WorldWideScience

Sample records for non-metallic osmia melanosmia

  1. Osmia species (Hymenoptera, Megachilidae from the southeastern United States with modified facial hairs: taxonomy, host plants, and conservation status

    Directory of Open Access Journals (Sweden)

    Molly Rightmyer

    2011-11-01

    Full Text Available We describe females and males of Osmia (Melanosmia calaminthae sp. n., an apparent floral specialist on Calamintha ashei (Lamiaceae, and provide observations on the behavior of female bees on flowers of this plant. We also provide diagnostic information for Osmia (Diceratosmia conjunctoides Robertson, stat. n., and synonymize O. (Diceratosmia subfasciata miamiensis Mitchell with O. conjunctoides syn. n. Females of both O. calaminthae and O. conjunctoides are unique among North American Osmia forshort, erect, simple facial hairs, which are apparent adaptations for collecting pollen from nototribic flowers. Osmia calaminthae is currently only known from sandy scrub at four nearby sites in the southern Lake Wales Ridge in Highlands County, Florida, USA, while O. conjunctoides is known from limited but widespread sites in the southeastern USA. We discuss the conservation status of both species based on known or speculated floral associates and distributions.

  2. Distribution, biology and habitat of the rare European osmiine bee species Osmia (Melanosmia pilicornis (Hymenoptera, Megachilidae, Osmiini

    Directory of Open Access Journals (Sweden)

    Rainer Prosi

    2016-10-01

    Full Text Available Osmia pilicornis is distributed from western temperate Europe to western Siberia, where it exclusively occurs in open-structured, mesophilous and mainly deciduous woodland below 1000 m a.s.l. In Central Europe, its peak activity ranges from the last third of March to the first third of June. Due to its rarity and its low population densities over most of its range, the biology of O. pilicornis was only fragmentarily known. The discovery of six nests in the course of the present study revealed that females of O. pilicornis have a unique nesting behaviour among the osmiine bees: they gnaw their nests in dead wood with the aid of their strong mandibles, which have a peculiar chisel-like shape hypothesized to be an adaptation to the species’ specialized nesting behaviour. All six nests were in dead fallen branches of different tree and shrub species and of varying wood hardness. The nesting branches had a diameter of 1.5–6.1 cm, lay on sun-exposed ground and were largely hidden under vegetation. The nests contained one to three linearly arranged brood cells. Both cell partitions and nest plug were built from chewed leaves harvested from Fragaria vesca. Osmia pilicornis was identified as a new host of the chrysidid wasp Chrysura hirsuta, and the ichneumonid wasp Hoplocryptus confector developed in its nests. Microscopical analysis of scopal pollen loads of collected females revealed that pollen is mainly collected from three plant taxa, i.e. Pulmonaria (Boraginaceae, Fabaceae (e.g. Lathyrus, Vicia and Lamiaceae (e.g. Ajuga, Glechoma. On flowers of Pulmonaria, which is the most important pollen host over most of the species’ range, the females use specialized bristles on their proboscis to brush pollen out of the narrow corolla tube, they almost exclusively exploit pollen-rich flowers in the early red stage and they often steal pollen from still closed flowers by forcefully opening buds. On their search for females, males of O. pilicornis patrol

  3. Substrates and materials used for nesting by North American Osmia bees (Hymenoptera: Apiformes: Megachilidae)

    Science.gov (United States)

    James H. Cane; Terry L. Griswold; Frank D. Parker

    2007-01-01

    Nesting substrates and construction materials are compared for 65 of North America's 139 described native species of Osmia bees. Most accounts report Osmia bees nesting in preexisting cavities in dead wood or pithy stems such as elderberry (Sambucus spp.), with cell partitions and plugs made from a pulp of finely masticated leaf tissue. Mud is widely used by...

  4. Forewing structure of the solitary bee Osmia bicornis developing on heavy metal pollution gradient.

    Science.gov (United States)

    Szentgyörgyi, Hajnalka; Moroń, Dawid; Nawrocka, Anna; Tofilski, Adam; Woyciechowski, Michał

    2017-10-01

    Wild bees in natural conditions can develop under various environmental stressors. Heavy metal pollution of the environment is one of the most widely studied stressors in insects, yet its effect is poorly described in bees. We have measured how pollution of the environment along a zinc, cadmium and lead contamination gradient in Poland affects bee development, using red mason bees (Osmia bicornis) as a model and their forewing asymmetry measures to assess possible developmental instabilities. We have also described wing asymmetry measures in the red mason bee-an important managed pollinator species-for the first time. The development of bee larvae in a contaminated environment did not affect forewing asymmetry measures, but it did lead to a negative correlation of wing size with contamination in females. Bees also showed a clear change in their asymmetry measures between various seasons, suggesting other, unknown environmental factors affecting wing asymmetry more than pollution. Sexes were found to have different forewing shape and size, larger females having larger forewings than the smaller males. The direction of size asymmetry was in favour of the left side in both sexes and also shape differences between the left and right wings showed similar tendencies in males and females. The levels of forewing shape and size asymmetry were smaller in females, making them the more symmetrical sex.

  5. The neonicotinoid clothianidin interferes with navigation of the solitary bee Osmia cornuta in a laboratory test.

    Science.gov (United States)

    Jin, Nanxiang; Klein, Simon; Leimig, Fabian; Bischoff, Gabriela; Menzel, Randolf

    2015-09-01

    Pollinating insects provide a vital ecosystem service to crops and wild plants. Exposure to low doses of neonicotinoid insecticides has sub-lethal effects on social pollinators such as bumblebees and honeybees, disturbing their navigation and interfering with their development. Solitary Hymenoptera are also very important ecosystem service providers, but the sub-lethal effects of neonicotinoids have not yet been studied well in those animals. We analyzed the ability of walking Osmia to remember a feeding place in a small environment and found that Osmia remembers the feeding place well after 4 days of training. Uptake of field-realistic amounts of the neonicotinoid clothianidin (0.76 ng per bee) altered the animals' sensory responses to the visual environment and interfered with the retrieval of navigational memory. We conclude that the neonicotinoid clothianidin compromises visual guidance and the use of navigational memory in the solitary bee Osmia cornuta. © 2015. Published by The Company of Biologists Ltd.

  6. Flight biomechanics of developmentally-induced size variation in the solitary bee Osmia lignaria

    Science.gov (United States)

    Body size covaries with morphology, functional performance, and fitness. For insects, variation in adult phenotypies are derived from developmental variation in larval growth and metamorphosis. In this study, we asked how larval growth impacted adult morphology in Osmia lignaria—especially traits th...

  7. Dung pat nesting by the solitary bee, Osmia (Acanthosmiodes) integra (Megachilidae: Apiformes).

    Science.gov (United States)

    Solitary bees nest in a diversity of substrates, typically soil, but also wood, stems and twigs. A new and novel substrate is reported here, dried cattle dung. Two species of Osmia bees were found nesting in dung in Wyoming. One species, O. integra, otherwise nests shallowly in soil. Nests were ...

  8. Specialist bees collect Asteraceae pollen by distinctive abdominal drumming (Osmia) or tapping (Melissodes, Svastra)

    Science.gov (United States)

    Four species of western US Osmia (Cephalosmia) bees that are Asteraceae specialists (oligoleges) were observed to employ a heretofore unappreciated, stereotypical means of collecting pollen, abdominal drumming, to gather pollen from 19 flowering species representing nine tribes of Asteraceae. Abdom...

  9. Pollination, seed set and fruit quality in apple: studies with Osmia lignaria (Hymenoptera: Megachilidae in the Annapolis Valley, Nova Scotia, Canada

    Directory of Open Access Journals (Sweden)

    Cory Silas Sheffield

    2014-02-01

    Full Text Available The orchard crop pollinator Osmia lignaria (Hymenoptera: Megachilidae was evaluated for apple pollination in the Annapolis Valley, Nova Scotia, Canada during 2000-2001. Resulting pollination levels (measured as pollen grains on floral stigmas, percent fruit set, mature fruit weight and seed yield were evaluated against an attempted gradient of Osmia bee density. In addition, fruit quality was assessed using two symmetry indices, one based on fruit diameter, the second on fruit height. Pollination levels, percent fruit set and mature fruit quality were much higher than minimums required for adequate crop production, and all but pollination levels showed weak but significant decreases at increased distance from the established nests, suggesting that even at low numbers these bees may have been making significant contributions to apple production. Fruit were typically of better quality in areas of the orchard adjacent to Osmia nests, having fewer empty carpels and greater symmetry; fruit quality (i.e., symmetry is typically most reduced when two or more adjacent carpels are empty. Empty carpels reduce growth in fruit height rather than diameter, suggesting that symmetry indices using fruit diameter are not sensitive enough to evaluate fruit quality. Evidencing this, fruit without mature seeds observed in this study showed high symmetry based on diameter, but were greatly asymmetric with respect to fruit height. Further discussion on Osmia bees as apple pollinators and on methods of evaluating apple fruit quality with respect to seed distribution within the apple fruit are provided.

  10. An objective spinal motion imaging assessment (OSMIA): reliability, accuracy and exposure data.

    OpenAIRE

    Breen, Alan C.; Muggleton, J.M.; Mellor, F.E.

    2006-01-01

    Abstract Background Minimally-invasive measurement of continuous inter-vertebral motion in clinical settings is difficult to achieve. This paper describes the reliability, validity and radiation exposure levels in a new Objective Spinal Motion Imaging Assessment system (OSMIA) based on low-dose fluoroscopy and image processing. Methods Fluoroscopic sequences in coronal and sagittal planes were obtained from 2 calibration models using dry lumbar vertebrae, plus the lumbar spines of 30 asymptom...

  11. Asteraceae Pollen Provisions Protect Osmia Mason Bees (Hymenoptera: Megachilidae) from Brood Parasitism.

    Science.gov (United States)

    Spear, Dakota M; Silverman, Sarah; Forrest, Jessica R K

    2016-06-01

    Many specialist herbivores eat foods that are apparently low quality. The compensatory benefits of a poor diet may include protection from natural enemies. Several bee lineages specialize on pollen of the plant family Asteraceae, which is known to be a poor-quality food. Here we tested the hypothesis that specialization on Asteraceae pollen protects bees from parasitism. We compared rates of brood parasitism by Sapyga wasps on Asteraceae-specialist, Fabeae-specialist, and other species of Osmia bees in the field over several years and sites and found that Asteraceae-specialist species were parasitized significantly less frequently than other species. We then tested the effect of Asteraceae pollen on parasites by raising Sapyga larvae on three pollen mixtures: Asteraceae, Fabeae, and generalist (a mix of primarily non-Asteraceae pollens). Survival of parasite larvae was significantly reduced on Asteraceae provisions. Our results suggest that specialization on low-quality pollen may evolve because it helps protect bees from natural enemies.

  12. Structural Examination of the Dufour's Gland of the Cavity-nesting Bees Osmia lignaria Say and Megachile rotundata (Fabricius) (Hymenoptera: Megachilidae)

    Science.gov (United States)

    The Dufour’s gland of two solitary cavity-nesting bees, Osmia lignaria and Megachile rotundata (Hymenoptera: Megachilidae), were examined with microscopy to determine the structure and arrangement of the gland as part of the sting apparatus. The Dufour’s glands of these two bee species are similar ...

  13. The Effect of Nest Box Distribution on Sustainable Propagation of Osmia lignaria (Hymenoptera: Megachilidae) in Commercial Tart Cherry Orchards

    OpenAIRE

    Boyle, N. K.; Pitts-Singer, T. L.

    2017-01-01

    The blue orchard bee, Osmia lignaria (Say), is a solitary bee that is an excellent pollinator of tree fruit orchards. Due to the annual rising costs of honey bee hive rentals, many orchardists are eager to develop management tools and practices to support O. lignaria as an alternative pollinator. Establishing O. lignaria pollination as a sustainable industry requires careful consideration of both bee and orchard management. Here, we test the effect of artificial nest box distribution on in-or...

  14. An objective spinal motion imaging assessment (OSMIA): reliability, accuracy and exposure data.

    Science.gov (United States)

    Breen, Alan C; Muggleton, Jennifer M; Mellor, Fiona E

    2006-01-04

    Minimally-invasive measurement of continuous inter-vertebral motion in clinical settings is difficult to achieve. This paper describes the reliability, validity and radiation exposure levels in a new Objective Spinal Motion Imaging Assessment system (OSMIA) based on low-dose fluoroscopy and image processing. Fluoroscopic sequences in coronal and sagittal planes were obtained from 2 calibration models using dry lumbar vertebrae, plus the lumbar spines of 30 asymptomatic volunteers. Calibration model 1 (mobile) was screened upright, in 7 inter-vertebral positions. The volunteers and calibration model 2 (fixed) were screened on a motorized table comprising 2 horizontal sections, one of which moved through 80 degrees. Model 2 was screened during motion 5 times and the L2-S1 levels of the volunteers twice. Images were digitised at 5fps. Inter-vertebral motion from model 1 was compared to its pre-settings to investigate accuracy. For volunteers and model 2, the first digitised image in each sequence was marked with templates. Vertebrae were tracked throughout the motion using automated frame-to-frame registration. For each frame, vertebral angles were subtracted giving inter-vertebral motion graphs. Volunteer data were acquired twice on the same day and analysed by two blinded observers. The root-mean-square (RMS) differences between paired data were used as the measure of reliability. RMS difference between reference and computed inter-vertebral angles in model 1 was 0.32 degrees for side-bending and 0.52 degrees for flexion-extension. For model 2, X-ray positioning contributed more to the variance of range measurement than did automated registration. For volunteer image sequences, RMS inter-observer variation in intervertebral motion range in the coronal plane was 1.86 degrees and intra-subject biological variation was between 2.75 degrees and 2.91 degrees. RMS inter-observer variation in the sagittal plane was 1.94 degrees. Radiation dosages in each view were below

  15. ‘… a metal conducts and a non-metal doesn't’

    Science.gov (United States)

    Edwards, P. P.; Lodge, M. T. J.; Hensel, F.; Redmer, R.

    2010-01-01

    In a letter to one of the authors, Sir Nevill Mott, then in his tenth decade, highlighted the fact that the statement ‘… a metal conducts, and a non-metal doesn’t’ can be true only at the absolute zero of temperature, T=0 K. But, of course, experimental studies of metals, non-metals and, indeed, the electronic and thermodynamic transition between these canonical states of matter must always occur above T=0 K, and, in many important cases, for temperatures far above the absolute zero. Here, we review the issues—theoretical and experimental—attendant on studies of the metal to non-metal transition in doped semiconductors at temperatures close to absolute zero (T=0.03 K) and fluid chemical elements at temperatures far above absolute zero (T>1000 K). We attempt to illustrate Mott’s insights for delving into such complex phenomena and experimental systems, finding intuitively the dominant features of the science, and developing a coherent picture of the different competing electronic processes. A particular emphasis is placed on the idea of a ‘Mott metal to non-metal transition’ in the nominally metallic chemical elements rubidium, caesium and mercury, and the converse metallization transition in the nominally non-metal elements hydrogen and oxygen. We also review major innovations by D. A. Goldhammer (Goldhammer 1913 Dispersion und absorption des lichtes) and K. F. Herzfeld (Herzfeld 1927 Phys. Rev. 29, 701–705. (doi:10.1103/PhysRev.29.701)) in a pre-quantum theory description of the metal–non-metal transition, which emphasize the pivotal role of atomic properties in dictating the metallic or non-metallic status of the chemical elements of the periodic table under ambient and extreme conditions; a link with Pauling’s ‘metallic orbital’ is also established here. PMID:20123742

  16. Novel non-platinum metal catalyst material

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a novel non-platinum metal catalyst material for use in low temperature fuel cells and electrolysers and to fuel cells and electrolysers comprising the novel non-platinum metal catalyst material. The present invention also relates to a novel method for synthesizing...... the novel non-platinum metal catalyst material....

  17. An objective spinal motion imaging assessment (OSMIA: reliability, accuracy and exposure data

    Directory of Open Access Journals (Sweden)

    Mellor Fiona E

    2006-01-01

    Full Text Available Abstract Background Minimally-invasive measurement of continuous inter-vertebral motion in clinical settings is difficult to achieve. This paper describes the reliability, validity and radiation exposure levels in a new Objective Spinal Motion Imaging Assessment system (OSMIA based on low-dose fluoroscopy and image processing. Methods Fluoroscopic sequences in coronal and sagittal planes were obtained from 2 calibration models using dry lumbar vertebrae, plus the lumbar spines of 30 asymptomatic volunteers. Calibration model 1 (mobile was screened upright, in 7 inter-vertebral positions. The volunteers and calibration model 2 (fixed were screened on a motorised table comprising 2 horizontal sections, one of which moved through 80 degrees. Model 2 was screened during motion 5 times and the L2-S1 levels of the volunteers twice. Images were digitised at 5fps. Inter-vertebral motion from model 1 was compared to its pre-settings to investigate accuracy. For volunteers and model 2, the first digitised image in each sequence was marked with templates. Vertebrae were tracked throughout the motion using automated frame-to-frame registration. For each frame, vertebral angles were subtracted giving inter-vertebral motion graphs. Volunteer data were acquired twice on the same day and analysed by two blinded observers. The root-mean-square (RMS differences between paired data were used as the measure of reliability. Results RMS difference between reference and computed inter-vertebral angles in model 1 was 0.32 degrees for side-bending and 0.52 degrees for flexion-extension. For model 2, X-ray positioning contributed more to the variance of range measurement than did automated registration. For volunteer image sequences, RMS inter-observer variation in intervertebral motion range in the coronal plane was 1.86 degreesand intra-subject biological variation was between 2.75 degrees and 2.91 degrees. RMS inter-observer variation in the sagittal plane was 1

  18. Several New Aspects of the Foraging Behavior of Osmia cornifrons in an Apple Orchard

    Directory of Open Access Journals (Sweden)

    Shogo Matsumoto

    2010-01-01

    Full Text Available We investigated the foraging behavior of Osmia cornifrons Radoszkowski, which is a useful pollinator in apple orchards consisting of only one kind of commercial cultivars such as “Fuji”, and of different types of pollinizers, such as the red petal type, “Maypole” or “Makamik”. It was confirmed that, in terms of the number of foraging flowers per day, visiting flowers during low temperatures, strong wind, and reduced sunshine in an apple orchard, O. cornifrons were superior to honeybees. We indicated that O. cornifrons seemed to use both petals and anthers as foraging indicator, and that not only female, but also males contributed to apple pollination and fertilization by the pollen grains attached to them from visiting flowers, including those at the balloon stage. It was confirmed that O. cornifrons acts as a useful pollinator in an apple orchard consisting of one kind of cultivar with pollinizers planted not more than 10 m from commercial cultivars.

  19. Studies on the effect of Osmia rufa L. (Apoidea, Megachilidae on the effectiveness of pod and seed development in the subgenus Glycine

    Directory of Open Access Journals (Sweden)

    Halina Skorupska

    2014-01-01

    Full Text Available Three abundantly blooming forms of Glycogen tabacina and one G. tomentella form were studied. The experiment was conducted under isolated conditions. The effect of Osmia rufa L. on the fertility of raceme flowers was studied. It was found that the G. tabacina and G. tomentella flowers were intensively penetrated by the insects. A very clear increase (3-4 fold in pod development was observed. The results ol the experiment indicate that geitonogamic pollination has a favorable influence on the effectiveness of the blooming of the chasmogamic flowers of the studied species.

  20. Contribution of nuclear analysis methods to the certification of BCR reference materials for non-metals in non-ferrous metals

    International Nuclear Information System (INIS)

    Pauwels, J.

    1979-01-01

    A number of reference materials for oxygen in different non-ferrous metals have been certified by BCR in the frame of a multidisciplinary Community project. The contribution of nuclear analysis methods is illustrated by several examples concerning the optimization of sample preparation techniques, the analysis of low and high oxygen non-ferrous metals and the extension of the program to other non-metals, especially nitrogen and carbon. (author)

  1. Metal nanostructures for non-enzymatic glucose sensing

    International Nuclear Information System (INIS)

    Tee, Si Yin; Teng, Choon Peng; Ye, Enyi

    2017-01-01

    This review covers the recent development of metal nanostructures in electrochemical non-enzymatic glucose sensing. It highlights a variety of nanostructured materials including noble metals, other transition metals, bimetallic systems, and their hybrid with carbon-based nanomaterials. Particularly, attention is devoted to numerous approaches that have been implemented for improving the sensors performance by tailoring size, shape, composition, effective surface area, adsorption capability and electron-transfer properties. The correlation of the metal nanostructures to the glucose sensing performance is addressed with respect to the linear concentration range, sensitivity and detection limit. In overall, this review provides important clues from the recent scientific achievements of glucose sensor nanomaterials which will be essentially useful in designing better and more effective electrocatalysts for future electrochemical sensing industry. - Highlights: • Overview of recent development of metal nanostructures in electrochemical non-enzymatic glucose sensing. • Special attention is focussed on noble metals, other transition metals, bimetallic systems, and their hybrid with carbon-based nanomaterials. • Merits and limitations of various metal nanostructures in electrochemical non-enzymatic glucose sensing. • Strategies to improve the glucose sensing performance of metal nanostructures as electrocatalysts.

  2. Effect of sonication on particle dispersion, administered dose and metal release of non-functionalized, non-inert metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Sulena; Hedberg, Jonas, E-mail: jhed@kth.se; Blomberg, Eva [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Department of Chemistry (Sweden); Wold, Susanna [KTH Royal Institute of Technology, Division of Applied Physical Chemistry, Department of Chemistry (Sweden); Odnevall Wallinder, Inger [KTH Royal Institute of Technology, Division of Surface and Corrosion Science, Department of Chemistry (Sweden)

    2016-09-15

    In this study, we elucidate the effect of different sonication techniques to efficiently prepare particle dispersions from selected non-functionalized NPs (Cu, Al, Mn, ZnO), and corresponding consequences on the particle dose, surface charge and release of metals. Probe sonication was shown to be the preferred method for dispersing non-inert, non-functionalized metal NPs (Cu, Mn, Al). However, rapid sedimentation during sonication resulted in differences between the real and the administered doses in the order of 30–80 % when sonicating in 1 and 2.56 g/L NP stock solutions. After sonication, extensive agglomeration of the metal NPs resulted in rapid sedimentation of all particles. DLVO calculations supported these findings, showing the strong van der Waals forces of the metal NPs to result in significant NP agglomeration. Metal release from the metal NPs was slightly increased by increased sonication. The addition of a stabilizing agent (bovine serum albumin) had an accelerating effect on the release of metals in sonicated solutions. For Cu and Mn NPs, the extent of particle dissolution increased from <1.6 to ~5 % after sonication for 15 min. A prolonged sonication time (3–15 min) had negligible effects on the zeta potential of the studied NPs. In all, it is shown that it is of utmost importance to carefully investigate how sonication influences the physico-chemical properties of dispersed metal NPs. This should be considered in nanotoxicology investigations of metal NPs.Graphical Abstract.

  3. Secondary defects in non-metallic solids

    International Nuclear Information System (INIS)

    Ashbee, K.H.G.; Hobbs, L.W.

    1977-01-01

    This paper points out features of secondary defect formation which are peculiar to non-metallic solids (excluding elemental semiconductors). Most of the materials of interest are compounds of two or more (usually more or less ionic) atomic species, and immediate consequence of which is a need to maintain both stoichiometry (or accommodate non-stoichiometry) and order. Primary defects in these solids, whether produced thermally, chemically or by irradiation, seldom are present or aggregate in exactly stoichiometric proportions, and the resulting extending defect structures can be quite distinct from those found in metallic solids. Where stoichiometry is maintained, it is often convenient to describe extended defects in terms of alterations in the arrangement of 'molecular' units. The adoption of this procedure enables several novel features of extended defect structures in non-metals to be explained. There are several ways in which a range of non-stoichiometry can be accommodated, which include structural elimination of point defects, nucleation of new coherent phases of altered stoichiometry, and decomposition. (author)

  4. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L. and Osmia cornifrons (Radoszkowski.

    Directory of Open Access Journals (Sweden)

    David J Biddinger

    Full Text Available The topical toxicities of five commercial grade pesticides commonly sprayed in apple orchards were estimated on adult worker honey bees, Apis mellifera (L. (Hymenoptera: Apidae and Japanese orchard bees, Osmia cornifrons (Radoszkowski (Hymenoptera: Megachilidae. The pesticides were acetamiprid (Assail 30SG, λ-cyhalothrin (Warrior II, dimethoate (Dimethoate 4EC, phosmet (Imidan 70W, and imidacloprid (Provado 1.6F. At least 5 doses of each chemical, diluted in distilled water, were applied to freshly-eclosed adult bees. Mortality was assessed after 48 hr. Dose-mortality regressions were analyzed by probit analysis to test the hypotheses of parallelism and equality by likelihood ratio tests. For A. mellifera, the decreasing order of toxicity at LD₅₀ was imidacloprid, λ-cyhalothrin, dimethoate, phosmet, and acetamiprid. For O. cornifrons, the decreasing order of toxicity at LD₅₀ was dimethoate, λ-cyhalothrin, imidacloprid, acetamiprid, and phosmet. Interaction of imidacloprid or acetamiprid with the fungicide fenbuconazole (Indar 2F was also tested in a 1∶1 proportion for each species. Estimates of response parameters for each mixture component applied to each species were compared with dose-response data for each mixture in statistical tests of the hypothesis of independent joint action. For each mixture, the interaction of fenbuconazole (a material non-toxic to both species was significant and positive along the entire line for the pesticide. Our results clearly show that responses of A. mellifera cannot be extrapolated to responses of O.cornifrons, and that synergism of neonicotinoid insecticides and fungicides occurs using formulated product in mixtures as they are commonly applied in apple orchards.

  5. Treatment of transverse patellar fractures: a comparison between metallic and non-metallic implants.

    Science.gov (United States)

    Heusinkveld, Maarten H G; den Hamer, Anniek; Traa, Willeke A; Oomen, Pim J A; Maffulli, Nicola

    2013-01-01

    Several methods of transverse patellar fixation have been described. This study compares the clinical outcome and the occurrence of complications of various fixation methods. The databases PubMed, Web of Science, Science Direct, Google Scholar and Google were searched. A direct comparison between fixation techniques using mixed or non-metallic implants and metallic K-wire and tension band fixation shows no significant difference in clinical outcome between both groups. Additionally, studies reporting novel operation techniques show good clinical results. Studies describing the treatment of patients using non-metallic or mixed implants are fewer compared with those using metallic fixation. A large variety of clinical scoring systems were used for assessing the results of treatment, which makes direct comparison difficult. More data of fracture treatment using non-metallic or mixed implants is needed to achieve a more balanced comparison.

  6. Insights into the biochemical defence and methylation of the solitary bee Osmia rufa L: A foundation for examining eusociality development.

    Directory of Open Access Journals (Sweden)

    Aneta Strachecka

    Full Text Available We examined age-related biochemical and histological changes in the fat bodies and hemolymph of Osmia rufa males and females. We analysed solitary bees during diapause, in October and in April; as well as the flying insects following diapause, in May and June. The trophocyte sizes, as well as the numbers of lipid droplets were the greatest at the beginning of diapause. Subsequently, they decreased along with age. Triglyceride and glucose concentrations systematically decreased in fat body cells but increased in the hemolymph from October to June. Concentrations/activities of (enzymatic and non-enzymatic antioxidant and proteolytic systems, as well as phenoloxidase, aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase levels were constant during the diapause, usually lower in the males than the females. Prior to the diapause/overwintering, the concentrations/activities of all the compounds were higher in the fat bodies than in the hemolymph. Later in the spring and in the summer, they increased in the hemolymph and on the body surfaces, while decreasing in the fat bodies. The global DNA methylation levels increased with age. Higher levels were always observed in the males than in the females. The study will promote better understanding of bee evolution and will be useful for the protection and management of solitary bees, with benefits to the environment and agriculture.

  7. Performance simulation of serpentine type metallic and non-metallic solar collector

    International Nuclear Information System (INIS)

    Al-Sageer, A. A. M.; Alowa, M. I.; Saad, M.

    2006-01-01

    This paper presents a theoretical investigation of metallic and non-metalic solar water collector models for evaluating its performane parameters. The determined parameters include heat removal factor , overall heat loss coefficients, heat gain, daily and hourly efficiencies. The present study reports that, under forced circulation lest, the non-metallic collector has an inferior performance parameters when compared to that of the metallic one. It was also revealed that the overall heat loss coefficients of both collectors show weak dependence on the flow rate variations. It was also noticed that the heat removal factor forboth models is more sensitive to the flow rate variations. Also noticed that the heat removal factor for both models is more sensitive to the flow rate variations. Also, a comparision of performance parameters of the theoretical and experimental studies showed good agreements for most hours of the day, except the results obtained at the early morning and late after noon hours.(Author)

  8. Effects of Fungicide and Adjuvant Sprays on Nesting Behavior in Two Managed Solitary Bees, Osmia lignaria and Megachile rotundata.

    Science.gov (United States)

    Artz, Derek R; Pitts-Singer, Theresa L

    2015-01-01

    There is a growing body of empirical evidence showing that wild and managed bees are negatively impacted by various pesticides that are applied in agroecosystems around the world. The lethal and sublethal effects of two widely used fungicides and one adjuvant were assessed in cage studies in California on blue orchard bees, Osmia lignaria, and in cage studies in Utah on alfalfa leafcutting bees, Megachile rotundata. The fungicides tested were Rovral 4F (iprodione) and Pristine (mixture of pyraclostrobin + boscalid), and the adjuvant tested was N-90, a non-ionic wetting agent (90% polyethoxylated nonylphenol) added to certain tank mixtures of fungicides to improve the distribution and contact of sprays to plants. In separate trials, we erected screened cages and released 20 paint-marked females plus 30-50 males per cage to document the behavior of nesting bees under treated and control conditions. For all females in each cage, we recorded pollen-collecting trip times, nest substrate-collecting trip times (i.e., mud for O. lignaria and cut leaf pieces for M. rotundata), cell production rate, and the number of attempts each female made to enter her own or to enter other nest entrances upon returning from a foraging trip. No lethal effects of treatments were observed on adults, nor were there effects on time spent foraging for pollen and nest substrates and on cell production rate. However, Rovral 4F, Pristine, and N-90 disrupted the nest recognition abilities of O. lignaria females. Pristine, N-90, and Pristine + N-90 disrupted nest recognition ability of M. rotundata females. Electroantennogram responses of antennae of O. lignaria females maintained in the laboratory did not differ significantly between the fungicide-exposed and control bees. Our results provide the first empirical evidence that two commonly used fungicides and a non-ionic adjuvant can disrupt nest recognition in two managed solitary bee species.

  9. Female choice in the red mason bee, Osmia rufa (L.) (Megachilidae).

    Science.gov (United States)

    Conrad, Taina; Paxton, Robert J; Barth, Friedrich G; Francke, Wittko; Ayasse, Manfred

    2010-12-01

    Females are often thought to use several cues and more than one modality in selection of a mate, possibly because they offer complementary information on a mate's suitability. In the red mason bee, Osmia rufa, we investigated the criteria a female uses to choose a mating partner. We hypothesized that the female uses male thorax vibrations and size as signs of male viability and male odor for kin discrimination and assessment of genetic relatedness. We therefore compared males that had been accepted by a female for copulation with those rejected, in terms of their size, their immediate precopulatory vibrations (using laser vibrometry), the genetic relatedness of unmated and mated pairs (using microsatellite markers) and emitted volatiles (using chemical analyses). Females showed a preference for intermediate-sized males that were slightly larger than the modal male size. Furthermore, male precopulatory vibration burst duration was significantly longer in males accepted for copulation compared with rejected males. Vibrations may indicate vigor and assure that males selected by females are metabolically active and healthy. Females preferentially copulated with males that were genetically more closely related, possibly to avoid outbreeding depression. Volatiles of the cuticular surface differed significantly between accepted and rejected males in the relative amounts of certain hydrocarbons, although the relationship between male odor and female preference was complex. Females may therefore also use differences in odor bouquet to select among males. Our investigations show that O. rufa females appear to use multiple cues in selecting a male. Future investigations are needed to demonstrate whether odor plays a role in kin recognition and how the multiple cues are integrated in mate choice by females.

  10. Non-hydrolytic metal oxide films for perovskite halide overcoating and stabilization

    Science.gov (United States)

    Martinson, Alex B.; Kim, In Soo

    2017-09-26

    A method of protecting a perovskite halide film from moisture and temperature includes positioning the perovskite halide film in a chamber. The chamber is maintained at a temperature of less than 200 degrees Celsius. An organo-metal compound is inserted into the chamber. A non-hydrolytic oxygen source is subsequently inserted into the chamber. The inserting of the organo-metal compound and subsequent inserting of the non-hydrolytic oxygen source into the chamber is repeated for a predetermined number of cycles. The non-hydrolytic oxygen source and the organo-metal compound interact in the chamber to deposit a non-hydrolytic metal oxide film on perovskite halide film. The non-hydrolytic metal oxide film protects the perovskite halide film from relative humidity of greater than 35% and a temperature of greater than 150 degrees Celsius, respectively.

  11. Modelling of non-metallic particles motion process in foundry alloys

    Directory of Open Access Journals (Sweden)

    P. L. Żak

    2015-04-01

    Full Text Available The behaviour of non-metallic particles in the selected composites was analysed, in the current study. The calculations of particles floating in liquids differing in viscosity were performed. Simulations based on the Stokes equation were made for spherical SiC particles and additionally the particle size influence on Reynolds number was analysed.The movement of the particles in the liquid metal matrix is strictly connected with the agglomerate formation problem.Some of collisions between non-metallic particles lead to a permanent connection between them. Creation of the two spherical particles and a metallic phase system generates the adhesion force. It was found that the adhesion force mainly depends on the surface tension of the liquid alloy and radius of non-metallic particles.

  12. Polymer derived non-oxide ceramics modified with late transition metals.

    Science.gov (United States)

    Zaheer, Muhammad; Schmalz, Thomas; Motz, Günter; Kempe, Rhett

    2012-08-07

    This tutorial review highlights the methods for the preparation of metal modified precursor derived ceramics (PDCs) and concentrates on the rare non-oxide systems enhanced with late transition metals. In addition to the main synthetic strategies for modified SiC and SiCN ceramics, an overview of the morphologies, structures and compositions of both, ceramic materials and metal (nano) particles, is presented. Potential magnetic and catalytic applications have been discussed for the so manufactured metal containing non-oxide ceramics.

  13. Radiation damage in non-metals

    International Nuclear Information System (INIS)

    Stoneham, A.M.

    1980-01-01

    Work on the problem of radiation damage in non-metals over the past 25 years is reviewed with especial emphasis on the contribution made at AERE, Harwell and in particular by members of the Theoretical Physics Division. In the years between 1954 and the end of the 1960's the main thrust in the radiation damage of non-metals was model-building including devising defect models and mechanisms that were qualitatively acceptable, and compiling systematic data. The early 1970's made greater quantitative demands as computer techniques made theory more powerful. In many cases it was possible to predict defect properties accurately, so that one could distinguish between different defect models which were hard to tell apart by experiment alone. In the late 1970's the most important aspect has moved towards mechanisms of defect processes, especially in cases where experiment by itself is limited by timescale, by complexity, by the unintentional impurities inevitable in real crystals, or by the extreme conditions required. (UK)

  14. Guangxi non-ferrous metal industry speeding up its restructuring

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    <正>Non-ferrous metal industry in Guangxi takes an important position in China.However,the waste of resources is severe due to its simple industrial structure,small size of enterprises, sloppy technology,scattered layout,obstructed market and indiscriminate mining.Starting from last year,Guangxi began the project of building a world-influential non-ferrous metal

  15. The mineral base and productive capacities of metals and non-metals of Kosovo

    Science.gov (United States)

    Rizaj, M.; Beqiri, E.; McBow, I.; O'Brien, E. Z.; Kongoli, F.

    2008-08-01

    All historical periods of Kosovo—Ilirik, Roman, Medieval, Turkish, and former Yugoslavian—are linked with the intensive development of mining and metallurgy. This activity influenced and still is influencing the overall position of Kosovo as a country. For example, according to a 2006 World Bank report as well as other studies, Kosovo has potential lignite resources (geological reserves) of about 1.5 billion tonnes, which are ranked fifth in the world in importance. Other significant Kosovan mineral resources include lead, zinc, gold, silver, bauxite, and uranium, and rare metals accompanying those minerals, including indium, cadmium, thallium, gallium, and bismuth. These rare metals are of particular importance in developing advanced industrial technologies. Kosovo also has reserves of high-quality non-metals, including magnesite, quartz grit, bentonite, argil, talc, and asbestos. No database exists for these non-metal reserves, and further research and studies are needed.

  16. 21 CFR 888.3120 - Ankle joint metal/polymer non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ankle joint metal/polymer non-constrained cemented... HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3120 Ankle joint metal/polymer non-constrained cemented prosthesis. (a) Identification. An ankle joint metal/polymer non...

  17. Modification of Non-Metallic Inclusions by Rare-Earth Elements in Microalloyed Steels

    Directory of Open Access Journals (Sweden)

    M. Opiela

    2012-04-01

    Full Text Available The modification of the chemical composition of non-metallic inclusions by rare-earth elements in the new-developed microalloyed steels was discussed in the paper. The investigated steels are assigned to production of forged elements by thermo- mechanical treatment. The steels were melted in a vaccum induction furnace and modification of non-metallic inclusions was carried out by the michmetal in the amount of 2.0 g per 1 kg of steel. It was found that using material charge of high purity and a realization of metallurgical process in vacuous conditions result in a low concentration of sulfur (0.004%, phosphorus (from 0.006 to 0.008% and oxygen (6 ppm. The high metallurgical purity is confirmed by a small fraction of non-metallic inclusions averaging 0.075%. A large majority of non-metallic inclusions are fine, globular oxide-sulfide or sulfide particles with a mean size 17m2. The chemical composition and morphology of non-metallic inclusions was modified by Ce, La and Nd, what results a small deformability of non- metallic inclusions during hot-working.

  18. Effects of Fungicide and Adjuvant Sprays on Nesting Behavior in Two Managed Solitary Bees, Osmia lignaria and Megachile rotundata.

    Directory of Open Access Journals (Sweden)

    Derek R Artz

    Full Text Available There is a growing body of empirical evidence showing that wild and managed bees are negatively impacted by various pesticides that are applied in agroecosystems around the world. The lethal and sublethal effects of two widely used fungicides and one adjuvant were assessed in cage studies in California on blue orchard bees, Osmia lignaria, and in cage studies in Utah on alfalfa leafcutting bees, Megachile rotundata. The fungicides tested were Rovral 4F (iprodione and Pristine (mixture of pyraclostrobin + boscalid, and the adjuvant tested was N-90, a non-ionic wetting agent (90% polyethoxylated nonylphenol added to certain tank mixtures of fungicides to improve the distribution and contact of sprays to plants. In separate trials, we erected screened cages and released 20 paint-marked females plus 30-50 males per cage to document the behavior of nesting bees under treated and control conditions. For all females in each cage, we recorded pollen-collecting trip times, nest substrate-collecting trip times (i.e., mud for O. lignaria and cut leaf pieces for M. rotundata, cell production rate, and the number of attempts each female made to enter her own or to enter other nest entrances upon returning from a foraging trip. No lethal effects of treatments were observed on adults, nor were there effects on time spent foraging for pollen and nest substrates and on cell production rate. However, Rovral 4F, Pristine, and N-90 disrupted the nest recognition abilities of O. lignaria females. Pristine, N-90, and Pristine + N-90 disrupted nest recognition ability of M. rotundata females. Electroantennogram responses of antennae of O. lignaria females maintained in the laboratory did not differ significantly between the fungicide-exposed and control bees. Our results provide the first empirical evidence that two commonly used fungicides and a non-ionic adjuvant can disrupt nest recognition in two managed solitary bee species.

  19. Reproductive potential and nesting effects of Osmia rufa (syn. bicornis female (Hymenoptera: Megachilidae

    Directory of Open Access Journals (Sweden)

    Giejdasz Karol

    2016-06-01

    Full Text Available The red mason bee Osmia rufa is a solitary bee belonging to the family Megachilidae, and is prone to nest in aggregations. Each female builds a nest separately in pre-existing cavities such as holes in wood and walls or empty plant stems. This is done by successively setting the cells in a linear series. In this study, we elucidate the nesting behavior and the reproductive potential of a single O. rufa female. The reproductive potential of nesting females was evaluated after the offspring finished development. We observed that an individual female may colonize up to five nest tubes and build 5-34 cells in them (16 on an average. During the nesting time the number of cells decreased with the sequence of nest tubes colonized by one female, which built a maximum of 11 cells in the first occupied nest and 5 cells in the last (fifth nest. Our observations indicated that 40% of nesting females colonized one nest tube as compared to 7% colonizing five nest tubes. Furthermore, in subsequent nest tubes the number of cells with freshly emerged females gradually decreased which was the reverse with males. Thus, the sex ratio (proportion of male and female offspring may change during the nesting period. The female offspring predominated in the first two nesting tubes, while in the subsequent three tubes male offspring dominated. We also cataloged different causes of reduction in abundance of offspring in O. rufa females such as parasitization or problem associated with moulting.

  20. 21 CFR 888.3490 - Knee joint femorotibial metal/composite non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/composite non... § 888.3490 Knee joint femorotibial metal/composite non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/composite non-constrained cemented prosthesis is a device...

  1. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    International Nuclear Information System (INIS)

    Resta, V.; Quarta, G.; Farella, I.; Maruccio, L.; Cola, A.; Calcagnile, L.

    2014-01-01

    The implantation of 1 MeV metal ( 63 Cu + , 107 Ag + , 197 Au + ) and non-metal ( 4 He + , 12 C + ) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ∼1 × 10 13 ions cm −2 , the threshold for latent tracks overlapping is overcome and π-bonded carbon clusters grow and aggregate forming a network of conjugated C=C bonds. For fluences around 1 × 10 17 ions cm −2 , the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C 0x clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C 0x cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ∼10 7 Ω/sq has been measured for implantation with metals at doses higher than 5 × 10 16 ions cm −2 , being 10 17 Ω/sq the corresponding sheet resistance for pristine PC

  2. Comparative study of metal and non-metal ion implantation in polymers: Optical and electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Resta, V., E-mail: vincenzo.resta@le.infn.it [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy); Quarta, G. [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy); Farella, I. [Institute for Microelectronics and Microsystems – Unit of Lecce, National Council of Research (IMM/CNR), Lecce I-73100 (Italy); Maruccio, L. [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy); Cola, A. [Institute for Microelectronics and Microsystems – Unit of Lecce, National Council of Research (IMM/CNR), Lecce I-73100 (Italy); Calcagnile, L. [Department of Engineering for Innovation, University of Salento, Via Monteroni, Lecce I-73100 (Italy)

    2014-07-15

    The implantation of 1 MeV metal ({sup 63}Cu{sup +}, {sup 107}Ag{sup +}, {sup 197}Au{sup +}) and non-metal ({sup 4}He{sup +}, {sup 12}C{sup +}) ions in a polycarbonate (PC) matrix has been studied in order to evaluate the role of ion species in the modification of optical and electrical properties of the polymer. When the ion fluence is above ∼1 × 10{sup 13} ions cm{sup −2}, the threshold for latent tracks overlapping is overcome and π-bonded carbon clusters grow and aggregate forming a network of conjugated C=C bonds. For fluences around 1 × 10{sup 17} ions cm{sup −2}, the aggregation phenomena induce the formation of amorphous carbon and/or graphite like structures. At the same time, nucleation of metal nanoparticles (NPs) from implanted species can take place when the supersaturation threshold is overcome. The optical absorption of the samples increases in the visible range and the optical band gap redshifts from 3.40 eV up to 0.70 eV mostly due to the carbonization process and the formation of C{sub 0x} clusters and cluster aggregates. Specific structures in the extinction spectra are observed when metal ions are selected in contrast to the non-metal ion implanted PC, thus revealing the possible presence of noble metal based NPs interstitial to the C{sub 0x} cluster network. The corresponding electrical resistance decreases much more when metal ions are implanted with at least a factor of 2 orders of magnitude difference than the non-metal ions based samples. An absolute value of ∼10{sup 7} Ω/sq has been measured for implantation with metals at doses higher than 5 × 10{sup 16} ions cm{sup −2}, being 10{sup 17} Ω/sq the corresponding sheet resistance for pristine PC.

  3. 21 CFR 888.3520 - Knee joint femorotibial metal/polymer non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Knee joint femorotibial metal/polymer non... § 888.3520 Knee joint femorotibial metal/polymer non-constrained cemented prosthesis. (a) Identification. A knee joint femorotibial metal/polymer non-constrained cemented prosthesis is a device intended to...

  4. The effect of non-equilibrium metal cooling on the interstellar medium

    Science.gov (United States)

    Capelo, Pedro R.; Bovino, Stefano; Lupi, Alessandro; Schleicher, Dominik R. G.; Grassi, Tommaso

    2018-04-01

    By using a novel interface between the modern smoothed particle hydrodynamics code GASOLINE2 and the chemistry package KROME, we follow the hydrodynamical and chemical evolution of an isolated galaxy. In order to assess the relevance of different physical parameters and prescriptions, we constructed a suite of 10 simulations, in which we vary the chemical network (primordial and metal species), how metal cooling is modelled (non-equilibrium versus equilibrium; optically thin versus thick approximation), the initial gas metallicity (from 10 to 100 per cent solar), and how molecular hydrogen forms on dust. This is the first work in which metal injection from supernovae, turbulent metal diffusion, and a metal network with non-equilibrium metal cooling are self-consistently included in a galaxy simulation. We find that properly modelling the chemical evolution of several metal species and the corresponding non-equilibrium metal cooling has important effects on the thermodynamics of the gas, the chemical abundances, and the appearance of the galaxy: the gas is typically warmer, has a larger molecular-gas mass fraction, and has a smoother disc. We also conclude that, at relatively high metallicity, the choice of molecular-hydrogen formation rates on dust is not crucial. Moreover, we confirm that a higher initial metallicity produces a colder gas and a larger fraction of molecular gas, with the low-metallicity simulation best matching the observed molecular Kennicutt-Schmidt relation. Finally, our simulations agree quite well with observations that link star formation rate to metal emission lines.

  5. Synthesis and Catalytic Applications of Non-Metal Doped Mesoporous Titania

    Directory of Open Access Journals (Sweden)

    Syed Z. Islam

    2017-03-01

    Full Text Available Mesoporous titania (mp-TiO2 has drawn tremendous attention for a diverse set of applications due to its high surface area, interfacial structure, and tunable combination of pore size, pore orientation, wall thickness, and pore connectivity. Its pore structure facilitates rapid diffusion of reactants and charge carriers to the photocatalytically active interface of TiO2. However, because the large band gap of TiO2 limits its ability to utilize visible light, non-metal doping has been extensively studied to tune the energy levels of TiO2. While first-principles calculations support the efficacy of this approach, it is challenging to efficiently introduce active non-metal dopants into the lattice of TiO2. This review surveys recent advances in the preparation of mp-TiO2 and their doping with non-metal atoms. Different doping strategies and dopant sources are discussed. Further, co-doping with combinations of non-metal dopants are discussed as strategies to reduce the band gap, improve photogenerated charge separation, and enhance visible light absorption. The improvements resulting from each doping strategy are discussed in light of potential changes in mesoporous architecture, dopant composition and chemical state, extent of band gap reduction, and improvement in photocatalytic activities. Finally, potential applications of non-metal-doped mp-TiO2 are explored in water splitting, CO2 reduction, and environmental remediation with visible light.

  6. Developing and establishing bee species as crop pollinators: the example of Osmia spp. (Hymenoptera: Megachilidae) and fruit trees.

    Science.gov (United States)

    Bosch, J; Bosch, J; Kemp, W P

    2002-02-01

    The development of a bee species as a new crop pollinator starts with the identification of a pollination-limited crop production deficit and the selection of one or more candidate pollinator species. The process continues with a series of studies on the developmental biology, pollinating efficacy, nesting behaviour, preference for different nesting substrates, and population dynamics of the candidate pollinator. Parallel studies investigate the biology of parasites, predators and pathogens. The information gained in these studies is combined with information on the reproductive biology of the crop to design a management system. Complete management systems should provide guidelines on rearing and releasing methods, bee densities required for adequate pollination, nesting materials, and control against parasites, predators and pathogens. Management systems should also provide methods to ensure a reliable pollinator supply. Pilot tests on a commercial scale are then conducted to test and eventually refine the management system. The process culminates with the delivery of a viable system to manage and sustain the new pollinator on a commercial scale. The process is illustrated by the development of three mason bees, Osmia cornifrons (Radoszkowski), O. lignaria Say and O. cornuta (Latreille) as orchard pollinators in Japan, the USA and Europe, respectively.

  7. Mining Waste Classification and Quantity of Non-Metal Minesin Slovenia

    Directory of Open Access Journals (Sweden)

    Ana Burger

    2007-06-01

    Full Text Available Mining is an important human activity that creates wealth and supplies materials for maintaining standard of living and further human development. However, mining has also negative impacts on the environment and society. One of them is the production of mining waste throughout the entire mining cycle, in particular in the mine development and operation /production stage.Due to the EU Directive 2006/21/EC on the management of waste from the extractive industries and its implementation in Member state, estimation on quality and quantity of mining waste from active non-metal mines in Slovenia was carried out. In the selected mines mining and processing was closely examined. With material flow analysis quantity and characteristics of mining waste were defined for several mines of different commodities.Data on mining waste were afterwards generalized in order to get an overall country evaluation on mining waste “production” of non-metal mines.Mining waste as a result of mining and beneficiation processes in non-metal mines of Slovenia is either inert or non-hazardous. Most of the mining waste is used for mine reclamation running simultaneously with the production phase. The largest amounts of mining waste per unit produced are created in dimension stone industry. Since the dimensionstone production is small, the waste amount is negligible. Large quantities of mining waste are produced in crushed stone and, sand and gravel operations, because aggregate production is pretty large with regard to other non-metals production in Slovenia. We can therefore conclude that large quantities of mining waste from non-metal mines, which are mostly used in reclamation and for side products, do not represent danger to the environment.

  8. Fatal Cobalt Toxicity after a Non-Metal-on-Metal Total Hip Arthroplasty

    Directory of Open Access Journals (Sweden)

    Rinne M. Peters

    2017-01-01

    Full Text Available This case illustrates the potential for systemic cobalt toxicity in non-metal-on-metal bearings and its potentially devastating consequences. We present a 71-year-old male with grinding sensations in his right hip following ceramic-on-ceramic total hip arthroplasty (THA. After diagnosing a fractured ceramic liner, the hip prosthesis was revised into a metal-on-polyethylene bearing. At one year postoperatively, X-rays and MARS-MRI showed a fixed reversed hybrid THA, with periarticular densities, flattening of the femoral head component, and a pattern of periarticular metal wear debris and pseudotumor formation. Before revision could take place, the patient was admitted with the clinical picture of systemic cobalt toxicity, supported by excessively high serum cobalt and chromium levels, and ultimately died. At autopsy dilated cardiomyopathy as cause of death was hypothesized. A third body wear reaction between ceramic remnants and the metal femoral head very likely led to excessive metal wear, which contributed systemic cobalt toxicity leading to neurotoxicity and heart failure. This case emphasizes that fractured ceramic-on-ceramic bearings should be revised to ceramic-on-ceramic or ceramic-on-polyethylene bearings, but not to metal-on-polyethylene bearings. We aim to increase awareness among orthopedic surgeons for clinical clues for systemic cobalt intoxication, even when there is no metal-on-metal bearing surface.

  9. Diverse microbiota identified in whole intact nest chambers of the red mason bee Osmia bicornis (Linnaeus 1758.

    Directory of Open Access Journals (Sweden)

    Alexander Keller

    Full Text Available Microbial activity is known to have profound impact on bee ecology and physiology, both by beneficial and pathogenic effects. Most information about such associations is available for colony-building organisms, and especially the honey bee. There, active manipulations through worker bees result in a restricted diversity of microbes present within the colony environment. Microbial diversity in solitary bee nests remains unstudied, although their larvae face a very different situation compared with social bees by growing up in isolated compartments. Here, we assessed the microbiota present in nests and pre-adults of Osmia bicornis, the red mason bee, by culture-independent pyrosequencing. We found high bacterial diversity not comparable with honey bee colonies. We identified a variety of bacteria potentially with positive or negative interactions for bee larvae. However, most of the other diverse bacteria present in the nests seem to originate from environmental sources through incorporated nest building material and stored pollen. This diversity of microorganisms may cause severe larval mortality and require specific physiological or symbiotic adaptations against microbial threats. They may however also profit from such a diverse environment through gain of mutualistic partners. We conclude that further studies of microbiota interaction in solitary bees will improve the understanding of fitness components and populations dynamics.

  10. Diverse microbiota identified in whole intact nest chambers of the red mason bee Osmia bicornis (Linnaeus 1758).

    Science.gov (United States)

    Keller, Alexander; Grimmer, Gudrun; Steffan-Dewenter, Ingolf

    2013-01-01

    Microbial activity is known to have profound impact on bee ecology and physiology, both by beneficial and pathogenic effects. Most information about such associations is available for colony-building organisms, and especially the honey bee. There, active manipulations through worker bees result in a restricted diversity of microbes present within the colony environment. Microbial diversity in solitary bee nests remains unstudied, although their larvae face a very different situation compared with social bees by growing up in isolated compartments. Here, we assessed the microbiota present in nests and pre-adults of Osmia bicornis, the red mason bee, by culture-independent pyrosequencing. We found high bacterial diversity not comparable with honey bee colonies. We identified a variety of bacteria potentially with positive or negative interactions for bee larvae. However, most of the other diverse bacteria present in the nests seem to originate from environmental sources through incorporated nest building material and stored pollen. This diversity of microorganisms may cause severe larval mortality and require specific physiological or symbiotic adaptations against microbial threats. They may however also profit from such a diverse environment through gain of mutualistic partners. We conclude that further studies of microbiota interaction in solitary bees will improve the understanding of fitness components and populations dynamics.

  11. Mass transport in non crystalline metallic alloys

    International Nuclear Information System (INIS)

    Limoge, Y.

    1986-08-01

    In order to improve our understanding of mass transport in non crystalline metallic alloys we have developed indirect studies of diffusion based on electron irradiation and hydrostatic pressure effects upon crystallization. In a first part we present the models of crystallization which are used, then we give the experimental results. The main point is the first experimental measurement of the activation volume for diffusion in a metallic glass: the value of which is roughly one atomic volume. We show also recent quantitative results concerning radiation enhanced diffusion in metallic glasses (FeNi) 8 (PB) 2 and Ni 6 Nb 4 . In a last part we discuss the atomic model needed to explain our results

  12. Effects of exposure to winter oilseed rape grown from thiamethoxam-treated seed on the red mason bee Osmia bicornis.

    Science.gov (United States)

    Ruddle, Natalie; Elston, Charlotte; Klein, Olaf; Hamberger, Anja; Thompson, Helen

    2018-04-01

    There has been increasing interest in the effects of neonicotinoid insecticides on wild bees. In solitary bee species the direct link between each individual female and reproductive success offers the opportunity to evaluate effects on individuals. The present study investigated effects of exposure to winter oilseed rape grown from thiamethoxam-treated seed on reproductive behavior and output of solitary red mason bees (Osmia bicornis) released in 6 pairs of fields over a 2-yr period and confined to tunnels in a single year. After adjustment to the number of females released, there was significantly lower production of cells and cocoons/female in tunnels than in open field conditions. This difference may be because of the lack of alternative forage within the tunnels. Under open field conditions, palynology of the pollen provisions within the nests demonstrated a maximum average of 31% oilseed rape pollen at any site, with Quercus (oak) contributing up to 86% of the pollen. There were no significant effects from exposure to oilseed rape grown from thiamethoxam-treated seed from nest establishment through cell production to emergence under tunnel or field conditions. Environ Toxicol Chem 2018;37:1071-1083. © 2017 SETAC. © 2017 SETAC.

  13. Buckminsterfullerenes: a non-metal system for nitrogen fixation.

    Science.gov (United States)

    Nishibayashi, Yoshiaki; Saito, Makoto; Uemura, Sakae; Takekuma, Shin-Ichi; Takekuma, Hideko; Yoshida, Zen-Ichi

    2004-03-18

    In all nitrogen-fixation processes known so far--including the industrial Haber-Bosch process, biological fixation by nitrogenase enzymes and previously described homogeneous synthetic systems--the direct transformation of the stable, inert dinitrogen molecule (N2) into ammonia (NH3) relies on the powerful redox properties of metals. Here we show that nitrogen fixation can also be achieved by using a non-metallic buckminsterfullerene (C60) molecule, in the form of a water-soluble C60:gamma-cyclodextrin (1:2) complex, and light under nitrogen at atmospheric pressure. This metal-free system efficiently fixes nitrogen under mild conditions by making use of the redox properties of the fullerene derivative.

  14. Non destructive analysis apparatus by eddy currents for non magnetic metallic products

    International Nuclear Information System (INIS)

    Coutanceau-Monteil, N.; Billy, F.; Bernard, A.

    1993-01-01

    The device for non destructive testing of nonmagnetic metallic surfaces uses eddy currents with two independent receptors at different positions around the emitting coil which is fed with current impulses and whose axis is parallel to the surface under study. 4 figs

  15. Lethal and sublethal effects of imidacloprid on Osmia lignaria and clothianidin on Megachile rotundata (Hymenoptera: Megachilidae).

    Science.gov (United States)

    Abbott, V A; Nadeau, J L; Higo, H A; Winston, M L

    2008-06-01

    We examined lethal and sublethal effects of imidacloprid on Osmia lignaria (Cresson) and clothianidin on Megachile rotundata (F.) (Hymenoptera: Megachilidae). We also made progress toward developing reliable methodology for testing pesticides on wild bees for use in pesticide registration by using field and laboratory experiments. Bee larvae were exposed to control, low (3 or 6 ppb), intermediate (30 ppb), or high (300 ppb) doses of either imidacloprid or clothianidin in pollen. Field experiments on both bee species involved injecting the pollen provisions with the corresponding pesticide. Only O. lignaria was used for the laboratory experiments, which entailed both injecting the bee's own pollen provisions and replacing the pollen provision with a preblended pollen mixture containing imidacloprid. Larval development, emergence, weight, and mortality were monitored and analyzed. There were no lethal effects found for either imidacloprid or clothianidin on O. lignaria and M. rotundata. Minor sublethal effects were detected on larval development for O. lignaria, with greater developmental time at the intermediate (30 ppb) and high doses (300 ppb) of imidacloprid. No similar sublethal effects were found with clothianidin on M. rotundata. We were successful in creating methodology for pesticide testing on O. lignaria and M. rotundata; however, these methods can be improved upon to create a more robust test. We also identified several parameters and developmental stages for observing sublethal effects. The detection of sublethal effects demonstrates the importance of testing new pesticides on wild pollinators before registration.

  16. Standard entropy for borides of non-transition metals, rare-earth metals and actinides

    International Nuclear Information System (INIS)

    Borovikova, M.S.

    1986-01-01

    Using as initial data the most reliable values of standard entropy for 10 compounds, the entropies for 40 compounds of non-transition metals, rare-earth metals and actinides have been evaluated by the method of comparative calculation. Taking into account the features of boride structures, two methods, i.e. additive and proportional, have been selected for the entropy calculations. For the range of borides the entropies were calculated from the linear relation of the latter to the number of boron atoms in the boride. For borides of rare-earth metals allowance has been made for magnetic contributions in conformity with the multiplicity of the corresponding ions. Insignificant differences in the electronic contributions to the entropy for borides and metals have been neglected. For dodecaborides only the additive method has been used. This is specified by the most rigid network that provides the same contribution to compound entropy. (orig.)

  17. Non-Destructive Metallic Materials Testing—Recent Research and Future Perspectives

    Directory of Open Access Journals (Sweden)

    João Manuel R. S. Tavares

    2017-10-01

    Full Text Available Non-destructive testing (NDT has become extremely important formicrostructural characterization, mainly by allowing the assessment of metallic material properties in an effective and reasonable manner, in addition to maintaining the integrity of the evaluated metallic samples and applicability in service in many cases [...

  18. Evaluation of Accelerated Ageing Tests for Metallic and Non-Metallic Graffiti Paints Applied to Stone

    Directory of Open Access Journals (Sweden)

    Patricia Sanmartín

    2017-10-01

    Full Text Available Graffiti are increasingly observed on urban and peri-urban buildings and their removal requires a huge financial outlay by local governments and agencies. Graffiti are not usually removed immediately, but rather over the passage of time, viz. months or even years. In this study, which forms part of a wider research project on graffiti removal, different methods (gravimetric analysis, examination of digital images, colour and infrared measurements were used to evaluate the performance of accelerated ageing tests (involving exposure to humidity, freeze-thawing cycles and NaCl and Na2SO4 salts for graffiti painted on stone. Silver (metallic and black (non-metallic graffiti spray paints were applied to two types of igneous rock (granite and rhyolitic ignimbrite and one sedimentary rock (fossiliferous limestone, i.e., biocalcarenite. The metallic and non-metallic graffiti spray paints acted differently on the stone surfaces, both chemically and physically. Older graffiti were found to be more vulnerable to weathering agents. The ageing test with NaCl and particularly Na2SO4, both applied to granite, proved the most severe on the paints, yielding more detrimental and faster artificial ageing of the type of material under study.

  19. levels of essential and non-essential metals in ethiopian ouzo

    African Journals Online (AJOL)

    Preferred Customer

    Key words/phrases: Alcoholic beverage, Ethiopia, essential metal, non-essential metal, ouzo. * Author to whom all correspondence should ... ing the attention of scientists and policy makers as a vital part of food security strategies and ... Canadian Government indicated that it had detected ethyl carbamate, C3H7NO2, which ...

  20. Non-metallic implant for patellar fracture fixation: A systematic review.

    Science.gov (United States)

    Camarda, Lawrence; Morello, Salvatore; Balistreri, Francesco; D'Arienzo, Antonio; D'Arienzo, Michele

    2016-08-01

    Despite good clinical outcome proposals, there has been relatively little published regarding the use of non-metallic implant for patellar fracture fixation. The purpose of the study was to perform a systematic literature review to summarize and evaluate the clinical studies that described techniques for treating patella fractures using non-metallic implants. A comprehensive literature search was systematically performed to evaluate all studies included in the literature until November 2015. The following search terms were used: patellar fracture, patella suture, patella absorbable, patella screw, patella cerclage. Two investigators independently reviewed all abstracts and the selection of these abstracts was then performed based on inclusion and/or exclusion criteria. A total of 9 studies involving 123 patients were included. Patients had a mean age of 33.7 years and were followed up for a mean of 18.9 months. The most common method for fracture fixations included the use of suture material. Good clinical outcomes were reported among all studies. Thirteen patients (10.5%) presented complications, while 4 patients (3.2%) required additional surgery for implant removal. There is a paucity of literature focused on the use of non-metallic implant for patellar fracture fixation. However, this systematic review showed that non-metallic implants are able to deliver good clinical outcomes reducing the rate of surgical complications and re-operation. These results may assist surgeons in choosing to use alternative material such as sutures to incorporate into their routine practice or to consider it, in order to reduce the rate of re-operation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Catalyst of a metal heteropoly acid salt that is insoluble in a polar solvent on a non-metallic porous support and method of making

    Science.gov (United States)

    Wang, Yong [Richland, WA; Peden, Charles H. F. [West Richland, WA; Choi, Saemin [Richland, WA

    2002-10-29

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  2. Phenotypic Variation in Fitness Traits of a Managed Solitary Bee, Osmia ribifloris (Hymenoptera: Megachilidae).

    Science.gov (United States)

    Sampson, B J; Rinehart, T A; Kirker, G T; Stringer, S J; Werle, C T

    2015-12-01

    We investigated fitness in natural populations of a managed solitary bee Osmia ribifloris Cockerell (Hymenoptera: Megachilidae) from sites separated from 400 to 2,700 km. Parental wild bees originated in central Texas (TX), central-northern Utah (UT), and central California (CA). They were then intercrossed and raised inside a mesh enclosure in southern Mississippi (MS). Females from all possible mated pairs of O. ribifloris produced F1 broods with 30-40% female cocoons and outcrossed progeny were 30% heavier. Mitochondrial (COI) genomes of the four populations revealed three distinct clades, a TX-CA clade, a UT clade, and an MS clade, the latter (MS) representing captive progeny of CA and UT bees. Although classified as separate subspecies, TX and CA populations from 30° N to 38° N latitude shared 98% similarity in COI genomes and the greatest brood biomass per nest straw (600- to 700-mg brood). Thus, TX and CA bees show greater adaptation for southern U.S. sites. In contrast, UT-sourced bees were more distantly related to TX and CA bees and also produced ∼50% fewer brood. These results, taken together, confirm that adult O. ribifloris from all trap-nest sites are genetically compatible, but some phenotypic variation exists that could affect this species performance as a commercial blueberry pollinator. Males, their sperm, or perhaps a substance in their sperm helped stabilize our captive bee population by promoting legitimate nesting over nest usurpation. Otherwise, without insemination, 50% fewer females nested (they nested 14 d late) and 20% usurped nests, killing 33-67% of brood in affected nests. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  3. Personal exposure to metal fume, NO2, and O3 among production welders and non-welders.

    Science.gov (United States)

    Schoonover, Todd; Conroy, Lorraine; Lacey, Steven; Plavka, Julie

    2011-01-01

    The objective of this study was to characterize personal exposures to welding-related metals and gases for production welders and non-welders in a large manufacturing facility. Welding fume metals and irritant gases nitrogen dioxide (NO(2)) and ozone (O(3)) were sampled for thirty-eight workers. Personal exposure air samples for welding fume metals were collected on 37 mm open face cassettes and nitrogen dioxide and ozone exposure samples were collected with diffusive passive samplers. Samples were analyzed for metals using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and welding fume metal exposure concentrations were defined as the sum of welding-related metals mass per volume of air sampled. Welding fume metal exposures were highly variable among similar types of welding while NO(2) and O(3) exposure were less variable. Welding fume metal exposures were significantly higher 474 μg/m(3) for welders than non-welders 60 μg/m(3) (p=0.001). Welders were exposed to higher concentrations of NO(2) and O(3) than non-welders but the differences were not statistically significant. Welding fume metal exposure concentrations for welders performing gas metal arc welding (GMAW) and shielded metal arc welding (SMAW) were higher than welders performing gas tungsten arc welding (GTAW). Non-welders experienced exposures similar to GTAW welders despite a curtain wall barrier separating welding and non-welding work areas.

  4. Metal-organic molecular device for non-volatile memory storage

    International Nuclear Information System (INIS)

    Radha, B.; Sagade, Abhay A.; Kulkarni, G. U.

    2014-01-01

    Non-volatile memory devices have been of immense research interest for their use in active memory storage in powered off-state of electronic chips. In literature, various molecules and metal compounds have been investigated in this regard. Molecular memory devices are particularly attractive as they offer the ease of storing multiple memory states in a unique way and also represent ubiquitous choice for miniaturized devices. However, molecules are fragile and thus the device breakdown at nominal voltages during repeated cycles hinders their practical applicability. Here, in this report, a synergetic combination of an organic molecule and an inorganic metal, i.e., a metal-organic complex, namely, palladium hexadecylthiolate is investigated for memory device characteristics. Palladium hexadecylthiolate following partial thermolysis is converted to a molecular nanocomposite of Pd(II), Pd(0), and long chain hydrocarbons, which is shown to exhibit non-volatile memory characteristics with exceptional stability and retention. The devices are all solution-processed and the memory action stems from filament formation across the pre-formed cracks in the nanocomposite film.

  5. A new non-metallic anchorage system for post-tensioning applications using CFRP tendons

    Science.gov (United States)

    Taha, Mahmoud Reda

    The objective of the work described in this thesis is to design, develop and test a new non-metallic anchorage system for post-tensioning applications using CFRP tendons. The use of a non-metallic anchorage system should eliminate corrosion and deterioration concerns in the anchorage zone. The development of a reliable non-metallic anchorage would provide an important contribution to this field of knowledge. The idea of the new anchorage is to hold the tendon through mechanical gripping. The anchorage consists of a barrel with a conical housing and four wedges. The anchorage components are made of ultra high performance concrete (UHPC) specially developed for the anchorage. Sixteen concrete mixtures with different casting and curing regimes were examined to develop four UHPC mixtures with compressive strengths in excess of 200 MPa. The UHPC mixtures showed very dense microstructures with some unique characteristics. To enhance the fracture toughness of the newly developed UHPC, analytical and experimental analyses were performed. Using 3 mm chopped carbon fibres, a significant increase in the fracture toughness of UHPC was achieved. The non-metallic anchorage was developed with the UHPC with enhanced fracture toughness. The barrel required careful wrapping with CFRP sheets to provide the confinement required to utilize the strength and toughness of the UHPC. Thirty-three anchorages were tested under both static and dynamic loading conditions. The non-metallic anchorage showed excellent mechanical performance and fulfilled the different requirements of a post-tensioning anchorage system. The development of the new non-metallic anchorage will widen the inclusion of CFRP tendons in post-tensioned concrete/masonry structures. The new system will offer the opportunity to exploit CFRP tendons effectively creating an innovative generation of corrosion-free, smart structures.

  6. Morphology and Orientation Selection of Non-metallic Inclusions in Electrified Molten Metal

    Science.gov (United States)

    Zhao, Z. C.; Qin, R. S.

    2017-10-01

    The effect of electric current on morphology and orientation selection of non-metallic inclusions in molten metal has been investigated using theoretical modeling and numerical calculation. Two geometric factors, namely the circularity ( fc ) and alignment ratio ( fe ) were introduced to describe the inclusions shape and configuration. Electric current free energy was calculated and the values were used to determine the thermodynamic preference between different microstructures. Electric current promotes the development of inclusion along the current direction by either expatiating directional growth or enhancing directional agglomeration. Reconfiguration of the inclusions to reduce the system electric resistance drives the phenomena. The morphology and orientation selection follow the routine to reduce electric free energy. The numerical results are in agreement with our experimental observations.

  7. The Effect of Different Non-Metallic Inclusions on the Machinability of Steels.

    Science.gov (United States)

    Ånmark, Niclas; Karasev, Andrey; Jönsson, Pär Göran

    2015-02-16

    Considerable research has been conducted over recent decades on the role of non‑metallic inclusions and their link to the machinability of different steels. The present work reviews the mechanisms of steel fractures during different mechanical machining operations and the behavior of various non-metallic inclusions in a cutting zone. More specifically, the effects of composition, size, number and morphology of inclusions on machinability factors (such as cutting tool wear, power consumption, etc .) are discussed and summarized. Finally, some methods for modification of non-metallic inclusions in the liquid steel are considered to obtain a desired balance between mechanical properties and machinability of various steel grades.

  8. Implementation and application of a method for quantifying metals and non-metals in drainage water from soils fertilized with phosphogypsum

    International Nuclear Information System (INIS)

    Silva, Camila Goncalves Bof

    2010-01-01

    Phosphogypsum is a waste generated in phosphoric acid production by the 'wet process'. The immense amount of phosphogypsum yearly produced (around 150 million tons) is receiving attention from environmental protection agencies all over the word, given its potential of contamination. In Brazil, this material has been used for many decades, especially for agricultural application on cropland. Although the phosphogypsum is mainly composed of dehydrated calcium sulfate, it can have high levels of impurities, such as metals (Cd, Cr, Cu, Pb), non-metals (As and Se) and radioactive elements from natural series of 232 Th and 238 U. Therefore, its continuous application as an agricultural agent can result not just in soil contamination, but also contamination of the surface and groundwater due to the runoff and infiltration process. The concern associated with the contamination of aquatic environments increases; when water is used for human consumption, requiring progressive adoption of more restrictive limits. However, some of the conventional analytical techniques used to determine the maximum limit of contaminants in water have detection limits above the maximum limits established by the environmental legislation. This work was aimed to evaluate the mobility of metals and non-metals in soils and, consequently, the contamination of drainage water through greenhouse-scale leaching and transport of toxic elements from soils fertilized with phosphogypsum. Hence, methods were studied and implemented for determination of metals (Cd, Cr, Cu and Pb) using Furnace Graphite Atomic Absorption Spectrometry (GF AAS), as well as for non-metals (As and Se) using Inductively Coupled Plasma Mass Spectrometry (lCP-MS). Effects of different chemical modifiers on the determination of Cd, Cr, Cu and Pb concentration by GF AAS were also investigated. In general, it was observed that the metal and non-metal concentration were below than the actual detection limit of the equipment for all

  9. Graphene layer encapsulated metal nanoparticles as a new type of non-precious metal catalysts for oxygen reduction

    DEFF Research Database (Denmark)

    Hu, Yang; Zhong, Lijie; Jensen, Jens Oluf

    2016-01-01

    Cheap and efficient non-precious metal catalysts for oxygen reduction have been a focus of research in the field of low-temperature fuel cells. This review is devoted to a brief summary of the recent work on a new type of catalysts, i.e., the graphene layer encapsulated metal nanoparticles....... The discussion is focused on the synthesis, structure, mechanism, performance, and further research....

  10. Landscape distribution of food and nesting sites affect larval diet and nest size, but not abundance of Osmia bicornis.

    Science.gov (United States)

    Coudrain, Valérie; Rittiner, Sarah; Herzog, Felix; Tinner, Willy; Entling, Martin H

    2016-10-01

    Habitat fragmentation is a major threat for beneficial organisms and the ecosystem services they provide. Multiple-habitat users such as wild bees depend on both nesting and foraging habitat. Thus, they may be affected by the fragmentation of at least two habitat types. We investigated the effects of landscape-scale amount of and patch isolation from both nesting habitat (woody plants) and foraging habitat (specific pollen sources) on the abundance and diet of Osmia bicornis L. Trap-nests of O. bicornis were studied in 30 agricultural landscapes of the Swiss Plateau. Nesting and foraging habitats were mapped in a radius of 500 m around the sites. Pollen composition of larval diet changed as isolation to the main pollen source, Ranunculus, increased, suggesting that O. bicornis adapted its foraging strategy in function of the nest proximity to main pollen sources. Abundance of O. bicornis was neither related to isolation or amount of nesting habitat nor to isolation or abundance of food plants. Surprisingly, nests of O. bicornis contained fewer larvae in sites at forest edge compared to isolated sites, possibly due to higher parasitism risk. This study indicates that O. bicornis can nest in a variety of situations by compensating scarcity of its main larval food by exploiting alternative food sources. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  11. Difference in x-ray scattering between metallic and non-metallic liquids due to conduction electrons

    International Nuclear Information System (INIS)

    Chihara, Junzo

    1987-01-01

    X-ray scattered intensity from a liquid metal as an electron-ion mixture is described using the structure factors, which are exactly expressed in terms of the static and dynamic direct correlation functions. This intensity for a metal is shown to differ from the usual scattered intensity from a non-metal in two points: the atomic form factor and the incoherent (Compton) scattering factor. It is shown that the valence electron form factor, which constitutes the atomic form factor in a liquid metal, leads to a determination of the electron-electron and electron-ion structure factors by combining the ionic structure factor. It is also shown that a part of the electron structure factor, which appears as the incoherent x-ray scattering, is usually approximated as the electron structure factor of the jellium model in the case of a simple metal. As a by-product, the x-ray scattered intensity from a crystalline metal and the inelastic scattering from a liquid metal are given by taking account of the presence of conduction electrons. In this way, we clarify some confusion which appeared in the proposal by Egelstaff et al for extracting the electron-electron correlation function in a metal from x-ray and neutron scattering experiments. A procedure to extract the electron-electron and electron-ion structure factors in a liquid metal is proposed on the basis of formula for scattered intensity derived here. (author)

  12. Progeny Density and Nest Availability Affect Parasitism Risk and Reproduction in a Solitary Bee (Osmia lignaria) (Hymenoptera: Megachilidae).

    Science.gov (United States)

    Farzan, Shahla

    2018-02-08

    Gregarious nesting behavior occurs in a broad diversity of solitary bees and wasps. Despite the prevalence of aggregative nesting, the underlying drivers and fitness consequences of this behavior remain unclear. I investigated the effect of two key characteristics of nesting aggregations (cavity availability and progeny density) on reproduction and brood parasitism rates in the blue orchard bee (Osmia lignaria Say) (Hymenoptera: Megachilidae), a solitary species that nests gregariously and appears to be attracted to nesting conspecifics. To do so, I experimentally manipulated nest cavity availability in a region of northern Utah with naturally occurring populations of O. lignaria. Nest cavity availability had a negative effect on cuckoo bee (Stelis montana Cresson) (Hymenoptera: Megachilidae) parasitism rates, with lower parasitism rates occurring in nest blocks with more available cavities. For both S. montana and the cleptoparasitic blister beetle Tricrania stansburyi Haldeman (Coleoptera: Meloidae), brood parasitism rate was negatively correlated with log-transformed O. lignaria progeny density. Finally, cavity availability had a positive effect on male O. lignaria body weight, with the heaviest male progeny produced in nest blocks with the most cavities. These results suggest that cavity availability and progeny density can have substantial effects on brood parasitism risk and reproduction in this solitary bee species. © The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Implementation of a Non-Metallic Barrier in an Electric Motor

    Science.gov (United States)

    M?Sadoques, George; Carra, Michael; Beringer, Woody

    2012-01-01

    Electric motors that run in pure oxygen must be sealed, or "canned," for safety reasons to prevent the oxygen from entering into the electrical portion of the motor. The current canning process involves designing a metallic barrier around the rotor to provide the separation. This metallic barrier reduces the motor efficiency as speed is increased. In higher-speed electric motors, efficiency is greatly improved if a very thin, nonmetallic barrier can be utilized. The barrier thickness needs to be approximately 0.025-in. (.0.6-mm) thick and can be made of a brittle material such as glass. The motors, however, designed for space applications are typically subject to high-vibration environments. A fragile, non-metallic barrier can be utilized in a motor assembly if held in place by a set of standard rubber O-ring seals. The O-rings provide the necessary sealing to keep oxygen away from the electrical portion of the motor and also isolate the fragile barrier from the harsh motor vibration environment. The compliance of the rubber O-rings gently constrains the fragile barrier and isolates it from the harsh external motor environment. The use of a non-metallic barrier greatly improves motor performance, especially at higher speeds, while isolating the electronics from the working fluid with an inert liner.

  14. Non-noble metal fuel cell catalysts

    CERN Document Server

    Chen, Zhongwei; Zhang, Jiujun

    2014-01-01

    Written and edited by a group of top scientists and engineers in the field of fuel cell catalysts from both industry and academia, this book provides a complete overview of this hot topic. It covers the synthesis, characterization, activity validation and modeling of different non-noble metal and metalfree electrocatalysts for the reduction of oxygen, as well as their integration into acid or alkaline polymer exchange membrane (PEM) fuel cells and their performance validation, while also discussing those factors that will drive fuel cell commercialization. With its well-structured app

  15. Non-LTE line-blanketed model atmospheres of hot stars. 2: Hot, metal-rich white dwarfs

    Science.gov (United States)

    Lanz, T.; Hubeny, I.

    1995-01-01

    We present several model atmospheres for a typical hot metal-rich DA white dwarf, T(sub eff) = 60,000 K, log g = 7.5. We consider pure hydrogen models, as well as models with various abundances of two typical 'trace' elements-carbon and iron. We calculte a number of Local Thermodynamic Equilibrium (LTE) and non-LTE models, taking into account the effect of numerous lines of these elements on the atmospheric structure. We demostrate that while the non-LTE effects are notvery significant for pure hydrogen models, except for describing correctly the central emission in H-alpha they are essential for predicting correctly the ionization balance of metals, such as carbon and iron. Previously reported discrepancies in LTE abundances determinations using C III and C IV lines are easily explained by non-LTE effects. We show that if the iron abundance is larger than 10(exp -5), the iron line opacity has to be considered not only for the spectrum synthesis, but also in the model construction itself. For such metal abundances, non-LTE metal line-blanketed models are needed for detailed abundance studies of hot, metal-rich white dwarfs. We also discuss the predicted Extreme Ultraviolet (EUV) spectrum and show that it is very sensitive to metal abundances, as well as to non-LTE effects.

  16. Clinical application of removable partial dentures using thermoplastic resin-part I: definition and indication of non-metal clasp dentures.

    Science.gov (United States)

    Fueki, Kenji; Ohkubo, Chikahiro; Yatabe, Masaru; Arakawa, Ichiro; Arita, Masahiro; Ino, Satoshi; Kanamori, Toshikazu; Kawai, Yasuhiko; Kawara, Misao; Komiyama, Osamu; Suzuki, Tetsuya; Nagata, Kazuhiro; Hosoki, Maki; Masumi, Shin-Ichi; Yamauchi, Mutsuo; Aita, Hideki; Ono, Takahiro; Kondo, Hisatomo; Tamaki, Katsushi; Matsuka, Yoshizo; Tsukasaki, Hiroaki; Fujisawa, Masanori; Baba, Kazuyoshi; Koyano, Kiyoshi; Yatani, Hirofumi

    2014-01-01

    This position paper proposes a definition and naming standard for removable partial dentures (RPDs) using thermoplastic resin, and presents a guideline for clinical application. A panel of 14 experts having broad experience with clinical application of RPDs using thermoplastic resin was selected from members of the Japan Prosthodontic Society. At a meeting of the panel, "non-metal clasp denture" was referred as the generic name of RPDs with retentive elements (resin clasps) made of thermoplastic resin. The panel classified non-metal clasp dentures into two types: one with a flexible structure that lacks a metal framework and the other having a rigid structure that includes a metal framework. According to current prosthetic principles, flexible non-metal clasp dentures are not recommended as definitive dentures, except for limited cases such as patients with a metal allergy. Rigid non-metal clasp dentures are recommended in cases where patients will not accept metal clasps for esthetic reasons. Non-metal clasp dentures should follow the same design principles as conventional RPDs using metal clasps. Copyright © 2013 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  17. The role of the excited impurity levels on the metal-non metal transition

    International Nuclear Information System (INIS)

    Silva, M.S.F. da; Makler, S.S.; Anda, E.V.

    1983-01-01

    The electronic density of states for the impurity bands in doped semiconductors is calculated using the Green function method. The system is described by a Hamiltonian with local Coulomb interactions represented in a tight binding basis composed by two orbitals per site. The electronic correlation is treated in the CPA approximation. To calculate the configurational average for this structural disordered system a diagrammatic scheme is developed. It represents an extension of the Matsubara and Toyozawa method for the case of two hybridized bands in the presence of electronic correlation. The excited levels show to play a crutial role in the undestanding of the metal-non metal transition. This work represents an improvement of a previous result. The particular case of Si : P is analyzed. (author) [pt

  18. The role of the excited impurity levels on the metal-non metal transition

    International Nuclear Information System (INIS)

    Silva, M.S.F. da; Makler, S.S.; Anda, E.V.

    1983-01-01

    The electronic density of states for the impurity bands in doped semiconductors is calculated using the Green function method. The system is described by a Hamiltonian with local Coulomb interactions represented in a tight binding basis composed by two orbitals per site. The electronic correlation is treated in the CPA approximation. To calculate the configurational average for this structural disordered system a diagrammatic scheme is developed. It represents an extension of the Matsubara and Toyozawa method for the case of two hybridized bands in the presence of electronic correlation. The excited levels shown to play a crutial role in the understanding of the metal-non metal transition. This work represents an improvement of a previous result. The particular case of Si:P is analyzed. (Author) [pt

  19. Divergence in male sexual odor signal and genetics across populations of the red mason bee, Osmia bicornis, in Europe.

    Science.gov (United States)

    Conrad, Taina; Paxton, Robert J; Assum, Günter; Ayasse, Manfred

    2018-01-01

    In some insect species, females may base their choice for a suitable mate on male odor. In the red mason bee, Osmia bicornis, female choice is based on a male's odor bouquet as well as its thorax vibrations, and its relatedness to the female, a putative form of optimal outbreeding. Interestingly, O. bicornis can be found as two distinct color morphs in Europe, which are thought to represent subspecies and between which we hypothesize that female discrimination may be particularly marked. Here we investigated (i) if these two colors morphs do indeed represent distinct, reproductively differentiated populations, (ii) how odor bouquets of male O. bicornis vary within and between populations, and (iii) whether variation in male odor correlates with genetic distance, which might represent a cue by which females could optimally outbreed. Using GC and GC-MS analysis of male odors and microsatellite analysis of males and females from 9 populations, we show that, in Denmark, an area of subspecies sympatry, the two color morphs at any one site do not differ, either in odor bouquet or in population genetic differentiation. Yet populations across Europe are distinct in their odor profile as well as being genetically differentiated. Odor differences do not, however, mirror genetic differentiation between populations. We hypothesize that populations from Germany, England and Denmark may be under sexual selection through female choice for local odor profiles, which are not related to color morph though which could ultimately lead to population divergence and speciation.

  20. Damage parameters for non-metals in a high energy neutron environment

    International Nuclear Information System (INIS)

    Dell, G.F.; Berry, H.C.; Lazareth, O.W.; Goland, A.N.

    1980-01-01

    Simulation of radiation damage induced in monatomic and binary non-metals by FMIT and fusion neutrons is described. Damage produced by elastic scattering of recoil atoms and by ionization-assisted processes has been evaluated using the damage program DON. Displacement damage from gamma rays has been evaluated by using the technique of Oen and Holmes. A comparison of damage for an anticipated FMIT radiation environment generated by a coupled n-γ transport calculations and a fusion spectrum is made. Gamma-induced displacement damage is sufficiently small that it is dominated by neutron-induced recoil processes. Ionization-assisted displacements may be important depending upon the ionization cross section of the particular non-metal under consideration

  1. A method for the separation of non-ferrous metal containing particles from a particle stream

    NARCIS (Netherlands)

    Van der Weijden, R.D.; Rem, P.C.

    2004-01-01

    The invention relates to a method for the recovery of non-ferrous metal-comprising particles from a particle stream. According to the invention, the particle stream is put onto a conveyor belt in the form of a monolayer such that with the aid of a liquid, at least the non-ferrous metal comprising

  2. G.I.S. Surveillance of Chronic Non-occupational Exposure to Heavy Metals as Oncogenic Risk

    Directory of Open Access Journals (Sweden)

    Mariana Vlad

    2016-02-01

    Full Text Available Introduction: The potential oncogenic effect of some heavy metals in people occupationally and non-occupationally exposed to such heavy metals is already well demonstrated. This study seeks to clarify the potential role of these heavy metals in the living environment, in this case in non-occupational multifactorial aetiology of malignancies in the inhabitants of areas with increased prevalent environmental levels of heavy metals. Methods: Using a multidisciplinary approach throughout a complex epidemiological study, we investigated the potential oncogenic role of non-occupational environmental exposure to some heavy metals [chrome (Cr, nickel (Ni, copper (Cu, zinc (Zn, cadmium (Cd, lead (Pb and arsenic (As—in soil, drinking water, and food, as significant components of the environment] in populations living in areas with different environmental levels (high vs. low of the above-mentioned heavy metals. The exposures were evaluated by identifying the exposed populations, the critical elements of the ecosystems, and as according to the means of identifying the types of exposure. The results were interpreted both epidemiologically (causal inference, statistical significance, mathematical modelling and by using a GIS approach, which enabled indirect surveillance of oncogenic risks in each population. Results: The exposure to the investigated heavy metals provides significant risk factors of cancer in exposed populations, in both urban and rural areas [χ² test (p < 0.05]. The GIS approach enables indirect surveillance of oncogenic risk in populations. Conclusions: The role of non-occupational environmental exposure to some heavy metals in daily life is among the more significant oncogenic risk factors in exposed populations. The statistically significant associations between environmental exposure to such heavy metals and frequency of neoplasia in exposed populations become obvious when demonstrated on maps using the GIS system. Environmental

  3. The use of non-living biomass to recover heavy metals from aqueous solutions

    International Nuclear Information System (INIS)

    Darnall, D.W.

    1993-01-01

    The use of microorganisms in the treatment of hazardous wastes containing both inorganic and organic pollutants is becoming more and more attractive. There have been two approaches to the use of microorganisms in waste treatment. One involves the use of living organisms and the other involves the use of non-viable biomass derived from microorganisms. While the use of living organisms is often successful in the treatment of toxic organic contaminants, living organisms have not been found to be useful in the treatment of solutions containing heavy metal ions. This is because once the metal ion concentration becomes too high or sufficient metal ions are adsorbed by the microorganism, metabolism is disrupted causing the organism to die. This disadvantage is not encountered if non-living organisms or biological materials derived from microorganisms are used to adsorb metal ions from solution. Instead the biomass is treated as another reagent, a surrogate ion exchange resin. The binding, or biosorption, of metal ions by the biomass results from coordination of the metal ions to various functional groups in or on the cell. These chelating groups, contributed by the cell biopolymers, include carboxyl, imidazole, sulfhydryl, amino, phosphate, sulfate, thioether, phenol, carbonyl, amide, and hydroxyl moieties (Darnall et al.)

  4. Separation of the metallic and non-metallic fraction from printed circuit boards employing green technology

    Energy Technology Data Exchange (ETDEWEB)

    Estrada-Ruiz, R.H., E-mail: rhestrada@itsaltillo.edu.mx; Flores-Campos, R., E-mail: rcampos@itsaltillo.edu.mx; Gámez-Altamirano, H.A., E-mail: hgamez@itsaltillo.edu.mx; Velarde-Sánchez, E.J., E-mail: ejvelarde@itsaltillo.edu.mx

    2016-07-05

    Highlights: • Small sizes of particles are required in order to separate the different fractions. • Inverse flotation process is an efficient green technology to separate fractions. • Superficial air velocity is the main variable in the inverse flotation process. • Inverse flotation is a green process because the pulṕs pH is 7.0 during the test. - Abstract: The generation of electrical and electronic waste is increasing day by day; recycling is attractive because of the metallic fraction containing these. Nevertheless, conventional techniques are highly polluting. The comminution of the printed circuit boards followed by an inverse flotation process is a clean technique that allows one to separate the metallic fraction from the non-metallic fraction. It was found that particle size and superficial air velocity are the main variables in the separation of the different fractions. In this way an efficient separation is achieved by avoiding the environmental contamination coupled with the possible utilization of the different fractions obtained.

  5. Atomic structure of non-stoichiometric transition metal carbides

    International Nuclear Information System (INIS)

    Moisy-Maurice, Virginie.

    1981-10-01

    Different kinds of experimental studies of the atomic arrangement in non-stoichiometric transition metal carbides are proposed: the ordering of carbon vacancies and the atomic static displacements are the main subjects studied. Powder neutron diffraction on TiCsub(1-x) allowed us to determine the order-disorder transition critical temperature -Tsub(c) approximately 770 0 C- in the TiCsub(0.52-0.67) range, and to analyze at 300 K the crystal structure of long-range ordered samples. A neutron diffuse scattering quantitative study at 300 K of short-range order in TiCsub(0.76), TiCsub(0.79) and NbCsub(0.73) single crystals is presented: as in Ti 2 Csub(1+x) and Nb 6 C 5 superstructures, vacancies avoid to be on each side of a metal atom. Besides, the mean-square carbon atom displacements from their sites are small, whereas metal atoms move radially about 0.03 A away from vacancies. These results are in qualitative agreement with EXAFS measurements at titanium-K edge of TiCsub(1-x). An interpretation of ordering in term of short-range interaction pair potentials between vacancies is proposed [fr

  6. The Measurement of Hardness and Elastic Modulus of non-Metallic Inclusions in Steely Welding Joints

    Directory of Open Access Journals (Sweden)

    Ignatova Anna

    2015-08-01

    Full Text Available Trunk pipelines work under a cyclic dynamical mechanical load because when oil or gas is pumped, the pressure constantly changes - pulsates. Therefore, the fatigue phenomenon is a common reason of accidents. The fatigue phenomenon more often happens in the zone of non-metallic inclusions concentration. To know how the characteristics of nonmetallic inclusions influence the probability of an accident the most modern research methods should be used. It is determined with the help of the modern research methods that the accident rate of welded joints of pipelines is mostly influenced by their morphological type, composition and size of nonmetallic inclusions, this effect is more important than the common level of pollution by non-metallic inclusions. The article presents the results of the investigations of welded joints, obtained after the use of different common welding materials. We used the methods, described in the state standards: scanning electronic microscopy, spectral microprobe analysis and nano-indentation. We found out that non-metallic inclusions act like stress concentrators because they shrink, forming a blank space between metal and nonmetallic inclusions; it strengthens the differential properties on this boundary. Nonmetallic inclusion is not fixed, it can move. The data that we have received mean that during welded joints’ contamination (with non-metallic inclusions monitoring process, more attention should be paid to the content of definite inclusions, but not to total contamination.

  7. Influence of Nest Box Color and Release Sites on Osmia lignaria (Hymenoptera: Megachilidae) Reproductive Success in a Commercial Almond Orchard.

    Science.gov (United States)

    Artz, Derek R; Allan, Matthew J; Wardell, Gordon I; Pitts-Singer, Theresa L

    2014-12-01

    Intensively managed, commercial orchards offer resources for managed solitary bees within agricultural landscapes and provide a means to study bee dispersal patterns, spatial movement, nest establishment, and reproduction. In 2012, we studied the impact of 1) the color of nest boxes covaried with four nest box density treatments and 2) the number of bee release sites covaried with two nest box density treatments on the reproductive success of Osmia lignaria Say in a California almond orchard pollinated by a mixture of O. lignaria and Apis mellifera L. Nest box color influenced the number of nests, total cells, and cells with male and female brood. More nests and cells were produced in light blue nest boxes than in orange or yellow nest boxes. The covariate nest box density also had a significant effect on brood production. The number of release sites did not affect O. lignaria nesting and reproduction, but the number of cavities in nest boxes influenced reproduction. Overall, the color of nest boxes and their distribution, but not the number of release sites, can greatly affect O. lignaria nest establishment and reproductive success in a commercial almond orchard. The ability to locate nesting sites in a homogenous, large orchard landscape may also be facilitated by the higher frequency of nest boxes with low numbers of cavities, and by the ability to detect certain nest box colors that best contrast with the blooming trees. © 2014 Entomological Society of America.

  8. Aging and body size in solitary bees

    Science.gov (United States)

    Solitary bees are important pollinators of crops and non-domestic plants. Osmia lignaria is a native, commercially-reared solitary bee used to maximize pollination in orchard crops. In solitary bees, adult body size is extremely variable depending on the nutritional resources available to the develo...

  9. Nuclide, metal and non metal levels in percolated water from soils fertilized with phosphogypsum

    International Nuclear Information System (INIS)

    Silva, Camilla Bof; Knupp, Eliana Aparecida Nonato; Palmieri, Helena E.L.; Jacomino, Vanusa Maria Feliciano; Taddei, Maria Helena; Ciqueira, Maria Celia

    2009-01-01

    Systematic generation of residues is more and more worrying in today.s world; adequate storage and reutilization are of great importance. Since generation of residues has become impossible to avoid, the possibility of reuse must be studied and researched. An example of these residues is phosphogypsum, which is generated in phosphoric acid production at the rate of around 4.8 tons for each ton of phosphoric acid produced. Many studies seek to reuse phosphogypsum in agriculture as a source of calcium and sulfur, potassium or aluminum, especially in soils from Brazil's cerrado regions. Though phosphogypsum is mainly composed of dehydrated calcium sulfate, it can have high levels of heavy metals, non metals (As and Se), fluorides and natural radionuclides. Thus, its uncontrolled use as a soil conditioner can lead to contamination of underground water. (author)

  10. Toenail as Non-invasive Biomarker in Metal Toxicity Measurement of Welding Fumes Exposure - A Review

    Science.gov (United States)

    Bakri, S. F. Z.; Hariri, A.; Ma'arop, N. F.; Hussin, N. S. A. W.

    2017-01-01

    Workers are exposed to a variety of heavy metal pollutants that are released into the environment as a consequence of workplace activities. This chemical pollutants are incorporated into the human by varies of routes entry and can then be stored and distributed in different tissues, consequently have a potential to lead an adverse health effects and/or diseases. As to minimize the impact, a control measures should be taken to avoid these effects and human biological marker is a very effective tool in the assessment of occupational exposure and potential related risk as the results is normally accurate and reproducible. Toenail is the ideal matrix for most common heavy metals due to its reliability and practicality compared to other biological samples as well as it is a non-invasive and this appears as a huge advantage of toenail as a biomarker. This paper reviews studies that measure the heavy metals concentration in toenail as non-invasive matrix which later may adapt in the investigation of metal fume emitted from welding process. The development of new methodology and modern analytical techniques has allowed the use of toenail as non-invasive approach. The presence of a heavy metal in this matrix reflects an exposure but the correlations between heavy metal levels in the toenail must be established to ensure that these levels are related to the total body burden. These findings suggest that further studies on interactions of these heavy metals in metal fumes utilizing toenail biomarker endpoints are highly warranted especially among welders.

  11. Thermal spin filtering effect and giant magnetoresistance of half-metallic graphene nanoribbon co-doped with non-metallic Nitrogen and Boron

    Science.gov (United States)

    Huang, Hai; Zheng, Anmin; Gao, Guoying; Yao, Kailun

    2018-03-01

    Ab initio calculations based on density functional theory and non-equilibrium Green's function are performed to investigate the thermal spin transport properties of single-hydrogen-saturated zigzag graphene nanoribbon co-doped with non-metallic Nitrogen and Boron in parallel and anti-parallel spin configurations. The results show that the doped graphene nanoribbon is a full half-metal. The two-probe system based on the doped graphene nanoribbon exhibits various excellent spin transport properties, including the spin-filtering effect, the spin Seebeck effect, the single-spin negative differential thermal resistance effect and the sign-reversible giant magnetoresistance feature. Excellently, the spin-filtering efficiency can reach nearly 100% in the parallel configuration and the magnetoresistance ratio can be up to -1.5 × 1010% by modulating the electrode temperature and temperature gradient. Our findings indicate that the metal-free doped graphene nanoribbon would be a promising candidate for spin caloritronic applications.

  12. Divergence in male sexual odor signal and genetics across populations of the red mason bee, Osmia bicornis, in Europe.

    Directory of Open Access Journals (Sweden)

    Taina Conrad

    Full Text Available In some insect species, females may base their choice for a suitable mate on male odor. In the red mason bee, Osmia bicornis, female choice is based on a male's odor bouquet as well as its thorax vibrations, and its relatedness to the female, a putative form of optimal outbreeding. Interestingly, O. bicornis can be found as two distinct color morphs in Europe, which are thought to represent subspecies and between which we hypothesize that female discrimination may be particularly marked. Here we investigated (i if these two colors morphs do indeed represent distinct, reproductively differentiated populations, (ii how odor bouquets of male O. bicornis vary within and between populations, and (iii whether variation in male odor correlates with genetic distance, which might represent a cue by which females could optimally outbreed. Using GC and GC-MS analysis of male odors and microsatellite analysis of males and females from 9 populations, we show that, in Denmark, an area of subspecies sympatry, the two color morphs at any one site do not differ, either in odor bouquet or in population genetic differentiation. Yet populations across Europe are distinct in their odor profile as well as being genetically differentiated. Odor differences do not, however, mirror genetic differentiation between populations. We hypothesize that populations from Germany, England and Denmark may be under sexual selection through female choice for local odor profiles, which are not related to color morph though which could ultimately lead to population divergence and speciation.

  13. Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents

    Directory of Open Access Journals (Sweden)

    Lucas Anjos Souza

    2013-08-01

    Full Text Available Soil contamination by heavy metals is a challenge faced by many countries, and engineering technologies to solve this problem are expensive and can cause negative impacts on the environment. One way to minimise the levels of heavy metals in the soil is to use plants that can absorb and accumulate heavy metals into harvestable parts, a process called phytoextraction. Typical plant species used in research involving phytoextraction are heavy metal hyperaccumulators, but plants from this group are not good biomass producers and grow more slowly than most species; thus, they have an important role in helping scientists understand the mechanisms involved in accumulating high amounts of heavy metals without developing symptoms or dying. However, because of their slow growth, it is not practical to use these species for phytoextraction. An alternative approach is to use non-hyperaccumulator plants assisted by chelating agents, which may improve the ability of plants to accumulate more heavy metals than they would naturally. Chelating agents can be synthetic or organic acids, and the advantages and disadvantages of their use in improving the phytoextraction potential of non-hyperaccumulator plants are discussed in this article. We hope to draw attention to ways to improve the phytoextraction potential of non-hyperaccumulator plants that produce a large amount of biomass and to stimulate more research on phytoextraction-inducing substances.

  14. Corrosion behaviour of metallic and non-metallic materials in various media in the Anhydrite and Gypsum Mine Felsenau/AG

    International Nuclear Information System (INIS)

    Laske, D.; Wiedemann, K.H.

    1983-10-01

    The final underground disposal of radioactive wastes necessitates container materials with a good long-term resistance against corrosion from both external agents and the solidification matrix inside. For low- and medium-level active waste, repositories in anhydrite sites, among others, are under consideration. Sheet and plate samples from 14 metallic and 8 non-metallic materials have been tested for 5 years in a tunnel in the Anhydrite and Gypsum Mine Felsenau/AG for their corrosion resistance in the tunnel atmosphere, anhydrite powder, gypsum powder, gypsum, and cement. From the metallic materials tested, only chromium-nickel steel is corrosion resistant to all the media present. Zinc plated and tin plated iron sheet as well as aluminium and aluminium alloys are corrosion resistant only in the atmosphere of the tunnel, and lead plated iron sheet is resistant also in cement. Aluminium is dissolved in cement. Uncovered iron sheet undergoes severe corrosion. The non-metallic coatings tested (lacquer, stove lacquer, or synthetic resins) partially flake off already after one year's testing and are therefore not appropriate for iron sheet corrosion protection. No influence of the different media has been observed after 5 years on the 8 plastic materials tested (6 without, and 2 with glass fiber reinforcement). (author)

  15. The non-pair forces and phonon dispersion in heavy alkali metals

    International Nuclear Information System (INIS)

    Aradhana, Km.; Rathore, R.P.S.

    1990-01-01

    Two types of non-pair forces, one from the Born-Mayer and the other from the Morse potential, are derived to discuss the response of electrons in heavy alkali metals, i.e., rubidium and cesium. The potentials are added to the two-body potential of Morse to account also for the ion-ion interactions. The potentials so obtained are employed to predict the phonon dispersion relations in bcc metals, which are also compared with recent precise neutron scattering data. (author). 1 fig, 3 tabs., 24 refs

  16. Soil effects on GPR detection of buried non-metallic mines

    NARCIS (Netherlands)

    Hendrickx, J.M.H.; Hong, S.H.; Miller, T.; Borchers, B.; Rhebergen, J.B.

    2003-01-01

    Landmines are a major problem in many areas of the world. In spite of the fact that many different types of landmine sensors have been developed, the detection of non-metallic landmines remains very difficult. The objective of this contribution is to synthesize our work related to the effects of

  17. Depositions of heavy metals and radionuclides in the region of the plant for non-ferrous metals (Plovdiv) studied by the methods of mass- and gamma- spectrometry

    International Nuclear Information System (INIS)

    Mitrikov, M.; Hristov, Hr.; Antonov, A.

    2001-01-01

    Soil samples and vegetation from the region of KCM-S.A. (Plant for non-ferrous metals) -Plovdiv have been studied by means of a conventional γ-spectroscopy and a mass-spectrometry analysis. The concentrations of several decades of elements, including heavy metals and radionuclides have been determined at low detection limits. Conclusions about the influence of atmospheric emissions connected with the production of non-ferrous metal on the present environmental state of the region have been drown from the obtained results. (author)

  18. Isoelectric focusing of small non-covalent metal species from plants.

    Science.gov (United States)

    Köster, Jessica; Hayen, Heiko; von Wirén, Nicolaus; Weber, Günther

    2011-03-01

    IEF is known as a powerful electrophoretic separation technique for amphoteric molecules, in particular for proteins. The objective of the present work is to prove the suitability of IEF also for the separation of small, non-covalent metal species. Investigations are performed with copper-glutathione complexes, with the synthetic ligand ethylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid (EDDHA) and respective metal complexes (Fe, Ga, Al, Ni, Zn), and with the phytosiderophore 2'-deoxymugineic acid (DMA) and its ferric complex. It is shown that ethylenediamine-N,N'-bis(o-hydroxyphenyl)acetic acid and DMA species are stable during preparative scale IEF, whereas copper-glutathione dissociates considerably. It is also shown that preparative scale IEF can be applied successfully to isolate ferric DMA from real plant samples, and that multidimensional separations are possible by combining preparative scale IEF with subsequent HPLC-MS analysis. Focusing of free ligands and respective metal complexes with di- and trivalent metals results in different pIs, but CIEF is usually needed for a reliable estimation of pI values. Limitations of the proposed methods (preparative IEF and CIEF) and consequences of the results with respect to metal speciation in plants are discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Mechanism of radiation and thermal decomposition of sulphide non-ferrous metals

    International Nuclear Information System (INIS)

    Mazhrenova, N.P.

    1998-01-01

    This paper deals with the non-ferrous metals sulfides in term of their radiative sensitivity, directed chances of their physical-chemical, and hence technological properties by radiation influence both on sulfide materials and on the processes with their participation. (author)

  20. Spontaneous recombination volumes of Frenkel defects in neutron-irradiated non-fcc metals

    International Nuclear Information System (INIS)

    Nakagawa, M.; Mansel, W.; Boening, K.; Rosner, P.; Vogl, G.

    1979-01-01

    Production and production-rate curves for the non-fcc metals Fe, Mo, Ta, W, Zr, and Sn are obtained by electrical-resistivity measurements taken at 4.6 K during reactor neutron irradiations. The saturation concentration of Frenkel defects, c/sub s/, and the recombination volume v/sub o/ are evaluated. A parabolic relation between the spontaneous recombination volume v 0 and the compressibility kappa for a series of bcc metals is found

  1. Non-equilibrium thermionic electron emission for metals at high temperatures

    Science.gov (United States)

    Domenech-Garret, J. L.; Tierno, S. P.; Conde, L.

    2015-08-01

    Stationary thermionic electron emission currents from heated metals are compared against an analytical expression derived using a non-equilibrium quantum kappa energy distribution for the electrons. The latter depends on the temperature decreasing parameter κ ( T ) , which decreases with increasing temperature and can be estimated from raw experimental data and characterizes the departure of the electron energy spectrum from equilibrium Fermi-Dirac statistics. The calculations accurately predict the measured thermionic emission currents for both high and moderate temperature ranges. The Richardson-Dushman law governs electron emission for large values of kappa or equivalently, moderate metal temperatures. The high energy tail in the electron energy distribution function that develops at higher temperatures or lower kappa values increases the emission currents well over the predictions of the classical expression. This also permits the quantitative estimation of the departure of the metal electrons from the equilibrium Fermi-Dirac statistics.

  2. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in Northern Germany: effects on red mason bees (Osmia bicornis).

    Science.gov (United States)

    Peters, Britta; Gao, Zhenglei; Zumkier, Ulrich

    2016-11-01

    The aim of this study was to investigate the effects of Elado® (10 g clothianidin & 2 g beta-cyfluthrin/kg seed)-dressed oilseed rape on the development and reproduction of mason bees (Osmia bicornis) as part of a large-scale monitoring field study in Northern Germany, where oilseed rape is usually cultivated at 25-33 % of the arable land. Both reference and test sites comprised 65 km 2 in which no other crops attractive to pollinating insects were present. Six study locations were selected per site and three nesting shelters were placed at each location. Of these locations, three locations were directly adjacent to oilseed rape fields, while the other three locations were situated 100 m distant from the nearest oilseed rape field. At each location, 1500 cocoons of O. bicornis were placed into the central nesting shelter. During the exposure phase, nest building activities and foraging behaviour were assessed repeatedly. Cocoons were harvested in autumn to assess parasitization and reproduction including larval development. The following spring, the emergence of the next generation of adults from cocoons was monitored. High reproductive output and low parasitization rates indicated that Elado ® -dressed oilseed rape did not cause any detrimental effects on the development or reproduction of mason bees.

  3. Non-metallic gage for gap

    International Nuclear Information System (INIS)

    Hiroki, Hideo.

    1996-01-01

    The present invention concerns a non-metallic gage for detecting a gap which can not be seen from the out side such as a gap between a water pipe and fuel rods without damaging an objective material as to whether the gap is formed within a standard value or not. The gage is made of a synthetic resin, for example, polyacetal having such a hardness as not damaging the objective material and endurable to repeating flexure upon use. The gage comprises a short gage portion having a predetermined standard thickness and an flexible extended connection portion reduced in the thickness. Provision of the extended connection portion enables wide range flexure thereof such as ±60deg relative to insertion direction during insertion operation upon testing to solve a drawback in the prior art such as worry of breakage of the gage, thereby enabling to conduct inspection rapidly at high reliability. (N.H.)

  4. Were mercury emission factors for Chinese non-ferrous metal smelters overestimated? Evidence from onsite measurements in six smelters

    International Nuclear Information System (INIS)

    Zhang Lei; Wang Shuxiao; Wu Qingru; Meng Yang; Yang Hai; Wang Fengyang; Hao Jiming

    2012-01-01

    Non-ferrous metal smelting takes up a large proportion of the anthropogenic mercury emission inventory in China. Zinc, lead and copper smelting are three leading sources. Onsite measurements of mercury emissions were conducted for six smelters. The mercury emission factors were 0.09–2.98 g Hg/t metal produced. Acid plants with the double-conversion double-absorption process had mercury removal efficiency of over 99%. In the flue gas after acid plants, 45–88% was oxidized mercury which can be easily scavenged in the flue gas scrubber. 70–97% of the mercury was removed from the flue gas to the waste water and 1–17% to the sulfuric acid product. Totally 0.3–13.5% of the mercury in the metal concentrate was emitted to the atmosphere. Therefore, acid plants in non-ferrous metal smelters have significant co-benefit on mercury removal, and the mercury emission factors from Chinese non-ferrous metal smelters were probably overestimated in previous studies. - Highlights: ► Acid plants in smelters provide significant co-benefits for mercury removal (over 99%). ► Most of the mercury in metal concentrates for smelting ended up in waste water. ► Previously published emission factors for Chinese metal smelters were probably overestimated. - Acid plants in smelters have high mercury removal efficiency, and thus mercury emission factors for Chinese non-ferrous metal smelters were probably overestimated.

  5. Bacterial assimilation reduction of iron in the treatment of non-metallics

    Directory of Open Access Journals (Sweden)

    Peter Malachovský

    2005-11-01

    Full Text Available Natural non-metallics, including granitoide and quartz sands, often contain iron which decreases the whiteness of these raw materials. Insoluble Fe3+ in these samples could be reduced to soluble Fe2+ by bacteria of Bacillus spp. and Saccharomyces spp. The leaching effect, observed by the measurement of Fe2+concentration in a solution, showed higher activities of a bacterial kind isolated from the Bajkal lake and also by using of yeast Saccharomyces sp. during bioleaching of quartz sands. However, allkinds of Bacillus spp. isolated from the Slovak deposit and from Bajkal lake were very active in the iron reduction during bioleaching of the feldspar raw material. This metal was efficiently removed from quartz sands as documented by the Fe2O3 decrease (from 0,317 % to 0,126 % and from feldpars raw materials by the Fe2O3 decrease (from 0,288 % to 0,115 % after bioleaching. The whiteness of these non-metallics was increased during a visual comparison of samples before and after bioleaching but samples contain selected magnetic particles. A removal of iron as well as a release of iron minerals from silicate matrix should increase the effect of the magnetic separation and should give a product which is suitable for industrial applications.

  6. Understanding Non-Equilibrium Charge Transport and Rectification at Chromophore/Metal Interfaces

    Science.gov (United States)

    Darancet, Pierre

    Understanding non-equilibrium charge and energy transport across nanoscale interfaces is central to developing an intuitive picture of fundamental processes in solar energy conversion applications. In this talk, I will discuss our theoretical studies of finite-bias transport at organic/metal interfaces. First, I will show how the finite-bias electronic structure of such systems can be quantitatively described using density functional theory in conjunction with simple models of non-local correlations and bias-induced Stark effects.. Using these methods, I will discuss the conditions of emergence of highly non-linear current-voltage characteristics in bilayers made of prototypical organic materials, and their implications in the context of hole- and electron-blocking layers in organic photovoltaic. In particular, I will show how the use of strongly-hybridized, fullerene-coated metallic surfaces as electrodes is a viable route to maximizing the diodic behavior and electrical functionality of molecular components. The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (Argonne). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357.

  7. Non-newtonian deformation of co-based metallic glass at low stresses

    NARCIS (Netherlands)

    Fursova, YV; Khonik, VA; Csach, K; Ocelik, Vaclav

    2000-01-01

    The results of precision measurements of creep in Co-based metallic glass are presented. It is shown that, in spite of generally accepted concepts, plastic flow at low stresses under intense structural relaxation conditions is of a non-Newtonian type. Consequences of this fact are considered. (C)

  8. Non-noble metal based electro-catalyst compositions for proton exchange membrane based water electrolysis and methods of making

    Science.gov (United States)

    Kumta, Prashant N.; Kadakia, Karan Sandeep; Datta, Moni Kanchan; Velikokhatnyi, Oleg

    2017-02-07

    The invention provides electro-catalyst compositions for an anode electrode of a proton exchange membrane-based water electrolysis system. The compositions include a noble metal component selected from the group consisting of iridium oxide, ruthenium oxide, rhenium oxide and mixtures thereof, and a non-noble metal component selected from the group consisting of tantalum oxide, tin oxide, niobium oxide, titanium oxide, tungsten oxide, molybdenum oxide, yttrium oxide, scandium oxide, cooper oxide, zirconium oxide, nickel oxide and mixtures thereof. Further, the non-noble metal component can include a dopant. The dopant can be at least one element selected from Groups III, V, VI and VII of the Periodic Table. The compositions can be prepared using a surfactant approach or a sol gel approach. Further, the compositions are prepared using noble metal and non-noble metal precursors. Furthermore, a thin film containing the compositions can be deposited onto a substrate to form the anode electrode.

  9. EDITORIAL: Charge transport in non-metallic solids

    Science.gov (United States)

    Youngs, Ian J.; Almond, Darryl P.

    2009-03-01

    Workers engaged in a wide range of investigations of charge transport in non-metallic solids came together at a meeting of the Institute of Physics Dielectric Group, held in London on 2 April 2008. Topics included both ionic and electronic conduction, investigations of the fundamental mechanisms of charge transport, percolation, modelling the conduction process in both natural and man-made composite electrical and electromagnetic materials, the design and development of solids with specified conduction properties and the ac characteristics of non-metallic solids. In the first session, the long-standing problem of the anomalous power law increase in ac conductivity with frequency was addressed by a set of four presentations. Jeppe Dyre, an invited speaker from Roskilde University, Denmark, introduced the problem and stressed the universality of the frequency dependence observed in the ac conductivities of disordered non-metallic materials. He showed that it could be obtained from a simple random barrier model, independent of the barrier distribution. Darryl Almond, University of Bath, showed that the electrical responses of large networks of randomly positioned resistors and capacitors, simulating the microstructures of disordered two-phase (conductor insulator) materials, exhibit the same frequency dependence. He demonstrated their robustness to component value and distribution and suggested that it was an emergent property of these networks and of two-phase materials. Klaus Funke, an invited speaker from the University of Munster, Germany, presented a detailed model of ion motion in disordered ionic materials. He stressed the need to account for the concerted many-particle processes that occur whilst ions hop from site to site in response to an applied electric field. The conductivity spectra obtained from this work reproduce the same frequency dispersion and have the additional feature of conductivity saturation at high frequencies. Tony West, University of

  10. On the systems of automatic non-destructive control of NPP metallic structures

    International Nuclear Information System (INIS)

    Grebennik, V.S.; Lantukh, V.M.

    1980-01-01

    The main stages of developing automatic systems of non- destructive control (NC) of NPP metallic structures are pointed out. The main requirements for automatic NC systems are formulated. Recommendations on the use of the developed experimental automatic facilities for control of certain NPP components are given. It is noted that the present facilities may be used in the future in development of modular sets of non-destructive control systems [ru

  11. Automated Classification and Analysis of Non-metallic Inclusion Data Sets

    Science.gov (United States)

    Abdulsalam, Mohammad; Zhang, Tongsheng; Tan, Jia; Webler, Bryan A.

    2018-05-01

    The aim of this study is to utilize principal component analysis (PCA), clustering methods, and correlation analysis to condense and examine large, multivariate data sets produced from automated analysis of non-metallic inclusions. Non-metallic inclusions play a major role in defining the properties of steel and their examination has been greatly aided by automated analysis in scanning electron microscopes equipped with energy dispersive X-ray spectroscopy. The methods were applied to analyze inclusions on two sets of samples: two laboratory-scale samples and four industrial samples from a near-finished 4140 alloy steel components with varying machinability. The laboratory samples had well-defined inclusions chemistries, composed of MgO-Al2O3-CaO, spinel (MgO-Al2O3), and calcium aluminate inclusions. The industrial samples contained MnS inclusions as well as (Ca,Mn)S + calcium aluminate oxide inclusions. PCA could be used to reduce inclusion chemistry variables to a 2D plot, which revealed inclusion chemistry groupings in the samples. Clustering methods were used to automatically classify inclusion chemistry measurements into groups, i.e., no user-defined rules were required.

  12. Improving the quality factor of an RF spiral inductor with non-uniform metal width and non-uniform coil spacing

    International Nuclear Information System (INIS)

    Shen Pei; Zhang Wanrong; Huang Lu; Jin Dongyue; Xie Hongyun

    2011-01-01

    An improved inductor layout with non-uniform metal width and non-uniform spacing is proposed to increase the quality factor (Q factor). For this inductor layout, from outer coil to inner coil, the metal width is reduced by an arithmetic-progression step, while the metal spacing is increased by a geometric-progression step. An improved layout with variable width and changed spacing is of benefit to the Q factor of RF spiral inductor improvement (approximately 42.86%), mainly due to the suppression of eddy-current loss by weakening the current crowding effect in the center of the spiral inductor. In order to increase the Q factor further, for the novel inductor, a patterned ground shield is used with optimized layout together. The results indicate that, in the range of 0.5 to 16 GHz, the Q factor of the novel inductor is at an optimum, which improves by 67% more than conventional inductors with uniform geometry dimensions (equal width and equal spacing), is enhanced by nearly 23% more than a PGS inductor with uniform geometry dimensions, and improves by almost 20% more than an inductor with an improved layout. (semiconductor devices)

  13. Development of Non-Noble Metal Ni-Based Catalysts for Dehydrogenation of Methylcyclohexane

    KAUST Repository

    Shaikh Ali, Anaam

    2016-01-01

    to TOL has only been achieved using the noble Pt-based catalysts. The aim of this study is to develop non-noble, cost-effective metal catalysts that can show excellent catalytic performance, mainly maintaining high TOL selectivity achievable by Pt based

  14. A Review of Post and Core Application with Emphasize on Non Metallic Posts

    Directory of Open Access Journals (Sweden)

    Shahroodi MH

    2001-05-01

    Full Text Available Many different methods are suggested to restore endodontically treated teeth. Prefabricated posts can not be indicated for all teeth and cast posts require extra time and cost. In addition, with the introduction of full ceramic restorations, achieving the ideal esthetic with metal post underneath them may be problematic or impossible because the darkness of the metallic posts may show through the highly translucent all ceramic restorations. In this article the review of litature and describiton of applied methods of different procedure in restoring the root canal therapied teeth and few techniques of non metallic posts fabrication such as fiber reinforced composite and zirconium oxide posts have been described.

  15. Metal chelates of some transition and non-transition metal ions with Schiff base derived from isatin with o-phenylenediamine

    International Nuclear Information System (INIS)

    Hassaan, A.M.A.; Khalifa, M.A.

    1993-01-01

    New Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), and Pb(II) chelates of the Schiff base derived from isatin with o-phenylenediamine have been synthesized and characterized on the basis of elemental analyses, electronic, IR and 1 H NMR spectra, and also by aid of molar conductivity and magnetic moment measurements. It has been found that the Schiff base behaves as ONNO tetradentate dibasic ligand forming chelates with 1:1 (metal:ligand) stoichiometry. Square planar environment is suggested for nickel(II) chelate. All the metal chelates show non-electrolytic behaviour

  16. Autoradiographic investigation of the removal of non-metallic inclusions in connection with the steel remelting process in vacuum furnaces

    International Nuclear Information System (INIS)

    Kolaski, H.; Siewierski, J.

    1978-01-01

    The labelled radioactive non-metallic inclusions in steel were obtained through deoxidation of steel with an activated aluminium alloy containing 1% rare earths. Quantity and distribution of the non-metallic inclusions in the steel were determined by applying autoradiography to the longitudinal and cross sections of the steel slabs. After remelting in an electronic furnace the distribution of non-metallic inclusions was determined by autoradiography of the lateral surfaces and the cross section of the slabs. It was found that 50 - 70% of the inclusions could be removed. The results obtained from autoradiographic investigation allow the exploration of the mechanism of the removal of inclusions. (author)

  17. Liquid metal MHD studies with non-magnetic and ferro-magnetic structural material

    Energy Technology Data Exchange (ETDEWEB)

    Patel, A., E-mail: anipatel2009@gmail.com [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Bhattacharyay, R. [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Swain, P.K.; Satyamurthy, P. [Bhabha Atomic Research Center, Mumbai 400085, Maharashtra (India); Sahu, S.; Rajendrakumar, E. [Institute of Plasma Research, Gandhinagar 382428, Gujarat (India); Ivanov, S.; Shishko, A.; Platacis, E.; Ziks, A. [Institute of Physics, University of Latvia, Salaspils 2169 (Latvia)

    2014-10-15

    Highlights: • Effect of structural material on liquid metal MHD phenomena is studied. • Two identical test sections, one made of SS316L (non-magnetic) and other made of SS430 (ferromagnetic) structural material, are considered. • Wall electric potential and liquid metal pressure drop are compared under various experimental conditions. • Experimental results suggest screening of external magnetic field for SS430 material below the saturation magnetic field. - Abstract: In most of the liquid metal MHD experiments reported in the literature to study liquid breeder blanket performance, SS316/SS304 grade steels are used as the structural material which is non-magnetic. On the other hand, the structural material for fusion blanket systems has been proposed to be ferritic martensitic grade steel (FMS) which is ferromagnetic in nature. In the recent experimental campaign, liquid metal MHD experiments have been carried out with two identical test sections: one made of SS316L (non-magnetic) and another with SS430 (ferromagnetic), to compare the effect of structural materials on MHD phenomena for various magnetic fields (up to 4 T). The maximum Hartmann number and interaction number are 1047 and 300, respectively. Each test section consists of square channel (25 mm × 25 mm) cross-section with two U bends, with inlet and outlet at the middle portion of two horizontal legs, respectively. Pb–Li enters into the test section through a square duct and distributed into two parallel paths through a partition plate. In each parallel path, it travels ∼0.28 m length in plane perpendicular to the magnetic field and faces two 90° bends before coming out of the test section through a single square duct. The wall electrical potential and MHD pressure drop across the test sections are compared under identical experimental conditions. Similar MHD behavior is observed with both the test section at higher value of the magnetic field (>2 T)

  18. Analysis and simulation of non-metallic inclusions in spheroidal graphite iron

    International Nuclear Information System (INIS)

    Pustal, B; Schelnberger, B; Bührig-Polaczek, A

    2016-01-01

    Non-metallic inclusions in spheroidal cast iron (SGI) reduce fatigue strength and yield strength. This type of inclusion usually accumulates at grain boundaries. Papers addressing this topic show the overall impact of both the fraction of so-called white (carbides) and black (non-metallic) inclusions on mechanical properties. In the present work we focus on the origin and the formation conditions of black Mg-bearing inclusions, further distinguishing between Si-bearing and non-Si-bearing Mg inclusions. The formation was simulated applying thermodynamic approaches. Moreover, appropriate experiments have been carried out and a large number of particles have been studied applying innovative feature analysis with regard to shape, size, and composition. Magnesium silicates are predicted at elevated oxygen concentrations, whereas at low levels of oxygen sulphides and carbides appear at a late stage of solidification. Experiments with three consecutive flow obstacles show that the amount of magnesium silicates decrease after each of the three obstacles, whereas the fraction of non-Si-bearing inclusions remains approximately constant. The size of inclusions divides in halves over the flow path and the number of particles increases accordingly. We point out that based on feature analysis Mg-O-C bearing inclusion show disadvantageous form factors for which reason this kind of inclusions may be extremely harmful in terms of crack initiation. All results obtained indicate that magnesium silicates are entrapped on mould filling, whereas Mg-(O, C, S, P, N) bearing particles are precipitates at late stages of solidification. Consequently, the only avoidance strategy is setting up optimum retained magnesium content. (paper)

  19. Manifestly non-Gaussian fluctuations in superconductor-normal metal tunnel nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, Matti [Institut fuer Theorie der Statistischen Physik, RWTH Aachen University, Aachen (Germany); Low Temperature Laboratory, Aalto University, Espoo (Finland); Heikkilae, Tero [Low Temperature Laboratory, Aalto University, Espoo (Finland); Nazarov, Yuli [Kavli Institute of Nanoscience, Delft University of Technology, Delft (Netherlands)

    2013-07-01

    Recently, temperature fluctuation statistics has been studied in non-interacting islands and overheated single-electron transistors. We propose a mesoscopic setup which exhibits strong and manifestly non-Gaussian fluctuations of energy and temperature when suitably driven out of equilibrium. The setup consists of a normal metal island (N) coupled by tunnel junctions (I) to two superconducting leads (S), forming a SINIS structure, and is biased near the threshold voltage for quasiparticle tunneling, eV ∼ 2Δ. The fluctuations can be measured by monitoring the time-dependent electric current through the system, which makes the setup suitable for the realization of feedback schemes which allow to stabilize the temperature to the desired value.

  20. Validation of the Ventgraph program for use in metal/non-metal mines

    Energy Technology Data Exchange (ETDEWEB)

    Pritchard, C.J. [National Inst. for Occupational Safety and Health, Spokane, WA (United States)

    2010-07-01

    Ventgraph is a ventilation software developed by the Polish Academy of Sciences. It has features similar to other ventilation programs, such as network simulation and contaminant dispersal. Its additional capabilities include mine fire simulation, compressible flow modelling, and real-time on-screen visualization of mine ventilation and fire effects. For that reason, it has been widely used around the world for studying coal mine fires, fighting fires with inert gases, spontaneous combustion, and mine emergency exercises. Ventgraph has been used to a much lesser extent in metal/non-metal (M/NM) mines. The National Institute for Occupational Safety and Health has determined that the use of Ventgraph to hardrock mining methods would be beneficial for studying M/NM ventilation effects, mine evacuation training, risk analysis of potential mine ventilation changes, airborne contaminants, recirculation, and mine fires. Ventgraph was used to simulate the 1972 Sunshine Mine fire where 91 miners perished. The Sunshine Mine was chosen because of its deep, complex ventilation system. Calibration of Ventgraph's fire simulation module to known events of the fire showed close correlation to contaminant levels observed and real-time movement of fire combustion products through the mine. It was concluded that Ventgraph is a valuable tool for M/NM mine ventilation, fire, and evacuation planning. 13 refs., 3 figs.

  1. A Mononuclear Non-Heme Manganese(IV)-Oxo Complex Binding Redox-Inactive Metal Ions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Junying; Lee, Yong-Min; Davis, Katherine M.; Wu, Xiujuan; Seo, Mi Sook; Cho, Kyung-Bin; Yoon, Heejung; Park, Young Jun; Fukuzumi, Shunichi; Pushkar, Yulia N.; Nam, Wonwoo [Ewha; (Purdue); (Osaka)

    2013-05-29

    Redox-inactive metal ions play pivotal roles in regulating the reactivities of high-valent metal–oxo species in a variety of enzymatic and chemical reactions. A mononuclear non-heme Mn(IV)–oxo complex bearing a pentadentate N5 ligand has been synthesized and used in the synthesis of a Mn(IV)–oxo complex binding scandium ions. The Mn(IV)–oxo complexes were characterized with various spectroscopic methods. The reactivities of the Mn(IV)–oxo complex are markedly influenced by binding of Sc3+ ions in oxidation reactions, such as a ~2200-fold increase in the rate of oxidation of thioanisole (i.e., oxygen atom transfer) but a ~180-fold decrease in the rate of C–H bond activation of 1,4-cyclohexadiene (i.e., hydrogen atom transfer). The present results provide the first example of a non-heme Mn(IV)–oxo complex binding redox-inactive metal ions that shows a contrasting effect of the redox-inactive metal ions on the reactivities of metal–oxo species in the oxygen atom transfer and hydrogen atom transfer reactions.

  2. Price variability and marketing method in non-ferrous metals: Slade's analysis revisited

    NARCIS (Netherlands)

    Gilbert, C.L.; Ferretti, F.

    2002-01-01

    We examine the impact of the pricing regime on price variability with reference to the non-ferrous metals industry. Theoretical arguments are ambiguous, but suggest that the extent of monopoly power is more important than the pricing regime as a determinant of variability. Slade (Quart. J. Econ. 106

  3. Transition-Metal-Controlled Inorganic Ligand-Supported Non-Precious Metal Catalysts for the Aerobic Oxidation of Amines to Imines.

    Science.gov (United States)

    Yu, Han; Zhai, Yongyan; Dai, Guoyong; Ru, Shi; Han, Sheng; Wei, Yongge

    2017-10-09

    Most state-of-art transition-metal catalysts usually require organic ligands, which are essential for controlling the reactivity and selectivity of reactions catalyzed by transition metals. However, organic ligands often suffer from severe problems including cost, toxicity, air/moisture sensitivity, and being commercially unavailable. Herein, we show a simple, mild, and efficient aerobic oxidation procedure of amines using inorganic ligand-supported non-precious metal catalysts 1, (NH 4 ) n [MMo 6 O 18 (OH) 6 ] (M=Cu 2+ ; Fe 3+ ; Co 3+ ; Ni 2+ ; Zn 2+ , n=3 or 4), synthesized by a simple one-step method in water at 100 °C, demonstrating that the catalytic activity and selectivity can be significantly improved by changing the central metal atom. In the presence of these catalysts, the catalytic oxidation of primary and secondary amines, as well as the coupling of alcohols and amines, can smoothly proceed to afford various imines with O 2 (1 atm) as the sole oxidant. In particular, the catalysts 1 have transition-metal ion core, and the planar arrangement of the six Mo VI centers at their highest oxidation states around the central heterometal can greatly enhance the Lewis acidity of catalytically active sites, and also enable the electrons in the center to delocalize onto the six edge-sharing MO 6 units, in the same way as ligands in traditional organometallic complexes. The versatility of this methodology maybe opens a path to catalytic oxidation through inorganic ligand-coordinated metal catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Invariance of the magnetic behavior and AMI in ferromagnetic biphase films with distinct non-magnetic metallic spacers

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.F. [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Gamino, M. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Instituto de Física, Universidade Federal do Rio Grande de Sul, 91501-970 Porto Alegre, RS (Brazil); Andrade, A.M.H. de [Instituto de Física, Universidade Federal do Rio Grande de Sul, 91501-970 Porto Alegre, RS (Brazil); Vázquez, M. [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Correa, M.A. [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Bohn, F., E-mail: felipebohn@fisica.ufrn.br [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil)

    2017-02-01

    We investigate the quasi-static magnetic, magnetotransport, and dynamic magnetic properties in ferromagnetic biphase films with distinct non-magnetic metallic spacer layers. We observe that the nature of the non-magnetic metallic spacer material does not have significant influence on the overall biphase magnetic behavior, and, consequently, on the magnetotransport and dynamic magnetic responses. We focus on the magnetoimpedance effect and verify that the films present asymmetric magnetoimpedance effect. Moreover, we explore the possibility of tuning the linear region of the magnetoimpedance curves around zero magnetic field by varying the probe current frequency in order to achieve higher sensitivity values. The invariance of the magnetic behavior and the asymmetric magnetoimpedance effect in ferromagnetic biphase films with distinct non-magnetic metallic spacers place them as promising candidates for probe element and open possibilities to the development of lower-cost high sensitivity linear magnetic field sensor devices.

  5. Equilibrium and non-equilibrium extraction separation of rare earth metals in presence of diethylenetriaminepentaacetic acid in aqueous phase

    International Nuclear Information System (INIS)

    Azis, Abdul; Teramoto, Masaaki; Matsuyama, Hideto.

    1995-01-01

    Equilibrium and non-equilibrium extraction separations of rare earth metals were carried out in the presence of chelating agent in the aqueous phase. The separation systems of the rare earth metal mixtures used were Y/Dy, Y/Ho, Y/Er and Y/Tm, and the chelating agent and the extractant were diethylenetriaminepentaacetic acid (DTPA) and bis (2,4,4-trimethylpentyl) phosphinic acid (CYANEXR 272), respectively. For Y/Dy and Y/Ho systems, higher selectivities were obtained in equilibrium separation compared with those in non-equilibrium separation. On the other hand, the selectivities in non-equilibrium separation were higher for Y/Er and Y/Tm systems. In the separation condition suitable to each system, the addition of DTPA to the aqueous phase was found to be very effective for obtaining higher selectivities. The distribution ratios of the rare earth metals and the selectivities in the equilibrium separations obtained experimentally were thoroughly analyzed by considering various equilibria such as the extraction equilibrium and the complex formation equilibrium between rare earth metals and DTPA in the aqueous phase. Moreover, the extraction rates and the selectivities in the non-equilibrium separations were also analyzed by the extraction model considering the dissociation reactions of the rare earth metal-DTPA complexes in the aqueous stagnant layer. Based on these analyses, we presented an index which is useful for selecting the optimum operation mode. Using this index, we can predict that the selectivities under equilibrium conditions are higher than those under non-equilibrium conditions for Y/Dy and Y/Ho systems, while for Y/Er and Y/Tm systems, higher selectivities are obtained under non-equilibrium conditions. The experimental results were in agreement with predictions by this index. Further, the selectivities in various systems including other chelating agents and extractants were discussed based on this index. (J.P.N.)

  6. A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing

    Science.gov (United States)

    Grady, Joseph E.; Halbig, Michael C.; Singh, Mrityunjay

    2015-01-01

    In a NASA Aeronautics Research Institute (NARI) sponsored program entitled "A Fully Non-Metallic Gas Turbine Engine Enabled by Additive Manufacturing", evaluation of emerging materials and additive manufacturing technologies was carried out. These technologies may enable fully non-metallic gas turbine engines in the future. This paper highlights the results of engine system trade studies which were carried out to estimate reduction in engine emissions and fuel burn enabled due to advanced materials and manufacturing processes. A number of key engine components were identified in which advanced materials and additive manufacturing processes would provide the most significant benefits to engine operation. In addition, feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and ceramic matrix composite were demonstrated. A wide variety of prototype components (inlet guide vanes (IGV), acoustic liners, engine access door) were additively manufactured using high temperature polymer materials. Ceramic matrix composite components included first stage nozzle segments and high pressure turbine nozzle segments for a cooled doublet vane. In addition, IGVs and acoustic liners were tested in simulated engine conditions in test rigs. The test results are reported and discussed in detail.

  7. Standard practice for process compensated resonance testing via swept sine input for metallic and Non-Metallic parts

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes a general procedure for using the process compensated resonance testing (PCRT) via swept sine input method to identify metallic and non-metallic parts’ resonant pattern differences that can be used to indentify parts with anomalies causing deficiencies in the expected performance of the part in service. This practice is intended for use with instruments capable of exciting, measuring, recording, and analyzing multiple whole body mechanical vibration resonant frequencies within parts exhibiting acoustical ringing in the audio, or ultrasonic, resonant frequency ranges, or both. PCRT is used in the presence of manufacturing process variance to distinguish acceptable parts from those containing significant anomalies in physical characteristics expected to significantly alter the performance. Such physical characteristics include, but are not limited to, cracks, voids, porosity, shrink, inclusions, discontinuities, grain and crystalline structure differences, density related anomalies...

  8. Non-metallic structural wrap systems for pipe

    International Nuclear Information System (INIS)

    Walker, R.H.; Wesley Rowley, C.

    2001-01-01

    The use of thermoplastics and reinforcing fiber has been a long-term application of non-metallic material for structural applications. With the advent of specialized epoxies and carbon reinforcing fiber, structural strength approaching and surpassing steel has been used in a wide variety of applications, including nuclear power plants. One of those applications is a NSWS for pipe and other structural members. The NSWS is system of integrating epoxies with reinforcing fiber in a wrapped geometrical configuration. This paper specifically addresses the repair of degraded pipe in heat removal systems used in nuclear power plants, which is typically caused by corrosion, erosion, or abrasion. Loss of structural material leads to leaks, which can be arrested by a NSWS for the pipe. The technical aspects of using thermoplastics to structurally improve degraded pipe in nuclear power plants has been addressed in the ASME B and PV Code Case N-589. Using the fundamentals described in that Code Case, this paper shows how this technology can be extended to pipe repair from the outside. This NSWS has already been used extensively in non-nuclear applications and in one nuclear application. The cost to apply this NSWS is typically substantially less than replacing the pipe and may be technically superior to replacing the pipe. (author)

  9. INDUCTION HEATING OF NON-MAGNETIC SHEET METALS IN THE FIELD OF A FLAT CIRCULAR MULTITURN SOLENOID

    Directory of Open Access Journals (Sweden)

    Y. Batygin

    2016-06-01

    Full Text Available The theoretical analysis of electromagnetic processes in the system for induction heating presented by a flat circular multiturn solenoid positioned above a plane of thin sheet non-magnetic metal has been conducted. The calculated dependences for the current induced in a metal sheet blank and ratio of transformation determined have been obtained. The maximal value of the transformation ratio with regard to spreading the eddy-currents over the whole area of the sheet metal has been determined.

  10. Computer Simulation of the Formation of Non-Metallic Precipitates During a Continuous Casting of Steel

    Directory of Open Access Journals (Sweden)

    Kalisz D.

    2016-03-01

    Full Text Available The authors own computer software, based on the Ueshima mathematical model with taking into account the back diffusion, determined from the Wołczyński equation, was developed for simulation calculations. The applied calculation procedure allowed to determine the chemical composition of the non-metallic phase in steel deoxidised by means of Mn, Si and Al, at the given cooling rate. The calculation results were confirmed by the analysis of samples taken from the determined areas of the cast ingot. This indicates that the developed computer software can be applied for designing the steel casting process of the strictly determined chemical composition and for obtaining the required non-metallic precipitates.

  11. Bio-recovery of non-essential heavy metals by intra- and extracellular mechanisms in free-living microorganisms.

    Science.gov (United States)

    García-García, Jorge D; Sánchez-Thomas, Rosina; Moreno-Sánchez, Rafael

    2016-01-01

    Free-living microorganisms may become suitable models for recovery of non-essential and essential heavy metals from wastewater bodies and soils by using and enhancing their accumulating and/or leaching abilities. This review analyzes the variety of different mechanisms developed mainly in bacteria, protists and microalgae to accumulate heavy metals, being the most relevant those involving phytochelatin and metallothionein biosyntheses; phosphate/polyphosphate metabolism; compartmentalization of heavy metal-complexes into vacuoles, chloroplasts and mitochondria; and secretion of malate and other organic acids. Cyanide biosynthesis for extra-cellular heavy metal bioleaching is also examined. These metabolic/cellular processes are herein analyzed at the transcriptional, kinetic and metabolic levels to provide mechanistic basis for developing genetically engineered microorganisms with greater capacities and efficiencies for heavy metal recovery, recycling of heavy metals, biosensing of metal ions, and engineering of metalloenzymes. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Non-LTE line formation of Fe in late-type stars - III. 3D non-LTE analysis of metal-poor stars

    DEFF Research Database (Denmark)

    Amarsi, A. M.; Lind, K.; Asplund, M.

    2016-01-01

    As one of the most important elements in astronomy, iron abundance determinations need to be as accurate as possible. We investigate the accuracy of spectroscopic iron abundance analyses using archetypal metal-poor stars. We perform detailed 3D non-LTE radiative transfer calculations based on 3D...

  13. A Handy Liquid Metal Based Non-Invasive Electrophoretic Particle Microtrap

    Directory of Open Access Journals (Sweden)

    Lu Tian

    2018-05-01

    Full Text Available A handy liquid metal based non-invasive particle microtrap was proposed and demonstrated in this work. This kind of microtrap can be easily designed and fabricated at any location of a microfluidic chip to perform precise particle trapping and releasing without disturbing the microchannel itself. The microsystem demonstrated in this work utilized silicon oil as the continuous phase and fluorescent particles (PE-Cy5, SPHEROTM Fluorescent Particles, BioLegend, San Diego, CA, USA, 10.5 μm as the target particles. To perform the particle trapping, the micro system utilized liquid-metal-filled microchannels as noncontact electrodes to generate different patterns of electric field inside the fluid channel. According to the experimental results, the target particle can be selectively trapped and released by switching the electric field patterns. For a better understanding the control mechanism, a numerical simulation of the electric field was performed to explain the trapping mechanism. In order to verify the model, additional experiments were performed and are discussed.

  14. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators

    Energy Technology Data Exchange (ETDEWEB)

    Liang, H.-M. [Agricultural Biotechnology Research Center, Academia Sinica, 128 Section 2, Academia Road, Taipei, Taiwan 11529, Taiwan (China); Lin, T.-H. [Department of Statistics, National Taipei University, Taiwan (China); Chiou, J.-M. [Institute of Statistical Science, Academia Sinica, Taiwan (China); Yeh, K.-C., E-mail: kcyeh@gate.sinica.edu.t [Agricultural Biotechnology Research Center, Academia Sinica, 128 Section 2, Academia Road, Taipei, Taiwan 11529, Taiwan (China)

    2009-06-15

    Evaluation of the remediation ability of zinc/cadmium in hyper- and non-hyperaccumulator plant species through greenhouse studies is limited. To bridge the gap between greenhouse studies and field applications for phytoextraction, we used published data to examine the partitioning of heavy metals between plants and soil (defined as the bioconcentration factor). We compared the remediation ability of the Zn/Cd hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri and the non-hyperaccumulators Nicotiana tabacum and Brassica juncea using a hierarchical linear model (HLM). A recursive algorithm was then used to evaluate how many harvest cycles were required to clean a contaminated site to meet Taiwan Environmental Protection Agency regulations. Despite the high bioconcentration factor of both hyperaccumulators, metal removal was still limited because of the plants' small biomass. Simulation with N. tabacum and the Cadmium model suggests further study and development of plants with high biomass and improved phytoextraction potential for use in environmental cleanup. - A quantitative solution enables the evaluation of Zn/Cd phytoextraction.

  15. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators.

    Science.gov (United States)

    Liang, Hong-Ming; Lin, Ting-Hsiang; Chiou, Jeng-Min; Yeh, Kuo-Chen

    2009-06-01

    Evaluation of the remediation ability of zinc/cadmium in hyper- and non-hyperaccumulator plant species through greenhouse studies is limited. To bridge the gap between greenhouse studies and field applications for phytoextraction, we used published data to examine the partitioning of heavy metals between plants and soil (defined as the bioconcentration factor). We compared the remediation ability of the Zn/Cd hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri and the non-hyperaccumulators Nicotiana tabacum and Brassica juncea using a hierarchical linear model (HLM). A recursive algorithm was then used to evaluate how many harvest cycles were required to clean a contaminated site to meet Taiwan Environmental Protection Agency regulations. Despite the high bioconcentration factor of both hyperaccumulators, metal removal was still limited because of the plants' small biomass. Simulation with N. tabacum and the Cadmium model suggests further study and development of plants with high biomass and improved phytoextraction potential for use in environmental cleanup.

  16. Model evaluation of the phytoextraction potential of heavy metal hyperaccumulators and non-hyperaccumulators

    International Nuclear Information System (INIS)

    Liang, H.-M.; Lin, T.-H.; Chiou, J.-M.; Yeh, K.-C.

    2009-01-01

    Evaluation of the remediation ability of zinc/cadmium in hyper- and non-hyperaccumulator plant species through greenhouse studies is limited. To bridge the gap between greenhouse studies and field applications for phytoextraction, we used published data to examine the partitioning of heavy metals between plants and soil (defined as the bioconcentration factor). We compared the remediation ability of the Zn/Cd hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri and the non-hyperaccumulators Nicotiana tabacum and Brassica juncea using a hierarchical linear model (HLM). A recursive algorithm was then used to evaluate how many harvest cycles were required to clean a contaminated site to meet Taiwan Environmental Protection Agency regulations. Despite the high bioconcentration factor of both hyperaccumulators, metal removal was still limited because of the plants' small biomass. Simulation with N. tabacum and the Cadmium model suggests further study and development of plants with high biomass and improved phytoextraction potential for use in environmental cleanup. - A quantitative solution enables the evaluation of Zn/Cd phytoextraction.

  17. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants--A review.

    Science.gov (United States)

    Akcil, Ata; Erust, Ceren; Gahan, Chandra Sekhar; Ozgun, Mehmet; Sahin, Merve; Tuncuk, Aysenur

    2015-11-01

    Waste generated by the electrical and electronic devices is huge concern worldwide. With decreasing life cycle of most electronic devices and unavailability of the suitable recycling technologies it is expected to have huge electronic and electrical wastes to be generated in the coming years. The environmental threats caused by the disposal and incineration of electronic waste starting from the atmosphere to the aquatic and terrestrial living system have raised high alerts and concerns on the gases produced (dioxins, furans, polybrominated organic pollutants, and polycyclic aromatic hydrocarbons) by thermal treatments and can cause serious health problems if the flue gas cleaning systems are not developed and implemented. Apart from that there can be also dissolution of heavy metals released to the ground water from the landfill sites. As all these electronic and electrical waste do posses richness in the metal values it would be worth recovering the metal content and protect the environmental from the pollution. Cyanide leaching has been a successful technology worldwide for the recovery of precious metals (especially Au and Ag) from ores/concentrates/waste materials. Nevertheless, cyanide is always preferred over others because of its potential to deliver high recovery with a cheaper cost. Cyanidation process also increases the additional work of effluent treatment prior to disposal. Several non-cyanide leaching processes have been developed considering toxic nature and handling problems of cyanide with non-toxic lixiviants such as thiourea, thiosulphate, aqua regia and iodine. Therefore, several recycling technologies have been developed using cyanide or non-cyanide leaching methods to recover precious and valuable metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Non-Newtonian plastic flow of a Ni-Si-B metallic glass at low stresses

    International Nuclear Information System (INIS)

    Csach, K.; Fursova, Y.V.; Khonik, V.A.; Ocelik, V.

    1998-01-01

    The problem of the rheological behavior of metallic glasses (MGs) is quite important both from theoretical and practical viewpoints. Early experiments carried out on MGs at temperatures T > 300 K using low shear stress levels revealed plastic flow to be Newtonian while measurements at relative high shear stresses (more than 200 to 400 MPa, depending on temperature, thermal prehistory of samples and chemical composition) indicated a non-linear behavior with 1 < m < 12. Numerous investigations performed later both on as-cast and relaxed MGs of various chemical compositions using a number of testing methods (tensile creep, tensile and bend stress relaxation) showed that a transition from Newtonian behavior at low stresses to a non-linear flow at high stresses was observed. At present, such a situation is considered to be generally accepted. The authors performed precise creep measurements of a Ni-Si-B metallic glass. The results obtained indicate that plastic flow in this case at low tensile stress (12 le σ le 307 MPa) is clearly non-Newtonian and, consequently, the viscosity is stress dependent

  19. Cleavage of hydrogen by activation at a single non-metal centre - towards new hydrogen storage materials.

    Science.gov (United States)

    Grabowski, Sławomir J

    2015-05-28

    Molecular surfaces of non-metal species are often characterized by both positive and negative regions of electrostatic potential (EP) at a non-metal centre. This centre may activate molecular hydrogen which further leads to the addition reaction. The positive EP regions at the non-metal centres correspond to σ-holes; the latter sites are enhanced by electronegative substituents. This is why the following simple moieties; PFH2, SFH, AsFH2, SeFH, BrF3, PF(CH3)2 and AsF(CH3)2, were chosen here to analyze the H2 activation and its subsequent splitting at the P, As, S, Se and Br centres. Also the reverse H-H bond reforming process is analyzed. MP2/aug-cc-pVTZ calculations were performed for systems corresponding to different stages of these processes. The sulphur centre in the SFH moiety is analyzed in detail since the potential barrier height for the addition reaction for this species is the lowest of the moieties analyzed here. The results of calculations show that the SFH + H2 → SFH3 reaction in the gas phase is endothermic but it is exothermic in polar solvents.

  20. Transport properties of metal-metal and metal-insulator heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Fadlallah Elabd, Mohamed Mostafa

    2010-06-09

    In this study we present results of electronic structure and transport calculations for metallic and metal-insulator interfaces, based on density functional theory and the non-equilibrium Green's function method. Starting from the electronic structure of bulk Al, Cu, Ag, and Au interfaces, we study the effects of different kinds of interface roughness on the transmission coefficient (T(E)) and the I-V characteristic. In particular, we compare prototypical interface distortions, including vacancies, metallic impurities, non-metallic impurities, interlayer, and interface alloy. We find that vacancy sites have a huge effect on transmission coefficient. The transmission coefficient of non-metallic impurity systems has the same behaviour as the transmission coefficient of vacancy system, since these systems do not contribute to the electronic states at the Fermi energy. We have also studied the transport properties of Au-MgO-Au tunnel junctions. In particular, we have investigated the influence of the thickness of the MgO interlayer, the interface termination, the interface spacing, and O vacancies. Additional interface states appear in the O-terminated configuration due to the formation of Au-O bonds. An increasing interface spacing suppresses the Au-O bonding. Enhancement of T(E) depends on the position and density of the vacancies (the number of vacancies per unit cell). (orig.)

  1. Non-self-similar cracking in unidirectional metal-matrix composites

    International Nuclear Information System (INIS)

    Rajesh, G.; Dharani, L.R.

    1993-01-01

    Experimental investigations on the fracture behavior of unidirectional Metal Matrix Composites (MMC) show the presence of extensive matrix damage and non-self-similar cracking of fibers near the notch tip. These failures are primarily observed in the interior layers of an MMC, presenting experimental difficulties in studying them. Hence an investigation of the matrix damage and fiber fracture near the notch tip is necessary to determine the stress concentration at the notch tip. The classical shear lag (CLSL) assumption has been used in the present study to investigate longitudinal matrix damage and nonself-similar cracking of fibers at the notch tip of an MMC. It is seen that non-self-similar cracking of fibers reduces the stress concentration at the notch tip considerably and the effect of matrix damage is negligible after a large number of fibers have broken beyond the notch tip in a non-self-similar manner. Finally, an effort has been made to include non-self-similar fiber fracture and matrix damage to model the fracture behavior of a unidirectional boron/aluminum composite for two different matrices viz. a 6061-0 fully annealed aluminum matrix and a heat treated 6061-T6 aluminum matrix. Results have been drawn for several characteristics pertaining to the shear stiffnesses and the shear yield stresses of the two matrices and compared with the available experimental results

  2. LCAO fitting of positron 2D-ACAR momentum densities of non-metallic solids

    International Nuclear Information System (INIS)

    Chiba, T.

    2001-01-01

    We present a least-squares fitting method to fit and analyze momentum densities obtained by 2D-ACAR. The method uses an LCAO-MO as a fitting basis and thus is applicable to non-metals. Here we illustrate the method by taking MgO as an example. (orig.)

  3. LCAO fitting of positron 2D-ACAR momentum densities of non-metallic solids

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, T. [National Inst. for Research in Inorganic Materials, Tsukuba, Ibaraki (Japan)

    2001-07-01

    We present a least-squares fitting method to fit and analyze momentum densities obtained by 2D-ACAR. The method uses an LCAO-MO as a fitting basis and thus is applicable to non-metals. Here we illustrate the method by taking MgO as an example. (orig.)

  4. Levels of essential and non-essential metals in ginger (Zingiber officinale) cultivated in Ethiopia.

    Science.gov (United States)

    Wagesho, Yohannes; Chandravanshi, Bhagwan Singh

    2015-01-01

    Ginger (Zingiber officinale Roscoe) is a common condiment for various foods and beverages and widely used worldwide as a spice. Its extracts are used extensively in the food, beverage, and confectionary industries in the production of products such as marmalade, pickles, chutney, ginger beer, ginger wine, liquors, biscuits, and other bakery products. In Ethiopia, it is among the important spices used in every kitchen to flavor stew, tea, bread and local alcoholic drinks. It is also chiefly used medicinally for indigestion, stomachache, malaria, fevers, common cold, and motion sickness. The literature survey revealed that there is no study conducted on the determination of metals in ginger cultivated in Ethiopia. Hence it is worthwhile to determine the levels of essential and non-essential metals in ginger cultivated in Ethiopia. The levels of essential (Ca, Mg, Fe, Zn, Cu, Co, Cr, Mn, and Ni) and non-essential (Cd and Pb) metals in ginger (Zingiber officinale Roscoe) cultivated in four different regions of Ethiopia and the soil where it was grown were determined by flame atomic absorption spectrometry. 0.5 g of oven dried ginger and soil samples were digested using 3 mL of HNO3 and 1 mL of HClO4 at 210°C for 3 h and a mixture of 6 mL aqua-regia and 1.5 mL H2O2 at 270°C for 3 h, respectively. The mean metal concentration (μg/g dry weight basis) ranged in the ginger and soil samples, respectively, were: Ca (2000-2540, 1770-3580), Mg (2700-4090, 1460-2440), Fe (41.8-89.0, 21700-46900), Zn (38.5-55.2, 255-412), Cu (1.1-4.8, 3.80-33.9), Co (2.0-7.6, 48.5-159), Cr (6.0-10.8, 110-163), Mn (184-401, 1760-6470), Ni (5.6-8.4, 14.1-79.3) and Cd (0.38-0.97, 0.24-1.1). The toxic metal Pb was not detected in both the ginger and soil samples. There was good correlation between some metals in ginger and soil samples while poor correlation between other metals (Fe, Ni, Cu). This study revealed that Ethiopian gingers are good source of essential metals and free from toxic

  5. Application of liquid metals for the extraction of solid metals

    International Nuclear Information System (INIS)

    Borgstedt, H.U.

    1996-01-01

    Liquid metals dissolve several solid metals in considerable amounts at moderate temperatures. The dissolution processes may be based upon simple physical solubility, formation of intermetallic phases. Even chemical reactions are often observed in which non-metallic elements might be involved. Thus, the capacity to dissolve metals and chemical properties of the liquid metals play a role in these processes. Besides the solubility also chemical properties and thermochemical data are of importance. The dissolution of metals in liquid metals can be applied to separate the solutes from other metals or non-metallic phases. Relatively noble metals can be chemically reduced by the liquid phases. Such solution processes can be applied in the extractive metallurgy, for instance to extract metals from metallic waste. The recycling of metals is of high economical and ecological importance. Examples of possible processes are discussed. (author)

  6. Effect of heavy metals on pH buffering capacity and solubility of Ca, Mg, K, and P in non-spiked and heavy metal-spiked soils.

    Science.gov (United States)

    Najafi, Sarvenaz; Jalali, Mohsen

    2016-06-01

    In many parts of the world, soil acidification and heavy metal contamination has become a serious concern due to the adverse effects on chemical properties of soil and crop yield. The aim of this study was to investigate the effect of pH (in the range of 1 to 3 units above and below the native pH of soils) on calcium (Ca), magnesium (Mg), potassium (K), and phosphorus (P) solubility in non-spiked and heavy metal-spiked soil samples. Spiked samples were prepared by cadmium (Cd), copper (Cu), nickel (Ni), and zinc (Zn) as chloride salts and incubating soils for 40 days. The pH buffering capacity (pHBC) of each sample was determined by plotting the amount of H(+) or OH(-) added (mmol kg(-1)) versus the related pH value. The pHBC of soils ranged from 47.1 to 1302.5 mmol kg(-1) for non-spiked samples and from 45.0 to 1187.4 mmol kg(-1) for spiked soil samples. The pHBC values were higher in soil 2 (non-spiked and spiked) which had higher calcium carbonate content. The results indicated the presence of heavy metals in soils generally decreased the solution pH and pHBC values in spiked samples. In general, solubility of Ca, Mg, and K decreased with increasing equilibrium pH of non-spiked and spiked soil samples. In the case of P, increasing the pH to about 7, decreased the solubility in all soils but further increase of pH from 7, enhanced P solubility. The solubility trends and values for Ca, Mg, and K did not differed significantly in non-spiked and spiked samples. But in the case of P, a reduction in solubility was observed in heavy metal-spiked soils. The information obtained in this study can be useful to make better estimation of the effects of soil pollutants on anion and cation solubility from agricultural and environmental viewpoints.

  7. Determination of oxigen in non-ferrous metals by means of 14 MeV neutrons

    International Nuclear Information System (INIS)

    Ferster, Kh.

    1979-01-01

    Instruments have been described and possibilities of their application for determination of oxygen content in metals and metallurgic products without destruction of a sample have been listed. Sensitivity and accuracy of determination are given, gained by the precision analysis, analysis of volume and surface of a sample and in determination of the traces of additions. Methods of analysis and conducting of determinations have been described and discussed. Sources of errors are described as well as the results of oxygen determination in non-ferrous metals and metallurgic products [ru

  8. [An optical-fiber-sensor-based spectrophotometer for soil non-metallic nutrient determination].

    Science.gov (United States)

    He, Dong-xian; Hu, Juan-xiu; Lu, Shao-kun; He, Hou-yong

    2012-01-01

    In order to achieve rapid, convenient and efficient soil nutrient determination in soil testing and fertilizer recommendation, a portable optical-fiber-sensor-based spectrophotometer including immersed fiber sensor, flat field holographic concave grating, and diode array detector was developed for soil non-metallic nutrient determination. According to national standard of ultraviolet and visible spectrophotometer with JJG 178-2007, the wavelength accuracy and repeatability, baseline stability, transmittance accuracy and repeatability measured by the prototype instrument were satisfied with the national standard of III level; minimum spectral bandwidth, noise and excursion, and stray light were satisfied with the national standard of IV level. Significant linear relationships with slope of closing to 1 were found between the soil available nutrient contents including soil nitrate nitrogen, ammonia nitrogen, available phosphorus, available sulfur, available boron, and organic matter measured by the prototype instrument compared with that measured by two commercial single-beam-based and dual-beam-based spectrophotometers. No significant differences were revealed from the above comparison data. Therefore, the optical-fiber-sensor-based spectrophotometer can be used for rapid soil non-metallic nutrient determination with a high accuracy.

  9. Performance evaluation of a biodiesel fuelled transportation engine retrofitted with a non-noble metal catalysed diesel oxidation catalyst for controlling unregulated emissions.

    Science.gov (United States)

    Shukla, Pravesh Chandra; Gupta, Tarun; Agarwal, Avinash Kumar

    2018-02-15

    In present study, engine exhaust was sampled for measurement and analysis of unregulated emissions from a four cylinder transportation diesel engine using a state-of-the-art FTIR (Fourier transform infrared spectroscopy) emission analyzer. Test fuels used were Karanja biodiesel blend (B20) and baseline mineral diesel. Real-time emission measurements were performed for raw exhaust as well as exhaust sampled downstream of the two in-house prepared non-noble metal based diesel oxidation catalysts (DOCs) and a baseline commercial DOC based on noble metals. Two prepared non-noble metal based DOCs were based on Co-Ce mixed oxide and Lanthanum based perovskite catalysts. Perovskite based DOC performed superior compared to Co-Ce mixed oxide catalyst based DOC. Commercial noble metal based DOC was found to be the most effective in reducing unregulated hydrocarbon emissions in the engine exhaust, followed by the two in-house prepared non-noble metal based DOCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Metal resistance in populations of red maple (Acer rubrum L.) and white birch (Betula papyrifera Marsh.) from a metal-contaminated region and neighbouring non-contaminated regions

    International Nuclear Information System (INIS)

    Kirkey, Fallon M.; Matthews, Jennifer; Ryser, Peter

    2012-01-01

    Metal resistance in populations of Acer rubrum and Betula papyrifera in the industrially contaminated region of Sudbury, Ontario, was compared with resistance in populations from neighbouring uncontaminated regions. In two one-season experiments, seedlings were grown outdoors on contaminated (mainly Cu, Ni) and uncontaminated substrates. Sudbury populations of both species responded less to contamination than populations from uncontaminated regions. In A. rubrum this difference was small. For both species, Sudbury plants were smaller when grown on uncontaminated substrate. B. papyrifera from Sudbury grew better on contaminated substrate than the other populations. There is indication of variation in metal resistance within the populations from the non-contaminated regions. The data shows that trees may develop adaptive resistance to heavy metals, but the low degree of resistance indicates that the development of such resistances are slower than observed for herbaceous species with shorter generation times. - Highlights: ► Metal resistance in trees from an industrially contaminated region was investigated. ► Both red maple and white birch have developed some degree of resistance. ► There is indication of a cost for resistance. ► Populations from non-contaminated regions show variation in response to contamination. - Adaptive metal resistance can also develop in trees with long generation times, but the degree of resistance is lower than for herbaceous species from the same region.

  11. 100% spin accumulation in non-half-metallic ferromagnet-semiconductor junctions

    International Nuclear Information System (INIS)

    Petukhov, A G; Niggemann, J; Smelyanskiy, V N; Osipov, V V

    2007-01-01

    We show that the spin polarization of electron density in non-magnetic degenerate semiconductors can achieve 100%. The effect of 100% spin accumulation does not require a half-metallic ferromagnetic contact and can be realized in ferromagnet-semiconductor FM-n + -n junctions even at moderate spin selectivity of the FM-n + contact when the electrons with spin 'up' are extracted from n semiconductor through the heavily doped n + layer into the ferromagnet and the electrons with spin 'down' are accumulated near the n + -n interface. We derived a general equation relating spin polarization of the current to that of the electron density in non-magnetic semiconductors. We found that the effect of complete spin polarization is achieved near the n + -n interface when the concentration of the spin 'up' electrons tends to zero in this region while the diffusion current of these electrons remains finite

  12. Non-equilibrium statistical theory about microscopic fatigue cracks of metal in magnetic field

    International Nuclear Information System (INIS)

    Zhao-Long, Liu; Hai-Yun, Hu; Tian-You, Fan; Xiu-San, Xing

    2010-01-01

    This paper develops the non-equilibrium statistical fatigue damage theory to study the statistical behaviour of micro-crack for metals in magnetic field. The one-dimensional homogeneous crack system is chosen for study. To investigate the effect caused by magnetic field on the statistical distribution of micro-crack in the system, the theoretical analysis on microcrack evolution equation, the average length of micro-crack, density distribution function of micro-crack and fatigue fracture probability have been performed. The derived results relate the changes of some quantities, such as average length, density distribution function and fatigue fracture probability, to the applied magnetic field, the magnetic and mechanical properties of metals. It gives a theoretical explanation on the change of fatigue damage due to magnetic fields observed by experiments, and presents an analytic approach on studying the fatigue damage of metal in magnetic field. (cross-disciplinary physics and related areas of science and technology)

  13. Growth and Filling Regularities of Filamentary Channels in Non-Metallic Inorganic Coatings Under Anodic Oxidation of Valve Metals. Mathematical Modeling

    Science.gov (United States)

    Mamaev, A. I.; Mamaeva, V. A.; Kolenchin, N. F.; Chubenko, A. K.; Kovalskaya, Ya. B.; Dolgova, Yu. N.; Beletskaya, E. Yu.

    2015-12-01

    Theoretical models are developed for growth and filling processes in filamentary channels of nanostructured non-metallic coatings produced by anodizing and microplasma oxidation. Graphical concentration distributions are obtained for channel-reacting anions, cations, and sparingly soluble reaction products depending on the time of electric current transmission and the length of the filamentary channel. Graphical distributions of the front moving velocity for the sparingly soluble compound are presented. The resulting model representation increases the understanding of the anodic process nature and can be used for a description and prediction of porous anodic film growth and filling. It is shown that the character of the filamentary channel growth and filling causes a variety of processes determining the textured metal - nonmetallic inorganic coating phase boundary formation.

  14. AES and SIMS analysis of non-metallic inclusions in a low-carbon chromium-steel.

    Science.gov (United States)

    Gammer, Katharina; Rosner, M; Poeckl, G; Hutter, H

    2003-05-01

    In the final step of secondary metallurgical steel processing, calcium is added. Besides Mg, Ca is the most powerful deoxidiser and desulfurisation agent. It reacts with dissolved oxygen and sulfur and reduces oxides and sulfides thereby forming non-metallic inclusions. Within this paper we present the analysis of such inclusions in a low-carbon chromium-steel. Depending on the time of quenching of the steel sample, different structures were revealed by REM, Auger and SIMS: If the steel was quenched immediately after Ca-addition, non-metallic inclusions that appeared to have "cavities" could be detected with SEM. SIMS investigations of these particles showed ring-shaped structures and revealed that the ring is made up of Al, Ca, Mg, O and S. No secondary ions however could be retrieved from the core inside the ring, thus leaving the nature of the "cavities" unclear. If the steel sample was quenched 3 min after Ca addition, inclusions did not have a ring-shaped structure but a compact one.

  15. The interaction between non-metallic inclusions and surface roughness in fatigue failure and their influence on fatigue strength

    International Nuclear Information System (INIS)

    Saberifar, S.; Mashreghi, A.R.; Mosalaeepur, M.; Ghasemi, S.S.

    2012-01-01

    Highlights: ► The fatigue strength of a tested steel was affected by inclusions and surface notches. ► Inclusions were the main fatigue crack sources even in rough specimens. ► The stress intensity factor represented the behavior of inclusions properly. ► In rough steels the effect of inclusions was intensified by surface roughness. ► The critical inclusion size increased when surface roughness was removed. -- Abstract: In this study, the influence of non-metallic inclusions on the fatigue behavior of 30MnVS6 steel containing different inclusion sizes and surface roughness has been investigated. Scanning electron microscope (SEM) was used to examine fatigue fracture origins. It was concluded that the non-metallic inclusions were dominant fatigue crack initiation sites in both smooth and rough specimens. This was justified by the calculation of stress intensity factor generated by both surface roughness and non-metallic inclusions, based on Murakami’s model. In addition, it was found that for a given stress, the critical inclusion size could be increased by eliminating the surface roughness.

  16. Non normal and non quadratic anisotropic plasticity coupled with ductile damage in sheet metal forming: Application to the hydro bulging test

    International Nuclear Information System (INIS)

    Badreddine, Houssem; Saanouni, Khemaies; Dogui, Abdelwaheb

    2007-01-01

    In this work an improved material model is proposed that shows good agreement with experimental data for both hardening curves and plastic strain ratios in uniaxial and equibiaxial proportional loading paths for steel metal until the final fracture. This model is based on non associative and non normal flow rule using two different orthotropic equivalent stresses in both yield criterion and plastic potential functions. For the plastic potential the classical Hill 1948 quadratic equivalent stress is considered while for the yield criterion the Karafillis and Boyce 1993 non quadratic equivalent stress is used taking into account the non linear mixed (kinematic and isotropic) hardening. Applications are made to hydro bulging tests using both circular and elliptical dies. The results obtained with different particular cases of the model such as the normal quadratic and the non normal non quadratic cases are compared and discussed with respect to the experimental results

  17. Metal-Insulator Transition Revisited for Cold Atoms in Non-Abelian Gauge Potentials

    International Nuclear Information System (INIS)

    Satija, Indubala I.; Dakin, Daniel C.; Clark, Charles W.

    2006-01-01

    We discuss the possibility of realizing metal-insulator transitions with ultracold atoms in two-dimensional optical lattices in the presence of artificial gauge potentials. For Abelian gauges, such transitions occur when the magnetic flux penetrating the lattice plaquette is an irrational multiple of the magnetic flux quantum. Here we present the first study of these transitions for non-Abelian U(2) gauge fields. In contrast to the Abelian case, the spectrum and localization transition in the non-Abelian case is strongly influenced by atomic momenta. In addition to determining the localization boundary, the momentum fragments the spectrum. Other key characteristics of the non-Abelian case include the absence of localization for certain states and satellite fringes around the Bragg peaks in the momentum distribution and an interesting possibility that the transition can be tuned by the atomic momenta

  18. ASSESSMENT OF ESSENTIAL AND NON-ESSENTIAL METALS IN ...

    African Journals Online (AJOL)

    Assessment of metals in Ethiopian traditional fermented alcoholic beverages ... The method detection limits for each metal were calculated from the standard ...... C.M.A.; Ojelum, A.L.; Bassey, F.I. A survey of metal profiles in some traditional.

  19. Application of generalized non-Schmid yield law to low-temperature plasticity in bcc transition metals

    International Nuclear Information System (INIS)

    Lim, H; Weinberger, C R; Battaile, C C; Buchheit, T E

    2013-01-01

    In this work, a generalized yield criterion that captures non-Schmid effects is proposed and implemented into a finite element crystal plasticity model to simulate plastic deformation of single and polycrystals. The parameters required for the constitutive formulation were calibrated to deformation experiments on single crystals. This model is used to investigate the effects of non-Schmid effects on the predictions of the stress–strain response and texture evolution in body-centered-cubic (bcc) metals. The non-Schmid contributions are required to accurately predict the stress–strain response of single crystals, and the concomitant non-associativity of the flow also increases the tendency of localization in polycrystal deformations. (paper)

  20. Kondo effect and non-Fermi liquid behavior in metallic glasses containing Yb, Ce, and Sm

    Science.gov (United States)

    Huang, B.; Yang, Y. F.; Wang, W. H.

    2013-04-01

    The low temperature properties of metallic glasses containing different concentrations of ytterbium, cerium, and samarium are studied. It is found that the Kondo effect caused by exchange interactions between the conduction and 4f electrons and non-Fermi liquid behavior appear in the strongly disordered alloys. We study the origins for these unique features and demonstrate that the found Kondo effect is inherited from the crystalline counterparts. The results might have significance on investigating the strong electron-electron interaction systems with structural disorder and be helpful for designing new metallic glasses with functional properties.

  1. Non-noble metal graphene oxide-copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.; Ravishankar, T.N.; Ramakrishnappa, T.; Nagaraju, Doddahalli H.; Krishna Pai, Ranjith

    2015-01-01

    Non-noble metal and inexpensive graphene oxide-copper (II) ions (GO-Cu2+) hybrid catalysts have been explored for the hydrogen evolution reaction (HER). We were able to tune the binding abilities of GO toward the Cu2+ ions and hence their catalytic

  2. Construction of stable Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} metal/non-metal nitride hybrids with enhanced visible-light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yinhua, E-mail: yms418@126.com [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 2120013,PR China (China); Liu, Peipei; Chen, YeCheng; Zhou, Zhengzhong; Yang, Haijian [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 2120013,PR China (China); Hong, Yuanzhi; Li, Fan; Ni, Liang [School of Materials Science and Engineering, Jiangsu University, Zhenjiang 2120013,PR China (China); Yan, Yongsheng [School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 2120013,PR China (China); Gregory, Duncan H, E-mail: duncan.gregory@glasgow.ac.uk [School of Chemistry, University of Glasgow, Glasgow G12 8QQ (United Kingdom)

    2017-01-01

    Highlights: • Novel Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} metal/non-metal nitride hybrids were synthesized. • The hybrid nitrides showed enhanced visible-light photocatalytic performance. • The Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} hybrid nitride exhibited excellent photostability. • The hole is the main photoactive specie for the degradation of RhB. - Abstract: In this paper, a novel Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} metal/non-metal nitride hybrid was successfully synthesized by a facile impregnation method. The photocatalytic activity of Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} hybrid nitrides was evaluated by the degradation of organic dye rhodamine B (RhB) under visible light irradiation, and the result indicated that all Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} samples exhibited distinctly enhanced photocatalytic activities for the degradation of RhB than pure g-C{sub 3}N{sub 4}. The optimal Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} composite sample, with Ta{sub 3}N{sub 5} mass ratio of 2%, demonstrated the highest photocatalytic activity, and its degradation rate constant was 2.71 times as high as that of pure g-C{sub 3}N{sub 4}. The enhanced photocatalytic activity of this Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} metal/metal-free nitride was predominantly attributed to the synergistic effect which increased visible-light absorption and facilitated the efficient separation of photoinduced electrons and holes. The Ta{sub 3}N{sub 5}/g-C{sub 3}N{sub 4} hybrid nitride exhibited excellent photostability and reusability. The possible mechanism for improved photocatalytic performance was proposed. Overall, this work may provide a facile way to synthesize the highly efficient metal/metal-free hybrid nitride photocatalysts with promising applications in environmental purification and energy conversion.

  3. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    Science.gov (United States)

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  4. Larval exposure to field-realistic concentrations of clothianidin has no effect on development rate, over-winter survival or adult metabolic rate in a solitary bee, Osmia bicornis

    Directory of Open Access Journals (Sweden)

    Elizabeth Nicholls

    2017-06-01

    Full Text Available There is widespread concern regarding the effects of agro-chemical exposure on bee health, of which neonicotinoids, systemic insecticides detected in the pollen and nectar of both crops and wildflowers, have been the most strongly debated. The majority of studies examining the effect of neonicotinoids on bees have focussed on social species, namely honey bees and bumble bees. However, most bee species are solitary, their life histories differing considerably from these social species, and thus it is possible that their susceptibility to pesticides may be quite different. Studies that have included solitary bees have produced mixed results regarding the impact of neonicotinoid exposure on survival and reproductive success. While the majority of studies have focused on the effects of adult exposure, bees are also likely to be exposed as larvae via the consumption of contaminated pollen. Here we examined the effect of exposure of Osmia bicornis larvae to a range of field-realistic concentrations (0–10 ppb of the neonicotinoid clothianidin, observing no effect on larval development time, overwintering survival or adult weight. Flow-through respirometry was used to test for latent effects of larval exposure on adult physiological function. We observed differences between male and female bees in the propensity to engage in discontinuous gas exchange; however, no effect of larval clothianidin exposure was observed. Our results suggest that previously reported adverse effects of neonicotinoids on O. bicornis are most likely mediated by impacts on adults.

  5. Larval exposure to field-realistic concentrations of clothianidin has no effect on development rate, over-winter survival or adult metabolic rate in a solitary bee, Osmia bicornis.

    Science.gov (United States)

    Nicholls, Elizabeth; Fowler, Robert; Niven, Jeremy E; Gilbert, James D; Goulson, Dave

    2017-01-01

    There is widespread concern regarding the effects of agro-chemical exposure on bee health, of which neonicotinoids, systemic insecticides detected in the pollen and nectar of both crops and wildflowers, have been the most strongly debated. The majority of studies examining the effect of neonicotinoids on bees have focussed on social species, namely honey bees and bumble bees. However, most bee species are solitary, their life histories differing considerably from these social species, and thus it is possible that their susceptibility to pesticides may be quite different. Studies that have included solitary bees have produced mixed results regarding the impact of neonicotinoid exposure on survival and reproductive success. While the majority of studies have focused on the effects of adult exposure, bees are also likely to be exposed as larvae via the consumption of contaminated pollen. Here we examined the effect of exposure of Osmia bicornis larvae to a range of field-realistic concentrations (0-10 ppb) of the neonicotinoid clothianidin, observing no effect on larval development time, overwintering survival or adult weight. Flow-through respirometry was used to test for latent effects of larval exposure on adult physiological function. We observed differences between male and female bees in the propensity to engage in discontinuous gas exchange; however, no effect of larval clothianidin exposure was observed. Our results suggest that previously reported adverse effects of neonicotinoids on O. bicornis are most likely mediated by impacts on adults.

  6. Highly Active Non-PGM Catalysts Prepared from Metal Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Heather M. Barkholtz

    2015-06-01

    Full Text Available Finding inexpensive alternatives to platinum group metals (PGMs is essential for reducing the cost of proton exchange membrane fuel cells (PEMFCs. Numerous materials have been investigated as potential replacements of Pt, of which the transition metal and nitrogen-doped carbon composites (TM/Nx/C prepared from iron doped zeolitic imidazolate frameworks (ZIFs are among the most active ones in catalyzing the oxygen reduction reaction based on recent studies. In this report, we demonstrate that the catalytic activity of ZIF-based TM/Nx/C composites can be substantially improved through optimization of synthesis and post-treatment processing conditions. Ultimately, oxygen reduction reaction (ORR electrocatalytic activity must be demonstrated in membrane-electrode assemblies (MEAs of fuel cells. The process of preparing MEAs using ZIF-based non-PGM electrocatalysts involves many additional factors which may influence the overall catalytic activity at the fuel cell level. Evaluation of parameters such as catalyst loading and perfluorosulfonic acid ionomer to catalyst ratio were optimized. Our overall efforts to optimize both the catalyst and MEA construction process have yielded impressive ORR activity when tested in a fuel cell system.

  7. Identification of non-linear kinematic hardening with bending and unbending tests in anisotropic sheet-metals

    International Nuclear Information System (INIS)

    Brunet, M.; Morestin, F.; Godereaux, S.

    2000-01-01

    An inverse identification technique is proposed based on bending-unbending experiments on anisotropic sheet-metal strips. The initial anisotropy theory of plasticity is extended to include the concept of combined isotropic and non-linear kinematic hardening. This theory is adopted to characterise the anisotropic hardening due to loading-unloading which occurs in sheet-metal forming processes. To this end, a specific bending-unbending apparatus has been built to provide experimental moment-curvature curves. The constant bending moment applied over the length of the specimen to determine numerically the strain-stress behaviour but without Finite Element Analysis. Four constitutive parameters have to be identified by an inverse approach. Our identification results show that bending-unbending tests are suitable to model quite accurately the constitutive behaviour of sheet metals under complex loading paths. (author)

  8. Accurate determination of non-metallic impurities in high purity tetramethylammonium hydroxide using inductively coupled plasma tandem mass spectrometry

    Science.gov (United States)

    Fu, Liang; Xie, Hualin; Shi, Shuyun; Chen, Xiaoqing

    2018-06-01

    The content of non-metallic impurities in high-purity tetramethylammonium hydroxide (HPTMAH) aqueous solution has an important influence on the yield, electrical properties and reliability of the integrated circuit during the process of chip etching and cleaning. Therefore, an efficient analytical method to directly quantify the content of non-metallic impurities in HPTMAH aqueous solutions is necessary. The present study was aimed to develop a novel method that can accurately determine seven non-metallic impurities (B, Si, P, S, Cl, As, and Se) in an aqueous solution of HPTMAH by inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). The samples were measured using a direct injection method. In the MS/MS mode, oxygen and hydrogen were used as reaction gases in the octopole reaction system (ORS) to eliminate mass spectral interferences during the analytical process. The detection limits of B, Si, P, S, Cl, As, and Se were 0.31, 0.48, 0.051, 0.27, 3.10, 0.008, and 0.005 μg L-1, respectively. The samples were analyzed by the developed method and the sector field inductively coupled plasma mass spectrometry (SF-ICP-MS) was used for contrastive analysis. The values of these seven elements measured using ICP-MS/MS were consistent with those measured by SF-ICP-MS. The proposed method can be utilized to analyze non-metallic impurities in HPTMAH aqueous solution. Table S2 Multiple potential interferences on the analytes. Table S3 Parameters of calibration curve and the detection limit (DL). Table S4 Results obtained for 25% concentration high-purity grade TMAH aqueous solution samples (μg L-1, mean ± standard deviation, n = 10).

  9. New trends for non-ferrous metals in the electrical engineering industry

    International Nuclear Information System (INIS)

    Singer, R.F.

    1989-01-01

    The non-ferrous metals copper, aluminium and nickel are of major importance to the electrical engineering industry. Copper is used for magnet wire, underground cable and overhead contact wire, and aluminium is important for overhead power transmission lines. Nickel alloys are employed as gas turbine blades in power generation. An important new trend in the conductor area is rapid solidification for improved combinations of strength and conductivity. Another new trend is the Conform continuous extrusion process which can decrease cost and increase quality. New high temperature superconductors might change the conductor market completely, but only on the long run. Nickel base blading materials will see considerable improvements from oxide dispersion strengthening and directional solidification. In summary, non-ferrous materials technology for electrical engineering applications is on the move and considerable improvements can be expected within the next decade. (orig.) [de

  10. [Non-empirical interatomic potentials for transition metals

    International Nuclear Information System (INIS)

    1993-01-01

    The report is divided into the following sections: potential-energy functions for d-band metals, potential-energy functions for aluminides and quasicrystals, electronic structure of complex structures and quasicrystals, potential-energy functions in transition-metal oxides, applications to defect structure and mechanical properties, and basic theory of interatomic potentials

  11. Determination of Three-Dimensional Morphology and Inner Structure of Second-Phase Inclusions in Metals by Non-Aqueous Solution Electrolytic and Room Temperature Organic Methods

    OpenAIRE

    Jing Guo; Keming Fang; Hanjie Guo; Yiwa Luo; Shengchao Duan; Xiao Shi; Wensheng Yang

    2018-01-01

    The secondary-phase particles in metals, particularly those composed of non-metallic materials, are often detrimental to the mechanical properties of metals; thus, it is crucial to control inclusion formation and growth. One of the challenges is determining the three-dimensional morphology and inner structures of such inclusions. In this study, a non-aqueous solution electrolytic method and a room-temperature organic technique were developed based on the principle of electrochemistry to deter...

  12. Non-Metallic Inclusions and Hot-Working Behaviour of Advanced High-Strength Medium-Mn Steels

    Directory of Open Access Journals (Sweden)

    Grajcar A.

    2016-06-01

    Full Text Available The work addresses the production of medium-Mn steels with an increased Al content. The special attention is focused on the identification of non-metallic inclusions and their modification using rare earth elements. The conditions of the thermomechanical treatment using the metallurgical Gleeble simulator and the semi-industrial hot rolling line were designed for steels containing 3 and 5% Mn. Hot-working conditions and controlled cooling strategies with the isothermal holding of steel at 400°C were selected. The effect of Mn content on the hot-working behaviour and microstructure of steel was addressed. The force-energetic parameters of hot rolling were determined. The identification of structural constituents was performed using light microscopy and scanning electron microscopy methods. The addition of rare earth elements led to the total modification of non-metallic inclusions, i.e., they replaced Mn and Al forming complex oxysulphides. The Mn content in a range between 3 and 5% does not affect the inclusion type and the hot-working behaviour. In contrast, it was found that Mn has a significant effect on a microstructure.

  13. Distribution and speciation of metals (Cu, Zn, Cd, and Pb) in agricultural and non-agricultural soils near a stream upriver from the Pearl River, China

    International Nuclear Information System (INIS)

    Yang, Silin; Zhou, Dequn; Yu, Huayong; Wei, Rong; Pan, Bo

    2013-01-01

    The distribution and chemical speciation of typical metals (Cu, Zn, Cd and Pb) in agricultural and non-agricultural soils were investigated in the area of Nanpan River, upstream of the Pearl River. The investigated four metals showed higher concentrations in agricultural soils than in non-agricultural soils, and the site located in factory district contained metals much higher than the other sampling sites. These observations suggested that human activities, such as water irrigation, fertilizer and pesticide applications might have a major impact on the distribution of metals. Metal speciation analysis presented that Cu, Zn and Cd were dominated by the residual fraction, while Pb was dominated by the reducible fraction. Because of the low mobility of the metals in the investigated area, no remarkable difference could be observed between upstream and downstream separated by the factory site. -- Highlights: ► Agricultural soils contain higher metal concentrations than non-agricultural soils. ► The site located in the factory district has the highest metal concentration. ► Cu, Zn and Cd are dominated by residual fraction, and Pb by reducible fraction. ► Cd pollution should not be overlooked in soils upstream of Pearl River. -- The mobility of four investigated metals is low but Cd pollution should not be overlooked in soils upstream of Pearl River

  14. Electrical properties of nanosized non-barrier inhomogeneities in Zn-based metal-semiconductor contacts to InP

    DEFF Research Database (Denmark)

    Clausen, Thomas; Leistiko, Otto

    1998-01-01

    We have found that the electrical properties of carriers across the metal-semiconductor interface for alloyed Zn based metallizations to n- and p-InP are dominated by nanosized non-barrier inhomogeneities. The effective area covered by the nanosized regions is a small fraction of the contact area...... resulting in high values of the specific contact resistance to p-InP. For n(-)-InP, thermionic emission across nanosized inhomogeneities dominates the carrier flow when T-ann > 440 degrees C. (C) 1998 Elsevier Science B.V....

  15. DEVELOPMENT OF THE REFERENCE MATERIALS PRODUCTION BRANCH IN THE JOINT STOCK COMPANY "THE GULIDOV KRASNOYARSK NON-FERROUS METALS PLANT"

    Directory of Open Access Journals (Sweden)

    K. A. Shatnykh

    2015-01-01

    Full Text Available The article deals with the development of the branch for the reference materials production in the Joint Stock Company "The Gulidov Krasnoyarsk Non-Ferrous Metals Plant" (JSC "Krastsvetmet". Here the most important workings for reference materials including the work for the London precious metal exchange, current and future works are stated.

  16. Polarization control of non-diffractive helical optical beams through subwavelength metallic apertures

    International Nuclear Information System (INIS)

    Lombard, E; Genet, C; Ebbesen, T W; Drezet, A

    2010-01-01

    We demonstrate experimentally a simple method for preparing non-diffractive vectorial optical beams that can display wave-front helicity. This method is based on space-variant modifications of the polarization of an optical beam transmitted through subwavelength annular rings perforating opaque metal films. We show how the description of the optical properties of such structures must account for the vectorial character of the polarization and how, in turn, these properties can be controlled by straightforward sequences of preparation and analysis of polarization states.

  17. Formation and Chemical Development of Non-metallic Inclusions in Ladle Treatment of Steel

    OpenAIRE

    Beskow, Kristina

    2003-01-01

    The present study was carried out to investigate theformation and chemical development of non-metallic inclusionsduring ladle treatment of steel. To begin with, an investigation of the deoxidation processand the impact of aluminium addition was carried out. For thispurpose, a new experimental setup was constructed. The setupallowed the examination of the deoxidation process as afunction of time by using a quenching technique. Preliminaryexperiments showed that homogeneous nucleation of alumin...

  18. Means to rise stability of matrices for hot pressing of non-ferrous metals

    International Nuclear Information System (INIS)

    Nagajtsev, A.A.; Piguzova, D.Kh.; Vajnpres, L.V.

    1975-01-01

    The paper deals with the basic trends adopted both in the USSR and abroad with respect to the development and industrial usage of new materials for hot pressing dies. Methods of their strengthening are also indicated. The paper presents results of production tests of new die steels and refractory alloys at a number of factories processing non-ferrous metals. The problems of their wide application in this field are considered

  19. Evaluation of Heavy Metals in Iranian and Non-Iranian Rice Supplied by Shopping Centers of Kashan, Iran

    Directory of Open Access Journals (Sweden)

    Rabbani D.1 PhD,

    2015-01-01

    Full Text Available Aims Heavy metals in the environment are toxic to plants, animals and human. This study aimed to investigate concentration of Arsenic, Lead and Cadmium in Iranian and non- Iranian rice which have been sold in Kashan City, Iran shops. Materials & Methods In this cross-sectional study, 126 samples from 42 trademarks (15 Iranian and 27 non-Iranian rice were collected from Kashan shopping centers. At first each sample was ashed, and then they have been dissolved with nitric acid. Heavy metal concentration was evaluated by inductively coupled plasma emission spectrophotometer. Data were analyzed by SPSS 16 software using One-sample and Independent T-tests. Findings Arsenic was not found in any of rice samples. There was a significant difference between Pb concentration in both Iranian and non-Iranian rice samples. There was not a significance difference between Cd concentration in Iranian (p=0.823 and non-Iranian (p=0.346 rice samples according to Iran national standards but there was a significant difference between Cd concentration in both Iranian (p=0.001 and non-Iranian (p=0.001 rice samples according to WHO and FAO standards. Conclusion Consumed rice pollution with Pb is considerable but with Cd is low. Arsenic concentration in Iranian and non-Iranian rice is less than Iran national and WHO/FAO standards.

  20. ULC/ORD-C80.1 : the standard for aboveground non-metallic tanks for fuel oil

    Energy Technology Data Exchange (ETDEWEB)

    Nikolic, G. [Underwriters' Lab. of Canada, Toronto, ON (Canada)

    2001-09-01

    As a rule, flammable and combustible liquids were stored in aboveground tanks made of steel. Non-metallic materials are now being used for a new generation of aboveground tanks. Corrosion is a problem faced by most tank owners in many parts of Canada. Saltwater mist, sand blasting and bacteria growth formed in the condensation water at the bottom of the tank in the Maritimes affects an aboveground tank installed outdoors and close to the seashore. European non-metallic aboveground tanks for fuel oil first arrived on the North American market, and are now followed by designs from Canada. Requirements for these tanks were developed and tested by the Underwriters' Laboratories of Canada (ULC). It is a not-for-profit, independent organization accredited by the Standards Council of Canada to perform safety, certification, testing, quality registration, and standards development. The minimum criteria for non-metallic aboveground tank construction are contained in the ULC/ORD-C80.1 document. They can be constructed of fiber-reinforced plastic (FRP), single or double wall, or they can be double wall tanks consisting of primary plastic tanks within metallic secondary containment. Other tanks are made of the blow molded high-density polyethylene. To simulate an in-house installation, fire tests were performed where a tank filled with fuel was exposed to pool fire for 30 minutes. A successful test meant the tank had not ruptured nor leaked during and after the test. Testers had to observe that any collapse occurred above the liquid level, and that violent explosion of any part of the tank or its content did not occur. The design requirements were evaluated by performing an analysis of the temperature chart: maximum vapour temperature inside the tank was 358 Celsius, while the liquid reached a maximum temperature of 91 Celsius and the outside temperature reached 600 Celsius. Primary tank pressure did not exceed 17 kilo Pascal. Building simulation of venting installation

  1. Study of heavy metals in Lake Abbaya, Ethiopia, and the incidence of non-parasitic elephantiasis

    Energy Technology Data Exchange (ETDEWEB)

    Klein, A.E.

    1977-01-01

    Samples of surface water from Lake Abbaya, Ethiopia, and from nearby hot springs, have been analysed for heavy metals and other consituents. Significant levels of mercury and arsenic were observed. These findings may be relevant to the high incidence of non-parasitic elephantiasis in the immediate vicinity of the lake.

  2. Electromagnetic detection and infrared visualization techniques for non-metallic inclusions in molten aluminum

    International Nuclear Information System (INIS)

    Fei Ming; Ludwig, Reinhold; Shankar, Sumanth; Apelian, Diran

    2002-01-01

    The role of detecting non-metallic and weakly conducting inclusions in hot melts during the manufacturing process is of major importance. However, the key impediment to assessing melt cleanliness is the quantification of the level of inclusions. In this paper, we present the theory and practice in using a magnetic force-based detection system capable of monitoring small inclusions of micron-size dimensions. The idea is to force the non-conducting inclusions to a detection location (the free melt surface) by electromagnetic Archimedes forces. Further, an infrared (IR) imaging system can then be applied to detect their thermal signature. Finally, a novel image-processing algorithm is used to analyze the inclusion level on the measurement surface

  3. Technology breakthroughs in high performance metal-oxide-semiconductor devices for ultra-high density, low power non-volatile memory applications

    Science.gov (United States)

    Hong, Augustin Jinwoo

    Non-volatile memory devices have attracted much attention because data can be retained without power consumption more than a decade. Therefore, non-volatile memory devices are essential to mobile electronic applications. Among state of the art non-volatile memory devices, NAND flash memory has earned the highest attention because of its ultra-high scalability and therefore its ultra-high storage capacity. However, human desire as well as market competition requires not only larger storage capacity but also lower power consumption for longer battery life time. One way to meet this human desire and extend the benefits of NAND flash memory is finding out new materials for storage layer inside the flash memory, which is called floating gate in the state of the art flash memory device. In this dissertation, we study new materials for the floating gate that can lower down the power consumption and increase the storage capacity at the same time. To this end, we employ various materials such as metal nanodot, metal thin film and graphene incorporating complementary-metal-oxide-semiconductor (CMOS) compatible processes. Experimental results show excellent memory effects at relatively low operating voltages. Detailed physics and analysis on experimental results are discussed. These new materials for data storage can be promising candidates for future non-volatile memory application beyond the state of the art flash technologies.

  4. Metal non-metal transitions in doped semiconductors

    International Nuclear Information System (INIS)

    Brezini, A.

    1989-12-01

    A disordered Hubbard model with diagonal disorder is used to examine the electron localization effects associated with both disorder and electron-electron interaction. Extensive results are reported on the ground state properties and compared with other theories. In particular two regimes are observed; when the electron-electron interaction U is greater than the disorder parameter and when is smaller. Furthermore the effect of including conduction-band minima into the calculation of metal-insulator transitions in doped Si and Ge is investigated with use of Berggren approach. Good agreement with experiments are found when both disorder and interactions are included. (author). 37 refs, 7 figs, 3 tabs

  5. Non-destructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): II. Hair and spines as indicators of endogenous metal and As concentrations

    International Nuclear Information System (INIS)

    D'Have, Helga; Scheirs, Jan; Mubiana, Valentine Kayawe; Verhagen, Ron; Blust, Ronny; Coen, Wim de

    2006-01-01

    The role of hair and spines of the European hedgehog as non-destructive monitoring tools of metal (Ag, Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, Zn) and As pollution in terrestrial ecosystems was investigated. Our results showed that mean pollution levels of a random sample of hedgehogs in Flanders are low to moderate. Yet, individual hedgehogs may be at risk for metal toxicity. Tissue distribution analyses (hair, spines, liver, kidney, muscle and fat tissue) indicated that metals and As may reach considerable concentrations in external tissues, such as hair and spines. Positive relationships were observed between concentrations in hair and those in liver, kidney and muscle for Al, Co, Cr, Cu, and Pb (0.43 < r < 0.85). Spine concentrations were positively related to liver, kidney and muscle concentrations for Cd, Co, Cr, Cu and Pb (0.37 < r < 0.62). Hair Ag, As, Fe and Zn and spine Ag, Al, As and Fe were related to metal concentrations in one or two of the investigated internal tissues (0.31 < r < 0.45). The regression models presented here may be used to predict metal and As concentrations in internal tissues of hedgehogs when concentrations in hair or spines are available. The present study demonstrated the possibility of using hair and spines for non-destructive monitoring of metal and As pollution in hedgehogs. - Hedgehog hair and spines are promising non-destructive biomonitoring tools of terrestrial metal pollution

  6. Non-destructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): II. Hair and spines as indicators of endogenous metal and As concentrations

    Energy Technology Data Exchange (ETDEWEB)

    D' Have, Helga [Ecophysiology, Biochemistry and Toxicology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)]. E-mail: helga.dhave@ua.ac.be; Scheirs, Jan [Evolutionary Biology Group, Department of Biology, University of Antwerp, B-2020 Antwerp (Belgium); Mubiana, Valentine Kayawe [Ecophysiology, Biochemistry and Toxicology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Verhagen, Ron [Evolutionary Biology Group, Department of Biology, University of Antwerp, B-2020 Antwerp (Belgium); Blust, Ronny [Ecophysiology, Biochemistry and Toxicology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Coen, Wim de [Ecophysiology, Biochemistry and Toxicology Group, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2006-08-15

    The role of hair and spines of the European hedgehog as non-destructive monitoring tools of metal (Ag, Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, Zn) and As pollution in terrestrial ecosystems was investigated. Our results showed that mean pollution levels of a random sample of hedgehogs in Flanders are low to moderate. Yet, individual hedgehogs may be at risk for metal toxicity. Tissue distribution analyses (hair, spines, liver, kidney, muscle and fat tissue) indicated that metals and As may reach considerable concentrations in external tissues, such as hair and spines. Positive relationships were observed between concentrations in hair and those in liver, kidney and muscle for Al, Co, Cr, Cu, and Pb (0.43 < r < 0.85). Spine concentrations were positively related to liver, kidney and muscle concentrations for Cd, Co, Cr, Cu and Pb (0.37 < r < 0.62). Hair Ag, As, Fe and Zn and spine Ag, Al, As and Fe were related to metal concentrations in one or two of the investigated internal tissues (0.31 < r < 0.45). The regression models presented here may be used to predict metal and As concentrations in internal tissues of hedgehogs when concentrations in hair or spines are available. The present study demonstrated the possibility of using hair and spines for non-destructive monitoring of metal and As pollution in hedgehogs. - Hedgehog hair and spines are promising non-destructive biomonitoring tools of terrestrial metal pollution.

  7. Transfer and accumulation of metals in a soil-diet-wood mouse food chain along a metal pollution gradient

    International Nuclear Information System (INIS)

    Rogival, Damien; Scheirs, Jan; Blust, Ronny

    2007-01-01

    We studied the accumulation and transfer of As, Cd, Cu, Pb and Zn in the compartments of a soil-diet-wood mouse (Apodemus sylvaticus) food chain at five sites located along a metal pollution gradient. We observed a clear gradient in metal exposure at increasing distance from the smelter in all compartments of the food chain for the non-essential metals. The gradient was less clear or absent for the essential metals in acorn and mice target tissues. Regression analysis showed overall strong relationships within the soil-diet and diet-wood mouse compartments for the non-essential metals, while relationships for the essential metals were weak or absent. Total metal in soil appeared as a better predictor for the diet metal content than the available metal fraction. Our results suggest a more important transfer of non-essential elements through the food chain than essential elements, which is probably a consequence of homeostatic control of the latter group. - Non-essential metal transfer through a soil-diet-wood mouse food chain is more important than essential metal transfer

  8. Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L

    Energy Technology Data Exchange (ETDEWEB)

    Barrutia, Oihana, E-mail: oihana.barrutia@ehu.e [Department of Plant Biology and Ecology, University of the Basque Country/EHU, P. O. Box 644, E-48080 Bilbao (Spain); Garbisu, Carlos; Hernandez-Allica, Javier [NEIKER-Tecnalia, Basque Institute of Agricultural Research and Development, c/ Berreaga 1, E-48160 Derio (Spain); Garcia-Plazaola, Jose Ignacio; Becerril, Jose Maria [Department of Plant Biology and Ecology, University of the Basque Country/EHU, P. O. Box 644, E-48080 Bilbao (Spain)

    2010-05-15

    Two common sorrel (Rumex acetosa) accessions, one from a Zn-Pb contaminated site (CS accession) and the other from an uncontaminated site (UCS accession), were hydroponically exposed to a mixture of heavy metals (Pb{sup 2+} + Zn{sup 2+} + Cd{sup 2+}) with and without EDTA at an equimolar rate. The metallicolous CS accession showed a higher tolerance to metal treatment in the absence of the chelating agent, whereas the UCS accession was especially tolerant to EDTA treatment alone. Combination of metal and EDTA treatment resulted in a higher Pb accumulation in shoots of both accessions although plants hardly showed phytotoxic symptoms. Cd and Zn uptake was not augmented by EDTA addition to the polymetallic medium. Chelant-assisted Pb accumulation was 70% higher in the CS accession than in the UCS accession, despite the fact that the former accession evapotranspired less water than the UCS accession. These results support the existence of a non-selective apoplastic transport of metal chelates by R. acetosa roots, not related to transpiration stream. - A partial intolerance of plants to a certain chelating agent can contribute to the understanding of the mechanisms and pathways of metal chelates uptake.

  9. Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L

    International Nuclear Information System (INIS)

    Barrutia, Oihana; Garbisu, Carlos; Hernandez-Allica, Javier; Garcia-Plazaola, Jose Ignacio; Becerril, Jose Maria

    2010-01-01

    Two common sorrel (Rumex acetosa) accessions, one from a Zn-Pb contaminated site (CS accession) and the other from an uncontaminated site (UCS accession), were hydroponically exposed to a mixture of heavy metals (Pb 2+ + Zn 2+ + Cd 2+ ) with and without EDTA at an equimolar rate. The metallicolous CS accession showed a higher tolerance to metal treatment in the absence of the chelating agent, whereas the UCS accession was especially tolerant to EDTA treatment alone. Combination of metal and EDTA treatment resulted in a higher Pb accumulation in shoots of both accessions although plants hardly showed phytotoxic symptoms. Cd and Zn uptake was not augmented by EDTA addition to the polymetallic medium. Chelant-assisted Pb accumulation was 70% higher in the CS accession than in the UCS accession, despite the fact that the former accession evapotranspired less water than the UCS accession. These results support the existence of a non-selective apoplastic transport of metal chelates by R. acetosa roots, not related to transpiration stream. - A partial intolerance of plants to a certain chelating agent can contribute to the understanding of the mechanisms and pathways of metal chelates uptake.

  10. A mechanical model of a non-uniform ionomeric polymer metal composite actuator

    International Nuclear Information System (INIS)

    Anton, Mart; Aabloo, Alvo; Punning, Andres; Kruusmaa, Maarja

    2008-01-01

    This paper describes a mechanical model of an IPMC (ionomeric polymer metal composite) actuator in a cantilever beam configuration. The main contribution of our model is that it gives the most detailed description reported so far of the quasistatic mechanical behaviour of the actuator with non-uniform bending at large deflections. We also investigate a case where part of an IPMC actuator is replaced with a rigid elongation and demonstrate that this configuration would make the actuator behave more linearly. The model is experimentally validated with MuscleSheet(TM) IPMCs, purchased from BioMimetics Inc

  11. Application of the quantitative autoradiography for determination of specific activity of labelled non-metallic inclusions

    International Nuclear Information System (INIS)

    Kowalczyk, J.T.; Wilczynski, A.W.

    1983-01-01

    The knowledge of specific activity of labelled non-metallic inclusions, i.e. the knowledge of the content of the radiotracer in a single inclusion, allows to obtain new information about the mechanism and the kinetics of steel deoxidation. In order to determine this specific activity quantitative autoradiography was used. Fo; this purpose, various standards of aluminium oxides with different amounts of cerium oxide Ce 2 O 3 and an aluminium-cerium alloy were prepared. The standards and the alloy were activated with thermal neutrons. Then several autoradiographs were made for these standards (ORWO AF-3 films were used). The autoradiographs served as the basis for evaluation of the standardization curves: optical density versus dimension of particles for a constant cerium concentration; optical density versus concentration of cerium for a constant dimension of particle. The samples of liquid steel were deoxidated with Al-Ce alloy. After labelled non-metallic inclusions had been isolated, the autoradiographs were made under the same conditions as for the standards. The standardization curves were used to determine the cerium content in the single inclusions. (author)

  12. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

    International Nuclear Information System (INIS)

    Ma, Wen; Yildiz, Bilge; Herbert, F. William; Senanayake, Sanjaya D.

    2015-01-01

    The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr 1+ , Zr 2+ , and Zr 3+ as non-equilibrium oxidation states, in addition to Zr 4+ in the stoichiometric ZrO 2 . This finding resolves the long-debated question of whether it is possible to form any valence states between Zr 0 and Zr 4+ at the metal-oxide interface. The presence of local strong electric fields and the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr

  13. A direct metal transfer method for cross-bar type polymer non-volatile memory applications

    International Nuclear Information System (INIS)

    Kim, Tae-Wook; Lee, Kyeongmi; Oh, Seung-Hwan; Wang, Gunuk; Kim, Dong-Yu; Jung, Gun-Young; Lee, Takhee

    2008-01-01

    Polymer non-volatile memory devices in 8 x 8 array cross-bar architecture were fabricated by a non-aqueous direct metal transfer (DMT) method using a two-step thermal treatment. Top electrodes with a linewidth of 2 μm were transferred onto the polymer layer by the DMT method. The switching behaviour of memory devices fabricated by the DMT method was very similar to that of devices fabricated by the conventional shadow mask method. The devices fabricated using the DMT method showed three orders of magnitude of on/off ratio with stable resistance switching, demonstrating that the DMT method can be a simple process to fabricate organic memory array devices

  14. A non-destructive evaluation of transverse hydrogen cracking in high strength flux-cored weld metal

    International Nuclear Information System (INIS)

    Sterjovski, Z.; Carr, D. G.; Holdstock, R.; Nolan, D.; Norrish, J.

    2007-01-01

    Transverse hydrogen cracking in high strength weld metal (WM) is a potentially serious problem in thick-sections, especially in highly restrained structures. This paper presents preliminary re suits for which transverse weld metal hydrogen cracking was purposefully generated in 40 mm thick high strength WM to study the effectiveness of various non-destructive testing methods in locating and sizing transverse cracks. Transverse WM hydrogen cracking was intentionally produced by: increasing diffusible hydrogen levels through the introduction of 2% hydrogen in CO 2 shielding gas and minimizing interpass temperature and time; increasing the cracking susceptibility of the micro structure by increasing cooling rate with a large-scale test plate and maintaining an interpass temperature below 70 deg C; increasing stress levels with the use of stiffeners and end welds; and rapid postweld cooling to a temperature lower than 100 deg C. The extent of transverse weld metal hydrogen cracking was evaluated by non-destructive testing (NDT), which included conventional ultrasonic testing, radiography, acoustic emission monitoring and magnetic particle inspection. It was established that conventional ultrasonic testing was the most effective of the NDT techniques used. Acoustic emission monitoring revealed that two different types of emissions emanated from the weld metal and that the majority of emissions occurred within the first 48 hours of welding, although there was some evidence of cracking well after this initial 48 hour period. Larger sized cracks were observed near the transverse stiffeners (and weld ends) where tensile residual stresses (both longitudinal and transverse) were thought to be highest and the micro structure was therefore more susceptible to cracking. Additionally, numerous finer cracks were located in the top third of the plate (in the thickness direction) and on both sides of the weld centre line

  15. Unipolar resistive switching in metal oxide/organic semiconductor non-volatile memories as a critical phenomenon

    International Nuclear Information System (INIS)

    Bory, Benjamin F.; Meskers, Stefan C. J.; Rocha, Paulo R. F.; Gomes, Henrique L.; Leeuw, Dago M. de

    2015-01-01

    Diodes incorporating a bilayer of an organic semiconductor and a wide bandgap metal oxide can show unipolar, non-volatile memory behavior after electroforming. The prolonged bias voltage stress induces defects in the metal oxide with an areal density exceeding 10 17  m −2 . We explain the electrical bistability by the coexistence of two thermodynamically stable phases at the interface between an organic semiconductor and metal oxide. One phase contains mainly ionized defects and has a low work function, while the other phase has mainly neutral defects and a high work function. In the diodes, domains of the phase with a low work function constitute current filaments. The phase composition and critical temperature are derived from a 2D Ising model as a function of chemical potential. The model predicts filamentary conduction exhibiting a negative differential resistance and nonvolatile memory behavior. The model is expected to be generally applicable to any bilayer system that shows unipolar resistive switching

  16. Summary reports of the R and D programme: recycling of non-ferrous metals (1986-1989)

    International Nuclear Information System (INIS)

    Donato, M.

    1992-01-01

    This document contains the summary reports of cost sharing research and development contracts funded under the recycling of non-ferrous metals subprogramme of the Commission of the European Communities. In particular from p.171 to 212 is described the recovery of rare earths by supported liquid membranes: synthesis and use of new selective macrocyclic and/or compartmental ligands

  17. Levels of selected essential and non-essential metals in seeds of korarima (Aframomum corrorima cultivated in Ethiopia

    Directory of Open Access Journals (Sweden)

    Birhanu Mekassa

    2015-06-01

    Full Text Available SummaryThe levels of essential (Ca, Mg, Fe, Zn, Cu, Co, Cr, Mn and Ni and non-essential (Cd and Pb metals were determined by flame atomic absorption spectrometry in samples of korarima (Aframomum corrorima seeds and the corresponding soils collected from southern and southwestern Ethiopia. A wet digestion procedure involving the use of 3 mL of HNO3 (69-72% and 1 mL of HClO4 (70% were used to solubilize the metals from the korarima seed samples, and a modified aqua regia (HCl:HNO3 reagent with added hydrogen peroxide (6 mL of aqua regia and 1.5 mL of H2O2 was used for the soil samples. The levels of the nutrients in the korarima seed samples were in the following ranges: Ca (1794-2181; Mg (1626-2067; Mn (141-180; Fe (37-46; Zn (12-18; Ni (6.6-8.5; Cu (5.8-8.3; Cr (3.8-5.8 and Co (2.0-2.3 in µg g–1, respectively. The concentration of non-essential cadmium was in the range from 0.9-1 µg g–1 while that of lead was below the detection limit of the method. There was good correlation between the levels of some metals (Ni, Fe, Cd, Ca, Cu, Mg in the korarima seeds and soil samples but poor correlation between other metals (Cr, Zn, Mn, Co.

  18. Magnetodynamic non-linearity of electric properties of uncompensated metals

    International Nuclear Information System (INIS)

    Sobol', V.R.; Mazurenko, O.N.

    2001-01-01

    Magnetodynamic non-linearity of electric properties of normal metals is investigated both experimentally and analytically provided that the drift of charge carriers of high density in crossed electric and magnetic fields results in generation of a self current field. The measurements were made on high purity polycrystalline aluminium cylindrical conductors under the action of the magnetic field, coaxial the sample axis, on the radial current. The electric potential and its nonlinear correction are determined in a wide range of energy dissipation values up to the levels corresponding to the crisis of liquid helium boiling. In the approximation of contribution additivity to the resistive effect of both the external and self magnetic field agreement between the experimental data and the results calculated using the macroscopic field equations is attained. The problems of magnetic energy concentration for cylindrical conductors is discussed in the approximation of long and short solenoids

  19. Effectiveness of managed populations of wild and honey bees as supplemental pollinators of sour cherry (Prunus cerasus L.) under different climatic conditions

    DEFF Research Database (Denmark)

    Hansted, Lise; Grout, Brian William Wilson; Toldam-Andersen, Torben Bo

    2015-01-01

    Managed populations of Apis mellifera, Bombus terrestris and Osmia have been investigated rufa as sour cherry pollinators in two flowering seasons with different weather patterns. Flight activity of the three bee species during the pollination-receptive period of the cultivar ‘Stevnsbaer’ was rec......Managed populations of Apis mellifera, Bombus terrestris and Osmia have been investigated rufa as sour cherry pollinators in two flowering seasons with different weather patterns. Flight activity of the three bee species during the pollination-receptive period of the cultivar ‘Stevnsbaer...

  20. Equilibrium and non-equilibrium metal-ceramic interfaces

    International Nuclear Information System (INIS)

    Gao, Y.; Merkle, K.L.

    1992-01-01

    Metal-ceramic interfaces in thermodynamic equilibrium (Au/ZrO 2 ) and non-equilibrium (Au/MgO) have been studied by TEM and HREM. In the Au/ZrO 2 system, ZrO 2 precipitates formed by internal oxidation of a 7%Zr-Au alloy show a cubic ZrO 2 phase. It appears that formation of the cubic ZrO 2 is facilitated by alignment with the Au matrix. Most of the ZrO 2 precipitates have a perfect cube-on-cube orientation relationship with the Au matrix. The large number of interfacial steps observed in a short-time annealing experiment indicate that the precipitates are formed by the ledge growth mechanism. The lowest interfacial energy is indicated by the dominance of closed-packed [111] Au/ZrO 2 interfaces. In the Au/MgO system, composite films with small MgO smoke particles embedded in a Au matrix were prepared by a thin film technique. HREM observations show that most of the Au/MgO interfaces have a strong tendency to maintain a dense lattice structure across the interfaces irrespective of whether the interfaces are incoherent or semi-coherent. This paper reports that this indicates that there may be a relatively strong bond between MgO and Au

  1. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    OpenAIRE

    Liren Fan; Jiqing Song; Wenbo Bai; Shengping Wang; Ming Zeng; Xiaoming Li; Yang Zhou; Haifeng Li; Haiwei Lu

    2016-01-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shel...

  2. Do the levels of selected metals differ significantly between the roots of carious and non-carious teeth?

    International Nuclear Information System (INIS)

    Malara, Piotr; Kwapulinski, Jerzy; Malara, Beata

    2006-01-01

    Since the metals deposited in teeth during formation and mineralization processes are to a large extent retained, human teeth receive a considerable attention as the indicators of the heavy metal exposure. The use of permanent teeth is limited because the extraction of healthy permanent teeth just for this purpose is hardly acceptable. As the issue of the loss of elements from a carious lesion in the coronal part of a tooth remains controversial, the valuable material could only be the root of carious and fractured permanent teeth. However, to ensure the validity of the results, it should be ascertained that the levels of certain toxic and essential elements do not differ significantly between the roots of non-carious and carious teeth, and therefore this is the aim of this project. The levels of cadmium, chromium, copper, iron, manganese, lead, zinc, potassium, sodium, calcium and magnesium were determined in the roots of 344 permanent teeth (189 carious and 155 caries-free teeth) from the residents of Ruda Slaska, Poland, aged 18 to 34. No statistically significant difference between the concentration of these metals in the roots of non-carious and carious teeth was found. This finding applies to both the general population and after the grouping by donor's gender and tooth type. The concentration of lead, iron, calcium and manganese in the roots of non-carious and carious teeth exhibited dependence upon tooth type, as well as the concentration of potassium in the roots of carious teeth. Since the mineral composition of the roots of permanent teeth is similar for the non-carious, as well as the carious teeth, they can be indiscriminately selected for the tests required by a research project, as they will produce the comparable results. However, in the case of lead, iron, calcium, potassium and manganese, the comparison should be made after grouping by tooth type

  3. Surface treatment of non-ferrous metals for the purpose of gas analysis

    International Nuclear Information System (INIS)

    Quaglia, L.; Weber, G.; Triffaux, J.; Geerts, J.; Audenhove, J. van; Pauwels, J.

    1979-01-01

    The present report is an updating of earlier reports published in 1972 and 1976. Its major improvement compared to the earlier reports is that greater importance has been devoted to quantify the parameters of mechanical shaping techniques to be used with or without subsequent chemical etching. Surface treatments have been studied and standardized for a number of non-ferrous metals. Recommendations were generally made on the basis of the following: the proposed treatment must give a minimum surface content; it must exhibit good reproducibility; it must be easy to perform with equipment normally available in analytical laboratories. The recommended treatments are presented in the form of sheets. They give full information on mechanica shaping parameters if these are important, and -if needed- the subsequent chemical etching conditions. Typical residual surface contents are given for oxygen carbon and nitrogen. They refer to samples freshly prepared. The metals or alloys concerned are: aluminium, aluminium alloyed with 3%, 7% and 13% silicon, copper, lead, nickel, titanium, TiAl 6 V 4 zirconium, tungsten and molybdenum

  4. An aviation security (AVSEC) screening demonstrator for the detection of non-metallic threats at 28-33 GHz

    Science.gov (United States)

    Salmon, Neil A.; Bowring, Nick; Hutchinson, Simon; Southgate, Matthew; O'Reilly, Dean

    2013-10-01

    The unique selling proposition of millimetre wave technology for security screening is that it provides a stand-off or portal scenario sensing capability for non-metallic threats. The capabilities to detect some non-metallic threats are investigated in this paper, whilst recommissioning the AVSEC portal screening system at the Manchester Metropolitan University. The AVSEC system is a large aperture (1.6 m) portal screening imager which uses spatially incoherent illumination at 28-33 GHz from mode scrambling cavities to illuminate the subject. The imaging capability is critically analysed in terms of this illumination. A novel technique for the measurement of reflectance, refractive index and extinction coefficient is investigated and this then use to characterise the signatures of nitromethane, hexane, methanol, bees wax and baking flour. Millimetre wave images are shown how these liquids in polycarbonate bottles and the other materials appear against the human body.

  5. Development of a Flexible Non-Metal Electrode for Cell Stimulation and Recording

    Directory of Open Access Journals (Sweden)

    Cihun-Siyong Alex Gong

    2016-09-01

    Full Text Available This study presents a method of producing flexible electrodes for potentially simultaneously stimulating and measuring cellular signals in retinal cells. Currently, most multi-electrode applications rely primarily on etching, but the metals involved have a certain degree of brittleness, leaving them prone to cracking under prolonged pressure. This study proposes using silver chloride ink as a conductive metal, and polydimethysiloxane (PDMS as the substrate to provide electrodes with an increased degree of flexibility to allow them to bend. This structure is divided into the electrode layer made of PDMS and silver chloride ink, and a PDMS film coating layer. PDMS can be mixed in different proportions to modify the degree of rigidity. The proposed method involved three steps. The first segment entailed the manufacturing of the electrode, using silver chloride ink as the conductive material, and using computer software to define the electrode size and micro-engraving mechanisms to produce the electrode pattern. The resulting uniform PDMS pattern was then baked onto the model, and the flow channel was filled with the conductive material before air drying to produce the required electrode. In the second stage, we tested the electrode, using an impedance analyzer to measure electrode cyclic voltammetry and impedance. In the third phase, mechanical and biocompatibility tests were conducted to determine electrode properties. This study aims to produce a flexible, non-metallic sensing electrode which fits snugly for use in a range of measurement applications.

  6. Formation of non-metallic inclusions and the possibility of their removal during ingot casting

    OpenAIRE

    Ragnarsson, Lars

    2010-01-01

    The present study was carried out to investigate the formation and evolution of non-metallic inclusions during ingot casting. Emphasize have been on understanding the types of inclusions formed and developed through the casting process and on the development of already existing inclusions carried over from the ladle during casting. Industrial experiments carried on at Uddeholm Tooling together with laboratory work and Computational Fluid Dynamics (CFD) simulations. Ingots of 5.8 tons have bee...

  7. Development of Non-Noble Metal Ni-Based Catalysts for Dehydrogenation of Methylcyclohexane

    KAUST Repository

    Al-ShaikhAli, Anaam H.

    2016-11-30

    Liquid organic chemical hydride is a promising candidate for hydrogen storage and transport. Methylcyclohexane (MCH) to toluene (TOL) cycle has been considered as one of the feasible hydrogen carrier systems, but selective dehydrogenation of MCH to TOL has only been achieved using the noble Pt-based catalysts. The aim of this study is to develop non-noble, cost-effective metal catalysts that can show excellent catalytic performance, mainly maintaining high TOL selectivity achievable by Pt based catalysts. Mono-metallic Ni based catalyst is a well-known dehydrogenation catalyst, but the major drawback with Ni is its hydrogenolysis activity to cleave C-C bonds, which leads to inferior selectivity towards dehydrogenation of MCH to TOL. This study elucidate addition of the second metal to Ni based catalyst to improve the TOL selectivity. Herein, ubiquitous bi-metallic nanoparticles catalysts were investigated including (Ni–M, M: Ag, Zn, Sn or In) based catalysts. Among the catalysts investigated, the high TOL selectivity (> 99%) at low conversions was achieved effectively using the supported NiZn catalyst under flow of excess H2. In this work, a combined study of experimental and computational approaches was conducted to determine the main role of Zn over Ni based catalyst in promoting the TOL selectivity. A kinetic study using mono- and bimetallic Ni based catalysts was conducted to elucidate reaction mechanism and site requirement for MCH dehydrogenation reaction. The impact of different reaction conditions (feed compositions, temperature, space velocity and stability) and catalyst properties were evaluated. This study elucidates a distinctive mechanism of MCH dehydrogenation to TOL reaction over the Ni-based catalysts. Distinctive from Pt catalyst, a nearly positive half order with respect to H2 pressure was obtained for mono- and bi-metallic Ni based catalysts. This kinetic data was consistent with rate determining step as (somewhat paradoxically) hydrogenation

  8. Alkali metal ion battery with bimetallic electrode

    Science.gov (United States)

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  9. Compartmentation and complexation of metals in hyperaccumulator plants

    Directory of Open Access Journals (Sweden)

    Barbara eLeitenmaier

    2013-09-01

    Full Text Available Hyperaccumulators are being intensely investigated. They are not only interesting in scientific context due to their strange behaviour in terms of dealing with high concentrations of metals, but also because of their use in phytoremediation and phytomining, for which understanding the mechanisms of hyperaccumulation is crucial. Hyperaccumulators naturally use metal accumulation as a defence against herbivores and pathogens, and therefore deal with accumulated metals in very specific ways of complexation and compartmentation, different from non-hyperaccumulator plants and also non-hyperaccumulated metals. For example, in contrast to non-hyperaccumulators, in hyperaccumulators even the classical phytochelatin-inducing metal, cadmium, is predominantly not bound by such sulfur ligands, but only by weak oxygen ligands. This applies to all hyperaccumulated metals investigated so far, as well as hyperaccumulation of the metalloid arsenic. Stronger ligands, as they have been shown to complex metals in non-hyperaccumulators, are in hyperaccumulators used for transient binding during transport to the storage sites. This confirmed that enhanced active metal transport, and not metal complexation, is the key mechanism of hyperaccumulation. Hyperaccumulators tolerate the high amount of accumulated heavy metals by sequestering them into vacuoles, usually in large storage cells of the epidermis. This is mediated by strongly elevated expression of specific transport proteins in various tissues from metal uptake in the shoots up to the storage sites in the leaf epidermis. However, this mechanism seems to be very metal specific. Non-hyperaccumulated metals in hyperaccumulators seem to be dealt with like in non-hyperaccumulator plants, i.e. detoxified by binding to strong ligands such as metallothioneins.

  10. Nature of the metal-support interface in supported metal catalysts: results from x-ray absorption spectroscopy

    NARCIS (Netherlands)

    Koningsberger, D.C.; Gates, B.C.

    1992-01-01

    X-ray absorption spectra characterizing the metal-support interface in supported metal complexes and supported metal catalysts are summarized and evaluated with 29 refs. Mononuclear transition metal complexes on non-reducible metal oxide supports are bonded with metal-oxygen bonds of .apprx.2.15

  11. Metal resistance in populations of red maple (Acer rubrum L.) and white birch (Betula papyrifera Marsh.) from a metal-contaminated region and neighbouring non-contaminated regions.

    Science.gov (United States)

    Kirkey, Fallon M; Matthews, Jennifer; Ryser, Peter

    2012-05-01

    Metal resistance in populations of Acer rubrum and Betula papyrifera in the industrially contaminated region of Sudbury, Ontario, was compared with resistance in populations from neighbouring uncontaminated regions. In two one-season experiments, seedlings were grown outdoors on contaminated (mainly Cu, Ni) and uncontaminated substrates. Sudbury populations of both species responded less to contamination than populations from uncontaminated regions. In A. rubrum this difference was small. For both species, Sudbury plants were smaller when grown on uncontaminated substrate. B. papyrifera from Sudbury grew better on contaminated substrate than the other populations. There is indication of variation in metal resistance within the populations from the non-contaminated regions. The data shows that trees may develop adaptive resistance to heavy metals, but the low degree of resistance indicates that the development of such resistances are slower than observed for herbaceous species with shorter generation times. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. A DGTD method for the numerical modeling of the interaction of light with nanometer scale metallic structures taking into account non-local dispersion effects

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt, Nikolai [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France); Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder (TEMF), Schlossgartenstr. 8, 64289 Darmstadt (Germany); Scheid, Claire [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France); University of Nice – Sophia Antipolis, Mathematics laboratory, Parc Valrose, 06108 Nice, Cedex 02 (France); Lanteri, Stéphane, E-mail: Stephane.Lanteri@inria.fr [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France); Moreau, Antoine [Institut Pascal, Université Blaise Pascal, 24, avenue des Landais, 63171 Aubière Cedex (France); Viquerat, Jonathan [Inria, 2004 Route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

    2016-07-01

    The interaction of light with metallic nanostructures is increasingly attracting interest because of numerous potential applications. Sub-wavelength metallic structures, when illuminated with a frequency close to the plasma frequency of the metal, present resonances that cause extreme local field enhancements. Exploiting the latter in applications of interest requires a detailed knowledge about the occurring fields which can actually not be obtained analytically. For the latter mentioned reason, numerical tools are thus an absolute necessity. The insight they provide is very often the only way to get a deep enough understanding of the very rich physics at play. For the numerical modeling of light-structure interaction on the nanoscale, the choice of an appropriate material model is a crucial point. Approaches that are adopted in a first instance are based on local (i.e. with no interaction between electrons) dispersive models, e.g. Drude or Drude–Lorentz models. From the mathematical point of view, when a time-domain modeling is considered, these models lead to an additional system of ordinary differential equations coupled to Maxwell's equations. However, recent experiments have shown that the repulsive interaction between electrons inside the metal makes the response of metals intrinsically non-local and that this effect cannot generally be overlooked. Technological achievements have enabled the consideration of metallic structures in a regime where such non-localities have a significant influence on the structures' optical response. This leads to an additional, in general non-linear, system of partial differential equations which is, when coupled to Maxwell's equations, significantly more difficult to treat. Nevertheless, dealing with a linearized non-local dispersion model already opens the route to numerous practical applications of plasmonics. In this work, we present a Discontinuous Galerkin Time-Domain (DGTD) method able to solve the system

  13. Non-conductive ferromagnetic carbon-coated (Co, Ni) metal/polystyrene nanocomposites films

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, H., E-mail: helene.takacs@gmail.com [CEA, LETI, MINATEC Campus, Grenoble 38054 (France); LTM-CNRS-UJF, CEA, LETI, Minatec Campus, Grenoble 38054 (France); Viala, B.; Hermán, V. [CEA, LETI, MINATEC Campus, Grenoble 38054 (France); Tortai, J.-H. [LTM-CNRS-UJF, CEA, LETI, Minatec Campus, Grenoble 38054 (France); Duclairoir, F. [Université Grenoble Alpes, INAC, Grenoble 38054 (France); CEA, INAC, Grenoble 38054 (France)

    2016-03-07

    This article reports non-conductive ferromagnetic properties of metal/polymer nanocomposite films intended to be used for RF applications. The nanocomposite arrangement is unique showing a core double-shell structure of metal-carbon-polystyrene: M/C//P{sub 1}/P{sub 2}, where M = Co, Ni is the core material, C = graphene or carbon is the first shell acting as a protective layer against oxidation, P{sub 1} = pyrene-terminated polystyrene is the second shell for electrical insulation, and P{sub 2} = polystyrene is a supporting matrix (// indicates actual grafting). The nanocomposite formulation is briefly described, and the film deposition by spin-coating is detailed. Original spin-curves are reported and analyzed. One key outcome is the achievement of uniform and cohesive films at the wafer scale. Structural properties of films are thoroughly detailed, and weight and volume fractions of M/C are considered. Then, a comprehensive overview of DC magnetic and electrical properties is reported. A discussion follows on the magnetic softness of the nanocomposites vs. that of a single particle (theoretical) and the raw powder (experimental). Finally, unprecedented achievement of high magnetization (∼0.6 T) and ultra-high resistivity (∼10{sup 10 }μΩ cm) is shown. High magnetization comes from the preservation of the existing protective shell C, with no significant degradation on the particle net-moment, and high electrical insulation is ensured by adequate grafting of the secondary shell P{sub 1}. To conclude, the metal/polymer nanocomposites are situated in the landscape of soft ferromagnetic materials for RF applications (i.e., inductors and antennas), by means of two phase-diagrams, where they play a crucial role.

  14. Investigation of High-k Dielectrics and Metal Gate Electrodes for Non-volatile Memory Applications

    Science.gov (United States)

    Jayanti, Srikant

    Due to the increasing demand of non-volatile flash memories in the portable electronics, the device structures need to be scaled down drastically. However, the scalability of traditional floating gate structures beyond 20 nm NAND flash technology node is uncertain. In this regard, the use of metal gates and high-k dielectrics as the gate and interpoly dielectrics respectively, seem to be promising substitutes in order to continue the flash scaling beyond 20nm. Furthermore, research of novel memory structures to overcome the scaling challenges need to be explored. Through this work, the use of high-k dielectrics as IPDs in a memory structure has been studied. For this purpose, IPD process optimization and barrier engineering were explored to determine and improve the memory performance. Specifically, the concept of high-k / low-k barrier engineering was studied in corroboration with simulations. In addition, a novel memory structure comprising a continuous metal floating gate was investigated in combination with high-k blocking oxides. Integration of thin metal FGs and high-k dielectrics into a dual floating gate memory structure to result in both volatile and non-volatile modes of operation has been demonstrated, for plausible application in future unified memory architectures. The electrical characterization was performed on simple MIS/MIM and memory capacitors, fabricated through CMOS compatible processes. Various analytical characterization techniques were done to gain more insight into the material behavior of the layers in the device structure. In the first part of this study, interfacial engineering was investigated by exploring La2O3 as SiO2 scavenging layer. Through the silicate formation, the consumption of low-k SiO2 was controlled and resulted in a significant improvement in dielectric leakage. The performance improvement was also gauged through memory capacitors. In the second part of the study, a novel memory structure consisting of continuous metal FG

  15. Effect of non-metallic precipitates and grain size on core loss of non-oriented electrical silicon steels

    Science.gov (United States)

    Wang, Jiayi; Ren, Qiang; Luo, Yan; Zhang, Lifeng

    2018-04-01

    In the current study, the number density and size of non-metallic precipitates and the size of grains on the core loss of the 50W800 non-oriented electrical silicon steel sheets were investigated. The number density and size of precipitates and grains were statistically analyzed using an automatic scanning electron microscope (ASPEX) and an optical microscope. Hypothesis models were established to reveal the physical feature for the function of grain size and precipitates on the core loss of the steel. Most precipitates in the steel were AlN particles smaller than 1 μm so that were detrimental to the core loss of the steel. These finer AlN particles distributed on the surface of the steel sheet. The relationship between the number density of precipitates (x in number/mm2 steel area) and the core loss (P1.5/50 in W/kg) was regressed as P1.5/50 = 4.150 + 0.002 x. The average grain size was approximately 25-35 μm. The relationship between the core loss and grain size (d in μm) was P1.5/50 = 3.851 + 20.001 d-1 + 60.000 d-2.

  16. Nanotoxicity: the toxicity research progress of metal and metal-containing nanoparticles.

    Science.gov (United States)

    Ding, Lingling; Liu, Zhidong; Aggrey, Mike Okweesi; Li, Chunhua; Chen, Jing; Tong, Ling

    2015-01-01

    Along with the exuberant development of nanotechnology, a large number of nanoformulations or non materials are successfully applied in the clinics, biomedicine, cosmetics and industry. Despite some unique advantages of nanoformulations, there exist potentially worrying toxic effects, particularly those related to metal and metal-containing nanoparticles (NPs). Although various researches have been conducted to assess the metallic and metal-containing nanoparticles toxic effects, only little is known about the toxicity expressive types and evaluation, reasons and mechanisms, influencing factors and research methods of metal and metal-containing nanotoxicity. Therefore, it is of importance to acquire a better understanding of metal and metal-containing nanoparticles toxicity for medical application. This review presents a summary on the metal and metal-containing nanoparticles toxicity research progress consulting relevant literature.

  17. Non-quasiparticle states in a half-metallic ferromagnet with antiferromagnetic s-d(f) interaction.

    Science.gov (United States)

    Irkhin, V Yu

    2015-04-22

    Non-quasiparticle (incoherent) states which play an important role in the electronic structure of half-metallic ferromagnets (HMF) are investigated consistently in the case of antiferromagnetic s-d(f) exchange interaction. Their appropriate description in the limit of strong correlations requires a rearrangement of perturbation series in comparison with the usual Dyson equation. This consideration provides a solution of the Kondo problem in the HMF case and can be important for first-principle HMF calculations performed earlier for ferromagnetic s-d(f) interaction.

  18. Metallosis: A diagnosis not only in patients with metal-on-metal prostheses

    International Nuclear Information System (INIS)

    Oliveira, Catarina A.; Candelária, Isabel S.; Oliveira, Pedro B.; Figueiredo, Antonio; Caseiro-Alves, Filipe

    2014-01-01

    Although the real actual incidence of metallosis is unknown, it is described as a rare diagnosis with a 5% estimated incidence in the hip prosthetic replacements. The adoption of non-metallic articular prosthetic devices, made of polyethylene and ceramic, is the main reason to the diminishing number of reported cases. We present a case of metallosis with a clinical systemic presentation in a patient with a non-metallic hip prosthesis, which occurred due to a fracture of the acetabular liner component, leading to abnormal metal–metal contact. The metallic debris leads to a massive local and systemic release of cytokines. Revision is necessary whenever osteolysis and loosening of the prosthesis occur. Imaging evaluation, especially CT, has a central role in diagnosis and planning the surgical treatment

  19. Flower volatiles, crop varieties and bee responses.

    Directory of Open Access Journals (Sweden)

    Björn K Klatt

    Full Text Available Pollination contributes to an estimated one third of global food production, through both the improvement of the yield and the quality of crops. Volatile compounds emitted by crop flowers mediate plant-pollinator interactions, but differences between crop varieties are still little explored. We investigated whether the visitation of crop flowers is determined by variety-specific flower volatiles using strawberry varieties (Fragaria x ananassa Duchesne and how this affects the pollination services of the wild bee Osmia bicornis L. Flower volatile compounds of three strawberry varieties were measured via headspace collection. Gas chromatography showed that the three strawberry varieties produced the same volatile compounds but with quantitative differences of the total amount of volatiles and between distinct compounds. Electroantennographic recordings showed that inexperienced females of Osmia bicornis had higher antennal responses to all volatile compounds than to controls of air and paraffin oil, however responses differed between compounds. The variety Sonata was found to emit a total higher level of volatiles and also higher levels of most of the compounds that evoked antennal responses compared with the other varieties Honeoye and Darselect. Sonata also received more flower visits from Osmia bicornis females under field conditions, compared with Honeoye. Our results suggest that differences in the emission of flower volatile compounds among strawberry varieties mediate their attractiveness to females of Osmia bicornis. Since quality and quantity of marketable fruits depend on optimal pollination, a better understanding of the role of flower volatiles in crop production is required and should be considered more closely in crop-variety breeding.

  20. Anomalous electrical conduction in disordered and non-crystalline metallic conductors

    International Nuclear Information System (INIS)

    Tsuei, C.C.

    1978-01-01

    Many disordered and non-crystalline metallic conductors are characterized by both a negative temperature coefficient (α = rho -1 drho/dT) of resistivity rho over a wide range of temperatures T and a gradual leveling-off of rho at low temperatures. Experimental results will be presented to show that rho varies as -ln T (for T >approximately the Debye temperature) in contrast to the predication of existing theories. This anomalous electron transport can be understood in terms of an attractive interaction between conduction electrons and localized excitations arising from a structural indeterminacy in the atomic arrangement. The possibility of using this scattering mechanism to explain the unusual deviation from linear T dependence of resistivity (the bulge effect) in many structurally unstable superconductors such as A-15 Nb 3 Ge, V 3 Si, bcc Nb and alloys containing the ω-phase is also discussed. (author)

  1. The difference between the metal ion extracted from the R.F. ion source by applying plasma chemistry reaction and by non-plasma range chemistry reaction

    International Nuclear Information System (INIS)

    Bai Gui Bin

    1987-01-01

    The paper introduced the difference between using plasma chemistry reaction draw metal ion and non-plasma range chemistry reaction in the R.F. ion source. By using of the plasma chemistry reaction draw metal ion higher percentage than non-plasma range chemistry reaction in the R.F. ion source. The authors plasma chemistry reaction to R.F. ion source and implanter successfully. The effect is very well, it has its own characteristic

  2. Non-destructive pollution exposure assessment in the European hedgehog (Erinaceus europaeus): II. Hair and spines as indicators of endogenous metal and As concentrations.

    Science.gov (United States)

    D'Havé, Helga; Scheirs, Jan; Mubiana, Valentine Kayawe; Verhagen, Ron; Blust, Ronny; De Coen, Wim

    2006-08-01

    The role of hair and spines of the European hedgehog as non-destructive monitoring tools of metal (Ag, Al, Cd, Co, Cr, Cu, Fe, Ni, Pb, Zn) and As pollution in terrestrial ecosystems was investigated. Our results showed that mean pollution levels of a random sample of hedgehogs in Flanders are low to moderate. Yet, individual hedgehogs may be at risk for metal toxicity. Tissue distribution analyses (hair, spines, liver, kidney, muscle and fat tissue) indicated that metals and As may reach considerable concentrations in external tissues, such as hair and spines. Positive relationships were observed between concentrations in hair and those in liver, kidney and muscle for Al, Co, Cr, Cu, and Pb (0.43 Spine concentrations were positively related to liver, kidney and muscle concentrations for Cd, Co, Cr, Cu and Pb (0.37 spine Ag, Al, As and Fe were related to metal concentrations in one or two of the investigated internal tissues (0.31 hedgehogs when concentrations in hair or spines are available. The present study demonstrated the possibility of using hair and spines for non-destructive monitoring of metal and As pollution in hedgehogs.

  3. Plasma metallization

    International Nuclear Information System (INIS)

    Crowther, J.M.

    1997-09-01

    Many methods are currently used for the production of thin metal films. However, all of these have drawbacks associated with them, for example the need for UHV conditions, high temperatures, exotic metal precursors, or the inability to coat complex shaped objects. Reduction of supported metal salts by non-isothermal plasma treatment does not suffer from these drawbacks. In order to produce and analyse metal films before they become contaminated, a plasma chamber which could be attached directly to a UHV chamber with XPS capability was designed and built. This allowed plasma treatment of supported metal salts and surface analysis by XPS to be performed without exposure of the metal film to the atmosphere. Non-equilibrium plasma treatment of Nylon 66 supported gold(lll) chloride using hydrogen as the feed gas resulted in a 95% pure gold film, the remaining 5% of the film being carbon. If argon or helium were used as the feed gases during plasma treatment the resultant gold films were 100% pure. Some degree of surface contamination of the films due to plasma treatment was observed but was easily removed by argon ion cleaning. Hydrogen plasma reduction of glass supported silver(l) nitrate and palladium(ll) acetate films reveals that this metallization technique is applicable to a wide variety of metal salts and supports, and has also shown the ability of plasma reduction to retain the complex 'fern-like' structures seen for spin coated silver(l) nitrate layers. Some metal salts are susceptible to decomposition by X-rays. The reduction of Nylon 66 supported gold(lll) chloride films by soft X-rays to produce nanoscopic gold particles has been studied. The spontaneous reduction of these X-ray irradiated support gold(lll) chloride films on exposure to the atmosphere to produce gold rich metallic films has also been reported. (author)

  4. Rapid detection of toxic metals in non-crushed oyster shells by portable X-ray fluorescence spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Chou Ju, E-mail: Ju.Chou@selu.ed [Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA 70402 (United States); Clement, Garret; Bursavich, Bradley; Elbers, Don [Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA 70402 (United States); Cao Baobao; Zhou Weilie [Advanced Material Research Institute, University of New Orleans, New Orleans, LA 70148 (United States)

    2010-06-15

    The aim of this study was the multi-elemental detection of toxic metals such as lead (Pb) in non-crushed oyster shells by using a portable X-ray fluorescence (XRF) spectrometer. A rapid, simultaneous multi-element analytical methodology for non-crushed oyster shells has been developed using a portable XRF which provides a quick, quantitative, non-destructive, and cost-effective mean for assessment of oyster shell contamination from Pb. Pb contamination in oyster shells was further confirmed by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). The results indicated that Pb is distributed in-homogeneously in contaminated shells. Oyster shells have a lamellar structure that could contribute to the high accumulation of Pb on oyster shells. - A rapid, simultaneous multi-element analytical methodology for non-crushed oyster shells has been developed using XRF and contamination of lead on oyster shells was confirmed by XRF and SEM-EDS.

  5. Rapid detection of toxic metals in non-crushed oyster shells by portable X-ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Chou Ju; Clement, Garret; Bursavich, Bradley; Elbers, Don; Cao Baobao; Zhou Weilie

    2010-01-01

    The aim of this study was the multi-elemental detection of toxic metals such as lead (Pb) in non-crushed oyster shells by using a portable X-ray fluorescence (XRF) spectrometer. A rapid, simultaneous multi-element analytical methodology for non-crushed oyster shells has been developed using a portable XRF which provides a quick, quantitative, non-destructive, and cost-effective mean for assessment of oyster shell contamination from Pb. Pb contamination in oyster shells was further confirmed by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS). The results indicated that Pb is distributed in-homogeneously in contaminated shells. Oyster shells have a lamellar structure that could contribute to the high accumulation of Pb on oyster shells. - A rapid, simultaneous multi-element analytical methodology for non-crushed oyster shells has been developed using XRF and contamination of lead on oyster shells was confirmed by XRF and SEM-EDS.

  6. Comparing differential tolerance of native and non-indigenous marine species to metal pollution using novel assay techniques

    International Nuclear Information System (INIS)

    Piola, Richard F.; Johnston, Emma L.

    2009-01-01

    Recent research suggests anthropogenic disturbance may disproportionately advantage non-indigenous species (NIS), aiding their establishment within impacted environments. This study used novel laboratory- and field-based toxicity testing to determine whether non-indigenous and native bryozoans (common within marine epibenthic communities worldwide) displayed differential tolerance to the common marine pollutant copper (Cu). In laboratory assays on adult colonies, NIS showed remarkable tolerance to Cu, with strong post-exposure recovery and growth. In contrast, native species displayed negative growth and reduced feeding efficiency across most exposure levels. Field transplant experiments supported laboratory findings, with NIS growing faster under Cu conditions. In field-based larval assays, NIS showed strong recruitment and growth in the presence of Cu relative to the native species. We suggest that strong selective pressures exerted by the toxic antifouling paints used on transport vectors (vessels), combined with metal contamination in estuarine environments, may result in metal tolerant NIS advantaged by anthropogenically modified selection regimes. - Greater tolerance to pollutants in marine NIS may increase the risk of invasion in port and harbours worldwide by providing a competitive advantage over native taxa.

  7. Mechanical instability in non-uniform atomic structure: Application to amorphous metal

    International Nuclear Information System (INIS)

    Umeno, Yoshitaka; Kitamura, Takayuki; Tagawa, Motoki

    2007-01-01

    It is important to reveal the deformation of amorphous metal in the atomistic scale level as materials with non-crystal structure have been attracting attention with their prominent functions. In this paper atomistic simulations of tensile deformation of an amorphous model are conducted and local mechanical instability is analyzed to clarify the deformation mechanism of the amorphous structure. Instability causing sharp stress drop is associated with unstable motion of atoms within local region. The size of the region where the unstable atomic motion occurs corresponds to the magnitude of total stress decrease. At instability with large stress decrease the deformation at the onset of the instability propagates to surrounding region, which gives rise to a hysteresis loop in the stress-strain relation. This manifests the microscopic mechanism of the plasticity of amorphous structure

  8. Implementation and application of a method for quantifying metals and non-metals in drainage water from soils fertilized with phosphogypsum; Implementacao e aplicacao de metodologia para dosagem de metais e nao metais em aguas de drenagem de solos adubados com fosfogesso

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Camila Goncalves Bof

    2010-07-01

    Phosphogypsum is a waste generated in phosphoric acid production by the 'wet process'. The immense amount of phosphogypsum yearly produced (around 150 million tons) is receiving attention from environmental protection agencies all over the word, given its potential of contamination. In Brazil, this material has been used for many decades, especially for agricultural application on cropland. Although the phosphogypsum is mainly composed of dehydrated calcium sulfate, it can have high levels of impurities, such as metals (Cd, Cr, Cu, Pb), non-metals (As and Se) and radioactive elements from natural series of {sup 232}Th and {sup 238}U. Therefore, its continuous application as an agricultural agent can result not just in soil contamination, but also contamination of the surface and groundwater due to the runoff and infiltration process. The concern associated with the contamination of aquatic environments increases; when water is used for human consumption, requiring progressive adoption of more restrictive limits. However, some of the conventional analytical techniques used to determine the maximum limit of contaminants in water have detection limits above the maximum limits established by the environmental legislation. This work was aimed to evaluate the mobility of metals and non-metals in soils and, consequently, the contamination of drainage water through greenhouse-scale leaching and transport of toxic elements from soils fertilized with phosphogypsum. Hence, methods were studied and implemented for determination of metals (Cd, Cr, Cu and Pb) using Furnace Graphite Atomic Absorption Spectrometry (GF AAS), as well as for non-metals (As and Se) using Inductively Coupled Plasma Mass Spectrometry (lCP-MS). Effects of different chemical modifiers on the determination of Cd, Cr, Cu and Pb concentration by GF AAS were also investigated. In general, it was observed that the metal and non-metal concentration were below than the actual detection limit of the

  9. Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal implant cadaver comparison: are implant specific protocols needed?

    NARCIS (Netherlands)

    Wellenberg, Ruud H. H.; Donders, Johanna C. E.; Kloen, Peter; Beenen, Ludo F. M.; Kleipool, Roeland P.; Maas, Mario; Streekstra, Geert J.

    2017-01-01

    To quantify and optimize metal artifact reduction using virtual monochromatic dual-energy CT for different metal implants compared to non-metal reference scans. Dual-energy CT scans of a pair of human cadaver limbs were acquired before and after implanting a titanium tibia plate, a stainless-steel

  10. Metallurgy - steel and non-ferrous metals

    International Nuclear Information System (INIS)

    Wusatowski, R.

    1999-01-01

    Several actual problems of metallurgy and processing of the chief metals and their alloys, especially of steel, copper, zinc and aluminium were discussed. The thought was given to the problems of: scientific, technical (also the energy consumption of production, the evolution of technology), organizational, economical, even political nature (influence of the state on the development of industry). (author)

  11. The assessment of non-metallic inclusions in steels and nickel alloys for ultra high vacuum applications

    International Nuclear Information System (INIS)

    Meriguet, P.J.-L.

    1992-01-01

    The presence of non-metallic inclusions in steels and nickel alloys may create leak-paths under Ultra High Vacuum conditions. This paper shows the application of the ASTM E45 standard to the assessment of these inclusions and gives some design recommendations. Three case-histories encountered at the Joint European Torus Joint Undertaking and a possible explanation of the phenomenon are also presented. (Author)

  12. A novel method of non-violent dissolution of sodium metal in a concentrated aqueous solution of Epsom salt

    International Nuclear Information System (INIS)

    Lakshmanan, A.R.; Prasad, M.V.R.; Ponraju, D.; Krishnan, H.

    2004-01-01

    A new technique of non-violent and fast dissolution of sodium metal in a concentrated aqueous solution of Epsom salt (MgSO 4 .7H 2 O) at room temperature (RT) has been developed. The dissolution process is mildly exothermic but could be carried out even in a glass beaker in air under swift stirring condition. The reaction products consist of mixed salts of MgSO 4 and Na 2 SO 4 as well as Mg(OH) 2 which are only mildly alkaline and hence are non-corrosive and non-hazardous unlike NaOH. A 50 mL solution having Epsom salt concentration of 2 M was found to give the optimal composition for disposal of 1 g of sodium. Supersaturated (>2.7 M), as well as dilute (<1.1 M) solutions, however, cause violent reactions and hence should be avoided. Repeated sodium dissolution in Epsom solution produced a solid waste of 4.7 g per g of sodium dissolved which is comparable with the waste (4 g) produced in 8 M NaOH solution. A 1.4 M Epsom solution sprayed with a high-pressure jet cleaner at RT in air easily removed the sodium blocked inside a metal pipe made of mild steel. The above jet also dissolved peacefully residual sodium collected on the metal tray after a sodium fire experiment. No sodium fire or explosion was observed during this campaign. The Epsom solution spray effectively neutralized the minor quantity of sodium aerosol produced during this campaign. This novel technique would hence be quite useful for draining sodium from fast breeder reactor components and bulk processing of sodium as well as for sodium fire fighting

  13. HIGH METALLICITY AND NON-EQUILIBRIUM CHEMISTRY IN THE DAYSIDE ATMOSPHERE OF HOT-NEPTUNE GJ 436b

    International Nuclear Information System (INIS)

    Madhusudhan, N.; Seager, S.

    2011-01-01

    We present a detailed analysis of the dayside atmosphere of the hot-Neptune GJ 436b, based on recent Spitzer observations. We report statistical constraints on the thermal and chemical properties of the planetary atmosphere, study correlations between the various molecular species, and discuss scenarios of equilibrium and non-equilibrium chemistry in GJ 436b. We model the atmosphere with a one-dimensional line-by-line radiative transfer code with parameterized molecular abundances and temperature structure. We explore the model parameter space with 10 6 models, using a Markov chain Monte Carlo scheme. Our results encompass previous findings, indicating a paucity of methane, an overabundance of CO and CO 2 , and a slight underabundance of H 2 O, as compared to equilibrium chemistry with solar metallicity. The concentrations of the species are highly correlated. Our best-fit, and most plausible, constraints require a CH 4 mixing ratio of 10 -7 to10 -6 , with CO ≥10 -3 , CO 2 ∼10 -6 to10 -4 , and H 2 O ≤10 -4 ; higher CH 4 would require much higher CO and CO 2 . Based on calculations of equilibrium and non-equilibrium chemistry, we find that the observed abundances can potentially be explained by a combination of high metallicity (∼10x solar) and vertical mixing with K zz ∼ 10 6 -10 7 cm 2 s -1 . The inferred metallicity is enhanced over that of the host star which is known to be consistent with solar metallicity. Our constraints rule out a dayside thermal inversion in GJ 436b. We emphasize that the constraints reported in this work depend crucially on the observations in the two Spitzer channels at 3.6 μm and 4.5 μm. Future observations with warm Spitzer and with the James Webb Space Telescope will be extremely important to improve upon the present constraints on the abundances of carbon species in the dayside atmosphere of GJ 436b.

  14. The diesel exhaust in miners study: IV. Estimating historical exposures to diesel exhaust in underground non-metal mining facilities.

    NARCIS (Netherlands)

    Vermeulen, R.; Coble, J.B.; Lubin, J.H.; Portengen, L.; Blair, A.; Attfield, M.D.; Silverman, D.T.; Stewart, P.A.

    2010-01-01

    We developed quantitative estimates of historical exposures to respirable elemental carbon (REC) for an epidemiologic study of mortality, including lung cancer, among diesel-exposed miners at eight non-metal mining facilities [the Diesel Exhaust in Miners Study (DEMS)]. Because there were no

  15. European Metals Conference

    CERN Document Server

    Vereecken, Jean

    1991-01-01

    This volume contains the papers that will be presented at 'EMC '91 '-the European Metals Conference-to be held in Brussels, Belgium, from 15 to 20 September 1991, and organized by Benelux Metallurgie, GDMB (Gesellschaft Deutscher Metallhutten­ und Bergleute) and IMM (the Institution of Mining and Metallurgy). 'EMC '91' is the first of an intended major series organized at the European level with the aim of bringing together all those who are involved with the extraction and processing of non-ferrous metals-European metallurgists and their international colleagues-to provide them with the opportunity to exchange views on the state and evolution of their industry. The programme covers all the different aspects of the metallurgy of non-ferrous metals from mining to fabricated products. Particular attention is being paid to the European non -ferrous industry with respect to changes in demand, the technology used, pressures on the environment and the competitive position of manufacturers. The contributions of the...

  16. A NON-LOCAL THERMODYNAMIC EQUILIBRIUM ANALYSIS OF BORON ABUNDANCES IN METAL-POOR STARS

    International Nuclear Information System (INIS)

    Tan Kefeng; Shi Jianrong; Zhao Gang

    2010-01-01

    The non-local thermodynamic equilibrium (NLTE) line formation of neutral boron in the atmospheres of cool stars are investigated. Our results confirm that NLTE effects for the B I resonance lines, which are due to a combination of overionization and optical pumping effects, are most important for hot, metal-poor, and low-gravity stars; however, the amplitude of departures from local thermodynamic equilibrium (LTE) found by this work is smaller than that of previous studies. In addition, our calculation shows that the line formation of B I will get closer to LTE if the strength of collisions with neutral hydrogen increases, which is contrary to the result of previous studies. The NLTE line formation results are applied to the determination of boron abundances for a sample of 16 metal-poor stars with the method of spectrum synthesis of the B I 2497 A resonance lines using the archived HST/GHRS spectra. Beryllium and oxygen abundances are also determined for these stars with the published equivalent widths of the Be II 3131 A resonance and O I 7774 A triplet lines, respectively. The abundances of the nine stars which are not depleted in Be or B show that, no matter what the strength of collisions with neutral hydrogen may be, both Be and B increase with O quasilinearly in the logarithmic plane, which confirms the conclusions that Be and B are mainly produced by the primary process in the early Galaxy. The most noteworthy result of this work is that B increases with Fe or O at a very similar speed as, or a bit faster than, Be does, which is in accord with the theoretical models. The B/Be ratios remain almost constant over the metallicity range investigated here. Our average B/Be ratio falls in the interval [13 ± 4, 17 ± 4], which is consistent with the predictions of the spallation process. The contribution of B from the ν-process may be required if the 11 B/ 10 B isotopic ratios in metal-poor stars are the same as the meteoric value. An accurate measurement of the

  17. Natural fibre reinforced non-asbestos organic non-metallic friction composites: effect of abaca fibre on mechanical and tribological behaviour

    Science.gov (United States)

    Liu, Yucheng; Ma, Yunhai; Che, Junjian; Duanmu, Lingjian; Zhuang, Jian; Tong, Jin

    2018-05-01

    To obtain a natural fibre reinforced non-asbestos organic non-metallic friction composite with good wear resistance and environmental-friendly performances, friction composites reinforced with different lengths of abaca fibre were fabricated by a compression molder equipment and evaluated by using a constant-speed friction test machine. The worn surface morphologies were observed and analyzed using a Scanning Electron Microscopy (SEM). Experimental results show that the length of abaca fibre had no significant effect on the density and hardness, but was obvious on impact strength. The impact strength increased and then decreased with the increasing of length of abaca fibres. Abaca fibres, especially short fibre (lengths of 5 mm, 10 mm), could improve the wear resistance of the friction composites. Meanwhile, the increase of test temperature could result in the increasing of wear rates of the friction composites. A large amount of secondary plateaux presented on the worn surface of specimens FC1 and FC2 which showe relatively smooth worn surfaces and yield the better wear resistance performance.

  18. Method for producing metallic microparticles

    Science.gov (United States)

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-06-29

    Method for producing metallic particles. The method converts metallic nanoparticles into larger, spherical metallic particles. An aerosol of solid metallic nanoparticles and a non-oxidizing plasma having a portion sufficiently hot to melt the nanoparticles are generated. The aerosol is directed into the plasma where the metallic nanoparticles melt, collide, join, and spheroidize. The molten spherical metallic particles are directed away from the plasma and enter the afterglow where they cool and solidify.

  19. Source apportionment and risk assessment of PM1 bound trace metals collected during foggy and non-foggy episodes at a representative site in the Indo-Gangetic plain.

    Science.gov (United States)

    Singh, Dharmendra Kumar; Gupta, Tarun

    2016-04-15

    The concentration, spatial distribution and source of 13-PM1 bound trace metals (Fe, Cu, Mn, Cr, Zn, Cd, Ni, K, Mg, Na, Ca, Pb and V) and adverse health effects of 5-PM1 bound trace metals (Mn, Zn, Ni, Cr and Cd) collected during foggy and non-foggy episodes are presented. Twenty-four samples from each period (foggy and non-foggy episodes) were collected from Kanpur, a typical densely populated city and the most polluted representative site in the Indo-Gangetic plain of India, and were analyzed for carcinogenic (Ni, Cr and Cd) and non-carcinogenic metals (Mn and Zn). The average mass concentration of PM1 during foggy and non-foggy episodes was found to be 160.16±37.70 and 132.87±27.97μg/m(3). Source identification via principle component analysis suggested that vehicular emission and anthropogenic, industrial and crustal dust were the dominant sources in this region. During both episodes the decreasing order of hazard quotient (Hq) for adult and children was as Mn>Cr>Cd>Ni>Zn. In a non-foggy episode the hazardous index (Hi) values of these 5 trace metals were found to be ~3.5 times higher than a foggy episode's exposed population, respectively. In a foggy episode, due to the exposure to total carcinogenic trace metals (Ni, Cr and Cd) present in the ambient air, 95% probability total incremental lifetime cancer risks (TIlcR) were ~687 cancer cases and ~402 cancer cases per million in the adult population and children population respectively. These cancer cases were ~1.6 times higher than a non-foggy episode's exposed population. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Stepped-Frequency Ground-Penetrating Radar for Detection of Small Non-metallic Buried Objects

    DEFF Research Database (Denmark)

    Jakobsen, Kaj Bjarne; Sørensen, Helge Bjarup Dissing; Nymann, Ole

    1997-01-01

    -shaped objects. Two-dimensional probe-correction and addition signal processing are applied to the raw probe-data. The probe used in this experiment was an open-ended waveguide operating at S-band. The movements of the probe are controlled by two stepmotors via an RS-232 interface. The probe is connected...... at each measurement point using a mesh-grid with a resolution down to 1 mm by 1 mm. The size of the scan area is 1410 mm by 210 mm. Measurements have been performed on loamy soil containing a buried M-56, a non-metallic AP-mine, and various other mine-like objects made of solid plastic, brass, aluminum...

  1. Non-destructive measurement of Xe filling pressure in mercury-free metal halide lamp

    International Nuclear Information System (INIS)

    Motomura, Hideki; Enoki, Kyosuke; Jinno, Masafumi

    2010-01-01

    Mercury-free metal halide lamps (MHLs) for automotive purposes have been developing in the market. When mercury is not used, the electric and emission characteristics of the lamp strongly depend on the xenon filling pressure. Therefore a non-destructive gas pressure estimation technique is required to obtain stable performance of the lamps as commercial products. The authors have developed an estimation method by which the gas pressure is estimated from the current peak value at the initial stage of ignition under pulsed operation. It is shown that accuracy of the order of ±(0.1-0.3) atm is obtained using an empirical formula.

  2. Effect of Ampicillin, Streptomycin, Penicillin and Tetracycline on Metal Resistant and Non-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Dagmar Chudobova

    2014-03-01

    Full Text Available There is an arising and concerning issue in the field of bacterial resistance, which is confirmed by the number of deaths associated with drug-resistant bacterial infections. The aim of this study was to compare the effects of antibiotics on Staphylococcus aureus non-resistant strain and strains resistant to cadmium or lead ions. Metal resistant strains were created by the gradual addition of 2 mM solution of metal ions (cadmium or lead to the S. aureus culture. An increasing antimicrobial effect of ampicillin, streptomycin, penicillin and tetracycline (0, 10, 25, 50, 75, 150, 225 and 300 µM on the resistant strains was observed using a method of growth curves. A significant growth inhibition (compared to control of cadmium resistant cells was observed in the presence of all the four different antibiotics. On the other hand, the addition of streptomycin and ampicillin did not inhibit the growth of lead resistant strain. Other antibiotics were still toxic to the bacterial cells. Significant differences in the morphology of cell walls were indicated by changes in the cell shape. Our data show that the presence of metal ions in the urban environment may contribute to the development of bacterial strain resistance to other substances including antibiotics, which would have an impact on public health.

  3. Effect of Ampicillin, Streptomycin, Penicillin and Tetracycline on Metal Resistant and Non-Resistant Staphylococcus aureus

    Science.gov (United States)

    Chudobova, Dagmar; Dostalova, Simona; Blazkova, Iva; Michalek, Petr; Ruttkay-Nedecky, Branislav; Sklenar, Matej; Nejdl, Lukas; Kudr, Jiri; Gumulec, Jaromir; Tmejova, Katerina; Konecna, Marie; Vaculovicova, Marketa; Hynek, David; Masarik, Michal; Kynicky, Jindrich; Kizek, Rene; Adam, Vojtech

    2014-01-01

    There is an arising and concerning issue in the field of bacterial resistance, which is confirmed by the number of deaths associated with drug-resistant bacterial infections. The aim of this study was to compare the effects of antibiotics on Staphylococcus aureus non-resistant strain and strains resistant to cadmium or lead ions. Metal resistant strains were created by the gradual addition of 2 mM solution of metal ions (cadmium or lead) to the S. aureus culture. An increasing antimicrobial effect of ampicillin, streptomycin, penicillin and tetracycline (0, 10, 25, 50, 75, 150, 225 and 300 µM) on the resistant strains was observed using a method of growth curves. A significant growth inhibition (compared to control) of cadmium resistant cells was observed in the presence of all the four different antibiotics. On the other hand, the addition of streptomycin and ampicillin did not inhibit the growth of lead resistant strain. Other antibiotics were still toxic to the bacterial cells. Significant differences in the morphology of cell walls were indicated by changes in the cell shape. Our data show that the presence of metal ions in the urban environment may contribute to the development of bacterial strain resistance to other substances including antibiotics, which would have an impact on public health. PMID:24651395

  4. Reaction phases and diffusion paths in SiC/metal systems

    Energy Technology Data Exchange (ETDEWEB)

    Naka, M.; Fukai, T. [Osaka Univ., Osaka (Japan); Schuster, J.C. [Vienna Univ., Vienna (Austria)

    2004-07-01

    The interface structures between SiC and metal are reviewed at SiC/metal systems. Metal groups are divided to carbide forming metals and non-carbide forming metals. Carbide forming metals form metal carbide granular or zone at metal side, and metal silicide zone at SiC side. The further diffusion of Si and C from SiC causes the formation of T ternary phase depending metal. Non-carbide forming metals form silicide zone containing graphite or the layered structure of metal silicide and metal silicide containing graphite. The diffusion path between SiC and metal are formed along tie-lines connecting SiC and metal on the corresponding ternary Si-C-M system. The reactivity of metals is dominated by the forming ability of carbide or silicide. Te reactivity tendency of elements are discussed on the periodical table of elements, and Ti among elements shows the highest reactivity among carbide forming metals. For non-carbide forming metals the reactivity sequence of metals is Fe>Ni>Co. (orig.)

  5. Embedding of solid high-level wastes into metal and non-metal matrices

    International Nuclear Information System (INIS)

    Geel, J. van; Eschrich, H.; Dobbels, F.; Favre, P.; Sterner, H.

    1980-03-01

    The primary objective of embedding solidification high-level waste forms of high specific activity into a matrix material is to obtain final waste composites with moderate inner temperatures, even at large waste loadings per meter cylinder length. Secondary objectives are to produce a non-porous, crack-free composite product with a durability superior to that of the embedded waste form itself. The temperature distribution in composite material composed of vitreous beads embedded into a metal matrix (vitromets) are compared with that in a vitreous block, of equal heat generation per meter height, during short- and long-term storage. It was found that for storage under water, inner temperatures below 100 0 C are assured in vitromets, produced from short-cooled high-level wastes, and containing high waste loadings per metercanister height. The chemical and mechanical stability, as well as the thermal conductivity have been examined for vitromets containing various matrix materials whereby emphasis is imparted to lead- and aluminum alloys. The corrosion of lead- and aluminum alloys in distilled water, brine solution and dry salt has been examined at temperatures up to 230 0 C and pressures up to 3.5 MPa. Some lead alloys were found to exhibit superior corrosion resistance in these chemical environments than certain reference borosilicate glasses. The deformation behavior of vitromets under axial compression has been investigated at different temperatures and varying height diameter ratios. The maturity of the vitromet production is finally demonstrated by presenting process data from hot-laboratory scale and cold semi-industrial scale production units. (author)

  6. Recent developments in human biomonitoring: non-invasive assessment of target tissue dose and effects of pneumotoxic metals.

    Science.gov (United States)

    Mutti, A; Corradi, M

    2006-01-01

    Tobacco smoke and polluted environments substantially increase the lung burden of pneumotoxic chemicals, particularly pneumotoxic metallic elements. To achieve a better understanding of the early events between exposure to inhaled toxicants and the onset of adverse effects on the lung, the characterization of dose at the target organ would be extremely useful. Exhaled breath condensate (EBC), obtained by cooling exhaled air under conditions of spontaneous breathing, is a novel technique that could provide a non-invasive assessment of pulmonary pathobiology. Considering that EBC is water practically free of interfering solutes, it represents an ideal biological matrix for elemental characterization. Published data show that several toxic metals and trace elements are detectable in EBC, raising the possibility of using this medium to quantify the lung tissue dose of pneumotoxic substances. This novel approach may represent a significant advance over the analysis of alternative media (blood, serum, urine, hair), which are not as reliable (owing to interfering substances in the complex matrix) and reflect systemic rather than lung (target tissue) levels of both toxic metals and essential trace elements. Data obtained among workers occupationally exposed to either hard metals or chromium (VI) and in smokers with or without chronic obstructive pulmonary disease (COPD) are reviewed to show that--together with biomarkers of exposure--EBC also allows the simultaneous quantification of biomarkers of effect directly sampled from the epithelial lining fluid, thus providing novel insights on both kinetic and dynamic aspects of metal toxicology.

  7. Determination of Three-Dimensional Morphology and Inner Structure of Second-Phase Inclusions in Metals by Non-Aqueous Solution Electrolytic and Room Temperature Organic Methods

    Directory of Open Access Journals (Sweden)

    Jing Guo

    2018-01-01

    Full Text Available The secondary-phase particles in metals, particularly those composed of non-metallic materials, are often detrimental to the mechanical properties of metals; thus, it is crucial to control inclusion formation and growth. One of the challenges is determining the three-dimensional morphology and inner structures of such inclusions. In this study, a non-aqueous solution electrolytic method and a room-temperature organic technique were developed based on the principle of electrochemistry to determine the three-dimensional morphologies and inner structures of non-metallic inclusions in Al-killed steel, Si-killed steel, and ductile cast iron. The inclusions were first extracted without any damage to the inclusions, and then the collected inclusions were wrapped and cut through Cu ion deposition. The results revealed that the inclusions in Al-killed steel had an irregular morphology, that those in the Si-killed steel were mainly spherical, and that almost all the spheroidal graphite in the ductile cast iron featured a uniform globular morphology. In addition, nucleation was not observed in the inner structures of the inclusions in the Al-killed steel, while some dendritic or rod-like MnS phase precipitates appeared on the silicate inclusion surfaces, and some silicate-rich phases were detected in their inner matrix. For spheroidal graphite, rare-earth oxides (one particle or more were observed as nuclei in the center of almost every graphite particle. The formation and evolution of inclusions in these types of metals can be better understood by means of the two developed methods.

  8. Functional memory metals

    International Nuclear Information System (INIS)

    Dunne, D.P.

    2000-01-01

    The field of shape memory phenomena in metals and alloys has developed in a sporadic fashion from a scientific curiosity to a vigorously growing niche industry, over a period close to a full working lifetime. Memory metal research and development is replete with scientist and engineer 'true believers', who can finally feel content that their longstanding confidence in the potential of these unusual functional materials has not been misplaced. This paper reviews the current range of medical and non-medical systems and devices which are based on memory metals and attempts to predict trends in applications over the next decade. The market is dominated by Ni Ti alloys which have proved to exhibit the best and most reproducible properties for application in a wide range of medical and non-medical devices

  9. Non-Native Metal Ion Reveals the Role of Electrostatics in Synaptotagmin 1-Membrane Interactions.

    Science.gov (United States)

    Katti, Sachin; Nyenhuis, Sarah B; Her, Bin; Srivastava, Atul K; Taylor, Alexander B; Hart, P John; Cafiso, David S; Igumenova, Tatyana I

    2017-06-27

    C2 domains are independently folded modules that often target their host proteins to anionic membranes in a Ca 2+ -dependent manner. In these cases, membrane association is triggered by Ca 2+ binding to the negatively charged loop region of the C2 domain. Here, we used a non-native metal ion, Cd 2+ , in lieu of Ca 2+ to gain insight into the contributions made by long-range Coulombic interactions and direct metal ion-lipid bridging to membrane binding. Using X-ray crystallography, NMR, Förster resonance energy transfer, and vesicle cosedimentation assays, we demonstrate that, although Cd 2+ binds to the loop region of C2A/B domains of synaptotagmin 1 with high affinity, long-range Coulombic interactions are too weak to support membrane binding of individual domains. We attribute this behavior to two factors: the stoichiometry of Cd 2+ binding to the loop regions of the C2A and C2B domains and the impaired ability of Cd 2+ to directly coordinate the lipids. In contrast, electron paramagnetic resonance experiments revealed that Cd 2+ does support membrane binding of the C2 domains in full-length synaptotagmin 1, where the high local lipid concentrations that result from membrane tethering can partially compensate for lack of a full complement of divalent metal ions and specific lipid coordination in Cd 2+ -complexed C2A/B domains. Our data suggest that long-range Coulombic interactions alone can drive the initial association of C2A/B with anionic membranes and that Ca 2+ further augments membrane binding by the formation of metal ion-lipid coordination bonds and additional Ca 2+ ion binding to the C2 domain loop regions.

  10. Method for producing metallic nanoparticles

    Science.gov (United States)

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-02-10

    Method for producing metallic nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone to metal vapor. The metal vapor is directed away from the hot zone and to the plasma afterglow where it cools and condenses to form solid metallic nanoparticles.

  11. Separations chemistry of toxic metals

    International Nuclear Information System (INIS)

    Smith, P.; Barr, M.; Barrans, R.

    1996-01-01

    Sequestering and removing toxic metal ions from their surroundings is an increasingly active area of research and is gaining importance in light of current environmental contamination problems both within the DOE complex and externally. One method of separating metal ions is to complex them to a molecule (a ligand or chelator) which exhibits specific binding affinity for a toxic metal, even in the presence of other more benign metals. This approach makes use of the sometimes subtle differences between toxic and non-toxic metals resulting from variations in size, charge and shape. For example, toxic metals such as chromium, arsenic, and technetium exist in the environment as oxyanions, negatively charged species with a characteristic tetrahedral shape. Other toxic metals such as actinides and heavy metals are positively charged spheres with specific affinities for particular donor atoms such as oxygen (for actinides) and nitrogen (for heavy metals). In most cases the toxic metals are found in the presence of much larger quantities of less toxic metals such as sodium, calcium and iron. The selectivity of the chelators is critical to the goal of removing the toxic metals from their less toxic counterparts. The approach was to build a ligand framework that complements the unique characteristics of the toxic metal (size, charge and shape) while minimizing interactions with non-toxic metals. The authors have designed ligands exhibiting specificity for the target metals; they have synthesized, characterized and tested these ligands; and they have shown that they exhibit the proposed selectivity and cooperative binding effects

  12. Isotopic characterisation of lead in contaminated soils from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Bacon, Jeffrey R. [Macaulay Institute, Craigiebuckler, Aberdeen AB15 8QH (United Kingdom)]. E-mail: j.bacon@macaulay.ac.uk; Dinev, Nikolai S. [N Poushkarov Institute of Soil Science and Agroecology, Sofia (Bulgaria)

    2005-03-01

    Soil samples from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria contained very high concentrations of cadmium, lead and zinc (up to 140, 4900 and 5900 mg kg{sup -1}, respectively). A roadside soil in a relatively uncontaminated area also contained high concentrations of the same metals (24, 1550 and 1870 mg kg{sup -1}, respectively) indicating that the transport of ores could be a source of contamination. Even though the lead isotope ratios in all the samples fell within a very narrow range (for example, 1.186-1.195 for {sup 206}Pb/{sup 207}Pb), the samples could be differentiated into three distinct groups: ores ({sup 206}Pb/{sup 207}Pb and {sup 208}Pb/{sup 207}Pb ratios of 1.1874-1.1884 and 2.4755-2.4807, respectively), current deposition (1.1864 and 2.4704-2.4711, respectively) and local background (1.1927-1.1951 and 2.4772-2.4809, respectively). Although most of the current deposition has its origin in the ores used at the smelter, up to 12% could be from other sources such as petrol lead. - Although soils in the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria, have become highly contaminated with the ores used, lead isotope analysis has revealed that up to 12% of current deposition could be from other sources such as petrol lead.

  13. Isotopic characterisation of lead in contaminated soils from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria

    International Nuclear Information System (INIS)

    Bacon, Jeffrey R.; Dinev, Nikolai S.

    2005-01-01

    Soil samples from the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria contained very high concentrations of cadmium, lead and zinc (up to 140, 4900 and 5900 mg kg -1 , respectively). A roadside soil in a relatively uncontaminated area also contained high concentrations of the same metals (24, 1550 and 1870 mg kg -1 , respectively) indicating that the transport of ores could be a source of contamination. Even though the lead isotope ratios in all the samples fell within a very narrow range (for example, 1.186-1.195 for 206 Pb/ 207 Pb), the samples could be differentiated into three distinct groups: ores ( 206 Pb/ 207 Pb and 208 Pb/ 207 Pb ratios of 1.1874-1.1884 and 2.4755-2.4807, respectively), current deposition (1.1864 and 2.4704-2.4711, respectively) and local background (1.1927-1.1951 and 2.4772-2.4809, respectively). Although most of the current deposition has its origin in the ores used at the smelter, up to 12% could be from other sources such as petrol lead. - Although soils in the vicinity of a non-ferrous metal smelter near Plovdiv, Bulgaria, have become highly contaminated with the ores used, lead isotope analysis has revealed that up to 12% of current deposition could be from other sources such as petrol lead

  14. Method of activating an article of passive ferrous or non-ferrous metal prior to carburising, nitriding and /or nitrocarburising

    DEFF Research Database (Denmark)

    2011-01-01

    Source: US2012111456A A method of activating an article of passive ferrous or non-ferrous metal by heating at least one compound containing nitrogen and carbon, wherein the article is treated with gaseous species derived from the compound. The activated article can be subsequently carburised......, nitrided or nitrocarburised in shorter time at lower temperature and resulting superior mechanical properties compared with non-activated articles and even articles of stainless steel, nickel alloy, cobalt alloy or titanium based material can be carburised, nitrided or nitrocarburised....

  15. Comparative bioleaching of metals from pulverized and non-pulverized PCBs of cell phone charger: advantages of non-pulverized PCBs.

    Science.gov (United States)

    Joshi, Vyenkatesh; Shah, Neha; Wakte, Prashant; Dhakephalkar, Prashant; Dhakephalkar, Anita; Khobragade, Rahul; Naphade, Bhushan; Shaikh, Sajid; Deshmukh, Arvind; Adhapure, Nitin

    2017-12-01

    Sample inhomogeneity is a severe issue in printed circuit boards especially when we are comparing the bioleaching efficiency. To avoid the ambiguous results obtained due to inhomogeneity in PCBs, 12 similar cell phone chargers (of renowned company) having same make and batch number were collected from scrap market. PCBs obtained from them were used in present studies. Out of these 12, three PCBs were used separately for chemical analysis of PCBs with prior acid digestion in aqua regia. It was found that, 10.8, 68.0, and 710.9 mg/l of Zn, Pb, and Cu were present in it, respectively. Six PCBs were used for bioleaching experiment with two variations, pulverized and non-pulverized. Though the pulverized sample have shown better leaching than non-pulverized one, former has some disadvantages if overall recycling of e-waste (metallic and nonmetallic fraction) is to be addressed. At the end of leaching experiments, copper was recovered using a simple setup of electrodeposition and 92.85% recovery was attained. The acidophiles involved in bioleaching were identified by culture dependent and culture independent techniques such as DGGE and species specific primers in PCR.

  16. Preliminary experimental results for a non-intrusive scheme for the detection of flaws in metal pipelines

    Science.gov (United States)

    Aydin, K.; Shinde, S.; Suhail, M.; Vyas, A.; Zieher, K. W.

    2002-05-01

    An acoustic pulse echo scheme for non-intrusive detection of flaws in metal pipelines has been investigated in the laboratory. The primary pulse is generated by a pulsed magnetic field enclosing a short section of a free pipe. The detection is by an electrostatic detector surrounding a short section of the pipe. Reflected pulses from thin areas, with a longitudinal extension of about one pipe radius and a reduction of the wall thickness of 40%, can be detected clearly.

  17. Systematic study of metal-insulator-metal diodes with a native oxide

    Science.gov (United States)

    Donchev, E.; Gammon, P. M.; Pang, J. S.; Petrov, P. K.; Alford, N. McN.

    2014-10-01

    In this paper, a systematic analysis of native oxides within a Metal-Insulator-Metal (MIM) diode is carried out, with the goal of determining their practicality for incorporation into a nanoscale Rectenna (Rectifying Antenna). The requirement of having a sub-10nm oxide scale is met by using the native oxide, which forms on most metals exposed to an oxygen containing environment. This, therefore, provides a simplified MIM fabrication process as the complex, controlled oxide deposition step is omitted. We shall present the results of an investigation into the current-voltage characteristics of various MIM combinations that incorporate a native oxide, in order to establish whether the native oxide is of sufficient quality for good diode operation. The thin native oxide layers are formed by room temperature oxidation of the first metal layer, deposited by magnetron sputtering. This is done in-situ, within the deposition chamber before depositing the second metal electrode. Using these structures, we study the established trend where the bigger the difference in metal workfunctions, the better the rectification properties of MIM structures, and hence the selection of the second metal is key to controlling the device's rectifying properties. We show how leakage current paths through the non-optimised native oxide control the net current-voltage response of the MIM devices. Furthermore, we will present the so-called diode figures of merit (asymmetry, non-linearity and responsivity) for each of the best performing structures.

  18. Systematic study of metal-insulator-metal diodes with a native oxide

    KAUST Repository

    Donchev, E.

    2014-10-07

    © 2014 SPIE. In this paper, a systematic analysis of native oxides within a Metal-Insulator-Metal (MIM) diode is carried out, with the goal of determining their practicality for incorporation into a nanoscale Rectenna (Rectifying Antenna). The requirement of having a sub-10nm oxide scale is met by using the native oxide, which forms on most metals exposed to an oxygen containing environment. This, therefore, provides a simplified MIM fabrication process as the complex, controlled oxide deposition step is omitted. We shall present the results of an investigation into the current-voltage characteristics of various MIM combinations that incorporate a native oxide, in order to establish whether the native oxide is of sufficient quality for good diode operation. The thin native oxide layers are formed by room temperature oxidation of the first metal layer, deposited by magnetron sputtering. This is done in-situ, within the deposition chamber before depositing the second metal electrode. Using these structures, we study the established trend where the bigger the difference in metal workfunctions, the better the rectification properties of MIM structures, and hence the selection of the second metal is key to controlling the device\\'s rectifying properties. We show how leakage current paths through the non-optimised native oxide control the net current-voltage response of the MIM devices. Furthermore, we will present the so-called diode figures of merit (asymmetry, non-linearity and responsivity) for each of the best performing structures.

  19. Selection of lixiviant System for the alkaline in-situ Leaching of uranium from an arkosic type of sandstone and measuring the dissolution behaviour of some metals and non-metals

    International Nuclear Information System (INIS)

    Khan, Y.; Shah, S.S.; Siddiq, M.

    2012-01-01

    A laboratory simulation study was carried out to check the possibility of alkaline in-situ leaching of uranium from an arkosic type of sandstone recovered from a specific location at a depth of 300-500 m. The ore body was overlaying impervious clay shale below the water table. Different CO/sub 3/ containing soluble salts were tested as complexing agent of the UO/sup +2/ ions along with H/sub 2/O/sub 2/ as oxidizing agent. The lixiviant system, comprising NH/sub 4/HCO/sub 3/ as complexing agent along with H/Sub 2/O/sub 2/ as oxidizing agent in concentrations of 5 g/L and 0.5 g/L respectively, was found to be the most efficient for the leaching of uranium among the 25 different compositions employed. Along with uranium, the dissolution behaviour of 15 other metals, non-metals and radicals, including eight transition metals, was also observed in the lixiviant employed. These were Na, K, Ca, Mg, Cl, SO/sub 4/, CO/sub 3/, Ti, V, Cr, Mn, Fe, Cu, Zn and Mo. It was found that the leaching of uranium compared to non-transition et als/radicals followed the trend Cl > SO > U > Na > K > Mg > Ca > CO. The comparison of uranium leaching to the transition metals was in the order U > Cr > Mo > V > Ti > Cu > Zn > Mn > Fe. Physical parameters like pH, oxidation reduction potential (ORP) and conductivity were also measured for the fresh and pregnant lixiviants. It was found that the leaching of uranium is directly related to the concentration of native soluble hexavalent uranium, contact time of the lixiviant and ore and to some extent with the total concentration of uranium as well as the porosity and permeability of the ore. (author)

  20. Non-uniform Solute Segregation at Semi-Coherent Metal/Oxide Interfaces

    Science.gov (United States)

    Choudhury, Samrat; Aguiar, Jeffery A.; Fluss, Michael J.; Hsiung, Luke L.; Misra, Amit; Uberuaga, Blas P.

    2015-08-01

    The properties and performance of metal/oxide nanocomposites are governed by the structure and chemistry of the metal/oxide interfaces. Here we report an integrated theoretical and experimental study examining the role of interfacial structure, particularly misfit dislocations, on solute segregation at a metal/oxide interface. We find that the local oxygen environment, which varies significantly between the misfit dislocations and the coherent terraces, dictates the segregation tendency of solutes to the interface. Depending on the nature of the solute and local oxygen content, segregation to misfit dislocations can change from attraction to repulsion, revealing the complex interplay between chemistry and structure at metal/oxide interfaces. These findings indicate that the solute chemistry at misfit dislocations is controlled by the dislocation density and oxygen content. Fundamental thermodynamic concepts - the Hume-Rothery rules and the Ellingham diagram - qualitatively predict the segregation behavior of solutes to such interfaces, providing design rules for novel interfacial chemistries.

  1. Deformation and fracture properties of metals with non-metallic inclusions; Verformung und Bruch von Metallen mit nichtmetallischen Einschluessen

    Energy Technology Data Exchange (ETDEWEB)

    Schmauder, S.; Soppa, E. [Stuttgart Univ. (Germany). Staatliche Materialpruefungsanstalt

    1998-12-31

    Microstructural effects due to formation of non-uniform lines of non-metallic inclusions in the matrix are examined with respect to their macro-, meso-, and micromechanical effects in the alloy Al(6061) reinforced by SiC inclusions. A comparative analysis of results obtained with various microstructures reveals essential differences in the formation of shear bands, stress peaks, and strain concentrations in the material structure. The maxima and the distribution of those field variables are determined not only by the arrangement of inclusions clusters in the stringers but also depend on the presence and number of single-particle inclusions in pure matrix material. The banding of the microstructure causes a strongly anisotropic behaviour in terms of stress and strain distributions. (orig./CB) [Deutsch] In diesem Beitrag werden Gefuegeeinfluesse aufgrund unterschiedlich starker zeiliger Anordnungen der Teilchen in der Matrix im Hinblick auf ihre makro-, meso- und mikromechanischen Auswirkungen am Beispiel einer SiC-teilchenverstaerkten Aluminiumlegierung Al(6061) untersucht. Ein Vergleich der Ergebnisse verschiedener Gefuege zeigt wesentliche Unterschiede hinsichtlich der Ausbildung von Scherbaendern, Spannungsspitzen und von Dehnungskonzentrationen im Werkstoffgefuege. Die Maxima und die Verteilung dieser Feldgroessen sind nicht nur abhaengig davon, wie die Teilchen in den Zeilen angeordnet sind, sondern auch davon, ob einzelne Teilchen in reinen Matrixbereichen vorhanden sind. Die Zeiligkeit des Gefueges fuehrt zu einem stark anisotropen Verhalten hinsichtlich Spannungs- und Dehnungsverteilungen. (orig.)

  2. Risks of using membrane filtration for trace metal analysis and assessing the dissolved metal fraction of aqueous media - A study on zinc, copper and nickel

    International Nuclear Information System (INIS)

    Hedberg, Yolanda; Herting, Gunilla; Wallinder, Inger Odnevall

    2011-01-01

    Membrane filtration is commonly performed for solid-liquid separation of aqueous solutions prior to trace metal analysis and when assessing 'dissolved' metal fractions. Potential artifacts induced by filtration such as contamination and/or adsorption of metals within the membrane have been investigated for different membrane materials, metals, applied pressures and pre-cleaning steps. Measurements have been conducted on aqueous solutions including well-defined metal standards, ultrapure water, and on runoff water from corroded samples. Filtration using both non-cleaned and pre-cleaned filters revealed contamination and adsorption effects, in particular pronounced for zinc, evident for copper but non-significant for nickel. The results clearly show these artifacts to be non-systematic both for non-cleaned and pre-cleaned membranes. The applied pressure was of minor importance. Measurements of the labile fraction by means of stripping voltammetry clearly elucidate that membrane filtration followed by total metal analysis cannot accurately assess the labile or the dissolved metal fraction. - Highlights: → Membrane filtration for trace metal analysis can introduce significant artifacts. → The dissolved metal fraction cannot be assessed by membrane filtration. → Non-specified filtration procedures are inadequate for scientific studies. → Artifacts caused by membrane filtration need to be addressed by regulators. - Membrane filtration cannot be used to assess the dissolved metal fraction of aqueous media and needs to be defined in detail in standard tests.

  3. Synthesis of self-supported non-precious metal catalysts for oxygen reduction reaction with preserved nanostructures from the polyaniline nanofiber precursor

    DEFF Research Database (Denmark)

    Hu, Yang; Zhao, Xiao; Huang, Yunjie

    2013-01-01

    Non-precious metal catalysts (NPMCs) for the oxygen reduction reaction (ORR) are an active subject of recent research on proton exchange membrane fuel cells. In this study, we report a new approach to preparation of self-supported and nano-structured NPMCs using pre-prepared polyaniline (PANI...

  4. Plasma methods for metals recovery from metal-containing waste.

    Science.gov (United States)

    Changming, Du; Chao, Shang; Gong, Xiangjie; Ting, Wang; Xiange, Wei

    2018-04-27

    Metal-containing waste, a kind of new wastes, has a great potential for recycling and is also difficult to deal with. Many countries pay more and more attention to develop the metal recovery process and equipment of this kind of waste as raw material, so as to solve the environmental pollution and comprehensively utilize the discarded metal resources. Plasma processing is an efficient and environmentally friendly way for metal-containing waste. This review mainly discuss various metal-containing waste types, such as printed circuit boards (PCBs), red mud, galvanic sludge, Zircon, aluminium dross and incinerated ash, and the corresponding plasma methods, which include DC extended transferred arc plasma reactor, DC non-transferred arc plasma torch, RF thermal plasma reactor and argon and argon-hydrogen plasma jets. In addition, the plasma arc melting technology has a better purification effect on the extraction of useful metals from metal-containing wastes, a great capacity of volume reduction of waste materials, and a low leaching toxicity of solid slag, which can also be used to deal with all kinds of metal waste materials, having a wide range of applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Iron and steel industry and non-ferrous metal production - the electrical energy consumption and energy efficiency

    International Nuclear Information System (INIS)

    Blazhev, Blagoja; Sofeski, Slobodan

    2002-01-01

    Companies of iron and steel industry and non-ferrous metal production are the largest individual consumers of electricity and other forms of energy. This paper presents the electricity consumption in the last twenty-year period as well as data for their contribution in creating the gross domestic product (GDP) and engagement of labor force in the country. For some of the companies there is data for energy efficiency (kWh/t i.e. MJ/t) in last five years. (Original)

  6. New Nuclear Materials Including Non Metallic Fuel Elements. Vol. I. Proceedings of the Conference on New Nuclear Materials Technology, Including Non Metallic Fuel Elements

    International Nuclear Information System (INIS)

    1963-01-01

    One of the major aims of the International Atomic Energy Agency in furthering the peaceful uses of atomic energy is to encourage the development of economical nuclear power. Certainly, one of the more obvious methods of producing economical nuclear power is the development of economical fuels that can be used at high temperatures for long periods of time, and which have sufficient strength and integrity to operate under these conditions without permitting the release of fission products. In addition it is desirable that after irradiation these new fuels be economically reprocessed to reduce further the cost of the fuel cycle. As nuclear power becomes more and more competitive with conventional power the interest in new and more efficient higher-temperature fuels naturally increases rapidly. For these reasons, the Agency organized a Conference on New Nuclear Materials Technology, Including Non-Metallic Fuel Elements, which was held from 1 to 5 July 1963 at the International Hotel, Prague, with the assistance and co-operation of the Government of the Czechoslovak Socialist Republic. A total of 151 scientists attended, from 23 countries and 4 international organizations. The participants heard and discussed more than 60 scientific papers

  7. Nanodisturbances in deformed Gum Metal

    International Nuclear Information System (INIS)

    Gutkin, Mikhail Yu.; Ishizaki, Toshitaka; Kuramoto, Shigeru; Ovid'ko, Ilya A.

    2006-01-01

    Systematic experiments have been performed to characterize defect structures in deformed Gum Metal, a special titanium alloy with high strength, low Young's modulus, excellent cold workability and low resistance to shear in certain crystallographic planes. Results from high-resolution transmission electron microscopy characterization reveal nanodisturbances (planar nanoscopic areas of local shear) as typical elements of defect structures in deformed Gum Metal. A theoretical model is suggested describing nanodisturbances as nanoscale dipoles of non-conventional partial dislocations with arbitrary, non-quantized Burgers vectors. It is shown theoretically that the homogeneous generation of nanodisturbances is energetically favorable in Gum Metal, where they effectively carry plastic flow

  8. A New Approach to Non-Coordinating Anions: Lewis Acid Enhancement of Porphyrin Metal Centers in a Zwitterionic Metal$-$Organic Framework

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Jacob A. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Chemistry; Petersen, Brenna M. [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Chemistry; Kormos, Attila [Hungarian Academy of Sciences, Budapest (Hungary); Echeverría, Elena [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Physics and Astronomy; Chen, Yu-Sheng [Univ. of Chicago, Argonne, IL (United States). ChemMatCARS, Center for Advanced Radiation Sources; Zhang, Jian [Univ. of Nebraska, Lincoln, NE (United States). Dept. of Chemistry

    2017-02-28

    Here, we describe a new strategy to generate non-coordinating anions using zwitterionic metal–organic frameworks (MOFs). By assembly of anionic inorganic secondary building blocks (SBUs) ([In(CO2)4]$-$) with cationic metalloporphyrin-based organic linkers, we prepared zwitterionic MOFs in which the complete internal charge separation effectively prevents the potential binding of the counteranion to the cationic metal center. We demonstrate the enhanced Lewis acidity of MnIII- and FeIII-porphyrins in the zwitterionic MOFs in three representative electrocyclization reactions: [2 + 1] cycloisomerization of enynes, [3 + 2] cycloaddition of aziridines and alkenes, and [4 + 2] hetero-Diels–Alder cycloaddition of aldehydes with dienes. Lastly, this work paves a new way to design functional MOFs for tunable chemical catalysis.

  9. Fe2Ni2N nanosheet array: an efficient non-noble-metal electrocatalyst for non-enzymatic glucose sensing

    Science.gov (United States)

    You, Chao; Dai, Rui; Cao, Xiaoqin; Ji, Yuyao; Qu, Fengli; Liu, Zhiang; Du, Gu; Asiri, Abdullah M.; Xiong, Xiaoli; Sun, Xuping; Huang, Ke

    2017-09-01

    It is very important to develop enhanced electrochemical sensing platforms for molecular detection and non-noble-metal nanoarray architecture, as electrochemical catalyst electrodes have attracted great attention due to their large specific surface area and easy accessibility to target molecules. In this paper, we demonstrate that an Fe2Ni2N nanosheet array grown on Ti mesh (Fe2Ni2N NS/TM) shows high electrocatalytic activity toward glucose electrooxidation in alkaline medium. As an electrochemical glucose sensor, such an Fe2Ni2N NS/TM catalyst electrode demonstrates superior sensing performance with a short response time of less than 5 s, a wide linear range of 0.05 μM-1.5 mM, a low detection limit of 0.038 μM (S/N = 3), a high sensitivity of 6250 μA mM-1 cm-2, as well as high selectivity and long-term stability.

  10. Revegetating Bagacay Mining Site: A review of potential tropical species for phytoremediation of non-essential heavy metals

    Directory of Open Access Journals (Sweden)

    John Rhey Ymas Dayang

    2017-04-01

    Full Text Available Post-mining activities in Samar left serious environmental issues. Albeit it is used to provide prosperity to its constituents, mining in the area brought with it negative impacts. Bagacay Mine, an abandoned mining area in the province was left with enourmous amount of heavy metals. This include As (6-693 ppm, Cu (9-5,279, Pb (22-354 ppm, Hg (1-5 ppm, Zn (<1-7,138 ppm and Fe (5,900-373,500 ppm. The area was then reforested with Swietenia macrophylla, Leucaena leucocephala, Acacia mangium, Bambusa blumeana and Thysanolaena maxima but only 1 percent survived. This paper touches the nature and effects of the non-essential heavy metals and metalloids present in the area as well as the mechanism of phytoextraction. Additionally, tropical metallophytes which can be used for phytoremediation activities in the future were introduced and reviewed.

  11. Levels of essential and non-essential metals in Rhamnus prinoides ...

    African Journals Online (AJOL)

    The objective of this study was to assess the levels of essential and toxic metals in leaf and stem of Rhamnus prinoides which are used for bitterness of local alcoholic beverages in Ethiopia and as traditional medicine in some African countries. Levels of essential metals (Ca, Mg, Cr, Mn, Fe, Co, Ni, Cu and Zn) and toxic ...

  12. Clinical application of removable partial dentures using thermoplastic resin. Part II: Material properties and clinical features of non-metal clasp dentures.

    Science.gov (United States)

    Fueki, Kenji; Ohkubo, Chikahiro; Yatabe, Masaru; Arakawa, Ichiro; Arita, Masahiro; Ino, Satoshi; Kanamori, Toshikazu; Kawai, Yasuhiko; Kawara, Misao; Komiyama, Osamu; Suzuki, Tetsuya; Nagata, Kazuhiro; Hosoki, Maki; Masumi, Shin-ichi; Yamauchi, Mutsuo; Aita, Hideki; Ono, Takahiro; Kondo, Hisatomo; Tamaki, Katsushi; Matsuka, Yoshizo; Tsukasaki, Hiroaki; Fujisawa, Masanori; Baba, Kazuyoshi; Koyano, Kiyoshi; Yatani, Hirofumi

    2014-04-01

    This position paper reviews physical and mechanical properties of thermoplastic resin used for non-metal clasp dentures, and describes feature of each thermoplastic resin in clinical application of non-metal clasp dentures and complications based on clinical experience of expert panels. Since products of thermoplastic resin have great variability in physical and mechanical properties, clinicians should utilize them with careful consideration of the specific properties of each product. In general, thermoplastic resin has lower color-stability and higher risk for fracture than polymethyl methacrylate. Additionally, the surface of thermoplastic resin becomes roughened more easily than polymethyl methacrylate. Studies related to material properties of thermoplastic resin, treatment efficacy and follow-up are insufficient to provide definitive conclusions at this time. Therefore, this position paper should be revised based on future studies and a clinical guideline should be provided. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  13. Flame spray synthesis under a non-oxidizing atmosphere: Preparation of metallic bismuth nanoparticles and nanocrystalline bulk bismuth metal

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Robert N.; Stark, Wendelin J. [Institute for Chemical and Bioengineering, ETH Zuerich (Switzerland)], E-mail: wendelin.stark@chem.ethz.ch

    2006-10-15

    Metallic bismuth nanoparticles of over 98% purity were prepared by a modified flame spray synthesis method in an inert atmosphere by oxygen-deficient combustion of a bismuth-carboxylate based precursor. The samples were characterized by X-ray diffraction, thermal analysis and scanning electron microscopy confirming the formation of pure, crystalline metallic bismuth nanoparticles. Compression of the as-prepared powder resulted in highly dense, nanocrystalline pills with strong electrical conductivity and bright metallic gloss.

  14. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): a review.

    Science.gov (United States)

    Wang, Ruixue; Xu, Zhenming

    2014-08-01

    The world's waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite before the reutilization of the cathode ray tube (CRT) funnel glass, and the recycling of liquid crystal display (LCD) glass is economically viable for the containing of precious metals (indium and tin). However, the environmental assessment of the recycling process is essential and important before the industrialized production stage. For example, noise and dust should be evaluated during the glass cutting process. This study could contribute

  15. Unified analytical threshold voltage model for non-uniformly doped dual metal gate fully depleted silicon-on-insulator MOSFETs

    Science.gov (United States)

    Rao, Rathnamala; Katti, Guruprasad; Havaldar, Dnyanesh S.; DasGupta, Nandita; DasGupta, Amitava

    2009-03-01

    The paper describes the unified analytical threshold voltage model for non-uniformly doped, dual metal gate (DMG) fully depleted silicon-on-insulator (FDSOI) MOSFETs based on the solution of 2D Poisson's equation. 2D Poisson's equation is solved analytically for appropriate boundary conditions using separation of variables technique. The solution is then extended to obtain the threshold voltage of the FDSOI MOSFET. The model is able to handle any kind of non-uniform doping, viz. vertical, lateral as well as laterally asymetric channel (LAC) profile in the SOI film in addition to the DMG structure. The analytical results are validated with the numerical simulations using the device simulator MEDICI.

  16. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji-Won; Rondinone, Adam Justin; Love, Lonnie J.; Duty, Chad Edward; Madden, Andrew Stephen; Li, Yiliang; Ivanov, Ilia N.; Rawn, Claudia Jeanette

    2017-09-19

    The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component comprising at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.

  17. Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles

    Science.gov (United States)

    Phelps, Tommy J.; Lauf, Robert J.; Moon, Ji Won; Rondinone, Adam J.; Love, Lonnie J.; Duty, Chad Edward; Madden, Andrew Stephen; Li, Yiliang; Ivanov, Ilia N.; Rawn, Claudia Jeanette

    2014-06-24

    The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component containing at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.

  18. Levels of essential and non-essential metals in the raw seeds and ...

    African Journals Online (AJOL)

    The levels of metals in raw maize seeds and its processed foods (roasted seed and bread) collected from Shendi, Finote Selam and Debre Tabor (Ethiopia) were determined by flame atomic absorption spectrometry (major metals) and graphite furnace atomic absorption spectrometry (trace and heavy metals) after wet ...

  19. The effect of environmental conditions on the stability of heavy metal-filter material complex as assessed by the leaching of adsorbed metal ions

    Energy Technology Data Exchange (ETDEWEB)

    Khokhotva, Oleksandr, E-mail: khokhotva@bigmir.net [School of Sustainable Development of Society and Technology, Maelardalen University, Box 883, SE-721 23, Vaesteras (Sweden); Waara, Sylvia, E-mail: sylvia.waara@hh.se [School of Sustainable Development of Society and Technology, Maelardalen University, Box 883, SE-721 23, Vaesteras (Sweden)

    2011-06-15

    In this study the influence of environmental conditions, most likely prevailing in filter beds used for intermittently discharged pollutant streams such as landfill leachate and storm water, on the stability of the heavy metal-filter complex was investigated for 2 filter materials; non-treated and urea treated pine bark, using leaching experiments. The metal-filter complex stability was higher for urea treated than for non-treated pine bark and dependent on the metal adsorbed. The type of environmental condition applied was of less importance for the extent of leaching. - Highlights: > Metal-pine bark complex stability under changing environmental conditions is studied. > Metal leaching from non-treated bark is much higher than from urea-treated bark. > No significant influence of changing environmental conditions on the leaching extent. > Metal leaching from wet bark samples exposed to freezing is somewhat higher.> Zn leaching is the highest and Cu leaching is the lowest for both bark samples. - The study assess the metal-filter material complex stability when metal removal using filter material is used in locations with fluctuating environmental conditions.

  20. The effect of environmental conditions on the stability of heavy metal-filter material complex as assessed by the leaching of adsorbed metal ions

    International Nuclear Information System (INIS)

    Khokhotva, Oleksandr; Waara, Sylvia

    2011-01-01

    In this study the influence of environmental conditions, most likely prevailing in filter beds used for intermittently discharged pollutant streams such as landfill leachate and storm water, on the stability of the heavy metal-filter complex was investigated for 2 filter materials; non-treated and urea treated pine bark, using leaching experiments. The metal-filter complex stability was higher for urea treated than for non-treated pine bark and dependent on the metal adsorbed. The type of environmental condition applied was of less importance for the extent of leaching. - Highlights: → Metal-pine bark complex stability under changing environmental conditions is studied. → Metal leaching from non-treated bark is much higher than from urea-treated bark. → No significant influence of changing environmental conditions on the leaching extent. → Metal leaching from wet bark samples exposed to freezing is somewhat higher.→ Zn leaching is the highest and Cu leaching is the lowest for both bark samples. - The study assess the metal-filter material complex stability when metal removal using filter material is used in locations with fluctuating environmental conditions.

  1. 21 CFR 888.3650 - Shoulder joint metal/polymer non-constrained cemented prosthesis.

    Science.gov (United States)

    2010-04-01

    ...) “Guidance Document for Testing Orthopedic Implants with Modified Metallic Surfaces Apposing Bone or Bone... “Implants for Surgery—Metallic Materials—Part 3: Wrought Titanium 6-Aluminum 4-Vandium Alloy,” (ii) ISO 5832-4:1996 “Implants for Surgery—Metallic Materials—Part 4: Cobalt-Chromium-Molybdenum Casting Alloy...

  2. Finding buried metallic pipes using a non-destructive approach based on 3D time-domain induced polarization data

    Science.gov (United States)

    Shao, Zhenlu; Revil, André; Mao, Deqiang; Wang, Deming

    2018-04-01

    The location of buried utility pipes is often unknown. We use the time-domain induced polarization method to non-intrusively localize metallic pipes. A new approach, based on injecting a primary electrical current between a pair of electrodes and measuring the time-lapse voltage response on a set of potential electrodes after shutting down this primary current is used. The secondary voltage is measured on all the electrodes with respect to a single electrode used as a reference for the electrical potential, in a way similar to a self-potential time lapse survey. This secondary voltage is due to the formation of a secondary current density in the ground associated with the polarization of the metallic pipes. An algorithm is designed to localize the metallic object using the secondary voltage distribution by performing a tomography of the secondary source current density associated with the polarization of the pipes. This algorithm is first benchmarked on a synthetic case. Then, two laboratory sandbox experiments are performed with buried metallic pipes located in a sandbox filled with some clean sand. In Experiment #1, we use a horizontal copper pipe while in Experiment #2 we use an inclined stainless steel pipe. The result shows that the method is effective in localizing these two pipes. At the opposite, electrical resistivity tomography is not effective in localizing the pipes because they may appear resistive at low frequencies. This is due to the polarization of the metallic pipes which blocks the charge carriers at its external boundaries.

  3. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ruixue; Xu, Zhenming, E-mail: zmxu@sjtu.edu.cn

    2014-08-15

    Highlights: • NMFs from WEEE were treated by incineration or land filling in the past. • Environmental risks such as heavy metals and BFRs will be the major problems during the NMFs recycling processes. • Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glasses are reviewed. • More environmental impact assessment should be carried out to evaluate the environmental risks of the recycling products. - Abstract: The world’s waste electrical and electronic equipment (WEEE) consumption has increased incredibly in recent decades, which have drawn much attention from the public. However, the major economic driving force for recycling of WEEE is the value of the metallic fractions (MFs). The non-metallic fractions (NMFs), which take up a large proportion of E-wastes, were treated by incineration or landfill in the past. NMFs from WEEE contain heavy metals, brominated flame retardant (BFRs) and other toxic and hazardous substances. Combustion as well as landfill may cause serious environmental problems. Therefore, research on resource reutilization and safe disposal of the NMFs from WEEE has a great significance from the viewpoint of environmental protection. Among the enormous variety of NMFs from WEEE, some of them are quite easy to recycle while others are difficult, such as plastics, glass and NMFs from waste printed circuit boards (WPCBs). In this paper, we mainly focus on the intractable NMFs from WEEE. Methods and technologies of recycling the two types of NMFs from WEEE, plastics, glass are reviewed in this paper. For WEEE plastics, the pyrolysis technology has the lowest energy consumption and the pyrolysis oil could be obtained, but the containing of BFRs makes the pyrolysis recycling process problematic. Supercritical fluids (SCF) and gasification technology have a potentially smaller environmental impact than pyrolysis process, but the energy consumption is higher. With regard to WEEE glass, lead removing is requisite

  4. Usefulness of angiographic embolization endoscopic metallic clip placement in patient with non-variceal upper gastrointestinal bleeding

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Min Jae; Hwang, Cheol Mog; Kim, Ho Jun; Cho, Young Jun; Bae, Seok Hwan [Dept. of Radiology, Konyang University Hospital, Daejeon (Korea, Republic of); Shin, Byung Seok; Ohm, Joon Young [Dept. of Radiology, Chungnam National University College of Medicine, Daejeon (Korea, Republic of); Kang, Chae Hoon [Dept. of Radiology, Inje University College of Medicine, Pusan Paik Hospital, Busan (Korea, Republic of)

    2013-08-15

    The aim of this study is to assess the usefulness of angiographic embolization after endoscopic metallic clip placement around the edge of non-variceal upper gastrointestinal bleeding ulcers. We have chosen 41 patients (mean age, 65.2 years) with acute bleeding ulcers (22 gastric ulcers, 16 duodenal ulcers, 3 malignant ulcers) between January 2010 and December 2012. We inserted metallic clips during the routine endoscopic treatments of the bleeding ulcers. Subsequent transcatheter arterial embolization was performed within 2 hours. We analyzed the angiographic positive rates, angiographic success rates and clinical success rates. Among the 41 patients during the angiography, 19 patients (46%) demonstrated active bleeding points. Both groups underwent embolization using microcoils, N-butyl-cyano-acrylate (NBCA), microcoils with NBCA or gelfoam particle. There are no statistically significant differences between these two groups according to which embolic materials are being used. The bleeding was initially stopped in all patients, except the two who experienced technical failures. Seven patients experienced repeated episodes of bleeding within two weeks. Among them, 4 patients were successful re-embolized. Another 3 patients underwent gastrectomy. Overall, clinical success was achieved in 36 of 41 (87.8%) patients. The endoscopic metallic clip placement was helpful to locate the correct target vessels for the angiographic embolization. In conclusion, this technique reduced re-bleeding rates, especially in patients who do not show active bleeding points.

  5. Usefulness of angiographic embolization endoscopic metallic clip placement in patient with non-variceal upper gastrointestinal bleeding

    International Nuclear Information System (INIS)

    Yoon, Min Jae; Hwang, Cheol Mog; Kim, Ho Jun; Cho, Young Jun; Bae, Seok Hwan; Shin, Byung Seok; Ohm, Joon Young; Kang, Chae Hoon

    2013-01-01

    The aim of this study is to assess the usefulness of angiographic embolization after endoscopic metallic clip placement around the edge of non-variceal upper gastrointestinal bleeding ulcers. We have chosen 41 patients (mean age, 65.2 years) with acute bleeding ulcers (22 gastric ulcers, 16 duodenal ulcers, 3 malignant ulcers) between January 2010 and December 2012. We inserted metallic clips during the routine endoscopic treatments of the bleeding ulcers. Subsequent transcatheter arterial embolization was performed within 2 hours. We analyzed the angiographic positive rates, angiographic success rates and clinical success rates. Among the 41 patients during the angiography, 19 patients (46%) demonstrated active bleeding points. Both groups underwent embolization using microcoils, N-butyl-cyano-acrylate (NBCA), microcoils with NBCA or gelfoam particle. There are no statistically significant differences between these two groups according to which embolic materials are being used. The bleeding was initially stopped in all patients, except the two who experienced technical failures. Seven patients experienced repeated episodes of bleeding within two weeks. Among them, 4 patients were successful re-embolized. Another 3 patients underwent gastrectomy. Overall, clinical success was achieved in 36 of 41 (87.8%) patients. The endoscopic metallic clip placement was helpful to locate the correct target vessels for the angiographic embolization. In conclusion, this technique reduced re-bleeding rates, especially in patients who do not show active bleeding points.

  6. Partial Discharge Monitoring on Metal-Enclosed Switchgear with Distributed Non-Contact Sensors

    Directory of Open Access Journals (Sweden)

    Chongxing Zhang

    2018-02-01

    Full Text Available Metal-enclosed switchgear, which are widely used in the distribution of electrical energy, play an important role in power distribution networks. Their safe operation is directly related to the reliability of power system as well as the power quality on the consumer side. Partial discharge detection is an effective way to identify potential faults and can be utilized for insulation diagnosis of metal-enclosed switchgear. The transient earth voltage method, an effective non-intrusive method, has substantial engineering application value for estimating the insulation condition of switchgear. However, the practical application effectiveness of TEV detection is not satisfactory because of the lack of a TEV detection application method, i.e., a method with sufficient technical cognition and analysis. This paper proposes an innovative online PD detection system and a corresponding application strategy based on an intelligent feedback distributed TEV wireless sensor network, consisting of sensing, communication, and diagnosis layers. In the proposed system, the TEV signal or status data are wirelessly transmitted to the terminal following low-energy signal preprocessing and acquisition by TEV sensors. Then, a central server analyzes the correlation of the uploaded data and gives a fault warning level according to the quantity, trend, parallel analysis, and phase resolved partial discharge pattern recognition. In this way, a TEV detection system and strategy with distributed acquisition, unitized fault warning, and centralized diagnosis is realized. The proposed system has positive significance for reducing the fault rate of medium voltage switchgear and improving its operation and maintenance level.

  7. Partial Discharge Monitoring on Metal-Enclosed Switchgear with Distributed Non-Contact Sensors.

    Science.gov (United States)

    Zhang, Chongxing; Dong, Ming; Ren, Ming; Huang, Wenguang; Zhou, Jierui; Gao, Xuze; Albarracín, Ricardo

    2018-02-11

    Metal-enclosed switchgear, which are widely used in the distribution of electrical energy, play an important role in power distribution networks. Their safe operation is directly related to the reliability of power system as well as the power quality on the consumer side. Partial discharge detection is an effective way to identify potential faults and can be utilized for insulation diagnosis of metal-enclosed switchgear. The transient earth voltage method, an effective non-intrusive method, has substantial engineering application value for estimating the insulation condition of switchgear. However, the practical application effectiveness of TEV detection is not satisfactory because of the lack of a TEV detection application method, i.e., a method with sufficient technical cognition and analysis. This paper proposes an innovative online PD detection system and a corresponding application strategy based on an intelligent feedback distributed TEV wireless sensor network, consisting of sensing, communication, and diagnosis layers. In the proposed system, the TEV signal or status data are wirelessly transmitted to the terminal following low-energy signal preprocessing and acquisition by TEV sensors. Then, a central server analyzes the correlation of the uploaded data and gives a fault warning level according to the quantity, trend, parallel analysis, and phase resolved partial discharge pattern recognition. In this way, a TEV detection system and strategy with distributed acquisition, unitized fault warning, and centralized diagnosis is realized. The proposed system has positive significance for reducing the fault rate of medium voltage switchgear and improving its operation and maintenance level.

  8. Calculating the Carrying Capacity of Flexural Prestressed Concrete Beams with Non-Metallic Reinforcement

    Directory of Open Access Journals (Sweden)

    Mantas Atutis

    2011-04-01

    Full Text Available The article reviews moment resistance design methods of prestressed concrete beams with fibre-reinforced polymer (FRP reinforcement. FRP tendons exhibit linear elastic response to rupture without yielding and thus failure is expected to be brittle. The structural behaviour of beams prestressed with FRP tendons is different from beams with traditional steel reinforcement. Depending on the reinforcement ratio, the flexural behaviour of the beam can be divided into several groups. The numerical results show that depending on the nature of the element failure, moment resistance calculation results are different by using reviewed methods. It was found, that the use of non-metallic reinforcement in prestressed concrete structures is effective: moment capacity is about 5% higher than that of the beams with conventional steel reinforcement.Article in Lithuanian

  9. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    Science.gov (United States)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  10. Reduction of metallic coil artefacts in computed tomography body imaging: effects of a new single-energy metal artefact reduction algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kidoh, Masafumi; Utsunomiya, Daisuke; Ikeda, Osamu; Tamura, Yoshitaka; Oda, Seitaro; Yuki, Hideaki; Nakaura, Takeshi; Hirai, Toshinori; Yamashita, Yasuyuki [Kumamoto University, Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto (Japan); Funama, Yoshinori [Kumamoto University, Department of Medical Physics, Faculty of Life Sciences, Kumamoto (Japan); Kawano, Takayuki [Kumamoto University Graduate School, Department of Neurosurgery, Faculty of Life Sciences Research, Kumamoto (Japan)

    2016-05-15

    We evaluated the effect of a single-energy metal artefact reduction (SEMAR) algorithm for metallic coil artefact reduction in body imaging. Computed tomography angiography (CTA) was performed in 30 patients with metallic coils (10 men, 20 women; mean age, 67.9 ± 11 years). Non-SEMAR images were reconstructed with iterative reconstruction alone, and SEMAR images were reconstructed with the iterative reconstruction plus SEMAR algorithms. We compared image noise around metallic coils and the maximum diameters of artefacts from coils between the non-SEMAR and SEMAR images. Two radiologists visually evaluated the metallic coil artefacts utilizing a four-point scale: 1 = extensive; 2 = strong; 3 = mild; 4 = minimal artefacts. The image noise and maximum diameters of the artefacts of the SEMAR images were significantly lower than those of the non-SEMAR images (65.1 ± 33.0 HU vs. 29.7 ± 10.3 HU; 163.9 ± 54.8 mm vs. 10.3 ± 19.0 mm, respectively; P < 0.001). Better visual scores were obtained with the SEMAR technique (3.4 ± 0.6 vs. 1.0 ± 0.0, P < 0.001). The SEMAR algorithm significantly reduced artefacts caused by metallic coils compared with the non-SEMAR algorithm. This technique can potentially increase CT performance for the evaluation of post-coil embolization complications. (orig.)

  11. Reduction of metallic coil artefacts in computed tomography body imaging: effects of a new single-energy metal artefact reduction algorithm

    International Nuclear Information System (INIS)

    Kidoh, Masafumi; Utsunomiya, Daisuke; Ikeda, Osamu; Tamura, Yoshitaka; Oda, Seitaro; Yuki, Hideaki; Nakaura, Takeshi; Hirai, Toshinori; Yamashita, Yasuyuki; Funama, Yoshinori; Kawano, Takayuki

    2016-01-01

    We evaluated the effect of a single-energy metal artefact reduction (SEMAR) algorithm for metallic coil artefact reduction in body imaging. Computed tomography angiography (CTA) was performed in 30 patients with metallic coils (10 men, 20 women; mean age, 67.9 ± 11 years). Non-SEMAR images were reconstructed with iterative reconstruction alone, and SEMAR images were reconstructed with the iterative reconstruction plus SEMAR algorithms. We compared image noise around metallic coils and the maximum diameters of artefacts from coils between the non-SEMAR and SEMAR images. Two radiologists visually evaluated the metallic coil artefacts utilizing a four-point scale: 1 = extensive; 2 = strong; 3 = mild; 4 = minimal artefacts. The image noise and maximum diameters of the artefacts of the SEMAR images were significantly lower than those of the non-SEMAR images (65.1 ± 33.0 HU vs. 29.7 ± 10.3 HU; 163.9 ± 54.8 mm vs. 10.3 ± 19.0 mm, respectively; P < 0.001). Better visual scores were obtained with the SEMAR technique (3.4 ± 0.6 vs. 1.0 ± 0.0, P < 0.001). The SEMAR algorithm significantly reduced artefacts caused by metallic coils compared with the non-SEMAR algorithm. This technique can potentially increase CT performance for the evaluation of post-coil embolization complications. (orig.)

  12. Voltage control of metal-insulator transition and non-volatile ferroelastic switching of resistance in VOx/PMN-PT heterostructures.

    Science.gov (United States)

    Nan, Tianxiang; Liu, Ming; Ren, Wei; Ye, Zuo-Guang; Sun, Nian X

    2014-08-04

    The central challenge in realizing electronics based on strongly correlated electronic states, or 'Mottronics', lies in finding an energy efficient way to switch between the distinct collective phases with a control voltage in a reversible and reproducible manner. In this work, we demonstrate that a voltage-impulse-induced ferroelastic domain switching in the (011)-oriented 0.71Pb(Mg1/3Nb2/3)O3-0.29PbTiO3 (PMN-PT) substrates allows a robust non-volatile tuning of the metal-insulator transition in the VOx films deposited onto them. In such a VOx/PMN-PT heterostructure, the unique two-step electric polarization switching covers up to 90% of the entire poled area and contributes to a homogeneous in-plane anisotropic biaxial strain, which, in turn, enables the lattice changes and results in the suppression of metal-insulator transition in the mechanically coupled VOx films by 6 K with a resistance change up to 40% over a broad range of temperature. These findings provide a framework for realizing in situ and non-volatile tuning of strain-sensitive order parameters in strongly correlated materials, and demonstrate great potentials in delivering reconfigurable, compactable, and energy-efficient electronic devices.

  13. On the occurrence of metallic character in the periodic table of the chemical elements.

    Science.gov (United States)

    Hensel, Friedrich; Slocombe, Daniel R; Edwards, Peter P

    2015-03-13

    The classification of a chemical element as either 'metal' or 'non-metal' continues to form the basis of an instantly recognizable, universal representation of the periodic table (Mendeleeff D. 1905 The principles of chemistry, vol. II, p. 23; Poliakoff M. & Tang S. 2015 Phil. Trans. R. Soc. A 373: , 20140211). Here, we review major, pre-quantum-mechanical innovations (Goldhammer DA. 1913 Dispersion und Absorption des Lichtes; Herzfeld KF. 1927 Phys. Rev. 29: , 701-705) that allow an understanding of the metallic or non-metallic status of the chemical elements under both ambient and extreme conditions. A special emphasis will be placed on recent experimental advances that investigate how the electronic properties of chemical elements vary with temperature and density, and how this invariably relates to a changing status of the chemical elements. Thus, the prototypical non-metals, hydrogen and helium, becomes metallic at high densities; and the acknowledged metals, mercury, rubidium and caesium, transform into their non-metallic forms at low elemental densities. This reflects the fundamental fact that, at temperatures above the absolute zero of temperature, there is therefore no clear dividing line between metals and non-metals. Our conventional demarcation of chemical elements as metals or non-metals within the periodic table is of course governed by our experience of the nature of the elements under ambient conditions. Examination of these other situations helps us to examine the exact divisions of the chemical elements into metals and non-metals (Mendeleeff D. 1905 The principles of chemistry, vol. II, p. 23). © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Elimination of matrix effects in the determination of oxygen in some non-ferrous metals by activation with 14 MeV neutrons

    International Nuclear Information System (INIS)

    Szopa, Z.; Sterlinski, S.; Tetteh, G.

    1981-01-01

    It is shown that the lower limit of detection and specificity of oxygen determination in strongly activated non-ferrous metals can be improved by means of the optimization of Pb-absorber thickness, cooling time and cyclic activation analysis. Some mathematical predictions are verified by oxygen determination in copper and yttrium. (author)

  15. Recycling of non-metallic fractions from waste printed circuit boards: A review

    International Nuclear Information System (INIS)

    Guo Jiuyong; Guo Jie; Xu Zhenming

    2009-01-01

    The major economic driving force for recycling of waste printed circuit boards (PCBs) is the value of the metallic fractions (MFs) of PCBs. The non-metallic fractions (NMFs), which take up almost 70 wt% of waste PCBs, were treated by combustion or land filling in the past. However, combustion of the NMFs will cause the formation of highly toxic polybrominated dibenzodioxins and dibenzofurans (PBDD/Fs) while land filling of the NMFs will lead to secondary pollution caused by heavy metals and brominated flame retardants (BFRs) leaching to the groundwater. Therefore, recycling of the NMFs from waste PCBs is drawing more and more attention from the public and the governments. Currently, how to recycle the NMFs environmental soundly has become a significant topic in recycling of waste PCBs. In order to fulfill the better resource utilization of the NMFs, the compositions and characteristics of the NMFs, methods and outcomes of recycling the NMFs from waste PCBs and analysis and treatment for the hazardous substances contained in the NMFs were reviewed in this paper. Thermosetting resin matrix composites, thermoplastic matrix composites, concrete and viscoelastic materials are main applications for physical recycling of the NMFs. Chemical recycling methods consisting of pyrolysis, gasification, supercritical fluids depolymerization and hydrogenolytic degradation can be used to convert the NMFs to chemical feedstocks and fuels. The toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) can be used to determine the toxicity characteristic (TC) of the NMFs and to evaluate the environmental safety of products made from the recycled NMFs. It is believed that physical recycling of the NMFs has been a promising recycling method. Much more work should be done to develop comprehensive and industrialized usage of the NMFs recycled by physical methods. Chemical recycling methods have the advantages in eliminating hazardous substances

  16. Recycling of non-metallic fractions from waste printed circuit boards: A review

    Energy Technology Data Exchange (ETDEWEB)

    Guo Jiuyong; Guo Jie [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Xu Zhenming, E-mail: zmxu@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China)

    2009-09-15

    The major economic driving force for recycling of waste printed circuit boards (PCBs) is the value of the metallic fractions (MFs) of PCBs. The non-metallic fractions (NMFs), which take up almost 70 wt% of waste PCBs, were treated by combustion or land filling in the past. However, combustion of the NMFs will cause the formation of highly toxic polybrominated dibenzodioxins and dibenzofurans (PBDD/Fs) while land filling of the NMFs will lead to secondary pollution caused by heavy metals and brominated flame retardants (BFRs) leaching to the groundwater. Therefore, recycling of the NMFs from waste PCBs is drawing more and more attention from the public and the governments. Currently, how to recycle the NMFs environmental soundly has become a significant topic in recycling of waste PCBs. In order to fulfill the better resource utilization of the NMFs, the compositions and characteristics of the NMFs, methods and outcomes of recycling the NMFs from waste PCBs and analysis and treatment for the hazardous substances contained in the NMFs were reviewed in this paper. Thermosetting resin matrix composites, thermoplastic matrix composites, concrete and viscoelastic materials are main applications for physical recycling of the NMFs. Chemical recycling methods consisting of pyrolysis, gasification, supercritical fluids depolymerization and hydrogenolytic degradation can be used to convert the NMFs to chemical feedstocks and fuels. The toxicity characteristic leaching procedure (TCLP) and synthetic precipitation leaching procedure (SPLP) can be used to determine the toxicity characteristic (TC) of the NMFs and to evaluate the environmental safety of products made from the recycled NMFs. It is believed that physical recycling of the NMFs has been a promising recycling method. Much more work should be done to develop comprehensive and industrialized usage of the NMFs recycled by physical methods. Chemical recycling methods have the advantages in eliminating hazardous substances

  17. Exploring metal artifact reduction using dual-energy CT with pre-metal and post-metal implant cadaver comparison: are implant specific protocols needed?

    Science.gov (United States)

    Wellenberg, Ruud H H; Donders, Johanna C E; Kloen, Peter; Beenen, Ludo F M; Kleipool, Roeland P; Maas, Mario; Streekstra, Geert J

    2017-08-25

    To quantify and optimize metal artifact reduction using virtual monochromatic dual-energy CT for different metal implants compared to non-metal reference scans. Dual-energy CT scans of a pair of human cadaver limbs were acquired before and after implanting a titanium tibia plate, a stainless-steel tibia plate and a titanium intramedullary nail respectively. Virtual monochromatic images were analyzed from 70 to 190 keV. Region-of-interest (ROI), used to determine fluctuations and inaccuracies in CT numbers of soft tissues and bone, were placed in muscle, fat, cortical bone and intramedullary tibia canal. The stainless-steel implant resulted in more pronounced metal artifacts compared to both titanium implants. CT number inaccuracies in 70 keV reference images were minimized at 130, 180 and 190 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively. Noise, measured as the standard deviation of pixels within a ROI, was minimized at 130, 150 and 140 keV for the titanium tibia plate, stainless-steel tibia plate and titanium intramedullary nail respectively. Tailoring dual-energy CT protocols using implant specific virtual monochromatic images minimizes fluctuations and inaccuracies in CT numbers in bone and soft tissues compared to non-metal reference scans.

  18. Crystal field of Dy in non-magnetic metals

    NARCIS (Netherlands)

    Kikkert, Pieter Jan Willem

    1980-01-01

    Many investigations carried out during the last 15 years have demonstrated that the crystalline electric field (CEF) has a great influence on the low temperature magnetic behaviour of rare earth ions in metallic systems (see e.g. /1/) . It is therefore important to understand the origin of the CEF

  19. 77 FR 67251 - Special Conditions: Boeing Model 757 Series Airplanes; Seats with Non-Traditional, Large, Non...

    Science.gov (United States)

    2012-11-09

    ... metal, the contribution to a fire in the cabin had been minimized and was not considered a threat. For...-metallic panels that would affect survivability during a post-crash fire event. The applicable... designed with a metal frame covered by fabric, not with large, non-metallic panels. Seats also met the then...

  20. Non-repeatability of large plasticity for Fe-based bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weiming [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Sun, Baoan [Department of Mechanical and Biomedical Engineering, City University of Hong Kong (Hong Kong); Zhao, Yucheng, E-mail: zhaoyc1972@163.com [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Li, Qiang [School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046 (China); Hou, Long; Luo, Ning [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Dun, Chaochao [Department of Physics, Wake Forest University, Winston Salem, NC 27109 (United States); Zhao, Chengliang [Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201 (China); Ma, Zhanguo [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Liu, Haishun, E-mail: liuhaishun@126.com [State Key Laboratory for Geomechanics and Deep Underground Engineering, School of Mechanics and Civil Engineering, School of Sciences, China University of Mining and Technology, Xuzhou 221116 (China); Shen, Baolong [School of Materials Science and Engineering, Southeast University, Nanjing 211189 (China)

    2016-08-15

    Serrated flow is an essential characteristic of the plastic deformation of metallic glasses. Under restricted loading conditions, the formation and expansion of shear bands act as the serrated flow of stress-strain curves in metallic glasses. In this work, serrated flows in Fe{sub 50}Ni{sub 30}P{sub 13}C{sub 7} glassy samples with different plasticity were studied. The distribution histogram shows a monotonically decreasing trend during the initial deformation stage (i.e., the plastic deformation in the range of 0–8%), whereas in the following deformation stage (i.e., a plastic deformation of 8–14%), the stress drop frequency distribution presents both a monotonically decreasing distribution and a peak shape similar to chaotic dynamics. It is shown that the spatial evolution behavior of shear bands in Fe{sub 50}Ni{sub 30}P{sub 13}C{sub 7} metallic glasses evolved from self-organized critical to chaotic dynamics in the form of serrated flow, which reveals the origin of discrete plasticity of Fe-based bulk metallic glasses. This study has potential applications for understanding the plastic deformation mechanism. - Highlights: • Two-stage deformation mechanism in Fe-based bulk metallic glasses. • Distribution of the stress drop amplitude is significantly different at two stages. • The stages are related to multiple shear bands and discrete plasticity.

  1. Non-repeatability of large plasticity for Fe-based bulk metallic glasses

    International Nuclear Information System (INIS)

    Yang, Weiming; Sun, Baoan; Zhao, Yucheng; Li, Qiang; Hou, Long; Luo, Ning; Dun, Chaochao; Zhao, Chengliang; Ma, Zhanguo; Liu, Haishun; Shen, Baolong

    2016-01-01

    Serrated flow is an essential characteristic of the plastic deformation of metallic glasses. Under restricted loading conditions, the formation and expansion of shear bands act as the serrated flow of stress-strain curves in metallic glasses. In this work, serrated flows in Fe_5_0Ni_3_0P_1_3C_7 glassy samples with different plasticity were studied. The distribution histogram shows a monotonically decreasing trend during the initial deformation stage (i.e., the plastic deformation in the range of 0–8%), whereas in the following deformation stage (i.e., a plastic deformation of 8–14%), the stress drop frequency distribution presents both a monotonically decreasing distribution and a peak shape similar to chaotic dynamics. It is shown that the spatial evolution behavior of shear bands in Fe_5_0Ni_3_0P_1_3C_7 metallic glasses evolved from self-organized critical to chaotic dynamics in the form of serrated flow, which reveals the origin of discrete plasticity of Fe-based bulk metallic glasses. This study has potential applications for understanding the plastic deformation mechanism. - Highlights: • Two-stage deformation mechanism in Fe-based bulk metallic glasses. • Distribution of the stress drop amplitude is significantly different at two stages. • The stages are related to multiple shear bands and discrete plasticity.

  2. Cordierite-supported metal oxide for non-methane hydrocarbon oxidation in cooking oil fumes.

    Science.gov (United States)

    Huang, Yonghai; Yi, Honghong; Tang, Xiaolong; Zhao, Shunzheng; Gao, Fengyu; Wang, Jiangen; Yang, Zhongyu

    2018-05-21

    Cooking emission is an important reason for the air quality deterioration in the metropolitan area in China. Transition metal oxide and different loading of manganese oxide supported on cordierite were prepared by incipient wetness impregnation method and were used for non-methane hydrocarbon (NMHC) oxidation in cooking oil fumes (COFs). The effects of different calcination temperature and different Mn content were also studied. The SEM photographs and CO 2 temperature-programmed desorption revealed 5 wt% Mn/cordierite had the best pore structure and the largest number of the weak and moderate basic sites so it showed the best performance for NMHC oxidation. XRD analysis exhibited 5 wt% Mn/cordierite had the best dispersion of active phase and the active phase was MnO 2 when the calcination temperature was 400℃ which were good for the catalytic oxidation of NMHC.

  3. Non-enzymatic electrochemical immunoassay using noble metal nanoparticles: a review

    International Nuclear Information System (INIS)

    Tang, Juan; Tang, Dianping

    2015-01-01

    Electrochemical immunodetection has attracted considerable attention due to its high sensitivity, low cost and simplicity. Large efforts have recently made in order to design ultrasensitive assays. Noble metal nanoparticles (NM-NPs) offer advantages such as high conductivity and large surface-to-volume ratio. NM-NPs therefore are excellent candidates for developing electrochemical platforms for immunodetection and as signal tags. The use of biofunctionalized NM-NPs often results in amplified recognition via stronger loading of signal tags, and also in enhanced signal. This review (with 87 references) gives an overview on the current state in the use of NM-NPs in Non-enzymatic electrochemical immunosensing. We discuss the application of NM-NPs as electrode matrices and as electroactive labels (either as a carrier or as electrocatalytic labels), and compare the materials (mainly nanoparticles of gold, platinum, or of bimetallic materials) in terms of performance (for example by increasing sensitivity via label amplification or via high densities of capture molecules). A conclusion covers current challenges and gives an outlook. Rather than being exhaustive, the review focuses on representative examples that illustrate novel concepts and promising applications. NM-NPs based immunosensing opens a series of concepts for basic research and offers new tools for determination of trace amounts of protein-related analytes in environment and clinical applications. (author)

  4. Especies nuevas de abejas de Cuba y La Española (Hymenoptera: Colletidae, Megachilidae, Apidae

    Directory of Open Access Journals (Sweden)

    Julio A. Genaro

    2001-12-01

    Full Text Available Se describen e ilustran cinco especies nuevas de abejas antillanas: Collectes granpiedrensis n. sp. (Cuba (Colletidae; Osmia (Diceratosmia stangei n. sp. (República Dominicana; Coelioxys (Cyrtocoelioxys alayoi n. sp. (Cuba; C. (Boreocoelioxys sannicolarensis n. sp. (Cuba (Megachilidae y Triepeolus nisibonensis n. sp. (República Dominicana (ApidaeFive new species of Antillean bees are described and illustrated: Colletes granpiedrensis n. sp. (Cuba (Colletidae is charaterized as follows: Head and mesosoma black, legs and metasoma brown. Dense brown hairs on head and mesosoma; white on frons and metasomal terga. Clypeus, frons and mesosoma with large punctures, lesser on vertex and metasoma. Malar space more wide than long. Male and female slightly similar, except in the apical margin of clypeus, supraclipeal area, and color of the pubescence on legs and sterna; Osmia (Diceratosmia stangei n. sp. (Dominican Republic (Megachilidae is charaterized as follows: Dark metallic green, metasoma black with metallic green reflections. Pubescence light; body with large, closed punctures. Female with violet reflections in tergum III and mandible tridentate; Coelioxys (Cyrtocoelioxys alayoi n. sp. (Cuba (Megachilidae is charaterized as follows: Female black, except basal area of mandibles, tegula, legs, lateral area of tergum I and sterna, reddish brown. Posterior margin of scutellum rounded. Apex of tergum VI with spine curved up. Sternum VI fringed with short, closed setae, and the apex with short spine; Coelioxys (Boreocoelioxys sannicolarensis n. sp. (Cuba (Megachilidae is charaterized as follows: Black, except antenna and tegula brown; legs and sterna reddish brown. Clypeal margin straight in profile. Gradular grooves on metasomal terga II and III distinct medially. Fovea on metasomal tergum II of male deep and short, and Triepeolus nisibonensis n. sp. (Dominican Republic (Apidae is charaterized as follows: Dorsal pubescence (short and dense on mesosoma

  5. Device for safe disposal of non-utilizable cuttings from depleted uranium metal

    International Nuclear Information System (INIS)

    Fiala, B.

    1991-01-01

    A device was developed for the production of U 3 O 8 from cuttings of depleted uranium metal or of uranium metal waste whose surface area is sufficiently large for combustion. The waste may contain organic impurities or other metals. The purity of the U 3 O 8 thus obtained is about 98%. Tests gave evidence that the combustion facility meets all requirements set forth by hygienic and ecological regulations. (Z.M.). 1 fig

  6. Radiation physics of non-metallic crystals. Volume III, No. 3. Radiatsionnaya fizika nemetallicheskikh kristallov. Tom III, Chast 3

    Energy Technology Data Exchange (ETDEWEB)

    Konozenko, I D [ed.

    1971-01-01

    Separate articles are presented on studies concerned with radiation phenomena in ionic crystals and dielectrics. Topics include energy losses and electron escape in monocrystals, non-stationary acoustic absorption in monocrystals, charge behavior in radioactive dielectrics, the effects of electron radiation on the electroconductivity of organic dielectrics, adsorption of polyatomic gases in adsorbents, catalysis and inhibition of solid inorganic salt radiolysis, and the formation of additive paramagnetic centers in gamma radiated salts of alkaline earth metals. 253 references.

  7. Accuracy of the DLPNO-CCSD(T) method for non-covalent bond dissociation enthalpies from coinage metal cation complexes

    KAUST Repository

    Minenkov, Yury; Chermak, Edrisse; Cavallo, Luigi

    2015-01-01

    The performance of the domain based local pair-natural orbital coupled-cluster (DLPNO-CCSD(T)) method has been tested to reproduce the experimental gas phase ligand dissociation enthalpy in a series of Cu+, Ag+ and Au+ complexes. For 33 Cu+ - non-covalent ligand dissociation enthalpies all-electron calculations with the same method result in MUE below 2.2 kcal/mol, although a MSE of 1.4 kcal/mol indicates systematic underestimation of the experimental values. Inclusion of scalar relativistic effects for Cu either via effective core potential (ECP) or Douglass-Kroll-Hess Hamiltonian, reduces the MUE below 1.7 kcal/mol and the MSE to -1.0 kcal/mol. For 24 Ag+ - non-covalent ligand dissociation enthalpies the DLPNO-CCSD(T) method results in a mean unsigned error (MUE) below 2.1 kcal/mol and vanishing mean signed error (MSE). For 15 Au+ - non-covalent ligand dissociation enthalpies the DLPNO-CCSD(T) methods provides larger MUE and MSE, equal to 3.2 and 1.7 kcal/mol, which might be related to poor precision of the experimental measurements. Overall, for the combined dataset of 72 coinage metal ion complexes DLPNO-CCSD(T) results in a MUE below 2.2 kcal/mol and an almost vanishing MSE. As for a comparison with computationally cheaper density functional theory (DFT) methods, the routinely used M06 functional results in MUE and MSE equal to 3.6 and -1.7 kca/mol. Results converge already at CC-PVTZ quality basis set, making highly accurate DLPNO-CCSD(T) estimates to be affordable for routine calculations (single-point) on large transition metal complexes of > 100 atoms.

  8. Accuracy of the DLPNO-CCSD(T) method for non-covalent bond dissociation enthalpies from coinage metal cation complexes

    KAUST Repository

    Minenkov, Yury

    2015-08-27

    The performance of the domain based local pair-natural orbital coupled-cluster (DLPNO-CCSD(T)) method has been tested to reproduce the experimental gas phase ligand dissociation enthalpy in a series of Cu+, Ag+ and Au+ complexes. For 33 Cu+ - non-covalent ligand dissociation enthalpies all-electron calculations with the same method result in MUE below 2.2 kcal/mol, although a MSE of 1.4 kcal/mol indicates systematic underestimation of the experimental values. Inclusion of scalar relativistic effects for Cu either via effective core potential (ECP) or Douglass-Kroll-Hess Hamiltonian, reduces the MUE below 1.7 kcal/mol and the MSE to -1.0 kcal/mol. For 24 Ag+ - non-covalent ligand dissociation enthalpies the DLPNO-CCSD(T) method results in a mean unsigned error (MUE) below 2.1 kcal/mol and vanishing mean signed error (MSE). For 15 Au+ - non-covalent ligand dissociation enthalpies the DLPNO-CCSD(T) methods provides larger MUE and MSE, equal to 3.2 and 1.7 kcal/mol, which might be related to poor precision of the experimental measurements. Overall, for the combined dataset of 72 coinage metal ion complexes DLPNO-CCSD(T) results in a MUE below 2.2 kcal/mol and an almost vanishing MSE. As for a comparison with computationally cheaper density functional theory (DFT) methods, the routinely used M06 functional results in MUE and MSE equal to 3.6 and -1.7 kca/mol. Results converge already at CC-PVTZ quality basis set, making highly accurate DLPNO-CCSD(T) estimates to be affordable for routine calculations (single-point) on large transition metal complexes of > 100 atoms.

  9. Spin-diffusion lengths in metals and alloys, and spin-flipping at metal/metal interfaces: an experimentalist's critical review

    International Nuclear Information System (INIS)

    Bass, Jack; Pratt, William P Jr

    2007-01-01

    In magnetoresistance (MR) studies of magnetic multilayers composed of combinations of ferromagnetic (F) and non-magnetic (N) metals, the magnetic moment (or related 'spin') of each conduction electron plays a crucial role, supplementary to that of its charge. While initial analyses of MR in such multilayers assumed that the direction of the spin of each electron stayed fixed as the electron transited the multilayer, we now know that this is true only in a certain limit. Generally, the spins 'flip' in a distance characteristic of the metal, its purity, and the temperature. They can also flip at F/N or N1/N2 interfaces. In this review we describe how to measure the lengths over which electron moments flip in pure metals and alloys, and the probability of spin-flipping at metallic interfaces. Spin-flipping within metals is described by a spin-diffusion length, l sf M , where the metal M F or N. Spin-diffusion lengths are the characteristic lengths in the current-perpendicular-to-plane (CPP) and lateral non-local (LNL) geometries that we focus upon in this review. In certain simple cases, l sf N sets the distance over which the CPP-MR and LNL-MR decrease as the N-layer thickness (CPP-MR) or N-film length (LNL) increases, and l sf F does the same for increase of the CPP-MR with increasing F-layer thickness. Spin-flipping at M1/M2 interfaces can be described by a parameter, δ M1/M2 , which determines the spin-flipping probability, P = 1-exp(-δ). Increasing δ M1/M2 usually decreases the MR. We list measured values of these parameters and discuss the limitations on their determinations. (topical review)

  10. A self-adjustable four-point probing system using polymeric three dimensional coils and non-toxic liquid metal

    Energy Technology Data Exchange (ETDEWEB)

    Oyunbaatar, Nomin-Erdene; Choi, Young Soo; Lee, Dong-Weon, E-mail: mems@jnu.ac.kr [MEMS and Nanotechnology Laboratory, School of Mechanical Engineering, Chonnam National University, Gwangju 500757 (Korea, Republic of)

    2015-12-15

    This paper describes a self-adjustable four-point probe (S4PP) system with a square configuration. The S4PP system consists of 3D polymer coil springs for the independent operation of each tungsten (W) probe, microfluidic channels filled with a nontoxic liquid metal, and a LabView-based control system. The 3D coil springs made by PMMA are fabricated with a 3D printer and are positioned in a small container filled with the non-toxic liquid metal. This unique configuration allows independent self-adjustment of the probe heights for precise measurements of the electrical properties of both flexible and large-step-height microsamples. The feasibility of the fabricated S4PP system is evaluated by measuring the specific resistance of Cr and Au thin films deposited on silicon wafers. The system is then employed to evaluate the electrical properties of a Au thin film deposited onto a flexible and easily breakable silicon diaphragm (spring constant: ∼3.6 × 10{sup −5} N/m). The resistance of the Cr thin films (thickness: 450 nm) with step heights of 60 and 90 μm is also successfully characterized. These experimental results indicate that the proposed S4PP system can be applied to common metals and semiconductors as well as flexible and large-step-height samples.

  11. A self-adjustable four-point probing system using polymeric three dimensional coils and non-toxic liquid metal

    International Nuclear Information System (INIS)

    Oyunbaatar, Nomin-Erdene; Choi, Young Soo; Lee, Dong-Weon

    2015-01-01

    This paper describes a self-adjustable four-point probe (S4PP) system with a square configuration. The S4PP system consists of 3D polymer coil springs for the independent operation of each tungsten (W) probe, microfluidic channels filled with a nontoxic liquid metal, and a LabView-based control system. The 3D coil springs made by PMMA are fabricated with a 3D printer and are positioned in a small container filled with the non-toxic liquid metal. This unique configuration allows independent self-adjustment of the probe heights for precise measurements of the electrical properties of both flexible and large-step-height microsamples. The feasibility of the fabricated S4PP system is evaluated by measuring the specific resistance of Cr and Au thin films deposited on silicon wafers. The system is then employed to evaluate the electrical properties of a Au thin film deposited onto a flexible and easily breakable silicon diaphragm (spring constant: ∼3.6 × 10"−"5 N/m). The resistance of the Cr thin films (thickness: 450 nm) with step heights of 60 and 90 μm is also successfully characterized. These experimental results indicate that the proposed S4PP system can be applied to common metals and semiconductors as well as flexible and large-step-height samples.

  12. GaAs metal-oxide-semiconductor based non-volatile flash memory devices with InAs quantum dots as charge storage nodes

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Sk Masiul, E-mail: masiulelt@gmail.com; Chowdhury, Sisir; Sarkar, Krishnendu; Nagabhushan, B.; Banerji, P. [Materials Science Centre, Indian Institute of Technology, Kharagpur 721 302 (India); Chakraborty, S. [Applied Materials Science Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Sector-I, Kolkata 700 064 (India); Mukherjee, Rabibrata [Department of Chemical Engineering, Indian Institute of Technology, Kharagpur 721302 (India)

    2015-06-24

    Ultra-thin InP passivated GaAs metal-oxide-semiconductor based non-volatile flash memory devices were fabricated using InAs quantum dots (QDs) as charge storing elements by metal organic chemical vapor deposition technique to study the efficacy of the QDs as charge storage elements. The grown QDs were embedded between two high-k dielectric such as HfO{sub 2} and ZrO{sub 2}, which were used for tunneling and control oxide layers, respectively. The size and density of the QDs were found to be 5 nm and 1.8×10{sup 11} cm{sup −2}, respectively. The device with a structure Metal/ZrO{sub 2}/InAs QDs/HfO{sub 2}/GaAs/Metal shows maximum memory window equivalent to 6.87 V. The device also exhibits low leakage current density of the order of 10{sup −6} A/cm{sup 2} and reasonably good charge retention characteristics. The low value of leakage current in the fabricated memory device is attributed to the Coulomb blockade effect influenced by quantum confinement as well as reduction of interface trap states by ultra-thin InP passivation on GaAs prior to HfO{sub 2} deposition.

  13. Transition from metal-ligand bonding to halogen bonding involving a metal as halogen acceptor a study of Cu, Ag, Au, Pt, and Hg complexes

    Science.gov (United States)

    Oliveira, Vytor; Cremer, Dieter

    2017-08-01

    Utilizing all-electron Dirac-exact relativistic calculations with the Normalized Elimination of the Small Component (NESC) method and the local vibrational mode approach, the transition from metal-halide to metal halogen bonding is determined for Au-complexes interacting with halogen-donors. The local stretching force constants of the metal-halogen interactions reveal a smooth transition from weak non-covalent halogen bonding to non-classical 3-center-4-electron bonding and finally covalent metal-halide bonding. The strongest halogen bonds are found for dialkylaurates interacting with Cl2 or FCl. Differing trends in the intrinsic halogen-metal bond strength, the binding energy, and the electrostatic potential are explained.

  14. Amorphous physics and materials: Interstitialcy theory of condensed matter states and its application to non-crystalline metallic materials

    International Nuclear Information System (INIS)

    Khonik, V A

    2017-01-01

    A comprehensive review of a novel promising framework for the understanding of non-crystalline metallic materials, i.e., interstitialcy theory of condensed matter states (ITCM), is presented. The background of the ITCM and its basic results for equilibrium/supercooled liquids and glasses are given. It is emphasized that the ITCM provides a new consistent, clear, and testable approach, which uncovers the generic relationship between the properties of the maternal crystal, equilibrium/supercooled liquid and glass obtained by melt quenching. (topical review)

  15. Catalytic extraction processing of contaminated scrap metal

    International Nuclear Information System (INIS)

    Griffin, T.P.; Johnston, J.E.

    1994-01-01

    The contract was conceived to establish the commercial capability of Catalytic Extraction Processing (CEP) to treat contaminated scrap metal in the DOE inventory. In so doing, Molten Metal Technology, Inc. (MMT), pursued the following objectives: demonstration of the recycling of ferrous and non-ferrous metals--to establish that radioactively contaminated scrap metal can be converted to high-grade, ferrous and non-ferrous alloys which can be reused by DOE or reintroduced into commerce; immobilize radionuclides--that CEP will concentrate the radionuclides in a dense vitreous phase, minimize secondary waste generation and stabilize and reduce waste volume; destroy hazardous organics--that CEP will convert hazardous organics to valuable industrial gases, which can be used as feed gases for chemical synthesis or as an energy source; recovery volatile heavy metals--that CEP's off-gas treatment system will capture volatile heavy metals, such as mercury and lead; and establish that CEP is economical for processing contaminated scrap metal in the DOE inventory--that CEP is a more cost-effective and, complete treatment and recycling technology than competing technologies for processing contaminated scrap. The process and its performance are described

  16. Zn(II)- and Cu(II)-induced non-fibrillar aggregates of amyloid-beta (1-42) peptide are transformed to amyloid fibrils, both spontaneously and under the influence of metal chelators.

    Science.gov (United States)

    Tõugu, Vello; Karafin, Ann; Zovo, Kairit; Chung, Roger S; Howells, Claire; West, Adrian K; Palumaa, Peep

    2009-09-01

    Aggregation of amyloid-beta (Abeta) peptides is a central phenomenon in Alzheimer's disease. Zn(II) and Cu(II) have profound effects on Abeta aggregation; however, their impact on amyloidogenesis is unclear. Here we show that Zn(II) and Cu(II) inhibit Abeta(42) fibrillization and initiate formation of non-fibrillar Abeta(42) aggregates, and that the inhibitory effect of Zn(II) (IC(50) = 1.8 micromol/L) is three times stronger than that of Cu(II). Medium and high-affinity metal chelators including metallothioneins prevented metal-induced Abeta(42) aggregation. Moreover, their addition to preformed aggregates initiated fast Abeta(42) fibrillization. Upon prolonged incubation the metal-induced aggregates also transformed spontaneously into fibrils, that appear to represent the most stable state of Abeta(42). H13A and H14A mutations in Abeta(42) reduced the inhibitory effect of metal ions, whereas an H6A mutation had no significant impact. We suggest that metal binding by H13 and H14 prevents the formation of a cross-beta core structure within region 10-23 of the amyloid fibril. Cu(II)-Abeta(42) aggregates were neurotoxic to neurons in vitro only in the presence of ascorbate, whereas monomers and Zn(II)-Abeta(42) aggregates were non-toxic. Disturbed metal homeostasis in the vicinity of zinc-enriched neurons might pre-dispose formation of metal-induced Abeta aggregates, subsequent fibrillization of which can lead to amyloid formation. The molecular background underlying metal-chelating therapies for Alzheimer's disease is discussed in this light.

  17. Heavy metals contamination and their risk assessment around the abandoned base metals and Au-Ag mines in Korea

    Science.gov (United States)

    Chon, Hyo-Taek

    2017-04-01

    Heavy metals contamination in the areas of abandoned Au-Ag and base metal mines in Korea was investigated in order to assess the level of metal pollution, and to draw general summaries about the fate of toxic heavy metals in different environments. Efforts have been made to compare the level of heavy metals, chemical forms, and plant uptake of heavy metals in each mine site. In the base-metals mine areas, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials and tailings. Leafy vegetables tend to accumulate heavy metals(in particular, Cd and Zn) higher than other crop plants, and high metal concentrations in rice crops may affect the local residents' health. In the Au-Ag mining areas, arsenic would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and the mobility of these metals would be enhanced by the effect of continuing weathering and oxidation. According to the sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. The concept of pollution index(PI) of soils gives important information on the extent and degree of multi-element contamination, and can be applied to the evaluation of mine soils before their agricultural use and remediation. The risk assessment process comprising exposure assessment, dose-response assessment, and risk characterization was discussed, and the results of non-cancer risk of As, Cd, and Zn, and those of cancer risk of As were suggested.

  18. Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers

    Energy Technology Data Exchange (ETDEWEB)

    Greczynski, G., E-mail: grzgr@ifm.liu.se [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden); Primetzhofer, D. [Department of Physics and Astronomy, The Ångström Laboratory, Uppsala University, P.O. Box 516, SE-751 20 Uppsala (Sweden); Lu, J.; Hultman, L. [Thin Film Physics Division, Department of Physics (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2017-02-28

    Highlights: • First non-destructive measurements of XPS core level binding energies for group IVb-VIb transition metal nitrides are presented. • All films are grown under the same conditions and analyzed in the same instrument, providing a useful reference for future XPS studies. • Extracted core level BE values are more reliable than those obtained from sputter-cleaned N-deficient surfaces. • Comparison to Ar+-etched surfaces reveals that even mild etching conditions result in the formation of a nitrogen-deficient surface layer. • The N/metal concentration ratios from capped samples are found to be 25-90% higher than those from the corresponding ion-etched surfaces. - Abstract: We present the first measurements of x-ray photoelectron spectroscopy (XPS) core level binding energies (BE:s) for the widely-applicable group IVb-VIb polycrystalline transition metal nitrides (TMN’s) TiN, VN, CrN, ZrN, NbN, MoN, HfN, TaN, and WN as well as AlN and SiN, which are common components in the TMN-based alloy systems. Nitride thin film samples were grown at 400 °C by reactive dc magnetron sputtering from elemental targets in Ar/N{sub 2} atmosphere. For XPS measurements, layers are either (i) Ar{sup +} ion-etched to remove surface oxides resulting from the air exposure during sample transfer from the growth chamber into the XPS system, or (ii) in situ capped with a few nm thick Cr or W overlayers in the deposition system prior to air-exposure and loading into the XPS instrument. Film elemental composition and phase content is thoroughly characterized with time-of-flight elastic recoil detection analysis (ToF-E ERDA), Rutherford backscattering spectrometry (RBS), and x-ray diffraction. High energy resolution core level XPS spectra acquired with monochromatic Al Kα radiation on the ISO-calibrated instrument reveal that even mild etching conditions result in the formation of a nitrogen-deficient surface layer that substantially affects the extracted binding energy

  19. Core-level spectra and binding energies of transition metal nitrides by non-destructive x-ray photoelectron spectroscopy through capping layers

    International Nuclear Information System (INIS)

    Greczynski, G.; Primetzhofer, D.; Lu, J.; Hultman, L.

    2017-01-01

    Highlights: • First non-destructive measurements of XPS core level binding energies for group IVb-VIb transition metal nitrides are presented. • All films are grown under the same conditions and analyzed in the same instrument, providing a useful reference for future XPS studies. • Extracted core level BE values are more reliable than those obtained from sputter-cleaned N-deficient surfaces. • Comparison to Ar+-etched surfaces reveals that even mild etching conditions result in the formation of a nitrogen-deficient surface layer. • The N/metal concentration ratios from capped samples are found to be 25-90% higher than those from the corresponding ion-etched surfaces. - Abstract: We present the first measurements of x-ray photoelectron spectroscopy (XPS) core level binding energies (BE:s) for the widely-applicable group IVb-VIb polycrystalline transition metal nitrides (TMN’s) TiN, VN, CrN, ZrN, NbN, MoN, HfN, TaN, and WN as well as AlN and SiN, which are common components in the TMN-based alloy systems. Nitride thin film samples were grown at 400 °C by reactive dc magnetron sputtering from elemental targets in Ar/N 2 atmosphere. For XPS measurements, layers are either (i) Ar + ion-etched to remove surface oxides resulting from the air exposure during sample transfer from the growth chamber into the XPS system, or (ii) in situ capped with a few nm thick Cr or W overlayers in the deposition system prior to air-exposure and loading into the XPS instrument. Film elemental composition and phase content is thoroughly characterized with time-of-flight elastic recoil detection analysis (ToF-E ERDA), Rutherford backscattering spectrometry (RBS), and x-ray diffraction. High energy resolution core level XPS spectra acquired with monochromatic Al Kα radiation on the ISO-calibrated instrument reveal that even mild etching conditions result in the formation of a nitrogen-deficient surface layer that substantially affects the extracted binding energy values. These

  20. Development of rapidly quenched nickel-based non-boron filler metals for brazing corrosion resistant steels

    Science.gov (United States)

    Ivannikov, A.; Kalin, B.; Suchkov, A.; Penyaz, M.; Yurlova, M.

    2016-04-01

    Corrosion-resistant steels are stably applied in modern rocket and nuclear technology. Creating of permanent joints of these steels is a difficult task that can be solved by means of welding or brazing. Recently, the use rapidly quenched boron-containing filler metals is perspective. However, the use of such alloys leads to the formation of brittle borides in brazing zone, which degrades the corrosion resistance and mechanical properties of the compounds. Therefore, the development of non-boron alloys for brazing stainless steels is important task. The study of binary systems Ni-Be and Ni-Si revealed the perspective of replacing boron in Ni-based filler metals by beryllium, so there was the objective of studying of phase equilibrium in the system Ni-Be-Si. The alloys of the Ni-Si-Be with different contents of Si and Be are considered in this paper. The presence of two low-melting components is revealed during of their studying by methods of metallography analysis and DTA. Microhardness is measured and X-ray diffraction analysis is conducted for a number of alloys of Ni-Si-Be. The compositions are developed on the basis of these data. Rapidly quenched brazing alloys can be prepared from these compositions, and they are suitable for high temperature brazing of steels.

  1. Metal Detector By Using PIC Microcontroller Interfacing With PC

    OpenAIRE

    Yin Min Theint; Myo Maung Maung; Hla Myo Tun

    2015-01-01

    Abstract This system proposes metal detector by using PIC microcontroller interfacing with PC. The system uses PIC microcontroller as the main controller whether the detected metal is ferrous metal or non-ferrous metal. Among various types of metal sensors and various types of metal detecting technologies concentric type induction coil sensor and VLF very low frequency metal detecting technology are used in this system. This system consists of two configurations Hardware configuration and Sof...

  2. The uncertainties calculation of acoustic method for measurement of dissipative properties of heterogeneous non-metallic materials

    Directory of Open Access Journals (Sweden)

    Мaryna O. Golofeyeva

    2015-12-01

    Full Text Available The effective use of heterogeneous non-metallic materials and structures needs measurement of reliable values of dissipation characteristics, as well as common factors of their change during the loading process. Aim: The aim of this study is to prepare the budget for measurement uncertainty of dissipative properties of composite materials. Materials and Methods: The method used to study the vibrational energy dissipation characteristics based on coupling of vibrations damping decrement and acoustic velocity in a non-metallic heterogeneous material is reviewed. The proposed method allows finding the dependence of damping on vibrations amplitude and frequency of strain-stress state of material. Results: Research of the accuracy of measurement method during the definition of decrement attenuation of fluctuations in synthegran was performed. The international approach for evaluation of measurements quality is used. It includes the common practice international rules for uncertainty expression and their summation. These rules are used as internationally acknowledged confidence measure to the measurement results, which includes testing. The uncertainties budgeting of acoustic method for measurement of dissipative properties of materials were compiled. Conclusions: It was defined that there are two groups of reasons resulting in errors during measurement of materials dissipative properties. The first group of errors contains of parameters changing of calibrated bump in tolerance limits, displacement of sensor in repeated placement to measurement point, layer thickness variation of contact agent because of irregular hold-down of resolvers to control surface, inaccuracy in reading and etc. The second group of errors is linked with density and Poisson’s ratio measurement errors, distance between sensors, time difference between signals of vibroacoustic sensors.

  3. The role of nuclear methods in the study of surface compositions. Their use in the Community Bureau of Reference (BCR). Project on 'RMs for non-metals in non-ferrous metals'

    International Nuclear Information System (INIS)

    Quaglia, L.; Weber, G.

    1979-01-01

    The preparation of high-purity materials poses the problem of the analysis of the elements present at very low concentrations, even below 1 μg/g. For different analysis methods an important source of systematic errors is surface pollution. Although nuclear methods have shown to be well suited for the quantitative study of surfaces, their possibilities remain insufficiently known for most non-nuclear laboratories. Therefore, the first part of this report was conceived as a simple but complete as possible review of the existing nuclear techniques and gives also a description of their principal characteristics. The second part treats special uses of some of these techniques, especially the study of surface-mass interferences in the case of the assay of light elements in metals and alloys. This problem is discussed in the framework of the certification of reference materials, and is based upon experiences collected in a ten-year Community effort, which enabled the expression of general considerations concerning the treatment, conditioning and storage of reference materials

  4. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    Science.gov (United States)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  5. Separation of Non-metallic Inclusions from a Fe-Al-O Melt Using a Super-Gravity Field

    Science.gov (United States)

    Song, Gaoyang; Song, Bo; Guo, Zhancheng; Yang, Yuhou; Song, Mingming

    2018-02-01

    An innovative method for separating non-metallic inclusions from a high temperature melt using super gravity was systematically investigated. To explore the separation behavior of inclusion particles with densities less than that of metal liquid under a super-gravity field, a Fe-Al-O melt containing Al2O3 particles was treated with different gravity coefficients. Al2O3 particles migrated rapidly towards the reverse direction of the super gravity and gathered in the upper region of the sample. It was hard to find any inclusion particles with sizes greater than 2 μm in the middle and bottom areas. Additionally, the oxygen content in the middle region of the sample could be reduced to 0.0022 mass pct and the maximum removal rate of the oxygen content reached 61.4 pct. The convection in the melt along the direction of the super gravity was not generated by the super-gravity field, and the fluid velocity in the molten melt consisted only of the rotating tangential velocity. Moreover, the motion behavior of the Al2O3 particles was approximatively determined by Stokes' law along the direction of super gravity.

  6. Inorganic material candidates to replace a metallic or non-metallic concrete containment liner

    Energy Technology Data Exchange (ETDEWEB)

    Seni, C [Atomic Energy of Canada Ltd., Mississauga, ON (Canada); Mills, R H [Toronto Univ., ON (Canada)

    1994-12-31

    Internal liners for concrete containments are generally organic or metals. They have to be able to inhibit radioactive leakage into the environment, but both types have shortcomings. The results of research to develop a better liner are published in this paper. The best material found was fibre-reinforced mortar. Of the fibres considered, steel, kevlar and glass were the best, each showing advantages and disadvantages. 1 ref., 9 tabs., 12 figs.

  7. Inorganic material candidates to replace a metallic or non-metallic concrete containment liner

    International Nuclear Information System (INIS)

    Seni, C.; Mills, R.H.

    1994-01-01

    Internal liners for concrete containments are generally organic or metals. They have to be able to inhibit radioactive leakage into the environment, but both types have shortcomings. The results of research to develop a better liner are published in this paper. The best material found was fibre-reinforced mortar. Of the fibres considered, steel, kevlar and glass were the best, each showing advantages and disadvantages. 1 ref., 9 tabs., 12 figs

  8. Influence of N-O chemistry on the excitation of alkali metals by a non-transferred DC plasma jet

    International Nuclear Information System (INIS)

    Haeyrinen, Ville; Oikari, Risto; Hernberg, Rolf

    2004-01-01

    Excitation of Na(3p) and K(4p) states by a high velocity non-transferred direct current plasma jet was studied. A turbulent nitrogen plasma jet was discharged into an atmosphere consisting of nitrogen and oxygen, laden with trace amounts of alkali. The line reversal temperatures of Na and K depend on the molar fraction of oxygen and may deviate considerably from the gas temperature. The reaction pressure was 0.1 MPa. The measured line reversal temperatures were reproduced by a simple chemical model. At temperatures near 2000 K non-equilibrium is caused by association of nitrogen atoms by the Zeldovich mechanism, which affects the vibrational temperature of nitrogen molecules. Near 1000 K excitation may also take place due to a chemiluminescent mechanism between alkali metals and ozone

  9. Stress Analysis of Non-Ferrous Metals Welds by Numerical Simulation

    Directory of Open Access Journals (Sweden)

    Kravarikova Helena

    2017-01-01

    Full Text Available Thermal energy welded material unevenly heated and thus supports the creation of tension. During the fusing process welding transient tensions generated in the welded material. Generation of the transient tensions depends on the thermal expansion and fixed permanently welded parts. Tensions are the result of the interaction of material particles. For welded parts and constructions it is necessary to know the size and direction of application of tensions. The emerging tensions can cause local change or a total deformation of welded materials. Deformations and residual stresses impair the performance of a welded construction, reduces the stability of the parts. To reduce or eliminate of action or a screening direction stresses and strains it is necessary to know the mechanism of their emergence. It is now possible to examine the emergence of tensions numerical experiments on any model using numerical simulation using FEM. Results of numerical experiment is the analysis of stress and deformation course. In the plane the tension it divided into normal σ and τ tangential folders. Decomposition stress on components simplifies the stress analysis. The results obtained from numerical analysis are correct to predict the stress distribution and size. The paper presents the results of numerical experiments stress analysis solutions fillet welds using FEM numerical simulation of welding of non-ferrous metals.

  10. A first-principles study of light non-metallic atom substituted blue phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Minglei [School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Tang, Wencheng, E-mail: 101000185@seu.edu.cn [School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Ren, Qingqiang [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, Hunan (China); Wang, Sa-ke [Department of Physics, Southeast University, Nanjing 210096, Jiangsu (China); Yu, Jin [School of Materials Science and Engineering, Southeast University, Nanjing 211189, Jiangsu (China); Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189, Jiangsu (China); Du, Yanhui [School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu (China)

    2015-11-30

    Graphical abstract: - Highlights: • All the impurities are covalently bonded to blue phosphorene (with a single vacancy). • All the substituted systems are semiconductors. • B-substituted system exhibits direct bandgap semiconductor behavior. • The band gaps with spin polarization are found in C and O-substituted systems. • Our works can paves a new route at nanoscale for novel functionalities of optical and spintronics devices. - Abstract: First-principles calculations are implemented to study the geometric, electronic and magnetic properties of light non-metallic atom (B, C, N, O and F) substituted blue phosphorene. All the substituted systems are highly stable. The B-substituted system is a direct bandgap semiconductor with a bandgap size about 1.5 eV. The C, O-substituted systems are promising systems to explore two-dimensional diluted magnetic semiconductors. Magnetism is observed for C and O substitution, while for the other impurities no magnetic moment is detected. Our works paves a new route at nanoscale for novel functionalities of optical and spintronics devices.

  11. Exploring 3D non-interpenetrated metal-organic framework with malonate-bridged Co(II) coordination polymer: structural elucidation and theoretical study

    Science.gov (United States)

    Hossain, Anowar; Mandal, Tripti; Mitra, Monojit; Manna, Prankrishna; Bauzá, Antonio; Frontera, Antonio; Seth, Saikat Kumar; Mukhopadhyay, Subrata

    2017-12-01

    A Co(II)-based coordination polymer with tetranuclear cobalt(II)-malonate cluster has been easily generated by aqueous medium self-assembly from Cobalt(II) chloride hexahydrate and malonic acid. The structure exhibits a non-interpenetrating, highly undulating two-dimensional (2D) bi-layer network with (4,4) topology. The crystal structure is composed of infinite interdigitated 2D metal-organic bi-layers which extended to an intricate 3D framework through the interbilayer hydrogen bonds. We have studied energetically by means of Density Functional Theory (DFT) calculations the H-bonding interactions that connect the 2D metal-organic bi-layers. The finite theoretical models have been used to compute conventional O‒H•••O and unconventional C‒H•••O interactions which plays a key role to build 3D architecture.

  12. Lattice Boltzmann Pore-Scale Investigation of Coupled Physical-electrochemical Processes in C/Pt and Non-Precious Metal Cathode Catalyst Layers in Proton Exchange Membrane Fuel Cells

    International Nuclear Information System (INIS)

    Chen, Li; Wu, Gang; Holby, Edward F; Zelenay, Piotr; Tao, Wen-Quan; Kang, Qinjun

    2015-01-01

    Highlights: • Nanoscale structures of catalyst layer are reconstructed. • Pore-scale simulation is performed to predict macroscopic transport properties. • Reactive transport in catalyst layer with non-precious metal and Pt catalysts is studied. • Mesopores rather than micropores are required to enhance mass transport. - Abstract: High-resolution porous structures of catalyst layers (CLs) including non-precious metal catalysts (NPMCs) or Pt for proton exchange membrane fuel cells are reconstructed using the quartet structure generation set. The nanoscale structures are analyzed in terms of pore size distribution, specific surface area, and phase connectivity. Pore-scale simulation methods based on the lattice Boltzmann method are developed to predict the macroscopic transport properties in CLs. The non-uniform distribution of ionomer in CL generates more tortuous pathways for reactant transport, greatly reducing the effective diffusivity. The tortuosity of CLs is much higher than that adopted by the Bruggeman equation. Knudsen diffusion plays a significant role in oxygen diffusion and significantly reduces the effective diffusivity. Reactive transport inside the CLs is also investigated. Although the reactive surface area of the non-precious metal catalyst (NPMC) CL is much higher than that of the Pt CL, the oxygen reaction rate is lower in the NPMC CL due to the much lower reaction rate coefficient. Although pores of a few nanometers in size can increase the number of reactive sites in NPMC CLs, they contribute little to enhance the mass transport. Mesopores, which are a few tens of nanometers or larger in size, are shown to be required in order to increase the mass transport rate

  13. Effect of inhomogeneous distribution of non-metallic inclusions on crack path deflection in G42CrMo4 steel at different loading rates

    Directory of Open Access Journals (Sweden)

    S. Henschel

    2015-10-01

    Full Text Available An inhomogeneous distribution of non-metallic inclusions can result from the steel casting process. The aim of the present study was to investigate the damaging effect of an inhomogeneous distribution of nonmetallic inclusions on the crack extension behavior. To this end, the fracture toughness behavior in terms of quasi-static J-a curves was determined at room temperature. Additionally, dynamic fracture mechanics tests in an instrumented Charpy impact-testing machine were performed. The fracture surface of fracture mechanics specimens was analyzed by means of scanning electron microscopy. It was shown that an inhomogeneous distribution significantly affected the path and, therefore, the plane of crack growth. Especially clusters of non-metallic inclusions with a size of up to 200 μm exhibited a very low crack growth resistance. Due to the damaging effect of the clusters, the growing crack was strongly deflected towards the cluster. Furthermore, crack tip blunting was completely inhibited when inclusions were located at the fatigue precrack tip. Due to the large size of the non-metallic inclusion clusters, the height difference introduced by crack path deflection was significantly larger than the stretch zone height due to the crack tip blunting. However, the crack path deflection introduced by a cluster was not associated with a toughness increasing mechanism. The e dynamic loading ( 1 0.5 5 s MPam 10   K did not result in a transition from ductile fracture to brittle fracture. However, the crack growth resistance decreased with increased loading rate. This was attributed to the higher portion of relatively flat regions where the dimples were less distinct.

  14. Assessment of Bond Strength between Metal Brackets and Non-Glazed Ceramic in Different Surface Treatment Methods

    Directory of Open Access Journals (Sweden)

    I. Harririan

    2010-06-01

    Full Text Available Objective: The aim of this study was to evaluate the bond strength between metal brackets and non-glazed ceramic with three different surface treatment methods.Materials and Methods: Forty-two non-glazed ceramic disks were assigned into three groups. Group I and II specimens were etched with 9.5% hydrofluoric acid. Subsequently in group I, silane and adhesive were applied and in group II, bonding agent was used only.In group III, specimens were treated with 35% phosphoric acid and then silane and adhesive were applied. Brackets were bonded with light-cured composites. The specimens were stored in water in room temperature for 24 hours and then thermocycled 500 times between 5°C and 55°C.Results: The difference of tensile bond strength between groups I and III was not significant(P=0.999. However, the tensile bond strength of group II was significantly lower than groups I, and III (P<0.001. The adhesive remnant index scores between the threegroups had statistically significant differences (P<0.001.Conclusion: With the application of scotch bond multi-purpose plus adhesive, we can use phosphoric acid instead of hydrofluoric acid for bonding brackets to non-glazed ceramic restorations.

  15. EFFICIENCY OF METAL SCRAP SEPARATION IN EDDY CURRENT SEPARATOR

    Directory of Open Access Journals (Sweden)

    Gordan Bedeković

    2008-11-01

    Full Text Available Eddy-current separation is most often method used for the recovery of non-ferrous metals (Al, Cu, Zn, Pb from solid wastes and also for separating non-ferrous metals from each other. The feed material comes to rotary drum and magnetic field by belt conveyer. The changing magnetic field induce eddy currents in conductive (metallic particles. Because interaction between this currents and the magnetic field electrodynamic forces will act on conductive particles. Therefore the trajectories of conductive particles will be different from the trajectories of the non-conductive ones. Separation is a result of the combined actions of several forces (electrodynamic, gravitational and frictional. The paper presents results of aluminium recovery from mixture of metallic particles in eddy current separator. Testing were conducted under field condition. Results shows that is possible achieve recovery of 99 % and concentrate quality of 89 % of aluminium (the paper is published in Croatian.

  16. New Approach for Fractioning Metal Compounds Studies in Soils

    Science.gov (United States)

    Minkina, Tatiana; Motuzova, Galina; Mandzhieva, Saglara; Bauer, Tatiana; Burachevskaya, Marina; Sushkova, Svetlana; Nevidomskaya, Dina; Kalinitchenko, Valeriy

    2016-04-01

    A combined approach for fractioning metal compounds in soils on the basis of sequential (Tessier, 1979) and parallel extractions (1 N NH4Ac, pH 8; 1% EDTA in NH4Ac; and 1N HCl) is proposed. Metal compounds in sequential and parallel extracts are grouped according to the strength of their bonds with soil components. A given group includes metal compounds with similar strengths of bonds and, hence, with similar migration capacities. The groups of firmly and loosely bound metal compounds can be distinguished. This approach has been used to assess the group composition of Zn, Cu, and Pb compounds in an ordinary chernozem and its changes upon the soil contamination with metals. Contamination of an ordinary chernozem from Rostov oblast with heavy metals caused a disturbance of the natural ratios between the metal compounds. In the natural soil, firmly bound metals predominate (88-95%of the total content), which is mainly caused by the fixation of metals in lattices of silicate minerals (56-83%of the total content). The mobility of the metals in the natural soil is low (5-12%) and is mainly related to metal compounds loosely bound with the soil carbonates. Upon the soil contamination with metals (application rates of 100-300 mg/kg), the content of all the metal compounds increases, but the ratio between them shifts towards a higher portion of the potentially mobile metal compounds (up to 30-40% of the bulk contents of the metals). Organic substances and non-silicate Fe, Al, and Mn minerals become the main carriers of the firmly and loosely bound metals. The strengths of their bonds with Cu, Pb, and Zn differ. Lead in the studied chernozems is mainly fixed in a loosely bound form with organic matter, whereas copper and zinc are fixed both by the organic matter and by the non-silicate Fe, Al, and Mn compounds. Firm fixation of the applied Cu and Pb is mainly ensured by the soil organic matter and non-silicate minerals, whereas firm fixation of Zn is mainly due to non

  17. Method of bonding metals to ceramics and other materials

    Science.gov (United States)

    Gruen, D.M.; Krauss, A.R.; DeWald, A.P.; Chienping Ju; Rigsbee, J.M.

    1993-01-05

    A composite and method of forming same wherein the composite has a non-metallic portion and an alloy portion wherein the alloy comprises an alkali metal and a metal which is an electrical conductor such as Cu, Ag, Al, Sn or Au and forms an alloy with the alkali metal. A cable of superconductors and composite is also disclosed.

  18. Metallic ureteral stents in malignant ureteral obstruction: short-term results and radiological features predicting stent failure in patients with non-urological malignancies.

    Science.gov (United States)

    Chow, Po-Ming; Hsu, Jui-Shan; Wang, Shuo-Meng; Yu, Hong-Jheng; Pu, Yeong-Shiau; Liu, Kao-Lang

    2014-06-01

    To provide short-term result of the metallic ureteral stent in patients with malignant ureteral obstruction and identify radiological findings predicting stent failure. The records of all patients with non-urological malignant diseases who have received metallic ureteral stents from July 2009 to March 2012 for ureteral obstruction were reviewed. Stent failure was detected by clinical symptoms and imaging studies. Survival analysis was used to estimate patency rates and factors predicting stent failure. A total of 74 patients with 130 attempts of stent insertion were included. A total of 113 (86.9 %) stents were inserted successfully and 103 (91.2 %) achieved primary patency. After excluding cases without sufficient imaging data, 94 stents were included in the survival analysis. The median functional duration of the 94 stents was 6.2 months (range 3-476 days). Obstruction in abdominal ureter (p = 0.0279) and lymphatic metastasis around ureter (p = 0.0398) were risk factors for stent failure. The median functional durations of the stents for abdominal and pelvic obstructions were 4.5 months (range 3-263 days) and 6.5 months (range 4-476 days), respectively. The median durations of the stents with and without lymphatic metastasis were 5.3 months (range 4-398 days) and 7.8 months (range 31-476 days), respectively. Metallic ureteral stents are effective and safe in relieving ureteral obstructions resulting from non-urological malignancies, and abdominal ureteral obstruction and lymphatic metastasis around ureter were associated with shorter functional duration.

  19. Characterization of minerals, metals and materials

    CERN Document Server

    Hwang, Jiann-Yang; Bai, Chengguang; Carpenter, John; Cai, Mingdong; Firrao, Donato; Kim, Byoung-Gon

    2012-01-01

    This state-of-the-art reference contains chapters on all aspects of the characterization of minerals, metals, and materials. The title presents papers from one of the largest yearly gatherings of materials scientists in the world and thoroughly discusses the characterization of minerals, metals, and materials The scope includes current industrial applications and research and developments in the following areas:  Characterization of Ferrous Metals Characterization of Non-Ferrous Materials Characterization of Minerals and Ceramics Character

  20. Pyrometallurgical processing for raw materials of heavy non-ferrous metals and furnace for carrying it out. Pyrometallurgisches Verarbeitungsverfahren fuer Rohstoffe schwerer Buntmetalle und Ofen zu dessen Realisierung

    Energy Technology Data Exchange (ETDEWEB)

    Vanjukov, A V; Metschev, V V; Bystrov, V P; Eschov, E I; Vasiliev, M G; Zaitsev, V Y; Romenets, V A; Ivanov, V V; Golik, S Y; Grin-Gnatovsky, E S

    1980-06-04

    Pyrometallurgical processing is described, by which non-ferrous metals are obtained from a melt. The pneumatic mixing of melt material and the oxidation of sulphide and oxide starting material is done by blowing a flow of gas with more than 35% oxygen content into it. The layers of slag, ore and raw metal formed in the furnace can be separated. The construction of the furnace is described in detail. 4 examples complete the description.

  1. Adsorption of hydrogen isotopes by metals in non-equilibrium conditions

    International Nuclear Information System (INIS)

    Livshits, A.I.; Notkin, M.E.; Pustovojt, Yu.M.

    1982-01-01

    To study the interaction of thermonuclear plasma and additions with metallic walls, nonequilibrium system of thermal atomary hydrogen - ''cold'' (300-1100 K) metal is experimentally investigated. Atomary hydrogen was feeded to samples of Ni and Pd in the shape of atomic beam, coming into vacuum from high-frequency gaseous discharge. It is shown that hydrogen solubility under nonequilibrium conditions increases with surface passivation (contamination); in this case it surpasses equilibrium solubility by value orders. Nickel and iron dissolve more hydrogen than palladium at a certain state of surface ( passivation) and gas (atomary hydrogen). The sign of the temperature dependence of hydrogen solubility in passivated N 1 and Fe changes when alterating molecular hydrogen by atomary hydrogen

  2. Chalcopyrite—bearer of a precious, non-precious metal

    Science.gov (United States)

    Kimball, Bryn E.

    2013-01-01

    The mineral chalcopyrite (CuFeS2) is the world's most abundant source of copper, a metal component in virtually every piece of electrical equipment. It is the main copper mineral in several different ore deposit types, the most important of which are porphyry deposits. Chalcopyrite is unstable at the Earth's surface, so it weathers from sulphide outcrops and mine waste piles, contributing acid and dissolved copper to what is known as acid rock drainage. If not prevented, dissolved copper from chalcopyrite weathering will be transported downstream, potentially harming ecosystems along the way. Pristine areas are becoming targets for future copper supply as we strive to meet ever-increasing demands for copper by developed and developing nations. Additionally, our uses for copper are expanding to include technology such as solar energy production. This has lead to the processing of increasingly lower grade ores, which is possible, in part, due to advances in bio-leaching (i.e. metal extraction catalysed by micro-organisms). Although copper is plentiful, it is still a nonrenewable resource. Future copper supply promises to fall short of demand and the volatility of the copper market may continue if we do not prioritize copper use and improve copper recycling and ore extraction efficiency.

  3. Body burdens of heavy metals in Lake Michigan wetland turtles.

    Science.gov (United States)

    Smith, Dayna L; Cooper, Matthew J; Kosiara, Jessica M; Lamberti, Gary A

    2016-02-01

    Tissue heavy metal concentrations in painted (Chrysemys picta) and snapping (Chelydra serpentina) turtles from Lake Michigan coastal wetlands were analyzed to determine (1) whether turtles accumulated heavy metals, (2) if tissue metal concentrations were related to environmental metal concentrations, and (3) the potential for non-lethal sampling techniques to be used for monitoring heavy metal body burdens in freshwater turtles. Muscle, liver, shell, and claw samples were collected from painted and snapping turtles and analyzed for cadmium, chromium, copper, iron, lead, magnesium, manganese, and zinc. Turtle tissues had measurable quantities of all eight metals analyzed. Statistically significant correlations between tissue metal concentrations and sediment metal concentrations were found for a subset of metals. Metals were generally found in higher concentrations in the larger snapping turtles than in painted turtles. In addition, non-lethal samples of shell and claw were found to be possible alternatives to lethal liver and muscle samples for some metals. Human consumption of snapping turtles presents potential health risks if turtles are harvested from contaminated areas. Overall, our results suggest that turtles could be a valuable component of contaminant monitoring programs for wetland ecosystems.

  4. Tunneling Conductance in Ferromagnetic Metal/Normal Metal/Spin-Singlet -Wave Ferromagnetic Superconductor Junctions

    Directory of Open Access Journals (Sweden)

    Hamidreza Emamipour

    2013-01-01

    Full Text Available In the framework of scattering theory, we study the tunneling conductance in a system including two junctions, ferromagnetic metal/normal metal/ferromagnetic superconductor, where ferromagnetic superconductor is in spin-singlet -wave pairing state. The non-magnetic normal metal is placed in the intermediate layer with the thickness ( which varies from 1 nm to 10000 nm. The interesting result which we have found is the existence of oscillations in conductance curves. The period of oscillations is independent of FS and FN exchange field while it depends on . The obtained results can serve as a useful tool to determine the kind of pairing symmetry in ferromagnetic superconductors.

  5. Plasma-chemical production of metal-polypyrrole-catalysts for the reduction of oxygen in fuel cells. Precious-metal-free catalysts for fuel cells.; Plasmachemische Erzeugung von Metall-Polypyrrol-Katalysatoren fuer die Sauerstoffreduktion in Brennstoffzellen. Edelmetallfreie Katalysatoren fuer Brennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Walter, Christian

    2013-07-01

    This thesis is about the production of non noble metal catalysts for the oxygen reduction reaction in fuel cells. Therefore, a novel dual plasma process is developed, constructed and the so-produced films are analysed by various electrochemical (CV, RDE and RRDE) and structural methods (SEM, EDX, IR, XPS, conductivity, XRD, NEXAFS, EXAFS and TEM). It is shown, that by doing this, non noble metal catalysts could be produced without the need of a high temperature treatment. Furthermore, the catalytic activity obtained is superior to that of chemically produced metal-polypyrrole films.

  6. Metallic Winds in Dwarf Galaxies

    International Nuclear Information System (INIS)

    Robles-Valdez, F.; Rodríguez-González, A.; Hernández-Martínez, L.; Esquivel, A.

    2017-01-01

    We present results from models of galactic winds driven by energy injected from nuclear (at the galactic center) and non-nuclear starbursts. The total energy of the starburst is provided by very massive young stellar clusters, which can push the galactic interstellar medium and produce an important outflow. Such outflow can be a well or partially mixed wind, or a highly metallic wind. We have performed adiabatic 3D N -Body/Smooth Particle Hydrodynamics simulations of galactic winds using the gadget-2 code. The numerical models cover a wide range of parameters, varying the galaxy concentration index, gas fraction of the galactic disk, and radial distance of the starburst. We show that an off-center starburst in dwarf galaxies is the most effective mechanism to produce a significant loss of metals (material from the starburst itself). At the same time, a non-nuclear starburst produces a high efficiency of metal loss, in spite of having a moderate to low mass loss rate.

  7. Uptake and elimination kinetics of metals in soil invertebrates: a review.

    Science.gov (United States)

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-10-01

    Uptake and elimination kinetics of metals in soil invertebrates are a function of both soil and organism properties. This study critically reviewed metal toxicokinetics in soil invertebrates and its potential use for assessing bioavailability. Uptake and elimination rate constants of different metals are summarized. Invertebrates have different strategies for essential and non-essential metals. As a consequence, different types of models must be applied to describe metal uptake and elimination kinetics. We discuss model parameters for each metal separately and show how they are influenced by exposure concentrations and by physiological properties of the organisms. Soil pH, cation exchange capacity, clay and organic matter content significantly affect uptake rates of non-essential metals in soil invertebrates. For essential metals, kinetics is hardly influenced by soil properties, but rather prone to physiological regulation mechanisms of the organisms. Our analysis illustrates that toxicokinetics can be a valuable measurement to assess bioavailability of soil-bound metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Metal-support interactions in electrocatalysis: Hydrogen effects on electron and hole transport at metal-support contacts

    International Nuclear Information System (INIS)

    Heller, A.

    1986-01-01

    This paper discusses the effects of hydrogen on electron and hole transport at metal support contacts during electrocatalysis. When hydrogen dissolves in high work function metals such as Pt, Rh or Ru the contact forms between the semiconductor and the hydrogenated metal, which has a work function that is lower than that of the pure metal. Thus by changing the gaseous atmosphere that envelopes metal-substrate contacts, it is possible to reversibly change their diode characteristics. In some cases, such as Pt on n-TiO/sub 2/, Rh on n-TiO/sub 2/ and Ru on n-TiO/sub 2/, it is even possible to reversibly convert Schottky diodes into ohmic contacts by changing the atmosphere from air to hydrogen. In contacts between hydrogen dissolving group VIII metals and semiconducting substrates, one can test for interfacial reaction of the catalysts and the substrate by examining the electrical characteristics of the contacts in air (oxygen) and in hydrogen. In the absence of interfacial reaction, large hydrogen induced variation in the barrier heights is observed and the hydrogenated contacts, approach ideality (i.e. their non-ideality factor is close to unity). When a group VIII metal and a substrate do react, the reaction often produces a phase that blocks hydrogen transport to the interface between the substrate and the reaction product. In this case the hydrogen effect is reduced or absent. Furthermore, because such reaction often introduces defects into the surface of the semiconductor, the contacts have non-ideal diode characteristics

  9. Feasibility investigation of non-metallic and light weight metallic materials for light weight compressor pistons

    NARCIS (Netherlands)

    Wentzel, C.M.; Bergsma, O.K.; Eijk, A.

    2014-01-01

    Steel and aluminium have been the traditional materials of choice for pistons. In order to reduce moving mass-related vibrational problems, a feasibility assessment is made of the application of other materials in a project for the research group of the EFRC. In particular, polymer and metal matrix

  10. Use of radioactive indicators for the quantitative determination of non-metall inclusions in steel

    International Nuclear Information System (INIS)

    Rewienska-Kosciuk, B.; Michalik, J.

    1979-01-01

    Methods of determining and investigating the sources of non-metal inclusions in steel are presented together with some results of radiometric investigations. The experience of several years of research in industries as well as profound studies of world literature were used as a basis for systematic and critical discussion of the methods used. Optimum methods have been chosen for the quantitative determination of oxide inclusions and for the identification of their origin (e.g. from the refractory furnace lining, the tap-hole, the runner, the ladle or mold slag). Problems of tracers (type, quantity, condition, activity), of the labelling method suitable for the various origins of inclusions, of sampling, of chemical processing of the material sampled, as well as of radiometric measuring techniques (including possible activation) are discussed. Finally, a method for the determination of inclusions resulting from the deoxidation of steel is briefly outlined. (author)

  11. Selectivity in inter polymer complexation involving phenolic copolymer, poly electrolytes, non-ionic polymers and transition metal ions

    International Nuclear Information System (INIS)

    Vasheghani Farahani, B.; Hosseinpour Rajabi, F.

    2006-01-01

    Selectivity in inter polymer complex formation involving a typical four-component phenolic copolymer (ρ-chloro phenol-ρ-aminophenol-ρ-toluidine-ρ-cresol- HCHO copolymer), poly electrolytes such as polyethylene imine and polyacrylic acid, a non-ionic homopolymer polyvinyl pyrrolidone, and some transition metal ions (e.g., Cu (II), Ni (11)) have been studied in dimethylformamide-methanol solvents mixture. The coordinating groups of phenolic copolymer form complexes through hydrogen bonding and ion-dipole interactions. The different stages of interactions have been studied by several experimental techniques, e.g., viscometry, potentiometry and conductometry. Some schemes have been suggested to explain the mode of interaction between these components

  12. Heavy metal sorption by microalgae

    International Nuclear Information System (INIS)

    Sandau, E.; Sandau, P.; Pulz, O.

    1996-01-01

    Viable microalgae are known to be able to accumulate heavy metals (bioaccumulation). Against a background of the increasing environmental risks caused by heavy metals, the microalgae Chlorella vulgaris and Spirulina platensis and their potential for the biological removal of heavy metals from aqueous solutions were taken as an example for investigation. Small-scale cultivation tests (50 l) with Cd-resistant cells of Chlorella vulgaris have shown that approx. 40% of the added 10 mg Cd/l was removed from the solution within seven days. At this heavy metal concentration sensitive cells died. Non-viable microalgae are able to eliminate heavy metal ions in a short time by biosorption in uncomplicated systems, without any toxicity problems. Compared with original biomasses, the sorption capacity of microalgal by-products changes only insignificantly. Their low price makes them economical. (orig.)

  13. Analysis of Chemical Composition of Non-Ferrous Metal Items from the Ananyino Burial Ground

    Directory of Open Access Journals (Sweden)

    Saprykina Irina А.

    2016-03-01

    Full Text Available The article presents results of an analysis conducted by the authors in order to study chemical composition of items from non-ferrous metals found on the Ananyino burial ground. A number of research methods, including OES, XRF and TXRF was applied to study a selection of 387 samples of arrow- and spearheads, celts, tail-pieces, warhammers, poleaxes, knives and daggers, as well as items of attire and jewelry, some sporadic details of harness and bridle. The fi ndings are quite comparable. The results were classifi ed by the geochemical principle of 1,0% alloyage threshold. It was found out that the sample primarily consists of copper items, including “pure” copper and copper with a wide range of trace elements (particularly, Ni, As, Sb. The core (48% consists of copper items with traces of antimony and arsenic, or “pure” copper (7%, tin or triple bronze (40%; it also includes some other types of alloys based on copper or silver (5%. As the analysis has shown, complex ores seem to be the most probable source of copper. Traditionally, the Urals, the Sayan and the Altay Mountains, Kazakhstan and the Northern Caucasus were regarded as the most probable minefi elds to supply ores to the barren regions of Eastern Europe. While ore sources for products made of metallurgical “pure” copper are localized within the Ural mining and metallurgical region, metal sources for items cast from different groups of alloys (rather than imports of ready-made products require further research.

  14. Heavy metals in the volcanic environment and thyroid cancer.

    Science.gov (United States)

    Vigneri, R; Malandrino, P; Gianì, F; Russo, M; Vigneri, P

    2017-12-05

    In the last two decades thyroid cancer incidence has increased worldwide more than any other cancer. Overdiagnosis of subclinical microcarcinomas has certainly contributed to this increase but many evidences indicate that a true increase, possibly due to environmental factors, has also occurred. Thyroid cancer incidence is markedly increased in volcanic areas. Thus, the volcanic environment is a good model to investigate the possible factors favoring thyroid cancer. In the volcanic area of Mt. Etna in Sicily, as well as in other volcanic areas, a non-anthropogenic pollution with heavy metals has been documented, a consequence of gas, ash and lava emission. Soil, water and atmosphere contamination, via the food chain, biocontaminate the residents as documented by high levels in the urines and the scalp hair compared to individuals living in adjacent non-volcanic areas. Trace amounts of metals are essential nutrients but, at higher concentrations, can be toxic for living cells. Metals can behave both as endocrine disruptors, perturbing the hormonal system, and as carcinogens, promoting malignant transformation. Similarly to other carcinogens, the transforming effect of heavy metals is higher in developing organisms as the fetus (contaminated via the mother) and individuals in early childhood. In the last decades environment metal pollution has greatly increased in industrialized countries. Although still within the "normal" limits for each single metal the hormesis effect (heavy metal activity at very low concentration because of biphasic, non linear cell response) and the possible potentiation effect resulting from the mixture of different metals acting synergistically can explain cell damage at very low concentrations. The effect of metals on the human thyroid is poorly studied: for some heavy metals no data are available. The scarce studies that have been performed mainly focus on metal effect as thyroid endocrine disruptors. The metal concentration in tissues has

  15. Influence of non-metallic inclusions on fatigue strength of high manganese steel

    International Nuclear Information System (INIS)

    Maekawa, I.; Shibata, H.; Lee, J.H.; Nishida, Shin-ichi

    1991-01-01

    Six series of high manganese austenitic steel, which contain different inclusion quantity, were prepared. Fatigue experiments, tensile tests and Charpy tests were carried out. Influence of non-metallic inclusion and of temperature on the stress intensity threshold, fatigue crack propagation behavior, elastic-plastic fracture toughness and Charpy value were studied at room temperature and low temperature. In general, strength of this high manganese steel was reduced with increase of inclusion content. Influences of the direction of elongated inclusion with regard to the rolling direction on their strengths were also discussed based on SEM observation and numerical analysis for the stress concentration at a crack tip when an inclusion was near by the tip. According to these results, an inclusion acted as an obstacle to crack propagation for LT specimen. The roughness of fracture surface of ST specimen was larger than that of SL specimen, and the crack growth rate of the former was less than that of the latter. Fatigue life was increased with decrease of temperature, and mechanical parameters such as ΔK th and J 1c were decreased with increase of temperature. The Charpy value decreased clearly with decrease of temperature

  16. Subcellular partitioning of non-essential trace metals (Ag, As, Cd, Ni, Pb, and Tl) in livers of American (Anguilla rostrata) and European (Anguilla anguilla) yellow eels

    Energy Technology Data Exchange (ETDEWEB)

    Rosabal, Maikel [Institut national de la recherche scientifique, Centre Eau Terre et Environnement (INRS–ETE), 490 de la Couronne, Québec (Québec) G1K 9A9 (Canada); Pierron, Fabien [Université de Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence (France); CNRS, EPOC, UMR 5805, F-33400 Talence (France); Couture, Patrice [Institut national de la recherche scientifique, Centre Eau Terre et Environnement (INRS–ETE), 490 de la Couronne, Québec (Québec) G1K 9A9 (Canada); Baudrimont, Magalie [Université de Bordeaux, UMR EPOC CNRS 5805, F-33400 Talence (France); CNRS, EPOC, UMR 5805, F-33400 Talence (France); Hare, Landis [Institut national de la recherche scientifique, Centre Eau Terre et Environnement (INRS–ETE), 490 de la Couronne, Québec (Québec) G1K 9A9 (Canada); Campbell, Peter G.C., E-mail: peter.campbell@ete.inrs.ca [Institut national de la recherche scientifique, Centre Eau Terre et Environnement (INRS–ETE), 490 de la Couronne, Québec (Québec) G1K 9A9 (Canada)

    2015-03-15

    Highlights: • Handling of hepatic metals consistently involved cytosolic, thermostable ligands. • Granule-like fractions are also involved in the detoxification of Ni, Pb, and Tl. • Despite these sequestration mechanisms, metal detoxification is incomplete. • Along the metal gradient, concentrations increase in metal-sensitive fractions. • This increase could represent a toxicological risk for the yellow eels. - Abstract: We determined the intracellular compartmentalization of the trace metals Ag, As, Cd, Ni, Pb, and Tl in the livers of yellow eels collected from the Saint Lawrence River system in Canada (Anguilla rostrata) and in the area of the Gironde estuary in France (Anguilla anguilla). Differential centrifugation, NaOH digestion and thermal shock were used to separate eel livers into putative “sensitive” fractions (heat-denatured proteins, mitochondria and microsomes + lysosomes) and detoxified metal fractions (heat-stable peptides/proteins and granules). The cytosolic heat-stable fraction (HSP) was consistently involved in the detoxification of all trace metals. In addition, granule-like structures played a complementary role in the detoxification of Ni, Pb, and Tl in both eel species. However, these detoxification mechanisms were not completely effective because increasing trace metal concentrations in whole livers were accompanied by significant increases in the concentrations of most trace metals in “sensitive” subcellular fractions, that is, mitochondria, heat-denatured cytosolic proteins and microsomes + lysosomes. Among these “sensitive” fractions, mitochondria were the major binding sites for As, Cd, Pb, and Tl. This accumulation of non-essential metals in “sensitive” fractions likely represents a health risk for eels inhabiting the Saint Lawrence and Gironde environments.

  17. Size Controlled Synthesis of Transition Metal Nanoparticles for Catalytic Applications

    KAUST Repository

    Esparza, Angel

    2011-07-07

    Catalysis offers cleaner and more efficient chemical reactions for environmental scientists. More than 90% of industrial processes are performed with a catalyst involved, however research it is still required to improve the catalyst materials. The purpose of this work is to contribute with the development of catalysts synthesis with two different approaches. First, the precise size control of non-noble metals nanoparticles. Second, a new one-pot synthesis method based on a microemulsion system was developed to synthesize size-controlled metal nanoparticles in oxide supports. The one-pot method represents a simple approach to synthesize both support and immobilized nanometer-sized non-noble metal nanoparticles in the same reaction system. Narrow size distribution nickel, cobalt, iron and cobalt-nickel nanoparticles were obtained. High metal dispersions are attainable regardless the metal or support used in the synthesis. Thus, the methodology is adaptable and robust. The sizecontrolled supported metal nanoparticles offer the opportunity to study size effects and metal-support interactions on different catalytic reactions with different sets of metals and supports.

  18. Heavy metal and proximate composition associated with the ...

    African Journals Online (AJOL)

    User

    2014-05-08

    May 8, 2014 ... Levels of Cu, Mn, Pd and Zn in mushroom samples analysed were ... metal concentration in soil and fungal factors such as species ..... Levels of trace elements in the fruiting bodies ... Toxicity of non-radioactive heavy metals.

  19. Nanowire-decorated microscale metallic electrodes

    DEFF Research Database (Denmark)

    Vlad, A.; Mátéfi-Tempfli, M.; Antohe, V.A.

    2008-01-01

    The fabrication of metallic nanowire patterns within anodic alumina oxide (AAO) membranes on top of continuous conducting substrates are discussed. The fabrication protocol is based on the realization of nanowire patterns using supported nanoporous alumina templates (SNAT) prepared on top...... of lithographically defined metallic microelectrodes. The anodization of the aluminum permits electroplating only on top of the metallic electrodes, leading to the nanowire patterns having the same shape as the underlying metallic tracks. The variation in the fabricated structures between the patterned and non......-patterned substrates can be interpreted in terms of different behavior during anodization. The improved quality of fabricated nanowire patterns is clearly demonstrated by the SEM imaging and the uniform growth of nanowires inside the alumina template is observed without any significant height variation....

  20. Molten salt oxidation of ion-exchange resins doped with toxic metals and radioactive metal surrogates

    International Nuclear Information System (INIS)

    Yang, Hee-Chul; Cho, Yong-Jun; Yoo, Jae-Hyung; Kim, Joon-Hyung; Eun, Hee-Chul

    2005-01-01

    Ion-exchange resins doped with toxic metals and radioactive metal surrogates were test-burned in a bench-scale molten salt oxidation (MSO) reactor system. The purposes of this study are to confirm the destruction performance of the two-stage MSO reactor system for the organic ion-exchange resin and to obtain an understanding of the behavior of the fixed toxic metals and the sulfur in the cationic exchange resins. The destruction of the organics is very efficient in the primary reactor. The primarily destroyed products such as carbon monoxide are completely oxidized in the secondary MSO reactor. The overall collection of the sulfur and metals in the two-stage MSO reactor system appeared to be very efficient. Over 99.5% of all the fixed toxic metals (lead and cadmium) and radioactive metal surrogates (cesium, cobalt, strontium) remained in the MSO reactor bottom. Thermodynamic equilibrium calculations and the XRD patterns of the spent salt samples revealed that the collected metals existed in the form of each of their carbonates or oxides, which are non-volatile species at the MSO system operating conditions. (author)

  1. Determination of parameters of microstructural inhomogeneity of metal deformation by the method of modelling

    International Nuclear Information System (INIS)

    Kornienko, V.T.

    1991-01-01

    A method is suggested to estimate microstructural non-uniformity of deformation in metals by means of modelling. This method includes measurement of deformation in metals by small-dimensioned dividing grid cells as well as calculation of parameters by means of model representation of microdeformation distribution. It is shown that the method of modelling gives an opportunity to objectively estimate deformation non-uniformity in metals irrespective of the selected dimension of a dividing grid cells. New structural characteristics: base and wave of variations, reflecting a degree of dividing or uniting grains in metals according to the non-uniformity of deformation are introduced

  2. Jacks of metal(loid chelation trade in plants – an overview

    Directory of Open Access Journals (Sweden)

    Naser A. Anjum

    2015-04-01

    Full Text Available Varied environmental compartments including soils are being contaminated by a myriad toxic metal(loids (hereafter termed as ‘metal/s’ mainly through anthropogenic activities. These metals may contaminate food chain and bring irreparable consequences in human. Plant-based approach (phytoremediation stands second to none among bioremediation technologies meant for sustainable cleanup of soils/sites with metal-contamination. In turn, the capacity of plants to tolerate potential consequences caused by the extracted/accumulated metals decides the effectiveness and success of phytoremediation system. Chelation is among the potential mechanisms that largely govern metal-tolerance in plant cells by maintaining low concentrations of free metals in cytoplasm. Metal-chelation can be performed by compounds of glutathione (GSH (reduced GSH; phytochelatins, PCs; metallothioneins, MTs and non-GSH (histidine, nicotianamine, organic acids origin. This paper presents an appraisal of recent reports on both GSH and non-GSH associated compounds in an effort to shed light on the significance of these compounds in metal-plant tolerance, as well as to provide scientific clues for the development of phytoextraction strategies.

  3. Bipolar resistive switching in graphene oxide based metal insulator metal structure for non-volatile memory applications

    Science.gov (United States)

    Singh, Rakesh; Kumar, Ravi; Kumar, Anil; Kashyap, Rajesh; Kumar, Mukesh; Kumar, Dinesh

    2018-05-01

    Graphene oxide based devices have attracted much attention recently because of their possible application in next generation electronic devices. In this study, bipolar resistive switching characteristics of graphene oxide based metal insulator metal structure were investigated for nonvolatile memories. The graphene oxide was prepared by the conventional Hummer's method and deposited on ITO coated glass by spin-coating technique. The dominant mechanism of resistive switching is the formation and rupture of the conductive filament inside the graphene oxide. The conduction mechanism for low and high resistance states are dominated by two mechanism the ohmic conduction and space charge limited current (SCLC) mechanism, respectively. Atomic Force Microscopy, X-ray diffraction, Cyclic-Voltammetry were conducted to observe the morphology, structure and behavior of the material. The fabricated device with Al/GO/ITO structure exhibited reliable bipolar resistive switching with set & reset voltage of -2.3 V and 3V respectively.

  4. Characteristics and Modification of Non-metallic Inclusions in Titanium-Stabilized AISI 409 Ferritic Stainless Steel

    Science.gov (United States)

    Kruger, Dirk; Garbers-Craig, Andrie

    2017-06-01

    This study describes an investigation into the improvement of castability, final surface quality and formability of titanium-stabilized AISI 409 ferritic stainless steel on an industrial scale. Non-metallic inclusions found in this industrially produced stainless steel were first characterized using SEM-EDS analyses through the INCA-Steel software platform. Inclusions were found to consist of a MgO·Al2O3 spinel core, which acted as heterogeneous nucleation site for titanium solubility products. Plant-scale experiments were conducted to either prevent the formation of spinel, or to modify it by calcium treatment. Modification to spherical dual-phase spinel-liquid matrix inclusions was achieved with calcium addition, which eliminated submerged entry nozzle clogging for this grade. Complete modification to homogeneous liquid calcium aluminates was achieved at high levels of dissolved aluminum. A mechanism was suggested to explain the extent of modification achieved.

  5. Superconductivity of ternary metal compounds prepared at high pressures

    CERN Document Server

    Shirotani, I

    2003-01-01

    Various ternary metal phosphides, arsenides, antimonides, silicides and germanides have been prepared at high temperatures and high pressures. These ternary metal compounds can be classified into four groups: [1] metal-rich compounds MM' sub 4 X sub 2 and [2] MM'X, [3] non-metal-rich compounds MXX' and [4] MM' sub 4 X sub 1 sub 2 (M and M' = metal element; X and X' = non-metal element). We have studied the electrical and magnetic properties of these materials at low temperatures, and found many new superconductors with the superconducting transition temperature (T sub c) of above 10 K. The metal-rich compound ZrRu sub 4 P sub 2 with a tetragonal structure showed the superconducting transition at around 11 K, and had an upper critical field (H sub c sub 2) of 12.2 tesla (T) at 0 K. Ternary equiatomic compounds ZrRuP and ZrRuSi crystallize in two modifications, a hexagonal Fe sub 2 P-type structure [h-ZrRuP(Si)] and an orthorhombic Co sub 2 P-type structure [o-ZrRuP(Si)]. Both h-ZrRuP and h-ZrRuSi have rather h...

  6. Novel measurement method of activation energy of non-metallic materials for NPP

    International Nuclear Information System (INIS)

    Park, Chang-Dae; Lim, Byung-Ju; Song, Chi-Sung

    2008-01-01

    This paper presents novel technique and its applicability for measuring activation energy of non-metallic materials for NPPs (nuclear power plants). The E a is a principal property for life assessment and accelerating thermal aging of equipment during environmental qualification. The E a is conventionally obtained by tensile test using UTM (Universal Testing Machine). However, this conventional method has many difficulties such as lots of big standardized specimens required and long measuring time of at least 3 months. Moreover, this is not only an inapplicable method during inservice inspection but destructive method, which are main obstacles for using UTM. Fortunately, newly developed technique for the E a such as TGA (Thermo-gravimetric Analysis) and DMA (Dynamic Mechanical Analysis) can eliminate almost all the problems of UTM. The common TGA is to measure weight change with time under constant heating rate. TGA was devised to perform the compositional analysis of materials such as rubber, carbon black, filler, volatile, etc., and to determine the thermal stability/decomposition, stoichiometry of reactions, and kinetics of reaction, by weight changes of materials when heated. TGA method has various advantages such as small amount of the sample (e.g. 20 mg), shortened measuring time of approximately 2 days, and virtually non-destructive method. In this study, we have tried to find the justification of TGA utilization for E a measurement by comparing the measured TGA data to UTM data for three cable materials. Considering reasonable consistency of our TGA data with UTM data, we conclude that TGA method gives convenient way to measure the activation energy for EPR, CR, and CSP materials with many merits, such as measuring time, specimen size and quantity required, and test expenses. (author)

  7. Time domain electromagnetic metal detectors

    International Nuclear Information System (INIS)

    Hoekstra, P.

    1996-01-01

    This presentation focuses on illustrating by case histories the range of applications and limitations of time domain electromagnetic (TDEM) systems for buried metal detection. Advantages claimed for TDEM metal detectors are: independent of instrument response (Geonics EM61) to surrounding soil and rock type; simple anomaly shape; mitigation of interference by ambient electromagnetic noise; and responsive to both ferrous and non-ferrous metallic targets. The data in all case histories to be presented were acquired with the Geonics EM61 TDEM system. Case histories are a test bed site on Molokai, Hawaii; Fort Monroe, Virginia; and USDOE, Rocky Flats Plant. The present limitations of this technology are: discrimination capabilities in terms of type of ordnance, and depth of burial is limited, and ability of resolving targets with small metallic ambient needs to be improved

  8. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    Energy Technology Data Exchange (ETDEWEB)

    Lu, D.F.; Fan, C.; Ruan, J.Z. [Midwest Superconductivity Inc., Lawrence, KS (United States)] [and others

    1994-12-31

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology.

  9. Non-destructive testing (NDT) of metal cracks using a high Tc rf-SQUID and eddy current method

    International Nuclear Information System (INIS)

    Lu, D.F.; Fan, C.; Ruan, J.Z.

    1994-01-01

    A SQUID is the most sensitive device to detect change in magnetic field. A non-destructive testing (NDT) device using high temperature SQUIDs and eddy current method will be much more sensitive than those currently used eddy current systems, yet much cheaper than one with low temperature SQUIDs. In this paper, we present our study of such a NDT device using a high temperature superconducting rf-SQUID as a gradiometer sensor. The result clearly demonstrates the expected sensitivity of the system, and indicates the feasibility of building a portable HTS SQUID NDT device with the help from cryocooler industry. Such a NDT device will have a significant impact on metal corrosion or crack detection technology

  10. NON-POLLUTING METAL SURFACE FINISHING PRETREATMENT AND PRETREATMENT/CONVERSION COATING

    Science.gov (United States)

    Picklex, a proprietary formulation, is an alterantive to conventional metal surface pretreatments and is claimed not to produce waste or lower production or lower performance. A laboratory program was designed to evaluate Picklex in common, large scale, polluting surface finishin...

  11. Non-metric multidimensional scaling and human risks of heavy metal concentrations in wild marine organisms from the Maowei Sea, the Beibu Gulf, South China Sea.

    Science.gov (United States)

    Gu, Yang-Guang; Huang, Hong-Hui; Liu, Yong; Gong, Xiu-Yu; Liao, Xiu-Li

    2018-04-01

    We investigated heavy metal concentrations in wild marine organisms from Maowei Sea, a significant gulf of low-latitude developing regions of the Beibu Gulf, South China Sea. Twenty species, comprising fish, cephalopods, and crustaceans were collected and analyzed for heavy metals. Heavy metal levels (mg/kg, wet weight) in the aquatic organism samples were: 0.003-1.800 for Cd, 0.02-0.14 for Pb, 0.10-0.63 for Cr, 0.20-77.50 for Cu, 9.50-64.60 for Zn, 0.006-0.066 for Hg, and 0.10-1.50 for As. Non-metric multidimensional scaling coupled with cluster analysis revealed two groupings that mainly resulted from different species of the metals in marine organisms. The highest concentrations of Cd, Pb, Cr, Ni, Cu, Zn, Hg, and As were found in species of cephalopods. Health risk assessment based on the target hazard quotients (THQ) and total THQ indicated no significant adverse health effects from consumption of marine organisms. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. From non-disposable to disposable, treatment of pyrophoric or gas forming waste forms for disposal - Thermal treatment of pyrophoric or gas-forming metals

    International Nuclear Information System (INIS)

    Oesterberg, Carl; Lindberg, Maria

    2014-01-01

    In order to dispose of waste in either a deep geological disposal or in a shallower repository there are several demands that the waste and its package must fulfil, one is that it is not to react with oxygen or the waste package or backfill in the repository, i.e. concrete or grout. The waste forms that do not fulfil this particular criterion must be treated in some way to render the waste non-reactive. One of these waste are metallic uranium. Metallic uranium is not only an issue originating from the nuclear industry, as old types of fuel, it is also present in, for example, transport flasks and as samples used in schools, which all has to be disposed of sooner or later. Another waste that arise is magnesium doped with thorium, originating from the aviation, aerospace and missile industry. These alloys are now being replaced with others without thorium so they are in need of handling and possibly treatment before disposal. Magnesium metal is also pyrophoric, in particular in molten or powder form. In order to evaluate thermally treating these metals in a very controlled environment, such as a pyrolysis vessel, experimental work has been performed. The aim of the thermal treatment is to oxidise the metals and obtain an oxide with low leachability. Inactive trials were performed, first using small amount of magnesium tape followed by using Cerium instead of uranium, to check the ability of controlling the process. After the process had been deemed safe the next step was to test the process first with metallic uranium and thereafter with magnesium thorium alloy. The first results show that the oxidation process can be totally controlled and safe. The results show that the metals are oxidised and no longer reactive and can in principle be disposed of. The test will continue and further results will be reported. (authors)

  13. Modeling of formation of binary-phase hollow nanospheres from metallic solid nanospheres

    International Nuclear Information System (INIS)

    Svoboda, J.; Fischer, F.D.; Vollath, D.

    2009-01-01

    Spontaneous formation of binary-phase hollow nanospheres by reaction of a metallic nanosphere with a non-metallic component in the surrounding atmosphere is observed for many systems. The kinetic model describing this phenomenon is derived by application of the thermodynamic extremal principle. The necessary condition of formation of the binary-phase hollow nanospheres is that the diffusion coefficient of the metallic component in the binary phase is higher than that of the non-metallic component (Kirkendall effect occurs in the correct direction). The model predictions of the time to formation of the binary-phase hollow nanospheres agree with the experimental observations

  14. Parasites modify sub-cellular partitioning of metals in the gut of fish

    Energy Technology Data Exchange (ETDEWEB)

    Oyoo-Okoth, Elijah, E-mail: elijaoyoo2009@gmail.com [Division of Environmental Health, School of Environmental Studies, Moi University, P.O. Box 3900, Eldoret (Kenya); Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424/1090 GE (Netherlands); Admiraal, Wim [Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424/1090 GE (Netherlands); Osano, Odipo [Division of Environmental Health, School of Environmental Studies, Moi University, P.O. Box 3900, Eldoret (Kenya); Kraak, Michiel H.S. [Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 9424/1090 GE (Netherlands); Gichuki, John; Ogwai, Caleb [Kenya Marine and Fisheries Research Institute, P.O. Box 1881, Kisumu (Kenya)

    2012-01-15

    Infestation of fish by parasites may influence metal accumulation patterns in the host. However, the subcellular mechanisms of these processes have rarely been studied. Therefore, this study determined how a cyprinid fish (Rastrineobola argentea) partitioned four metals (Cd, Cr, Zn and Cu) in the subcellular fractions of the gut in presence of an endoparasite (Ligula intestinalis). The fish were sampled along four sites in Lake Victoria, Kenya differing in metal contamination. Accumulation of Cd, Cr and Zn was higher in the whole body and in the gut of parasitized fish compared to non-parasitized fish, while Cu was depleted in parasitized fish. Generally, for both non-parasitized and parasitized fish, Cd, Cr and Zn partitioned in the cytosolic fractions and Cu in the particulate fraction. Metal concentrations in organelles within the particulate fractions of the non-parasitized fish were statistically similar except for Cd in the lysosome, while in the parasitized fish, Cd, Cr and Zn were accumulated more by the lysosome and microsomes. In the cytosolic fractions, the non-parasitized fish accumulated Cd, Cr and Zn in the heat stable proteins (HSP), while in the parasitized fish the metals were accumulated in the heat denatured proteins (HDP). On the contrary, Cu accumulated in the HSP in parasitized fish. The present study revealed specific binding of metals to potentially sensitive sub-cellular fractions in fish in the presence of parasites, suggesting interference with metal detoxification, and potentially affecting the health status of fish hosts in Lake Victoria.

  15. Role of substrate commensurability on non-reactive wetting kinetics of liquid metals

    Energy Technology Data Exchange (ETDEWEB)

    Benhassine, M. [Centre for Research in Molecular Modelling, University of Mons-Hainaut, Parc Initialis, Av. Copernic, 1, 7000 Mons (Belgium); Saiz, E.; Tomsia, A.P. [Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); De Coninck, J., E-mail: joel.deconinck@umons.ac.be [Centre for Research in Molecular Modelling, University of Mons-Hainaut, Parc Initialis, Av. Copernic, 1, 7000 Mons (Belgium)

    2010-04-15

    The dynamics of spreading of liquid metal atoms via molecular dynamics is considered vs. the commensurability of the solid surface with respect to the size of the liquid atoms. The solid surfaces are modeled as rigid (1 0 0) oriented Ni and, for two series of simulations, the lattice spacing of the substrate is varied from the regular equilibrium spacing to a commensurate situation with Au or Ag drops spreading spontaneously on top. The diffusion is calculated in the layered region of the liquid in contact with the two different solid surfaces and then compared. Then, the dynamic evolution of the contact angle is fitted to Molecular Kinetic Theory and compared with the two substrate geometries. It is observed that the friction parameter scales as the inverse of the diffusion in the interfacial region. The change in ordering induced by the commensurate substrate is characterized by examining the density profiles across the solid/liquid interface and fitting the curve by an exponential decay with a characteristic correlation distance 1/{kappa}. It is shown that the commensurability/non-commensurability of the solid surface with respect to the liquid atoms changes the ordering, which plays a significant role in the dynamics, a feature not properly taken into account in the present formulation of Molecular Kinetic Theory.

  16. Role of substrate commensurability on non-reactive wetting kinetics of liquid metals

    International Nuclear Information System (INIS)

    Benhassine, M.; Saiz, E.; Tomsia, A.P.; De Coninck, J.

    2010-01-01

    The dynamics of spreading of liquid metal atoms via molecular dynamics is considered vs. the commensurability of the solid surface with respect to the size of the liquid atoms. The solid surfaces are modeled as rigid (1 0 0) oriented Ni and, for two series of simulations, the lattice spacing of the substrate is varied from the regular equilibrium spacing to a commensurate situation with Au or Ag drops spreading spontaneously on top. The diffusion is calculated in the layered region of the liquid in contact with the two different solid surfaces and then compared. Then, the dynamic evolution of the contact angle is fitted to Molecular Kinetic Theory and compared with the two substrate geometries. It is observed that the friction parameter scales as the inverse of the diffusion in the interfacial region. The change in ordering induced by the commensurate substrate is characterized by examining the density profiles across the solid/liquid interface and fitting the curve by an exponential decay with a characteristic correlation distance 1/κ. It is shown that the commensurability/non-commensurability of the solid surface with respect to the liquid atoms changes the ordering, which plays a significant role in the dynamics, a feature not properly taken into account in the present formulation of Molecular Kinetic Theory.

  17. Reduction of metal exposure of Daubenton's bats (Myotis daubentonii) following remediation of pond sediment as evidenced by metal concentrations in hair.

    Science.gov (United States)

    Flache, Lucie; Ekschmitt, Klemens; Kierdorf, Uwe; Czarnecki, Sezin; Düring, Rolf-Alexander; Encarnação, Jorge A

    2016-03-15

    Transfer of contaminants from freshwater sediments via aquatic insects to terrestrial predators is well documented in spiders and birds. Here, we analyzed the metal exposure of Myotis daubentonii using an urban pond as their preferred foraging area before and after a remediation measure (sediment dredging) at this pond. Six metal elements (Zn, Cu, Cr, Cd, Pb and Ni) were measured in the sediment of the pond, in EDTA extracts of the sediment and in hair samples of M. daubentonii foraging at the pond. Samples were taken before remediation in 2011 and after remediation in 2013. Metal concentrations were quantified by ICP-OES after miniaturized microwave assisted extraction. In 2011, the pond sediment exhibited a high contamination with nickel, a moderate contamination with copper and chromium and low contents of zinc, cadmium and lead. While sediment metal contents declined only weakly after remediation, a much more pronounced reduction in the concentrations of zinc, copper, chromium and lead concentrations was observed in bat hair. Our results suggest a marked decline in metal exposure of the bats foraging at the pond as a consequence of the remediation measure. It is concluded that Daubenton's bats are suitable bioindicators of metal contamination in aquatic environments, integrating metal exposure via prey insects over their entire foraging area. We further suggest that bat hair is a useful monitoring unit, allowing a non-destructive and non-invasive assessment of metal exposure in bats. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Chemoelectronic circuits based on metal nanoparticles

    Science.gov (United States)

    Yan, Yong; Warren, Scott C.; Fuller, Patrick; Grzybowski, Bartosz A.

    2016-07-01

    To develop electronic devices with novel functionalities and applications, various non-silicon-based materials are currently being explored. Nanoparticles have unique characteristics due to their small size, which can impart functions that are distinct from those of their bulk counterparts. The use of semiconductor nanoparticles has already led to improvements in the efficiency of solar cells, the processability of transistors and the sensitivity of photodetectors, and the optical and catalytic properties of metal nanoparticles have led to similar advances in plasmonics and energy conversion. However, metals screen electric fields and this has, so far, prevented their use in the design of all-metal nanoparticle circuitry. Here, we show that simple electronic circuits can be made exclusively from metal nanoparticles functionalized with charged organic ligands. In these materials, electronic currents are controlled by the ionic gradients of mobile counterions surrounding the ‘jammed’ nanoparticles. The nanoparticle-based electronic elements of the circuitry can be interfaced with metal nanoparticles capable of sensing various environmental changes (humidity, gas, the presence of various cations), creating electronic devices in which metal nanoparticles sense, process and ultimately report chemical signals. Because the constituent nanoparticles combine electronic and chemical sensing functions, we term these systems ‘chemoelectronic’. The circuits have switching times comparable to those of polymer electronics, selectively transduce parts-per-trillion chemical changes into electrical signals, perform logic operations, consume little power (on the scale of microwatts), and are mechanically flexible. They are also ‘green’, in the sense that they comprise non-toxic nanoparticles cast at room temperature from alcohol solutions.

  19. Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation

    Science.gov (United States)

    Torrey, Paul; Vogelsberger, Mark; Hernquist, Lars; McKinnon, Ryan; Marinacci, Federico; Simcoe, Robert A.; Springel, Volker; Pillepich, Annalisa; Naiman, Jill; Pakmor, Rüdiger; Weinberger, Rainer; Nelson, Dylan; Genel, Shy

    2018-06-01

    The fundamental metallicity relation (FMR) is a postulated correlation between galaxy stellar mass, star formation rate (SFR), and gas-phase metallicity. At its core, this relation posits that offsets from the mass-metallicity relation (MZR) at a fixed stellar mass are correlated with galactic SFR. In this Letter, we use hydrodynamical simulations to quantify the time-scales over which populations of galaxies oscillate about the average SFR and metallicity values at fixed stellar mass. We find that Illustris and IllustrisTNG predict that galaxy offsets from the star formation main sequence and MZR oscillate over similar time-scales, are often anticorrelated in their evolution, evolve with the halo dynamical time, and produce a pronounced FMR. Our models indicate that galaxies oscillate about equilibrium SFR and metallicity values - set by the galaxy's stellar mass - and that SFR and metallicity offsets evolve in an anticorrelated fashion. This anticorrelated variability of the metallicity and SFR offsets drives the existence of the FMR in our models. In contrast to Illustris and IllustrisTNG, we speculate that the SFR and metallicity evolution tracks may become decoupled in galaxy formation models dominated by feedback-driven globally bursty SFR histories, which could weaken the FMR residual correlation strength. This opens the possibility of discriminating between bursty and non-bursty feedback models based on the strength and persistence of the FMR - especially at high redshift.

  20. Reduction of metal exposure of Daubenton's bats (Myotis daubentonii) following remediation of pond sediment as evidenced by metal concentrations in hair

    International Nuclear Information System (INIS)

    Flache, Lucie; Ekschmitt, Klemens; Kierdorf, Uwe; Czarnecki, Sezin; Düring, Rolf-Alexander; Encarnação, Jorge A.

    2016-01-01

    Transfer of contaminants from freshwater sediments via aquatic insects to terrestrial predators is well documented in spiders and birds. Here, we analyzed the metal exposure of Myotis daubentonii using an urban pond as their preferred foraging area before and after a remediation measure (sediment dredging) at this pond. Six metal elements (Zn, Cu, Cr, Cd, Pb and Ni) were measured in the sediment of the pond, in EDTA extracts of the sediment and in hair samples of M. daubentonii foraging at the pond. Samples were taken before remediation in 2011 and after remediation in 2013. Metal concentrations were quantified by ICP-OES after miniaturized microwave assisted extraction. In 2011, the pond sediment exhibited a high contamination with nickel, a moderate contamination with copper and chromium and low contents of zinc, cadmium and lead. While sediment metal contents declined only weakly after remediation, a much more pronounced reduction in the concentrations of zinc, copper, chromium and lead concentrations was observed in bat hair. Our results suggest a marked decline in metal exposure of the bats foraging at the pond as a consequence of the remediation measure. It is concluded that Daubenton's bats are suitable bioindicators of metal contamination in aquatic environments, integrating metal exposure via prey insects over their entire foraging area. We further suggest that bat hair is a useful monitoring unit, allowing a non-destructive and non-invasive assessment of metal exposure in bats. - Highlights: • Changes in metal exposure of bats due to remediation measure are documented. • Bats are suitable bioindicators of metal pollution. • Bat hair is a useful monitoring unit in such studies.

  1. From silkworms to bees: Diseases of beneficial insects

    Science.gov (United States)

    The diseases of the silkworm (Bombyx mori) and managed bees, including the honey bee (Apis mellifera), bumbles bees (Bombus spp.), the alfalfa leafcutting bee (Megachile rotundata), and mason bees (Osmia spp.) are reviewed, with diagnostic descriptions and a summary of control methods for production...

  2. Typology of Options for Metal Recycling: Australia’s Perspective

    Directory of Open Access Journals (Sweden)

    Artem Golev

    2015-12-01

    Full Text Available While Australia has traditionally relied on obtaining metals from primary sources (namely mined natural resources, there is significant potential to recover metals from end-of-life-products and industrial waste. Although any metals recycling value chain requires a feasible technology at its core, many other non-technical factors are key links in the chain, which can compromise the overall viability to recycle a commodity and/or product. The “Wealth from Waste” Cluster project funded by the Commonwealth Scientific Industrial Research Organisation (CSIRO Flagship Collaboration Fund and partner universities is focusing on identifying viable options to “mine” metals contained in discarded urban infrastructure, manufactured products and consumer goods. A key aspect of this research is to understand the critical non-technical barriers and system opportunities to enhance rates of metals recycling in Australia. Work to date has estimated the mass and current worth of metals in above ground resources. Using these outcomes as a basis, a typology for different options for (metal reuse and recycling has been developed to classify the common features, which is presented in this article. In addition, the authors investigate the barriers and enablers in the recycling value chain, and propose a set of requirements for a feasible pathway to close the material loop for metals in Australia.

  3. Non-resonant terahertz field enhancement in periodically arranged nanoslits

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Ivinskaya, Aliaksandra; Zalkovskij, Maksim

    2012-01-01

    We analyze ultra strong non-resonant field enhancement of THz field in periodic arrays of nanoslits cut in ultrathin metal films. The main feature of our approach is that the slit size and metal film thickness are several orders of magnitude smaller than the wavelength λ of the impinging radiatio...... by the microscopic Drude-Lorentz model taking into account retardation processes in the metal film and validated by the finite difference frequency domain method. We expect sensor and modulation applications of the predicted giant broadband field enhancement.......We analyze ultra strong non-resonant field enhancement of THz field in periodic arrays of nanoslits cut in ultrathin metal films. The main feature of our approach is that the slit size and metal film thickness are several orders of magnitude smaller than the wavelength λ of the impinging radiation...... approaches the THz wavelength but before entering the Raleigh-Wood anomaly, the field enhancement in nanoslit stays close to that in a single isolated slit, i.e., the well-known inversefrequency dependence. Both regimes are non-resonant and thus extremely broadband for P

  4. Basic Knowledge about Metal Stent Development

    Directory of Open Access Journals (Sweden)

    Seok Jeong

    2016-03-01

    Full Text Available Biliary self-expandable metal stents (SEMS, a group of non-vascular stents, have been used in the palliative management of biliary obstruction around the world. However, there are still unmet needs in the clinical application of biliary SEMS. Comprehensive understanding of the SEMS is required to resolve the drawbacks and difficulties of metal stent development. The basic structure of SEMS, including the materials and knitting methods of metal wires, covering materials, and radiopaque markers, are discussed in this review. What we know about the physical and mechanical properties of the SEMS is very important. With an understanding of the basic knowledge of metal stents, hurdles such as stent occlusion, migration, and kinking can be overcome to develop more ideal SEMS.

  5. Analysis of the treatment of plastic from electrical and electronic waste in the Republic of Serbia and the testing of the recycling potential of non-metallic fractions of printed circuit boards

    Directory of Open Access Journals (Sweden)

    Vučinić Aleksandra S.

    2017-01-01

    Full Text Available This paper presents the analysis of the quantity of plastic and waste printed circuit boards obtained after the mechanical treatment of electrical and electronic waste (E-waste in the Republic of Serbia, as well as the recycling of non-metallic fractions of waste printed circuit boards. The aim is to analyze the obtained recycled material and recommendation for possible application of recyclables. The data on the quantities and treatment of plastics and printed circuit boards obtained after the mechanical treatment of WEEE, were gained through questionnaires sent to the operators who treat this type of waste. The results of the questionnaire analysis showed that in 2014 the dismantling of E-waste isolated 1,870.95 t of plastic and 499.85 t of printed circuit boards. In the Republic of Serbia, E-waste recycling is performed exclusively by using mechanical methods. Mechanical methods consist of primary crushing and separation of the materials which have a utility value as secondary raw materials, from the components and materials that have hazardous properties. Respect to that, the recycling of printed circuit boards using some of the metallurgical processes with the aim of extracting copper, precious metals and non-metallic fraction is completely absent, and the circuit boards are exported as a whole. Given the number of printed circuit boards obtained by E-waste dismantling, and the fact that from an economic point of view, hydrometallurgical methods are very suitable technological solutions in the case of a smaller capacity, there is a possibility for establishing the facilities in the Republic of Serbia for the hydrometallurgical treatment that could be used for metals extraction, and non-metallic fractions, which also have their own value. Printed circuit boards granulate obtained after the mechanical pretreatment and the selective removal of metals by hydrometallurgical processes was used for the testing of the recycling potential

  6. Impact of process parameters on the structural and electrical properties of metal/PZT/Al2O3/silicon gate stack for non-volatile memory applications

    Science.gov (United States)

    Singh, Prashant; Jha, Rajesh Kumar; Singh, Rajat Kumar; Singh, B. R.

    2018-02-01

    In this paper, we present the structural and electrical properties of the Al2O3 buffer layer on non-volatile memory behavior using Metal/PZT/Al2O3/Silicon structures. Metal/PZT/Silicon and Metal/Al2O3/Silicon structures were also fabricated and characterized to obtain capacitance and leakage current parameters. Lead zirconate titanate (PZT::35:65) and Al2O3 films were deposited by sputtering on the silicon substrate. Memory window, PUND, endurance, breakdown voltage, effective charges, flat-band voltage and leakage current density parameters were measured and the effects of process parameters on the structural and electrical characteristics were investigated. X-ray data show dominant (110) tetragonal phase of the PZT film, which crystallizes at 500 °C. The sputtered Al2O3 film annealed at different temperatures show dominant (312) orientation and amorphous nature at 425 °C. Multiple angle laser ellipsometric analysis reveals the temperature dependence of PZT film refractive index and extinction coefficient. Electrical characterization shows the maximum memory window of 3.9 V and breakdown voltage of 25 V for the Metal/Ferroelectric/Silicon (MFeS) structures annealed at 500 °C. With 10 nm Al2O3 layer in the Metal/Ferroelectric/Insulator/Silicon (MFeIS) structure, the memory window and breakdown voltage was improved to 7.21 and 35 V, respectively. Such structures show high endurance with no significant reduction polarization charge for upto 2.2 × 109 iteration cycles.

  7. Impact of incomplete metal coverage on the electrical properties of metal-CNT contacts: A large-scale ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Fediai, Artem, E-mail: artem.fediai@nano.tu-dresden.de; Ryndyk, Dmitry A. [Institute for Materials Science and Max Bergman Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden (Germany); Seifert, Gotthard [Theoretical Chemistry, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden (Germany); Dresden Center for Computational Materials Science, TU Dresden, 01062 Dresden (Germany); Mothes, Sven; Schroter, Michael; Claus, Martin [Chair for Electron Devices and Integrated Circuits, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden (Germany); Cuniberti, Gianaurelio [Institute for Materials Science and Max Bergman Center of Biomaterials, TU Dresden, 01062 Dresden (Germany); Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden (Germany); Dresden Center for Computational Materials Science, TU Dresden, 01062 Dresden (Germany)

    2016-09-05

    Using a dedicated combination of the non-equilibrium Green function formalism and large-scale density functional theory calculations, we investigated how incomplete metal coverage influences two of the most important electrical properties of carbon nanotube (CNT)-based transistors: contact resistance and its scaling with contact length, and maximum current. These quantities have been derived from parameter-free simulations of atomic systems that are as close as possible to experimental geometries. Physical mechanisms that govern these dependences have been identified for various metals, representing different CNT-metal interaction strengths from chemisorption to physisorption. Our results pave the way for an application-oriented design of CNT-metal contacts.

  8. New Nuclear Materials Including Non Metallic Fuel Elements. Vol. II. Proceedings of the Conference on New Nuclear Materials Technology, Including Non Metallic Fuel Elements

    International Nuclear Information System (INIS)

    1963-01-01

    One of the major aims of the International Atomic Energy Agency in furthering the peaceful uses of atomic energy is to encourage the development of economical nuclear power. Certainly, one of the more obvious methods of producing economical nuclear power is the development of economical fuels that can be used at high temperatures for long periods of time, and which have sufficient strength and integrity to operate under these conditions without permitting the release of fission products. In addition it is desirable that after irradiation these new fuels be economically reprocessed to reduce further the cost of the fuel cycle. As nuclear power becomes more and more competitive with conventional power the interest in new and more efficient higher-temperature fuels naturally increases rapidly. For these reasons, the Agency organized a Conference on New Nuclear Materials Technology, Including Non-Metallic Fuel Elements, which was held from 1 to 5 July 1963 at the International Hotel, Prague, with the assistance and co-operation of the Government of the Czechoslovak Socialist Republic. A total of 151 scientists attended, from 23 countries and 4 international organizations. The participants heard and discussed more than 60 scientific papers. The Agency wishes to thank the scientists who attended this Conference for their papers and for many spirited discussions that truly mark a successful meeting. The Agency wishes also to record its gratitude for the assistance and generous hospitality accorded the Conference, the participants and the Agency's staff by the Government of the Czechoslovak Socialist Republic and by the people of Prague. The scientific information contained in these Proceedings should help to quicken the pace of progress in the fabrication of new and m ore economical fuels, and it is hoped that these proceedings will be found useful to all workers in this and related fields

  9. Rhizostabilization of metals in soils using Lupinus luteus inoculated with the metal resistant rhizobacterium Serratia sp. MSMC541.

    Science.gov (United States)

    El Aafi, N; Brhada, F; Dary, M; Maltouf, A Filali; Pajuelo, E

    2012-03-01

    The aim of this work was to test Lupinus luteus plants, inoculated with metal resistant rhizobacteria, in order to phytostabilise metals in contaminated soils. The resistance to heavy metals of strains isolated from nodules of Lupinus plants was evaluated. The strain MSMC541 showed multi-resistance to several metals (up to 13.3 mM As, 2.2 mM Cd, 2.3 mM Cu, 9 mM Pb and 30 mM Zn), and it was selected for further characterization. Furthermore, this strain was able to biosorb great amounts of metals in cell biomass. 16S rDNA sequencing positioned this strain within the genus Serratia. The presence of arsenic resistance genes was confirmed by southern blot and PCR amplification. A rhizoremediation pot experiment was conducted using Lupinus luteus grown on sand supplemented with heavy metals and inoculated with MSMC541. Plant growth parameters and metal accumulation were determined in inoculated vs. non-inoculated Lupinus luteus plants. The results showed that inoculation with MSMC541 improved the plant tolerance to metals. At the same time, metal translocation to the shoot was significantly reduced upon inoculation. These results suggest that Lupinus luteus plants, inoculated with the metal resistant strain Serratia sp. MSMC541, have a great potential for phytostabilization of metal contaminated soils.

  10. Problems of zirconium metal production in Czechoslovakia

    International Nuclear Information System (INIS)

    Vareka, J.; Vaclavik, E.

    1975-01-01

    The problems are summed up of the production and quality control of zirconium sponge. A survey is given of industrial applications of zirconium in form of pure metal or alloys in nuclear power production, ferrous and non-ferrous metallurgy, chemical engineering and electrical engineering. A survey is also presented of the manufacture of zirconium metal in advanced capitalist countries. (J.B.)

  11. heavy metal fixation in contaminated soil using non-toxic agents

    African Journals Online (AJOL)

    USER

    2013-05-08

    May 8, 2013 ... agricultural ecosystems (Chukwuka and Omotayo,. 2008), as well as remediation of former industrial sites which have been exposed to diffuse pollution by toxic heavy metals (Finžgar et al., 2006; Belviso et al., 2010). Among the remediation technologies available for contaminated sites, in situ (in place) ...

  12. Metal composite as backing for ultrasonic transducers dedicated to non-destructive measurements in hostile

    International Nuclear Information System (INIS)

    Boubenia, R; Rosenkrantz, E; P, P; Ferrandis, J-Y; Despetis, F

    2016-01-01

    Our team is specialized in ultrasonic measurements in hostile environment especially under high temperatures. There is a need for acoustic transducers capable of continuous measurement at temperatures up to 700°C. To improve the performances of acoustic sensors we focus our works on the realisation and characterisation of transducer backings able to operate under very high temperature. Commercially, they are produced by the incorporation of tungsten powder in a plastic matrix, which limits the working temperature. The realisation of ultrasonic transducers for non-destructive measures at high temperatures requires adequate materials, manufacturing and assembly processes. To produce the backings, composites were made using very ductile metals such as tin and tungsten. These composites are manufactured by uniaxial hot pressing. First, we studied the influence of temperature and pressure on the densification of tin pellets. Then, several specimens made of tin/W were made and characterised by measuring the specific weight, speed and attenuation of sound. The acoustic measures were realised by ultrasonic spectroscopy. This test-bench was designed and tested on control samples of PMMA and on standard backings (epoxy / tungsten). (paper)

  13. Pressure induced Ag{sub 2}Te polymorphs in conjunction with topological non trivial to metal transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, J.; Zhang, S. J., E-mail: sjzhang@iphy.ac.cn, E-mail: jin@iphy.ac.cn; Yu, X. H.; Yu, R. C.; Jin, C. Q., E-mail: sjzhang@iphy.ac.cn, E-mail: jin@iphy.ac.cn; Dai, X.; Fang, Z. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Oganov, A. R. [Department of Geosciences, University of New York at Stony Brook (United States); Feng, W. X.; Yao, Y. G. [Department of Physics, Beijing Institute of Technology, Beijing (China); Zhu, J. L. [High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154 (United States); Zhao, Y. S. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); South University of Science and Technology of China, Shenzhen, Guangdong (China)

    2016-08-15

    Silver telluride (Ag{sub 2}Te) is well known as superionic conductor and topological insulator with polymorphs. Pressure induced three phase transitions in Ag{sub 2}Te have been reported in previous. Here, we experimentally identified high pressure phase above 13 GPa of Ag{sub 2}Te by using high pressure synchrotron x ray diffraction method in combination with evolutionary crystal structure prediction, showing it crystallizes into a monoclinic structure of space group C2/m with lattice parameters a = 6.081Å, b = 5.744Å, c = 6.797 Å, β = 105.53°. The electronic properties measurements of Ag{sub 2}Te reveal that the topologically non-trivial semiconducting phase I and semimetallic phase II previously predicated by theory transformed into bulk metals for high pressure phases in consistent with the first principles calculations.

  14. Research on Lessening of Bonding Effects Between the Metallic and Non-Metallic Surfaces Through the Graphite Films Deposited with Pulsed Electrical Discharges Process

    Science.gov (United States)

    Marin, L.; Topala, P.

    2017-06-01

    The paper presents the results of experimental research on the physics of natural graphite film formation, the establishment of chemical composition and functional properties of the graphite films, formed on metal surfaces, as a result of the action of plasma in the air environment, at a normal pressure, under the electrical discharge in impulse conditions (EDI). The researchings were performed in the frame of doctoral thesis “Research on lessening of the bonding effects between the metallic and nonmetallic surfaces through the graphite films” and aimed to identify the phenomena that occur at the interface metal/ film of graphite, and to identify also the technological applications that it may have the surface treatment for submitting the films of graphite on metallic surfaces achieved through an innovative process of electrical pulsed discharges. After the research works from the PhD theme above mentioned, a number of interesting properties of graphite pellicle have been identified ie reducing of metal surface polarity. This led to drastic decreases for the values of adhesion when bonding of metal surfaces was performed using a structural polyurethane adhesive designed by ICECHIM. Following the thermo-gravimetric analysis, performed of the graphite film obtained by process of electrical pulsed discharges, have been also discovered other interesting properties for this, ie reversible mass additions at specific values of the working temperature Chemical and scanning electron microscopy analysis have revealed that on the metallic surface subjected to electrical pulsed discharges process, outside the graphite film, it is also obtained a series of spatial formation composed of carbon atoms fullerenes type which are responsible for the phenomenon of addition of mass.

  15. 76 FR 33879 - Endangered and Threatened Wildlife and Plants; Revised Endangered Status, Revised Critical...

    Science.gov (United States)

    2011-06-09

    ... (Osmia spp. or Chalicodoma spp.), and miner bees (Anthophora spp.) (Hurd 1979, pp. 1762, 1765, 2042, 2073... Community Conservation Planning Act; (5) land acquisition and management by Federal, State, or local... provide a planning tool for future improvements; provide for sustainable multipurpose use of the resources...

  16. Intermetallic nickel silicide nanocatalyst-A non-noble metal-based general hydrogenation catalyst.

    Science.gov (United States)

    Ryabchuk, Pavel; Agostini, Giovanni; Pohl, Marga-Martina; Lund, Henrik; Agapova, Anastasiya; Junge, Henrik; Junge, Kathrin; Beller, Matthias

    2018-06-01

    Hydrogenation reactions are essential processes in the chemical industry, giving access to a variety of valuable compounds including fine chemicals, agrochemicals, and pharmachemicals. On an industrial scale, hydrogenations are typically performed with precious metal catalysts or with base metal catalysts, such as Raney nickel, which requires special handling due to its pyrophoric nature. We report a stable and highly active intermetallic nickel silicide catalyst that can be used for hydrogenations of a wide range of unsaturated compounds. The catalyst is prepared via a straightforward procedure using SiO 2 as the silicon atom source. The process involves thermal reduction of Si-O bonds in the presence of Ni nanoparticles at temperatures below 1000°C. The presence of silicon as a secondary component in the nickel metal lattice plays the key role in its properties and is of crucial importance for improved catalytic activity. This novel catalyst allows for efficient reduction of nitroarenes, carbonyls, nitriles, N-containing heterocycles, and unsaturated carbon-carbon bonds. Moreover, the reported catalyst can be used for oxidation reactions in the presence of molecular oxygen and is capable of promoting acceptorless dehydrogenation of unsaturated N-containing heterocycles, opening avenues for H 2 storage in organic compounds. The generality of the nickel silicide catalyst is demonstrated in the hydrogenation of over a hundred of structurally diverse unsaturated compounds. The wide application scope and high catalytic activity of this novel catalyst make it a nice alternative to known general hydrogenation catalysts, such as Raney nickel and noble metal-based catalysts.

  17. Non-noble metal graphene oxide-copper (II) ions hybrid electrodes for electrocatalytic hydrogen evolution reaction

    KAUST Repository

    Muralikrishna, S.

    2015-08-25

    Non-noble metal and inexpensive graphene oxide-copper (II) ions (GO-Cu2+) hybrid catalysts have been explored for the hydrogen evolution reaction (HER). We were able to tune the binding abilities of GO toward the Cu2+ ions and hence their catalytic properties by altering the pH. We have utilized the oxygen functional moieties such as carboxylate, epoxide, and hydroxyl groups on the edge and basal planes of the GO for binding the Cu2+ ions through dative bonds. The GO-Cu2+ hybrid materials were characterized by cyclic voltammetry in sodium acetate buffer solution. The morphology of the hybrid GO-Cu2+ was characterized by atomic force microscopy. The GO-Cu2+ hybrid electrodes show good electrocatalytic activity for HER with low overpotential in acidic solution. The Tafel slope for the GO-Cu2+ hybrid electrode implies that the primary discharge step is the rate determining step and HER proceed with Volmer step. © 2015 American Institute of Chemical Engineers Environ Prog.

  18. Creep mechanisms and constitutive relations in pure metals

    International Nuclear Information System (INIS)

    Nix, W.D.

    1979-01-01

    The mechanisms of creep of pure metals is briefly reviewed and divided into two parts: steady state flow mechanisms, and non-steady state flow mechanisms and constitutive relations. Creep by diffusional flow is now reasonably well understood, with theory and experiment in good agreement. The closely related phenomenon of Harper--Dorn creep can also be understood in terms of diffusion between dislocations. Power law creep involves the climb of edge disloctions controlled by lattice self diffusion. Theoretical treatments of this process invariably give a power law exponent of 3. This natural creep law is compared with the data for FCC and BCC metals. It is suggested that diffusion controlled climb is the controlling process in BCC metals at very high temperatures. Stacking fault energy effects may preclude the possibility that creep is controlled entirely by lattice self diffusion in some FCC metals. The subject of power law breakdown is presented as a natural consequence of the transition to low temperature flow phenomena. The role of core diffusion in this transition is briefly discussed. The mechanisms are presented by which pure metals creep at elevated temperatures. While most of this review deals with the mechanisms of steady state flow, some discussion is devoted to creep flow under non-steady state conditions. This topic is discussed in connection with the development of constitutive equations for describing plastic flow in metals

  19. Subcellular metal partitioning in larvae of the insect Chaoborus collected along an environmental metal exposure gradient (Cd, Cu, Ni and Zn)

    Energy Technology Data Exchange (ETDEWEB)

    Rosabal, Maikel; Hare, Landis [Institut national de la Recherche scientifique, Centre Eau Terre Environnement (INRS-ETE), 490 de la Couronne, Quebec, Quebec, G1K 9A9 (Canada); Campbell, Peter G.C., E-mail: peter.campbell@ete.inrs.ca [Institut national de la Recherche scientifique, Centre Eau Terre Environnement (INRS-ETE), 490 de la Couronne, Quebec, Quebec, G1K 9A9 (Canada)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer Midge larvae were collected from 12 lakes representing Cd, Cu, Ni and Zn gradients. Black-Right-Pointing-Pointer Along the gradients, the heat-stable protein fractions increased for Cd, Ni and Cu. Black-Right-Pointing-Pointer However, this metal detoxification response was incomplete for Cd and Ni. Black-Right-Pointing-Pointer Concentrations of these two metals increased in putative metal-sensitive fractions. Black-Right-Pointing-Pointer Metal detoxification is Chaoborus is compared to that in other freshwater animals. - Abstract: Larvae of the phantom midge Chaoborus are common and widespread in lakes contaminated by metals derived from mining and smelting activities. To explore how this insect is able to cope with potentially toxic metals, we determined total metal concentrations and subcellular metal partitioning in final-instar Chaoborus punctipennis larvae collected from 12 lakes situated along gradients in aqueous Cd, Cu, Ni and Zn concentrations. Concentrations of the non-essential metals Cd and Ni were more responsive to aqueous metal gradients than were larval concentrations of the essential metals Cu and Zn; these latter metals were better regulated and exhibited only 2-3-fold increases between the least and the most contaminated lakes. Metal partitioning was determined by homogenization of larvae followed by differential centrifugation, NaOH digestion and heat denaturation steps so as to separate the metals into operationally defined metal-sensitive fractions (heat-denaturable proteins (HDP), mitochondria, and lysosomes/microsomes) and metal-detoxified fractions (heat stable proteins (HSP) and NaOH-resistant or granule-like fractions). Of these five fractions, the HSP fraction was the dominant metal-binding compartment for Cd, Ni and Cu. The proportions and concentrations of these three metals in this fraction increased along the metal bioaccumulation gradient, which suggests that metallothionein-like proteins

  20. Ohmic metallization technology for wide band-gap semiconductors

    International Nuclear Information System (INIS)

    Iliadis, A.A.; Vispute, R.D.; Venkatesan, T.; Jones, K.A.

    2002-01-01

    Ohmic contact metallizations on p-type 6H-SiC and n-type ZnO using a novel approach of focused ion beam (FIB) surface-modification and direct-write metal deposition will be reviewed, and the properties of such focused ion beam assisted non-annealed contacts will be reported. The process uses a Ga focused ion beam to modify the surface of the semiconductor with different doses, and then introduces an organometallic compound in the Ga ion beam, to effect the direct-write deposition of a metal on the modified surface. Contact resistance measurements by the transmission line method produced values in the low 10 -4 Ω cm 2 range for surface-modified and direct-write Pt and W non-annealed contacts, and mid 10 -5 Ω cm 2 range for surface-modified and pulse laser deposited TiN contacts. An optimum Ga surface-modification dosage window is determined, within which the current transport mechanism of these contacts was found to proceed mainly by tunneling through the metal-modified-semiconductor interface layer

  1. Metal release from contaminated coastal sediments under changing pH conditions: Implications for metal mobilization in acidified oceans.

    Science.gov (United States)

    Wang, Zaosheng; Wang, Yushao; Zhao, Peihong; Chen, Liuqin; Yan, Changzhou; Yan, Yijun; Chi, Qiaoqiao

    2015-12-30

    To investigate the impacts and processes of CO2-induced acidification on metal mobilization, laboratory-scale experiments were performed, simulating the scenarios where carbon dioxide was injected into sediment-seawater layers inside non-pressurized chambers. Coastal sediments were sampled from two sites with different contamination levels and subjected to pre-determined pH conditions. Sediment samples and overlying water were collected for metal analysis after 10-days. The results indicated that CO2-induced ocean acidification would provoke increased metal mobilization causing adverse side-effects on water quality. The mobility of metals from sediment to the overlying seawater was correlated with the reduction in pH. Results of sequential extractions of sediments illustrated that exchangeable metal forms were the dominant source of mobile metals. Collectively, our data revealed that high metal concentrations in overlying seawater released from contaminated sediments under acidic conditions may strengthen the existing contamination gradients in Maluan Bay and represent a potential risk to ecosystem health in coastal environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Role of perfluoropolyether-based electrolytes in lithium metal batteries: Implication for suppressed Al current collector corrosion and the stability of Li metal/electrolytes interfaces

    Science.gov (United States)

    Cong, Lina; Liu, Jia; Armand, Michel; Mauger, Alain; Julien, Christian M.; Xie, Haiming; Sun, Liqun

    2018-03-01

    The development of safe and high performance lithium metal batteries represents a major technological challenge for this new century. Historically, intrinsic instabilities of conventional liquid organic electrolytes induced battery failures and safety issues that hinder the practical utilization of advanced rechargeable lithium metal batteries. Herein, we report a multifunctional perfluoropolyether-based liquid polymer electrolyte (PFPE-MC/LiTFSI), presenting a unique "anion-solvent" interaction. This interaction optimizes the interfacial chemistry of lithium metal batteries, which effectively inhibits the corrosion of aluminum current collectors, suppresses lithium dendrite growth, and also facilitates the formation of a thin and stable SEI layer on Li anode. Even at a high current density of 0.7 mA cm-2, the lithium dendrites do not form after 1360 h of continuous operation. The LiFePO4|PFPE-MC/LiTFSI|Li cell delivers a stable cycling performance with over 99.9% columbic efficiency either at ambient temperature or high temperature, which is significantly superior to those using traditional carbonate electrolytes. In addition, PFPE-MC/LiTFSI electrolyte also possesses eye-catching properties, such as being non-flammable, non-volatile, non-hygroscopic, and existing in the liquid state between -90 °C and 200 °C, which further ensures the high safety of the lithium metal batteries, making this electrolyte promising for the development of high energy lithium metal batteries.

  3. Biosolids and heavy metals in soils

    Directory of Open Access Journals (Sweden)

    Silveira Maria Lucia Azevedo

    2003-01-01

    Full Text Available The application of sewage sludge or biosolids on soils has been widespread in agricultural areas. However, depending on their characteristics, they may cause increase in heavy metal concentration of treated soils. In general, domestic biosolids have lower heavy metal contents than industrial ones. Origin and treatment method of biosolids may markedly influence their characteristics. The legislation that controls the levels of heavy metal contents in biosolids and the maximum concentrations in soils is still controversial. In the long-term, heavy metal behavior after the and of biosolid application is still unknown. In soils, heavy metals may be adsorbed via specific or non-specific adsorption reactions. Iron oxides and organic matter are the most important soil constituents retaining heavy metals. The pH, CEC and the presence of competing ions also affect heavy metal adsorption and speciation in soils. In solution, heavy metals can be present either as free-ions or complexed with organic and inorganic ligands. Generally, free-ions are more relevant in environmental pollution studies since they are readily bioavailable. Some computer models can estimate heavy metal activity in solution and their ionic speciation. Thermodynamic data (thermodynamic stability constant, total metal and ligand concentrations are used by the GEOCHEM-PC program. This program allows studying heavy metal behavior in solution and the effect of changes in the conditions, such as pH and ionic strength and the application of organic and inorganic ligands caused by soil fertilization.

  4. Measuring the noble metal and iodine composition of extracted noble metal phase from spent nuclear fuel using instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Palomares, R.I.; Dayman, K.J.; Landsberger, S.; Biegalski, S.R.; Soderquist, C.Z.; Casella, A.J.; Brady Raap, M.C.; Schwantes, J.M.

    2015-01-01

    Masses of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis. Nuclide presence is predicted using fission yield analysis, and radionuclides are identified and the masses quantified using neutron activation analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO 2 fuel dissolved in nitric acid and UO 2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. - Highlights: • The noble metal phase was chemically extracted from spent nuclear fuel and analyzed non-destructively. • Noble metal phase nuclides and long-lived iodine were identified and quantified using neutron activation analysis. • Activation to shorter-lived radionuclides allowed rapid analysis of long-lived fission products in spent fuel using gamma spectrometry

  5. Differential sensitivity of pigmented and non-pigmented marine bacteria to metals and antibiotics

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.; Chandramohan, D.; LokaBharathi, P.A.

    . Appl. em'ir. Microbiol. 33, 975-976. Nelson J. D. Jr and Colwell R. R. (1975) The ecology of mercury resistant bacteria in Chesapeake bay. Microbioi. Ecol. 1, 191-218. Oison B. H. and Thornton I. (1982) The resistance patterns to metals... to metals em- ploying epifluorescent microscopy. J. microbiol. Met& 7, 143-155. Zemelman R., Silva J. and Herriques, M. (1980) Antibiotic resistant bacteria in seawater from Concepcion Bay. Archs Biol. Exp. 13, 121. ...

  6. Method and electrochemical cell for synthesis and treatment of metal monolayer electrocatalysts metal, carbon, and oxide nanoparticles ion batch, or in continuous fashion

    Science.gov (United States)

    Adzic, Radoslav; Zhang, Junliang; Sasaki, Kotaro

    2015-04-28

    An apparatus and method for synthesis and treatment of electrocatalyst particles in batch or continuous fashion is provided. In one embodiment, the apparatus comprises a sonication bath and a two-compartment chamber submerged in the sonication bath. The upper and lower compartments are separated by a microporous material surface. The upper compartment comprises a cover and a working electrode (WE) connected to a Pt foil contact, with the foil contact connected to the microporous material. The upper chamber further comprises reference counter electrodes. The lower compartment comprises an electrochemical cell containing a solution of metal ions. In one embodiment, the method for synthesis of electrocatalysts comprises introducing a plurality of particles into the apparatus and applying sonication and an electrical potential to the microporous material connected to the WE. After the non-noble metal ions are deposited onto the particles, the non-noble metal ions are displaced by noble-metal ions by galvanic displacement.

  7. Development of metallic fuel fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Ho; Lee, Chong Yak; Lee, Myung Ho and others

    1999-03-01

    With the vacuum melting and casting of the U-10wt%Zr alloy which is metallic fuel for liquid metal fast breeder reactor, we studied the microstructure of the alloy and the parameters of the melting and casting for the fuel rods. Internal defects of the U-10wt%Zr fuel by gravity casting, were inspected by non-destructive test. U-10wt%Zr alloy has been prepared for the thermal stability test in order to estimate the decomposition of the lamellar structure with relation to swelling under irradiation condition. (author)

  8. sequential analysis of metals in municipal dumpsite composts

    African Journals Online (AJOL)

    DR. AMINU

    2013-06-01

    Jun 1, 2013 ... Metal in soils can be divided into two fractions. (Rachou and Sauve, 2008): (1) Inert fraction, assumed as the non-toxic fraction, and (ii) the labile fraction, assumed to be potentially toxic. To assess the availability of heavy metals, only the soil labile fraction is taken into account because it is often called.

  9. Reduction of metal exposure of Daubenton's bats (Myotis daubentonii) following remediation of pond sediment as evidenced by metal concentrations in hair

    Energy Technology Data Exchange (ETDEWEB)

    Flache, Lucie, E-mail: Lucie.Flache@bio.uni-giessen.de [Mammalian Ecology Group, Department of Animal Ecology and Systematics, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen (Germany); Ekschmitt, Klemens [Animal Ecology, Department of Animal Ecology and Systematics, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen (Germany); Kierdorf, Uwe [Department of Biology, University of Hildesheim, Universitätsplatz 1, D-31141 Hildesheim (Germany); Czarnecki, Sezin; Düring, Rolf-Alexander [Institute of Soil Science and Soil Conservation, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen (Germany); Encarnação, Jorge A. [Mammalian Ecology Group, Department of Animal Ecology and Systematics, Justus Liebig University of Giessen, Heinrich-Buff-Ring 26, D-35392 Giessen (Germany)

    2016-03-15

    Transfer of contaminants from freshwater sediments via aquatic insects to terrestrial predators is well documented in spiders and birds. Here, we analyzed the metal exposure of Myotis daubentonii using an urban pond as their preferred foraging area before and after a remediation measure (sediment dredging) at this pond. Six metal elements (Zn, Cu, Cr, Cd, Pb and Ni) were measured in the sediment of the pond, in EDTA extracts of the sediment and in hair samples of M. daubentonii foraging at the pond. Samples were taken before remediation in 2011 and after remediation in 2013. Metal concentrations were quantified by ICP-OES after miniaturized microwave assisted extraction. In 2011, the pond sediment exhibited a high contamination with nickel, a moderate contamination with copper and chromium and low contents of zinc, cadmium and lead. While sediment metal contents declined only weakly after remediation, a much more pronounced reduction in the concentrations of zinc, copper, chromium and lead concentrations was observed in bat hair. Our results suggest a marked decline in metal exposure of the bats foraging at the pond as a consequence of the remediation measure. It is concluded that Daubenton's bats are suitable bioindicators of metal contamination in aquatic environments, integrating metal exposure via prey insects over their entire foraging area. We further suggest that bat hair is a useful monitoring unit, allowing a non-destructive and non-invasive assessment of metal exposure in bats. - Highlights: • Changes in metal exposure of bats due to remediation measure are documented. • Bats are suitable bioindicators of metal pollution. • Bat hair is a useful monitoring unit in such studies.

  10. ELECTROCHEMICAL STUDIES OF URANIUM METAL CORROSION MECHANISM AND KINETICS IN WATER

    International Nuclear Information System (INIS)

    Boudanova, Natalya; Maslennikov, Alexander; Peretroukhine, Vladimir F.; Delegard, Calvin H.

    2006-01-01

    During long-term underwater storage of low burn-up uranium metal fuel, a corrosion product sludge forms containing uranium metal grains, uranium dioxide, uranates and, in some cases, uranium peroxide. Literature data on the corrosion of non-irradiated uranium metal and its alloys do not allow unequivocal prediction of the paragenesis of irradiated uranium in water. The goal of the present work conducted under the program 'CORROSION OF IRRADIATED URANIUM ALLOYS FUEL IN WATER' is to study the corrosion of uranium and uranium alloys and the paragenesis of the corrosion products during long-term underwater storage of uranium alloy fuel irradiated at the Hanford Site. The elucidation of the physico-chemical nature of the corrosion of irradiated uranium alloys in comparison with non-irradiated uranium metal and its alloys is one of the most important aspects of this work. Electrochemical methods are being used to study uranium metal corrosion mechanism and kinetics. The present part of work aims to examine and revise, where appropriate, the understanding of uranium metal corrosion mechanism and kinetics in water

  11. Pollinators and pesticides

    Science.gov (United States)

    As part of the Bee-Fungicide Workshop at NACREW, there will be updates on the latest evidence characterizing how fungicides may cause colony declines in native bee species. Findings will cover recent work with Bombus impatiens and Osmia lignaria. Discussions will be focusing on how the US cranberry ...

  12. Tritium immobilization and packaging using metal hydrides

    International Nuclear Information System (INIS)

    Holtslander, W.J.; Yaraskavitch, J.M.

    1981-04-01

    Tritium recovered from CANDU heavy water reactors will have to be packaged and stored in a safe manner. Tritium will be recovered in the elemental form, T 2 . Metal tritides are effective compounds in which to immobilize the tritium as a stable non-reactive solid with a high tritium capacity. The technology necessary to prepare hydrides of suitable metals, such as titanium and zirconium, have been developed and the properties of the prepared materials evaluated. Conceptual designs of packages for containing metal tritides suitable for transportation and long-term storage have been made and initial testing started. (author)

  13. A Longitudinal Study of Association between Heavy Metals and Itchy Eyes, Coughing in Chronic Cough Patients: Related with Non-Immunoglobulin E Mediated Mechanism

    Directory of Open Access Journals (Sweden)

    Thao Thi Thu Nguyen

    2016-01-01

    Full Text Available The association between heavy metals exposure and respiratory diseases or allergic sensitization showing high serum immunoglobulin E (IgE has been suggested. However, previous findings have been inconsistent and the mechanisms responsible remain unclear. We evaluated heavy metal exposure and its association with coughing, itchy eyes in chronic cough patients with different IgE levels. Ninety outpatients in Kanazawa University Hospital were recruited between January–June 2011. Subjects whose total IgE measured by radioimmunosorbent test were asked to record their daily symptoms. We collected daily total suspended particles (TSP from which concentrations of calcium (Ca, cadmium (Cd, chromium (Cr, iron (Fe, manganese (Mn, nickel (Ni, and lead (Pb were determined then divided into high and low level groups. Generalized estimating equations were applied to compute the relationship between concentrations of these metals and symptoms. All metals at high levels were significantly associated with itchy eyes compared with low levels, with exception of Ca, the six others were significant in patients with IgE < 250 IU/mL. Cd, Fe, Mn had association with coughing (odds ratio-OR (95% confidence interval-CI: 1.13 (1.03, 1.24, 1.22 (1.05, 1.42, and 1.13 (1.01, 1.27, respectively, this relationship remained significant for Cd (OR (95% CI: 1.14 (1.03, 1.27 and Mn (OR (95% CI: 1.15 (1.00, 1.31 in patients with lower IgE. Our findings demonstrate the relationship between aerial heavy metals and itchy eyes, coughing in chronic cough patients, suggesting these symptoms may be due to a non-IgE mediated mechanism.

  14. Non-invasive identification of metal-oxalate complexes on polychrome artwork surfaces by reflection mid-infrared spectroscopy.

    Science.gov (United States)

    Monico, Letizia; Rosi, Francesca; Miliani, Costanza; Daveri, Alessia; Brunetti, Brunetto G

    2013-12-01

    In this work a reflection mid-infrared spectroscopy study of twelve metal-oxalate complexes, of interest in art conservation science as alteration compounds, was performed. Spectra of the reference materials highlighted the presence of derivative-like and/or inverted features for the fundamental vibrational modes as result of the main contribution from the surface component of the reflected light. In order to provide insights in the interpretation of theses spectral distortions, reflection spectra were compared with conventional transmission ones. The Kramers-Kronig (KK) algorithm, employed to correct for the surface reflection distortions, worked properly only for the derivative-like bands. Therefore, to pay attention to the use of this algorithm when interpreting the reflection spectra is recommended. The outcome of this investigation was exploited to discriminate among different oxalates on thirteen polychrome artworks analyzed in situ by reflection mid-infrared spectroscopy. The visualization of the νs(CO) modes (1400-1200 cm(-1)) and low wavenumber bands (below 900 cm(-1)) in the raw reflection profiles allowed Ca, Cu and Zn oxalates to be identified. Further information about the speciation of different hydration forms of calcium oxalates were obtained by using the KK transform. The work proves reflection mid-infrared spectroscopy to be a reliable and sensitive spectro-analytical method for identifying and mapping different metal-oxalate alteration compounds on the surface of artworks, thus providing conservation scientists with a non-invasive tool to obtain information on the state of conservation and causes of alteration of artworks. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Non-conductive nanomaterial enhanced electrochemical response in stripping voltammetry: The use of nanostructured magnesium silicate hollow spheres for heavy metal ions detection.

    Science.gov (United States)

    Xu, Ren-Xia; Yu, Xin-Yao; Gao, Chao; Jiang, Yu-Jing; Han, Dong-Dong; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-08-06

    Nanostructured magnesium silicate hollow spheres, one kind of non-conductive nanomaterials, were used in heavy metal ions (HMIs) detection with enhanced performance for the first time. The detailed study of the enhancing electrochemical response in stripping voltammetry for simultaneous detection of ultratrace Cd(2+), Pb(2+), Cu(2+) and Hg(2+) was described. Electrochemical properties of modified electrodes were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The operational parameters which have influence on the deposition and stripping of metal ions, such as supporting electrolytes, pH value, and deposition time were carefully studied. The anodic stripping voltammetric performance toward HMIs was evaluated using square wave anodic stripping voltammetry (SWASV) analysis. The detection limits achieved (0.186nM, 0.247nM, 0.169nM and 0.375nM for Cd(2+), Pb(2+), Cu(2+) and Hg(2+)) are much lower than the guideline values in drinking water given by the World Health Organization (WHO). In addition, the interference and stability of the modified electrode were also investigated under the optimized conditions. An interesting phenomenon of mutual interference between different metal ions was observed. Most importantly, the sensitivity of Pb(2+) increased in the presence of certain concentrations of other metal ions, such as Cd(2+), Cu(2+) and Hg(2+) both individually and simultaneously. The proposed electrochemical sensing method is thus expected to open new opportunities to broaden the use of SWASV in analysis for detecting HMIs in the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Electrochemical method for synthesizing metal-containing particles and other objects

    Science.gov (United States)

    Rondinone, Adam Justin; Ivanov, Ilia N.; Smith, Sean Campbell; Liang, Chengdu; Hensley, Dale K.; Moon, Ji-Won; Phelps, Tommy Joe

    2017-05-02

    The invention is directed to a method for producing metal-containing (e.g., non-oxide, oxide, or elemental) nano-objects, which may be nanoparticles or nanowires, the method comprising contacting an aqueous solution comprising a metal salt and water with an electrically powered electrode to form said metal-containing nano-objects dislodged from the electrode, wherein said electrode possesses a nanotextured surface that functions to confine the particle growth process to form said metal-containing nano-objects. The invention is also directed to the resulting metal-containing compositions as well as devices in which they are incorporated.

  17. Joining of parts via magnetic heating of metal aluminum powders

    Science.gov (United States)

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  18. Relationship between metallothioneins and metals in a natural population of the clam Ruditapes decussatus from Sfax coast: a non-linear model using Box-Cox transformation.

    Science.gov (United States)

    Hamza-Chaffai, A; Amiard, J C; Cosson, R P

    1999-06-01

    Cadmium, copper and zinc were determined concomitantly with metallothionein-like proteins (MTLPs) in the subcellular fractions of Ruditapes decussatus digestive gland. This study covered 4 months and aimed to evaluate the effect of metal pollution and other factors such as sex, size and reproductive state on MTLP levels. Copper concentrations did not vary with month, however Cd and Zn concentrations showed high levels during August. Organisms showing low cadmium concentrations presented the highest cadmium percentages in the soluble fraction (SF) containing MTLPs. However for high cadmium concentrations, the insoluble fraction (IF) was implicated in cadmium association. MTLP levels varied according to the month, the sex and the size of the organisms. A non-linear model based on the Box-Cox transformation, was proposed to describe a positive and a significant relationship between MTLPs and the studied metals. A model including sex and size showed that these two factors affected MTLP levels, but were less important than metals. Males of R. decussatus showed higher significant correlations between MTLP levels and cadmium than females. Moreover, the effect of size and reproductive state on MTLP levels was less perceptible in males than in females. As a result, MTLPs in males of R. decussatus could be proposed as suitable biomarker for detecting metal contamination.

  19. Screen-printed electrodes for environmental monitoring of heavy metal ions: a review

    International Nuclear Information System (INIS)

    Barton, John; González García, María Begoña; Hernández Santos, David; Fanjul-Bolado, Pablo; Ribotti, Alberto; Magni, Paolo; McCaul, Margaret; Diamond, Dermot

    2016-01-01

    Heavy metals such as lead, mercury, cadmium, zinc and copper are among the most important pollutants because of their non-biodegradability and toxicity above certain thresholds. Here, we review methods for sensing heavy metal ions (HMI) in water samples using screen-printed electrodes (SPEs) as transducers. The review (with 107 refs.) starts with an introduction into the topic, and this is followed by sections on (a) mercury-coated SPEs, (b) bismuth-coated SPEs, (c) gold-coated SPEs (d) chemically modified and non-modified carbon SPEs, (e) enzyme inhibition-based SPEs, and (f) an overview of commercially available electrochemical portable heavy metal analyzers. The review reveals the significance of SPEs in terms of decentralized and of in situ analysis of heavy metal ions in environmental monitoring. (author)

  20. Strange metals and quantum phase transitions from gauge/gravity duality

    Science.gov (United States)

    Liu, Hong

    2011-03-01

    Metallic materials whose thermodynamic and transport properties differ significantly from those predicted by Fermi liquid theory, so-called non-Fermi liquids, include the strange metal phase of cuprate superconductors, and heavy fermion systems near a quantum phase transition. We use gauge/gravity duality to identify a class of non-Fermi liquids. Their low-energy behavior is governed by a nontrivial infrared fixed point which exhibits non-analytic scaling behavior only in the temporal direction. Some representatives of this class have single-particle spectral functions and transport behavior similar to those of the strange metals, with conductivity inversely proportional to the temperature. Such holographic systems may also exhibit novel ``magnetic instabilities'', where the quantum critical behavior near the transition involves a nontrivial interplay between local and bulk physics, with the local physics again described by a similar infrared fixed point. The resulting quantum phase transitions do not obey the standard Landau-Ginsburg-Wilson paradigm and resemble those of the heavy fermion quantum critical points.

  1. 75 FR 52614 - Special Conditions: Embraer Model ERJ 170-100 SU Series Airplanes; Seats With Non-Traditional...

    Science.gov (United States)

    2010-08-27

    ... being mostly fabric and metal, the contribution to a fire in the cabin had been minimized and was not..., non-metallic panels that would affect survivability during a post-crash fire event. The applicable..., seats were designed with a metal frame covered by fabric, not with large, non-metallic panels. Seats...

  2. Non-isothermal crystallization kinetics and fragility of (Cu46Zr47Al7)97Ti3 bulk metallic glass investigated by differential scanning calorimetry

    International Nuclear Information System (INIS)

    Zhu, Man; Li, Junjie; Yao, Lijuan; Jian, Zengyun; Chang, Fang’e; Yang, Gencang

    2013-01-01

    Highlights: • Non-isothermal crystallization kinetics of (Cu 46 Zr 47 Al 7 ) 97 Ti 3 BMGs was studied. • Two-stage of crystallization process is confirmed by DSC. • The nucleation process is difficult than growth process during crystallization. • The second crystallization process is the most sensitive to heating rate. • Kinetic fragility index is evaluated suggesting it is an intermediate glass. - Abstract: In this paper, bulk metallic glasses with the composition of (Cu 46 Zr 47 Al 7 ) 97 Ti 3 were prepared by copper mold casting technique. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were used to investigate its structure and non-isothermal crystallization kinetics. DSC traces revealed that it undergoes two-stage crystallization. The activation energies corresponding to the characteristic temperatures have been calculated, and the results reveal that the as-cast alloys have a good thermal stability in thermodynamics. Based on Kissinger equation, the activation energies for glass transition, the first and second crystallization processes were obtained as 485 ± 16 kJ/mol, 331 ± 7 kJ/mol and 210 ± 3 kJ/mol, respectively, suggesting that the nucleation process is more difficult than the grain growth process. The fitting curves using Lasocka's empirical relation show that the influence of the heating rate for crystallization is larger than glass transition. Furthermore, the kinetic fragility for (Cu 46 Zr 47 Al 7 ) 97 Ti 3 bulk metallic glasses is evaluated. Depending on the fragility index, (Cu 46 Zr 47 Al 7 ) 97 Ti 3 bulk metallic glasses should be considered as “intermediate glasses”

  3. Review of challenges in the escalation of metal- biosorbing ...

    African Journals Online (AJOL)

    SAM

    2014-04-23

    Apr 23, 2014 ... The passive adsorption of metal species by various functional groups on microbial cell wall includes non-metabolic mecha- nisms such as ion exchange, ...... kle filters and sociated with t they depen ter body thro lower power uiring pumps. 1998; Voles veral paramet ed-bed contin stem arrange avy metals.

  4. On flotation separation of oxo-anions of transition metals by the use of fine-emulsified solutions of cationic collector in non-polar liquids

    International Nuclear Information System (INIS)

    Skrylev, L.D.; Purich, A.N.; Babinets, S.K.

    1980-01-01

    Experimentally shown is a principle possibility of flotation separation of oxo-anions of transition metals by the use of fine-emulsified solutions of cationic collector in non-polar liquids. Ammonium vanadate and sodium tuno.state solutions have been the objects of study. Hexadezilamine has been used as collector. The collector has been introduced in the form of hexadecylamine emulsions in n-decane, in tetrachloromethane or alcohol. Optimum pH value ranges are determined for separation processes

  5. Critical impact energy for the perforation of metallic plates

    International Nuclear Information System (INIS)

    Aly, S.Y.; Li, Q.M.

    2008-01-01

    This paper investigates the empirical formulae used in engineering practice to predict the critical perforation energy of metallic plates struck by rigid projectiles in the sub-ordnance regime. Main factors affecting the critical perforation energy are identified and valid conditions for each empirical formula are compared. Dimensional analysis is conducted to show the dependence of the non-dimensional critical impact energy on other influential non-dimensional numbers. Available empirical formulae are re-expressed in non-dimensional forms. A modified Jowett/AEA equation is proposed to predict the critical perforation energy of a flat-ended short projectile. The present work increases the confidence of using these empirical formulae and can be regarded as a quick guide for ballistic protection design of metallic shields and steel armour plates

  6. Synthesis, characterization and biological profile of metal and azo-metal complexes of embelin

    Directory of Open Access Journals (Sweden)

    R. Aravindhan

    2014-12-01

    Full Text Available The present study emphasizes synthesis and bioprofiling of embelin, embelin-metal (EM and embelin-azo-metal (EAM complexes in detail. EM complexes were prepared using pure embelin and d-block transition elements, namely Mn, Fe, Co, Ni, Cu, and Zn. Similarly, EAM complexes were synthesized using phenyl azo-embelin with the said transition metals. Embelin, EM, and EAM complexes were subjected to ultra violet visible spectroscopy, Fourier transform infrared spectroscopy, nuclear magnetic resonance, electrospray ionization mass spectrometry, thermogravimetric analysis, carbon hydrogen nitrogen sulfur analysis. With regard to bioprofiling, the test complexes were studied for the antioxidant and antimicrobial activities. Results revealed that the prepared EM and EAM complexes form octahedral complexes with embelin with the yield in the range of 45–75%. All the instrumental analyses authenticate the interaction of metals with bidentate embelin through its enolic and quinonic oxygen atoms as [M(Emb2(H2O2]H2O and [M(Emb-Azo2(H2O2]. The antioxidant profile studies suggested that upon complexation with metals, the free radical scavenging activity of embelin reduced significantly. But, with regard to antimicrobial activity, cobalt and nickel embelin complexes displayed>80% growth inhibition in comparison with embelin alone. The hemolytic activity studies suggested that both embelin and the metal complexes are non-hemolytic. The reason for the reduction in antioxidant and an increase in antimicrobial activities were discussed in detail.

  7. A series of Xerophilic Chrysosporium species

    DEFF Research Database (Denmark)

    Skou, Jens-Peder

    1992-01-01

    Xerophilic Chrysosporium species related to C. farinicola were often isolated from uneaten provisions (pollen-and-nectar mixture) of mason bees (Osmia spp.). The fungi have an optimal growth rate on media which are 2 to 3 molar in regard to glucose, exhibit some growth up to 3.6 molar glucose...

  8. Synthesis of non-siliceous mesoporous oxides.

    Science.gov (United States)

    Gu, Dong; Schüth, Ferdi

    2014-01-07

    Mesoporous non-siliceous oxides have attracted great interest due to their unique properties and potential applications. Since the discovery of mesoporous silicates in 1990s, organic-inorganic assembly processes by using surfactants or block copolymers as soft templates have been considered as a feasible path for creating mesopores in metal oxides. However, the harsh sol-gel conditions and low thermal stabilities have limited the expansion of this method to various metal oxide species. Nanocasting, using ordered mesoporous silica or carbon as a hard template, has provided possibilities for preparing novel mesoporous materials with new structures, compositions and high thermal stabilities. This review concerns the synthesis, composition, and parameter control of mesoporous non-siliceous oxides. Four synthesis routes, i.e. soft-templating (surfactants or block copolymers as templates), hard-templating (mesoporous silicas or carbons as sacrificial templates), colloidal crystal templating (3-D ordered colloidal particles as a template), and super lattice routes, are summarized in this review. Mesoporous metal oxides with different compositions have different properties. Non-siliceous mesoporous oxides are comprehensively described, including a discussion of constituting elements, synthesis, and structures. General aspects concerning pore size control, atomic scale crystallinity, and phase control are also reviewed.

  9. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC

    International Nuclear Information System (INIS)

    Fritz, Jan; Thawait, Gaurav K.; Fritz, Benjamin; Raithel, Esther; Nittka, Mathias; Gilson, Wesley D.; Mont, Michael A.

    2016-01-01

    Compressed sensing (CS) acceleration has been theorized for slice encoding for metal artifact correction (SEMAC), but has not been shown to be feasible. Therefore, we tested the hypothesis that CS-SEMAC is feasible for MRI of metal-on-metal hip resurfacing implants. Following prospective institutional review board approval, 22 subjects with metal-on-metal hip resurfacing implants underwent 1.5 T MRI. We compared CS-SEMAC prototype, high-bandwidth TSE, and SEMAC sequences with acquisition times of 4-5, 4-5 and 10-12 min, respectively. Outcome measures included bone-implant interfaces, image quality, periprosthetic structures, artifact size, and signal- and contrast-to-noise ratios (SNR and CNR). Using Friedman, repeated measures analysis of variances, and Cohen's weighted kappa tests, Bonferroni-corrected p-values of 0.005 and less were considered statistically significant. There was no statistical difference of outcomes measures of SEMAC and CS-SEMAC images. Visibility of implant-bone interfaces and pseudocapsule as well as fat suppression and metal reduction were ''adequate'' to ''good'' on CS-SEMAC and ''non-diagnostic'' to ''adequate'' on high-BW TSE (p < 0.001, respectively). SEMAC and CS-SEMAC showed mild blur and ripple artifacts. The metal artifact size was 63 % larger for high-BW TSE as compared to SEMAC and CS-SEMAC (p < 0.0001, respectively). CNRs were sufficiently high and statistically similar, with the exception of CNR of fluid and muscle and CNR of fluid and tendon, which were higher on intermediate-weighted high-BW TSE (p < 0.005, respectively). Compressed sensing acceleration enables the time-neutral use of SEMAC for MRI of metal-on-metal hip resurfacing implants when compared to high-BW TSE and image quality similar to conventional SEMAC. (orig.)

  10. Advanced metal artifact reduction MRI of metal-on-metal hip resurfacing arthroplasty implants: compressed sensing acceleration enables the time-neutral use of SEMAC

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, Jan; Thawait, Gaurav K. [Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Section of Musculoskeletal Radiology, Baltimore, MD (United States); Fritz, Benjamin [University of Freiburg, Department of Radiology, Freiburg im Breisgau (Germany); Raithel, Esther; Nittka, Mathias [Siemens Healthcare GmbH, Erlangen (Germany); Gilson, Wesley D. [Siemens Healthcare USA, Inc., Baltimore, MD (United States); Mont, Michael A. [Cleveland Clinic Foundation, Department of Orthopedic Surgery, Cleveland, OH (United States)

    2016-10-15

    Compressed sensing (CS) acceleration has been theorized for slice encoding for metal artifact correction (SEMAC), but has not been shown to be feasible. Therefore, we tested the hypothesis that CS-SEMAC is feasible for MRI of metal-on-metal hip resurfacing implants. Following prospective institutional review board approval, 22 subjects with metal-on-metal hip resurfacing implants underwent 1.5 T MRI. We compared CS-SEMAC prototype, high-bandwidth TSE, and SEMAC sequences with acquisition times of 4-5, 4-5 and 10-12 min, respectively. Outcome measures included bone-implant interfaces, image quality, periprosthetic structures, artifact size, and signal- and contrast-to-noise ratios (SNR and CNR). Using Friedman, repeated measures analysis of variances, and Cohen's weighted kappa tests, Bonferroni-corrected p-values of 0.005 and less were considered statistically significant. There was no statistical difference of outcomes measures of SEMAC and CS-SEMAC images. Visibility of implant-bone interfaces and pseudocapsule as well as fat suppression and metal reduction were ''adequate'' to ''good'' on CS-SEMAC and ''non-diagnostic'' to ''adequate'' on high-BW TSE (p < 0.001, respectively). SEMAC and CS-SEMAC showed mild blur and ripple artifacts. The metal artifact size was 63 % larger for high-BW TSE as compared to SEMAC and CS-SEMAC (p < 0.0001, respectively). CNRs were sufficiently high and statistically similar, with the exception of CNR of fluid and muscle and CNR of fluid and tendon, which were higher on intermediate-weighted high-BW TSE (p < 0.005, respectively). Compressed sensing acceleration enables the time-neutral use of SEMAC for MRI of metal-on-metal hip resurfacing implants when compared to high-BW TSE and image quality similar to conventional SEMAC. (orig.)

  11. A microscopic approach to Casimir and Casimir–Polder forces between metallic bodies

    International Nuclear Information System (INIS)

    Barcellona, Pablo; Passante, Roberto

    2015-01-01

    We consider the Casimir–Polder interaction energy between a metallic nanoparticle and a metallic plate, as well as the Casimir interaction energy between two macroscopic metal plates, in terms of the many-body dispersion interactions between their constituents. Expressions for two- and three-body dispersion interactions between the microscopic parts of a real metal are first obtained, both in the retarded and non-retarded limits. These expressions are then used to evaluate the overall two- and three-body contributions to the macroscopic Casimir–Polder and Casimir force, and to compare them with each other, for the two following geometries: metal nanoparticle/half-space and half-space/half-space, where all the materials are assumed perfect conductors. The above evaluation is obtained by summing up the contributions from the microscopic constituents of the bodies (metal nanoparticles). In the case of nanoparticle/half-space, our results fully agree with those that can be extracted from the corresponding macroscopic results, and explicitly show the non-applicability of the pairwise approximation for the geometry considered. In both cases, we find that, while the overall two-body contribution yields an attractive force, the overall three-body contribution is repulsive. Also, they turn out to be of the same order, consistently with the known non applicability of the pairwise approximation. The issue of the rapidity of convergence of the many-body expansion is also briefly discussed

  12. Strength and deformability of concrete beams reinforced by non-metallic fiber and composite rebar

    Science.gov (United States)

    Kudyakov, K. L.; Plevkov, V. S.; Nevskii, A. V.

    2015-01-01

    Production of durable and high-strength concrete structures with unique properties has always been crucial. Therefore special attention has been paid to non-metallic composite and fiber reinforcement. This article describes the experimental research of strength and deformability of concrete beams with dispersed and core fiber-based reinforcement. As composite reinforcement fiberglass reinforced plastic rods with diameters 6 mm and 10 mm are used. Carbon and basalt fibers are used as dispersed reinforcement. The developed experimental program includes designing and production of flexural structures with different parameters of dispersed fiber and composite rebar reinforcement. The preliminary testing of mechanical properties of these materials has shown their effectiveness. Structures underwent bending testing on a special bench by applying flexural static load up to complete destruction. During the tests vertical displacements were recorded, as well as value of actual load, slippage of rebars in concrete, crack formation. As a result of research were obtained structural failure and crack formation graphs, value of fracture load and maximum displacements of the beams at midspan. Analysis of experimental data showed the effectiveness of using dispersed reinforcement of concrete and the need for prestressing of fiberglass composite rebar.

  13. Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature

    KAUST Repository

    Alabastri, A.; Tuccio, S.; Giugni, A.; Toma, A.; Liberale, Carlo; Das, G.; Angelis, F.D.; Fabrizio, E.D.; Zaccaria, R.P.

    2013-01-01

    In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  14. Molding of plasmonic resonances in metallic nanostructures: Dependence of the non-linear electric permittivity on system size and temperature

    KAUST Repository

    Alabastri, A.

    2013-10-25

    In this paper, we review the principal theoretical models through which the dielectric function of metals can be described. Starting from the Drude assumptions for intraband transitions, we show how this model can be improved by including interband absorption and temperature effect in the damping coefficients. Electronic scattering processes are described and included in the dielectric function, showing their role in determining plasmon lifetime at resonance. Relationships among permittivity, electric conductivity and refractive index are examined. Finally, a temperature dependent permittivity model is presented and is employed to predict temperature and non-linear field intensity dependence on commonly used plasmonic geometries, such as nanospheres. 2013 by the authors; licensee MDPI, Basel, Switzerland.

  15. Genome wide analyses of metal responsive genes in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Michael eAschner

    2012-04-01

    Full Text Available Metals are major contaminants that influence human health. Many metals have physiologic roles, but excessive levels can be harmful. Advances in technology have made toxicogenomic analyses possible to characterize the effects of metal exposure on the entire genome. Much of what is known about cellular responses to metals has come from mammalian systems; however the use of non-mammalian species is gaining wider attention. Caenorhabditis elegans (C. elegans is a small round worm whose genome has been fully sequenced and its development from egg to adult is well characterized. It is an attractive model for high throughput screens due to its short lifespan, ease of genetic mutability, low cost and high homology with humans. Research performed in C. elegans has led to insights in apoptosis, gene expression and neurodegeneration, all of which can be altered by metal exposure. Additionally, by using worms one can potentially study how the mechanisms that underline differential responses to metals in nematodes and humans, allowing for identification of novel pathways and therapeutic targets. In this review, toxicogenomic studies performed in C. elegans exposed to various metals will be discussed, highlighting how this non-mammalian system can be utilized to study cellular processes and pathways induced by metals. Recent work focusing on neurodegeneration in Parkinson’s disease will be discussed as an example of the usefulness of genetic screens in C. elegans and the novel findings that can be produced.

  16. Trace metal dynamics in fishes from the southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Rejomon, G.; Nair, M.; Joseph, T.

    metals, with highest bioaccumulation for the essential element iron and lowest bioaccumulation for the non-essential element lead. Among the demersal species, C. melampygus and N. japonicus had high concentration factors for the metals Fe (280,268 to 322...

  17. Tailoring the electronic structure of β-Ga2O3 by non-metal doping from hybrid density functional theory calculations.

    Science.gov (United States)

    Guo, Weiyan; Guo, Yating; Dong, Hao; Zhou, Xin

    2015-02-28

    A systematic study using density functional theory has been performed for β-Ga2O3 doped with non-metal elements X (X = C, N, F, Si, P, S, Cl, Se, Br, and I) to evaluate the effect of doping on the band edges and photocatalytic activity of β-Ga2O3. The utilization of a more reliable hybrid density functional, as prescribed by Heyd, Scuseria and Ernzerhof, is found to be effective in predicting the band gap of β-Ga2O3 (4.5 eV), in agreement with the experimental result (4.59 eV). Based on the relaxed structures of X-doped systems, the defect formation energies and the plots of density of states have been calculated to analyze the band edges, the band gap states and the preferred doping sites. Our results show that the doping is energetically favored under Ga-rich growth conditions with respect to O-rich growth conditions. It is easier to replace the threefold coordinated O atom with non-metal elements compared to the fourfold coordinated O atom. X-doped systems (X = C, Si, P) show no change in the band gap, with the presence of discrete midgap states, which have adverse effect on the photocatalytic properties. The photocatalytic redox ability can be improved to a certain extent by doping with N, S, Cl, Se, Br, and I. The band alignments for Se-doped and I-doped β-Ga2O3 are well positioned for the feasibility of both photo-oxidation and photo-reduction of water, which are promising photocatalysts for water splitting in the visible region.

  18. Non-local plasticity effects on the tensile properties of a metal matrix composite

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Tvergaard, Viggo

    2001-01-01

    For a metal reinforced by aligned short fibres the effect of a material length scale characterising the inelastic deformations of the metal is studied. The elastic-plastic constitutive relations used here to represent the nonlocal effects are formulated so that the instantaneous hardening moduli...... depend on the gradient of the effective plastic strain. Numerical cell-model analyses are used to obtain a parametric understanding of the influence of different combinations of the main material parameters. The analyses show a strong dependence on the fibre diameter for given values of all other...

  19. Metallated metal-organic frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  20. Metal accumulation and detoxification mechanisms in mycorrhizal Betula pubescens.

    Science.gov (United States)

    Fernández-Fuego, D; Bertrand, A; González, A

    2017-12-01

    Metal detoxification in plants is a complex process that involves different mechanisms, such as the retention of metals to the cell wall and their chelation and subsequent compartmentalization in plant vacuoles. In order to identify the mechanisms involved in metal accumulation and tolerance in Betula pubescens, as well as the role of mycorrhization in these processes, mycorrhizal and non-mycorrhizal plants were grown in two industrial soils with contrasting concentrations of heavy metals. Mycorrhization increased metal uptake at low metal concentrations in the soil and reduced it at high metal concentrations, which led to an enhanced growth and biomass production of the host when growing in the most polluted soil. Our results suggest that the sequestration on the cell wall is the main detoxification mechanism in white birch exposed to acute chronic metal-stress, while phytochelatins play a role mitigating metal toxicity inside the cells. Given its high Mn and Zn root-to-shoot translocation rate, Betula pubescens is a very promising species for the phytoremediation of soils polluted with these metals. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Metal Detector By Using PIC Microcontroller Interfacing With PC

    Directory of Open Access Journals (Sweden)

    Yin Min Theint

    2015-06-01

    Full Text Available Abstract This system proposes metal detector by using PIC microcontroller interfacing with PC. The system uses PIC microcontroller as the main controller whether the detected metal is ferrous metal or non-ferrous metal. Among various types of metal sensors and various types of metal detecting technologies concentric type induction coil sensor and VLF very low frequency metal detecting technology are used in this system. This system consists of two configurations Hardware configuration and Software configuration. The hardware components include induction coil sensors which senses the frequency changes of metal a PIC microcontroller personal computer PC buzzer light emitting diode LED and webcam. The software configuration includes a program controller interface. PIC MikroCprogramming language is used to implement the control system. This control system is based on the PIC 16F887 microcontroller.This system is mainly used in mining and high security places such as airport plaza shopping mall and governmental buildings.

  2. Wetting of metals and glasses on Mo

    Energy Technology Data Exchange (ETDEWEB)

    Saiz, Eduardo; Tomsia, Antoni P.; Saiz, Eduardo; Lopez-Esteban, Sonia; Benhassine, Mehdi; de Coninck, Joel; Rauch, Nicole; Ruehle, Manfred

    2008-01-08

    The wetting of low melting point metals and Si-Ca-Al-Ti-O glasses on molybdenum has been investigated. The selected metals (Au, Cu, Ag) form a simple eutectic with Mo. Metal spreading occurs under nonreactive conditions without interdiffusion or ridge formation. The metals exhibit low (non-zero) contact angles on Mo but this requires temperatures higher than 1100 C in reducing atmospheres in order to eliminate a layer of adsorbed impurities on the molybdenum surface. By controlling the oxygen activity in the furnace, glass spreading can take place under reactive or nonreactive conditions. We have found that in the glass/Mo system the contact angle does not decrease under reactive conditions. In all cases, adsorption from the liquid seems to accelerate the diffusivity on the free molybdenum surface.

  3. Metal biosorption-flotation. Application to cadmium removal.

    Science.gov (United States)

    Matis, K A; Zouboulis, A I; Grigoriadou, A A; Lazaridis, N K; Ekateriniadou, L V

    1996-05-01

    Biosorption using suspended non-living biomass, and flotation (for consequent solid/liquid separation of the metal-loaded biomass) have been studied in the laboratory as a possible combined process, for the removal of toxic metals (i.e., cadmium) from dilute aqueous solutions. The various parameters of the process were investigated in depth, including re-use of biosorbent. A filter aid (contained in the biomass industrial waste used) was found not really to interfere. Zeta-potential measurements of the aforementioned system were also carried out. Promising results were obtained during continuous-flow experiments. A flotation residence time of 4 min was achieved. Metal removal and suspended biomass recovery were generally over 95%.

  4. Evaluation of heavy metals transfer: impact of a dredged sediment deposit on a on-polluted soil; Migration des polluants metalliques: cas d'un depot de sediments contamines sur un sol non pollue

    Energy Technology Data Exchange (ETDEWEB)

    Vauleon, C.; Laboudigue, A. [Centre National de Recherche sur les Sites et Sols Pollues, CNRSSP, 59 - Douai (France); Tiffreau, Ch. [CEA Cadarache, 13 - Saint Paul lez Durance (France)

    2001-07-01

    In many countries and especially in the North of France, inland waterways need to be dredged regularly to provide a high quality environment for customers, staff and local communities. However, dredging operations generate yearly large quantities of sediments, which in spite of their high pollutant contents, are often stored in non-specific sites. Thus, the threat of a spreading contamination for the surrounding environment is important. In order to evaluate this potential risk and to quantify the transfer of heavy metals from the dredged layer to the non-polluted soil below, an interdisciplinary research project was undertaken including, (i) the monitoring of an experimental sediment deposit, (ii) the microscopic study of metal distribution inside this deposit, (iii) the evaluation of microbial activity, (iv) the impact of natural vegetation growth on metal migration. Up to now, the main processes identified (oxidation of sulphur compounds, vertical migration of Zinc) allowed us to make several recommendations for the future management of dredged sediments by: (i) controlling the oxidation processes during dredging operations or (ii) assessing the high neutralizing capacity of the local environment of deposition. Moreover, an adequate vegetation management can reduce the heavy metals migration to groundwater's with maximum efficiency and at low costs. (author)

  5. Removal of Non-metallic Inclusions from Nickel Base Superalloys by Electromagnetic Levitation Melting in a Slag

    Science.gov (United States)

    Manjili, Mohsen Hajipour; Halali, Mohammad

    2018-02-01

    Samples of INCONEL 718 were levitated and melted in a slag by the application of an electromagnetic field. The effects of temperature, time, and slag composition on the inclusion content of the samples were studied thoroughly. Samples were compared with the original alloy to study the effect of the process on inclusions. Size, shape, and chemical composition of remaining non-metallic inclusions were investigated. The samples were prepared by Standard Guide for Preparing and Evaluating Specimens for Automatic Inclusion Assessment of Steel (ASTM E 768-99) method and the results were reported by means of the Standard Test Methods for Determining the Inclusion Content of Steel (ASTM E 45-97). Results indicated that by increasing temperature and processing time, greater level of cleanliness could be achieved, and numbers and size of the remaining inclusions decreased significantly. It was also observed that increasing calcium fluoride content of the slag helped reduce inclusion content.

  6. FIB NANOPATTERNING OF METAL FILMS ON PMMA SUBSTRATES: NON-SPUTTERING MODE

    DEFF Research Database (Denmark)

    Tavares, Luciana; Adashkevich, Vadzim; Chiriaev, Serguei

    polymer materials, which results in material shrinkage in the irradiated areas [2]. In this work, we demonstrate that this mechanism can be used for nanopatterning thin metal films deposited on PMMA resist spin-coated onto a silicon substrate. For this purpose, the samples were irradiated with He+ FIB...

  7. Speciation Studies of Some Toxic Metal Complexes of Glycylglycine ...

    African Journals Online (AJOL)

    NICO

    mixtures apart from its established utility in understanding ... Chemical speciation of metals is important for an understand- ... Titrations with differ- ent ratios (1:2.5, 1:3.5 and 1:5) of metal-ligand were performed with 0.4 mol L–1 sodium hydroxide solution. The mixtures obtained from PG and water are non-ideal due.

  8. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Andrew [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)]. E-mail: aturner@plymouth.ac.uk; Mawji, Edward [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)

    2005-05-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D{sub ow}, ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (<1%) to octanol extraction. Distribution coefficients defining the concentration ratio of octanol-soluble particle-bound metal to octanol-soluble dissolved metal were in the range 10{sup 3.3}-10{sup 5.3} ml g{sup -1}. The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision. - New approaches are presented for fractionating

  9. SO-limited mobility in a germanium inversion channel with non-ideal metal gate

    International Nuclear Information System (INIS)

    Shah, Raheel; De Souza, M.M.

    2008-01-01

    Germanium is an attractive candidate for ultra fast CMOS technology due to its potential for doubling electron mobility and quadrupling hole mobility in comparison to silicon. To maintain the requirements of the International Technology Roadmap for Semiconductors (ITRS), high-κ insulators and metal gates will be required in conjunction with Ge technology. Key issues which will have to be addressed in achieving Ge technology are: trap free insulators, assessment of appropriate crystallographic orientations and the selection of gate metals for the best mobility. In this work mobilities are evaluated for Ge-nMOSFET with two metal gates (Al and TiN) and high-κ (HfO 2 ) insulator. Scattering with bulk phonons, surface roughness and high-κ phonons are taken into account. It is predicted that Al as the gate material on Ge {100} substrate performs 50% better than Ge {111} orientation at a sheet concentration of 1 x 10 13 cm -2 . Surface roughness is likely to be the most damaging mobility degradation mechanism at high fields for Ge {111}

  10. Prostate tissue metal levels and prostate cancer recurrence in smokers.

    Science.gov (United States)

    Neslund-Dudas, Christine; Kandegedara, Ashoka; Kryvenko, Oleksandr N; Gupta, Nilesh; Rogers, Craig; Rybicki, Benjamin A; Dou, Q Ping; Mitra, Bharati

    2014-02-01

    Although smoking is not associated with prostate cancer risk overall, smoking is associated with prostate cancer recurrence and mortality. Increased cadmium (Cd) exposure from smoking may play a role in progression of the disease. In this study, inductively coupled plasma mass spectrometry was used to determine Cd, arsenic (As), lead (Pb), and zinc (Zn) levels in formalin-fixed paraffin embedded tumor and tumor-adjacent non-neoplastic tissue of never- and ever-smokers with prostate cancer. In smokers, metal levels were also evaluated with regard to biochemical and distant recurrence of disease. Smokers (N = 25) had significantly higher Cd (median ppb, p = 0.03) and lower Zn (p = 0.002) in non-neoplastic tissue than never-smokers (N = 21). Metal levels were not significantly different in tumor tissue of smokers and non-smokers. Among smokers, Cd level did not differ by recurrence status. However, the ratio of Cd ppb to Pb ppb was significantly higher in both tumor and adjacent tissue of cases with distant recurrence when compared with cases without distant recurrence (tumor tissue Cd/Pb, 6.36 vs. 1.19, p = 0.009, adjacent non-neoplastic tissue Cd/Pb, 6.36 vs. 1.02, p = 0.038). Tissue Zn levels were also higher in smokers with distant recurrence (tumor, p = 0.039 and adjacent non-neoplastic, p = 0.028). These initial findings suggest that prostate tissue metal levels may differ in smokers with and without recurrence. If these findings are confirmed in larger studies, additional work will be needed to determine whether variations in metal levels are drivers of disease progression or are simply passengers of the disease process.

  11. Large head metal-on-metal cementless total hip arthroplasty versus 28mm metal-on-polyethylene cementless total hip arthroplasty: design of a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    van Raaij Jos JAM

    2008-10-01

    Full Text Available Abstract Background Osteoarthritis of the hip is successfully treated by total hip arthroplasty with metal-on-polyethylene articulation. Polyethylene wear debris can however lead to osteolysis, aseptic loosening and failure of the implant. Large head metal-on-metal total hip arthroplasty may overcome polyethylene wear induced prosthetic failure, but can increase systemic cobalt and chromium ion concentrations. The objective of this study is to compare two cementless total hip arthroplasties: a conventional 28 mm metal-on-polyethylene articulation and a large head metal-on-metal articulation. We hypothesize that the latter arthroplasties show less bone density loss and higher serum metal ion concentrations. We expect equal functional scores, greater range of motion, fewer dislocations, fewer periprosthetic radiolucencies and increased prosthetic survival with the metal-on-metal articulation. Methods A randomized controlled trial will be conducted. Patients to be included suffer from non-inflammatory degenerative joint disease of the hip, are aged between 18 and 80 and are admitted for primary cementless unilateral total hip arthroplasty. Patients in the metal-on-metal group will receive a cementless titanium alloy acetabular component with a cobalt-chromium liner and a cobalt-chromium femoral head varying from 38 to 60 mm. Patients in the metal-on-polyethylene group will receive a cementless titanium alloy acetabular component with a polyethylene liner and a 28 mm cobalt-chromium femoral head. We will assess acetabular bone mineral density by dual energy x-ray absorptiometry (DEXA, serum ion concentrations of cobalt, chromium and titanium, self reported functional status (Oxford hip score, physician reported functional status and range of motion (Harris hip score, number of dislocations and prosthetic survival. Measurements will take place preoperatively, perioperatively, and postoperatively (6 weeks, 1 year, 5 years and 10 years. Discussion

  12. Development of the production of lead and precious metals in Central Asia

    Directory of Open Access Journals (Sweden)

    Nikolić Branislav

    2014-01-01

    Full Text Available There were several rich deposits of polymetal ores of non-ferrous and precious metals in the region of Imperial Russia and the Soviet Union. Metallurgical production of these metals was developed even a thousand years ago and was in the top of the world at the beginning of the fourth quarter of the twentieth century. The disintegration of the Soviet Union and the change of government structures caused a reduction of metallurgical production, but there are all conditions to intensify and increase the production of non-ferrous and precious metals in Russia and other former Soviet republics, which are now middle-asian countries.

  13. SQUID magnetometer using sensitivity correction signal for non-magnetic metal contaminants detection

    Energy Technology Data Exchange (ETDEWEB)

    Yagi, Toshifumi, E-mail: sakuta.k@usp.ac.jp; Ohashi, Masaharu; Sakuta, Ken

    2016-11-15

    Highlights: • A high-frequency excitation is necessary to detect nonmagnetic metals using SQUID. • It is possible to detect a high-frequency magnetic field using the open loop technique. • Open loop operation leads to a change in the conversion factor. • Conversion between voltage and magnetic field for open loop operation are examined. - Abstract: Measurement methods with SQUID can accurately detect small magnetic metal contaminants based on their magnetic remanence. But, a high-frequency excitation is necessary to detect nonmagnetic metals, on the base of contrasts in electric conductivity. In this work, an open loop technique is introduced to facilitate this. The SQUID is negative feedback controlled (flux locked loop (FLL) operation) for the low frequency range, which includes significant noise due to the movement of the magnetic body or the change of the ambient magnetic field composed of the geomagnetic field and technical signals, and it operates in an open loop configuration for the high frequency range. When using the open loop technique, negative feedback is not applied to the high frequency range. Consequently, the V–Φ characteristic changes due to various causes, which leads to variations in the conversion factor between the SQUID output voltage and the magnetic field. In this study, conversion techniques for the magnetic field for open loop operation of SQUID in the high frequency range are examined.

  14. SQUID magnetometer using sensitivity correction signal for non-magnetic metal contaminants detection

    International Nuclear Information System (INIS)

    Yagi, Toshifumi; Ohashi, Masaharu; Sakuta, Ken

    2016-01-01

    Highlights: • A high-frequency excitation is necessary to detect nonmagnetic metals using SQUID. • It is possible to detect a high-frequency magnetic field using the open loop technique. • Open loop operation leads to a change in the conversion factor. • Conversion between voltage and magnetic field for open loop operation are examined. - Abstract: Measurement methods with SQUID can accurately detect small magnetic metal contaminants based on their magnetic remanence. But, a high-frequency excitation is necessary to detect nonmagnetic metals, on the base of contrasts in electric conductivity. In this work, an open loop technique is introduced to facilitate this. The SQUID is negative feedback controlled (flux locked loop (FLL) operation) for the low frequency range, which includes significant noise due to the movement of the magnetic body or the change of the ambient magnetic field composed of the geomagnetic field and technical signals, and it operates in an open loop configuration for the high frequency range. When using the open loop technique, negative feedback is not applied to the high frequency range. Consequently, the V–Φ characteristic changes due to various causes, which leads to variations in the conversion factor between the SQUID output voltage and the magnetic field. In this study, conversion techniques for the magnetic field for open loop operation of SQUID in the high frequency range are examined.

  15. Comparison of trace metals in intake and discharge waters of power plants using clean techniques

    International Nuclear Information System (INIS)

    Salvito, D.T.; Allen, H.E.

    1995-01-01

    In order to determine the impact to receiving waters of trace metals potentially discharged from a once-through, non-contact cooling water system from a power plant, a study was conducted utilizing clean sampling and analytical techniques for a series of metals. Once-through, non-contact cooling water at power plants is frequently discharged back to the fresh or saline waterbody utilized for its intake water. This water is used to cool plant condensers. Intake and discharge data were collected and evaluated using paired t-tests. Study results indicate that there is no measurable contribution of metals from non-contact cooling water from this power plant

  16. Effectiveness of stress release geometries on reducing residual stress in electroforming metal microstructure

    Science.gov (United States)

    Song, Chang; Du, Liqun; Zhao, Wenjun; Zhu, Heqing; Zhao, Wen; Wang, Weitai

    2018-04-01

    Micro electroforming, as a mature micromachining technology, is widely used to fabricate metal microdevices in micro electro mechanical systems (MEMS). However, large residual stress in the local positions of the micro electroforming layer often leads to non-uniform residual stress distributions, dimension accuracy defects and reliability issues during fabrication of the metal microdevice. To solve this problem, a novel design method of presetting stress release geometries in the topological structure of the metal microstructure is proposed in this paper. First, the effect of stress release geometries (circular shape, annular groove shape and rivet shape) on the residual stress in the metal microstructure was investigated by finite element modeling (FEM) analysis. Two evaluation parameters, stress concentration factor K T and stress non-uniformity factor δ were calculated. The simulation results show that presetting stress release geometries can effectively reduce and homogenize the residual stress in the metal microstructures were measured metal microstructure. By combined use with stress release geometries of annular groove shape and rivet shape, the stress concentration factor K T and the stress non-uniformity factor δ both decreased at a maximum of 49% and 53%, respectively. Meanwhile, the average residual stress σ avg decreased at a maximum of 20% from  -292.4 MPa to  -232.6 MPa. Then, micro electroforming experiments were carried out corresponding to the simulation models. The residual stresses in the metal microstructures were measured by micro Raman spectroscopy (MRS) method. The results of the experiment proved that the stress non-uniformity factor δ and the average residual stress σ avg also decreased at a maximum with the combination use of annular groove shape and rivet shape stress release geometries, which is in agreement with the results of FEM analysis. The stress non-uniformity factor δ has a maximum decrease of 49% and the

  17. Remanent resistance changes in metal- PrCaMnO-metal sandwich structures

    Energy Technology Data Exchange (ETDEWEB)

    Scherff, Malte; Meyer, Bjoern-Uwe; Scholz, Julius; Hoffmann, Joerg; Jooss, Christian [Institute of Materials Physics, University of Goettingen (Germany)

    2012-07-01

    The non-volatile electric pulse induced resistance change (EPIR) seems to be a rather common feature of oxides sandwiched by electrodes. However, microscopic mechanisms are discussed controversially. We present electrical transport measurements of sputtered Pr{sub 0.7}Ca{sub 0.3}MnO{sub 3} films sandwiched by metallic electrodes with variation of electrode materials, device geometry and PCMO deposition parameters. Cross-plane transport measurements have been performed as function of temperature and magnetic field. Specifically, the transition from dynamic resistance changes due to non-linear transport to remanent switching is analyzed. By analyzing changes of magneto-resistance at low temperatures in different resistance states we aim for separation between interface and film contributions to switching. Comparing switching behavior in symmetric and asymmetric electrode configuration allows for identification of the active, single interface in the switching process and the origin of an observed switching polarity inversion. The influence of excitation field and power on the switching characteristics of different noble metal electrodes is discussed. Samples from macroscopic devices and in situ stimulated sandwich structures were studied in a transmission electron microscope in order to investigate the induced structural, chemical and electronic changes.

  18. Resistance switch employing a simple metal nanogap junction

    International Nuclear Information System (INIS)

    Naitoh, Yasuhisa; Horikawa, Masayo; Abe, Hidekazu; Shimizu, Tetsuo

    2006-01-01

    In recent years, several researchers have reported the occurrence of reversible resistance switching effects in simple metal nanogap junctions. A large negative resistance is observed in the I-V characteristics of such a junction when high-bias voltages are applied. This phenomenon is characteristic behaviour on the nanometre scale; it only occurs for gap widths slightly under 13 nm. Furthermore, such a junction exhibits a non-volatile resistance hysteresis when the bias voltage is reduced very rapidly from a high level to around 0 V, and when the bias voltage is reduced slowly. This non-volatile resistance change occurs as a result of changes in the gap width between the metal electrodes, brought about by the applied bias voltage

  19. Nanofluid based on self-nanoencapsulated metal/metal alloys phase change materials with tuneable crystallisation temperature.

    Science.gov (United States)

    Navarrete, Nuria; Gimeno-Furio, Alexandra; Mondragon, Rosa; Hernandez, Leonor; Cabedo, Luis; Cordoncillo, Eloisa; Julia, J Enrique

    2017-12-14

    Nanofluids using nanoencapsulated Phase Change Materials (nePCM) allow increments in both the thermal conductivity and heat capacity of the base fluid. Incremented heat capacity is produced by the melting enthalpy of the nanoparticles core. In this work two important advances in this nanofluid type are proposed and experimentally tested. It is firstly shown that metal and metal alloy nanoparticles can be used as self-encapsulated nePCM using the metal oxide layer that forms naturally in most commercial synthesis processes as encapsulation. In line with this, Sn/SnOx nanoparticles morphology, size and thermal properties were studied by testing the suitability and performance of encapsulation at high temperatures and thermal cycling using a commercial thermal oil (Therminol 66) as the base fluid. Secondly, a mechanism to control the supercooling effect of this nePCM type based on non-eutectic alloys was developed.

  20. Extracting metal ions with diphosphonic acid, or derivative thereof

    Science.gov (United States)

    Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.

    1994-01-01

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.

  1. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability

    International Nuclear Information System (INIS)

    Turner, Andrew; Mawji, Edward

    2005-01-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D ow , ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant ( 3.3 -10 5.3 ml g -1 . The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision. - New approaches are presented for fractionating trace metals in natural waters

  2. Converter for Measurement of non-sinusoidal current peak value

    DEFF Research Database (Denmark)

    Butvin, P.; Nielsen, Otto V; Brauer, Peter

    1997-01-01

    A linear-response toroid with core wound of rapidly quenched soft magnetic metallic ribbon and fitted with two windings is used to enable correct measurement of mean peak value of non-sinusoidal and not noise-free alternating current.......A linear-response toroid with core wound of rapidly quenched soft magnetic metallic ribbon and fitted with two windings is used to enable correct measurement of mean peak value of non-sinusoidal and not noise-free alternating current....

  3. Synergistic effect of metal deactivator and antioxidant on oxidation stability of metal contaminated Jatropha biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Sarin, Amit [Department of Applied Sciences, Amritsar College of Engineering and Technology, Amritsar 143001 (India); Arora, Rajneesh; Singh, N.P. [Punjab Technical University, Jalandhar (India); Sarin, Rakesh; Malhotra, R.K. [Indian Oil Corporation Ltd., R and D Centre, Sector-13, Faridabad 121007 (India); Sharma, Meeta [Indian Oil Corporation Ltd., R and D Centre, Sector-13, Faridabad 121007 (India); University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi 110403 (India); Khan, Arif Ali [University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Kashmere Gate, Delhi 110403 (India)

    2010-05-15

    Biodiesel is relatively unstable on storage and European biodiesel standard EN-14214 calls for determining oxidation stability at 110 C with a minimum induction time of 6 h by the Rancimat method (EN-14112). According to proposed National Mission on biodiesel in India, we have undertaken studies on stability of biodiesel from tree borne non-edible oil seeds Jatropha. Neat Jatropha biodiesel exhibited oxidation stability of 3.95 h. It is found possible to meet the desired EN specification for neat Jatropha biodiesel and metal contaminated Jatropha biodiesel by using antioxidants; it will have a cost implication, as antioxidants are costly chemicals. Research was conducted to increase the oxidation stability of metal contaminated Jatropha biodiesel by doping metal deactivator with antioxidant, with varying concentrations in order to meet the aforementioned standard required for oxidation stability. It was found that usage of antioxidant can be reduced by 30-50%, therefore the cost, even if very small amount of metal deactivator is doped in Jatropha biodiesel to meet EN-14112 specification. (author)

  4. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin

    Energy Technology Data Exchange (ETDEWEB)

    Yi Yujun [State Key Laboratory of Water Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875 (China); Yang Zhifeng, E-mail: zfyang@bnu.edu.cn [State Key Laboratory of Water Environment Simulation and Pollution Control, School of Environment, Beijing Normal University, Beijing 100875 (China); Zhang Shanghong [Renewable Energy School, North China Electric Power University, Beijing 102206 (China)

    2011-10-15

    The concentrations of heavy metals (Cr, Cd, Hg, Cu, Zn, Pb and As) in the water, sediment, and fish were investigated in the middle and lower reaches of the Yangtze River, China. Potential ecological risk analysis of sediment heavy metal concentrations indicated that six sites in the middle reach, half of the sites in the lower reach, and two sites in lakes, posed moderate or considerable ecological risk. Health risk analysis of individual heavy metals in fish tissue indicated safe levels for the general population and for fisherman but, in combination, there was a possible risk in terms of total target hazard quotients. Correlation analysis and PCA found that heavy metals (Hg, Cd, Pb, Cr, Cu, and Zn) may be mainly derived from metal processing, electroplating industries, industrial wastewater, and domestic sewage. Hg may also originate from coal combustion. Significant positive correlations between TN and As were observed. - Highlights: > Field survey, test and relationship of the concentrations of heavy metals in the water, sediment, and fish. > Potential ecological risk assessment of heavy metals in sediment. > Non-cancer health risk assessment of heavy metals in fish tissue. > Possible pollution source of heavy metals analyzed. - Possible ecological risk of sediment and slight non-cancer health risk of eating fish were found in the middle and lower reaches of the Yangtze River.

  5. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River basin

    International Nuclear Information System (INIS)

    Yi Yujun; Yang Zhifeng; Zhang Shanghong

    2011-01-01

    The concentrations of heavy metals (Cr, Cd, Hg, Cu, Zn, Pb and As) in the water, sediment, and fish were investigated in the middle and lower reaches of the Yangtze River, China. Potential ecological risk analysis of sediment heavy metal concentrations indicated that six sites in the middle reach, half of the sites in the lower reach, and two sites in lakes, posed moderate or considerable ecological risk. Health risk analysis of individual heavy metals in fish tissue indicated safe levels for the general population and for fisherman but, in combination, there was a possible risk in terms of total target hazard quotients. Correlation analysis and PCA found that heavy metals (Hg, Cd, Pb, Cr, Cu, and Zn) may be mainly derived from metal processing, electroplating industries, industrial wastewater, and domestic sewage. Hg may also originate from coal combustion. Significant positive correlations between TN and As were observed. - Highlights: → Field survey, test and relationship of the concentrations of heavy metals in the water, sediment, and fish. → Potential ecological risk assessment of heavy metals in sediment. → Non-cancer health risk assessment of heavy metals in fish tissue. → Possible pollution source of heavy metals analyzed. - Possible ecological risk of sediment and slight non-cancer health risk of eating fish were found in the middle and lower reaches of the Yangtze River.

  6. Octanol-solubility of dissolved and particulate trace metals in contaminated rivers: implications for metal reactivity and availability.

    Science.gov (United States)

    Turner, Andrew; Mawji, Edward

    2005-05-01

    The lipid-like, amphiphilic solvent, n-octanol, has been used to determine a hydrophobic fraction of dissolved and particulate trace metals (Al, Cd, Co, Cu, Mn, Ni, Pb, Zn) in contaminated rivers. In a sample from the River Clyde, southwest Scotland, octanol-solubility was detected for all dissolved metals except Co, with conditional octanol-water partition coefficients, D(ow), ranging from about 0.2 (Al and Cu) to 1.25 (Pb). In a sample taken from the River Mersey, northwest England, octanol-solubility was detected for dissolved Al and Pb, but only after sample aliquots had been spiked with individual ionic metal standards and equilibrated. Spiking of the River Clyde sample revealed competition among different metals for hydrophobic ligands. Metal displacement from hydrophobic complexes was generally most significant following the addition of ionic Al or Pb, although the addition of either of these metals had little effect on the octanol-solubility of the other. In both river water samples hydrophobic metals were detected on the suspended particles retained by filtration following their extraction in n-octanol. In general, particulate Cu and Zn (up to 40%) were most available, and Al, Co and Pb most resistant (octanol extraction. Distribution coefficients defining the concentration ratio of octanol-soluble particle-bound metal to octanol-soluble dissolved metal were in the range 10(3.3)-10(5.3)mlg(-1). The presence of hydrophobic dissolved and particulate metal species has implications for our understanding of the biogeochemical behaviour of metals in aquatic environments. Specifically, such species are predicted to exhibit characteristics of non-polar organic contaminants, including the potential to penetrate the lipid bilayer. Current strategies for assessing the bioavailability and toxicity of dissolved and particulate trace metals in natural waters may, therefore, require revision.

  7. Assessment of the contrast of rare metal ores

    International Nuclear Information System (INIS)

    Kuznetsova, O.V.

    1987-01-01

    The method of rapid assessment of useful component content on the basis of X-ray radiometric method of analysis of non-crushed ore lumps is presented. Using as an example rare metal deposits, linear dependence between logarithms of Nb 2 O 6 contents and the value of fragment separation index during radiometric separation is established. The use of the dependence ensures sufficient accuracy for the characteristic of rare metal ore content

  8. Clean thermal decomposition of tertiary-alkyl metal thiolates to metal sulfides: environmentally-benign, non-polar inks for solution-processed chalcopyrite solar cells

    Science.gov (United States)

    Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young

    2016-11-01

    We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.

  9. MADR: metal artifact detection and reduction

    Science.gov (United States)

    Jaiswal, Sunil Prasad; Ha, Sungsoo; Mueller, Klaus

    2016-04-01

    Metal in CT-imaged objects drastically reduces the quality of these images due to the severe artifacts it can cause. Most metal artifacts reduction (MAR) algorithms consider the metal-affected sinogram portions as the corrupted data and replace them via sophisticated interpolation methods. While these schemes are successful in removing the metal artifacts, they fail to recover some of the edge information. To address these problems, the frequency shift metal artifact reduction algorithm (FSMAR) was recently proposed. It exploits the information hidden in the uncorrected image and combines the high frequency (edge) components of the uncorrected image with the low frequency components of the corrected image. Although this can effectively transfer the edge information of the uncorrected image, it also introduces some unwanted artifacts. The essential problem of these algorithms is that they lack the capability of detecting the artifacts and as a result cannot discriminate between desired and undesired edges. We propose a scheme that does better in these respects. Our Metal Artifact Detection and Reduction (MADR) scheme constructs a weight map which stores whether a pixel in the uncorrected image belongs to an artifact region or a non-artifact region. This weight matrix is optimal in the Linear Minimum Mean Square Sense (LMMSE). Our results demonstrate that MADR outperforms the existing algorithms and ensures that the anatomical structures close to metal implants are better preserved.

  10. Remediation of metal-contaminated urban soil using flotation technique

    International Nuclear Information System (INIS)

    Dermont, G.; Bergeron, M.; Richer-Lafleche, M.; Mercier, G.

    2010-01-01

    A soil washing process using froth flotation technique was evaluated for the removal of arsenic, cadmium, copper, lead, and zinc from a highly contaminated urban soil (brownfield) after crushing of the particle-size fractions > 250 μm. The metal contaminants were in particulate forms and distributed in all the particle-size fractions. The particle-by-particle study with SEM-EDS showed that Zn was mainly present as sphalerite (ZnS), whereas Cu and Pb were mainly speciated as various oxide/carbonate compounds. The influence of surfactant collector type (non-ionic and anionic), collector dosage, pulp pH, a chemical activation step (sulfidization), particle size, and process time on metal removal efficiency and flotation selectivity was studied. Satisfactory results in metal recovery (42-52%), flotation selectivity (concentration factor > 2.5), and volume reduction (> 80%) were obtained with anionic collector (potassium amyl xanthate). The transportation mechanisms involved in the separation process (i.e., the true flotation and the mechanical entrainment) were evaluated by the pulp chemistry, the metal speciation, the metal distribution in the particle-size fractions, and the separation selectivity indices of Zn/Ca and Zn/Fe. The investigations showed that a great proportion of metal-containing particles were recovered in the froth layer by entrainment mechanism rather than by true flotation process. The non-selective entrainment mechanism of the fine particles ( 5 min) and when a high collector dose is used. The intermediate particle-size fraction (20-125 μm) showed the best flotation selectivity.

  11. Non-exponential resistive switching in Ag2S memristors: a key to nanometer-scale non-volatile memory devices.

    Science.gov (United States)

    Gubicza, Agnes; Csontos, Miklós; Halbritter, András; Mihály, György

    2015-03-14

    The dynamics of resistive switchings in nanometer-scale metallic junctions formed between an inert metallic tip and an Ag film covered by a thin Ag2S layer are investigated. Our thorough experimental analysis and numerical simulations revealed that the resistance change upon a switching bias voltage pulse exhibits a strongly non-exponential behaviour yielding markedly different response times at different bias levels. Our results demonstrate the merits of Ag2S nanojunctions as nanometer-scale non-volatile memory cells with stable switching ratios, high endurance as well as fast response to write/erase, and an outstanding stability against read operations at technologically optimal bias and current levels.

  12. Application of the photomodulated reflectance technique to the monitoring of metal layers

    Energy Technology Data Exchange (ETDEWEB)

    Dobos, Gabor; Lenk, Sandor; Ujhelyi, Ferenc; Szita, Zsofia; Kocsanyi, Laszlo [Department of Atomic Physics, Budapest University of Technology and Economics, Budafoki ut 8, 1111 Budapest (Hungary); Somogyi, Andras [Semilab Corporation, Prielle Kornelia ut 2, 1117 Budapest (Hungary)

    2011-09-15

    Photomodulated reflectance (PMR) measurement techniques are currently used for the monitoring of ultra-shallow junctions. This paper discusses the possibility of applying them to the characterisation of metal layers. A finite element method based computer model has been created to study the dependence of the PMR signal on different sample parameters. We present the results of these simulations and show that the method can be used to establish the thickness of a metal layer (if the material is known) and it can also provide information about the metal/semiconductor interface. This information might be used to characterise the barrier seed layer beneath the metal, by a non-contact and non-destructive way. Simulation results are also supported by actual measurements on test samples. (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Regularities of Filamentary Channels Formation During Formation of Nanostructured Non-Metallic Inorganic Coatings in Microplasma Galvanostatic Mode in Solutions

    Science.gov (United States)

    Mamaev, A. I.; Mamaeva, V. A.; Kolenchin, N. F.; Chubenko, A. K.; Kovalskaya, Ya. B.; Konstantinova, T. A.; Dolgova, Yu. N.; Beletskaya, E. Yu.

    2016-04-01

    This paper presents the theoretical models describing the growth of filamentary channels of nanostructured non-metallic coatings formed by anodizing and microplasma oxidation. The authors identified dependences of the number of pores on the coating thickness. The paper presents graphic dependences of the number of filamentary channels on the process time and the coating thickness. These dependences allow calculating through and surface porosity, and in cases, when the pores are filled with functional material, they allow calculating the concentration distribution of this functional material throughout the coating thickness. The theoretical models enhance our understanding of the nature of anode processes and can be used to describe and forecast the growth and filling of porous coatings, so they can also be used to create functional and bioactive materials.

  14. Effect of metal shielding on a wireless power transfer system

    Science.gov (United States)

    Li, Jiacheng; Huang, Xueliang; Chen, Chen; Tan, Linlin; Wang, Wei; Guo, Jinpeng

    2017-05-01

    In this paper, the effect of non-ferromagnetic metal shielding (NFMS) material on the resonator of wireless power transfer (WPT) is studied by modeling, simulation and experimental analysis. And, the effect of NFMS material on the power transfer efficiency (PTE) of WPT systems is investigated by circuit model. Meanwhile, the effect of ferromagnetic metal shielding material on the PTE of WPT systems is analyzed through simulation. A double layer metal shield structure is designed. Experimental results demonstrate that by applying the novel double layer metal shielding method, the system PTE increases significantly while the electromagnetic field of WPT systems declines dramatically.

  15. Phased array ultrasonic testing of dissimilar metal pipe weld joints

    International Nuclear Information System (INIS)

    Rajeev, J.; Sankaranarayanan, R.; Sharma, Govind K; Joseph, A.; Purnachandra Rao, B.

    2015-01-01

    Dissimilar metal weld (DMW) joints made of stainless steel and ferritic steel is used in nuclear industries as well as oil and gas industries. These joints are prone to frequent failures which makes the non-destructive testing of dissimilar metal weld joints utmost important for reliable and safe operation of nuclear power plants and oil and gas industries. Ultrasonic inspection of dissimilar metal weld joints is still challenging due to the inherent anisotropic and highly scattering nature. Phased array ultrasonic testing (PAUT) is an advanced technique and its capability has not been fully explored for the inspection of dissimilar metal welds

  16. Photoluminescence emission from Alq3 organic layer in metal–Alq3–metal plasmonic structure

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Bohr-Ran; Liao, Chung-Chi [Graduate Institute of Electro-Optical Engineering and Department of Electronic Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan (China); Fan, Wan-Ting [Institute of Electro-Optical Engineering and Department of Electronic Engineering, Chang Gung University, Tao-Yuan 333, Taiwan (China); Wu, Jin-Han; Chen, Cheng-Chang; Lin, Yi-Ping; Li, Jung-Yu; Chen, Shih-Pu [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute (ITRI), 195, Sec. 4, Chung-Hsin Road, Chutung 310, Taiwan (China); Ke, Wen-Cheng [Department of Mechanical Engineering, Yuan Ze University, Tao-Yuan 320, Taiwan (China); Chen, Nai-Chuan, E-mail: ncchen001@mail.cgu.edu.tw [Institute of Electro-Optical Engineering and Department of Electronic Engineering, Chang Gung University, Tao-Yuan 333, Taiwan (China)

    2014-06-01

    The emission properties of an organic layer embedded in a metal–organic–metal (MOM) structure were investigated. A partially radiative odd-SPW as well as a non-radiative even-SPW modes are supported by hybridization of the SPW modes on the opposite organic/metal interface in the structure. Because of the competition by this radiative SPW, the population of excitons that recombine to form non-radiative SPW should be reduced. This may account for why the photoluminescence intensity of the MOM sample is higher than that of an organic–metal sample even though the MOM sample has an additional metal layer that should intuitively act as a filter.

  17. Non-Destructive X-ray Spectrometric and Chromatographic Analysis of Metal Containers and Their Contents, from Ancient Macedonia

    Directory of Open Access Journals (Sweden)

    Christos S. Katsifas

    2018-06-01

    Full Text Available This work describes a holistic archaeometric approach to ancient Macedonian specimens. In the region of the ancient city Lete, the deceased members of a rich and important family were interred in a cluster of seven tombs (4th century BC. Among the numerous grave goods, there was also a set of metal containers preserving their original content. The physico-chemical analysis of the containers and their contents was performed in order to understand the purpose of their use. For the containers, Energy Dispersive micro-X-Ray Fluorescence (EDμXRF spectroscopy was implemented taking advantage of its non-invasive character. The case (B35 and the small pyxis (B37 were made of a binary Cu-Sn alloy accompanied by a slight amount of impurities (Fe, Pb, As and the two miniature bowls were made of almost pure Cu. For the study of the contents, a combination of EDμXRF, X-Ray Diffraction (XRD, and Gas Chromatography—Mass Spectrometry (GC-MS was carried out. Especially for the extraction of the volatile compounds, the Solid Phase Micro-Extraction (SPME technique was used in the headspace mode. Because of the detection of Br, High Pressure Liquid Chromatography coupled to a Diode-Array-Detector (HPLC-DAD was implemented, confirming the existence of the ancient dye shellfish purple (porphyra in Greek. The analytical results of the combined implementation of spectrometric and chromatographic analytical techniques of the metal containers and their contents expand our knowledge about the pharmaceutical practices in Macedonia during the 4th century BC.

  18. Metal-enhanced fluorescence exciplex emission.

    Science.gov (United States)

    Zhang, Yongxia; Mali, Buddha L; Geddes, Chris D

    2012-01-01

    In this letter, we report the first observation of metal-enhanced exciplex fluorescence, observed from anthracene in the presence of diethylaniline. Anthracene in the presence of diethylaniline in close proximity to Silver Island Films (SIFs) shows enhanced monomer and exciplex emission as compared to a non-silvered control sample containing no silver nanoparticles. Our findings suggest two complementary methods for the enhancement: (i) surface plasmons can radiate coupled monomer and exciplex fluorescence efficiently, and (ii) enhanced absorption (enhanced electric near-field) further facilitates enhanced emission. Our exciplex studies help us to further understand the complex photophysics of the metal-enhanced fluorescence technology. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity

    International Nuclear Information System (INIS)

    Andrade, Leonardo R.; Leal, Raquel N.; Noseda, Miguel; Duarte, Maria Eugenia R.; Pereira, Mariana S.; Mourao, Paulo A.S.; Farina, Marcos; Amado Filho, Gilberto M.

    2010-01-01

    Brown algae are often used as heavy metal biomonitors and biosorbents because they can accumulate high concentrations of metals. Cation-exchange performed by cell wall polysaccharides is pointed out as the main chemical mechanism for the metal sequestration. Here, we biochemically investigated if the brown alga Padina gymnospora living in a heavy metal contaminated area would modify their polysaccharidic content. We exposed non-living biomass to Cd and Pb and studied the metals adsorption and localization. We found that raw dried polysaccharides, sulfate groups, uronic acids, fucose, mannose, and galactose were significantly higher in contaminated algae compared with the control ones. Metal concentrations adsorbed by non-living biomass were rising comparatively to the tested concentrations. Electron microscopy showed numerous granules in the cell walls and X-ray microanalysis revealed Cd as the main element. We concluded that P. gymnospora overproduces cell wall polysaccharides when exposed to high metal concentrations as a defense mechanism.

  20. Scaling behavior of heavy fermion metals

    Energy Technology Data Exchange (ETDEWEB)

    Shaginyan, V.R., E-mail: vrshag@thd.pnpi.spb.r [Petersburg Nuclear Physics Institute, RAS, Gatchina, 188300 (Russian Federation); CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Ioffe Physical Technical Institute, RAS, St. Petersburg 194021 (Russian Federation); Msezane, A.Z. [CTSPS, Clark Atlanta University, Atlanta, GA 30314 (United States); Popov, K.G. [Komi Science Center, Ural Division, RAS, 3a, Chernova str. Syktyvkar, 167982 (Russian Federation)

    2010-07-15

    Strongly correlated Fermi systems are fundamental systems in physics that are best studied experimentally, which until very recently have lacked theoretical explanations. This review discusses the construction of a theory and the analysis of phenomena occurring in strongly correlated Fermi systems such as heavy-fermion (HF) metals and two-dimensional (2D) Fermi systems. It is shown that the basic properties and the scaling behavior of HF metals can be described within the framework of a fermion condensation quantum phase transition (FCQPT) and an extended quasiparticle paradigm that allow us to explain the non-Fermi liquid behavior observed in strongly correlated Fermi systems. In contrast to the Landau paradigm stating that the quasiparticle effective mass is a constant, the effective mass of new quasiparticles strongly depends on temperature, magnetic field, pressure, and other parameters. Having analyzed the collected facts on strongly correlated Fermi systems with quite a different microscopic nature, we find these to exhibit the same non-Fermi liquid behavior at FCQPT. We show both analytically and using arguments based entirely on the experimental grounds that the data collected on very different strongly correlated Fermi systems have a universal scaling behavior, and materials with strongly correlated fermions can unexpectedly be uniform in their diversity. Our analysis of strongly correlated systems such as HF metals and 2D Fermi systems is in the context of salient experimental results. Our calculations of the non-Fermi liquid behavior, the scales and thermodynamic, relaxation and transport properties are in good agreement with experimental facts.

  1. Non-destructive forensic latent fingerprint acquisition with chromatic white light sensors

    Science.gov (United States)

    Leich, Marcus; Kiltz, Stefan; Dittmann, Jana; Vielhauer, Claus

    2011-02-01

    Non-destructive latent fingerprint acquisition is an emerging field of research, which, unlike traditional methods, makes latent fingerprints available for additional verification or further analysis like tests for substance abuse or age estimation. In this paper a series of tests is performed to investigate the overall suitability of a high resolution off-the-shelf chromatic white light sensor for the contact-less and non-destructive latent fingerprint acquisition. Our paper focuses on scanning previously determined regions with exemplary acquisition parameter settings. 3D height field and reflection data of five different latent fingerprints on six different types of surfaces (HDD platter, brushed metal, painted car body (metallic and non-metallic finish), blued metal, veneered plywood) are experimentally studied. Pre-processing is performed by removing low-frequency gradients. The quality of the results is assessed subjectively; no automated feature extraction is performed. Additionally, the degradation of the fingerprint during the acquisition period is observed. While the quality of the acquired data is highly dependent on surface structure, the sensor is capable of detecting the fingerprint on all sample surfaces. On blued metal the residual material is detected; however, the ridge line structure dissolves within minutes after fingerprint placement.

  2. Dietary intake of metals by Mumbai adult population

    Energy Technology Data Exchange (ETDEWEB)

    Raghunath, R. [Environmental Assessment Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Tripathi, R.M. [Environmental Assessment Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)]. E-mail: rmt@apsara.barc.ernet.in; Suseela, B. [Environmental Assessment Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Bhalke, Sunil [Environmental Assessment Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Shukla, V.K. [Environmental Assessment Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Puranik, V.D. [Environmental Assessment Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India)

    2006-03-01

    Daily intake of 12 metals (Na, K, Ca, Cu, Zn, Fe, Mn, Mg, Pb, Cd, Co and Ni) by Mumbai adult population were assessed by analysing duplicate diet samples. These metals were determined by flame atomic absorption spectrophotometry (AAS) and stripping voltammetric techniques. A total of 250 diet samples containing 170 vegetarian diet and 80 non-vegetarian diet collected during April 2003 to March 2004 were analysed during this study. Daily dietary intakes of 2.4 g Na and 1.2 g K were observed for Mumbai adults. Daily dietary intakes of Ca, Cu, Zn, Fe, Mn and Mg were 367, 1.0, 6.3, 6.7, 2.0 and 304 mg, respectively. Pb, Cd, Co and Ni intakes by Mumbai adults were 32.3, 2.2, 2.2 and 108 {mu}g/day, respectively. From this study it has been observed that the intake of toxic metals such as Pb, Cd and Ni is much lower than the tolerable daily intake derived from PTWI given by FAO/WHO and could not be considered harmful in this group of subjects. Daily intake of the studied 12 metals was found to be higher in non-vegetarian diet compared to the vegetarian diet (P < 0.02, 0.01)

  3. Dietary intake of metals by Mumbai adult population

    International Nuclear Information System (INIS)

    Raghunath, R.; Tripathi, R.M.; Suseela, B.; Bhalke, Sunil; Shukla, V.K.; Puranik, V.D.

    2006-01-01

    Daily intake of 12 metals (Na, K, Ca, Cu, Zn, Fe, Mn, Mg, Pb, Cd, Co and Ni) by Mumbai adult population were assessed by analysing duplicate diet samples. These metals were determined by flame atomic absorption spectrophotometry (AAS) and stripping voltammetric techniques. A total of 250 diet samples containing 170 vegetarian diet and 80 non-vegetarian diet collected during April 2003 to March 2004 were analysed during this study. Daily dietary intakes of 2.4 g Na and 1.2 g K were observed for Mumbai adults. Daily dietary intakes of Ca, Cu, Zn, Fe, Mn and Mg were 367, 1.0, 6.3, 6.7, 2.0 and 304 mg, respectively. Pb, Cd, Co and Ni intakes by Mumbai adults were 32.3, 2.2, 2.2 and 108 μg/day, respectively. From this study it has been observed that the intake of toxic metals such as Pb, Cd and Ni is much lower than the tolerable daily intake derived from PTWI given by FAO/WHO and could not be considered harmful in this group of subjects. Daily intake of the studied 12 metals was found to be higher in non-vegetarian diet compared to the vegetarian diet (P < 0.02, 0.01)

  4. Parkinson Disease Protein DJ-1 Binds Metals and Protects against Metal-induced Cytotoxicity*

    Science.gov (United States)

    Björkblom, Benny; Adilbayeva, Altynai; Maple-Grødem, Jodi; Piston, Dominik; Ökvist, Mats; Xu, Xiang Ming; Brede, Cato; Larsen, Jan Petter; Møller, Simon Geir

    2013-01-01

    The progressive loss of motor control due to reduction of dopamine-producing neurons in the substantia nigra pars compacta and decreased striatal dopamine levels are the classically described features of Parkinson disease (PD). Neuronal damage also progresses to other regions of the brain, and additional non-motor dysfunctions are common. Accumulation of environmental toxins, such as pesticides and metals, are suggested risk factors for the development of typical late onset PD, although genetic factors seem to be substantial in early onset cases. Mutations of DJ-1 are known to cause a form of recessive early onset Parkinson disease, highlighting an important functional role for DJ-1 in early disease prevention. This study identifies human DJ-1 as a metal-binding protein able to evidently bind copper as well as toxic mercury ions in vitro. The study further characterizes the cytoprotective function of DJ-1 and PD-mutated variants of DJ-1 with respect to induced metal cytotoxicity. The results show that expression of DJ-1 enhances the cells' protective mechanisms against induced metal toxicity and that this protection is lost for DJ-1 PD mutations A104T and D149A. The study also shows that oxidation site-mutated DJ-1 C106A retains its ability to protect cells. We also show that concomitant addition of dopamine exposure sensitizes cells to metal-induced cytotoxicity. We also confirm that redox-active dopamine adducts enhance metal-catalyzed oxidation of intracellular proteins in vivo by use of live cell imaging of redox-sensitive S3roGFP. The study indicates that even a small genetic alteration can sensitize cells to metal-induced cell death, a finding that may revive the interest in exogenous factors in the etiology of PD. PMID:23792957

  5. Function of all-metal separators for waste fuels. Phase 1; Funktion av allmetallseparatorer foer avfallsbraenslen. Etapp 1

    Energy Technology Data Exchange (ETDEWEB)

    Jacoby, Juergen; Wrangensten, Lars

    2004-08-01

    Various waste incineration facilities, which use different types of waste fuels, have difficulties with a high content of non-magnetic metal, especially aluminum in their fuels. Aluminum may melt on the grate and can lead to corrosion or fouling in the furnace. Additionally, a high content of aluminum in the flyash may cause difficulties in terms of storage or further use of the ash as e.g. construction material. The industrial demand for efficient separators for non-magnetic metals from a fuel stream is rather large. There is however some uncertainty in the performance and efficiency of metal separators. Two types of separators can be found, the first type is called eddy current separator, the other type is based upon a metal detector with a sorting unit in the form of a chute or similar afterwards. An eddy current separator consists of a fast rotating drum containing several permanent magnets with alternating polarity. Due to the rotation, the change in the magnetic field induces eddy currents in conducting materials. The eddy currents cause a force in non-magnetic metal, the Lorentz force, which repels the material away from the rotating drum while all other material follows the systems flow direction. Systems equipped with a metal detector activate a mechanical sorting device, separate chute or air nozzles, when a metal particle is detected. In contrast to eddy current separators all types of metals can be detected and sorted out by systems based on metal detector. Several technical solutions for metal separation supplied by various manufacturers are described in the report. The companies have been asked to supply product information on the working principle, technical data, efficiency and limits for different types of metals. Two reference power plants have been visited and their experiences with all-metal separators are described. Haendeloeverket in Norrkoeping uses eddy current separators for separation of non-magnetic metals from household waste

  6. SPP propagation in nonlinear glass-metal interface

    KAUST Repository

    Sagor, Rakibul Hasan; Alsunaidi, Mohammad A.; Ooi, Boon S.

    2011-01-01

    The non-linear propagation of Surface-Plasmon-Polaritons (SPP) in single interface of metal and chalcogenide glass (ChG) is considered. A time domain simulation algorithm is developed using the Finite Difference Time Domain (FDTD) method

  7. On the structure of heavy metals

    International Nuclear Information System (INIS)

    Friedel, J.

    1958-01-01

    The properties of the last series of Mendeleef's table are compared with those of the elements of the preceding series. This comparison suggests an electronic structure of the 'transition metal' type, with narrow bands, at the beginning of this series (up to certain phases at least of plutonium); then of the rare earth metal type, with independent non-saturated internal layers, further on in the series. The 5 f orbits seem to play an important part in these two types of structure, from uranium on. A more detailed study of the very heavy elements (americium and beyond) and alloys would allow these conclusions to be confirmed. Certain general points, concerning the nature of homopolar connections and paramagnetism in the transition metals, are developed in an additional section. (author) [fr

  8. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1980-01-01

    A method for preparing particulate metal or metal oxide of controlled partile size comprises contacting an an aqueous solution containing dissolved metal values with excess urea at a temperature sufficient to cause urea to react with water to provide a molten urea solution containing the metal values; heating the molten urea solution to cause the metal values to precipitate, forming a mixture containing precipitated metal values; heating the mixture containing precipitated metal values to evaporate volatile material leaving a dry powder containing said metal values. The dry powder can be calcined to provide particulate metal oxide or reduced to provide particulate metal. Oxide mixtures are provided when the aqueous solution contains values of more than one metal. Homogeneousmetal-metal oxide mistures for preparing cermets can be prepared by selectively reducing at least one of the metal oxides. (auth)

  9. Ultra-stiff metallic glasses through bond energy density design.

    Science.gov (United States)

    Schnabel, Volker; Köhler, Mathias; Music, Denis; Bednarcik, Jozef; Clegg, William J; Raabe, Dierk; Schneider, Jochen M

    2017-07-05

    The elastic properties of crystalline metals scale with their valence electron density. Similar observations have been made for metallic glasses. However, for metallic glasses where covalent bonding predominates, such as metalloid metallic glasses, this relationship appears to break down. At present, the reasons for this are not understood. Using high energy x-ray diffraction analysis of melt spun and thin film metallic glasses combined with density functional theory based molecular dynamics simulations, we show that the physical origin of the ultrahigh stiffness in both metalloid and non-metalloid metallic glasses is best understood in terms of the bond energy density. Using the bond energy density as novel materials design criterion for ultra-stiff metallic glasses, we are able to predict a Co 33.0 Ta 3.5 B 63.5 short range ordered material by density functional theory based molecular dynamics simulations with a high bond energy density of 0.94 eV Å -3 and a bulk modulus of 263 GPa, which is 17% greater than the stiffest Co-B based metallic glasses reported in literature.

  10. A unified picture of the crystal structures of metals

    Science.gov (United States)

    Söderlind, Per; Eriksson, Olle; Johansson, Börje; Wills, J. M.; Boring, A. M.

    1995-04-01

    THE crystal structures of the light actinides have intrigued physicists and chemists for several decades1. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic and hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry-tetragonal, orthorhombic and monoclinic. To understand these differences, we have performed total-energy calculations, as a function of volume, for both high-and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all of these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression.

  11. A unified picture of the crystal structures of metals

    International Nuclear Information System (INIS)

    Soederlind, P.; Eriksson, O.; Johansson, B.; Wills, J.M.; Boring, A.M.

    1995-01-01

    The crystal structures of the light actinides have intrigued physicists and chemists for several decades. Simple metals and transition metals have close-packed, high-symmetry structures, such as body-centred cubic, face-centred cubic hexagonal close packing. In contrast, the structures of the light actinides are very loosely packed and of low symmetry -tetragonal, orthorhombic and monoclinic. To understand these differences, we have have performed total-energy calculations, as a function of volume, for both high- and low-symmetry structures of a simple metal (aluminium), a non-magnetic transition metal (niobium), a ferromagnetic transition metal (iron) and a light actinide (uranium). We find that the crystal structure of all these metals is determined by the balance between electrostatic (Madelung) interactions, which favour high symmetry, and a Peierls distortion of the crystal lattice, which favours low symmetry. We show that simple metals and transition metals can adopt low-symmetry structures on expansion of the lattice; and we predict that, conversely, the light actinides will undergo transitions to structures of higher symmetry on compression. (author)

  12. Non-Equilibrium Solidification of Undercooled Metallic Melts

    Directory of Open Access Journals (Sweden)

    Dieter M. Herlach

    2014-06-01

    Full Text Available If a liquid is undercooled below its equilibrium melting temperature an excess Gibbs free energy is created. This gives access to solidification of metastable solids under non-equilibrium conditions. In the present work, techniques of containerless processing are applied. Electromagnetic and electrostatic levitation enable to freely suspend a liquid drop of a few millimeters in diameter. Heterogeneous nucleation on container walls is completely avoided leading to large undercoolings. The freely suspended drop is accessible for direct observation of rapid solidification under conditions far away from equilibrium by applying proper diagnostic means. Nucleation of metastable crystalline phases is monitored by X-ray diffraction using synchrotron radiation during non-equilibrium solidification. While nucleation preselects the crystallographic phase, subsequent crystal growth controls the microstructure evolution. Metastable microstructures are obtained from deeply undercooled melts as supersaturated solid solutions, disordered superlattice structures of intermetallics. Nucleation and crystal growth take place by heat and mass transport. Comparative experiments in reduced gravity allow for investigations on how forced convection can be used to alter the transport processes and design materials by using undercooling and convection as process parameters.

  13. Method of producing homogeneous mixed metal oxides and metal--metal oxide mixtures

    International Nuclear Information System (INIS)

    Quinby, T.C.

    1978-01-01

    Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution to leave a molten urea solution containing the metal values. The molten urea solution is heated to above about 180 0 C, whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles

  14. Extracting metal ions with diphosphonic acid, or derivative thereof

    Science.gov (United States)

    Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.

    1994-07-26

    Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.

  15. Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells.

    Science.gov (United States)

    Huang, Jianjian; Zhu, Nengwu; Yang, Tingting; Zhang, Taiping; Wu, Pingxiao; Dang, Zhi

    2015-10-15

    Comparing with the precious metal catalysts, non-precious metal catalysts were preferred to use in microbial fuel cells (MFCs) due to the low cost and high oxygen reduction reaction (ORR) efficiency. In this study, the transmission electron microscope and X-ray diffraction as well as Raman investigation revealed that the prepared nanoscale NiO was attached on the surface of CNT. Cyclic voltammogram and rotating ring-disk electrode tests showed that the NiO/CNT composite catalyst had an apparent oxygen reduction peak and 3.5 electron transfer pathway was acquired under oxygen atmosphere. The catalyst performance was highly dependent on the percentage of NiO in the CNT nanocomposites. When 77% NiO/CNT nano-sized composite was applied as cathode catalyst in membrane free single-chamber air cathode MFC, a maximum power density of 670 mW/m(2) and 0.772 V of OCV was obtained. Moreover, the MFC with pure NiO (control) could not achieve more than 0.1 V. All findings suggested that NiO/CNT could be a potential cathode catalyst for ORR in MFCs. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Electrodes synthesized from carbon nanostructures coated with a smooth and conformal metal adlayer

    Science.gov (United States)

    Adzic, Radoslav; Harris, Alexander

    2014-04-15

    High-surface-area carbon nanostructures coated with a smooth and conformal submonolayer-to-multilayer thin metal films and their method of manufacture are described. The preferred manufacturing process involves the initial oxidation of the carbon nanostructures followed by a surface preparation process involving immersion in a solution with the desired pH to create negative surface dipoles. The nanostructures are subsequently immersed in an alkaline solution containing a suitable quantity of non-noble metal ions which adsorb at surface reaction sites. The metal ions are then reduced via chemical or electrical means. The nanostructures are exposed to a solution containing a salt of one or more noble metals which replace adsorbed non-noble surface metal atoms by galvanic displacement. The process can be controlled and repeated to obtain a desired film coverage. The resulting coated nanostructures may be used, for example, as high-performance electrodes in supercapacitors, batteries, or other electric storage devices.

  17. A highly selective method for the synthesis of symmetrical trisubstituted pyridines using transition and non-transition metal salts

    International Nuclear Information System (INIS)

    Sebuov, F.A.; Dzhemilev, U.M.; Ruttan, O.G.

    1986-01-01

    A study was carried out on the reaction of C 2 -C 6 aliphatic acid chlorides with t-BuOH, isobutylene and NH 3 by the action of transition and non-transition metal salts (A1C1 3 , ZnC1 2 , InC1 3 , TiC1 4 , TiC1 3 , WC1 6 , FeC1 3 , CoC1 2 , NiC1 2 and PdC1 2 ) and bimetallic systems A1C1 3 -NiC1 2 and A1C1 3 -PdC1 2 in a search for new catalysts for this reaction which provide for the formation of 2,4,6-trimethylpyridine (I), which has practical importance, and to determine the possibility of using other acid chlorides and isobutylene in this reaction

  18. Aerogels of 1D Coordination Polymers: From a Non-Porous Metal-Organic Crystal Structure to a Highly Porous Material

    Directory of Open Access Journals (Sweden)

    Adrián Angulo-Ibáñez

    2016-01-01

    Full Text Available The processing of an originally non-porous 1D coordination polymer as monolithic gel, xerogel and aerogel is reported as an alternative method to obtain novel metal-organic porous materials, conceptually different to conventional crystalline porous coordination polymer (PCPs or metal-organic frameworks (MOFs. Although the work herein reported is focused upon a particular kind of coordination polymer ([M(μ-ox(4-apy2]n, M: Co(II, Ni(II, the results are of interest in the field of porous materials and of MOFs, as the employed synthetic approach implies that any coordination polymer could be processable as a mesoporous material. The polymerization conditions were fixed to obtain stiff gels at the synthesis stage. Gels were dried at ambient pressure and at supercritical conditions to render well shaped monolithic xerogels and aerogels, respectively. The monolithic shape of the synthesis product is another remarkable result, as it does not require a post-processing or the use of additives or binders. The aerogels of the 1D coordination polymers are featured by exhibiting high pore volumes and diameters ranging in the mesoporous/macroporous regions which endow to these materials the ability to deal with large-sized molecules. The aerogel monoliths present markedly low densities (0.082–0.311 g·cm−3, an aspect of interest for applications that persecute light materials.

  19. Efficacy and safety of a new fully covered self-expandable non-foreshortening metal esophageal stent.

    Science.gov (United States)

    Dua, Kulwinder S; Latif, Sahibzada U; Yang, Juliana F; Fang, Tom C; Khan, Abdul; Oh, Young

    2014-10-01

    Fully covered esophageal self-expandable metal stents (SEMSs) are potentially removable but can be associated with high migration rates. For precise positioning, non-foreshortening SEMSs are preferred. Recently, a new fully covered non-foreshortening SEMS with anti-migration features was introduced. To evaluate the efficacy and safety of this new esophageal SEMS. Retrospective study. Single, tertiary-care center. Consecutive patients with malignant and benign strictures with dysphagia grade of ≥3 and patients with fistulas/leaks were studied. Stent placement and removal. Technical success in stent deployment/removal, efficacy in relieving dysphagia and sealing fistulas/leaks, and adverse events. Forty-three stents were placed in 35 patients (mean [± standard deviation] age 65 ± 11 years; 31 male), 24 for malignant and 11 for benign (5 strictures, 6 leaks) indications. Technical success in precise SEMS placement was 100%. The after-stent dysphagia grade improved significantly (at 1 week: 1.5 ± 0.7; at 4 weeks: 1.2 ± 0.4; baseline: 3.8 ± 0.4; P stents were removed for clinical indications, with technical success of 100%. All leaks sealed after SEMS placement and did not recur after stent removal. All benign strictures recurred after stent removal. Adverse events included migration (14%), chest pain (11%), and dysphagia from tissue hyperplasia (6%). There was no stent-related mortality. Nonrandomized, single-center study. The new esophageal SEMS was effective in relieving malignant dysphagia, allowed for precise placement, and was easily removable. It was effective in treating benign esophageal fistulas and leaks. Stent-related adverse events were acceptable. Copyright © 2014 American Society for Gastrointestinal Endoscopy. Published by Elsevier Inc. All rights reserved.

  20. Influence of non-clay minerals on the interaction between metallic iron and Callovo-Oxfordian clay fraction

    International Nuclear Information System (INIS)

    Rivard, C.; Pelletier, M.; Villieras, F.; Michau, N.

    2012-01-01

    Document available in extended abstract form only. In the context of the geological disposal of high-level radioactive waste, it is of prime importance to understand the interaction mechanisms between the geological matrix, Callovo-Oxfordian clay rock (COx) and metallic iron, from the package overpack. In order to evidence the individual role of each clay component entering in the mineralogy of the COx, interactions between metallic iron and pure clays (smectites, illite and kaolinite) were first conducted. To investigate the role of the other minerals, the reactivity of COx, COx clay fraction (COxCF) and mixtures between COxCF and quartz, calcite or pyrite, was studied. Clays and additional minerals were put in contact with powder metallic iron with a weight ratio iron:clay fixed at 1:3 and a clay:solution ratio of 1:20. Proportions of non-clay minerals were deduced from the average COx composition: 50% clays, 24.5% quartz, 24.5% calcite and 1% pyrite. Batch experiments were carried out in anoxic conditions at 90 deg. C in the presence of background electrolyte (NaCl 0.02 M.L -1 , CaCl 2 0.04 M.L -1 ) in Parr reactors for durations of one, three or nine months. After reaction, solid and liquid phases were separated by centrifugation and characterized by classical techniques combining chemical analyses (liquid analyses, transmission electron microscopy combined with Energy Dispersive of X-rays spectroscopy TEM-EDS), mineralogical (X-ray diffraction), spectroscopic ( 57 Fe Moessbauer) and morphometric techniques (TEM, scanning electron microscopy and N 2 adsorption). For COx, COxCF and all the pure clay phases, major evolutions were observed during the first month, which shows that the oxidation of metallic iron is rapid in our experimental conditions. Release of iron cations in solution, pH increase (8-10) and Eh decrease (reductive conditions) are responsible for the partial dissolution of initial clay phases. Released iron is involved in the crystallization of Fe