M.

    2014-07-01

    Full Text Available In this work, the claim that optically thick gases can emit as blackbodies is refuted. The belief that such behavior exists results from an improper consideration of heat transfer and reflection. When heat is injected into a gas, the energy is primarily redistributed into translational degrees of freedom and is not used to drive emission. The average kinetic energy of the particles in the system simply increases and the temperature rises. In this respect, it is well-know that the emissivity of a gas can drop with increasing temperature. Once reflection and translation are properly considered, it is simple to understand why gases can never emit as blackbodies.

  12. Investigations into electrical discharges in gases

    CERN Document Server

    Klyarfel'D, B N

    2013-01-01

    Investigations into Electrical Discharges in Gases is a compilation of scientific articles that covers the advances in the investigation of the fundamental processes occurring in electrical discharges in gases and vapors. The book details the different aspects of the whole life cycle of an arc, which include the initiation of a discharge, its transition into an arc, the lateral spread of the arc column, and the recovery of electric strength after extinction of an arc. The text also discusses the methods for the dynamic measurement of vapor density in the vicinity of electrical discharges, alon

  13. Greenhouse gases and the metallurgical process industry

    Energy Technology Data Exchange (ETDEWEB)

    Lupis, C.H.P.

    1999-10-01

    The present lecture offers a brief review of the greenhouse effect, the sources of greenhouse gases, the potential effect of these gases on global warming, the response of the international community, and the probable cost of national compliance. The specific emissions of the metallurgical process industry, particularly those of the steel and aluminum sectors, are then examined. The potential applications of life-cycle assessments and of an input-output model in programs of emissions' abatement are investigated, and, finally, a few remarks on some implications for education are presented.

  14. Composition of gases vented from a condenser

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, R.N.

    1980-08-01

    Designers of systems that involve condensers often need to predict the amount of process vapor that accompanies the noncondensable gases that are vented from the condensers. An approximation is given that appears to provide, in many cases, reasonably accurate values for the mole ratio of process vapor to noncondensable gases in the vented mixture. The approximation is particularly applicable to flash and direct-contact power systems for geothermal brines and ocean thermal energy conversion (OTEC). More regorous relationships are available for exceptional cases.

  15. Itinerant Ferromagnetism in Ultracold Fermi Gases

    DEFF Research Database (Denmark)

    Heiselberg, Henning

    2012-01-01

    Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC. Thermodyna......Itinerant ferromagnetism in cold Fermi gases with repulsive interactions is studied applying the Jastrow-Slater approximation generalized to finite polarization and temperature. For two components at zero temperature a second order transition is found at akF ≃ 0.90 compatible with QMC...

  16. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 1: Gases and Vacua presents three major topics, which are the fourth to sixth parts of this volume. These topics are the remarks on units of physical quantities; kinetic theory of gases and gaseous flow; and theory of vacuum diffusion pumps. The first topic aims to present concisely the significance of units of physical quantities, catering the need and interest of those who take measurements and make calculations in different fields of vacuum sciences. The technique and applications of this particular topic are also provided. The second main topic focuses sp

  17. Measuring Viscosities of Gases at Atmospheric Pressure

    Science.gov (United States)

    Singh, Jag J.; Mall, Gerald H.; Hoshang, Chegini

    1987-01-01

    Variant of general capillary method for measuring viscosities of unknown gases based on use of thermal mass-flowmeter section for direct measurement of pressure drops. In technique, flowmeter serves dual role, providing data for determining volume flow rates and serving as well-characterized capillary-tube section for measurement of differential pressures across it. New method simple, sensitive, and adaptable for absolute or relative viscosity measurements of low-pressure gases. Suited for very complex hydrocarbon mixtures where limitations of classical theory and compositional errors make theoretical calculations less reliable.

  18. Low-mature gases and typical low-mature gas fields in China

    Institute of Scientific and Technical Information of China (English)

    XU YongChang; WANG ZhiYong; WANG XiaoFeng; ZHENG JianJing; DU HongYu

    2008-01-01

    No natural gas pool of industrial importance could be formed at the low-evolution stage of organic matter. In the 1980s, on the basis of the development in exploration practice, the hypotheses of bio-thermo-catalytic transitional zone gases and early thermogenic gases were proposed. The lower-limit Ro values for the formation and accumulation of natural gases of industrial importance have been expanded to 0.3%-0.4%. In the light of the two-stage model established on the basis of carbon isotope fractionation in coal-type natural gases, the upper-limit Ro values have been set at 0.8%-1.0%.In terms of the geological practice in the low-mature gas zones and China's main coal-type gas fields, it is feasible and proper to set the upper-limit Ro value of low-mature gases at 0.8%. Supper-large gas fields such as the Urengoy gas field in western Siberian Basin should belong to low-mature gas fields,of which the natural gas reserves account for more than 20% of the global proven reserves, providing strong evidence for the significance of such a type of resources. The proven natural gas reserves in the Turpan-Hami Basin of China have almost reached 1000 X 108 m3. The main source rocks in this area are the Jurassic Xishanyao Formation, which occurs as a suite of coal series strata. The corresponding designated to coal-type low-mature gases. The light hydrocarbon evolution indices of natural gases also fall within the area of low evolution while the precursor type of light hydrocarbons also shows the characteristics of the coal-type. The geological background, carbon isotopic composition and light hydrocarbon index all provide strong evidence suggesting that the proven natural gases in the Turpan-Hami Basin are low-mature gases. In China a gas field with the gas reserves reaching 300 X108 m3 can be defined as a large gas field, and thus the proven low-mature gases in the Turpan-Hami Basin are equivalent to the reserves of three large gas fields. Its existence is of great

  19. Thermodynamic property of gases in the sonoluminescing bubble

    Institute of Scientific and Technical Information of China (English)

    AN Yu; LI Guiqin; ZHOU Tieying

    2001-01-01

    With the theory of statistical physics dealing with chemical reaction (the law of mass action), the different thermodynamic property of noble gases (mono-atomic gases) in a small bubble and diatomic gases in a small bubble semi-quantitatively are analyzed. As bubbles of the mono-atomic and the diatomic gases are compressed, shock waves are produced in both bubbles. Though shock wave leads to sharp increase of pressure and temperature of gases in the bubble, diatomic gas will excitated vibrations and dissociate themselves to mono-atomic gas,these processes will consume many accumulated heat energy and block the further increase of the temperature. Therefore, compare with the mono-atomic gases in the bubble, there will be no enough charged particles ionized to flash for diatomic gases in the bubble, this may be the reason why a bubble of diatomic gases has no single bubble sonoluminescence while a bubble of noble gases has.

  20. Three Toxic Gases Meet in the Mitochondria

    Directory of Open Access Journals (Sweden)

    Richard A Decreau

    2015-08-01

    Full Text Available The rationale of the study was two-fold : (i develop a functional synthetic model of the Cytochrome c oxidase (CcO active site, (ii use it as a convenient tool to understand or predict the outcome of the reaction of CcO with ligands (physiologically relevant gases and other ligands. At physiological pH and potential, the model catalyzes the 4-electron reduction of oxygen. This model was immobilized on self-assembled-monolayer (SAM modified electrode. During catalytic oxygen reduction, electron delivery through SAMs is rate limiting, similar to the situation in CcO. This model contains all three redox-active components in CcO’s active site, which are required to minimize the production of partially-reduced-oxygen-species (PROS: Fe¬-heme (heme a3 in a myoglobin-like model fitted with a proximal imidazole ligand, and a distal tris-imidazole Copper (CuB complex, where one imidazole is cross-linked to a phenol (mimicking Tyr244. This functional CcO model demonstrates how CcO itself might tolerate the hormone NO (which diffuses through the mitochondria. It is proposed that CuB delivers superoxide to NO bound to Fe-heme forming peroxynitrite, then nitrate that diffuses away. Another toxic gas, H2S, has exceptional biological effects: at ~80 ppm, H2S induces a state similar to hibernation in mice, lowering the animal's temperature and slowing respiration. Using our functional CcO model, we have demonstrated that at the same concentration range H2S can reversibly inhibit catalytic oxygen reduction. Such a reversible catalytic process on the model was also demonstrated with an organic compound, tetrazole (TZ. Following studies showed that TZ reversibly inhibits respiration in isolated mitochondria, and induces deactivation of platelets, a mitochondria-rich key component of blood coagulation. Hence, this program is a rare example illustrating the use of a functional model to understand and predict physiologically important reactions at the active site

  1. Emissions Of Greenhouse Gases From Rice Agriculture

    Energy Technology Data Exchange (ETDEWEB)

    M. Aslam K. Khalil

    2009-07-16

    This project produced detailed data on the processes that affect methane and nitrous oxide emissions from rice agriculture and their inter-relationships. It defines the shifting roles and potential future of these gases in causing global warming and the benefits and tradeoffs of reducing emissions. The major results include: 1). Mechanisms and Processes Leading to Methane Emissions are Delineated. Our experiments have tested the standard model of methane emissions from rice fields and found new results on the processes that control the flux. A mathematical mass balance model was used to unravel the production, oxidation and transport of methane from rice. The results suggested that when large amounts of organic matter are applied, the additional flux that is observed is due to both greater production and reduced oxidation of methane. 2). Methane Emissions From China Have Been Decreasing Over the Last Two Decades. We have calculated that methane emissions from rice fields have been falling in recent decades. This decrease is particularly large in China. While some of this is due to reduced area of rice agriculture, the bigger effect is from the reduction in the emission factor which is the annual amount of methane emitted per hectare of rice. The two most important changes that cause this decreasing emission from China are the reduced use of organic amendments which have been replaced by commercial nitrogen fertilizers, and the increased practice of intermittent flooding as greater demands are placed on water resources. 3). Global Methane Emissions Have Been Constant For More Than 20 Years. While the concentrations of methane in the atmosphere have been leveling off in recent years, our studies show that this is caused by a near constant total global source of methane for the last 20 years or more. This is probably because as some anthropogenic sources have increased, others, such as the rice agriculture source, have fallen. Changes in natural emissions appear small

  2. Water-immiscible solvents for the biological treatment of waste gases

    NARCIS (Netherlands)

    Cesario, M.T.

    1997-01-01

    In conventional biological systems for the treatment of waste gases, contaminants are transferred directly to the aqueous phase and then converted by the micro-organisms. When poorly water-soluble pollutants are to be removed, biological degradation is often limited by the slow transport fr

  3. Water-immiscible solvents for the biological treatment of waste gases.

    NARCIS (Netherlands)

    Cesario, M.T.

    1997-01-01

    In conventional biological systems for the treatment of waste gases, contaminants are transferred directly to the aqueous phase and then converted by the micro-organisms. When poorly water-soluble pollutants are to be removed, biological degradation is often limited by the slow transport from the ga

  4. Field theory for trapped atomic gases

    NARCIS (Netherlands)

    Stoof, H.T.C.

    2001-01-01

    In this course we give a selfcontained introduction to the quantum field theory for trapped atomic gases, using functional methods throughout. We consider both equilibrium and nonequilibrium phenomena. In the equilibrium case, we first derive the appropriate Hartree—Fock theory for the properties of

  5. Escape of atmospheric gases from the Moon

    Indian Academy of Sciences (India)

    Da Dao-an; Yang Ya-tian

    2005-12-01

    The escape rate of atmospheric molecules on the Moon is calculated.Based on the assumption that the rates of emission and escape of gases attain equilibrium, the ratio of molecular number densities during day and night, 0/0, can be explained. The plausible emission rate of helium and radioactive elements present in the Moon has also been calculated.

  6. 40 CFR 89.312 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... ppm CO2, ≤ 0.1 ppm NO) (Oxygen content between 18-21 percent vol.) (c) Calibration and span gases. (1... of the NO content); (v) CO2 and purified nitrogen. (3) The true concentration of a span gas must be... approval of the Administrator. (f) Hydrocarbon analyzer burner air. The concentration of oxygen for...

  7. Deviations from Fick's law in Lorentz gases

    NARCIS (Netherlands)

    Lowe, C.P.; Frenkel, D.; Hoef, M.A. van der

    1997-01-01

    We have calculated the self-dynamic structure factorF(k,t) for tagged particle motion in hopping Lorentz gases. We find evidence that, even at long times, the probability distribution function for the displacement of the particles is highly non-Gaussian. At very small values of the wave vector this

  8. Decoherence and damping in ideal gases

    OpenAIRE

    Polonyi, Janos

    2010-01-01

    The particle and current densities are shown to display damping and undergo decoherence in ideal quantum gases. The damping is read off from the equations of motion reminiscent of the Navier-Stokes equations and shows some formal similarity with Landau damping. The decoherence leads to consistent density and current histories with characteristic length and time scales given by the ideal gas.

  9. Deviations from Fick's law in Lorentz gases

    NARCIS (Netherlands)

    Lowe, C.P.; Frenkel, D.; Hoef, M.A. van der

    1997-01-01

    We have calculated the self-dynamic structure factorF(k,t) for tagged particle motion in hopping Lorentz gases. We find evidence that, even at long times, the probability distribution function for the displacement of the particles is highly non-Gaussian. At very small values of the wave vector this

  10. Eco gases for future particle gas detectors

    CERN Document Server

    Kjølbro, Jógvan Nikolaj

    2014-01-01

    Due to global regulations of non environmental refrigerants, some of the gas mixtures used in gas detectors at CERN has to be replaced. This report is a review that summarises and predicts some properties that are important when selecting new gases to operate in the gas detectors.

  11. Field theory for trapped atomic gases

    NARCIS (Netherlands)

    Stoof, H.T.C.

    2001-01-01

    In this course we give a selfcontained introduction to the quantum field theory for trapped atomic gases, using functional methods throughout. We consider both equilibrium and nonequilibrium phenomena. In the equilibrium case, we first derive the appropriate Hartree-Fock theory for the properties of

  12. 40 CFR 92.112 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Analytical gases. 92.112 Section 92.112 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.112 Analytical...

  13. The Chemistry of the noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Chernick, Cedric L. [Agonne National Laboratory

    1967-01-01

    This booklet discusses the 6 noble gases: helium, neon, argon, krypton, xenon, and radon. Until 1962, it was believed that these 6 elements were not able to form chemical compounds. Hence they were called "noble" because they didn't mingle with the common masses of elements.

  14. Mitigation of greenhouse gases from agriculture

    DEFF Research Database (Denmark)

    Schils, R.L.M.; Ellis, J. L.; de Klein, C. A. M.

    2013-01-01

    Models are widely used to simulate the emission of greenhouse gases (GHG). They help to identify knowledge gaps, estimate total emissions for inventories, develop mitigation options and policies, raise awareness and encourage adoption. These models vary in scale, scope and methodological approach...

  15. Electron-Atom Collisions in Gases

    Science.gov (United States)

    Kraftmakher, Yaakov

    2013-01-01

    Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.

  16. Electron-Atom Collisions in Gases

    Science.gov (United States)

    Kraftmakher, Yaakov

    2013-01-01

    Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.

  17. Corinair method for the compilation of national inventories of greenhouse gases and ozone precursors; Metodo Corine-aire para la elaboracion del inventario nacional de gases de efecto invernadero y precursores de ozone

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    The document which is issued as an annex to the first National Communication of Spain to the Framework Convention on Climate Change, describes the method and gives the emission factors used for compiling species inventory of greenhouse gas emissions. Figures are given for emissions of gases by sectors, gases included are: nitrogen oxides, carbon monoxide, volatile organics, methane, total suspended particulates, nitrous oxide, ammonia, sulphur dioxide, carbon dioxide. Distinction is made between emissions in urban and rural areas.

  18. Aerobic Food Waste Composting: Measurement of Green House Gases

    Science.gov (United States)

    Chung, J.

    2016-12-01

    Greenhouse gases (GHGs) are a major cause of global warming. While food waste composting can reduce the amount of waste being sent to traditional landfills, it also produces GHGs during the process. The objective of this research is to evaluate the GHGs emitted from an aerobic food composting machine, which is used in ISF. The Independent Schools Foundation Academy is a private independent school in Hong Kong with approximately 1500 students. Each academic year, the school produces 27 metric tons of food waste. In November 2013, the school installed a food waste composting system. Over the past 3 years, various improvements, such as installing a bio-filter to reduce the smell of the compost, have been made to the composting process. Meanwhile the compost is used by the primary students, as part of their experiential learning curriculum and organic farming projects. The composting process employs two machines: the Dehydra and A900 Rocket. The Dehydra reduces the mass of the food waste by separating the ground food waste and excessive water. The A900 Rocket, a composter made by Tidy Planet, processes food waste into compost in 14 days. This machine runs in an aerobic process, in which oxygen is used as an input gas and gases, such as carbon dioxide, are released. Carbon Dioxide is one of the greenhouse gases (GHGs). This research focuses on GHGs that are emitted from the A900 Rocket. The data is collected by the Gasmet DX 4015, a Fourier transform infrared spectroscopy (FTIR) multi gas analyser. This equipment measures the concentration (ppm) of different GHGs, including N2O, CO2, CH4, NH3 and CO.

  19. Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases

    Energy Technology Data Exchange (ETDEWEB)

    Carlsbad Field Office

    2007-11-13

    The Performance Demonstration Program (PDP) for headspace gases distributes blind audit samples in a gas matrix for analysis of volatile organic compounds (VOCs). Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document

  20. Performance Demonstration Program Plan for Analysis of Simulated Headspace Gases

    Energy Technology Data Exchange (ETDEWEB)

    Carlsbad Field Office

    2007-11-19

    The Performance Demonstration Program (PDP) for headspace gases distributes blind audit samples in a gas matrix for analysis of volatile organic compounds (VOCs). Participating measurement facilities (i.e., fixed laboratories, mobile analysis systems, and on-line analytical systems) are located across the United States. Each sample distribution is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements performed for transuranic (TRU) waste characterization. The primary documents governing the conduct of the PDP are the Quality Assurance Program Document (QAPD) (DOE/CBFO-94-1012) and the Waste Isolation Pilot Plant (WIPP) Waste Analysis Plan (WAP) contained in the Hazardous Waste Facility Permit (NM4890139088-TSDF) issued by the New Mexico Environment Department (NMED). The WAP requires participation in the PDP; the PDP must comply with the QAPD and the WAP. This plan implements the general requirements of the QAPD and the applicable requirements of the WAP for the Headspace Gas (HSG) PDP. Participating measurement facilities analyze blind audit samples of simulated TRU waste package headspace gases according to the criteria set by this PDP Plan. Blind audit samples (hereafter referred to as PDP samples) are used as an independent means to assess each measurement facility’s compliance with the WAP quality assurance objectives (QAOs). To the extent possible, the concentrations of VOC analytes in the PDP samples encompass the range of concentrations anticipated in actual TRU waste package headspace gas samples. Analyses of headspace gases are required by the WIPP to demonstrate compliance with regulatory requirements. These analyses must be performed by measurement facilities that have demonstrated acceptable performance in this PDP. These analyses are referred to as WIPP analyses and the TRU waste package headspace gas samples on which they are performed are referred to as WIPP samples in this document

  1. Tested Demonstrations: Diffusion of Gases--Kinetic Molecular Theory of Gases.

    Science.gov (United States)

    Gilbert, George L., Ed.

    1984-01-01

    Provided are procedures and list of materials needed to demonstrate that the pressure inside a container with a porous surface can be changed due to the rate of diffusion of low molecular weight gases. Typical results obtained are included. (JN)

  2. A Review of Research on Human Activity Induced Climate Change I.Greenhouse Gases and Aerosols

    Institute of Scientific and Technical Information of China (English)

    王明星; 刘强; 杨昕

    2004-01-01

    Extensive research on the sources and sinks of greenhouse gases, carbon cycle modeling, and the characterization of atmospheric aerosols has been carried out in China during the last 10 years or so. This paper presents the major achievements in the fields of emissions of greenhouse gases from agricultural lands,carbon cycle modeling, the characterization of Asian mineral dust, source identification of the precursors of the tropospheric ozone, and observations of the concentrations of atmospheric organic compounds.Special, more detailed information on the emissions of methane from rice fields and the physical and chemical characteristics of mineral aerosols are presented.

  3. Lunar Organic Waste Reformer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Organic Waste Reformer (LOWR) utilizes high temperature steam reformation to convert all plastic, paper, and human waste materials into useful gases. In...

  4. Lunar Organic Waste Reformer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Lunar Organic Waste Reformer (LOWR) utilizes high temperature steam reformation to convert all plastic, paper, and human waste materials into useful gases. In...

  5. Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France)

    Science.gov (United States)

    Baudic, Alexia; Gros, Valérie; Sauvage, Stéphane; Locoge, Nadine; Sanchez, Olivier; Sarda-Estève, Roland; Kalogridis, Cerise; Petit, Jean-Eudes; Bonnaire, Nicolas; Baisnée, Dominique; Favez, Olivier; Albinet, Alexandre; Sciare, Jean; Bonsang, Bernard

    2016-09-01

    Within the framework of air quality studies at the megacity scale, highly time-resolved volatile organic compound (C2-C8) measurements were performed in downtown Paris (urban background sites) from January to November 2010. This unique dataset included non-methane hydrocarbons (NMHCs) and aromatic/oxygenated species (OVOCs) measured by a GC-FID (gas chromatograph with a flame ionization detector) and a PTR-MS (proton transfer reaction - mass spectrometer), respectively. This study presents the seasonal variability of atmospheric VOCs being monitored in the French megacity and their various associated emission sources. Clear seasonal and diurnal patterns differed from one VOC to another as the result of their different origins and the influence of environmental parameters (solar radiation, temperature). Source apportionment (SA) was comprehensively conducted using a multivariate mathematical receptor modeling. The United States Environmental Protection Agency's positive matrix factorization tool (US EPA, PMF) was used to apportion and quantify ambient VOC concentrations into six different sources. The modeled source profiles were identified from near-field observations (measurements from three distinct emission sources: inside a highway tunnel, at a fireplace and from a domestic gas flue, hence with a specific focus on road traffic, wood-burning activities and natural gas emissions) and hydrocarbon profiles reported in the literature. The reconstructed VOC sources were cross validated using independent tracers such as inorganic gases (NO, NO2, CO), black carbon (BC) and meteorological data (temperature). The largest contributors to the predicted VOC concentrations were traffic-related activities (including motor vehicle exhaust, 15 % of the total mass on the annual average, and evaporative sources, 10 %), with the remaining emissions from natural gas and background (23 %), solvent use (20 %), wood-burning (18 %) and a biogenic source (15 %). An important finding of

  6. 40 CFR 86.1723-99 - Required data.

    Science.gov (United States)

    2010-07-01

    ... in emissions of non-methane organic gases, carbon monoxide, oxides of nitrogen and formaldehyde... certifying on natural gas, manufacturers shall multiply the NMOG exhaust certification level for each... the methane exhaust certification level for each emission-data vehicle and the appropriate...

  7. 76 FR 39477 - Revisions and Additions to Motor Vehicle Fuel Economy Label

    Science.gov (United States)

    2011-07-06

    ... Administration NMOG Non-methane Organic Gases NO X Oxides of Nitrogen NPRM Notice of Proposed Rulemaking NTTAA... this domain, consumers' tastes and values change over time. Of course, individual consumers will always.... The experts came from a variety of fields such as advertising and product development and were...

  8. 40 CFR 86.1721-01 - Application for certification.

    Science.gov (United States)

    2010-07-01

    ... vehicles, identification of the energy usage in kilowatt-hours per mile from the point when electricity is... standard phase-in compliance information required in § 86.1844-01 (d)(13) and (e)(4) with respect to the... discontinuity in emissions of non-methane organic gases, carbon monoxide, oxides of nitrogen and...

  9. Studies on the influence of combustion exhaust gases and the products of their reaction with ammonia on the living organism. II. The influence on aspartate aminotransferase (AspAT) and alanine aminotransferase (AiAt) activities in the liver of guinea pig

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowska-Tokarz, A.; Stanosek, J.; Ludyga, K.; Kochanski, L.

    1981-01-01

    The behaviour of aspartate aminotransferase (AspAT) an alanine aminotransferase (AIAT) in the whole homogenate and subcellular liver fractions of guinea pigs exposed to combustion exhaust gases and the neutralization products of these gases is presented in this paper. In the liver of animals exposed to the chronic action of combustion exhaust gases a decrease of both enzyme activities in the whole homogenate as well as in the subcellular fractions could be noted. Statistically significant changes are shown by AspAT. In the group of animals subjected to the action of neutralization products an increase of AIAT activity was observed. The activity of AspAT still shows a decrease, but less distinct in comparison with group I.

  10. Studies on the influence of combustion exhaust gases and the products of their reaction with ammonia on the living organism. II. The influence on aspartate aminotransferase (AspAT) and alanine aminotransferase (AiAt) activities in the liver of guinea pig.

    Science.gov (United States)

    Lewandowska-Tokarz, A; Stanosek, J; Ludyga, K; Kochanski, L

    1981-01-01

    The behaviour of aspartate aminotransferase (AspAT) an alanine aminotransferase (AIAT) in the whole homogenate and subcellular liver fractions of guinea pigs exposed to combustion exhaust gases and the neutralization products of these gases is presented in this paper. In the liver of animals exposed to the chronic action of combustion exhaust gases a decrease of both enzyme activities in the whole homogenate as well as in the subcellular fractions could be noted. Statistically significant changes are shown by AspAT. In the group of animals subjected to the action of neutralization products an increase of AIAT activity was observed. The activity of AspAT still shows a decrease, but less distinct in comparison with group I. An exception here is the mitochondrial fraction in which the AspAT activity is distinctly increased.

  11. Monitoring organic nitrogen species in the UT/LS - a new system for analysis of CARIBIC whole air samples

    Science.gov (United States)

    Sauvage, Carina; Thorenz, Ute; Baker, Angela; Brenninkmeijer, Carl; Williams, Jonathan

    2014-05-01

    The CARIBIC project is a unique program for long term and global scale monitoring of the atmosphere (http://www.caribic-atmospheric.com). An instrument container is installed monthly into a civil aircraft operated by Lufthansa (Airbus A 340-600) and makes atmospheric observations en route from Frankfurt, Germany to various destinations around the globe. In four to six long distance flights at a cruising altitude of 10 to 12 km online measurements of various atmospheric tracers are performed during the flight as well as whole air samples are taken with two different sampling units (116 samples in both glass and stainless steel canisters). These samples are routinely analyzed for greenhouse gases, non-methane hydrocarbons (NMHC) and halogenated compounds. Nitrogen containing compounds play various important roles in the atmosphere. Alkyl nitrates (RONO2) are products of the reaction of NMHC with OH and other oxidants in the presence of NO. They can provide information on the oxidative history of an air mass. Moreover they influence photolchemical ozone formation and act as a transport mechanism for reactive nitrogen. Less reactive nitrogen containing species such as HCN and acetonitrile are important markers for biomass burning, while organic amines are involved in gas to particle partitioning. Finally N2O is a long lived nitrogen containing gas important for the Earth's radiative budget. Regular measurements of such nitrogen compounds would therefore be a significant contribution to the CARIBIC data set. Especially for high altitude samples, in which the mixing ratios of many species are expected to be in the low ppt range, a highly sensitive method for analysis is required. Therefore a new system for measurement of nitrogen compounds has been built up, comprising a gas chromatograph (GC) using a nitrogen chemiluminescence detector (NCD). An important advantage of the NCD is that it is selective for nitrogen and equimolar. The nitrogen compounds are sequentially pre

  12. Reducing the Livestock related green house gases emission

    OpenAIRE

    Indira, D; G Srividya

    2012-01-01

    Cattle rearing generate more global warming green house gases than driving cars. These green house gases leads to changes in the climate. This climate change affects the livestock, man and natural environment continuously. For this reason it is important for livestock farmers to find the ways which minimize these gases emission. In this article the causes of climate change and effects, measures to be taken by farmers and their efficiency in reducing green house gases emission were reviewed br...

  13. Scale-invariant nonlinear optics in gases

    CERN Document Server

    Heyl, C M; Miranda, M; Louisy, M; Kovacs, K; Tosa, V; Balogh, E; Varjú, K; L'Huillier, A; Couairon, A; Arnold, C L

    2015-01-01

    Nonlinear optical methods are becoming ubiquitous in many areas of modern photonics. They are, however, often limited to a certain range of input parameters, such as pulse energy and average power, since restrictions arise from, for example, parasitic nonlinear effects, damage problems and geometrical considerations. Here, we show that many nonlinear optics phenomena in gaseous media are scale-invariant if spatial coordinates, gas density and laser pulse energy are scaled appropriately. We develop a general scaling model for (3+1)-dimensional wave equations, demonstrating the invariant scaling of nonlinear pulse propagation in gases. Our model is numerically applied to high-order harmonic generation and filamentation as well as experimentally verified using the example of pulse post-compression via filamentation. Our results provide a simple recipe for up-or downscaling of nonlinear processes in gases with numerous applications in many areas of science.

  14. Detecting Friedel oscillations in ultracold Fermi gases

    Science.gov (United States)

    Riechers, Keno; Hueck, Klaus; Luick, Niclas; Lompe, Thomas; Moritz, Henning

    2017-09-01

    Investigating Friedel oscillations in ultracold gases would complement the studies performed on solid state samples with scanning-tunneling microscopes. In atomic quantum gases interactions and external potentials can be tuned freely and the inherently slower dynamics allow to access non-equilibrium dynamics following a potential or interaction quench. Here, we examine how Friedel oscillations can be observed in current ultracold gas experiments under realistic conditions. To this aim we numerically calculate the amplitude of the Friedel oscillations which are induced by a potential barrier in a 1D Fermi gas and compare it to the expected atomic and photonic shot noise in a density measurement. We find that to detect Friedel oscillations the signal from several thousand one-dimensional systems has to be averaged. However, as up to 100 parallel one-dimensional systems can be prepared in a single run with present experiments, averaging over about 100 images is sufficient.

  15. Learning the Critical Points for Addition in Matematika GASING

    Science.gov (United States)

    Siregar, Johannes Hamonangan; Wiyanti, Wiwik; Wakhyuningsih, Nur Safitri; Godjali, Ali

    2014-01-01

    We propose learning Matematika GASING to help students better understand the addition material. Matematika GASING is a way of learning mathematics in an easy, fun and enjoyable fashion. GASING is short for GAmpang, aSyIk, and menyenaNGkan (Bahasa Indonesia for easy, fun and enjoyable). It was originally developed by Prof. Yohanes Surya at the…

  16. 40 CFR 600.108-78 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Analytical gases. 600.108-78 Section 600.108-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL... Model Year Automobiles-Test Procedures § 600.108-78 Analytical gases. The analytical gases for all...

  17. 40 CFR 86.1314-94 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Analytical gases. 86.1314-94 Section 86.1314-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... § 86.1314-94 Analytical gases. (a) Gases for the CO and CO2 analyzers shall be single blends of CO...

  18. Thermodynamics of Quantum Gases for the Entire Range of Temperature

    Science.gov (United States)

    Biswas, Shyamal; Jana, Debnarayan

    2012-01-01

    We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…

  19. High accuracy Primary Reference gas Mixtures for high-impact greenhouse gases

    Science.gov (United States)

    Nieuwenkamp, Gerard; Zalewska, Ewelina; Pearce-Hill, Ruth; Brewer, Paul; Resner, Kate; Mace, Tatiana; Tarhan, Tanil; Zellweger, Christophe; Mohn, Joachim

    2017-04-01

    Climate change, due to increased man-made emissions of greenhouse gases, poses one of the greatest risks to society worldwide. High-impact greenhouse gases (CO2, CH4 and N2O) and indirect drivers for global warming (e.g. CO) are measured by the global monitoring stations for greenhouse gases, operated and organized by the World Meteorological Organization (WMO). Reference gases for the calibration of analyzers have to meet very challenging low level of measurement uncertainty to comply with the Data Quality Objectives (DQOs) set by the WMO. Within the framework of the European Metrology Research Programme (EMRP), a project to improve the metrology for high-impact greenhouse gases was granted (HIGHGAS, June 2014-May 2017). As a result of the HIGHGAS project, primary reference gas mixtures in cylinders for ambient levels of CO2, CH4, N2O and CO in air have been prepared with unprecedented low uncertainties, typically 3-10 times lower than usually previously achieved by the NMIs. To accomplish these low uncertainties in the reference standards, a number of preparation and analysis steps have been studied and improved. The purity analysis of the parent gases had to be performed with lower detection limits than previously achievable. E.g., to achieve an uncertainty of 2•10-9 mol/mol (absolute) on the amount fraction for N2O, the detection limit for the N2O analysis in the parent gases has to be in the sub nmol/mol domain. Results of an OPO-CRDS analyzer set-up in the 5µm wavelength domain, with a 200•10-12 mol/mol detection limit for N2O, will be presented. The adsorption effects of greenhouse gas components at cylinder surfaces are critical, and have been studied for different cylinder passivation techniques. Results of a two-year stability study will be presented. The fit-for-purpose of the reference materials was studied for possible variation on isotopic composition between the reference material and the sample. Measurement results for a suit of CO2 in air

  20. Chemistry and Toxicity of Tear Gases

    Directory of Open Access Journals (Sweden)

    R. C. Malhotra

    1987-04-01

    Full Text Available The article presents a historical background on the use of tear gases in war and civilian riot control activity. The classification of chemical compounds used as irritants, and their structure - activity relationship established through different studies has been examined. A review of toxic effects which is different from irritancy of Adamsite, w- chloroacetophenone (CN, o-chlorobenzylidene malononitrile (CS and Dibenz (b,f, [1, 4] - oxazepine (CR has been presented.

  1. Global Reactive Gases in the MACC project

    Science.gov (United States)

    Schultz, M. G.

    2012-04-01

    In preparation for the planned atmospheric service component of the European Global Monitoring for Environment and Security (GMES) initiative, the EU FP7 project Monitoring of Atmospheric Composition and Climate (MACC) developed a preoperational data assimilation and modelling system for monitoring and forecasting of reactive gases, greenhouse gases and aerosols. The project is coordinated by the European Centre for Medium-Range Weather Forecast (ECMWF) and the system is built on ECMWF's Integrated Forecasting System (IFS) which has been coupled to the chemistry transport models MOZART-3 and TM5. In order to provide daily forecasts of up to 96 hours for global reactive gases, various satellite retrieval products for ozone (total column and profile data), CO, NO2, CH2O and SO2 are either actively assimilated or passively monitored. The MACC system is routinely evaluated with in-situ data from ground-based stations, ozone sondes and aircraft measurements, and with independent satellite retrievals. Global MACC reactive gases forecasts are used in the planning and analysis of large international field campaigns and to provide dynamical chemical boundary conditions to regional air quality models worldwide. Several case studies of outstanding air pollution events have been performed, and they demonstrate the strengths and weaknesses of chemical data assimilation based on current satellite data products. Besides the regular analyses and forecasts of the tropospheric chemical composition, the MACC system is also used to monitor the evolution of stratospheric ozone. A comprehensive reanalysis simulation from 2003 to 2010 provides new insights into the interannual variability of the atmospheric chemical composition.

  2. Paschen's law studies in cold gases

    Science.gov (United States)

    Massarczyk, R.; Chu, P.; Dugger, C.; Elliott, S. R.; Rielage, K.; Xu, W.

    2017-06-01

    The break-through voltage behavior over small gaps has been investigated for differing gap distances, gas pressures, and gas temperatures in nitrogen, neon, argon and xenon gases. A deviation from Paschen's law at micro gap distances has been found. At lower temperatures, a significant shift of the curve relative to the results at room temperature was observed. This behavior can be explained by combining Paschen's law and the ideal gas law.

  3. On high energy tails in inelastic gases

    OpenAIRE

    Lambiotte, R.; Brenig, L.; Salazar, J. M.

    2005-01-01

    We study the formation of high energy tails in a one-dimensional kinetic model for granular gases, the so-called Inelastic Maxwell Model. We introduce a time- discretized version of the stochastic process, and show that continuous time implies larger fluctuations of the particles energies. This is due to a statistical relation between the number of inelastic collisions undergone by a particle and its average energy. This feature is responsible for the high energy tails in the model, as shown ...

  4. Effect of Greenhouse Gases Dissolved in Seawater.

    Science.gov (United States)

    Matsunaga, Shigeki

    2015-12-30

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  5. Toxicity of Pyrolysis Gases from Elastomers

    Science.gov (United States)

    Hilado, Carlos J.; Kosola, Kay L.; Solis, Alida N.; Kourtides, Demetrius A.; Parker, John A.

    1977-01-01

    The toxicity of the pyrolysis gases from six elastomers was investigated. The elastomers were polyisoprene (natural rubber), styrene-butadiene rubber (SBR), ethylene propylene diene terpolymer (EPDM), acrylonitrile rubber, chlorosulfonated polyethylene rubber, and polychloroprene. The rising temperature and fixed temperature programs produced exactly the same rank order of materials based on time to death. Acryltonitrile rubber exhibited the greatest toxicity under these test conditions; carbon monoxide was not found in sufficient concentrations to be the primary cause of death.

  6. Effect of Greenhouse Gases Dissolved in Seawater

    OpenAIRE

    Shigeki Matsunaga

    2015-01-01

    A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence o...

  7. Noble Gases in the Chelyabinsk Meteorites

    Science.gov (United States)

    Haba, Makiko K.; Sumino, Hirochika; Nagao, Keisuke; Mikouchi, Takashi; Komatsu, Mutsumi; Zolensky, Michael E.

    2014-01-01

    The Chelyabinsk meteorite fell in Russia on February 15, 2013 and was classified as LL5 chondrite. The diameter before it entered the atmosphere has been estimated to be about 20 m [1]. Up to now, numerous fragments weighing much greater than 100 kg in total have been collected. In this study, all noble gases were measured for 13 fragments to investigate the exposure history of the Chelyabinsk meteorite and the thermal history of its parent asteroid.

  8. Gases in Sea Ice 1975 - 1979.

    Science.gov (United States)

    1979-09-01

    work through 1973 (under separate cover)- dynamics of the exchange of CO 2 in the arctic and subarcticreino0....... ... 0 1 1. INTRODUCTION The ONR has...winter months. In spring j thermally induced physical processes may suddenly release the contained gases. Mycological blooms, which are likely to occur...million or more by volume per year in the arctic atmosphere as well as in the I tropics and the Antarctic. The rate of increase of CO2 in the

  9. Excellence in service level of logistic for air liquefied gases; Excelencia em nivel de servico logistico para gases do ar liquefeitos

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, Cynthia; Duarte, Paulo Eduardo; Reis, Jeferson [Air Liquide Brasil Ltda., Sao Paulo, SP (Brazil)

    2009-11-01

    Provide an effective strategy for logistics service to the customer of Liquefied Gases Air that will add value throughout the organization. This paper presents the mapping of the main components of the supply chain of a chemical gas besides providing an overview of the business. Also reported that the main challenges facing the logistics and initiatives to achieve the level of excellence in service. (author)

  10. Emission of Gases during Composting of Solid Waste

    Directory of Open Access Journals (Sweden)

    Dajana Kučić

    2017-10-01

    Full Text Available Composting is a biochemical process converting organic components into stable compost with release of heat, water, CO2 and NH3. The objective of this work was to determine the amount of CO2 and NH3 in the exhaust gases during composting of tobacco waste (TW and mixture of tobacco and grape waste (TGW. The cumulative evolved CO2 during 21 days of composting of TW and TGW, per mass of volatile matter, was 94.01 g kg−1 and 208.18 g kg−1, respectively, and cumulative evolved NH3 during composting of TW and TGW, per mass of volatile matter, was 504.81 mg kg−1 and 122.45 mg kg−1, respectively.

  11. Kinetic theory of nonideal gases and nonideal plasmas

    CERN Document Server

    Klimontovich, Yu L

    2013-01-01

    Kinetic Theory of Nonideal Gases and Nonideal Plasmas presents the fundamental aspects of the kinetic theory of gases and plasmas. The book consists of three parts, which attempts to present some of the ideas, methods and applications in the study of the kinetic processes in nonideal gases and plasmas. The first part focuses on the classical kinetic theory of nonideal gases. The second part discusses the classical kinetic theory of fully ionized plasmas. The last part is devoted to the quantum kinetic theory of nonideal gases and plasmas. A concluding chapter is included, which presents a shor

  12. Treatment of industrial exhaust gases by a dielectric barrier discharge

    Science.gov (United States)

    Schmidt, Michael; Hołub, Marcin; Jõgi, Indrek; Sikk, Martin

    2016-08-01

    Volatile organic compounds (VOCs) in industrial exhaust gases were treated by a dielectric barrier discharge (DBD) operated with two different mobile power supplies. Together with the plasma source various gas diagnostics were used, namely fourier transform infrared (FTIR) spectroscopy, flame ionization detector (FID) and GC-MS. The analysis revealed that some exhaust gases consist of a rather complex mixture of hydrocarbons and inorganic compounds and also vary in pollutants concentration and flow rate. Thus, analysis of removal efficiencies and byproduct concentrations is more demanding than under laboratory conditions. This contribution presents the experimental apparatus used under the harsh conditions of industrial exhaust systems as well as the mobile power source used. Selected results obtained in a shale oil processing plant, a polymer concrete production facility and a yacht hull factory are discussed. In the case of total volatile organic compounds in oil processing units, up to 60% were removed at input energy of 21-37 J/L when the concentrations were below 500 mg/m3. In the yacht hull factory up to 74% of styrene and methanol were removed at specific input energies around 300 J/L. In the polymer concrete production site 195 ppm of styrene were decomposed with the consumption of 1.8 kJ/L. These results demonstrate the feasibility of plasma assisted methods for treatment of VOCs in the investigated production processes but additional analysis is needed to improve the energy efficiency. Contribution to the topical issue "6th Central European Symposium on Plasma Chemistry (CESPC-6)", edited by Nicolas Gherardi, Ester Marotta and Cristina Paradisi

  13. Evaluation of emission of greenhouse gases from soils amended with sewage sludge.

    Science.gov (United States)

    Paramasivam, S; Fortenberry, Gamola Z; Julius, Afolabi; Sajwan, Kenneth S; Alva, A K

    2008-02-01

    (FDA) and most probable number (MPN) procedure at the end of 25-d incubation demonstrated a clear relationship between microbial activity and the emission of gases. The results of this study emphasize the need to consider the emission of greenhouse gases from soils amended with organic soil amendments such as sewage sludge, especially at high rates, and their potential contribution to global warming.

  14. 40 CFR 70.12 - Enforceable commitments for further actions addressing greenhouse gases (GHGs).

    Science.gov (United States)

    2010-07-01

    ... actions addressing greenhouse gases (GHGs). 70.12 Section 70.12 Protection of Environment ENVIRONMENTAL... commitments for further actions addressing greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases... six greenhouse gases: carbon dioxide, nitrous oxide, methane, hydrofluorocarbons,...

  15. A New Model for the Genesis of Natural Gases--Multi-source Overlap, Multi-stage Continuity, Type Controlled by Main Source and Nomenclature by Main Stage (Ⅰ)--Multi-source Overlap and Type Controlled by Main Source

    Institute of Scientific and Technical Information of China (English)

    徐永昌; 沈平

    1994-01-01

    Based on the geochemical studies of natural gases in the past ten years in China, the authors have proposed a new model for their genesis--multi-source overlap, multi-stage continuity, main source-controlling type and nomenclature by the main stage.Multi-source refers to a diversity of material sources involved in the formation of natural gases, including abiogenic and biogenic material sources. In regard to biogenic sources, either oil-generating or coal-generating organic matter would produce gaseous hydrocarbon reservoirs of commercial importance. Generally, natural gases originating from these sources can overlap to form gas reservoirs. Under specific circumstances mantle-source abiogenic gases could overlap biogenic gases to form gas reservoirs. In nature, natural gases predominated by gaseous hydrocarbons may be formed from a single end-member source. However, multi-source overlap is more typical of the genesis of natural gases.

  16. In-Situ Microbial Conversion of Sequestered Greenhouse Gases

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A R; Mukhopadhyay, M; Balin, D F

    2012-09-06

    The objectives of the project are to use microbiological in situ bioconversion technology to convert sequestered or naturally-occurring greenhouse gases, including carbon dioxide and carbon monoxide, into methane and other useful organic compounds. The key factors affecting coal bioconversion identified in this research include (1) coal properties, (2) thermal maturation and coalification process, (3) microbial population dynamics, (4) hydrodynamics (5) reservoir conditions, and (6) the methodology of getting the nutrients into the coal seams. While nearly all cultures produced methane, we were unable to confirm sustained methane production from the enrichments. We believe that the methane generation may have been derived from readily metabolized organic matter in the coal samples and/or biosoluble organic material in the coal formation water. This raises the intriguing possibility that pretreatment of the coal in the subsurface to bioactivate the coal prior to the injection of microbes and nutrients might be possible. We determined that it would be more cost effective to inject nutrients into coal seams to stimulate indigenous microbes in the coal seams, than to grow microbes in fermentation vats and transport them to the well site. If the coal bioconversion process can be developed on a larger scale, then the cost to generate methane could be less than $1 per Mcf

  17. Adsorption of Gases on Carbon Nanotubes

    Science.gov (United States)

    Mbaye, Mamadou Thiao

    2014-01-01

    This research focus in studying the interaction between various classical and quantum gases with novel carbon nanostructures, mainly carbon nanotubes (CNTs). Since their discovery by the Japanese physicist Sumio Iijima [1] carbon nanotubes have, experimentally and theoretically, been subjected to many scientific investigation. Studies of adsorption on CNTs are particularly directed toward their better usage in gas storage, gas separation, catalyst, drug delivery, and water purification. We explore the adsorption of different gases entrapped in a single, double, or multi-bundles of CNTs using computer simulations. The first system we investigate consists of Ar and Kr films adsorbed on zigzag or armchair nanotubes. Our simulations revealed that Kr atoms on intermediate size zigzag NTs undergo two phase transitions: A liquid-vapor (L→V), and liquid-commensurate (L→CS) with a fractional coverage of one Kr atoms adsorbed for every four carbon atoms. For Ar on zigzag and armchair NTs, the only transition observed is a L→V. In the second problem, we explore the adsorption of CO2 molecules in a nanotube bundle and calculate the isosteric heat of adsorption of the entrapped molecules within the groove. We observed that the lower the temperature, the higher the isosteric of adsorption. Last, we investigate the adsorption of hydrogen, Helium, and Neon gases on the groove site of two parallel nanotubes. At low temperature, the transverse motion on the plane perpendicular to the tubes' axis is frozen out and as a consequence, the heat capacity is reduced to 1/2. At high temperature, the atoms gain more degree of freedom and as a consequence the heat capacity is 5/2.

  18. Diffusive retention of atmospheric gases in chert

    Science.gov (United States)

    Pettitt, E.; Cherniak, D. J.; Watson, E. B.; Schaller, M. F.

    2016-12-01

    Throughout Earth's history, the volatile contents (N2, CO2, Ar) of both deep and shallow terrestrial reservoirs has been dynamic. Volatiles are important chemical constituents because they play a significant role in regulating Earth's climate, mediating the evolution of complex life, and controlling the properties of minerals and rocks. Estimating levels of atmospheric volatiles in the deep geological past requires interrogation of materials that have acquired and retained a chemical memory from that time. Cherts have the potential to trap atmospheric components during formation and later release those gases for analysis in the laboratory. However, cherts have been underexploited in this regard, partly because their ability to retain a record of volatile components has not been adequately evaluated. Before cherts can be reliably used as indicators of past levels of major atmospheric gases, it is crucial that we understand the diffusive retentiveness of these cryptocrystalline silica phases. As the first step toward quantifying the diffusivity and solubility of carbon dioxide and nitrogen in chert, we have performed 1-atmosphere diffusive-uptake experiments at temperatures up to 450°C. Depth profiles of in-diffusing gases are measured by nuclear reaction analysis (NRA) to help us understand the molecular-scale transport of volatiles and thus the validity of using chert-bound volatiles to record information about Earth history. Data collected to date suggest that at least some cherts are ideal storage containers and can retain volatiles for a geologically long time. In addition to these diffusion experiments, preliminary online-crush fast-scan measurements using a quadrupole mass spectrometer indicate that atmospheric volatiles are released upon crushing various chert samples. By coupling such volatile-release measurements made by mass spectrometry with diffusion experiments, we are uniquely able to address the storage and fidelity of volatiles bound in crustal

  19. Isotope reversals in hydrocarbon gases of natural shale systems and well head production data

    Energy Technology Data Exchange (ETDEWEB)

    Berner, U.; Schloemer, S.; Stiller, E. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Marquardt, D. [Rijksuniversiteit Utrecht (Netherlands)

    2013-08-01

    Relationships between gas geochemical signatures and the thermal maturity of source rocks containing aquatic organic matter are based on on pyrolysis experiments and have been successfully used in conventional hydrocarbon exploration since long. We demonstrate how these models can be applied to the evaluation of unconventional shale resources. For this purpose hydrocarbon gases have been extracted from low and high mature source rocks (type II kerogens) using laboratory desorption techniques. We determined the molecular composition of the gases as well as the carbon isotope ratios of methane to propane. In the extracted gases we observe an increase of {sup 13}C content in methane with increasing dry gas ratio (C1/{Sigma}C1-6). The carbon isotope ratios of ethane and propane initially increase with increasing dryness but start to become isotopically lighter above a dry gas ratio of 0.8. We show that oil-to-gas cracking explains the observed gas geochemical data, and that mixing between gases from different processes is a key factor to describe natural hydrocarbon systems of shales. However, data from published case studies using well head gases which show 'isotope roll-over' effects indicate that the isotopic reversal observed in well head samples deviate from those observed in natural shale systems in a fundamental way. We show that isotope reversals related to well head gases are best explained by an additional isotope fractionation effect induced through hydraulic fracturing and gas migration from the shale to the well head. Although, this induced isotope fractionation is an artifact which obscures isotopic information of natural systems to a large extend, we suggest a simple classification scheme which allows distinguishing between hot and cool spot areas using well head or mud line gas data. (orig.)

  20. Gases and vacua handbook of vacuum physics

    CERN Document Server

    Beck, A H

    2013-01-01

    Handbook of Vacuum Physics, Volume 1: Gases and Vacua provides information on the many aspects of vacuum technology, from material on the quantum theoretical aspects of the complex semi-conductors used for thermionic and photo-electric emission to data on the performance of commercially available pumps, gauges, and high-vacuum materials. The handbook satisfies the need of workers using vacuum apparatuses or works on the diverse applications of high-vacuum technology in research and industry. The book is a compilation of long articles prepared by experts in vacuum technology. Sufficient theoret

  1. Cristais de gases raros nos metais

    OpenAIRE

    Cendotec, Cendotec; CENDOTEC - São Paulo

    1989-01-01

    Durante a fissão, o aumento de volume do combustível no caroço dos reatores nucleares deve-se ao acúmulo de bolhas de gases raros encerrados nos produtos de fissão do urânio. Agora, uma equipe de pesquisadores franceses demonstrou que essas bolhas, supostamente gasosas, eram na verdade sólidos cristalinos quando o bombardeio de íons nos materiais se realizava em temperatura ambiente, e que a elevação da temperatura provoca uma transformação sólido/líquido, perfeitamente reversível. Descobrira...

  2. Effect of Greenhouse Gases Dissolved in Seawater

    Directory of Open Access Journals (Sweden)

    Shigeki Matsunaga

    2015-12-01

    Full Text Available A molecular dynamics simulation has been performed on the greenhouse gases carbon dioxide and methane dissolved in a sodium chloride aqueous solution, as a simple model of seawater. A carbon dioxide molecule is also treated as a hydrogen carbonate ion. The structure, coordination number, diffusion coefficient, shear viscosity, specific heat, and thermal conductivity of the solutions have been discussed. The anomalous behaviors of these properties, especially the negative pressure dependence of thermal conductivity, have been observed in the higher-pressure region.

  3. Longitudinal Viscous Flow in Granular Gases

    OpenAIRE

    Santos, Andres

    2008-01-01

    The flow characterized by a linear longitudinal velocity field $u_x(x,t)=a(t)x$, where $a(t)={a_0}/({1+a_0t})$, a uniform density $n(t)\\propto a(t)$, and a uniform temperature $T(t)$ is analyzed for dilute granular gases by means of a BGK-like model kinetic equation in $d$ dimensions. For a given value of the coefficient of normal restitution $\\alpha$, the relevant control parameter of the problem is the reduced deformation rate $a^*(t)=a(t)/\

  4. Imprisonment dynamics of resonance radiation in gases

    Energy Technology Data Exchange (ETDEWEB)

    Kosarev, N I; Shaparev, N Y, E-mail: kosarev_nikolai@mail.ru [Institute of Computational Modeling, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, 660036 (Russian Federation)

    2011-05-28

    Imprisonment of resonant radiation in gases on the basis of the numerical solution of the rate balance equation for the excited atoms and the transfer resonant radiation equation is investigated. Calculations of the escape factor for the slab, cylinder and sphere at Doppler and Lorentz forms of absorption and scattering profiles are executed. Calculation results of the escape factor for the cylinder and slab are compared with Holsten's asymptotical solutions. The numerical data for time dependence of a spectrum, the intensity of resonant radiation and the spatial distribution of the excited atomic concentration in a regime of afterglow are also considered.

  5. Method for detecting trace impurities in gases

    Science.gov (United States)

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Beattie, W.H.

    A technique for considerably improving the sensitivity and specificity of infrared spectrometry as applied to quantitative determination of trace impurities in various carrier or solvent gases is presented. A gas to be examined for impurities is liquefied and infrared absorption spectra of the liquid are obtained. Spectral simplification and number densities of impurities in the optical path are substantially higher than are obtainable in similar gas-phase analyses. Carbon dioxide impurity (approx. 2 ppM) present in commercial Xe and ppM levels of Freon 12 and vinyl chloride added to liquefied air are used to illustrate the method.

  6. Positron scattering from noble gases future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Jones, A C L; Caradonna, P; Makochekanwa, C; Slaughter, D S; Sullivan, J P; Buckman, S J [Centre for Antimatter-Matter Studies, Research School of Physics and Engineering, Australian National University, Canberra, ACT (Australia); Mitroy, J, E-mail: acj107@rsphysse.anu.edu.a [Faculty of Education Health and Science, Charles Darwin University, NT (Australia)

    2009-11-01

    Recent results for positron scattering from noble gases over an energy range from 0.5 to 60eV are presented. Measurements include the grand total ({sigma}{sub GT}), Ps formation ({sigma}{sub Ps}) and Grand total - Ps formation (({sigma}{sub GT}-P{sub s}) cross sections. Some preliminary DCS results will also be presented. Work on a formulation of modified effective range theory (MERT) is being undertaken to determine the value of the scattering length which may be useful for identifying a bound state. Plans for experiments on metal atoms will be outlined.

  7. Bragg spectroscopy of strongly interacting Fermi gases

    Science.gov (United States)

    Lingham, M. G.; Fenech, K.; Peppler, T.; Hoinka, S.; Dyke, P.; Hannaford, P.; Vale, C. J.

    2016-10-01

    This article provides an overview of recent developments and emerging topics in the study of two-component Fermi gases using Bragg spectroscopy. Bragg scattering is achieved by exposing a gas to two intersecting laser beams with a slight frequency difference and measuring the momentum transferred to the atoms. By varying the Bragg laser detuning, it is possible to measure either the density or spin response functions which characterize the basic excitations present in the gas. Specifically, one can measure properties such as the dynamic and static structure factors, Tan's universal contact parameter and observe signatures for the onset of pair condensation locally within a gas.

  8. Mean free path in soccer and gases

    Energy Technology Data Exchange (ETDEWEB)

    Luzuriaga, J, E-mail: luzuriag@cab.cnea.gov.a [Centro Atomico Bariloche - CNEA, Instituto Balseiro UNC (8400), Bariloche (Argentina)

    2010-09-15

    The trajectories of the molecules in an ideal gas and of the ball in a soccer game are compared. The great difference between these motions and some similarities are discussed. This example could be suitable for discussing many concepts in kinetic theory in a way that can be pictured by students for getting a more intuitive understanding. It could be suitable for an introductory course in vacuum techniques or undergraduate courses in kinetic theory of gases. Without going into the slightly harder quantitative results, the analysis presented might be used for introducing some ideas of kinetic theory qualitatively to high school students.

  9. Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets.

    Science.gov (United States)

    Domagal-Goldman, Shawn D; Meadows, Victoria S; Claire, Mark W; Kasting, James F

    2011-06-01

    We used one-dimensional photochemical and radiative transfer models to study the potential of organic sulfur compounds (CS(2), OCS, CH(3)SH, CH(3)SCH(3), and CH(3)S(2)CH(3)) to act as remotely detectable biosignatures in anoxic exoplanetary atmospheres. Concentrations of organic sulfur gases were predicted for various biogenic sulfur fluxes into anoxic atmospheres and were found to increase with decreasing UV fluxes. Dimethyl sulfide (CH(3)SCH(3), or DMS) and dimethyl disulfide (CH(3)S(2)CH(3), or DMDS) concentrations could increase to remotely detectable levels, but only in cases of extremely low UV fluxes, which may occur in the habitable zone of an inactive M dwarf. The most detectable feature of organic sulfur gases is an indirect one that results from an increase in ethane (C(2)H(6)) over that which would be predicted based on the planet's methane (CH(4)) concentration. Thus, a characterization mission could detect these organic sulfur gases-and therefore the life that produces them-if it could sufficiently quantify the ethane and methane in the exoplanet's atmosphere.

  10. Validation of aerosols, reactive gases and greenhouse gases in the CAMS forecasts, analyses and reanalyses

    Science.gov (United States)

    Eskes, Henk; Basart, Sara; Blechschmidt, Anne; Chabrillat, Simon; Clark, Hannah; Cuevas, Emilio; Engelen, Richard; Kapsomenakis, John; Katragkou, Eleni; Mantzius Hansen, Kaj; Niemeijer, Sander; Ramonet, Michel; Schulz, Michael; Sudarchikova, Natalia; Wagner, Annette; Warneke, Thorsten

    2016-04-01

    The Atmosphere Monitoring Service of the European Copernicus Programme (CAMS) is an operational service providing analyses, reanalyses and daily forecasts of aerosols, reactive gases and greenhouse gases on a global scale, and air quality forecasts and reanalyses on a regional scale. CAMS is based on the systems developed during the European MACC I-II-III (Monitoring Atmospheric Composition and Climate) research projects. In CAMS data assimilation techniques are applied to combine in-situ and remote sensing observations with global and European-scale models of atmospheric reactive gases, aerosols and greenhouse gases. The global component is based on the Integrated Forecast System of the ECMWF, and the regional component on an ensemble of 7 European air quality models. CAMS is implemented by ECMWF, and the transition from MACC to CAMS is currently being implemented (2015-2016). CAMS has a dedicated validation activity, a partnership of 13 institutes co-ordinated by KNMI, to document the quality of the atmospheric composition products. In our contribution we discuss this validation activity, including the measurement data sets, validation requirements, the operational aspects, the upgrade procedure, the validation reports and scoring methods, and the model configurations and assimilation systems validated. Of special concern are the forecasts of high pollution concentration events (fires, dust storms, air pollution events, volcano ash and SO2). A few interesting validation results will be shown.

  11. Instabilities in inductive discharges in reactive gases

    Science.gov (United States)

    Chabert, Pascal

    2002-10-01

    High-density inductively coupled plasmas (ICP) are routinely used for etching in the microelectronics industry. Since there is a substantial voltage across the non-resonant inductive coil, a fraction of the discharge power is deposited capacitively. The real inductive discharge can therefore exist in two different modes: the capacitive mode (E mode), for low power, and the inductive mode (H mode), for high power. As the power is increased, transitions from capacitive to inductive modes (E-H transitions) are observed. Tuszewski (Journal of Applied Physics, 1996) found that when operating with reactive gases containing negative ions the transition can be unstable, and a wide range of powers exist where the discharge oscillates between higher and lower electron density states. Later, Lieberman and co-workers (Lieberman et al., Applied Physics Letters 1999, and Chabert et al. Plasma Sources Sci. and Technol. 2001) proposed a model of this instability, based on particle and energy balance, showing the crucial role of negative ions in the instability process. This paper will present recent experimental and theoretical work in this area. Oscillations in the unsaturated radical (CF and CF2 in a CF4 inductive discharge) concentrations were measured during the instability by time-resolved laser induced fluorescence, showing that neutral species dynamics can be significant. On the theoretical side, conditions for the stability of inductive discharges with electronegative gases were derived from the model.

  12. An installation for vapor conversion of gases

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, I.; Tabata, K.

    1983-01-28

    An installation is proposed for converting a mixture of hydrocarbon gases with steam in the presence of nickel, platinum, lead and cobalt catalysts (Kt) on a carrier of Si0/sub 2/, A1/sub 2/0/sub 3/, Ti0/sub 2/ and so on. The reaction tower (RK1) for conversion is made of an inorganic, heat resistant ceramic material (for instance, A1/sub 2/0/sub 3/ ceramic), heaters are located inside the walls of the reaction tower, while on the outside the reaction conversion tower is equipped with an external tubular housing made of heat resistant materials or of inorganic heat resistant ceramic material. Here, there is a space between the external walls of the reaction conversion tower and the walls of the housing along the entire circumference of the reaction conversion tower which serves for preheating of the hydrocarbon gas and the steam before their input into the reaction conversion tower. The installation is designed for conversion of natural gas, C/sub 3/H/sub 8/ and other hydrocarbon gases and of liquid hydrocarbons (Uv) into synthesis gas. The design provides for even heating of the catalyst during reforming. The use of ceramic materials for the reaction conversion tower prevents sedimentation of coke on the walls of the reaction tower.

  13. Low-mature gases and typical low-mature gas fields in China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    No natural gas pool of industrial importance could be formed at the low-evolution stage of organic matter. In the 1980s, on the basis of the development in exploration practice, the hypotheses of bio-thermo-catalytic transitional zone gases and early thermogenic gases were proposed. The lower-limit Ro values for the formation and accumulation of natural gases of industrial importance have been expanded to 0.3%―0.4%. In the light of the two-stage model established on the basis of carbon isotope fractionation in coal-type natural gases, the upper-limit Ro values have been set at 0.8%―1.0%. In terms of the geological practice in the low-mature gas zones and China’s main coal-type gas fields, it is feasible and proper to set the upper-limit Ro value of low-mature gases at 0.8%. Supper-large gas fields such as the Urengoy gas field in western Siberian Basin should belong to low-mature gas fields, of which the natural gas reserves account for more than 20% of the global proven reserves, providing strong evidence for the significance of such a type of resources. The proven natural gas reserves in the Turpan-Hami Basin of China have almost reached 1000 × 108 m3. The main source rocks in this area are the Jurassic Xishanyao Formation, which occurs as a suite of coal series strata. The corresponding thermal evolution indices (Ro ) are mainly within the range of about 0.4%―0.8%, the δ 13C1 values of methane vary between-44‰ and-39‰ (correspondingly Ro =0.6%―0.8%), and those of ethane are within the range of-29‰―-26‰, indicating that natural gases in the Turpan-Hami Basin should be designated to coal-type low-mature gases. The light hydrocarbon evolution indices of natural gases also fall within the area of low evolution while the precursor type of light hydrocarbons also shows the characteristics of the coal-type. The geological background, carbon isotopic composition and light hydrocarbon index all provide strong evidence suggesting that the proven

  14. Reducing the Livestock related green house gases emission

    Directory of Open Access Journals (Sweden)

    D Indira

    2012-08-01

    Full Text Available Cattle rearing generate more global warming green house gases than driving cars. These green house gases leads to changes in the climate. This climate change affects the livestock, man and natural environment continuously. For this reason it is important for livestock farmers to find the ways which minimize these gases emission. In this article the causes of climate change and effects, measures to be taken by farmers and their efficiency in reducing green house gases emission were reviewed briefly to make the farmers and students aware of the reduction of global warming green house gases and measures to be taken for reducing these gases. [Vet. World 2012; 5(4.000: 244-247

  15. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): emissions of trace gases and light-absorbing carbon from wood and dung cooking fires, garbage and crop residue burning, brick kilns, and other sources

    Science.gov (United States)

    Stockwell, Chelsea E.; Christian, Ted J.; Goetz, J. Douglas; Jayarathne, Thilina; Bhave, Prakash V.; Praveen, Puppala S.; Adhikari, Sagar; Maharjan, Rashmi; DeCarlo, Peter F.; Stone, Elizabeth A.; Saikawa, Eri; Blake, Donald R.; Simpson, Isobel J.; Yokelson, Robert J.; Panday, Arnico K.

    2016-09-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE) campaign took place in and around the Kathmandu Valley and in the Indo-Gangetic Plain (IGP) of southern Nepal during April 2015. The source characterization phase targeted numerous important but undersampled (and often inefficient) combustion sources that are widespread in the developing world such as cooking with a variety of stoves and solid fuels, brick kilns, open burning of municipal solid waste (a.k.a. trash or garbage burning), crop residue burning, generators, irrigation pumps, and motorcycles. NAMaSTE produced the first, or rare, measurements of aerosol optical properties, aerosol mass, and detailed trace gas chemistry for the emissions from many of the sources. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared (FTIR) spectroscopy, whole-air sampling (WAS), and photoacoustic extinctiometers (PAX; 405 and 870 nm) based on field work with a moveable lab sampling authentic sources. The primary aerosol optical properties reported include emission factors (EFs) for scattering and absorption coefficients (EF Bscat, EF Babs, in m2 kg-1 fuel burned), single scattering albedos (SSAs), and absorption Ångström exponents (AAEs). From these data we estimate black and brown carbon (BC, BrC) emission factors (g kg-1 fuel burned). The trace gas measurements provide EFs (g kg-1) for CO2, CO, CH4, selected non-methane hydrocarbons up to C10, a large suite of oxygenated organic compounds, NH3, HCN, NOx, SO2, HCl, HF, etc. (up to ˜ 80 gases in all). The emissions varied significantly by source, and light absorption by both BrC and BC was important for many sources. The AAE for dung-fuel cooking fires (4.63 ± 0.68) was significantly higher than for wood-fuel cooking fires (3.01 ± 0.10). Dung-fuel cooking fires also emitted high levels of NH3 (3.00 ± 1.33 g kg-1), organic acids (7.66 ± 6.90 g kg-1), and HCN (2.01 ± 1.25 g kg-1), where the latter could

  16. Relativistic Quantum Thermodynamics of Ideal Gases in 2 Dimensions

    OpenAIRE

    Blas, H.; Pimentel, B. M.; Tomazelli, J. L.

    1999-01-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  17. Relativistic quantum thermodynamics of ideal gases in two dimensions.

    Science.gov (United States)

    Blas, H; Pimentel, B M; Tomazelli, J L

    1999-11-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  18. Method for the removal of dust from exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Ritzmann, H.; Wohlfarth, J.P.

    1976-11-02

    A stream of raw material is passed through a preheater to a furnace and a stream of exhaust gases from the furnace is passed through the preheater to preheat the raw material. Dust is electrostatically precipitated from the exhaust gases leaving the preheater, and the temperature of such exhaust gases is controllably raised to improve the efficiency of the dust removal by bypassing a controlled proportion of at least one of the streams around at least a portion of the preheater.

  19. Noble gases in gas shales : Implications for gas retention and circulating fluids.

    Science.gov (United States)

    Basu, Sudeshna; Jones, Adrian; Verchovsky, Alexander

    2016-04-01

    Gas shales from three cores of Haynesville-Bossier formation have been analysed simultaneously for carbon, nitrogen and noble gases (He, Ne, Ar, Xe) to constrain their source compositions and identify signatures associated with high gas retention. Ten samples from varying depths of 11785 to 12223 feet from each core, retrieved from their centres, have been combusted from 200-1200°C in incremental steps of 100°C, using 5 - 10 mg of each sample. Typically, Xe is released at 200°C and is largely adsorbed, observed in two of the three cores. The third core lacked any measureable Xe. High 40Ar/36Ar ratio up to 8000, is associated with peak release of nitrogen with distinctive isotopic signature, related to breakdown of clay minerals at 500°C. He and Ne are also mostly released at the same temperature step and predominantly hosted in the pore spaces of the organic matter associated with the clay. He may be produced from the uranium related to the organic matter. The enrichment factors of noble gases defined as (iX/36Ar)sample/(iX/36Ar)air where iX denotes any noble gas isotope, show Ne and Xe enrichment observed commonly in sedimentary rocks including shales (Podosek et al., 1980; Bernatowicz et al., 1984). This can be related to interaction of the shales with circulating fluids and diffusive separation of gases (Torgersen and Kennedy, 1999), implying the possibility of loss of gases from these shales. Interaction with circulating fluids (e.g. crustal fluids) have been further confirmed using 20Ne/N2, 36Ar/N2 and 4He/N2 ratios. Deviations of measured 4He/40Ar* (where 40Ar* represents radiogenic 40Ar after correcting for contribution from atmospheric Ar) from expected values has been used to monitor gas loss by degassing. Bernatowicz, T., Podosek, F.A., Honda, M., Kramer, F.E., 1984. The Atmospheric Inventory of Xenon and Noble Gases in Shales: The Plastic Bag Experiment. Journal of Geophysical Research 89, 4597-4611. Podosek, F.A., Honda, M., Ozima, M., 1980

  20. Fractionated (Martian) Noble Gases — EFA, Experiments and Meteorites

    Science.gov (United States)

    Schwenzer, S. P.; Barnes, G.; Bridges, J. C.; Bullock, M. A.; Chavez, C. L.; Filiberto, J.; Herrmann, S.; Hicks, L. J.; Kelley, S. P.; Miller, M. A.; Moore, J. M.; Ott, U.; Smith, H. D.; Steer, E. D.; Swindle, T. D.; Treiman, A. H.

    2016-08-01

    Noble gases are tracers for physical processes, including adsorption, dissolution and secondary mineral formation. We examine the Martian fractionated atmosphere through literature, terrestrial analogs and experiments.

  1. Generation and release of radioactive gases in LLW disposal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Yim, M.S. [Harvard School Public Health, Boston, MA (United States); Simonson, S.A. [Massachusetts Institute of Technology, Cambridge, MA (United States)

    1995-02-01

    The atmospheric release of radioactive gases from a generic engineered LLW disposal facility and its radiological impacts were examined. To quantify the generation of radioactive gases, detailed characterization of source inventory for carbon-14, tritium, iodine-129, krypton-85, and radon-222, was performed in terms of their activity concentrations; their distribution within different waste classes, waste forms and containers; and their subsequent availability for release in volatile or gaseous form. The generation of gases was investigated for the processes of microbial activity, radiolysis, and corrosion of waste containers and metallic components in wastes. The release of radionuclides within these gases to the atmosphere was analyzed under the influence of atmospheric pressure changes.

  2. Particle number counting statistics in ideal Bose gases

    National Research Council Canada - National Science Library

    Christoph Weiss; Martin Wilkens

    1997-01-01

    We discuss the exact particle number counting statistics of degenerate ideal Bose gases in the microcanonical, canonical, and grand-canonical ensemble, respectively, for various trapping potentials...

  3. Properties of gases, liquids, and solutions principles and methods

    CERN Document Server

    Mason, Warren P

    2013-01-01

    Physical Acoustics: Principles and Methods, Volume ll-Part A: Properties of Gases, Liquids, and Solutions ponders on high frequency sound waves in gases, liquids, and solids that have been proven as effective tools in examining the molecular, domain wall, and other types of motions. The selection first offers information on the transmission of sound waves in gases at very low pressures and the phenomenological theory of the relaxation phenomena in gases. Topics include free molecule propagation, phenomenological thermodynamics of irreversible processes, and simultaneous multiple relaxation pro

  4. Gases as uremic toxins: is there something in the air?

    Science.gov (United States)

    Jankowski, Joachim; Westhof, Timm; Vaziri, Nosratola D; Ingrosso, Diego; Perna, Alessandra F

    2014-03-01

    The field of uremic toxicity comprises the study of a large number of different substances, classified in relation to various characteristics, for example, protein-binding, dimensions, and so forth. The endogenous compounds of a gaseous nature have received much attention lately from the scientific community because of their increasingly recognized importance in health and disease. Among these substances, some are uremic toxins per se, others are related to uremic toxins, or can become toxic under some circumstances. We divided them into two broad categories: organic and inorganic compounds. Among the organic compounds are phenols, indols, 2-methoxyresorcinol, p-hydroxy hippuric acid and phenyl acetic acid, trimethylamine, and dimethylamine; among the inorganic solutes are ammonia, nitric oxide, carbon monoxide, and hydrogen sulfide. In this article, these substances are described in relation to the elements that they affect or by which they are affected in uremia, which are the blood, breath, stools, and the gastrointestinal tract. In addition, the effect of the dialysis procedure on exhaled gases are described.

  5. Peltier cooling of fermionic quantum gases.

    Science.gov (United States)

    Grenier, Ch; Georges, A; Kollath, C

    2014-11-14

    We propose a cooling scheme for fermionic quantum gases, based on the principles of the Peltier thermoelectric effect and energy filtering. The system to be cooled is connected to another harmonically trapped gas acting as a reservoir. The cooling is achieved by two simultaneous processes: (i) the system is evaporatively cooled, and (ii) cold fermions from deep below the Fermi surface of the reservoir are injected below the Fermi level of the system, in order to fill the "holes" in the energy distribution. This is achieved by a suitable energy dependence of the transmission coefficient connecting the system to the reservoir. The two processes can be viewed as simultaneous evaporative cooling of particles and holes. We show that both a significantly lower entropy per particle and faster cooling rate can be achieved in this way than by using only evaporative cooling.

  6. Peltier Cooling of Fermionic Quantum Gases

    Science.gov (United States)

    Grenier, Ch.; Georges, A.; Kollath, C.

    2014-11-01

    We propose a cooling scheme for fermionic quantum gases, based on the principles of the Peltier thermoelectric effect and energy filtering. The system to be cooled is connected to another harmonically trapped gas acting as a reservoir. The cooling is achieved by two simultaneous processes: (i) the system is evaporatively cooled, and (ii) cold fermions from deep below the Fermi surface of the reservoir are injected below the Fermi level of the system, in order to fill the "holes" in the energy distribution. This is achieved by a suitable energy dependence of the transmission coefficient connecting the system to the reservoir. The two processes can be viewed as simultaneous evaporative cooling of particles and holes. We show that both a significantly lower entropy per particle and faster cooling rate can be achieved in this way than by using only evaporative cooling.

  7. Effective dynamics of strongly dissipative Rydberg gases

    CERN Document Server

    Marcuzzi, M; Olmos, B; Lesanovsky, I

    2014-01-01

    We investigate the evolution of interacting Rydberg gases in the limit of strong noise and dissipation. Starting from a description in terms of a Markovian quantum master equation we derive effective equations of motion that govern the dynamics on a "coarse-grained" timescale where fast dissipative degrees of freedom have been adiabatically eliminated. Specifically, we consider two scenarios which are of relevance for current theoretical and experimental studies --- Rydberg atoms in a two-level (spin) approximation subject to strong dephasing noise as well as Rydberg atoms under so-called electromagnetically induced transparency (EIT) conditions and fast radiative decay. In the former case we find that the effective dynamics is described by classical rate equations up to second order in an appropriate perturbative expansion. This drastically reduces the computational complexity of numerical simulations in comparison to the full quantum master equation. When accounting for the fourth order correction in this e...

  8. Numerical computations of explosions in gases

    Science.gov (United States)

    Chushkin, P. I.; Shurshalov, L. V.

    The development and the present-day state of the problem on numerical computations of explosions in gases are reviewed. In the first part, different one-dimensional cases are discussed: point explosion with counterpressure, blast-like expansion of volumes filled with a compressed hot gas, blast of charges of condensed explosive, explosion processes in real high-temperature air, in combustible detonating media and under action of other physical-chemical factors. In the second part devoted to two-dimensional flows, we consider explosion in the non-homogeneous atmosphere, blast of asymmetric charges, detonation in gas, explosion modelling of some cosmic phenomena (solar flares, the Tunguska meteorite). The survey includes about 110 works beginning with the first publications on the subject.

  9. Adsorption of Atmospheric Gases on Pu Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, A J; Holliday, K S; Stanford, J A; Grant, W K; Erler, R G; Allen, P G; McLean, W; Roussel, P

    2012-03-29

    Surface adsorption represents a competition between collision and scattering processes that depend on surface energy, surface structure and temperature. The surface reactivity of the actinides can add additional complexity due to radiological dissociation of the gas and electronic structure. Here we elucidate the chemical bonding of gas molecules adsorbed on Pu metal and oxide surfaces. Atmospheric gas reactions were studied at 190 and 300 K using x-ray photoelectron spectroscopy. Evolution of the Pu 4f and O 1s core-level states were studied as a function of gas dose rates to generate a set of Langmuir isotherms. Results show that the initial gas dose forms Pu{sub 2}O{sub 3} on the Pu metal surface followed by the formation of PuO{sub 2} resulting in a layered oxide structure. This work represents the first steps in determining the activation energy for adsorption of various atmospheric gases on Pu.

  10. Anode wire aging tests with selected gases

    Energy Technology Data Exchange (ETDEWEB)

    Kadyk, J.; Wise, J.; Hess, D.; Williams, M. (Lawrence Berkeley Lab., CA (United States))

    1990-04-01

    As a continuation of earlier wire aging investigations, additional candidates for wire chamber gas and wire have been tested. These include the gases: argon/ethane, HRS gas, dimethyl ether, carbon dioxide/ethane, and carbon tetrafluoride/isobutane. Wires used were: gold- plated tungsten, Stablohm, Nicotin, and Stainless Steel. Measurements were made of the effects upon wire aging of impurities from plumbing materials or contamination from various types of oil. Attempts were made to induce wire aging by adding measured amounts of oxygen and halogen (methyl chloride) with negative results. In this paper, the possible role of electronegativity in the wire aging process is discussed, and measurements of electronegativity are made with several single carbon Freons, using both an electron capture detector and a wire chamber operating with dimethyl ether.

  11. Performance test of PPAC in different gases

    CERN Document Server

    Wang Meng; Zhan Wen Long; Xiao Guo Qing; Xu Hu Shan; Mao Rui Shi; Hu Zheng Guo; Chen Zhi Qiang; Sun Zhi Yu; Li Jia Xing; Wang Wu Sheng; Chen Li Xin; Li Chen; Bai Jie; Zhang Xia; Zhang Jin Xia; Li Cun Fan

    2002-01-01

    A two-dimension position sensitive parallel-plate avalanche (PPAC) detector has been developed for RIBLL. The detector consists of one anode and two cathodes. In each cathode a resistance chain is used to readout position signals. The detector has been tested in different operating gases with an alpha source. When the detector is at 7 mb flowing rate of isobutane and + 500 V on anode, the position resolution of 0.76 mm is obtained. For 7 mb C sub 3 F sub 8 and +595 V on anode, the position resolution is 0.64 mm. The efficiencies are around 99.1% in the cases of C sub 3 F sub 8 and isobutane

  12. Experimental measurement of dispersion coefficients for gases

    Energy Technology Data Exchange (ETDEWEB)

    De Delgado, E. [National University at Comahue (Brazil); Da Franca Correa, A.C. [State Univ. of Campinas (Brazil)

    2001-06-01

    A series of experiments were conducted on dispersion, a phenomenon by which molecules of two miscible fluids diffuse into one another when they come into contact with each other. Both longitudinal and transverse diffusion is a result of forced flow. Longitudinal dispersion occurs in the direction of flow, while transverse dispersion occurs perpendicular to the direction of flow. This study focused on measuring longitudinal dispersion coefficients on natural gas displaced by an inert gas (nitrogen) at very low pressure. The experiments were carried out at two different pressure ranges on unconsolidated porous media at a Gas Plant Laboratory near Neuquen, Argentina. Two different types of porous media were used, a plastic hose and a metallic slim tube. They were each filled twice with both natural and synthetic sand grains. The study provided a better understanding of how gases behave at low pressures. 4 refs., 4 tabs., 5 figs.

  13. Photon Bubble Turbulence in Cold Atomic Gases

    CERN Document Server

    Rodrigues, João D; Ferreira, António V; Terças, Hugo; Kaiser, Robin; Mendonça, José T

    2016-01-01

    Turbulent radiation flow is ubiquitous in many physical systems where light-matter interaction becomes relevant. Photon bubbling, in particular, has been identified as the main source of turbulent radiation transport in many astrophysical objects, such as stars and accretion disks. This mechanism takes place when radiation trapping in optically dense media becomes unstable, leading to the energy dissipation from the larger to the smaller bubbles. Here, we report on the observation of photon bubble turbulence in cold atomic gases in the presence of multiple scattering of light. The instability is theoretically explained by a fluid description for the atom density coupled to a diffusive transport equation for the photons, which is known to be accurate in the multiple scattering regime investigated here. We determine the power spectrum of the atom density fluctuations, which displays an unusual $\\sim k^{-4}$ scaling, and entails a complex underlying turbulent dynamics resulting from the formation of dynamical bu...

  14. Blow up Analysis for Anomalous Granular Gases

    CERN Document Server

    Rey, Thomas

    2011-01-01

    We investigate in this article the long-time behaviour of the solutions to the energy-dependent, spatially-homogeneous, inelastic Boltzmann equation for hard spheres. This model describes a diluted gas composed of hard spheres under statistical description, that dissipates energy during collisions. We assume that the gas is "anomalous", in the sense that the energy dissipation increases when the temperature decreases. This allows the gas to cool down in finite time. We study the existence, uniqueness and attractiveness of blow up profiles for this model and the cooling law associated, generalizing the classical Haff's Law for granular gases. To this end, we give some new estimates about the third order moment of the inelastic Boltzmann equation with drift term and we introduce new strongly "non-linear" self-similar variables

  15. A New Perspective on Classical Ideal Gases

    Directory of Open Access Journals (Sweden)

    Fabrice Philippe

    2013-08-01

    Full Text Available The ideal-gas barometric and pressure laws are derived from the Democritian concept of independent corpuscles moving in vacuum, plus a principle of simplicity, namely that these laws are independent of the kinetic part of the Hamiltonian. A single corpuscle in contact with a heat bath in a cylinder and submitted to a constant force (weight is considered. The paper importantly supplements a previously published paper: First, the stability of ideal gases is established. Second, we show that when walls separate the cylinder into parts and are later removed, the entropy is unaffected. We obtain full agreement with Landsberg’s and others’ (1994 classical thermodynamic result for the entropy of a column of gas submitted to gravity.

  16. Conversion of fuel-oil in gases

    Energy Technology Data Exchange (ETDEWEB)

    Payamaras, Jahangir; Payamara, Aria [Shahed University, Physics Department (Iran, Islamic Republic of)], Email: jahangirpayamara@yahoo.com

    2011-07-01

    Refining heavy petroleum requires significant amounts of energy, up to 4800 MJ/t. This energy is traditionally provided by petroleum with up to 18% of it being burnt down for heat support, resulting in the emission of large amounts of greenhouse gases. Currently research is focused on developing other energy sources such as solar energy to power refineries. The aim of this paper is to study the pyrolysis and gasification processes of fuel-oil in a solar furnace. This study was carried out over a temperature range of 500 to 1000 degrees celsius and with the use of a concentrator for solar radiation. Results showed that 65% of fuel-oil is converted at pyrolysis and 84% at gasification and that the gaseous products are 20% hydrogen and 40% olefin; the processes reached 67% power efficiency. This study presented the use of solar energy to power heavy oil refineries.

  17. Desulfurization kinetics of coal combustion gases

    Directory of Open Access Journals (Sweden)

    S.R. Bragança

    2003-06-01

    Full Text Available Desulfurization of the gases from coal combustion was studied, using limestone (marble as the sorbent in a fluidized-bed reactor. The kinetic parameter, k, was measured by analyzing the reduction in SO2 emissions in relation to time when a batch of limestone was introduced directly into the combustor chamber. The influence of sorbent composition and particle size was also studied. The CaO content in the limestone was more important than the MgO content. Sorbent particle size showed a strong influence on the reaction time and efficiency of desulfurization. The results of this work prove that marble type is very important in the choice of sorbent for a desulfurization process. A magnesian limestone showed a better performance than a dolomite. Therefore, the magnesian limestone is more efficient for a shorter particle residence time, which is characteristic of the bubbling fluidized bed.

  18. Desulfurization kinetics of coal combustion gases

    Energy Technology Data Exchange (ETDEWEB)

    Braganca, S.R.; Jablonski, A.; Castellan, J.L. [Universidade Federal Rio Grande do Sul, Porto Alegre (Brazil)

    2003-06-01

    Desulfurization of the gases from coal combustion was studied, using limestone (marble) as the sorbent in a fluidized-bed reactor. The kinetic parameter, k, was measured by analyzing the reduction in SO{sub 2} emissions in relation to time when a batch of limestone was introduced directly into the combustor chamber. The influence of sorbent composition and particle size was also studied. The CaO content in the limestone was more important than the MgO content. Sorbent particle size showed a strong influence on the reaction time and efficiency of desulfurization. The results of this work prove that marble type is very important in the choice of sorbent for a desulfurization process. A magnesian limestone showed a better performance than a dolomite. Therefore, the magnesian limestone is more efficient for a shorter particle residence time, which is characteristic of the bubbling fluidized bed.

  19. Gender and Boyle's law of gases

    CERN Document Server

    Potter, Elizabeth

    2001-01-01

    Gender and Boyle''s Law of GasesElizabeth PotterRe-examines the assumptions and experimental evidence behind Boyle''s Law.Boyle''s Law, which describes the relation between the pressure and volume of a gas, was worked out by Robert Boyle in the mid-1600s. His experiments are still considered examples of good scientific work and continue to be studied along with their historical and intellectual contexts by philosophers, historians, and sociologists. Now there is controversy over whether Boyle''s work was based only on experimental evidence or whether it was influenced by the politics and religious controversies of the time, including especially class and gender politics.Elizabeth Potter argues that even good science is sometimes influenced by such issues, and she shows that the work leading to the Gas Law, while certainly based on physical evidenc...

  20. An installation for steam conversion of gases

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, K.; Matsumoto, I.

    1983-01-28

    An installation is proposed for steam conversion of a hydrocarbon gas in order to produce an inorganic gas which chiefly consists of H2 and CO in which the line for feeding the hydrocarbon gas has a steam generator which has a microcapillary structure made of sponge metal, inorganic heat resistant fibers of glass, Si02, Al203 or carbon, inorganic heat resistant fibers twisted into a fiber or a cord of multipore ceramic material; the installation is equipped with a heater which regulates the water temperature, in which the steam generator is submerged. The installation is designed for converting natural gas, C3H8, other hydrocarbon gases and vapors of liquid hydrocarbons (Uv) into H2 and CO. The design and disposition of the steam generator simplify the design of the device, eliminating the pump for feeding the steam and the device for premixing of the steam and hydrocarbon gas.

  1. Sir William Ramsay and the noble gases.

    Science.gov (United States)

    Davies, Alwyn G

    2012-01-01

    Sir William Ramsay was one of the world's leading scientists at the end of the 19th century, and in a spectacular period of research between 1894 and 1898, he discovered five new elements. These were the noble gases, helium, neon, argon, krypton, and xenon; they added a whole new group to the Periodic Table of the elements, and provided the keystone to our understanding of the electronic structure of atoms, and the way those electrons bind the atoms together into molecules. For this work he was awarded the Nobel Prize in Chemistry in 1904, the first such prize to come to a British subject. He was also a man of great charm, a good linguist, and a composer and performer of music, poetry and song. This review will trace his career, describe his character and give and account of the chemistry which led to the award of the Nobel Prize.

  2. Electrochemical sensor monitoring of volcanic gases

    Science.gov (United States)

    Roberts, Tjarda; Freshwater, Ray; Oppenheimer, Clive; Saffell, John; Jones, Rod; Griffiths, Paul; Braban, Christine; Mead, Iqbal

    2010-05-01

    Advances in instrumentation have fuelled a recent growth of interest in using portable sensor systems for environmental monitoring of pollution. Developments in wireless technology are enabling such systems to operate remotely and autonomously, generating a wealth of environmental data. We report here on the application of miniature Alphasense electrochemical sensors to the detection and characterisation of gases in volcanic plumes. A highly portable sensor system was developed to operate an array of 6 low cost electrochemical sensors to detect CO, H2, HCl, SO2, H2S and NO2 at 1 Hz. A miniature pump draws air over all sensors simultaneously (i.e. sensors arranged in parallel). The sensor output in these campaigns was logged on PDAs for real-time viewing, and later download (with a view to future data-streaming). The instrument was deployed at a number of volcanoes and was subject to extremely harsh conditions including highly acidic environments, low (Antarctic) temperatures, and transport over rough terrain. Analysis methods are demonstrated that consider calibration, cross-sensitivities of the sensors to multiple gases, differing sensor response times, temperature dependence, and background sensor drift with time. The analysis is applied to a range of plume field-measurements to extract gas concentrations ranging from 100's ppmv to sub-ppmv and to characterise the individual volcano emissions. Applications of similar sensor systems for real-time long-term monitoring of volcanic emissions (which may indicate and ultimately predict eruptive behavior), and UAV and balloon-borne plume sampling are now already being realised. This work focused on demonstrating the application of electrochemical sensors to monitoring of environmental pollution from volcanoes. Other applications for similar sensors include the near-source monitoring of industrial emissions, and of pollutant levels enhanced by traffic emissions in the urban environment.

  3. Structure of velocity distributions in shock waves in granular gases with extension to molecular gases

    Science.gov (United States)

    Vilquin, A.; Boudet, J. F.; Kellay, H.

    2016-08-01

    Velocity distributions in normal shock waves obtained in dilute granular flows are studied. These distributions cannot be described by a simple functional shape and are believed to be bimodal. Our results show that these distributions are not strictly bimodal but a trimodal distribution is shown to be sufficient. The usual Mott-Smith bimodal description of these distributions, developed for molecular gases, and based on the coexistence of two subpopulations (a supersonic and a subsonic population) in the shock front, can be modified by adding a third subpopulation. Our experiments show that this additional population results from collisions between the supersonic and subsonic subpopulations. We propose a simple approach incorporating the role of this third intermediate population to model the measured probability distributions and apply it to granular shocks as well as shocks in molecular gases.

  4. Structure of velocity distributions in shock waves in granular gases with extension to molecular gases

    OpenAIRE

    Vilquin, A.; Boudet, J. F.; Kellay, H.

    2016-01-01

    International audience; Velocity distributions in normal shock waves obtained in dilute granular flows are studied. These distributions cannot be described by a simple functional shape and are believed to be bimodal. Our results show that these distributions are not strictly bimodal but a trimodal distribution is shown to be sufficient. The usual Mott-Smith bimodal description of these distributions, developed for molecular gases, and based on the coexistence of two subpopulations (a superson...

  5. Method for purifying flue gases and other gases. Verfahren zum Reinigen von Rauchgasen und anderen Abgasen

    Energy Technology Data Exchange (ETDEWEB)

    Hoelter, H.; Gresch, H.; Igelbuescher, H.

    1987-02-26

    A suggestion is made for the improvement of the scrubbing procedure for power plant off-gases outlined in the main patent 25 32 373. The process provides for the addition of chlorine ions, carbonic acids and Ca-compounds. The suggestion for improvement made here is the addition of iron compounds, preferably iron-III chloride; this should lead to a reduction in calcium sulphite content to below 0.3%.

  6. Identification of marine natural gases with different origin sources

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Kinetic experiments of gas generation for typical samples of marine gas precursors including low-maturity kerogen,residual kerogen and oil as well as dispersed liquid hydrocarbon(DLH)in source rocks were performed by closed system,and the evolution trends of molecular and isotopic compositions of natural gases from different precursors against the maturity(R0%)at laboratory conditions were analyzed.Several diagrams of gas origin were calibrated by using the experimental data.A diagram based on the ratio of normal and isomerous butane and pentane(i/nC4-i/nC5)was proposed and used to identify the origins of the typical marine natural gases in the Sichuan Basin and the Tarim Basin, China.And the maturities of natural gases were estimated by using the statistical relationships between the gaseous molecular carbon isotopic data and maturities(δ13C-R 0 %)with different origins.The results indicate that the molecular and isotopic compositions of simulated gases from different precursors are different from each other.For example,the dryness index of the oil-cracking gas is the lowest;the dryness indices of gases from DLH and kerogen in closed system are almost the same;and the dryness index of gases from residual kerogen is extremely high,indicating that the kerogen gases are very dry;the contents of non-hydrocarbon gases in kerogen-cracking gases are far higher than those in oil-cracking and DLH-cracking gases.The molecular carbon isotopes of oil-cracking gases are the lightest,those of kerogen in closed system and GLH-cracking gases are the second lightest,and those of cracking gases from residual kerogen are the heaviest.The calibration results indicate that the diagrams of ln(C1/C2)-ln(C2/C3)andδ13C2-δ13C3-ln(C2/C3)can discriminate primary and secondary cracking gases,but cannot be used to identify gas origin sources,while the diagram of i/nC4-i/nC5 can differentiate the gases from different precursors.The application results of these diagrams show that gas mixtures

  7. Carbon dioxide Information Analysis Center and World Data Center: A for Atmospheric trace gases. Annual progress report, FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Burtis, M.D. [comp.] [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center; Cushman, R.M.; Boden, T.A.; Jones, S.B.; Nelson, T.R.; Stoss, F.W. [Oak Ridge National Lab., TN (United States)

    1995-03-01

    This report summarizes the activities and accomplishments made by the Carbon Dioxide Information Analysis Center and World Data Center-A for Atmospheric Trace Gases during the fiscal year 1994. Topics discussed in this report include; organization and staff, user services, systems, communications, Collaborative efforts with China, networking, ocean data and activities of the World Data Center-A.

  8. Precautionary practices for administering anesthetic gases: A survey of physician anesthesiologists, nurse anesthetists and anesthesiologist assistants.

    Science.gov (United States)

    Boiano, James M; Steege, Andrea L

    2016-10-02

    Scavenging systems and administrative and work practice controls for minimizing occupational exposure to waste anesthetic gases have been recommended for many years. Anesthetic gases and vapors that are released or leak out during medical procedures are considered waste anesthetic gases. To better understand the extent recommended practices are used, the NIOSH Health and Safety Practices Survey of Healthcare Workers was conducted in 2011 among members of professional practice organizations representing anesthesia care providers including physician anesthesiologists, nurse anesthetists, and anesthesiologist assistants. This national survey is the first to examine self-reported use of controls to minimize exposure to waste anesthetic gases among anesthesia care providers. The survey was completed by 1,783 nurse anesthetists, 1,104 physician anesthesiologists, and 100 anesthesiologist assistants who administered inhaled anesthetics in the seven days prior to the survey. Working in hospitals and outpatient surgical centers, respondents most often administered sevoflurane and, to a lesser extent desflurane and isoflurane, in combination with nitrous oxide. Use of scavenging systems was nearly universal, reported by 97% of respondents. However, adherence to other recommended practices was lacking to varying degrees and differed among those administering anesthetics to pediatric (P) or adult (A) patients. Examples of practices which increase exposure risk, expressed as percent of respondents, included: using high (fresh gas) flow anesthesia only (17% P, 6% A), starting anesthetic gas flow before delivery mask or airway mask was applied to patient (35% P; 14% A); not routinely checking anesthesia equipment for leaks (4% P, 5% A), and using a funnel-fill system to fill vaporizers (16%). Respondents also reported that facilities lacked safe handling procedures (19%) and hazard awareness training (18%). Adherence to precautionary work practices was generally highest among

  9. A Simple Experiment to Demonstrate the Effects of Greenhouse Gases

    Science.gov (United States)

    Keating, C. F.

    2007-01-01

    The role of greenhouse gases in our atmosphere is the subject of considerable discussion and debate. Global warming is well-documented, as is the continually increasing amount of greenhouse gases that human activity puts in the air. Is there a relationship between the two? The simple experiment described in this paper provides a good demonstration…

  10. A Simple Experiment to Demonstrate the Effects of Greenhouse Gases

    Science.gov (United States)

    Keating, C. F.

    2007-01-01

    The role of greenhouse gases in our atmosphere is the subject of considerable discussion and debate. Global warming is well-documented, as is the continually increasing amount of greenhouse gases that human activity puts in the air. Is there a relationship between the two? The simple experiment described in this paper provides a good demonstration…

  11. 40 CFR 86.214-94 - Analytical gases.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Analytical gases. 86.214-94 Section 86.214-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Passenger Vehicles; Cold Temperature Test Procedures § 86.214-94 Analytical gases. The provisions of §...

  12. 49 CFR 229.43 - Exhaust and battery gases.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Exhaust and battery gases. 229.43 Section 229.43... § 229.43 Exhaust and battery gases. (a) Products of combustion shall be released entirely outside the... conditions. (b) Battery containers shall be vented and batteries kept from gassing excessively. ...

  13. Problem of nature of inert gases in lunar surface material

    Science.gov (United States)

    Levskiy, L. K.

    1974-01-01

    The origin of isotopes of inert gases in lunar surface material was investigated from the standpoint of the isotopic two-component status of inert gases in the solar system. Helium and neon represent the solar wind component, while krypton and xenon are planetary gases. Type A gases are trapped by the material of the regolith in the early stages of the existence of the solar system and were brought to the lunar surface together with dust. The material of the regolith therefore cannot be considered as the product of the erosion of the crystalline rocks of the moon and in this sense are extralunar. The regolith material containing type A gases must be identified with the high temperature minerals of the carbonaceous chondrites.

  14. Mobility as a territorial key factor in the emission of greenhouse gases; La movilidad como factor territorial dominante en la emision de gases de efecto invernadero

    Energy Technology Data Exchange (ETDEWEB)

    Crespo Garcia, L.; Montane Lopez, M. M.; Garcia Cortes, A.; Jimenez Arroyo, F.

    2011-07-01

    Transport and energy generation are the two dominant sectors in the overall balance of energy consumption, and thus of greenhouse gases emissions. Placement of energy generation plants responds to strategic reasons relate to energy supply in the Spanish territory, while transport is an economic activity tightly related to the productive structure and territorial characteristics: density of populations, geographic situation, efficient space organization, etc. The analysis of these factors enables to prioritize different strategies according the their energetic efficiency in order to pursue an economy less dependent of fossil fuels, focused in activities of higher added value and that keeps in mind limits and strengths of Spanish reality. (Author) 9 refs.

  15. Deep Inelastic Scattering on Ultracold Gases

    Science.gov (United States)

    Hofmann, Johannes; Zwerger, Wilhelm

    2017-01-01

    We discuss Bragg scattering on both Bose and Fermi gases with strong short-range interactions in the deep inelastic regime of large wave vector transfer q , where the dynamic structure factor is dominated by a resonance near the free-particle energy ℏω =ɛq=ℏ2q2/2 m . Using a systematic short-distance expansion, the structure factor at high momentum is shown to exhibit a nontrivial dependence on frequency characterized by two separate scaling regimes. First, for frequencies that differ from the single-particle energy by terms of order O (q ) (i.e., small deviations compared to the single-particle energy), the dynamic structure factor is described by the impulse approximation of Hohenberg and Platzman. Second, deviations of order O (q2) (i.e., of the same order or larger than the single-particle energy) are described by the operator product expansion, with a universal crossover connecting both regimes. The scaling is consistent with the leading asymptotics for a number of sum rules in the large momentum limit. Furthermore, we derive an exact expression for the shift and width of the single-particle peak at large momentum due to interactions, thus extending a result by Beliaev [J. Exp. Theor. Phys. 7, 299 (1958)] for the low-density Bose gas to arbitrary values of the scattering length a . The shift exhibits a maximum around q a ≃1 , which is connected with a maximum in the static structure factor due to strong short-range correlations. For Bose gases with moderate interaction strengths, the theoretically predicted shift is consistent with the value observed by Papp et al. [Phys. Rev. Lett. 101, 135301 (2008), 10.1103/PhysRevLett.101.135301]. Finally, we develop a diagrammatic theory for the dynamic structure factor which accounts for the correlations beyond Bogoliubov theory. It covers the full range of momenta and frequencies and provides an explicit example for the emergence of asymptotic scaling at large momentum.

  16. New data on the Geochemistry of Gases in the Potash Deposits

    Directory of Open Access Journals (Sweden)

    I. I. Chaykovskiy

    2014-12-01

    Full Text Available The composition of the gas phase of salt rocks from a number of potash deposits located in Europe (Verkhnekamskoe, Starobinskoe and Asia (Tubegatanskoe, Zhylyanskoe Satimolinskoe was studied. It allowed dividing them into two groups. In Asian deposits, only authigenic dry gases were formed by diagenetic decomposition of organic matter. Structural exposure of these deposits led to the oxidation of methane and hydrogen and enrichment by carbon dioxide. European deposits were not structurally exposed to the oxidation process, but were exposed during salt rock formation. They experienced influx of heavy hydrocarbons from the underlying strata. The history of the formation of gas regime at the Verkhnekamskoe potash deposit could be divided into three stages. First stage may be characterized by a syngenetic capture of deep gases and authigenic organic matter converted during diagenesis to methane, which percentage gradually increases with an increase of the thickness of impermeable salt strata. Then the deep gases invaded the salt formation during sedimentation of the upper carnallite layers and top salt rock. Third stage was associated with folding processes accompanied by a mobilization of fluids scattered in the gas-fluid inclusions, and with probable influx of heavy hydrocarbons and carbon dioxide resulted in formation of the secondary salt zones. Replacement of carnallite layers leads to the release of isomorphous ammonium ion and formation of a hydrogen.

  17. Assessing Emissions of Volatile Organic Componds from Landfills Gas

    Directory of Open Access Journals (Sweden)

    Fahime Khademi

    2016-01-01

    Full Text Available Background: Biogas is obtained by anaerobic decomposition of organic wastes buried materials used to produce electricity, heat and biofuels. Biogas is at the second place for power generation after hydropower and in 2000 about 6% of the world power generation was allocated to biogas. Biogas is composed of 40–45 vol% CO2, 55–65 vol% CH4, and about 1% non-methaneVOCs, and non-methane volatile organic compounds. Emission rates are used to evaluate the compliance with landfill gas emission regulations by the United States Environmental Protection Agency (USEPA. BTEX comounds affect the air quality and may be harmful to human health. Benzene, toluene, ethylbenzene and xylene isomers that are generally called BTEX compounds are the most abundant VOCs in biogas. Methods: Sampling of VOCs in biogas vents was operated passively or with Tedlar bags. 20 samples were collected from 40 wells of old and new biogas sites of Shiraz’ landfill. Immediately after sampling, the samples were transferred to the laboratory. Analysis of the samples was performed with GC-MS. Results: The results showed that in the collection of the old and new biogas sites, the highest concentration of VOCs was observed in toluene (0.85ppm followed by benzene (0.81ppm, ethylbenzene (0.13ppm and xylene (0.08ppm. Conclusion: The results of the study showed that in all samples, most available compounds in biogas vents were aromatic hydrocarbon compounds.These compounds’ constituents originate from household hazardous waste materials deposited in the landfill or from biological/chemical decomposition processes within the landfill.

  18. Low susceptibility to inert gases and pressure symptoms in TREK-1-deficient mice.

    Science.gov (United States)

    Vallée, Nicolas; Rostain, Jean-Claude; Risso, Jean-Jacques

    2009-02-18

    Nervous disorders may occur after an organism is saturated with inert gases, which may alter the lipid bilayer structure, according to their liposolubility coefficient. Increase in the nitrogen partial pressure induces a neurological syndrome called 'nitrogen narcosis'. By contrast, high pressures of helium induce epilepsy, an high-pressure nervous syndrome symptom. On the basis of an analogy with anaesthetic mechanisms, we used TREK-1 knockout mice, earlier described to volatile the anaesthetics resistance. These mice had a higher threshold of resistance to the narcotic effects of nitrogen and to the death after recurrent epileptic seizure induced by high pressure. TREK-1 channels seem to play a key role in modulating the anaesthetic potential of inert gases and in neuroprotection.

  19. Physics of our Days: Cooling and thermometry of atomic Fermi gases

    Science.gov (United States)

    Onofrio, R.

    2017-02-01

    We review the status of cooling techniques aimed at achieving the deepest quantum degeneracy for atomic Fermi gases. We first discuss some physics motivations, providing a quantitative assessment of the need for deep quantum degeneracy in relevant physics cases, such as the search for unconventional superfluid states. Attention is then focused on the most widespread technique to reach deep quantum degeneracy for Fermi systems, sympathetic cooling of Bose–Fermi mixtures, organizing the discussion according to the specific species involved. Various proposals to circumvent some of the limitations on achieving the deepest Fermi degeneracy, and their experimental realizations, are then reviewed. Finally, we discuss the extension of these techniques to optical lattices and the implementation of precision thermometry crucial to the understanding of the phase diagram of classical and quantum phase transitions in Fermi gases.

  20. EB technology for the purification of flue gases

    Energy Technology Data Exchange (ETDEWEB)

    Kojima, Takuji [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    2003-02-01

    Sulfur oxides and nitrogen oxides in flue gas from coal-combustion boilers in power plants, dioxins in flue gas from municipal waste incineration facilities and toxic volatile organic compounds (VOCs) in off-gas from painting or cleaning factories are among air pollutants for which emission is regulated by a law in Japan. Electron beam is the effective and easy controllable radiation source for treatment of these flue gases. This report describes outline of the results so far obtained at JAERI on electron beam treatment of flue gas. The removal performance higher than 90% at 10 kGy for flue gas containing 800 ppm SOx and 225 ppm NOx were achieved and being applied to real-scale power plants in Poland and China with expectation of cost reduction of 20% compared to conventional plants. Decomposition of dioxins in flue gas from solid waste incinerators is another project. Using an accelerator of 300 keV and 40 mA for treatment of real incineration gas at 200degC, we obtain 90% decomposition of dioxins at 15 kGy irradiation. Expansion of these flue gas purification technologies combined with low-energy electron accelerators is expected. (S. Ohno)

  1. DNS of turbulent flows of dense gases

    Science.gov (United States)

    Sciacovelli, L.; Cinnella, P.; Gloerfelt, X.; Grasso, F.

    2017-03-01

    The influence of dense gas effects on compressible turbulence is investigated by means of numerical simulations of the decay of compressible homogeneous isotropic turbulence (CHIT) and of supersonic turbulent flows through a plane channel (TCF). For both configurations, a parametric study on the Mach and Reynolds numbers is carried out. The dense gas considered in these parametric studies is PP11, a heavy fluorocarbon. The results are systematically compared to those obtained for a diatomic perfect gas (air). In our computations, the thermodynamic behaviour of the dense gases is modelled by means of the Martin-Hou equation of state. For CHIT cases, initial turbulent Mach numbers up to 1 are analyzed using mesh resolutions up to 5123. For TCF, bulk Mach numbers up to 3 and bulk Reynolds numbers up to 12000 are investigated. Average profiles of the thermodynamic quantities exhibit significant differences with respect to perfect-gas solutions for both of the configurations. For high-Mach CHIT, compressible structures are modified with respect to air, with weaker eddy shocklets and stronger expansions. In TCF, the velocity profiles of dense gas flows are much less sensitive to the Mach number and collapse reasonably well in the logarithmic region without any special need for compressible scalings, unlike the case of air, and the overall flow behaviour is midway between that of a variable-property liquid and that of a gas.

  2. Universal Nonequilibrium Properties of Dissipative Rydberg Gases

    Science.gov (United States)

    Marcuzzi, Matteo; Levi, Emanuele; Diehl, Sebastian; Garrahan, Juan P.; Lesanovsky, Igor

    2014-11-01

    We investigate the out-of-equilibrium behavior of a dissipative gas of Rydberg atoms that features a dynamical transition between two stationary states characterized by different excitation densities. We determine the structure and properties of the phase diagram and identify the universality class of the transition, both for the statics and the dynamics. We show that the proper dynamical order parameter is in fact not the excitation density and find evidence that the dynamical transition is in the "model A " universality class; i.e., it features a nontrivial Z2 symmetry and a dynamics with nonconserved order parameter. This sheds light on some relevant and observable aspects of dynamical transitions in Rydberg gases. In particular it permits a quantitative understanding of a recent experiment [C. Carr, Phys. Rev. Lett. 111, 113901 (2013)] which observed bistable behavior as well as power-law scaling of the relaxation time. The latter emerges not due to critical slowing down in the vicinity of a second order transition, but from the nonequilibrium dynamics near a so-called spinodal line.

  3. Deep inelastic scattering on ultracold gases

    CERN Document Server

    Hofmann, Johannes

    2016-01-01

    We discuss the dynamic structure factor of both Bose and Fermi gases with strong short-range interactions, focussing on the deep inelastic regime of large wave vector transfer $q$. Here, the dynamic structure factor is dominated by a resonance at the free-particle energy $\\hbar \\omega = \\varepsilon_{\\bf q} = \\hbar^2 q^2/2m$ and is described in terms of scaling functions. We show that the high-momentum structure has a rich scaling behavior characterized by two separate scaling regions: first, for frequencies that differ from the single-particle energy by terms of order ${\\cal O}(q)$ (i.e., small deviations compared to the single-particle energy), the dynamic structure factor is described by the impulse approximation (IA) of Hohenberg and Platzman. Second, deviations of order ${\\cal O}(q^2)$ (i.e., of the same order or larger than the single-particle energy) are described by the operator product expansion (OPE), with a universal cross-over connecting both regimes. We use the full asymptotic form to derive vario...

  4. Efimov correlations in strongly interacting Bose gases

    Science.gov (United States)

    Hofmann, Johannes; Barth, Marcus

    A series of recent hallmark experiments have demonstrated that Bose gases can be created in the strongly interacting unitary limit in the non-degenerate high-temperature regime. These systems display the three-body Efimov effect, which poses a theoretical challenge to compute observables including these relevant three-body correlations. In this talk, I shall present our results for the virial coefficients, the contact parameters, and the momentum distribution of a strongly interacting three-dimensional Bose gas obtained by means of a virial expansion up to third order in the fugacity, which takes into account three-body correlations exactly. Our results characterize the non-degenerate regime of the interacting Bose gas, where the thermal wavelength is smaller than the interparticle spacing but the scattering length may be arbitrarily large. In addition, we provide a calculation of the momentum distribution at unitarity, which displays a universal high-momentum tail with a log-periodic momentum dependence - a direct signature of Efimov physics. In particular, we provide a quantitative description of the momentum distribution at high momentum as measured by the JILA group [Makotyn et al., Nat. Phys. 10, 116 (2014)]. Our results allow the spectroscopy of Efimov states at unitarity.

  5. Molecular dynamics simulations of vibrated granular gases.

    Science.gov (United States)

    Barrat, Alain; Trizac, Emmanuel

    2002-11-01

    We present molecular dynamics simulations of monodisperse or bidisperse inelastic granular gases driven by vibrating walls, in two dimensions (without gravity). Because of the energy injection at the boundaries, a situation often met experimentally, density and temperature fields display heterogeneous profiles in the direction perpendicular to the walls. A general equation of state for an arbitrary mixture of fluidized inelastic hard spheres is derived and successfully tested against numerical data. Single-particle velocity distribution functions with non-Gaussian features are also obtained, and the influence of various parameters (inelasticity coefficients, density, etc.) are analyzed. The validity of a recently proposed random restitution coefficient model is assessed through the study of projected collisions onto the direction perpendicular to that of energy injection. For the binary mixture, the nonequipartition of translational kinetic energy is studied and compared both to experimental data and to the case of homogeneous energy injection ("stochastic thermostat"). The rescaled velocity distribution functions are found to be very similar for both species.

  6. Collision Statistics of Driven Polydisperse Granular Gases

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-Yuan; ZHANG Duan-Ming; LI Zhong-Ming; YANG Feng-Xia; GUO Xin-Ping

    2008-01-01

    We present a dynamicai model of two-dimensional polydisperse granular gases with fractal size distribution, in which the disks are subject to inelastic mutual collisions and driven by standard white noise. The inhomogeneity of the disk size distribution can be measured by a fractal dimension df. By Monte Carlo simulations, we have mainly investigated the effect of the inhomogeneity on the statistical properties of the system in the same inelasticity case. Some novel results are found that the average energy of the system decays exponentiaUy with a tendency to achieve a stable asymptotic value, and the system finally reaches a nonequilibrium steady state after a long evolution time. Furthermore, the inhomogeneity has great influence on the steady-state statisticai properties. With the increase of the fractal dimension df, the distributions of path lengths and free times between collisions deviate more obviously from expected theoretical forms for elastic spheres and have an overpopulation of short distances and time bins. The collision rate increases with df, but it is independent of time. Meanwhile, the velocity distribution deviates more strongly from the Gaussian one, but does not demonstrate any apparent universal behavior.

  7. Transport of Greenhouse Gases in Trees

    Science.gov (United States)

    Kutschera, E.; Khalil, A. K.; Shearer, M.; Rosenstiel, T.

    2009-12-01

    Emissions of greenhouse gases methane (CH4) and nitrous oxide (N2O) have been measured in cultivated and natural regions, quantifying overall emissions for croplands, wetlands, and forests. However, segregation between soil and plant emissions is less clear, and the dynamics behind each respective emission type differs. Better defined plant transport mechanisms will yield more accurate determination of greenhouse gas flux, contributing to a comprehensive theory quantifying greenhouse gas emissions globally. While the mechanisms of CH4 and N2O emissions from rice have not been fully identified, for trees these mechanisms are virtually unknown. CH4 and N2O emissions from several species of tree (Alnus rubra, Populus trichocarpa, Thuja plicata, Fraxinus latifolia) native to the Pacific Northwest have been measured. To identify mechanisms of gas transport, correlation of emissions and stomatal conductance, transpiration, and photosynthesis has been tested. A synthesis between plant physiological data and emissions is sought to elucidate the role plant physiology plays in the production and transport of CH4 and N2O. This research was supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-08ER64515.

  8. BOOK REVIEW: Kinetic Theory of Granular Gases

    Science.gov (United States)

    Trizac, Emmanuel

    2005-11-01

    Granular gases are composed of macroscopic bodies kept in motion by an external energy source such as a violent shaking. The behaviour of such systems is quantitatively different from that of ordinary molecular gases: due to the size of the constituents, external fields have a stronger effect on the dynamics and, more importantly, the kinetic energy of the gas is no longer a conserved quantity. The key role of the inelasticity of collisions has been correctly appreciated for about fifteen years, and the ensuing consequences in terms of phase behaviour or transport properties studied in an increasing and now vast body of literature. The purpose of this book is to help the newcomer to the field in acquiring the essential theoretical tools together with some numerical techniques. As emphasized by the authors—who were among the pioneers in the domain— the content could be covered in a one semester course for advanced undergraduates, or it could be incorporated in a more general course dealing with the statistical mechanics of dissipative systems. The book is self-contained, clear, and avoids mathematical complications. In order to elucidate the main physical ideas, heuristic points of views are sometimes preferred to a more rigorous route that would lead to a longer discussion. The 28 chapters are short; they offer exercises and worked examples, solved at the end of the book. Each part is supplemented with a relevant foreword and a useful summary including take-home messages. The editorial work is of good quality, with very few typographical errors. In spite of the title, kinetic theory stricto sensu is not the crux of the matter covered. The authors discuss the consequences of the molecular chaos assumption both at the individual particle level and in terms of collective behaviour. The first part of the book addresses the mechanics of grain collisions. It is emphasized that considering the coefficient of restitution ɛ —a central quantity governing the

  9. Radiative energy transfer in molecular gases

    Science.gov (United States)

    Tiwari, Surendra N.

    1992-01-01

    Basic formulations, analyses, and numerical procedures are presented to study radiative interactions in gray as well as nongray gases under different physical and flow conditions. After preliminary fluid-dynamical considerations, essential governing equations for radiative transport are presented that are applicable under local and nonlocal thermodynamic equilibrium conditions. Auxiliary relations for relaxation times and spectral absorption models are also provided. For specific applications, several simple gaseous systems are analyzed. The first system considered consists of a gas bounded by two parallel plates having the same temperature. Within the gas there is a uniform heat source per unit volume. For this system, both vibrational nonequilibrium effects and radiation conduction interactions are studied. The second system consists of fully developed laminar flow and heat transfer in a parallel plate duct under the boundary condition of a uniform surface heat flux. For this system, effects of gray surface emittance are studied. With the single exception of a circular geometry, the third system is considered identical to the second system. Here, the influence of nongray walls is also studied.

  10. Evaluation of Near-Surface Gases in Marine Sediments to Assess Subsurface Petroleum Gas Generation and Entrapment

    Directory of Open Access Journals (Sweden)

    Michael A. Abrams

    2017-05-01

    Full Text Available Gases contained within near-surface marine sediments can be derived from multiple sources: shallow microbial activity, thermal cracking of organic matter and inorganic materials, or magmatic-mantle degassing. Each origin will display a distinctive hydrocarbon and non-hydrocarbon composition as well as compound-specific isotope signature and thus the interpretation of origin should be relatively straightforward. Unfortunately, this is not always the case due to in situ microbial alteration, non-equilibrium phase partitioning, mixing, and fractionation related to the gas extraction method. Sediment gases can reside in the interstitial spaces, bound to mineral or organic surfaces and/or entrapped in carbonate inclusions. The interstitial sediment gases are contained within the sediment pore space, either dissolved in the pore waters (solute or as free (vapour gas. The bound gases are believed to be attached to organic and/or mineral surfaces, entrapped in structured water or entrapped in authigenic carbonate inclusions. The purpose of this paper is to provide a review of the gas types found within shallow marine sediments and examine issues related to gas sampling and extraction. In addition, the paper will discuss how to recognise mixing, alteration and fractionation issues to best interpret the seabed geochemical results and determine gas origin to assess subsurface petroleum gas generation and entrapment.

  11. Removal of ethylene oxide from waste gases by absorption

    Directory of Open Access Journals (Sweden)

    Arsenijević Zorana Lj.

    2011-01-01

    Full Text Available Ethylene oxide (EtO is an organic compound, which is used as starting material in the production of polymers and as sterilizing agent for thermolabile materials. Although ethylene oxide is not common as an organic pollutant, its removal from numerous emission sources (e.g. ethylene oxide production plants or food and pharmaceutical sterilizing units is of the crucial importance because of its mutagenic, teratogenic and cancerogenic effect on human health. The objective of this paper is the experimental investigation of ethylene oxide (EtO absorption in diluted aqueous solution of sulfuric acid in order to evaluate the applicability of this procedure as well as to obtain project parameters for industrial plant realization. It was found that absorption is suitable as the fist step in the purification treatment of high EtO concentrations in the emission gases. According to the literature data, the basic parameter that defines the scrubber efficiency is the contact time, i.e. the ratio of packing height in scrubber and velocity of gas mixture. To investigate the characteristics of wet treatment in a broad range of contact time, part of experimental studies were conducted in the system with two and with three scrubbers in series. The obtained experimental results show that the high degree of EtO removal can be achieved (>98% when the contact time is sufficiently long (about 25 s. The process is effective until the concentration of formed glycol in the solution reaches value of about 20%. The process is safe and there is no danger of ignition and explosion of air and EtO mixture, although at the entrance to the scrubber EtO concentrations are significantly above the lower explosive limit.

  12. Effects of traces of molecular gases (hydrogen, nitrogen) in glow discharges in noble gases

    Science.gov (United States)

    Steers, E. B. M.; Smid, P.; Hoffmann, V.

    2008-07-01

    The "Grimm" type of low pressure glow discharge source, introduced some forty years ago, has proved to be a versatile analytical source. A flat sample is used as the cathode and placed about 0.2mm away from the end of a hollow tubular anode leading to an obstructed discharge. When the source was first developed, it was used for the direct analysis of solid metallic samples by optical emission spectroscopy (OES), normally with argon as the plasma gas; it was soon found that, using suitable electrical parameters, the cathode material was sputtered uniformly from a circular crater of diameter equal to that of the tubular anode, so that the technique could be used for compositional depth profile analysis (CDPA). Over the years the capability and applications of the technique have steadily increased. The use of rf powered discharges now permits the analysis of non-conducting layers and samples; improved instrumental design now allows CDPA of ever thinner layers (e.g. resolution of layers 5 nm thick in multilayer stacks is possible). For the original bulk material application, pre-sputtering could be used to remove any surface contamination but for CDPA, analysis must start immediately the discharge is ignited, so that any surface contamination can introduce molecular gases into the plasma gas and have significant analytical consequences, especially for very thin layers; in addition, many types of samples now analysed contain molecular gases as components (either as occluded gas, or e.g. as a nitride or oxide), and this gas enters the discharge when the sample is sputtered. It is therefore important to investigate the effect of such foreign gases on the discharge, in particular on the spectral intensities and hence the analytical results. The presentation will concentrate mainly on the effect of hydrogen in argon discharges, in the concentration range 0-2 % v/v but other gas mixtures (e.g. Ar/N_2, Ne/H_2) will be considered for comparison. In general, the introduction of

  13. Local Instruction Theory on Division in Mathematics GASING

    Directory of Open Access Journals (Sweden)

    Rully Charitas Indra Prahmana

    2014-07-01

    Full Text Available Several studies on learning mathematics for rural area's student indicate that students have difficulty in understanding the concept of division operation. Students are more likely to be introduced by the use of the formula without involving the concept itself and learning division separate the concrete situation of learning process. This underlies the researcher to design division operation learning in the Mathematics of GASING (Math GASING, which always starts from concrete to abstract level. The research method used is a design research which describes how the Math GASING make a real contribution of students understanding in the concept of division operation.

  14. Fluoride gases damages on agricultural and ornamental plants

    Energy Technology Data Exchange (ETDEWEB)

    Grasso, V.; Padalino, O.

    1968-01-01

    Reports are presented concerning fluoride gases from a brick furnace, damaging agricultural and ornamental plants: Prunus armeniaca L. var. Reale d'Imola, Vitis vinifera L. var. Cardinal, Gladiolus spp., Pinus pinea L., Iris germanica L., that are particularly sensitive to these gases. There are descriptions of the morphological alterations and the authors have proven the presence of fluoride in the chemically analyzed samples. There is a list of plants found near the brick furnace that have been classified as (I) highly sensitive; (II) moderately sensitive; (III) very little sensitivity; (IV) immune to fluoride gases. 10 references, 9 figures.

  15. Fe distribution in GaSe and InSe

    Energy Technology Data Exchange (ETDEWEB)

    Kovalyuk, Z.D.; Feichuk, P.I.; Shcherbak, L.P.; Zbykovskaya, N.I.

    1985-06-01

    In this paper, the authors use tagged atoms to determine the effective coefficients of Fe distribution in GaSe and InSe during crystallization of a doped melt by the Bridgman method. The distribution of Fe in GaSe and InSe was studied with the aid of Fe tagged with the radiosotopes VVFe + VZFe. Doping of the material was combined with the processes of synthesis and crystallization. Equations are presented for the calculation of the real impurity distribution in GaSe and InSe crystals.

  16. Biogenic gases in tropical floodplain river

    Directory of Open Access Journals (Sweden)

    Maria Victória Ramos Ballester

    2001-06-01

    Full Text Available Analysis of the distribution of biogenic gases in the floodplain of the Mogi-Guaçu River (São Paulo, Brazil enabled the establishment of a "redox hierarchy", in which the main channel was the most oxidizing environment, followed by Diogo Lake, with Infernão Lake having the most reducing conditions of the subsystems evaluated. Diogo Lake exported about 853.4 g C.m-2.year-1, of which, 14.6% was generated from methanogenesis and 36.7% by aerobic respiration. For Infernão Lake, these values were 2016 g C.m-2.year-1, 1.8 % and 41.5 %, respectively. Carbon export by these systems was predominantly in the form of CO2, which was responsible for the release of 728.78 g C.m-2.year-1 at Diogo Lake and 1979.72 g C.m-2. year-1 at Infernão Lake. Such patterns may result from the nature of the hydrological conditions, the action of the hydroperiod, and morphological characteristics of the environment.A análise da distribuição de gases biogênicos na planície de inundação do Rio Mogi Guaçu (São Paulo, Brasil possibilitou o estabelecimento de um gradiente redox para os sistemas aquáticos avaliados, em que o canal principal do rio apresentou-se como o ambiente mais oxidado, seguido da Lagoa do Diogo, e a Lagoa do Infernão apresentando as condições mais redutoras entre os ambientes em questão. A Lagoa do Diogo exporta um total de 853,4 g C.m-2.ano-1, do qual 14,6% é produzido pela metanogênese e 36,7% pela respiração aeróbia. Para a Lagoa do Infernão estes valores foram respectivamente de 2.016 g C.m-2.ano-1, 1,8% e de 41,5%. A exportação de carbono por estes sistemas é realizada, predominantemente na forma de CO2, nos valores de 728,78 g C.m-2.ano-1 para a Lagoa do Diogo e 1.979,72 g C.m-2.ano-1 para a Lagoa do Infernão. Estes padrões parecem estar relacionados com a natureza das condições hidrológicas, com a ação do hidroperíodo e com as características morfológicas do ambiente.

  17. High order harmonic generation in rare gases

    Energy Technology Data Exchange (ETDEWEB)

    Budil, Kimberly Susan [Univ. of California, Davis, CA (United States)

    1994-05-01

    The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I ~1013-1014 W/cm2) is focused into a dense (~1017 particles/cm3) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic "source". A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.

  18. Nonlinear Transport In Gases, Traps And Surfaces

    Science.gov (United States)

    Šuvakov, M.; Marjanovic, S.

    2010-07-01

    We will present our numerical study of three different charge transport processes and we will compare properties, specially the nonlinearity, of these processes. First process is electron transport in gases in swarm regime. We used well tested Monte Carlo techique to investigate kinetic phenomena such as negative diferencial conductivity (NDC) or negative apsolute mobility (NAM). We explain these phenomena analysing the spatial profiles of the swarm and collision events. In the second part we will apply the same technique on positron transport to obtain the same level of understanding of positron transport as has been achieved for electrons. The influence of positronium formation, non-conservative process, is much larger than any comparable effects in electron transport due to attachment and/or ionisation. As a result several new phenomena have been observed, such as NDC for the bulk drift velocity. Additionaly, the same Monte Carlo technique is used for modeling and optimisation of Surko like positron traps in different geometries and field configurations. Third process we studied is the charge transport under voltage bias via single-electron tunnelings through the junctions between metallic particles on nanoparticle films. We show how the regular nanoparticle array and topologically inhomogeneous nanonetworks affect the charge transport. We find long-range correlations in the time series of charge fluctuation at individual nanoparticles and of flow along the junctions within the network. These correlations explain the occurrence of a large non-linearity in the simulated and experimentally measured current-voltage characteristics and non-Gaussian fluctuations of the current at the electrode.

  19. Temporal dynamics of Bose-condensed gases

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo Martinez, Mauricio

    2014-03-19

    We perform a detailed quantum dynamical study of non-equilibrium trapped, interacting Bose-condensed gases. We investigate Josephson oscillations between interacting Bose-Einstein condensates confined in a finite size double-well trap and the non-trivial time evolution of a coherent state placed at the center of a two dimensional optical lattice. For the Josephson oscillations three time scales appear. We find that Josephson junction can sustain multiple undamped oscillations up to a characteristic time scale τ{sub c} without exciting atoms out of the condensates. Beyond the characteristic time scale τ{sub c} the dynamics of the junction are governed by fast, non-condensed particles assisted Josephson tunnelling as well as the collisions between non-condensed particles. In the non-condensed particles dominated regime we observe strong damping of the oscillations due to inelastic collisions, equilibrating the system leading to an effective loss of details of the initial conditions. In addition, we predict that an initially self-trapped BEC state will be destroyed by these fast dynamics. The time evolution of a coherent state released at the center of a two dimensional optical lattice shows a ballistic expansion with a decreasing expansion velocity for increasing two-body interactions strength and particle number. Additionally, we predict that if the two-body interactions strength exceeds a certain value, a forerunner splits up from the expanding coherent state. We also observe that this system, which is prepared far from equilibrium, can evolve to a quasistationary non-equilibrium state.

  20. Desulfurization of chemical waste gases and flue gases with economic utilization of air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1983-09-01

    The technological state of recovery of sulfur dioxide from waste and flue gases in the GDR is discussed. Two examples of plants are presented: a pyrosulfuric acid plant in Coswig, recovering sulfur dioxide from gases by absorption with sodium hydroxide, followed by catalytic oxidation to sulfur trioxide, and a plant for waste sulfuric acid recovery from paraffin refining, where the diluted waste acid is sprayed into a furnace and recovered by an ammonium-sulfite-bisulfite solution from the combustion gas (with 4 to 10% sulfur dioxide content). Investment and operation costs as well as profits of both plants are given. Methods employed for power plant flue gas desulfurization in major industrial countries are further assessed: about 90% of these methods uses wet flue gas scrubbing with lime. In the USA flue gas from 25,000 MW of power plant capacity is desulfurized. In the USSR, a 35,000 m/sup 3//h trial plant at Severo-Donetzk is operating using lime, alkali and magnesite. At the 150 MW Dorogobush power plant in the USSR a desulfurization plant using a cyclic ammonia process is under construction.

  1. Process for the removal of acid forming gases from exhaust gases

    Science.gov (United States)

    Chang, S.G.; Liu, D.K.

    1992-11-17

    Exhaust gases are treated to remove NO or NO[sub x] and SO[sub 2] by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50 C is attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO[sub x] and SO[sub 2], alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO[sub x] and SO[sub 2] can be removed in an economic fashion. 9 figs.

  2. Mid-Infrared OPO for High Resolution Measurements of Trace Gases in the Mars Atmosphere

    Science.gov (United States)

    Yu, Anthony W.; Numata,Kenji; Riris, haris; Abshire, James B.; Allan, Graham; Sun, Xiaoli; Krainak, Michael A.

    2008-01-01

    The Martian atmosphere is composed primarily (>95%) of CO2 and N2 gas, with CO, O2, CH4, and inert gases such as argon comprising most of the remainder. It is surprisingly dynamic with various processes driving changes in the distribution of CO2, dust, haze, clouds and water vapor on global scales in the meteorology of Mars atmosphere [I]. The trace gases and isotopic ratios in the atmosphere offer important but subtle clues as to the origins of the planet's atmosphere, hydrology, geology, and potential for biology. In the search for life on Mars, an important process is the ability of bacteria to metabolize inorganic substrates (H2, CO2 and rock) to derive energy and produce methane as a by-product of anaerobic metabolism. Trace gases have been measured in the Mars atmosphere from Earth, Mars orbit, and from the Mars surface. The concentration of water vapor and various carbon-based trace gases are observed in variable concentrations. Within the past decade multiple groups have reported detection of CH4, with concentrations in the 10's of ppb, using spectroscopic observations from Earth [2]. Passive spectrometers in the mid-infrared (MIR) are restricted to the sunlit side of the planet, generally in the mid latitudes, and have limited spectral and spatial resolution. To accurately map the global distribution and to locate areas of possibly higher concentrations of these gases such as plumes or vents requires an instrument with high sensitivity and fine spatial resolution that also has global coverage and can measure during both day and night. Our development goal is a new MIR lidar capable of measuring, on global scales, with sensitivity, resolution and precision needed to characterize the trace gases and isotopic ratios of the Martian atmosphere. An optical parametric oscillator operating in the MIR is well suited for this instrument. The sufficient wavelength tuning range of the OPO can extend the measurements to other organic molecules, CO2, atmospheric water

  3. Long-Term Changes of Tropospheric Trace Gases over Pakistan Derived From Multiple Satellite Instruments

    Science.gov (United States)

    Zeb, Naila; Fahim Khokhar, Muhammad; Murtaza, Rabbia; Noreen, Asma; Khalid, Tameem

    2016-07-01

    Air pollution is the expected key environmental issue of Pakistan in coming years due to its ongoing rapid economic growth and this trend suggests only worst air quality over time. In 2014, World bank reported the Pakistan's urban air quality among the most severe in the world and intimated the government to make improvement in air quality as a priority policy agenda. In addition it is recommended to strengthen the institutional and technical capacity of organizations responsible for air quality management. Therefore, the study is designed to put efforts in highlighting air quality issues. The study will provide first database for tropospheric trace gases over Pakistan. The study aims to analyse tropospheric concentrations of CO, TOC, NO2 and HCHO over Pakistan using multisensory data from January 2005 to January 2014. Spatio-temporal and seasonal variability of tropospheric trace gases is observed over the decade to explore long term trend. Hotspots are identified to see variation of species with latitude and to highlight possible sources of trace gases over the Pakistan. High concentrations of trace gases are mainly observed over the Punjab region, which may be attributed to its metropolitan importance. It is the major agricultural, industrialized and urbanized (nearly 60% of the Pakistan's population) sector of the country. Overall significant decreasing trend of CO is identified by MOPITT with relative change of 12.4%. Tropospheric ozone column (TOC) showed insignificant increasing trend with temporal increase of 10.4% whereas NO2 exhibited a significant temporal increase of about 28%. For formaldehyde (HCHO), an increase of about 3.8% is calculated for SCIAMACHY data. Well defined seasonal cycles for these trace gases are observed over the whole study period. CO concentrations showed peak in winter months (November/December/January/February) and dip in the months of Summer/Monsoon (June/July/August). In spite of CO, TCO increases gradually in March and peaks

  4. Quantum gases finite temperature and non-equilibrium dynamics

    CERN Document Server

    Szymanska, Marzena; Davis, Matthew; Gardiner, Simon

    2013-01-01

    The 1995 observation of Bose-Einstein condensation in dilute atomic vapours spawned the field of ultracold, degenerate quantum gases. Unprecedented developments in experimental design and precision control have led to quantum gases becoming the preferred playground for designer quantum many-body systems. This self-contained volume provides a broad overview of the principal theoretical techniques applied to non-equilibrium and finite temperature quantum gases. Covering Bose-Einstein condensates, degenerate Fermi gases, and the more recently realised exciton-polariton condensates, it fills a gap by linking between different methods with origins in condensed matter physics, quantum field theory, quantum optics, atomic physics, and statistical mechanics. Thematically organised chapters on different methodologies, contributed by key researchers using a unified notation, provide the first integrated view of the relative merits of individual approaches, aided by pertinent introductory chapters and the guidance of ed...

  5. Non-CO2 greenhouse gases and climate change.

    Science.gov (United States)

    Montzka, S A; Dlugokencky, E J; Butler, J H

    2011-08-03

    Earth's climate is warming as a result of anthropogenic emissions of greenhouse gases, particularly carbon dioxide (CO(2)) from fossil fuel combustion. Anthropogenic emissions of non-CO(2) greenhouse gases, such as methane, nitrous oxide and ozone-depleting substances (largely from sources other than fossil fuels), also contribute significantly to warming. Some non-CO(2) greenhouse gases have much shorter lifetimes than CO(2), so reducing their emissions offers an additional opportunity to lessen future climate change. Although it is clear that sustainably reducing the warming influence of greenhouse gases will be possible only with substantial cuts in emissions of CO(2), reducing non-CO(2) greenhouse gas emissions would be a relatively quick way of contributing to this goal.

  6. Measurement of Trace Gases in the Atmosphere of Venus Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Southwest Sciences proposes to develop small, lightweight, low power instrumentation for the in situ balloon-borne measurement of several trace gases of importance...

  7. Laser-aided diagnostics of plasmas and gases

    CERN Document Server

    Muraoka, K

    2000-01-01

    Updated and expanded from the original Japanese edition, Laser-Aided Diagnostics of Gases and Plasmas takes a unique approach in treating laser-aided diagnostics. The book unifies the subject by joining applications instead of describing each application as a totally separate system. In taking this approach, it highlights the relative strengths of each method and shows how they can complement each other in the study of gases and plasmas.The first part of the book presents a general introduction to the laser-aided study of gases and plasmas, including the various principles and hardware needed for each method, while the second part describes the applications of each general system in detail.Beneficial to a wide spectrum of academic and industrial researchers, this book provides a solid examination of the various options and methods available when involved in the analysis and diagnostics of gases and plasmas.

  8. Molecular model for solubility of gases in flexible polymers

    DEFF Research Database (Denmark)

    Neergaard, Jesper; Hassager, Ole; Szabo, Peter

    1999-01-01

    We propose a model for a priori prediction of the solubility of gases in flexible polymers. The model is based on the concept of ideal solubility of gases in liquids. According to this concept, the mole fraction of gases in liquids is given by Raoult's law with the total pressure and the vapor...... pressure of the gas, where the latter may have to be extrapolated. However, instead of considering each polymer molecule as a rigid structure, we estimate the effective number of degrees of freedom from an equivalent freely jointed bead-rod model for the flexible polymer. In this model, we associate...... the length of the rods with the molecular weight corresponding to a Kuhn step. The model provides a tool for crude estimation of the gas solubility on the basis of only the monomer unit of the polymer and properties of the gas. A comparison with the solubility data for several gases in poly...

  9. LOCAL INSTRUCTION THEORY ON DIVISION IN MATHEMATICS GASING

    Directory of Open Access Journals (Sweden)

    Rully Charitas Indra Prahmana

    2014-01-01

    Full Text Available Several studies on learning mathematics for rural area's student indicate that students have difficulty in understanding the concept of division operation. Students are more likely to be introduced by the use of the formula without involving the concept itself and learning division separate the concrete situation of learning process. This underlies the researcher to design division operation learning in the Mathematics of GASING (Math GASING, which always starts from concrete to abstract level. The research method used is a design research which describes how the Math GASING make a real contribution of students understanding in the concept of division operation. Keywords: Division Operation, Design Research, Math GASING, Rural Area’s Student DOI: http://dx.doi.org/10.22342/jme.5.1.1445.17-26

  10. Inventory of Greenhouse Gases Emissions from Gasoline and ...

    African Journals Online (AJOL)

    Akorede

    Man-made emissions of greenhouse gases (GHGs) have ... agriculture in Nigeria due to climate change is the reduction ... contributed significantly to the choking air in cities like ...... review with time, utilization and enforcement of emissions.

  11. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    Science.gov (United States)

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  12. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    Science.gov (United States)

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  13. The control of volume flow heating gases oh coke plant

    Directory of Open Access Journals (Sweden)

    Kostúr Karol

    2003-12-01

    Full Text Available The contribution deals with mixture and coke gases volume quantity determination for coke battery in term of their optimal redistribution at single blocks in consideration of accurate observance of corresponding technological temperature.

  14. Learning the Critical Points for Addition in Matematika GASING

    Directory of Open Access Journals (Sweden)

    Johannes Hamonangan Siregar

    2014-07-01

    Full Text Available We propose learning Matematika GASING to help students better understand the addition material. Matematika GASING is a way of learning mathematics in an easy, fun and enjoyable fashion. GASING is short for GAmpang, aSyIk, and menyenaNGkan (Bahasa Indonesia for easy, fun and enjoyable. It was originally developed by Prof. Yohanes Surya at the Surya Institute in Indonesia to improve the mathematics education in Indonesia. In Matematika GASING, there is a step called “the critical point” that needs to be mastered for each topic. The focus of our research is the critical point for addition, that is addition of two numbers between 1 − 10 with a sum less than 20. The subject is a matriculation class at STKIP Surya and the research method used is Classroom Action Research. The statistics obtained is described using Qualitative Descriptive Statistics.

  15. Low-mature gases and their resource potentiality

    Institute of Scientific and Technical Information of China (English)

    XU Yongchang; WANG Xiaofeng; SHI Baoguang

    2009-01-01

    In the 80's of last century, based on the advances in natural gas exploration practice, the concepts of bio-thermocatalytic transitional-zone gas and early thermogenetic gas were proposed, and the lower limit Ro values for the formation and accumulation of thermogenetic natural gases of industrial importance have been extended to 0.3%-0.4%. In accordance with the two-stage model established on the basis of carbon isotope fractionation involved in the formation of coal-type natural gases, the upper limit Ro values of lowly evolved natural gases should be set at 0.8%-1.0%. This is the concept of low-mature gas which is commonly accepted at the present time. The Urengoy super-large gas field in western Siberian Basin is a typical example of low-mature gas field, where low-mature gas reserves account for 20% of the globally proven natural gas reserves, and this fully indicates the importance of this kind of resources. The proven reserves of natural gases in the Turpan-Hami Basin of China are approximate to 1000×108 m3, and the thermal evolution indices of source rocks are Ro=0.4%-0.8%. The δ13C1 values of methane are mainly within the range of -44‰- -39‰ (corresponding to Ro=0.6%-0.8%), and those of ethane are mainly within the range of -29‰- -26‰, indicating that these natural gases should be designated to the coal-type low-mature gases. The light hydrocarbon evolution indices of natural gases also provide strong evidence suggesting that they are the coal-type low-mature gases. If so, low-mature gas in the Turpan-Hami Basin has been accumulated to such an extent as to be equivalent to the total reserves of three large-sized gas fields, and their existence is of great significance in the study and exploration of China's low-mature gases. If it is evidenced that the source rocks of low-mature gases are related mainly to coal measures, China's abundant lowly evolved coal series resources will provide a huge resource potentiality for the generation of low

  16. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... to, for example, atmospheric research, combustion and gasification. Some high-temperature, high-resolution IR/UV absorption/transmission measurements gases (e.g. CO2, SO2, SO3 and phenol) are presented....

  17. The Extension of the RAINS Model to Greenhouse Gases

    OpenAIRE

    Klaassen, G.; AMANN, M; Berglund, C; J. Cofala; Hoeglund-Isaksson, L.; Heyes, C.; MECHLER R.; Tohka, A.; W. Schoepp; Winiwarter, W.

    2004-01-01

    Many of the traditional air pollutants and greenhouse gases have common sources, offering a cost-effective potential for simultaneous improvements for both traditional air pollution problems as well as climate change. A methodology has been developed to extend the RAINS integrated assessment model to explore synergies and trade-offs between the control of greenhouse gases and air pollution. With this extension, the RAINS model allows now the assessment of emission control costs for the six gr...

  18. Fe distribution in GaSe and InSe

    Energy Technology Data Exchange (ETDEWEB)

    Kovalyuk, Z.D.; Fejchuk, P.I.; Shcherbak, L.P.; Zbykovskaya, N.I.

    1985-01-01

    Radiometry was used to determine the effective coefficients of Fe distribution in GaSe and InSe during planar crystallization of melt with 5 x 10/sup 17/-6 x 10/sup 19/ at/cm/sup 3/ initial impurity concentration; concentration dependence of these cofficients was established. Equations for calculation of the real impurity distribution in GaSe and InSe crystals are presented.

  19. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    Science.gov (United States)

    Larson, Diane L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  20. Characterizing spatial and temporal variability of dissolved gases in aquatic environments with in situ mass spectrometry.

    Science.gov (United States)

    Camilli, Richard; Duryea, Anthony N

    2009-07-01

    The TETHYS mass spectrometer is intended for long-term in situ observation of dissolved gases and volatile organic compounds in aquatic environments. Its design maintains excellent low mass range sensitivity and stability during long-term operations, enabling characterization of low-frequency variability in many trace dissolved gases. Results are presented from laboratory trials and a 300-h in situ trial in a shallow marine embayment in Massachusetts, U.S.A. This time series consists of over 15000 sample measurements and represents the longest continuous record made by an in situ mass spectrometer in an aquatic environment. These measurements possess sufficient sampling density and duration to apply frequency analysis techniques for study of temporal variability in dissolved gases. Results reveal correlations with specific environmental periodicities. Numerical methods are presented for converting mass spectrometer ion peak ratios to absolute-scale dissolved gas concentrations across wide temperature regimes irrespective of ambient pressure, during vertical water column profiles in a hypoxic deep marine basin off the coast of California, U.S.A. Dissolved oxygen concentration values obtained with the TETHYS instrument indicate close correlation with polarographic oxygen sensor data across the entire depth range. These methods and technology enable observation of aquatic environmental chemical distributions and dynamics at appropriate scales of resolution.

  1. Passive sampling and analyses of common dissolved fixed gases in groundwater.

    Science.gov (United States)

    Spalding, Brian P; Watson, David B

    2008-05-15

    An in situ passive sampling and gas chromatographic protocol was developed for analysis of the major and several minor fixed gases (He, Ne, H2, N2, O2, CO, CH4, CO2, and N2O) in groundwater. Using argon carrier gas, a HayeSep DB porous polymer phase, and sequential thermal conductivity and reductive gas detectors, the protocol achieved sufficient separation and sensitivity to measure the mixing ratio of all these gases in a single 0.5 mL gas sample collected in situ, stored, transported, and injected using a gastight syringe. Within 4 days of immersion in groundwater, the simple passive in situ sampler, whether initially filled with He or air, attained an equivalent and constant mixing ratio for five of the seven detected gases. The abundant mixing ratio of N2O, averaging 2.6%, indicated that significant denitrification is likely ongoing within groundwater contaminated with uranium, acidity, nitrate, and organic carbon from a group of four closed radioactive wastewater seepage ponds at the Oak Ridge Field Research Center. Over 1000 passive gas samples from 12 monitoring wells averaged 56% CO2, 32.4% N2, 2.6% O2, 2.6% N2O, 0.21% CH4, 0.093% H2, and 0.025% CO with an average recovery of 95 +/- 14% of the injected gas volume.

  2. Excitation of gases with positive ions

    Energy Technology Data Exchange (ETDEWEB)

    Sercel, P.C.; Bashkin, S.; Anderson, J.A.; Thiede, D.A.; Bruch, R.F.; DeWitt, D.; Fuelling, S.

    1988-04-01

    The aurora borealis presents problems the solutions to which depend partly on knowing the cross sections for the excitation of states in atmospheric gases by the impact of energetic protons and electrons. We have begun a study of the excitation processes induced in N/sub 2/ and O/sub 2/ by energetic incident positive ions (H/sup +/, H/sub 2//sup +/, H/sub 3//sup +/). The particles, accelerated with a 2 MV Van de Graaff accelerator, enter a differentially pumped gas cell in which the pressure can be varied up to 80 mTorr and held constant to 0.1 mTorr at each setting. Light generated in the cell is observed at 90/sup 0/ to the particle beam. The light is reflected by a mirror system so as to enter the input slit of a 1-m, air, Czerny-Turner spectrometer. The 1200 l/mm grating is blazed at 500 nm. A cooled 9659B photomultiplier tube detects the light which appears at the exit slit, and transmits intensity information to a 4000-channel multiscaler. The incident beam is received on an insulated plate, and the collected charge provides a signal which advances both the grating angle and the channel in the multiscaler. Using a line width of 0.03 to 0.1 nm, we have obtained spectra from 360 to 750 nm. Many transitions have been identified, most from N/sub 2//sup +/ O/sub 2//sup -/, but some from neutral molecules and monatomic emitters. Data have been taken as a function of pressure and type of incident particle for a particle velocity corresponding to 500 keV protons. There is no discernible difference in relative yield for the different bombarding species. The line intensities all appear to be linear with pressure over the range we used. We will describe our results and discuss our approach to making cross-section measurements. Possible extensions of the experiments into different directions will also be mentioned.

  3. GREENHOUSE GASES REDUCTION THROUGH WASTE MANAGEMENT IN CROATIA

    Directory of Open Access Journals (Sweden)

    Aleksandra Anić Vučinić

    2010-01-01

    Full Text Available The climate change policy is one of the key factors in the achievement of sustainable development in the Republic of Croatia. Control and mitigation of green house gases is correlated with all economy activities. Waste management is one of the main tasks of environmental protection in Croatia. The Waste Management Strategy of the Republic of Croatia and the Waste Management Plan in the Republic of Croatia define the concept of waste management hierarchy and direct and indirect measures as criteria for sustainable waste management establishment. The main constituent of this system is avoiding and minimizing waste, as well as increasing the recycling and recovery level of waste and land fill gas, which also represent green house gases mitigation measures. The Waste Management Plan consists of several direct and indirect measures for green house gases emission reduction and their implementation also affects the green house gases emissions. The contribution of the methane emission from land fills amounts to about 2% of the total green house gases emissions in Croatia. The climate change control and mitigation measures as an integral part of waste management sector strategies represent the measures of achieving the national objectives to wards green house gases emission reduction which Croatia has accepted in the frame work of the Kyoto Protocol.

  4. Studies of noble gases in meteorites and in the earth

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.P.

    1979-01-01

    The isotopic and elemental abundances of noble gases in the solar system are investigated, using simple mixing models and mass-spectrometric measurements of the noble gases in meteorites and terrestrial rocks and minerals. Primordial neon is modeled by two isotopically distinct components from the interstellar gas and dust. Neon from the gas dominates solar neon, which contains about ten times more /sup 20/Ne than /sup 22/Ne. Neon in meteorites consists of galactic cosmic ray spallation neon and at least two primordial components, neon-E and neon-S. Neon was measured in several meteorites to investigate these end-members. Ca,Al-rich inclusions from the Allende meteorite were examined for correlation between neon-E and oxygen or magnesium isotopic anomalies. Measurements were made to determine the noble gas contents of various terrestrial rocks and minerals, and to investigate the cycling of noble gases between different terrestrial reservoirs. Juvenile and atmospheric gases have been measured in the glassy rims of mid-ocean ridge (MOR) pillow basalts. Evidence is presented that three samples contain excess radiogenic /sup 129/Xe and fission xenon, in addition to the excess radiogenic /sup 40/Ar found in all samples. The Skaergaard data demonstrate that atmospheric noble gases dissolved in ground water can be transferred into crustal rocks. Subduction of oceanic crust altered by seawater can transport atmospheric noble gases into the upper mantle.

  5. Electron beam treatment of simulated marine diesel exhaust gases

    Directory of Open Access Journals (Sweden)

    Licki Janusz

    2015-09-01

    Full Text Available The exhaust gases from marine diesel engines contain high SO2 and NOx concentration. The applicability of the electron beam flue gas treatment technology for purification of marine diesel exhaust gases containing high SO2 and NOx concentration gases was the main goal of this paper. The study was performed in the laboratory plant with NOx concentration up to 1700 ppmv and SO2 concentration up to 1000 ppmv. Such high NOx and SO2 concentrations were observed in the exhaust gases from marine high-power diesel engines fuelled with different heavy fuel oils. In the first part of study the simulated exhaust gases were irradiated by the electron beam from accelerator. The simultaneous removal of SO2 and NOx were obtained and their removal efficiencies strongly depend on irradiation dose and inlet NOx concentration. For NOx concentrations above 800 ppmv low removal efficiencies were obtained even if applied high doses. In the second part of study the irradiated gases were directed to the seawater scrubber for further purification. The scrubbing process enhances removal efficiencies of both pollutants. The SO2 removal efficiencies above 98.5% were obtained with irradiation dose greater than 5.3 kGy. For inlet NOx concentrations of 1700 ppmv the NOx removal efficiency about 51% was obtained with dose greater than 8.8 kGy. Methods for further increase of NOx removal efficiency are presented in the paper.

  6. GaSe oxidation in air: from bulk to monolayers

    Science.gov (United States)

    Rahaman, Mahfujur; Rodriguez, Raul D.; Monecke, Manuel; Lopez-Rivera, Santos A.; Zahn, Dietrich R. T.

    2017-10-01

    Two-dimensional (2D) van derWaals semiconductors have been the subject of intense research due to their low dimensionality and tunable optoelectronic properties. However, the stability of these materials in air is one of the important issues that needs to be clarified, especially for technological applications. Here the time evolution of GaSe oxidation from monolayer to bulk is investigated by Raman spectroscopy, photoluminescence emission, and x-ray photoelectron spectroscopy. The Raman spectroscopy study reveals that GaSe monolayers become oxidized almost immediately after exposure to air. However, the oxidation is a self-limiting process taking roughly 5 h to penetrate up to 3 layers of GaSe. After oxidation, GaSe single-layers decompose into amorphous Se which has a strong Raman cross section under red excitation. The present study provides a clear picture of the stability of GaSe in air and will guide future research of GaSe from single- to few-layers for the appropriate development of novel technological applications for this promising 2D material.

  7. Use of gases in dairy manufacturing: A review.

    Science.gov (United States)

    Adhikari, Bhaskar Mani; Truong, Tuyen; Bansal, Nidhi; Bhandari, Bhesh

    2017-06-13

    Use of gases (air, carbon dioxide and nitrogen) has been practiced in the manufacture of dairy products (i.e., ice cream, whipped cream and butter) to improve their texture, mouthfeel and shelf-life extension. Many attempts have also been made to incorporate other gases such as hydrogen, nitrous oxide, argon, xenon, and helium into the dairy systems for various product functionalities such as whipping, foaming, texture, aroma enhancement, and therapeutic properties. The gases can be dissolved in aqueous and fat phases or remain in the form of bubbles stabilized by protein or fat particles. The gas addition or infusion processes are typically simple and have been used commercially. This review focuses on the use of various gases in relation to their individually physical properties along with their specific roles in manufacturing and controlling quality of dairy products. It also recaps on how gases are included in the dairy systems. The information is important in understanding of addition of specific gas(es) into food systems, particularly dairy products, that potentially provide intervention opportunities for modifying and/or creating innovative food structures and functionalities.

  8. Arctic Vegetation under Climate Change – Biogenic Volatile Organic Compound Emissions and Leaf Anatomy

    DEFF Research Database (Denmark)

    Schollert, Michelle

    Biogenic volatile organic compounds (BVOCs) emitted from terrestrial vegetation are highly reactive non-methane hydrocarbons which participate in oxidative reactions in the atmosphere prolonging the lifetime of methane and contribute to the formation of secondary organic aerosols. The BVOC...... measurements in this thesis were performed using a dynamic enclosure system and collection of BVOCs into adsorbent cartridges analyzed by gas chromatography-mass spectrometry following thermal desorption. Also modifications in leaf anatomy in response to the studied effects of climate change were assessed...... by the use of light microscopy and scanning electron microscopy. This thesis reports the first estimates of high arctic BVOC emissions, which suggest that arctic environments can be a considerable source of BVOCs to the atmosphere. The BVOC emissions differed qualitatively and quantitatively for the studied...

  9. Processes for separating the noble fission gases xenon and krypton from waste gases from nuclear plants

    Energy Technology Data Exchange (ETDEWEB)

    Henrich, E.; Hufner, R.; Weirich, F.

    1983-08-23

    A process is claimed for separating the noble fission gases xenon and krypton from a prepurified waste gas from a nuclear plant. The prepurified waste gas is brought into contact with liquid Cl/sub 2/CF/sub 2/ as an absorption agent in a first column at an operating pressure which is less than or equal to normal pressure, whereby Xe, Kr, N/sub 2/O, CO/sub 2/, O/sub 2/ and N/sub 2/ are absorbed by the agent. Subsequently, the liquid absorption agent containing the absorbed gases is heated to substantially the boiling temperature of Cl/sub 2/CF/sub 2/ at the operating pressure for vaporizing part of the liquid absorption agent and desorbing the absorbed Kr, N/sub 2/ and O/sub 2/ to thereby separate the Kr and Xe from one another. The desorbed Kr, N/sub 2/ and O/sub 2/ gases are separated from the vaporized absorption agent. The liquid absorption agent which has not been vaporized is treated to recover Xe, N/sub 2/O and CO/sub 2/. Waste gas containing Kr, N/sub 2/ and O/sub 2/ from the head of the first column is brought into contact with liquid Cl/sub 2/CF/sub 2/ as an absorption agent in a second column, at an operating pressure which is less than or equal to normal pressure, whereby Kr, N/sub 2/ and O/sub 2/ are absorbed. Subsequently, the liquid absorption agent in the second column containing the absorbed Kr, N/sub 2/ and O/sub 2/ is heated substantially the boiling temperature of the Cl/sub 2/CF/sub 2/ at the operating pressure for vaporizing part of the liquid absorption agent and desorbing the absorbed N/sub 2/ and O/sub 2/. The liquid Cl/sub 2/CF/sub 2/ which has not been vaporized is treated to recover KR. An apparatus is provided for performing the process.

  10. WMO WDCGG data report. GAW data. Volume IV - greenhouse gases and other atmospheric gases. WDCGG No. 25

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    The report contains data on the concentrations of greenhouse gases and related gases in the atmosphere and the oceans. This report contains monthly and annual mean values collected from January 1998 to October 2000 on global, regional and local scales, together with information on observation stations. Gases include: carbon dioxide, methane, nitrous oxide, carbon monoxide, nitrogen dioxide, nitrogen monoxide, sulphur dioxide, chlorofluorocarbons, tetrachloroethane, trichloroethane and trichloromethane. Trends in concentrations and growth rates presented mainly in graphical form for observation stations around the world. Tables list concentrations of gases, over periods covered at all reporting stations with average growth rates per year and also regression equations of trends. Geographical locations of observation stations are also listed.

  11. Study of the heterointerfaces InSe on GaSe and GaSe on InSe

    Science.gov (United States)

    Fargues, D.; Brahim-Otsmane, L.; Eddrief, M.; Sébenne, C.; Balkanski, M.

    1993-03-01

    InSe and GaSe thin films are grown on freshly cleaved (00.1) substrates of GaSe and InSe, respectively, by molecular beam epitaxy. They are studied in situ by X-ray photoelectron spectroscopy (XPS) and reflection high energy electron diffraction (RHEED). From the attenuation curves of the XPS substrate core level peaks, the quasi layer-by-layer growth is shown during the first stages of deposition in agreement with RHEED results. But both interfaces are not totally symmetrical. For InSe on GaSe(00.1), the sharpness of the interface is shown and the conditions of growth are well established. For GaSe on InSe(00.1), the sharpness of the interface can also be suggested although it is less clear; this is related to the growth conditions.

  12. Snowpack Chemistry of Reactive Gases at Station Concordia, Antarctica

    Science.gov (United States)

    Helmig, Detlev; Mass, Alex; Hueber, Jacques; Fain, Xavier; Dommergue, Aurelien; Barbero, Albane; Savarino, Joel

    2013-04-01

    During December 2012 a new experiment for the study of snow photochemical processes and surface gas exchange was installed at Dome Concordia, Antarctica. The experiment consists of two sampling manifolds ('snow tower') which facilitate the withdrawal of interstitial firn air from four depths in the snowpack and from above the surface. One of these snow towers can be shaded for investigation of the dependency of snow chemistry on solar radiation. A nearby 12 m meteorological tower facilitates above surface turbulence and trace gas gradient measurements. Temperature profiles and UV and IR light penetration are monitored in the snowpack. Air samples are directed through sampling lines to a nearby underground laboratory that houses the experiment control system and gas monitors. The system is fully automated, sampling gases from the array of inlet ports sequentially, and is intended to be operated continuously for a full annual cycle. The computerized control system can be accessed remotely for data retrieval and quality control and for configuring experimental details. Continuous gas measurements include ozone, nitrogen oxides, methane, carbon monoxide, and gaseous elemental mercury. Whole air samples were sampled on four occasions for volatile organic compound analysis. The objective of this research is the study of the year-round snowpack gas chemistry and its dependency on snowpack and above surface physical and environmental conditions. A particular emphasis will be the investigation of the effects of increased UV radiation during the occurrence of the stratospheric ozone hole. We will present the conceptual design of the experiment and data examples from the first three months of the experiment.

  13. Geochemical study on oil-cracked gases and kerogencracked gases (I)——Experimental simulation and products analysis

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Eight types of samples:crude oil,chloroform bitumen A,oil fractions(saturated hydrocarbon,aromatic hydrocarbon,resin and asphaltene) ,source rock and kerogen,have been pyrolyzed in laboratory. The products have also been systematically analyzed. The results indicate that gaseous hydrocarbons yields for different types of samples at various temperatures are different,especially for different fractions of crude oil. There is difference for molecular compositions. The C2/C3 ratios of cracking gases in different types of samples have positive relationships with C2/iC4 as well as pyrolysis temperatures. Moreover,the ratios of C2/C3 and C2/iC4 are about 2 and 10,respectively,at the temperature of 500℃― 550℃. However,when the temperature is higher than 500℃,the ratios of C1/C2,C1/C3 and dryness index for gases cracking from source rock and kerogen are higher than those from oil and bitumen,indicating an important different feature between oil-cracked gases and kerogen-cracked gases at the high or over-mature stage. The ratios of C1/C2,C1/C3 vary more than 10% at 500℃―800℃. In this paper,experimental results can provide important academic foundation and useful geochemical parameters for distinguishing of oil-cracked gases and kerogen-cracked gases.

  14. Process for the removal of acid forming gases from exhaust gases and production of phosphoric acid

    Science.gov (United States)

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorous preferably in a wet scrubber. The addition of yellow phosphorous in the system induces the production of O.sub.3 which subsequently oxidizes NO to NO.sub.2. The resulting NO.sub.2 dissolves readily and can be reduced to form ammonium ions by dissolved SO.sub.2 under appropriate conditions. In a 20 acfm system, yellow phosphorous is oxidized to yield P.sub.2 O.sub.5 which picks up water to form H.sub.3 PO.sub.4 mists and can be collected as a valuable product. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, better than 90% of SO.sub.2 and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained.

  15. Radiative forcings for 28 potential Archean greenhouse gases

    Directory of Open Access Journals (Sweden)

    B. Byrne

    2014-05-01

    Full Text Available Despite reduced insolation in the late Archean, evidence suggests a warm climate which was likely sustained by a stronger greenhouse effect, the so-called Faint Young Sun Problem (FYSP. CO2 and CH4 are generally thought to be the mainstays of this enhanced greenhouse, though many other gases have been proposed. We present high accuracy radiative forcings for CO2, CH4 and 26 other gases, performing the radiative transfer calculations at line-by-line resolution and using HITRAN 2012 line data for background pressures of 0.5, 1, and 2 bar. For CO2 to resolve the FYSP alone, 0.21 bar is needed with 0.5 bar of atmospheric pressure, 0.13 bar with 1 bar of atmospheric pressures, or 0.07 bar with 2 bar of atmospheric pressure. For CH4, we find that near-infrared absorption is much stronger than previously thought, arising from updates to the HITRAN database. CH4 radiative forcing peaks at 10.3, 9, or 8.3 W m−2 for background pressures of 0.5, 1 or 2 bar, likely limiting the utility of CH4 for warming the Archean. For the other 26 HITRAN gases, radiative forcings of up to a few to 10 W m−2 are obtained from concentrations of 0.1–1 ppmv for many gases. We further calculate the reduction of radiative forcing due to gas overlap for the 20 strongest gases. We recommend the forcings provided here be used both as a first reference for which gases are likely good greenhouse gases, and as a standard set of calculations for validation of radiative forcing calculations for the Archean.

  16. 40 CFR 52.22 - Enforceable commitments for further actions addressing the pollutant greenhouse gases (GHGs).

    Science.gov (United States)

    2010-07-01

    ... actions addressing the pollutant greenhouse gases (GHGs). 52.22 Section 52.22 Protection of Environment... greenhouse gases (GHGs). (a) Definitions. (1) Greenhouse Gases (GHGs) means the air pollutant as defined in § 86.1818-12(a) of this chapter as the aggregate group of six greenhouse gases: Carbon dioxide,...

  17. Assessment of the greenhouse gases in Mexico: Importance of the electric sector; Inventario de gases de invernadero en Mexico: Importancia del sector electrico

    Energy Technology Data Exchange (ETDEWEB)

    Sheinbaum Pardo, Claudia [Instituto de Ingenieria, UNAM, Mexico, D. F. (Mexico)

    1996-12-31

    In this paper are presented the principal results of the various studies on energy end uses developed by the Grupo de Energia y Ambiente del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM Group of Energy and Environment) for years 1987 and 1993, emphasizing on the emissions originated by the generation of electricity and for the following greenhouse effect gases: carbon dioxide (CO{sub 2}), carbon monoxide (CO), nitrogen oxides (NOx) and methane (CH{sub 4}). Also, a comparison is presented among Mexico and other Latin America countries based on statistics of OLADE (Latin American Organization of Energy) [Espanol] En este trabajo se presentan los principales resultados de estudios diversos sobre usos finales de energia desarrollados por el Grupo de Energia y Ambiente del Instituto de Ingenieria de la Universidad Nacional Autonoma de Mexico (UNAM) para los anos 1987 y 1993, poniendo enfasis en las emisiones debidas a la generacion de electricidad y para los siguientes gases de efecto invernadero: bioxido de carbono (CO{sub 2}), monoxido de carbono (CO), oxidos de nitrogeno (NOx) y metano (HC{sub 4}). Asi mismo se presenta una comparacion entre Mexico y otros paises de Latinoamerica basado en estadisticas de la Organizacion Latinoamericana de Energia

  18. Role of metabolic gases in bubble formation during hypobaric exposures.

    Science.gov (United States)

    Foster, P P; Conkin, J; Powell, M R; Waligora, J M; Chhikara, R S

    1998-03-01

    Our hypothesis is that metabolic gases play a role in the initial explosive growth phase of bubble formation during hypobaric exposures. Models that account for optimal internal tensions of dissolved gases to predict the probability of occurrence of venous gas emboli were statistically fitted to 426 hypobaric exposures from National Aeronautics and Space Administration tests. The presence of venous gas emboli in the pulmonary artery was detected with an ultrasound Doppler detector. The model fit and parameter estimation were done by using the statistical method of maximum likelihood. The analysis results were as follows. 1) For the model without an input of noninert dissolved gas tissue tension, the log likelihood (in absolute value) was 255.01. 2) When an additional parameter was added to the model to account for the dissolved noninert gas tissue tension, the log likelihood was 251.70. The significance of the additional parameter was established based on the likelihood ratio test (P bubble formation was 19. 1 kPa (143 mmHg). 4) The additional gas tissue tension, supposedly due to noninert gases, did not show an exponential decay as a function of time during denitrogenation, but it remained constant. 5) The positive sign for this parameter term in the model is characteristic of an outward radial pressure of gases in the bubble. This analysis suggests that dissolved gases other than N2 in tissues may facilitate the initial explosive bubble-growth phase.

  19. LEARNING THE CRITICAL POINTS FOR ADDITION IN MATEMATIKA GASING

    Directory of Open Access Journals (Sweden)

    Johannes Hamonangan Siregar

    2014-07-01

    Full Text Available We propose learning Matematika GASING to help students better understand the addition material. Matematika GASING is a way of learning mathematics in an easy, fun and enjoyable fashion. GASING is short for GAmpang, aSyIk, and menyenaNGkan (Bahasa Indonesia for easy, fun and enjoyable. It was originally developed by Prof. Yohanes Surya at the Surya Institute in Indonesia to improve the mathematics education in Indonesia. In Matematika GASING, there is a step called “the critical point” that needs to be mastered for each topic. The focus of our research is the critical point for addition, that is addition of two numbers between 1 − 10 with a sum less than 20. The subject is a matriculation class at STKIP Surya and the research method used is Classroom Action Research. The statistics obtained is described using Qualitative Descriptive Statistics.Keyword: Matematika GASING, Addition, Critical Points, Classroom Action Research. DOI: http://dx.doi.org/10.22342/jme.5.2.1500.160-169

  20. Noble gases recycled into the mantle through cold subduction zones

    Science.gov (United States)

    Smye, Andrew J.; Jackson, Colin R. M.; Konrad-Schmolke, Matthias; Hesse, Marc A.; Parman, Steve W.; Shuster, David L.; Ballentine, Chris J.

    2017-08-01

    Subduction of hydrous and carbonated oceanic lithosphere replenishes the mantle volatile inventory. Substantial uncertainties exist on the magnitudes of the recycled volatile fluxes and it is unclear whether Earth surface reservoirs are undergoing net-loss or net-gain of H2O and CO2. Here, we use noble gases as tracers for deep volatile cycling. Specifically, we construct and apply a kinetic model to estimate the effect of subduction zone metamorphism on the elemental composition of noble gases in amphibole - a common constituent of altered oceanic crust. We show that progressive dehydration of the slab leads to the extraction of noble gases, linking noble gas recycling to H2O. Noble gases are strongly fractionated within hot subduction zones, whereas minimal fractionation occurs along colder subduction geotherms. In the context of our modelling, this implies that the mantle heavy noble gas inventory is dominated by the injection of noble gases through cold subduction zones. For cold subduction zones, we estimate a present-day bulk recycling efficiency, past the depth of amphibole breakdown, of 5-35% and 60-80% for 36Ar and H2O bound within oceanic crust, respectively. Given that hotter subduction dominates over geologic history, this result highlights the importance of cooler subduction zones in regassing the mantle and in affecting the modern volatile budget of Earth's interior.

  1. Oil cracking to gases: Kinetic modeling and geological significance

    Institute of Scientific and Technical Information of China (English)

    TIAN Hui; WANG Zhaoming; XIAO Zhongyao; LI Xianqing; XIAO Xianming

    2006-01-01

    ATriassic oil sample from LN14 of Tarim Basin was pyrolyzed using the sealed gold tubes at 200-620℃ under a constant pressure of 50 MPa.The gaseous and residual soluble hydrocarbons were analyzed. The results show that the cracking of oil to gas can be divided into two distinct stages: the primary generation of total C1-5 gases from liquid oil characterized by the dominance of C2-5 hydrocarbons and the secondary or further cracking of C2-5gases to methane and carbon-rich matters leading to the progressive dryness of gases. Based on the experimental data, the kinetic parameters were determined for the primary generation and secondary cracking of oil cracking gases and extrapolated to geological conditions to predict the thermal stability and cracking extent of crude oil. Finally, an evolution model for the thermal destruction of crude oil was proposed and its implications to the migration and accumulation of oil cracking gases were discussed.

  2. The Efficacy of Noble Gases in the Attenuation of Ischemia Reperfusion Injury: A Systematic Review and Meta-Analyses.

    Science.gov (United States)

    De Deken, Julie; Rex, Steffen; Monbaliu, Diethard; Pirenne, Jacques; Jochmans, Ina

    2016-09-01

    Noble gases have been attributed to organ protective effects in ischemia reperfusion injury in a variety of medical conditions, including cerebral and cardiac ischemia, acute kidney injury, and transplantation. The aim of this study was to appraise the available evidence by systematically reviewing the literature and performing meta-analyses. PubMed, EMBASE, and the Cochrane Library. Inclusion criteria specified any articles on noble gases and either ischemia reperfusion injury or transplantation. In vitro studies, publications without full text, review articles, and letters were excluded. Information on noble gas, organ, species, model, length of ischemia, conditioning and noble gas dose, duration of administration of the gas, endpoints, and effects was extracted from 79 eligible articles. Study quality was evaluated using the Jadad scale. Effect sizes were extracted from the articles or retrieved from the authors to allow meta-analyses using the random-effects approach. Argon has been investigated in cerebral, myocardial, and renal ischemia reperfusion injury; helium and xenon have additionally been tested in hepatic ischemia reperfusion injury, whereas neon was only explored in myocardial ischemia reperfusion injury. The majority of studies show a protective effect of these noble gases on ischemia reperfusion injury across a broad range of experimental conditions, organs, and species. Overall study quality was low. Meta-analysis for argon was only possible in cerebral ischemia reperfusion injury and did not show neuroprotective effects. Helium proved neuroprotective in rodents and cardioprotective in rabbits, and there were too few data on renal ischemia reperfusion injury. Xenon had the most consistent effects, being neuroprotective in rodents, cardioprotective in rodents and pigs, and renoprotective in rodents. Helium and xenon show organ protective effects mostly in small animal ischemia reperfusion injury models. Additional information on timing, dosing, and

  3. Biotransformation of sulfur and nitrogen oxides in stack gases

    Energy Technology Data Exchange (ETDEWEB)

    Govind, R.; Puligadda, R. [Univ. of Cincinnati, OH (United States); Bishop, D.F. [Environmental Protection Agency, Cincinnati, OH (United States)

    1995-10-01

    The Nation`s large supply of high sulfur coal and increasingly stringent emission regulation led to priority development of advanced innovative processes for treating pollutants in flue gases from coal combustion. The principal pollutants in flue gases, sulfur oxides (SO{sub 2},SO{sub 3}) and nitrogen oxides (NO{sub x}) cause acid rain. Thus, the Department of Energy`s Clean Coal Program is funding projects to commercialize technologies that minimize emission of sulfur and nitrogen oxides at power plants. This report describes the controlled use of bioconversion processes to remove the oxides from flue gas. Two bioreactor experiments were conducted to investigate the removal of sulfur dioxide, nitrogen oxides, and carbon dioxide from stack gases.

  4. “Hard probes” of strongly-interacting atomic gases

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Yusuke [Los Alamos National Laboratory

    2012-06-18

    We investigate properties of an energetic atom propagating through strongly interacting atomic gases. The operator product expansion is used to systematically compute a quasiparticle energy and its scattering rate both in a spin-1/2 Fermi gas and in a spinless Bose gas. Reasonable agreement with recent quantum Monte Carlo simulations even at a relatively small momentum k/kF > 1.5 indicates that our large-momentum expansions are valid in a wide range of momentum. We also study a differential scattering rate when a probe atom is shot into atomic gases. Because the number density and current density of the target atomic gas contribute to the forward scattering only, its contact density (measure of short-range pair correlation) gives the leading contribution to the backward scattering. Therefore, such an experiment can be used to measure the contact density and thus provides a new local probe of strongly interacting atomic gases.

  5. Emissions of greenhouse gases in the United States 1997

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-01

    This is the sixth annual report on aggregate US national emissions of greenhouse gases. It covers emissions over the period 1990--1996, with preliminary estimates of emissions for 1997. Chapter one summarizes some background information about global climate change and the greenhouse effect. Important recent developments in global climate change activities are discussed, especially the third Conference of the Parties to the Framework Convention on Climate Change, which was held in December of 1997 in Kyoto, Japan. Chapters two through five cover emissions of carbon dioxide, methane, nitrous oxide, halocarbons and related gases, respectively. Chapter six describes potential sequestration and emissions of greenhouse gases as a result of land use changes. Six appendices are included in the report. 96 refs., 38 tabs.

  6. Turnover and transport of greenhouse gases in a Danish wetland

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher

    2011-01-01

    net N2O dynamics. Similarly, plant-mediated gas transport by the subsurface aerating macrophyte Phalaris arundinacea played a major part in regulating and facilitating emissions of greenhouse gases across the soil-atmosphere interface. It is concluded that the spatiotemporal distribution of dominating......Natural wetlands act as both sources and sinks of greenhouse gases such as carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) from the soil to the atmosphere. Production and consumption of these gases in the soil are controlled by a series of highly dynamic and interrelated processes...... in these drivers, thereby influencing the net emission or uptake of greenhouse gas. In this PhD thesis the complex aspects in the exchange of N2O across the soil-atmosphere is investigated with special focus on the spatiotemporal variations in drivers for N2O production and consumption in the soil...

  7. Sampling and analysis methods for geothermal fluids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J.C.

    1978-07-01

    The sampling procedures for geothermal fluids and gases include: sampling hot springs, fumaroles, etc.; sampling condensed brine and entrained gases; sampling steam-lines; low pressure separator systems; high pressure separator systems; two-phase sampling; downhole samplers; and miscellaneous methods. The recommended analytical methods compiled here cover physical properties, dissolved solids, and dissolved and entrained gases. The sequences of methods listed for each parameter are: wet chemical, gravimetric, colorimetric, electrode, atomic absorption, flame emission, x-ray fluorescence, inductively coupled plasma-atomic emission spectroscopy, ion exchange chromatography, spark source mass spectrometry, neutron activation analysis, and emission spectrometry. Material on correction of brine component concentrations for steam loss during flashing is presented. (MHR)

  8. Hydrodynamics of Normal Atomic Gases with Spin-orbit Coupling.

    Science.gov (United States)

    Hou, Yan-Hua; Yu, Zhenhua

    2015-10-20

    Successful realization of spin-orbit coupling in atomic gases by the NIST scheme opens the prospect of studying the effects of spin-orbit coupling on many-body physics in an unprecedentedly controllable way. Here we derive the linearized hydrodynamic equations for the normal atomic gases of the spin-orbit coupling by the NIST scheme with zero detuning. We show that the hydrodynamics of the system crucially depends on the momentum susceptibilities which can be modified by the spin-orbit coupling. We reveal the effects of the spin-orbit coupling on the sound velocities and the dipole mode frequency of the gases by applying our formalism to the ideal Fermi gas. We also discuss the generalization of our results to other situations.

  9. Global warming description using Daisyworld model with greenhouse gases.

    Science.gov (United States)

    Paiva, Susana L D; Savi, Marcelo A; Viola, Flavio M; Leiroz, Albino J K

    2014-11-01

    Daisyworld is an archetypal model of the earth that is able to describe the global regulation that can emerge from the interaction between life and environment. This article proposes a model based on the original Daisyworld considering greenhouse gases emission and absorption, allowing the description of the global warming phenomenon. Global and local analyses are discussed evaluating the influence of greenhouse gases in the planet dynamics. Numerical simulations are carried out showing the general qualitative behavior of the Daisyworld for different scenarios that includes solar luminosity variations and greenhouse gases effect. Nonlinear dynamics perspective is of concern discussing a way that helps the comprehension of the global warming phenomenon. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Total cross sections for ultracold neutrons scattered from gases

    Science.gov (United States)

    Seestrom, S. J.; Adamek, E. R.; Barlow, D.; Blatnik, M.; Broussard, L. J.; Callahan, N. B.; Clayton, S. M.; Cude-Woods, C.; Currie, S.; Dees, E. B.; Fox, W.; Hoffbauer, M.; Hickerson, K. P.; Holley, A. T.; Liu, C.-Y.; Makela, M.; Medina, J.; Morley, D. J.; Morris, C. L.; Pattie, R. W.; Ramsey, J.; Roberts, A.; Salvat, D. J.; Saunders, A.; Sharapov, E. I.; Sjue, S. K. L.; Slaughter, B. A.; Walstrom, P. L.; Wang, Z.; Wexler, J.; Womack, T. L.; Young, A. R.; Vanderwerp, J.; Zeck, B. A.

    2017-01-01

    We have followed up on our previous measurements of upscattering of ultracold neutrons (UCNs) from a series of gases by making measurements of total cross sections on the following gases hydrogen, ethane, methane, isobutene, n -butane, ethylene, water vapor, propane, neopentane, isopropyl alcohol, and 3He . The values of these cross sections are important for estimating the loss rate of trapped neutrons due to residual gas and are relevant to neutron lifetime measurements using UCNs. The effects of the UCN velocity and path-length distributions were accounted for in the analysis using a Monte Carlo transport code. Results are compared to our previous measurements and with the known absorption cross section for 3He scaled to our UCN energy. We find that the total cross sections for the hydrocarbon gases are reasonably described by a function linear in the number of hydrogen atoms in the molecule.

  11. A route to ultrathin quantum gases at polar perovskite heterointerfaces

    KAUST Repository

    Nazir, Safdar

    2012-09-07

    Oxide interfaces are attracting interest in recent years due to special functionalities of two-dimensional quantum gases. However, with typical thicknesses of at least 10-12 Å the gases still extend considerably in the third dimension, which compromises the size of quantum effects. To overcome this limitation, we propose incorporation of highly electronegative cations, such as Ag. By ab initio calculations, we demonstrate the formation of a mobile two-dimensional hole gas in AgNbO 3/SrTiO 3 that is confined to an ultrathin slab of only 5.6 Å thickness. Electronegative cations therefore are a promising way to enhance the quantum nature of hole gases. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Energetic Utilisation of Pyrolysis Gases in IC Engine

    Directory of Open Access Journals (Sweden)

    Viktória Barbara Kovács

    2009-12-01

    Full Text Available The use of alternative energy sources like pyrolysis gases as a source ofrenewable energy for combined heat and power generation could provide an effective andalternative way to fulfil remarkable part of the increasing energy demand of the humanpopulation as a possible solution of decentralized power generation. Therefore the role ofutilization of pyrolysis gases rapidly grows in Europe and all around the world. Theenergetic utilization of these low heating value renewable gaseous fuels is not fully workedout yet because their combustion characteristics significantly differ from natural gas, andthis way they are not usable or their utilization is limited in devices with conventionalbuild-up. At the Department of Energy Engineering of BME the IC Engine utilization ofpyrolysis gases was investigated. The power, efficiency, consumption and exhaust emissionwere measured and indication was made to determine the pressure and heat release in thecylinder at different engine parameters.

  13. Increasing chemical efficiency by mixing different buffer gases on COIL

    Institute of Scientific and Technical Information of China (English)

    XuMingxiu; Sang Fengting; ChenFang; FangBenjie; JinYuqi

    2011-01-01

    To improve the output power and chemical efficiency,a new method is put forward,which requires no notable change in the configurations and uses different gases as buffer gas.Some experiments are done on chemical oxygen-iodine laser (COIL) with an 11.7 cm gain length.When N2,Ar and CO2 are used as the primary and secondary buffer gases,change of the average molecular weight promotes the mixing between the primary and secondary gases.Experimental results confirm the possibility of improving the chemical efficiency.When N2 is used as the primary gas and Ar as the secondary gas,the highest output power and chemical efficiency are obtained as 3.09 kW and 30.2%.

  14. Multisensor system for toxic gases detection generated on indoor environments

    Science.gov (United States)

    Durán, C. M.; Monsalve, P. A. G.; Mosquera, C. J.

    2016-11-01

    This work describes a wireless multisensory system for different toxic gases detection generated on indoor environments (i.e., Underground coal mines, etc.). The artificial multisensory system proposed in this study was developed through a set of six chemical gas sensors (MQ) of low cost with overlapping sensitivities to detect hazardous gases in the air. A statistical parameter was implemented to the data set and two pattern recognition methods such as Principal Component Analysis (PCA) and Discriminant Function Analysis (DFA) were used for feature selection. The toxic gases categories were classified with a Probabilistic Neural Network (PNN) in order to validate the results previously obtained. The tests were carried out to verify feasibility of the application through a wireless communication model which allowed to monitor and store the information of the sensor signals for the appropriate analysis. The success rate in the measures discrimination was 100%, using an artificial neural network where leave-one-out was used as cross validation method.

  15. Novel System for Continuous Measurements of Dissolved Gases in Liquids

    Science.gov (United States)

    Baer, D. S.; Liem, J.; Owano, T. G.; Gupta, M.

    2014-12-01

    Measurements of dissolved gases in lakes, rivers and oceans may be used to quantify underwater greenhouse gas generation, air-surface exchange, and pollution migration. Studies involving quantification of dissolved gases typically require obtaining water samples (from streams, lakes, or ocean water) and transporting them to a laboratory, where they are degased. The gases obtained are then generally measured using gas chromatography and isotope ratio mass spectrometry for concentrations and isotope ratios, respectively. This conventional, off-line, discrete-sample methodology is time consuming and labor intensive, and thus severely inhibits detailed spatial and temporal mapping of dissolved gases. In this work, we describe the commercial development of a new portable membrane-based gas extraction system (18.75" x 18.88" x 10.69", 16 kg, 85 watts) that interfaces directly to our cavity enhanced laser absorption based (or Off-Axis ICOS) gas analyzers to continuously and quickly measure concentrations and isotope ratios of dissolved gases. By accurately controlling the water flow rate through the membrane contactor, gas pressure on the outside and water pressure on the inside of the membrane, the system can generate precise and highly reproducible results. Furthermore, the gas-phase mole fractions (parts per million, ppm) may be converted into dissolved gas concentrations (nM), by accurately measuring the gas flow rates in and out of the extraction system. We will present detailed laboratory test data that quantifies the performance (linearity, precision, and dynamic range) of the system for measurements of the concentrations and isotope ratios of dissolved greenhouse gases (methane, carbon dioxide, and nitrous oxide) continuously and in real time.

  16. Ozone depletion, greenhouse gases, and climate change

    Science.gov (United States)

    Mooney, Harold A.; Baker, D. James, Jr.; Bretherton, Francis P.; Burke, Kevin C.; Clark, William C.; Davis, Margaret B.; Dickinson, Robert E.; Imbrie, John; Malone, Thomas F.; Mcelroy, Michael B.

    1989-01-01

    This symposium was organized to study the unusual convergence of a number of observations, both short and long term that defy an integrated explanation. Of particular importance are surface temperature observations and observations of upper atmospheric temperatures, which have declined significantly in parts of the stratosphere. There has also been a dramatic decline in ozone concentration over Antarctica that was not predicted. Significant changes in precipitation that seem to be latitude dependent have occurred. There has been a threefold increase in methane in the last 100 years; this is a problem because a source does not appear to exist for methane of the right isotopic composition to explain the increase. These and other meteorological global climate changes are examined in detail.

  17. Spectroscopy and optical diagnostics for gases

    CERN Document Server

    Hanson, Ronald K; Goldenstein, Christopher S

    2016-01-01

    This text provides an introduction to the science that governs the interaction of light and matter (in the gas phase). It provides readers with the basic knowledge to exploit the light-matter interaction to develop quantitative tools for gas analysis (i.e. optical diagnostics) and understand and interpret the results of spectroscopic measurements. The authors pair the basics of gas‐phase spectroscopy with coverage of key optical diagnostic techniques utilized by practicing engineers and scientists to measure fundamental flow‐field properties. The text is organized to cover three sub‐topics of gas‐phase spectroscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral lineshapes by way of absorption, emission, and scattering interactions. The latter part of the book describes optical measurement techniques and equipment. Key subspecialties include laser induced fluorescence, tunable laser absorption spectroscopy, and wavelength modulation spectroscopy. It is ideal for students an...

  18. Carbon isotopic characteristics of hydrocarbon gases from coal-measure source rocks--A thermal simulation experiment

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jianjing; HU Huifang; SUN Guoqiang; JI Limin

    2006-01-01

    Gaseous hydrocarbon geochemistry research through a thermal simulation experiment in combination with the natural evolution process in which natural gases were formed from coal-measure source rocks revealed that the δ13C1 values of methane vary from light to heavy along with the increase of thermal evolution degree of coal-measure source rocks, and the δ13C2 values of ethane range from -28.3‰ to -20‰ (PDB). δ13C2 value was -28‰± ( Ro= 0.45% - 0.65%) at the lower thermal evolution stage of coal-measure source rocks. After the rocks entered the main hydrocarbon-generating stage (Ro=0.65% - 1.50%), δ13C2 values generally varied within the range of -26‰ - -23‰±; with further thermal evolution of the rocks the carbon isotopes of ethane became heavier and heavier, but generally less than - 20‰.The partial carbon isotope sequence inversion of hydrogen gases is a characteristic feature of mixing of natural gases of different origins. Under the condition of specially designated type of organic matter, hydrogen source rocks may show this phenomenon via their own evolution.In the lower evolution stages of the rocks, it is mainly determined by organic precursors that gaseous hydrocarbons display partial inversion of the carbon isotope sequence and the carbon isotopic values of ethane are relatively low. These characteristic features also are related to the geochemical composition of primary soluble organic matter.

  19. Heat transfer of suspended carbon nanotube yarn to gases

    Science.gov (United States)

    Wada, Yukiko; Kita, Koji; Takei, Kuniharu; Arie, Takayuki; Akita, Seiji

    2016-08-01

    We investigate the pressure dependence of heat transfer to ambient gases for a suspended carbon nanotube yarn. The heat transport of the yarn including the heat exchange with surrounding gases is investigated using a simple one-dimensional heat transport model under Joule heating of the yarn. It is revealed that the effective diameter of the yarn for heat exchange is much smaller than the geometrical diameter of the yarn. This smaller effective diameter for heat exchange should contribute to realizing higher sensitivity and sensing over a wider range of pressures for heat-exchange-type vacuum gauges and flow sensors.

  20. Impact of greenhouse gases on the Earth's ozone layer

    Science.gov (United States)

    Zadorozhny, Alexander

    A numerical 2-D zonally averaged interactive dynamical radiative-photochemical model of the ozonosphere including aerosol physics is used to examine the role of the greenhouse gases CO2 , CH4 , and N2 O in the future long-term changes of the Earth's ozone layer, in particular in its recovery after reduction of anthropogenic discharges of chlorine and bromine compounds into the atmosphere. The model allows calculating self-consistently diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds (PSCs) of types I and II. The scenarios of expected changes of the anthropogenic pollutants for the period from 1980 through 2050 are taken from Climate Change 2001. The processes, which determine the influence of anthropogenic growth of atmospheric abundance of the greenhouse gases on the dynamics of recovery of the Earth's ozone layer, have been studied in details. Expected cooling of the stratosphere caused by increases of greenhouse gases, most importantly CO2 , essentially influences the ozone layer by two ways: through temperature dependencies of the gas phase reaction rates and through enhancement of polar ozone depletion via increased PSC formation. The model calculations show that a weakness in efficiencies of all gas phase catalytic cycles of the ozone destruction due to cooling of the stratosphere is a dominant mechanism of the impact of the greenhouse gases on the ozone layer in Antarctic as well as at the lower latitudes. This mechanism leads to a significant acceleration of the ozone layer recovery here because of the greenhouse gases growth. On the contrary, the mechanism of the impact of the greenhouse gases on the ozone through PSC modification begins to be more effective in Arctic in comparison with the gas phase mechanism in springs after about 2020, which leads to retard the expected recovery of the

  1. Greenhouse effect of trace gases, 1970-1980

    Science.gov (United States)

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  2. High-resolution spectroscopy of gases for industrial applications

    DEFF Research Database (Denmark)

    Fateev, Alexander; Clausen, Sønnik

    High-resolution spectroscopy of gases is a powerful technique which has various fundamental and practical applications: in situ simultaneous measurements of gas temperature and gas composition, radiative transfer modeling, validation of existing and developing of new databases and etc. Existing...... for analysis of complex experimental data and further development of the databases. High-temperature gas cell facilities available at DTU Chemical Engineering are presented and described. The gas cells and high-resolution spectrometers allow us to perform high-quality reference measurements of gases relevant...

  3. Physics of ultracold Fermi gases revealed by spectroscopies

    Science.gov (United States)

    Törmä, Päivi

    2016-04-01

    This article provides a brief review of how various spectroscopies have been used to investitage many-body quantum phenomena in the context of ultracold Fermi gases. In particular, work done with RF spectroscopy, Bragg spectroscopy and lattice modulation spectroscopy is considered. The theoretical basis of these spectroscopies, namely linear response theory in the many-body quantum physics context is briefly presented. Experiments related to the BCS-BEC crossover, imbalanced Fermi gases, polarons, possible pseudogap and Fermi liquid behaviour and measuring the contact are discussed. Remaining open problems and goals in the field are sketched from the perspective how spectroscopies could contribute.

  4. Improved Traps for Removing Gases From Coolant Liquids

    Science.gov (United States)

    Holladay, John; Ritchie, Stephen

    2006-01-01

    Two documents discuss improvements in traps for removing noncondensable gases (e.g., air) from heat-transfer liquids (e.g., water) in spacecraft cooling systems. Noncondensable gases must be removed because they can interfere with operation. A typical trap includes a cylindrical hydrophobic membrane inside a cylindrical hydrophilic membrane, all surrounded by an outer cylindrical impermeable shell. The input mixture of gas bubbles and liquid flows into the annular volume between the membranes. Bubbles pass into the central hollow of the hydrophobic membrane and are vented. The liquid flows outward through the hydrophilic membrane and is recirculated.

  5. Generation of VUV/XUV coherent radiation in molecular gases

    Institute of Scientific and Technical Information of China (English)

    谢晓波; 王鹏谦; 操传顺; 孙陶亨

    2000-01-01

    Tunable coherent radiation of wavelength between 92 nm and 122 nm has been produced in molecular gases of N2, CO, H2 and CH4 by resonant and nonresonant third harmonic generation. Factors with respect to the frequency conversion efficiency, including the line strength of the nonlinear susceptibility, the density of the media and the phase-matching, are discussed. By analyzing the characteristics of the four-wave mixing spectra in molecular gases, some physical parameters and the population of the energy levels are obtained. This indicates that nonlinear optical frequency conversion process provides a useful method to study the structure and spectra of molecules.

  6. Distribution of solar wind implanted noble gases in lunar samples

    Science.gov (United States)

    Kiko, J.; Kirsten, T.

    1986-01-01

    The distribution of solar wind implanted noble gases in lunar samples depends on implantation energy, fluence, diffusion, radiation damage and erosion. It is known that at least the lighter rare gases are fractionated after implantation, but the redistribution processes, which mainly drive the losses, are not well understood. Some information about this one can get by looking at the concentration profiles of solar wind implanted He-4 measured by the Gas Ion Probe in single lunar grains. The observed profiles were divided in three groups. These groups are illustrated and briefly discussed.

  7. The role of atmospheric gases in global warming

    OpenAIRE

    Tuckett, R. P.

    2009-01-01

    The purpose of this opening chapter of this book is to explain in simple terms what the greenhouse effect is, what its origins are, and what the properties of greenhouse gases are. I will restrict this chapter to an explanation of the physical chemistry of greenhouse gases and the greenhouse effect, and not delve too much into the politics of ‘what should or should not be done’. However, one simple message to convey at the onset is that the greenhouse effect is not just about concentration le...

  8. Greenhouse effect of trace gases, 1970-1980

    Science.gov (United States)

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  9. Monte Carlo simulation of electrons in dense gases

    Science.gov (United States)

    Tattersall, Wade; Boyle, Greg; Cocks, Daniel; Buckman, Stephen; White, Ron

    2014-10-01

    We implement a Monte-Carlo simulation modelling the transport of electrons and positrons in dense gases and liquids, by using a dynamic structure factor that allows us to construct structure-modified effective cross sections. These account for the coherent effects caused by interactions with the relatively dense medium. The dynamic structure factor also allows us to model thermal gases in the same manner, without needing to directly sample the velocities of the neutral particles. We present the results of a series of Monte Carlo simulations that verify and apply this new technique, and make comparisons with macroscopic predictions and Boltzmann equation solutions. Financial support of the Australian Research Council.

  10. Hydrophobic Catalysts For Removal Of NOx From Flue Gases

    Science.gov (United States)

    Sharma, Pramod K.; Hickey, Gregory S.; Voecks, Gerald E.

    1995-01-01

    Improved catalysts for removal of nitrogen oxides (NO and NO2) from combustion flue gases formulated as composites of vanadium pentoxide in carbon molecular sieves. Promotes highly efficient selective catalytic reduction of NOx at relatively low temperatures while not being adversely affected by presence of water vapor and sulfur oxide gases in flue gas. Apparatus utilizing catalyst of this type easily integrated into exhaust stream of power plant to remove nitrogen oxides, generated in combustion of fossil fuels and contribute to formation of acid rain and photochemical smog.

  11. Simultaneous analysis of noble gases, sulfur hexafluoride, and other dissolved gases in water.

    Science.gov (United States)

    Brennwald, Matthias S; Hofer, Markus; Kipfer, Rolf

    2013-08-06

    We developed an analytical method for the simultaneous measurement of dissolved He, Ne, Ar, Kr, Xe, SF6, N2, and O2 concentrations in a single water sample. The gases are extracted from the water using a head space technique and are transferred into a vacuum system for purification and separation into different fractions using a series of cold traps. Helium is analyzed using a quadrupole mass spectrometer (QMS). The remaining gas species are analyzed using a gas chromatograph equipped with a mass spectrometer (GC-MS) for analysis of Ne, Ar, Kr, Xe, N2, and O2 and an electron capture detector (GC-ECD) for SF6 analysis. Standard errors of the gas concentrations are approximately 8% for He and 2-5% for the remaining gas species. The method can be extended to also measure concentrations of chlorofluorocarbons (CFCs). Tests of the method in Lake Lucerne (Switzerland) showed that dissolved gas concentrations agree with measurements from other methods and concentrations of air saturated water. In a small artificial pond, we observed systematic gas supersaturations, which seem to be linked to adsorption of solar irradiation in the pond and to water circulation through a gravel bed.

  12. Doubled volatile organic compound emissions from subarctic tundra under simulated climate warming

    DEFF Research Database (Denmark)

    Faubert, Patrick; Tiiva, Paivi; Rinnan, Åsmund

    2010-01-01

    • Biogenic volatile organic compound (BVOC) emissions from arctic ecosystems are important in view of their role in global atmospheric chemistry and unknown feedbacks to global warming. These cold ecosystems are hotspots of climate warming, which will be more severe here than averaged over...... of a focus on BVOC emissions during climate change. The observed changes have implications for ecological interactions and feedback effects on climate change via impacts on aerosol formation and indirect greenhouse effects....... the globe. We assess the effects of climatic warming on non-methane BVOC emissions from a subarctic heath. • We performed ecosystem-based chamber measurements and gas chromatography-mass spectrometry (GC-MS) analyses of the BVOCs collected on adsorbent over two growing seasons at a wet subarctic tundra...

  13. The state of greenhouse gases in the atmosphere using global observations through 2014

    Science.gov (United States)

    Tarasova, Oksana; Koide, Hiroshi; Dlugokencky, Ed

    2016-04-01

    We present results from the eleventh annual Greenhouse Gas Bulletin (http://www.wmo.int/pages/prog/arep/gaw/ghg/GHGbulletin.html) of the World Meteorological Organization (WMO). The results are based on research and observations performed by laboratories contributing to the WMO Global Atmosphere Watch (GAW) Programme (www.wmo.int/gaw). The Bulletin presents results of global analyses of observational data collected according to GAW recommended practices and submitted to the World Data Center for Greenhouse Gases (WDCGG). Bulletins are prepared by the WMO/GAW Scientific Advisory Group for Greenhouse Gases (http://www.wmo.int/pages/prog/arep/gaw/ScientificAdvisoryGroups.html) in collaboration with WDCGG. Observations used for global analysis are collected at more than 100 marine and terrestrial sites worldwide for CO2 and CH4 and at a smaller number of sites for other greenhouse gases. Globally averaged dry-air mole fractions of CO2, CH4 and N2O derived from this network reached new highs in 2014, at 397.7±0.1 ppm, 1833±1 ppb and 327.1±0.1 ppb respectively. These values constitute 143%, 254% and 121% of pre-industrial (before 1750) levels. The atmospheric increase of CO2 from 2013 to 2014 was 1.9 ppm, which is smaller than the increase from 2012 to 2013 and the average growth rate for the past decade (˜2.06 ppm per year), but larger than the average growth rate for the 1990s (˜1.5 ppm per year). Smaller growth in 2014 compared with other recent years is most likely related to a relatively small net change in large fluxes between the atmosphere and terrestrial biosphere. The rise of atmospheric CO2 has been only about a half of what is expected if all excess CO2 from burning fossil-fuels stayed in the air. The other half has been absorbed by the land biosphere and the oceans, leading to ocean acidification. For both CH4 and N2O the increases from 2013 to 2014 were larger than those observed from 2012 to 2013 and the mean rates over the past 10 years. The National

  14. Marine organisms and their adaption - Adaptions solve the challenges of existence in the sea.

    Digital Repository Service at National Institute of Oceanography (India)

    Gonsalves, M.J.B.D.; Das, A.; LokaBharathi, P.A.

    great diversity of organisms. To survive, these organisms need to secure food, successfully reproduce and avoid predation. Simple animals, such as anemones or worms, absorb the gases through their skin. Mobile animals use gills, or even lungs to absorb...

  15. Performance Analysis of Organic Rankine-vapor Compression Ice Maker Utilizing Food Industry Waste Heat

    National Research Council Canada - National Science Library

    Hu, Bing; Cao, Yuanshu; Ma, Weibin

    2015-01-01

    To develop the organic Rankine-vapor compression ice maker driven by food industry exhaust gases and engine cooling water, an organic Rankine-vapor compression cycle system was employed for ice making...

  16. Analyzers Measure Greenhouse Gases, Airborne Pollutants

    Science.gov (United States)

    2012-01-01

    In complete darkness, a NASA observatory waits. When an eruption of boiling water billows from a nearby crack in the ground, the observatory s sensors seek particles in the fluid, measure shifts in carbon isotopes, and analyze samples for biological signatures. NASA has landed the observatory in this remote location, far removed from air and sunlight, to find life unlike any that scientists have ever seen. It might sound like a scene from a distant planet, but this NASA mission is actually exploring an ocean floor right here on Earth. NASA established a formal exobiology program in 1960, which expanded into the present-day Astrobiology Program. The program, which celebrated its 50th anniversary in 2010, not only explores the possibility of life elsewhere in the universe, but also examines how life begins and evolves, and what the future may hold for life on Earth and other planets. Answers to these questions may be found not only by launching rockets skyward, but by sending probes in the opposite direction. Research here on Earth can revise prevailing concepts of life and biochemistry and point to the possibilities for life on other planets, as was demonstrated in December 2010, when NASA researchers discovered microbes in Mono Lake in California that subsist and reproduce using arsenic, a toxic chemical. The Mono Lake discovery may be the first of many that could reveal possible models for extraterrestrial life. One primary area of interest for NASA astrobiologists lies with the hydrothermal vents on the ocean floor. These vents expel jets of water heated and enriched with chemicals from off-gassing magma below the Earth s crust. Also potentially within the vents: microbes that, like the Mono Lake microorganisms, defy the common characteristics of life on Earth. Basically all organisms on our planet generate energy through the Krebs Cycle, explains Mike Flynn, research scientist at NASA s Ames Research Center. This metabolic process breaks down sugars for energy

  17. Volatile Organic Compounds are Ghosts for Organic Solar Cells

    Directory of Open Access Journals (Sweden)

    Prakash R. Somani

    2014-11-01

    Full Text Available All our efforts to demonstrate a multifunctional device – photovoltaic gas sensor (i.e. solar cell which show photovoltaic action depending on the gas / volatile organic compounds (VOC in the surrounding atmosphere yielded negative results. Photovoltaic performance of the organic solar cells under study degraded – almost permanently by exposing them to volatile organic compounds (VOCs. Although, the proposed multifunctional device could not be demonstrated; Present investigations yielded very important result that organic solar cells have problems not only with oxygen and humidity (known facts but also with many VOCs and hazardous gases – making lamination / encapsulation step mandatory for their practical utilization.

  18. Greenhouse gases study in Amazonia; Estudo de gases de efeito estufa na Amazonia

    Energy Technology Data Exchange (ETDEWEB)

    D' Amelio, Monica Tais Siqueira

    2006-07-01

    The Amazon plays an important role on the global carbon cycle, as changing as carbon storage, since Amazon Basin is the biggest area of tropical forest, around 50% of global. Natural's process, deforestation, and use land are CO{sub 2} sources. The Amazon forest is a significant source of N{sub 2}O by soil process, and CH{sub 4} by anaerobic process like flooded areas, rice cultures, and others sources. This project is part of the LBA project (Large-Scale Biosphere Atmosphere Experiment in Amazonia), and this project is 'Vertical profiles of carbon dioxide and other trace gas species over the Amazon basin using small aircraft'. Since December 2000 vertical profiles of CO{sub 2}, CH{sub 4}, CO, H{sub 2}, N{sub 2}O and SF{sub 6} have been measured above central Amazonia. The local sampling was over Tapajos National Forest, a primary forest in Para State, where had a CO{sub 2} flux tower and an east impact area with sources like animals, rice cultivation, biomass burning, etc, to compare the influence of an impact area and a preserved area in the profiles. The Reserva Biologica de Cuieiras, at Amazon State, is the other studied place, where there already exists a CO{sub 2} flux tower, and an east preserved area at this State, to compare with the Cuieiras. The sampling has been carried out on vertical profile from 1000 ft up to 12000 ft using a semi-automated sampling package developed at GMD/NOAA and a small aircraft. The analysis uses the MAGICC system (Multiple Analysis of Gases Influence Climate Change) which is installed at the Atmospheric Chemistry Laboratory (LQA) in IPEN (Instituto de Pesquisas Energeticas e Nucleares). The results showed that all gases studied, except H{sub 2} gas, has been following the global trend. At the Para State, for the studied years, the Amazonian Forest performed as small CO{sub 2} sink. To compare Wet and Dry Seasons, subtracted the Ascension concentration values in the period to remove the global influence. So that

  19. Permeation of single gases in thin zeolite MFI membranes

    NARCIS (Netherlands)

    Burggraaf, A.J.; Vroon, Z.A.E.P.; Keizer, K.; Verweij, H.

    1998-01-01

    The permeation of a series of gases with widely different Lennard-Jones kinetic diameters and sorption properties is investigated as a function of feed pressure (up to 100 kPa) and temperature (298-473 K) with two different methods. The membrane system studied consists of an MFI (silicalite) top-lay

  20. Spectrum of spin waves in cold polarized gases

    Energy Technology Data Exchange (ETDEWEB)

    Andreeva, T. L., E-mail: phdocandreeva@yandex.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2017-02-15

    The spin dynamics of cold polarized gases are investigated using the Boltzmann equation. The dispersion relation for spin waves (transverse component of the magnetic moment) and the spin diffusion coefficient of the longitudinal component of the magnetic moment are calculated without using fitting parameters. The spin wave frequency and the diffusion coefficient for rubidium atoms are estimated numerically.

  1. Soil and litter exchange of reactive trace gases

    Science.gov (United States)

    The soil and litter play an important role in the exchange of trace gases between terrestrial ecosystems and the atmosphere. - The exchange of ammonia between vegetation and the atmosphere is highly influenced by soil and litter emissions especially in managed ecosystems (grassla...

  2. EOSN: A TOUGH2 module for noble gases

    Energy Technology Data Exchange (ETDEWEB)

    Shan, Chao; Pruess, Karsten

    2003-03-07

    We developed a new fluid property module for TOUGH2, called EOSN, to simulate transport of noble gases in the subsurface. Currently, users may select any of five different noble gases as well as CO2, two at a time. For the three gas components (air and two user-specified noble gases) in EOSN, the Henry's coefficients and the diffusivities in the gas phase are no longer assumed constants, but are temperature dependent. We used the Crovetto et al. (1982) model to estimate Henry's coefficients, and the Reid et al. (1987) correlations to calculate gas phase diffusivities. The new module requires users to provide names of the selected noble gases, which properties are provided internally. There are options for users to specify any (non-zero) molecular weights and half-lives for the gas components. We provide two examples to show applications of TOUGH2IEOSN. While temperature effects are relatively insignificant for one example problem where advection is dominant, they cause almost an order of magnitude difference for the other case where diffusion becomes a dominant process and temperature variations are relatively large. It appears that thermodynamic effects on gas diffusivities and Henry's coefficients can be important for low-permeability porous media and zones with large temperature variations.

  3. Thermodynamic characteristics of Fermi gases in a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Lipovetskii, S.S.; Olesik, A.A.; Sekerzhitskii, V.S.

    1987-11-01

    Within the framework of statistical thermodynamics of equilibrium systems, general expressions are obtained for the chemical potential, pressure, and magnetic susceptibility for degenerate ideal nonrelativistic electron, proton, and neutron gases in magnetic fields, which exert no pronounced influence on the anomalous magnetic moments of the fermions.

  4. New frontiers for quantum gases of polar molecules

    Science.gov (United States)

    Moses, Steven A.; Covey, Jacob P.; Miecnikowski, Matthew T.; Jin, Deborah S.; Ye, Jun

    2017-01-01

    Compared to atoms, molecules possess additional degrees of freedom that can be exploited in fundamental tests, ultracold chemistry, and engineering new quantum phases in many-body systems. Here, we review the recent progress in creating and manipulating ultracold bialkali molecules to study quantum gases of polar molecules.

  5. Combined use of coal mine gases for efficient energy generation

    Directory of Open Access Journals (Sweden)

    Postrzednik Stefan

    2016-12-01

    Full Text Available There are two basic types of coal mine gases: gas from demethanation of coal deposits, and ventilation gas; containing combustible ingredients (mainly methane, CH4. Effective use of these gases is an important technical and ecological issue (greenhouse gas emissions, mainly due to the presence of methane in these gases. Serious difficulties in this area (e.g. using them as the fuel for internal combustion (IC engine occur mainly in relation to the ventilation gas, whereas the gas from demethanation of coal deposits can be used directly as the fuel for internal combustion engines. The proposed solution of this problem shows that the simple mixing of these two gases (without supplying of oxygen from ambient air is the effective way to producing the gaseous combustible mixture, which can be used for the fueling of internal combustion gas engines. To evaluate the energy usefulness of this way produced combustible mixture the process indicator has been proposed, which expresses the share of the chemical energy supplied with the ventilation gas, in the whole chemical energy of the produced fuel combustible mixture. It was also established how (e.g., by appropriate choice of the mixed gas streams can be achieved significantly higher values of the characteristic process indicator, while retaining full energy usefulness of the gained gaseous mixture to power combustion engines.

  6. Predicted Abundances of Carbon Compounds in Volcanic Gases on Io

    CERN Document Server

    Schaefer, L; Schaefer, Laura

    2004-01-01

    We use chemical equilibrium calculations to model the speciation of carbon in volcanic gases on Io. The calculations cover wide temperature (500-2000 K), pressure (10^-8 to 10^+2 bars), and composition ranges (bulk O/S atomic ratios \\~0 to 3), which overlap the nominal conditions at Pele (1760 K, 0.01 bar, O/S ~ 1.5). Bulk C/S atomic ratios ranging from 10^-6 to 10^-1 in volcanic gases are used with a nominal value of 10^-3 based upon upper limits from Voyager for carbon in the Loki plume on Io. Carbon monoxide and CO2 are the two major carbon gases under all conditions studied. Carbonyl sulfide and CS2 are orders of magnitude less abundant. Consideration of different loss processes (photolysis, condensation, kinetic reactions in the plume) indicates that photolysis is probably the major loss process for all gases. Both CO and CO2 should be observable in volcanic plumes and in Io's atmosphere at abundances of several hundred parts per million by volume for a bulk C/S ratio of 10^-3.

  7. An overview on non-CO2 greenhouse gases

    NARCIS (Netherlands)

    Pulles, T.; Amstel, van A.R.

    2010-01-01

    Non-CO2 greenhouse gases, included in the Kyoto Protocol, are methane (CH4), nitrous oxide (N2O), hexafluorocarbons (HFC), perfluorinated compounds (PFC) and sulphur hexafluoride (SF6). Together they account for about 25% of the present global greenhouse gas emissions. Reductions in emissions of the

  8. Iatrogenic greenhouse gases: the role of anaesthetic agents.

    Science.gov (United States)

    Uzoigwe, Chika E; Sanchez Franco, Luis C; Forrest, Michael D

    2016-01-01

    The contribution of health-care activity to climate change is not negligible and is increasing. Anaesthetic greenhouse gases, in particular the fluranes, have a much more potent global warming capacity, volume for volume, than carbon dioxide, but their emissions remain completely unregulated.

  9. Quantum statistics of ideal gases in confined space

    OpenAIRE

    Dai, Wu-Sheng; Xie, Mi

    2002-01-01

    In this paper, the effects of boundary and connectivity on ideal gases in two-dimensional confined space and three-dimensional tubes are discussed in detail based on the analytical result. The implication of such effects on the mesoscopic system is also revealed.

  10. Kinetic Theory Derivation of the Adiabatic Law for Ideal Gases.

    Science.gov (United States)

    Sobel, Michael I.

    1980-01-01

    Discusses how the adiabatic law for ideal gases can be derived from the assumption of a Maxwell-Boltzmann (or any other) distribution of velocities--in contrast to the usual derivations from thermodynamics alone, and the higher-order effect that leads to one-body viscosity. An elementary derivation of the adiabatic law is given. (Author/DS)

  11. Discovery Mondays - Gases: more to them than meets the eye!

    CERN Multimedia

    2005-01-01

    We generally tend to think that if a space is empty there is nothing in it. However, did you know that at the Earth's surface there are 25 million million million (1018) molecules of gas in every cubic centimetre of atmosphere? CERN uses a lot of gas to operate its experiments. Above a few of the helium tanks for the LHC. At CERN, gases are put to multiple uses. Gases are used to protect, to cool and also to detect particles... Suffice to say that gases play a vital role at CERN. Why does the air supply to the accelerator tunnel 100 metres below the surface have to be treated and what treatment techniques are used? What are the different types of apparatus that enable you to breathe in confined spaces? How are gases used as a detection medium in the particle detectors? What is Brownian motion? To find out the answers, step on the gas to join us for the next Discovery Monday! This Discovery Monday will be taking place as part of the World Year of Physics, as its theme is closely associated with one of the ...

  12. Development of proportional counters using photosensitive gases and liquids

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, D.F.

    1984-10-01

    An introduction to the history and to the principle of operation of wire chambers using photosensitive gases and liquids is presented. Their use as light sensors coupled to Gas Scintillation Proportional Counters and BaF/sub 2/, as well as their use in Cherenkov Ring imaging, is discussed in some detail. 42 references, 21 figures.

  13. Noble Gases in the Hamlet Meteorite (LL4)

    Science.gov (United States)

    Amari, S.; Sabe, Y.; Shiraishi, T.; Matsuda, J.

    2014-09-01

    We analyzed noble gases in a bulk sample and an HF-HCl residue of Hamlet (LL4). The Xe composition of the residue shows that no diamond is contained in the residue. The 20Ne/22Ne ratio of Hamlet Ne-Q has been determined to be 11.0 ± 0.5.

  14. Remote sensing atmospheric trace gases with infrared imaging spectroscopy

    Science.gov (United States)

    Leifer, Ira; Tratt, David M.; Realmuto, Vincent J.; Gerilowski, Konstantin; Burrows, John P.

    2012-12-01

    Atmospheric pollution affects human health, food production, and ecosystem sustainability, causing environmental and climate change. Species of concern include nitrogen oxides, sulfur dioxide (SO2 ), and the greenhouse gases (GHG) methane (CH4 ) and carbon dioxide (CO2 ). Trace gas remote sensing can provide source detection, attribution, monitoring, hazard alerts, and air quality evaluation.

  15. Use of low temperature blowers for recirculation of hot gases

    Science.gov (United States)

    Maru, H.C.; Forooque, M.

    1982-08-19

    An apparatus is described for maintaining motors at low operating temperatures during recirculation of hot gases in fuel cell operations and chemical processes such as fluidized bed coal gasification. The apparatus includes a means for separating the hot process gas from the motor using a secondary lower temperature gas, thereby minimizing the temperature increase of the motor and associated accessories.

  16. On the convergence of cluster expansions for polymer gases

    NARCIS (Netherlands)

    Fernandez, R.; Bissacot, R.; Procacci, A.

    2010-01-01

    We compare the different convergence criteria available for cluster expansions of polymer gases subjected to hard-core exclusions, with emphasis on polymers defined as finite subsets of a countable set (e.g. contour expansions and more generally high- and lowtemperature expansions). In order of incr

  17. Lieb-Thirring Bounds for Interacting Bose Gases

    DEFF Research Database (Denmark)

    Lundholm, Douglas; Portmann, Fabian; Solovej, Jan Philip

    2015-01-01

    We study interacting Bose gases and prove lower bounds for the kinetic plus interaction energy of a many-body wave function in terms of its particle density. These general estimates are then applied to various types of interactions, including hard sphere (in 3D) and hard disk (in 2D) as well as a...

  18. Dry cleaning aluminum cell gases from Söderberg cells

    Science.gov (United States)

    Doheim, M. A.; Shafey, H. M.; Abdellatif, A. A.; Ahmed, M. S.

    2000-02-01

    This article describes dry cleaning gases from vertical Söderberg cells via a two-step process involving the combustion of tars and CO followed by the chemisorption of HF on smelter-grade alumina. Both steps take place in fluidized-bed reactors. Studied parameters include distributor design, fluidizing velocity, bed temperature, and bed height.

  19. Low carbon fuel and chemical production from waste gases

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, S.; Liew, F.M.; Daniell, J.; Koepke, M. [LanzaTech, Ltd., Auckland (New Zealand)

    2012-07-01

    LanzaTech has developed a gas fermentation platform for the production of alter native transport fuels and commodity chemicals from carbon monoxide, hydrogen and carbon dioxide containing gases. LanzaTech technology uses these gases in place of sugars as the carbon and energy source for fermentation thereby allowing a broad spectrum of resources to be considered as an input for product synthesis. At the core of the Lanzatech process is a proprietary microbe capable of using gases as the only carbon and energy input for product synthesis. To harness this capability for the manufacture of a diverse range of commercially valuable products, the company has developed a robust synthetic biology platform to enable a variety of novel molecules to be synthesised via gas fermentation. LanzaTech initially focused on the fermentation of industrial waste gases for fuel ethanol production. The company has been operating pilot plant that uses direct feeds of steel making off gas for ethanol production for over 24 months. This platform technology has been further successfully demonstrated using a broad range of gas inputs including gasified biomass and reformed natural gas. LanzaTech has developed the fermentation, engineering and control systems necessary to efficiently convert gases to valuable products. A precommercial demonstration scale unit processing steel mill waste gases was commissioned in China during the 2{sup nd} quarter of 2012. Subsequent scale-up of this facility is projected for the 2013 and will represent the first world scale non-food based low carbon ethanol project. More recently LanzaTech has developed proprietary microbial catalysts capable of converting carbon dioxide in the presence of hydrogen directly to value added chemicals, where-in CO{sub 2} is the sole source of carbon for product synthesis. Integrating the LanzaTech technology into a number of industrial facilities, such as steel mills, oil refineries and other industries that emit Carbon bearing

  20. Greenhouse gases and recovery of the Earth's ozone layer

    Science.gov (United States)

    Dyominov, I. G.; Zadorozhny, A. M.

    A numerical two-dimension zonally average interactive dynamical radiative-photochemical model of the atmosphere is used for investigation the role of the greenhouse gases CO2, CH4, and N2O in the recovery of the Earth's ozone layer after reduction of anthropogenic discharges in the atmosphere of chlorine and bromine compounds. The model allows calculating self-consistently diabatic circulation, temperature, gaseous composition of the troposphere and stratosphere at latitudes from the South to North Poles, as well as distribution of sulphate aerosol particles and polar stratospheric clouds of types I and II. The scenarios of future changes of the greenhouse gases and chlorine and bromine species are taken from Climate Change 1995. The calculations show that expected cooling of the stratosphere caused by the increasing of the greenhouse gases, particularly CO2, enhances the ozone concentration in the stratosphere due to a weakness of the efficiencies of all catalytic cycles of the ozone destruction caused by temperature dependencies of photochemical reactions. The result of this effect is a significant acceleration of the ozone layer recovery after reduction of anthropogenic discharges in the atmosphere of chlorine and bromine species. On the other hand, the cooling of the stratosphere intensifies a formation of the polar stratospheric clouds in the lower stratosphere in the Polar Regions. Heterogeneous reactions on the polar stratospheric clouds, which are the key processes in the destruction of the ozone layer at the high latitudes, lead to more intensive ozone depletion here, which causes a delay of the ozone layer recovery. The calculations show that this effect is weaker than the first one so that the global ozone will recover faster under conditions of continuing anthropogenic growth of the greenhouse gases. The model predicts in this case that the annual average global ozone will reach its undisturbed level of 1980 by about 2040. If the growth of the