WorldWideScience

Sample records for non-magnetic isotropic materials

  1. Optimized cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials

    Energy Technology Data Exchange (ETDEWEB)

    Yu Zhenzhong; Feng Yijun; Xu Xiaofei; Zhao Junming; Jiang Tian, E-mail: yjfeng@nju.edu.cn [Department of Electronic Engineering, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 (China)

    2011-05-11

    We present optimized design of cylindrical invisibility cloak with minimum layers of non-magnetic isotropic materials. Through an optimization procedure based on genetic algorithm, simpler cloak structure and more realizable material parameters can be achieved with better cloak performance than that of an ideal non-magnetic cloak with a reduced set of parameters. We demonstrate that a cloak shell with only five layers of two normal materials can result in an average 20 dB reduction in the scattering width for all directions when covering the inner conducting cylinder with the cloak. The optimized design can substantially simplify the realization of the invisibility cloak, especially in the optical range.

  2. Controlling elastic wave with isotropic transformation materials

    CERN Document Server

    Chang, Zheng; Hu, Gengkai; Tao, Ran; Wang, Yue

    2010-01-01

    There are great demands to design functional devices with isotropic materials, however the transformation method usually leads to anisotropic material parameters difficult to be realized in practice. In this letter, we derive the isotropic transformed material parameters in case of elastodynamic under local conformal transformation, they are subsequently used to design a beam bender, a four-beam antenna and an approximate carpet cloak for elastic wave with isotropic materials, the simulation results validate the derived transformed material parameters. The obtained materials are isotropic and greatly simplify subsequent experimental implementation.

  3. Constitutive modeling for isotropic materials

    Science.gov (United States)

    Chan, K. S.; Lindholm, U. S.; Bodner, S. R.

    1988-01-01

    The third and fourth years of a 4-year research program, part of the NASA HOST Program, are described. The program goals were: (1) to develop and validate unified constitutive models for isotropic materials, and (2) to demonstrate their usefulness for structural analysis of hot section components of gas turbine engines. The unified models selected for development and evaluation were those of Bodner-Partom and of Walker. The unified approach for elastic-viscoplastic constitutive equations is a viable method for representing and predicting material response characteristics in the range where strain rate and temperature dependent inelastic deformations are experienced. This conclusion is reached by extensive comparison of model calculations against the experimental results of a test program of two high temperature Ni-base alloys, B1900+Hf and Mar-M247, over a wide temperature range for a variety of deformation and thermal histories including uniaxial, multiaxial, and thermomechanical loading paths. The applicability of the Bodner-Partom and the Walker models for structural applications has been demonstrated by implementing these models into the MARC finite element code and by performing a number of analyses including thermomechanical histories on components of hot sections of gas turbine engines and benchmark notch tensile specimens. The results of the 4-year program have been published in four annual reports. The results of the base program are summarized in this report. The tasks covered include: (1) development of material test procedures, (2) thermal history effects, and (3) verification of the constitutive model for an alternative material.

  4. Giant spin Seebeck effect in a non-magnetic material.

    Science.gov (United States)

    Jaworski, C M; Myers, R C; Johnston-Halperin, E; Heremans, J P

    2012-07-11

    The spin Seebeck effect is observed when a thermal gradient applied to a spin-polarized material leads to a spatially varying transverse spin current in an adjacent non-spin-polarized material, where it gets converted into a measurable voltage. It has been previously observed with a magnitude of microvolts per kelvin in magnetically ordered materials, ferromagnetic metals, semiconductors and insulators. Here we describe a signal in a non-magnetic semiconductor (InSb) that has the hallmarks of being produced by the spin Seebeck effect, but is three orders of magnitude larger (millivolts per kelvin). We refer to the phenomenon that produces it as the giant spin Seebeck effect. Quantizing magnetic fields spin-polarize conduction electrons in semiconductors by means of Zeeman splitting, which spin-orbit coupling amplifies by a factor of ∼25 in InSb. We propose that the giant spin Seebeck effect is mediated by phonon-electron drag, which changes the electrons' momentum and directly modifies the spin-splitting energy through spin-orbit interactions. Owing to the simultaneously strong phonon-electron drag and spin-orbit coupling in InSb, the magnitude of the giant spin Seebeck voltage is comparable to the largest known classical thermopower values.

  5. Contact mechanics and friction for transversely isotropic viscoelastic materials

    NARCIS (Netherlands)

    Mokhtari, M.; Schipper, D.J.; Vleugels, N.; Noordermeer, J.W.M.; Yoshimoto, S.; Hashimoto, H.

    2015-01-01

    Transversely isotropic materials are an unique group of materials whose properties are the same along two of the principal axes of a Cartesian coordinate system. Various natural and artificial materials behave effectively as transversely isotropic elastic solids. Several materials can be classified

  6. Materials chemistry: A magnetic facelift for non-magnetic metals

    Science.gov (United States)

    Raman, Karthik V.; Moodera, Jagadeesh S.

    2015-08-01

    Copper and manganese have been engineered to show magnetism at room temperature in thin films interfaced with organic molecules. The findings show promise for developing new magnetic materials. See Letter p.69

  7. Constitutive modeling for isotropic materials (HOST)

    Science.gov (United States)

    Chan, Kwai S.; Lindholm, Ulric S.; Bodner, S. R.; Hill, Jeff T.; Weber, R. M.; Meyer, T. G.

    1986-01-01

    The results of the third year of work on a program which is part of the NASA Hot Section Technology program (HOST) are presented. The goals of this program are: (1) the development of unified constitutive models for rate dependent isotropic materials; and (2) the demonstration of the use of unified models in structural analyses of hot section components of gas turbine engines. The unified models selected for development and evaluation are those of Bodner-Partom and of Walker. A test procedure was developed for assisting the generation of a data base for the Bodner-Partom model using a relatively small number of specimens. This test procedure involved performing a tensile test at a temperature of interest that involves a succession of strain-rate changes. The results for B1900+Hf indicate that material constants related to hardening and thermal recovery can be obtained on the basis of such a procedure. Strain aging, thermal recovery, and unexpected material variations, however, preluded an accurate determination of the strain-rate sensitivity parameter is this exercise. The effects of casting grain size on the constitutive behavior of B1900+Hf were studied and no particular grain size effect was observed. A systematic procedure was also developed for determining the material constants in the Bodner-Partom model. Both the new test procedure and the method for determining material constants were applied to the alternate material, Mar-M247 . Test data including tensile, creep, cyclic and nonproportional biaxial (tension/torsion) loading were collected. Good correlations were obtained between the Bodner-Partom model and experiments. A literature survey was conducted to assess the effects of thermal history on the constitutive behavior of metals. Thermal history effects are expected to be present at temperature regimes where strain aging and change of microstructure are important. Possible modifications to the Bodner-Partom model to account for these effects are outlined

  8. The Effectof Insert of WC Powder on the Surface Hardening of Non Magnetic Foundry Materials

    OpenAIRE

    Ike, Hiroyuki; Shobuzawa, Yoshiyuki; Goto, Shoji; Aso, Setsuo; Konishi, Nobuo

    2002-01-01

    Non magnetic foundry materials such as the austenitic stainless cast steel had not been used for abrasion resistant materials, because their hardnesses were very low. Usually, ceramics, cermets and cemented carbides are used for the abrasion resistant materials even though they are expensive compared with foundry materials. In this study, WC powder were inserted by using the austenitic stainless cast steel (JIS SCS13A) and the austenitic cast iron (JIS FCA-NiCr202) for producing surface ha...

  9. Elasticity of transversely isotropic materials%"Elasticity of Transversely Isotropic Materials"一书评介

    Institute of Scientific and Technical Information of China (English)

    王敏中

    2006-01-01

    @@ 浙江大学土木系丁皓江教授和陈伟球教授及澳大利亚悉尼大学航空、机械与机电工程学院章亮炽教授的专著"Elasticity of Transversely Isotropic Materials"(ISBN:1-4020-4033-4),2006年由Springer公司出版,该书是加拿大著名力学家G.M.L.Gladwell 教授主编的丛书"Solid Mechanics and its Applications"的第126本,是我国大陆学者第一次在该丛书框架下出版专著.

  10. Implementation of Cavity Perturbation Method for Determining Relative Permittivity of Non Magnetic Materials

    Directory of Open Access Journals (Sweden)

    FAHIM GOHARAWAN

    2017-04-01

    Full Text Available Techniques for the cavity measurement of the electrical characteristics of the materials are well established using the approximate method due to its simplicity in material insertion and fabrication. However, the exact method which requires more comprehensive mathematical analysis as well, owing to the practical difficulties for the material insertion, is not mostly used while performing the measurements as compared to approximate method in most of the works. In this work the comparative analysis of both the approximate as well as Exact method is performed and accuracy of the Exact method is established by performing the measurements of non-magnetic material Teflon within the cavity.

  11. Simultaneous amplification and attenuation in isotropic chiral materials

    CERN Document Server

    Mackay, Tom G

    2015-01-01

    The electromagnetic field phasors in an isotropic chiral material (ICM) are superpositions of two Beltrami fields of different handedness. Application of the Bruggeman homogenization formalism to two-component composite materials delivers ICMs wherein Beltrami fields of one handedness attenuate whereas Beltrami waves of the other handedness amplify. One component material is a dissipative ICM, the other an active dielectric material.

  12. GENERAL EXPRESSIONS OF CONSTITUTIVE EQUATIONS FOR ISOTROPIC ELASTIC DAMAGED MATERIALS

    Institute of Scientific and Technical Information of China (English)

    唐雪松; 蒋持平; 郑健龙

    2001-01-01

    The general expressions of constitutive equations for isotropic elastic damaged materials were derived directly from the basic law of irreversible thermodynamics. The limitations of the classical damage constitutive equation based on the well-known strain equivalence hypothesis were overcome. The relationships between the two elastic isotropic damage models(i. e. single and double scalar damage models)were revealed. When a single scalar damage variable defined according to the microscopic geometry of a damaged material is used to describle the isotropic damage state, the constitutive equations contain two "damage effect functions", which describe the different influences of damage on the two independent elastic constants. The classical damage constitutive equation based on the strain equivalence hypothesis is only the first-order approximation of the general expression.It may be unduly simplified and may fail to describe satisfactorily the damage phenomena of practical materials.

  13. Bulk isotropic negative-index material design for infrared

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei

    Responding to the strong call for isotropic bulk negative index material we propose a Split Cube in Car-cass design. It shows negative refractive index -1.5, figure-of-merit 2 and transmittivity 30% for one layer at the telecommunication wavelength 1.6 μm. Effective parameters converge fast with ...

  14. Simultaneous amplification and attenuation in isotropic chiral materials

    Science.gov (United States)

    Mackay, Tom G.; Lakhtakia, Akhlesh

    2016-05-01

    The electromagnetic field phasors in an isotropic chiral material (ICM) are superpositions of two Beltrami fields of different handedness. Application of the Bruggeman homogenization formalism to two-component composite materials delivers ICMs wherein Beltrami fields of one handedness attenuate whereas Beltrami fields of the other handedness amplify. One component material is a dissipative ICM, the other an active dielectric material. The range of the volume fraction of the active component material for which simultaneous amplification and attenuation is exhibited decreases—but does not vanish—as the ICM component becomes more dissipative and as its chirality parameter reduces in magnitude.

  15. Elastic constants of Transversely Isotropically Porous (TIP) materials

    Energy Technology Data Exchange (ETDEWEB)

    Tuchinskii, L.I.; Kalimova, N.L. [Institute of Problems of Materials Science, Kiev (Ukraine)

    1994-11-01

    The authors derive formulas describing the dependence of the elastic characteristics of multicapillary materials on the capillary porosity. The investigated materials are classified as transversely isotropic, and the anisotropy in their properties is the result of the directionality of the capillary pores. Analysis of the dependences obtained has shown that the elasticity moduli of these materials may be calculated using formulas suggested for reinforced materials, in which the elastic constants of the fibers are assumed to be equal to zero. The authors derive a relation between the Poisson`s ratios and the capillary porosity.

  16. Large Deformation Constitutive Laws for Isotropic Thermoelastic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Plohr, Bradley J. [Los Alamos National Laboratory; Plohr, Jeeyeon N. [Los Alamos National Laboratory

    2012-07-25

    We examine the approximations made in using Hooke's law as a constitutive relation for an isotropic thermoelastic material subjected to large deformation by calculating the stress evolution equation from the free energy. For a general thermoelastic material, we employ the volume-preserving part of the deformation gradient to facilitate volumetric/shear strain decompositions of the free energy, its first derivatives (the Cauchy stress and entropy), and its second derivatives (the specific heat, Grueneisen tensor, and elasticity tensor). Specializing to isotropic materials, we calculate these constitutive quantities more explicitly. For deformations with limited shear strain, but possibly large changes in volume, we show that the differential equations for the stress components involve new terms in addition to the traditional Hooke's law terms. These new terms are of the same order in the shear strain as the objective derivative terms needed for frame indifference; unless the latter terms are negligible, the former cannot be neglected. We also demonstrate that accounting for the new terms requires that the deformation gradient be included as a field variable

  17. AN INVESTIGATION ON SOFT MAGNETIC AND NON-MAGNETIC MATERIALS UNDER LOW FREQUENCY FOR BIOMEDICAL SENSOR APPLICATION

    Directory of Open Access Journals (Sweden)

    Sheroz Khan

    2012-02-01

    Full Text Available In consequence of the recent development of magnetic sensors in biomedical sector, the investigation of magneticmaterials has been a contributing factor in application stage. This paper proposes a novel technique to investigate materials by obtaining unique distinctive impedance peaks with unique impedance values. A magneto-inductive sensoris used to measure the induction of magnetic and non-magnetic impedance peaks related to the change in permeability, thus characterizing the materials under low frequency.

  18. A Comprehensive Theory of Yielding and Failure for Isotropic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, R M

    2006-08-10

    A theory of yielding and failure for homogeneous and isotropic materials is given. The theory is calibrated by two independent, measurable properties and from those it predicts possible failure for any given state of stress. It also differentiates between ductile yielding and brittle failure. The explicit ductile-brittle criterion depends not only upon the material specification through the two properties, but also and equally importantly depends upon the type of imposed stress state. The Mises criterion is a special (limiting) case of the present theory. A close examination of this case shows that the Mises material idealization does not necessarily imply ductile behavior under all conditions, only under most conditions. When the first invariant of the yield/failure stress state is sufficiently large relative to the distortional part, brittle failure will be expected to occur. For general material types, it is shown that it is possible to have a state of spreading plastic flow, but as the elastic-plastic boundary advances, the conditions for yielding on it can change over to conditions for brittle failure because of the evolving stress state. The general theory is of a three dimensional form and it applies to full density materials for which the yield/failure strength in uniaxial tension is less than or at most equal to the magnitude of that in uniaxial compression.

  19. A multiaxial theory of viscoplasticity for isotropic materials

    Science.gov (United States)

    Robinson, D. N.; Ellis, J. R.

    1986-01-01

    Many viscoplastic constitutive models for high temperature structural alloys are based exclusively on uniaxial test data. Generalization to multiaxial states of stress is made by assuming the stress dependence to be on the second principal invariant (J sub 2) of the deviatoric stress, frequently called the effective stress. If such a J sub 2 theory, based on uniaxial testing, is called upon to predict behavior under conditions other than uniaxial, e.g., pure shear, and it does so poorly, nothing is left to adjust in the theory. For a fully isotropic material whose inelastic deformation behavior is relatively independent of hydrostatic stress, the most general stress dependence is on the two (non-zero) principal invariants of the deviatoric stress, J sub 2 and J sub 3. These invariants constitute what is known as an integrity basis for the material. A time dependent constitutive theory with stress dependence on J sub 2 and J sub 3 is presented, that reduces to a known J sub 2 theory as a special case.

  20. Shrinking device realized by using layered structures of homogeneous isotropic materials

    Institute of Scientific and Technical Information of China (English)

    Guo Ya-Nan; Liu Shao-Bin; Zhao Xin; Wang Shen-Yun; Chen Chen

    2012-01-01

    We propose the practical realization of a shrinking device by using layered structures of homogeneous isotropic materials.By mimicking the shrinking device with concentric alternating thin layers of isotropic dielectrics,the permittivity and the permeability in each isotropic layer can be properly determined from the effective medium theory in order to achieve the shrinking effect.The device realized by multilayer coating with dielectrics is validated by TE wave simulation,and good shrinking performance is demonstrated with only a few layers of homogeneous isotropic materials.

  1. Two-dimensional isotropic damage elastoplastic model for quasi-brittle material

    OpenAIRE

    Beneš, P. (Pavel); Vavřík, D. (Daniel)

    2014-01-01

    Micro-mechanical model for isotropic damage of quasi-brittle material including frictionis presented. Damage is assumed to be isotropic and scalar damage variable is employed . Operatorsplitting method is applied. The article contains derived expressions for derivations necessary forcomputation of coefficients in two dimensions for strain and damage normality rules.

  2. 3D analytical solution for a rotating transversely isotropic annular plate of functionally graded materials

    Institute of Scientific and Technical Information of China (English)

    CHEN Jiang-ying; CHEN Wei-qiu

    2007-01-01

    The analytical solution for an annular plate rotating at a constant angular velocity is derived by means of direct displacement method from the elasticity equations for axisymmetric problems of functionally graded transversely isotropic media.The displacement components are assumed as a linear combination of certain explicit functions of the radial coordinate, with seven undetermined coefficients being functions of the axial coordinate z. Seven equations governing these z-dependent functions are derived and solved by a progressive integrating scheme. The present solution can be degenerated into the solution of a rotating isotropic functionally graded annular plate. The solution also can be degenerated into that for transversely isotropic or isotropic homogeneous materials. Finally, a special case is considered and the effect of the material gradient index on the elastic field is illustrated numerically.

  3. On metallic gratings coated conformally with isotropic negative-phase-velocity materials

    Energy Technology Data Exchange (ETDEWEB)

    Inchaussandague, Marina E. [GEA-Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, Buenos Aires (Argentina)], E-mail: mei@df.uba.ar; Lakhtakia, Akhlesh [CATMAS-Computational and Theoretical Materials Sciences Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States)], E-mail: akhlesh@psu.edu; Depine, Ricardo A. [GEA-Grupo de Electromagnetismo Aplicado, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina); CONICET-Consejo Nacional de Investigaciones Cientificas y Tecnicas, Rivadavia 1917, Buenos Aires (Argentina)], E-mail: rdep@df.uba.ar

    2008-03-31

    Application of the differential method (also called the C method) to plane-wave diffraction by a perfectly conducting, sinusoidally corrugated metallic grating coated with a linear, homogeneous, isotropic, lossless dielectric-magnetic material shows that coating materials with negative index of refraction may deliver enhanced maximum nonspecular reflection efficiencies in comparison to coating materials with positive index of refraction.

  4. Negative refractive index metamaterials from inherently non-magnetic materials for deep infrared to terahertz frequency ranges.

    Science.gov (United States)

    Yannopapas, Vassilios; Moroz, Alexander

    2005-06-29

    We present a new set of artificial structures which can exhibit a negative refractive index band in excess of 6% in a broad frequency range from the deep infrared to the terahertz region. The structures are composites of two different kinds of non-overlapping spheres, one made from inherently non-magnetic polaritonic and the other from a Drude-like material. The polaritonic spheres are responsible for the existence of negative effective magnetic permeability whilst the Drude-like spheres are responsible for negative effective electric permittivity. The resulting negative refractive index structures are truly subwavelength structures with wavelength-to-structure ratio 14:1, which is almost 50% higher than has been previously achieved. Our results are explained in the context of the extended Maxwell-Garnett theory and are reproduced by calculations based on the layer Korringa-Kohn-Rostoker method, an ab initio multiple scattering theory. The role of absorption in the constituent materials is discussed. Effective medium computer F77 code is freely available at http://www.wave-scattering.com.

  5. Acoustic carpet invisibility cloak with two open windows using multilayered homogeneous isotropic material

    Institute of Scientific and Technical Information of China (English)

    Ren Chun-Yu; Xiang Zhi-Hai; Cen Zhang-Zhi

    2011-01-01

    We present a method for designing an open acoustic cloak that can conceal a perturbation on flat ground and simultaneously meet the requirement of communication and matter interchange between the inside and the outside of the cloak.This cloak can be constructed with a multilayered structure and each layer is an isotropic and homogeneous medium.The design scheme consists of two steps:firstly,we apply a conformal coordinate transformation to obtain a quasi-perfect cloak with heterogeneous isotropic material; then,according to the profile of the material distribution,we degenerate this cloak into a multilayered-homogeneous isotropic cloak,which has two open windows with negligible disturbance on its invisibility performance.This may greatly facilitate the fabrication and enhance the applicability of such a carpet-type cloak.

  6. Pure bending of simply supported circular plate of transversely isotropic functionally graded material

    Institute of Scientific and Technical Information of China (English)

    LI Xiang-yu; DING Hao-jiang; CHEN Wei-qiu

    2006-01-01

    This paper considers the pure bending problem of simply supported transversely isotropic circular plates with elastic compliance coefficients being arbitrary functions of the thickness coordinate. First, the partial differential equation, which is satisfied by the stress functions for the axisymmetric deformation problem is derived. Then, stress functions are obtained by proper manipulation. The analytical expressions of axial force, bending moment and displacements are then deduced through integration.And then, stress functions are employed to solve problems of transversely isotropic functionally graded circular plate, with the integral constants completely determined from boundary conditions. An elasticity solution for pure bending problem, which coincides with the available solution when degenerated into the elasticity solutions for homogenous circular plate, is thus obtained.A numerical example is finally presented to show the effect of material inhomogeneity on the elastic field in a simply supported circular plate of transversely isotropic functionally graded material (FGM).

  7. Compound surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a periodically multilayered isotropic dielectric material

    CERN Document Server

    Chiadini, Francesco; Scaglione, Antonio; Lakhtakia, Akhlesh

    2015-01-01

    Multiple p- and s-polarized compound surface plasmon-polariton (SPP) waves at a fixed frequency can be guided by a structure consisting of a metal layer sandwiched between a homogeneous isotropic dielectric (HID) material and a periodic multilayered isotropic dielectric (PMLID) material. For any thickness of the metal layer, at least one compound SPP wave must exist. It possesses the p-polarization state, is strongly bound to the metal/HID interface when the metal thickness is large but to both metal/dielectric interfaces when the metal thickness is small. When the metal layer vanishes, this compound SPP wave transmutes into a Tamm wave. Additional compound SPP waves exist, depending on the thickness of the metal layer, the relative permittivity of the HID material, and the period and the composition of the PMLID material. Some of these are p polarized, the others being s polarized. All of them differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. The...

  8. Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material

    CERN Document Server

    Ni, Jincheng; Zhang, Chenchu; Hu, Yanlei; Yang, Liang; Lao, Zhaoxin; Xu, Bing; Li, Jiawen; Wu, Dong; Chu, Jiaru

    2016-01-01

    Optical vortices, as a kind of structured beam with helical phase wavefronts and doughnut shape intensity distribution, have been used for fabricating chiral structures in metal and spiral patterns in anisotropic polarization-dependent azobenzene polymer. However, in isotropic polymer, the fabricated microstructures are typically confined to non-chiral cylindrical geometry due to two-dimensional doughnut intensity profile of optical vortices. Here we develop a powerful strategy for realizing chiral microstructures in isotropic material by coaxial interference of a vortex beam and a plane wave, which produces three-dimensional (3D) spiral optical fields. This coaxial interference beams are creatively produced by designing the contrivable holograms consisting of azimuthal phase and equiphase loaded on liquid-crystal spatial light modulator. Then, in isotropic polymer, 3D chiral microstructures are achieved under illumination of the coaxial interference femtosecond laser beams with their chirality controlled by ...

  9. Topological optimization for the design of microstructures of isotropic cellular materials

    Science.gov (United States)

    Radman, A.; Huang, X.; Xie, Y. M.

    2013-11-01

    The aim of this study was to design isotropic periodic microstructures of cellular materials using the bidirectional evolutionary structural optimization (BESO) technique. The goal was to determine the optimal distribution of material phase within the periodic base cell. Maximizing bulk modulus or shear modulus was selected as the objective of the material design subject to an isotropy constraint and a volume constraint. The effective properties of the material were found using the homogenization method based on finite element analyses of the base cell. The proposed BESO procedure utilizes the gradient-based sensitivity method to impose the isotropy constraint and gradually evolve the microstructures of cellular materials to an optimum. Numerical examples show the computational efficiency of the approach. A series of new and interesting microstructures of isotropic cellular materials that maximize the bulk or shear modulus have been found and presented. The methodology can be extended to incorporate other material properties of interest such as designing isotropic cellular materials with negative Poisson's ratio.

  10. On the consistency of complex moduli for transversely-isotropic viscoelastic materials

    Science.gov (United States)

    Lesieutre, George A.

    The ability of advanced composite materials and structures to damp vibration is important in many applications. Use of the complex modulus approach to represent the dissipative properties of transversely-isotropic materials, such as unidirectional fiber-reinforced composites, requires the definition of a set of 5 (imaginary) loss moduli in addition to the 5 (real) storage moduli needed to describe the elastic behavior. In practice, designers of composite materials rarely have experimental data for all 5 loss moduli, and must assume values for the remaining moduli in their analyses. If values for these unknown loss moduli are specified arbitrarily, physically unreasonable behavior can result. This paper develops the conditions necessary for physical consistency of the complex moduli of transversely isotropic materials.

  11. Determining Loading Field based on Required Deformation for Isotropic Hardening Material

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Eringen's and Trusedell's polar decomposition are formulated by explicit formulation of displacement field, based on Chen's additive decomposition of deformation gradient. Then the strain introduced by the multiplicative decomposition and the strain introduced by the additive decomposition are formulated explicitly with displacement gradient. This formulation clears the intrinsic contents of strains defined by taking the Eringen's and Trusedell's polar decomposition. After that, Chen's strain definition was introduced to show that the plastic deformation can be understood as the irreversible local average rotation. For initial isotropic simple elastic material, the research shows that path-dependent feature of classical plasticity theory is naturally expressed in Chen's strain definition. For rate-independent plasticity, the related deformation stress was discussed. The research shows that for isotropic hardening material the relation equation between the required geometric configuration and the corresponding loading field is explicitly formulated. Hence, for metal forming, this paper explicitly formulates the related fields by displacement field and invariant elastic constants.

  12. Carbon Fiber Reinforced Polymer with Shredded Fibers: Quasi-Isotropic Material Properties and Antenna Performance

    OpenAIRE

    Gerald Artner; Philipp K. Gentner; Johann Nicolics; Mecklenbräuker, Christoph F.

    2017-01-01

    A carbon fiber reinforced polymer (CFRP) laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the...

  13. Generalization of strain-gradient theory to finite elastic deformation for isotropic materials

    Science.gov (United States)

    Beheshti, Alireza

    2017-03-01

    This paper concerns finite deformation in the strain-gradient continuum. In order to take account of the geometric nonlinearity, the original strain-gradient theory which is based on the infinitesimal strain tensor is rewritten given the Green-Lagrange strain tensor. Following introducing the generalized isotropic Saint Venant-Kirchhoff material model for the strain-gradient elasticity, the boundary value problem is investigated in not only the material configuration but also the spatial configuration building upon the principle of virtual work for a three-dimensional solid. By presenting one example, the convergence of the strain-gradient and classical theories is studied.

  14. Carbon Fiber Reinforced Polymer with Shredded Fibers: Quasi-Isotropic Material Properties and Antenna Performance

    Directory of Open Access Journals (Sweden)

    Gerald Artner

    2017-01-01

    Full Text Available A carbon fiber reinforced polymer (CFRP laminate, with the top layer consisting of shredded fibers, is proposed and manufactured. The shredded fibers are aligned randomly on the surface to achieve a more isotropic conductivity, as is desired in antenna applications. Moreover, fiber shreds can be recycled from carbon fiber composites. Conductivity, permittivity, and permeability are obtained with the Nicolson-Ross-Weir method from material samples measured inside rectangular waveguides in the frequency range of 4 to 6 GHz. The decrease in material anisotropy results in negligible influence on antennas. This is shown by measuring the proposed CFRP as ground plane material for both a narrowband wire monopole antenna for 5.9 GHz and an ultrawideband conical monopole antenna for 1–10 GHz. For comparison, all measurements are repeated with a twill-weave CFRP.

  15. Design of diamond-shaped transient thermal cloaks with homogeneous isotropic materials

    Science.gov (United States)

    Li, Ting-Hua; Zhu, Dong-Lai; Mao, Fu-Chun; Huang, Ming; Yang, Jing-Jing; Li, Shou-Bo

    2016-10-01

    Transformation thermodynamics as a major extension of transformation optics has recently received considerable attention. In this paper, we present two-dimensional (2D) and three-dimensional (3D) diamond-shaped transient thermal cloaks with non-singular homogeneous material parameters. The absence of singularity in the parameters results from the fact that the linear coordinate transformation is performed by expanding a line segment rather than a point into a region, while the mechanism behind the homogeneity is the homogeneous stretching and compression along orthogonal directions during the transformation. Although the derived parameters remain anisotropic, we further show that this can be circumvented by considering a layered structure composed of only four types of isotropic materials based on the effective medium theory. Numerical simulation results confirm the good performance of the proposed cloaks.

  16. Numerical study of the thermal degradation of isotropic and anisotropic polymeric materials

    Energy Technology Data Exchange (ETDEWEB)

    Soler, E. [Departamento de Lenguajes y Ciencias de la Computacion, ETSI Informatica, Universidad de Malaga, 29071 Malaga (Spain); Ramos, J.I. [Room I-320-D, ETS Ingenieros Industriales, Universidad de Malaga, Plaza El Ejido, s/n, 29013 Malaga (Spain)

    2005-08-01

    The thermal degradation of two-dimensional isotropic, orthotropic and anisotropic polymeric materials is studied numerically by means of a second-order accurate (in both space and time) linearly implicit finite difference formulation which results in linear algebraic equations at each time step. It is shown that, for both isotropic and orthotropic composites, the monomer mass diffusion tensor plays a role in initiating the polymerization kinetics, the formation of a polymerization kernel and the initial front propagation, whereas the later stages of the polymerization are nearly independent of the monomer mass diffusion tensor. In anisotropic polymeric composites, it has been found that the monomer mass diffusion tensor plays a paramount role in determining the initial stages of the polymerization and the subsequent propagation of the polymerization front, the direction and speed of propagation of which are found to be related to the principal directions of both the monomer mass and the heat diffusion tensors. It is also shown that the polymerization time and temperatures depend strongly on the anisotropy of the mass and heat diffusion tensors. (authors)

  17. Cylindrical lateral depth-sensing indentation testing of thin transversely isotropic elastic films: Incompressible and weakly compressible materials

    CERN Document Server

    Argatov, I

    2015-01-01

    An indentation testing method, which utilizes lateral contact of a long cylindrical indenter, is developed for a thin transversely isotropic incompressible elastic film deposited onto a smooth rigid substrate. It is assumed that the material symmetry plane is orthogonal to the substrate surface, and the film thickness is small compared to the cylinder indenter length. The presented testing methodology is based on a least squares best fit of the first-order asymptotic model to the depth-sensing indentation data for recovering three independent elastic moduli which characterize an incompressible transversely isotropic material. The case of a weakly compressible material, which is important for biological tissues, is also discussed.

  18. TRANSVERSELY ISOTROPIC HYPER-ELASTIC MATERIAL RECTANGULAR PLATE WITH VOIDS UNDER A UNIAXIAL EXTENSION

    Institute of Scientific and Technical Information of China (English)

    程昌钧; 任九生

    2003-01-01

    The finite deformation and stress analyses for a transversely isotropic rectangularplate with voids and made of hyper-elastic material with the generalized neo-Hookean strainenergy function under a uniaxial extension are studied. The deformation functions of plateswith voids that are symmetrically distributed in a certain manner are given and the functionsare expressed by two parameters by solving the differential equations. The solution may beapproximately obtained from the minimum potential energy principle. Thus, the analyticsolutions of the deformation and stress of the plate are obtained. The growth of the void.s andthe distribution of stresses along the voids are analyzed and the influences of the degree ofanisotropy, the size of the voids and the distance between the voids are discussed. Thecharacteristics of the growth of the voids and the distribution of stresses of the plates with onevoid, three or five voids are obtained and compared.

  19. Three-dimension isotropic negative permeability material made of eight-split-ring resonator

    Directory of Open Access Journals (Sweden)

    Zijian Tian

    2017-03-01

    Full Text Available Based on a traditional split-ring resonator, a new type of eight-split-ring resonator structure, capable of providing negative permeability, is proposed in the paper. A three-dimension structure, consisting of three orthogonal eight-split-ring resonators, is a kind of three-dimension isotropic negative permeability structure. Simulation results show that in a three-dimensional space, the magnetic resonance behavior of three-dimensional structure is independent of electromagnetic wave direction and can give negative permeability at the frequency around 4.1GHz. Also, it is demonstrated that the orthogonal pattern in such three-dimension structure does not affect magnetic resonance behavior, facilitating structural analysis and material preparation. The paper provides a reference to the development of metamaterials towards multiple dimensions and directions.

  20. Three-dimension isotropic negative permeability material made of eight-split-ring resonator

    Science.gov (United States)

    Tian, Zijian; Wang, Xuqi; Li, Weixiang; Fan, Jing

    2017-03-01

    Based on a traditional split-ring resonator, a new type of eight-split-ring resonator structure, capable of providing negative permeability, is proposed in the paper. A three-dimension structure, consisting of three orthogonal eight-split-ring resonators, is a kind of three-dimension isotropic negative permeability structure. Simulation results show that in a three-dimensional space, the magnetic resonance behavior of three-dimensional structure is independent of electromagnetic wave direction and can give negative permeability at the frequency around 4.1GHz. Also, it is demonstrated that the orthogonal pattern in such three-dimension structure does not affect magnetic resonance behavior, facilitating structural analysis and material preparation. The paper provides a reference to the development of metamaterials towards multiple dimensions and directions.

  1. Three-Dimensional Interfacial Green’s Function for Exponentially Graded Transversely Isotropic Bi-Materials

    Directory of Open Access Journals (Sweden)

    Farzad Akbari

    2016-06-01

    Full Text Available By virtue of a complete set of two displacement potentials, an analytical derivation of the elastostatic Green’s functions of an exponentially graded transversely isotropic bi-material full-space was presented. Three-dimensional point-load Green’s functions for stresses and displacements were given in line-integral representations. The formulation included a complete set of transformed stress-potential and displacement-potential relations, with the utilization of Fourier series and Hankel transform. As illustrations, the present Green’s functions were analytically degenerated into special cases, such as exponentially graded half-space and homogeneous full-space bi-material Green’s functions. Owing to the complicated integrand functions, the integrals were evaluated numerically, and in computing the integrals numerically, a robust and effective methodology was laid out which provided the necessary account of the presence of singularities of integration. Some typical numerical examples were also illustrated to demonstrate the general features of the exponentially graded bi-material Green’s functions which will be recognized by the effect of degree of variation of material properties.

  2. Analytical applications and effective properties of a second gradient isotropic elastic material model

    Science.gov (United States)

    Enakoutsa, Koffi

    2015-06-01

    Recently, the works by Toupin, Mindlin, Sokolowski and Germain have been developed following two research streams. In the first one, higher-order gradient continuum models were developed based on the Cauchy tetrahedron argument (see, e.g., dell'Isola and Seppecher in Comptes Rendus de l Academie de Sciences 17 Serie IIb: Mecanique, Physique, Chimie, Astronomie 321:303-308, 1995, Meccanica 32:33-52 1997, Zeitschrift fr Angewandte Mathematik und Physik 63(6):1119-1141, 2012). In the second one, the structure of higher-order gradient models is developed with a view to the applications. In particular in the model of linear isotropic solids proposed by Dell'Isola, Sciarra and Vidoli (DSV), the main constitutive equation is obtained for the case of second gradient models. This model introduces in addition to the two well-known Lame's elastic constants five constitutive constants. The practical applications of this model remain in its infancy since the issue of determining the new moduli it introduces is not yet completely addressed. Also, analytical solutions of simple boundary value problems that can be helpful to grasp some of the physical foundations of this model are missing. This paper aims to address these two issues by providing the analytical solutions for two model problems, a spherical shell subjected to axisymmetric loading conditions and the circular bending of a beam in plane strain, both the beam and the shell obeying the DSV second gradient isotropic elastic model. The solution of the circular bending of a beam has served to grasp some of the physical soundness of the model. A framework based on homogenization under inhomogeneous boundary conditions is also suggested to determine the unknown constitutive constants, which are provided in the particular case of elastic porous heterogeneous materials.

  3. Prediction and measurement of thermal transport across interfaces between isotropic solids and graphitic materials.

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Pamela M.; Smoyer, Justin L.; Duda, John Charles.; Hopkins, Patrick E.

    2010-06-01

    Due to the high intrinsic thermal conductivity of carbon allotropes, there have been many attempts to incorporate such structures into existing thermal abatement technologies. In particular, carbon nanotubes (CNTs) and graphitic materials (i.e., graphite and graphene flakes or stacks) have garnered much interest due to the combination of both their thermal and mechanical properties. However, the introduction of these carbon-based nanostructures into thermal abatement technologies greatly increases the number of interfaces per unit length within the resulting composite systems. Consequently, thermal transport in these systems is governed as much by the interfaces between the constituent materials as it is by the materials themselves. This paper reports the behavior of phononic thermal transport across interfaces between isotropic thin films and graphite substrates. Elastic and inelastic diffusive transport models are formulated to aid in the prediction of conductance at a metal-graphite interface. The temperature dependence of the thermal conductance at Au-graphite interfaces is measured via transient thermoreflectance from 78 to 400 K. It is found that different substrate surface preparations prior to thin film deposition have a significant effect on the conductance of the interface between film and substrate.

  4. An intrinsic growth instability in isotropic materials leads to quasi-two-dimensional nanoplatelets

    Science.gov (United States)

    Riedinger, Andreas; Ott, Florian D.; Mule, Aniket; Mazzotti, Sergio; Knüsel, Philippe N.; Kress, Stephan J. P.; Prins, Ferry; Erwin, Steven C.; Norris, David J.

    2017-07-01

    Colloidal nanoplatelets are atomically flat, quasi-two-dimensional sheets of semiconductor that can exhibit efficient, spectrally pure fluorescence. Despite intense interest in their properties, the mechanism behind their highly anisotropic shape and precise atomic-scale thickness remains unclear, and even counter-intuitive for commonly studied nanoplatelets that arise from isotropic crystal structures (such as zincblende CdSe and lead halide perovskites). Here we show that an intrinsic instability in growth kinetics can lead to such highly anisotropic shapes. By combining experimental results on the synthesis of CdSe nanoplatelets with theory predicting enhanced growth on narrow surface facets, we develop a model that explains nanoplatelet formation as well as observed dependencies on time and temperature. Based on standard concepts of volume, surface and edge energies, the resulting growth instability criterion can be directly applied to other crystalline materials. Thus, knowledge of this previously unknown mechanism for controlling shape at the nanoscale can lead to broader libraries of quasi-two-dimensional materials.

  5. Effect of Isotropic Assumption on Material Property Reconstructions of the Human Brain using Magnetic Resonance Elastography

    Science.gov (United States)

    Anderson, Aaron; Johnson, Curtis; Holtrop, Joseph; McGarry, Mathew; Paulsen, Keith; Sutton, Bradley; van Houten, Elijah; Georgiadis, John

    2015-03-01

    Neurodegenerative diseases affect the microstructure of the brain and thus have a significant effect on the tissue mechanical properties. In vivo techniques, like magnetic resonance elastography (MRE), have shown promise as a contrast technique for disease detection. MRE is a non-invasive technique for measuring the viscoelastic mechanical properties of biological tissue by applying a low-amplitude shear wave, capturing the wave patterns with specialized magnetic resonance imaging techniques, and employing an isotropic nonlinear inversion (NLI) material property reconstruction. When distinctly different shear wave patterns are applied, NLI reconstructs differences in the real component of the shear modulus of ~ 2 [ kPa ] within well ordered white matter (WM). The difference is significant due to the human brain only having a range of real shear modulus from 0 [ kPa ] (cerebral spinal fluid) to ~ 5 [ kPa ] (white matter). The focus of this investigation is to quantify the effect of propagation direction on the reconstructed material properties and examine their relationship to the underlying microstructure in a well ordered, WM regions of the brain (corpus callosum).

  6. Three-Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self-Assembled Chiral Gyroid Networks

    KAUST Repository

    Hur, Kahyun

    2011-10-17

    Metamaterials are engineered artificial materials that offer new functionalities such as super-resolution imaging and cloaking. Calculations of the photonic properties of three-dimensionally isotropic metamaterials with cubic double gyroid and alternating gyroid morphologies from block copolymer self-assembly are presented.

  7. Smart Optical Composite Materials: Dispersions of Metal-Organic Framework@Superparamagnetic Microrods for Switchable Isotropic-Anisotropic Optical Properties.

    Science.gov (United States)

    Mandel, Karl; Granath, Tim; Wehner, Tobias; Rey, Marcel; Stracke, Werner; Vogel, Nicolas; Sextl, Gerhard; Müller-Buschbaum, Klaus

    2017-01-24

    A smart optical composite material with dynamic isotropic and anisotropic optical properties by combination of luminescence and high reflectivity was developed. This combination enables switching between luminescence and angle-dependent reflectivity by changing the applied wavelength of light. The composite is formed as anisotropic core/shell particles by coating superparamagnetic iron oxide-silica microrods with a layer of the luminescent metal-organic framework (MOF) (3)∞[Eu2(BDC)3]·2DMF·2H2O (BDC(2-) = 1,4-benzenedicarboxylate). The composite particles can be rotated by an external magnet. Their anisotropic shape causes changes in the reflectivity and diffraction of light depending on the orientation of the composite particle. These rotation-dependent optical properties are complemented by an isotropic luminescence resulting from the MOF shell. If illuminated by UV light, the particles exhibit isotropic luminescence while the same sample shows anisotropic optical properties when illuminated with visible light. In addition to direct switching, the optical properties can be tailored continuously between isotropic red emission and anisotropic reflection of light if the illuminating light is tuned through fractions of both UV and visible light. The integration and control of light emission modes within a homogeneous particle dispersion marks a smart optical material, addressing fundamental directions for research on switchable multifunctional materials. The material can function as an optic compass or could be used as an optic shutter that can be switched by a magnetic field, e.g., for an intensity control for waveguides in the visible range.

  8. Axisymmetric planar cracks in finite hollow cylinders of transversely isotropic material: Part II—cutting method for finite cylinders

    Science.gov (United States)

    Pourseifi, M.; Faal, R. T.; Asadi, E.

    2017-06-01

    This paper is the outcome of a companion part I paper allocated to finite hollow cylinders of transversely isotropic material. The paper provides the solution for the crack tip stress intensity factors of a system of coaxial axisymmetric planar cracks in a transversely isotropic finite hollow cylinder. The lateral surfaces of the hollow cylinder are under two inner and outer self-equilibrating distributed shear loadings. First, the stress fields due to these loadings are given for both infinite and finite cylinders. In the next step, the state of stress in an infinite hollow cylinder with transversely isotropic material containing axisymmetric prismatic and radial dislocations is extracted from part I paper. Next, using the distributed dislocation technique, the mixed mode crack problem in finite cylinder is reduced to Cauchy-type singular integral equations for dislocation densities on the surfaces of the cracks. The problem of a cracked finite hollow cylinder is treated by cutting method; i.e., the infinite cylinder is cut to a finite one by slicing it using two annular axisymmetric cracks at its ends. The cutting method is validated by comparing the state of stress of a sliced intact infinite cylinder with that of an intact finite cylinder. The paper is furnished to several examples to study the effect of crack type and location in finite cylinders on the ensuing stress intensity factors of the cracks and the interaction between the cracks.

  9. Manipulation of surface plasmon polariton propagation on isotropic and anisotropic two-dimensional materials coupled to boron nitride heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Inampudi, Sandeep; Nazari, Mina; Forouzmand, Ali; Mosallaei, Hossein, E-mail: hosseinm@coe.neu.edu [Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave., Boston, Massachusetts 02115 (United States)

    2016-01-14

    We present a comprehensive analysis of surface plasmon polariton dispersion characteristics associated with isotropic and anisotropic two-dimensional atomically thin layered materials (2D sheets) coupled to h-BN heterostructures. A scattering matrix based approach is presented to compute the electromagnetic fields and related dispersion characteristics of stacked layered systems composed of anisotropic 2D sheets and uniaxial bulk materials. We analyze specifically the surface plasmon polariton (SPP) dispersion characteristics in case of isolated and coupled two-dimensional layers with isotropic and anisotropic conductivities. An analysis based on residue theorem is utilized to identify optimum optical parameters (surface conductivity) and geometrical parameters (separation between layers) to maximize the SPP field at a given position. The effect of type and degree of anisotropy on the shapes of iso-frequency curves and propagation characteristics is discussed in detail. The analysis presented in this paper gives an insight to identify optimum setup to enhance the SPP field at a given position and in a given direction on the surface of two-dimensional materials.

  10. Optical correlation using isotropic and anisotropic self diffraction using photorefractive material

    Science.gov (United States)

    Buranasiri, Prathan

    For two incident optical beams at different angles of incidence, a photorefractive cerium doped barium titanate crystal can facilitate different configurations of self-diffraction into higher orders. These configurations can be classified as isotropic and anisotropic, co-directional and contra-directional. Sometimes, a higher order resulting from an incident diverging object beam may comprise a converging beam, which then has the property of phase conjugation. Photorefractive fanning plays an important role in all these self-diffraction configurations. In this dissertation, we first explore the first higher order generated by forward three wave mixing. Only one higher order is observed when one of the incident beams is perpendicular to the surface of incidence. Not only the energy transfer via the first order grating has been observed but the energy transfer via the second order grating has been observed as well. With the angle between two incident beams less than 0.015 radians, the second configuration of self-diffraction has been investigated. With this configuration, codirectional isotropic self-diffraction (CODIS) and contradirectional isotropic self diffraction (CONDIS) have been observed. Phase conjugated beams which are responsible for CONDIS are the composite of mutual pumped phase conjugate (MPPC) and self pumped phase conjugate (SPPC). Due to the fanning effect, CONDIS usually forms before CODAS. In general, energy transfer between incident beams and CONDIS and CODIS occurs via first order and higher order gratings. For certain large but specific angles between the two incident extraordinarily polarized beams, it is possible to obtain anisotropic self-diffraction into ordinarily polarized higher orders. This third configuration for self-diffraction, called codirectional anisotropic self-diffraction (CODAS), can be generated most efficiently for the Bragg-matched case, although we have also observed CODAS with Bragg mismatch. In addition, CODAS has been

  11. Isotropic Single Negative Metamaterials

    Directory of Open Access Journals (Sweden)

    P. Protiva

    2008-09-01

    Full Text Available This paper presents the application of simple, and therefore cheap, planar resonators for building 3D isotropic metamaterials. These resonators are: a broadside-coupled split ring resonator with a magnetic response providing negative permeability; an electric dipole terminated by a loop inductor together with a double H-shaped resonator with an electric response providing negative permittivity. Two kinds of 3D isotropic single negative metamaterials are reported. The first material consists of unit cells in the form of a cube bearing on its faces six equal planar resonators with tetrahedral symmetry. In the second material, the planar resonators boxed into spherical plastic shells and randomly distributed in a hosting material compose a real 3D volumetric metamaterial with an isotropic response. In both cases the metamaterial shows negative permittivity or permeability, according to the type of resonators that are used. The experiments prove the isotropic behavior of the cells and of the metamaterial specimens.

  12. Closed-form solutions for the hollow sphere model with Coulomb and Drucker-Prager materials under isotropic loadings

    Science.gov (United States)

    Thoré, Philippe; Pastor, Franck; Pastor, Joseph; Kondo, Djimedo

    2009-05-01

    Though the solution to the limit analysis problem of the hollow sphere model—with a von Mises matrix and under spherical symmetry—is well known, it is not available, to our knowledge, for both isotropic loadings (tension and compression) in the case of a Coulomb matrix and partially for a Drucker-Prager matrix. In the present Note, we establish in a unified framework, for this class of materials, closed-form solutions for stress and strain fields in a hollow sphere under external isotropic tension and compression. These analytical results not only give useful reference solutions, but can also be considered as a part of a trial velocity field in the hollow sphere submitted to an arbitrary loading. Comparisons with 3D finite element-based limit analysis approaches and with recent results in the literature are provided. In addition to the established analytical results, we present a rigorous evaluation of a recent Gurson-type macroscopic criterion corresponding to the Drucker-Prager hollow sphere under an arbitrary loading, by means of the previous 3D limit analysis codes. To cite this article: Ph. Thoré et al., C. R. Mecanique 337 (2009).

  13. Issues associated with the use of Yoshida nonlinear isotropic/kinematic hardening material model in Advanced High Strength Steels

    Science.gov (United States)

    Shi, Ming F.; Zhang, Li; Zhu, Xinhai

    2016-08-01

    The Yoshida nonlinear isotropic/kinematic hardening material model is often selected in forming simulations where an accurate springback prediction is required. Many successful application cases in the industrial scale automotive components using advanced high strength steels (AHSS) have been reported to give better springback predictions. Several issues have been raised recently in the use of the model for higher strength AHSS including the use of two C vs. one C material parameters in the Armstrong and Frederick model (AF model), the original Yoshida model vs. Original Yoshida model with modified hardening law, and constant Young's Modulus vs. decayed Young's Modulus as a function of plastic strain. In this paper, an industrial scale automotive component using 980 MPa strength materials is selected to study the effect of two C and one C material parameters in the AF model on both forming and springback prediction using the Yoshida model with and without the modified hardening law. The effect of decayed Young's Modulus on the springback prediction for AHSS is also evaluated. In addition, the limitations of the material parameters determined from tension and compression tests without multiple cycle tests are also discussed for components undergoing several bending and unbending deformations.

  14. INTERFACIAL CRACK ANALYSIS IN THREE-DIMENSIONAL TRANSVERSELY ISOTROPIC BI-MATERIALS BY BOUNDARY INTEGRAL EQUATION METHOD

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ming-hao; LI Dong-xia; SHEN Ya-peng

    2005-01-01

    The integral-differential equations for three-dimensional planar interfacial cracks of arbitrary shape in transversely isotropic bimaterials were derived by virtue of the Somigliana identity and the fundamental solutions, in which the displacement discontinuities across the crack faces are the unknowns to be determined. The interface is parallel to both the planes of isotropy. The singular behaviors of displacement and stress near the crack border were analyzed and the stress singularity indexes were obtained by integral equation method. The stress intensity factors were expressed in terms of the displacement discontinuities. In the non-oscillatory case, the hyper-singular boundary integral-differential equations were reduced to hyper-singular boundary integral equations similar to those of homogeneously isotropie materials.

  15. A mixed finite element formulation for a non-linear, transversely isotropic material model for the cardiac tissue.

    Science.gov (United States)

    Thorvaldsen, Tom; Osnes, Harald; Sundnes, Joakim

    2005-12-01

    In this paper we present a mixed finite element method for modeling the passive properties of the myocardium. The passive properties are described by a non-linear, transversely isotropic, hyperelastic material model, and the myocardium is assumed to be almost incompressible. Single-field, pure displacement-based formulations are known to cause numerical difficulties when applied to incompressible or slightly compressible material cases. This paper presents an alternative approach in the form of a mixed formulation, where a separately interpolated pressure field is introduced as a primary unknown in addition to the displacement field. Moreover, a constraint term is included in the formulation to enforce (almost) incompressibility. Numerical results presented in the paper demonstrate the difficulties related to employing a pure displacement-based method, applying a set of physically relevant material parameter values for the cardiac tissue. The same problems are not experienced for the proposed mixed method. We show that the mixed formulation provides reasonable numerical results for compressible as well as nearly incompressible cases, also in situations of large fiber stretches. There is good agreement between the numerical results and the underlying analytical models.

  16. Compound surface-plasmon-polariton waves guided by a thin metal layer sandwiched between a homogeneous isotropic dielectric material and a structurally chiral material

    CERN Document Server

    Chiadini, Francesco; Scaglione, Antonio; Lakhtakia, Akhlesh

    2015-01-01

    Multiple compound surface plasmon-polariton (SPP) waves can be guided by a structure consisting of a sufficiently thick layer of metal sandwiched between a homogeneous isotropic dielectric (HID) material and a dielectric structurally chiral material (SCM). The compound SPP waves are strongly bound to both metal/dielectric interfaces when the thickness of the metal layer is comparable to the skin depth but just to one of the two interfaces when the thickness is much larger. The compound SPP waves differ in phase speed, attenuation rate, and field profile, even though all are excitable at the same frequency. Some compound SPP waves are not greatly affected by the choice of the direction of propagation in the transverse plane but others are, depending on metal thickness. For fixed metal thickness, the number of compound SPP waves depends on the relative permittivity of the HID material, which can be useful for sensing applications.

  17. A low order viscoplasticity of transversely isotropic quasi-rate independent materials

    Directory of Open Access Journals (Sweden)

    Mićunović Milan

    2014-01-01

    Full Text Available As found by experiments quasi rate independent materials (QRI describe very well behavior of steels in very wide range of strains and strain rates ([3],[4]. This property has been combined with tensor representation modeling using a generalized associative flow rule based not on the yield function but on a more general loading function. Seemingly rate independent QRI producing incremental evolution equations show rate sensitivity by means of variability of yield stress with stress rate. On the other hand transverse isotropy appears in metal forming issues like in rolled car body sheets [18]. Here an extension of tensor generators and invariants is needed to include the preferred anisotropy direction. Such a procedure has been made here. In addition we believe that the results of this paper are applicable to dynamic deformation of orthogneiss rocks treated recently in [5].

  18. The retrieval of fingerprint friction ridge detail from elephant ivory using reduced-scale magnetic and non-magnetic powdering materials.

    Science.gov (United States)

    Weston-Ford, Kelly A; Moseley, Mark L; Hall, Lisa J; Marsh, Nicholas P; Morgan, Ruth M; Barron, Leon P

    2016-01-01

    An evaluation of reduced-size particle powdering methods for the recovery of usable fingermark ridge detail from elephant ivory is presented herein for the first time as a practical and cost-effective tool in forensic analysis. Of two reduced-size powder material types tested, powders with particle sizes ≤ 40 μm offered better chances of recovering ridge detail from unpolished ivory in comparison to a conventional powder material. The quality of developed ridge detail of these powders was also assessed for comparison and automated search suitability. Powder materials and the enhanced ridge detail on ivory were analysed by scanning electron microscopy and energy dispersive X-ray spectroscopy and interactions between their constituents and the ivory discussed. The effect of ageing on the quality of ridge detail recovered showed that the best quality was obtained within 1 week. However, some ridge detail could still be developed up to 28 days after deposition. Cyanoacrylate and fluorescently-labelled cyanoacrylate fuming of ridge detail on ivory was explored and was less effective than reduced-scale powdering in general. This research contributes to the understanding and potential application of smaller scale powdering materials for the development of ridge detail on hard, semi-porous biological material typically seized in wildlife-related crimes.

  19. Quasicritical behavior of the low-frequency dielectric permittivity in the isotropic phase of liquid crystalline materials.

    Science.gov (United States)

    Drozd-Rzoska, A; Rzoska, S J; Zioło, J; Jadzyn, J

    2001-05-01

    Results presented give evidence of the existence of quasicritical, fluidlike behavior in the isotropic phase of 4-cyano-4-pentyl-biphenyl (5CB) for frequencies ranging from the static to the ionic-dominated [low-frequency (LF)] region. Despite the boost of dielectric permittivity on lowering the frequency below 1 kHz, values of the isotropic-nematic transition discontinuity (approximately 1.1 K) and the critical exponent alpha (approximately 0.5) remain constant. It is shown that the contribution from residual ionic impurities is a linear function of temperature in the critical, prenematic fluctuation-dominated region. The validity of the fluidlike and critical behavior for LF dielectric permittivity confirmed results of a derivative analysis of the experimental data: d(epsilon)/dT proportional to (T-T*)(-alpha), originally proposed for critical mixtures. Results of a preliminary test in the isotropic phase of 4-decyl-4'-isothiocyanatobiphenyl (10BT), on approaching the smectic-E phase, may indicate a general validity of results obtained.

  20. Macroscopic Simulation of Isotropic Permanent Magnets

    CERN Document Server

    Bruckner, Florian; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2015-01-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material.

  1. Macroscopic simulation of isotropic permanent magnets

    Science.gov (United States)

    Bruckner, Florian; Abert, Claas; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2016-03-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the hysteresis of the magnetic material. Strayfield measurements of an isotropic permanent magnet and simulation results are in good agreement and highlight the importance of a proper description of the isotropic material.

  2. Evaluation of third-order elastic constants using laser-generated multi-type ultrasound for isotropic materials.

    Science.gov (United States)

    Dong, Li-Ming; Lomonosov, Alexey M; Shen, Zhong-Hua; Li, Jia; Ni, Chen-Yin; Ni, Xiao-Wu

    2013-08-01

    Within the linear elasticity approximation the speed of a small-amplitude sound in conventional linear elasticity is determined only by the second order elastic (SOE) constants and the density of the medium. Subjecting the conveying solid to a static strain of a sufficient magnitude introduces the third-order elastic (TOE) constants in the equation of the sound speed. In this work we applied a homogeneous isotropic deformation caused by a thermal expansion of an aluminum alloy sample. Velocities of three acoustic modes: longitudinal, shear and Rayleigh waves were measured as functions of temperature within a range of 25-100 °C. Two TOE constants C111 and C112 were evaluated in an assumption that the third independent module C144 is far smaller than the former two.

  3. Strain rate dependent behaviors of a hot isotropically processed Ti-6Al-4V: Mechanisms and material model

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Xiaohan; Ren, Mingfa; Bu, Fanzi; Chen, Guoqing; Li, Gang [Dalian University of Technology, Dalian (China); Li, Tong [Queensland University of Technology, Brisbane (Australia)

    2016-02-15

    Split-Hopkinson pressure bar (SHPB) was adopted to study the dynamic response of a specifically designed Hot isotropically processed (HIP) Casting Titanium alloy (Ti-6Al-4V). The strain-stress curves were obtained in a range of strain rate (10{sup -3}⁓2.6x10{sup 3}/s) to study the constitutive relationships and the Johnson-Cook model is developed to describe this dynamic constitutive law. It can be found that the static microstructure of this specific HIP casting Ti-6Al-4V is lamellar structure. When the loading increases (strain rate higher than 10{sup 3}/s), this lamellar structure changes to basket weave structure, which further changes the mechanical strength and plasticity.

  4. Communication: Phase behavior of materials with isotropic interactions designed by inverse strategies to favor diamond and simple cubic lattice ground states.

    Science.gov (United States)

    Jain, Avni; Errington, Jeffrey R; Truskett, Thomas M

    2013-10-14

    We use molecular simulation to construct equilibrium phase diagrams for two recently introduced model materials with isotropic, soft-repulsive pair interactions designed to favor diamond and simple cubic lattice ground states, respectively, over a wide range of densities [Jain et al., Soft Matter 9, 3866 (2013)]. We employ free energy based Monte Carlo simulation techniques to precisely trace the inter-crystal and fluid-crystal coexistence curves. We find that both model materials display rich polymorphic phase behavior featuring stable crystals corresponding to the target ground-state structures, as well as a variety of other crystalline (e.g., hexagonal and body-centered cubic) phases and multiple reentrant melting transitions.

  5. Some fundamental definitions of the elastic parameters for homogenous isotropic linear materials in road design and analysis

    CSIR Research Space (South Africa)

    De Beer, Morris

    2008-07-01

    Full Text Available during tensile (or compressive) tests conducted on a sample of the material. Young’s Modulus is named after Thomas Young, the 18th Century British scientist. The SI unit of modulus of elasticity, E is the pascal. Given the large values typical of many... stream_source_info De Beer_2008.pdf.txt stream_content_type text/plain stream_size 31159 Content-Encoding UTF-8 stream_name De Beer_2008.pdf.txt Content-Type text/plain; charset=UTF-8 1 Some fundamental definitions...

  6. Some fundamental definitions of the elastic parameters for homogeneous isotropic linear elastic materials in pavement design and analysis

    CSIR Research Space (South Africa)

    De Beer, Morris

    2008-07-01

    Full Text Available during tensile (or compressive) tests conducted on a sample of the material. Young’s Modulus is named after Thomas Young, the 18th Century British scientist. The SI unit of modulus of elasticity, E is the pascal. Given the large values typical of many... stream_source_info De Beer1_2008.pdf.txt stream_content_type text/plain stream_size 31159 Content-Encoding UTF-8 stream_name De Beer1_2008.pdf.txt Content-Type text/plain; charset=UTF-8 1 Some fundamental definitions...

  7. Optical isotropic negative index metamaterials

    DEFF Research Database (Denmark)

    Menzel, Christoph; Paul, Thomas; Rockstuhl, Carsten;

    2010-01-01

    Towards isotropic metamaterials, we analyze isofrequency surfaces of the dispersion relation of high symmetry metamaterials and show that they are optically not isotropic. We achieve instead isotropic metamaterials that consist of carefully designed multiple layers....

  8. Optical isotropic negative index metamaterials

    DEFF Research Database (Denmark)

    Menzel, Christoph; Paul, Thomas; Rockstuhl, Carsten

    2010-01-01

    Towards isotropic metamaterials, we analyze isofrequency surfaces of the dispersion relation of high symmetry metamaterials and show that they are optically not isotropic. We achieve instead isotropic metamaterials that consist of carefully designed multiple layers.......Towards isotropic metamaterials, we analyze isofrequency surfaces of the dispersion relation of high symmetry metamaterials and show that they are optically not isotropic. We achieve instead isotropic metamaterials that consist of carefully designed multiple layers....

  9. UXC55 Non-Magnetic Robot

    CERN Document Server

    Najjar, Tony

    2017-01-01

    As part of the collaboration between CMS and the Lebanese American University, we are looking into building a non-magnetic inspection rover capable of roaming around UXC55 and specifically under the detector. The robot should be specifically tailored and engineered to cope with the strong magnetic field in the cavern (300 G on average with peaks up to 1500 G) as well as other constraints such as flammability and geometry. Moreover, we are also taking part in the development of the instrumentation and wireless communication of the rover. The biggest challenge in setting up a non-magnetic rover lies in the actuation mechanism, in other words, getting it to move; motors are rotary actuators that rely on the concept of a rotor “trying to catch up” to a rotating magnetic field. We quickly realize the complication with using this popular technology; the strong field created by the CMS magnet greatly interferes with the motor, rendering it utterly stalled. Our approach, on the other hand, consists of using compl...

  10. Macroscopic Simulation of Isotropic Permanent Magnets

    OpenAIRE

    Bruckner, Florian; Abert, Claas; Vogler, Christoph; Heinrichs, Frank; Satz, Armin; Ausserlechner, Udo; Binder, Gernot; Koeck, Helmut; Suess, Dieter

    2015-01-01

    Accurate simulations of isotropic permanent magnets require to take the magnetization process into account and consider the anisotropic, nonlinear, and hysteretic material behaviour near the saturation configuration. An efficient method for the solution of the magnetostatic Maxwell equations including the description of isotropic permanent magnets is presented. The algorithm can easily be implemented on top of existing finite element methods and does not require a full characterization of the...

  11. Isotropic Negative Thermal Expansion Metamaterials.

    Science.gov (United States)

    Wu, Lingling; Li, Bo; Zhou, Ji

    2016-07-13

    Negative thermal expansion materials are important and desirable in science and engineering applications. However, natural materials with isotropic negative thermal expansion are rare and usually unsatisfied in performance. Here, we propose a novel method to achieve two- and three-dimensional negative thermal expansion metamaterials via antichiral structures. The two-dimensional metamaterial is constructed with unit cells that combine bimaterial strips and antichiral structures, while the three-dimensional metamaterial is fabricated by a multimaterial 3D printing process. Both experimental and simulation results display isotropic negative thermal expansion property of the samples. The effective coefficient of negative thermal expansion of the proposed models is demonstrated to be dependent on the difference between the thermal expansion coefficient of the component materials, as well as on the circular node radius and the ligament length in the antichiral structures. The measured value of the linear negative thermal expansion coefficient of the three-dimensional sample is among the largest achieved in experiments to date. Our findings provide an easy and practical approach to obtaining materials with tunable negative thermal expansion on any scale.

  12. Electrically-Generated Spin Polarization in Non-Magnetic Semiconductors

    Science.gov (United States)

    2016-03-31

    AFRL-AFOSR-VA-TR-2016-0143 Electrically -generated spin polarization in non-magnetic semiconductors Vanessa Sih UNIVERSITY OF MICHIGAN Final Report 03...SUBTITLE (YIP) - Electrically -generated spin polarization in non-magnetic semiconductors 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0258 5c...that produced electrically -generated electron spin polarization in non-magnetic semiconductor heterostructures. Electrically -generated electron spin

  13. Isotropic optical metamaterials

    DEFF Research Database (Denmark)

    Lederer, Falk; Rockstuhl, C.; Menzel, C.

    2010-01-01

    Metamaterial imaging applications require optical isotropy. We show that highly symmetric unit cells do not necessarily exhibit this property. We prove that the dispersion relation can be tailored using a supercell metama-terial. Such metamaterial exhibits an isotropic negative index close to -1...

  14. Isotropic optical metamaterials

    DEFF Research Database (Denmark)

    Lederer, Falk; Rockstuhl, C.; Menzel, C.;

    2010-01-01

    Metamaterial imaging applications require optical isotropy. We show that highly symmetric unit cells do not necessarily exhibit this property. We prove that the dispersion relation can be tailored using a supercell metama-terial. Such metamaterial exhibits an isotropic negative index close to -1...

  15. Non-magnetic negative-refraction systems for terahertz and far-infrared frequencies

    CERN Document Server

    Alekseyev, Leonid V; Narimanov, Evgenii E

    2012-01-01

    We demonstrate that homogeneous naturally-occurring materials can form non-magnetic negative refractive index systems, and present specific realizations of the proposed approach for the THz and far-IR frequencies. The proposed structure operates away from resonance, thereby promising the capacity for low-loss devices.

  16. How non-magnetic are "non-magnetic" Herbig Ae/Be stars?

    CERN Document Server

    Wade, G A; Catala, C; Bagnulo, S; Landstreet, J D; Flood, J; Böhm, T; Bouret, J -C; Donati, J -F; Folsom, C P; Grunhut, J; Silvester, J

    2007-01-01

    Our recent discovery of magnetic fields in a small number of Herbig Ae/Be stars has required that we survey a much larger sample of stars. From our FORS1 and ESPaDOnS surveys, we have acquired about 125 observations of some 70 stars in which no magnetic fields are detected. Using a Monte Carlo approach, we have performed statistical comparisons of the observed longitudinal fields and LSD Stokes V profiles of these apparently non-magnetic stars with a variety of field models. This has allowed us to derive general upper limits on the presence of dipolar fields in the sample, and to place realistic upper limits on undetected dipole fields which may be present in individual stars. This paper briefly reports the results of the statistical modeling, as well as field upper limits for individual stars of particular interest.

  17. Rigorous analysis of non-magnetic cloaks

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Luo, Yu; Mortensen, Asger

    2010-01-01

    Nonmagnetic cloak offers a feasible way to achieve invisibility at optical frequencies using materials with only electric responses. In this letter, we suggest an approximation of the ideal nonmagnetic cloak and quantitatively study its electromagnetic characteristics using a full-wave scattering...

  18. Heat-Induced, Pressure-Induced and Centrifugal-Force-Induced Exact Axisymmetric Thermo-Mechanical Analyses in a Thick-Walled Spherical Vessel, an Infinite Cylindrical Vessel, and a Uniform Disk Made of an Isotropic and Homogeneous Material

    Directory of Open Access Journals (Sweden)

    Vebil Yıldırım

    2017-07-01

    Full Text Available Heat-induced, pressure-induced, and centrifugal force-induced axisymmetric exact deformation and stresses in a thick-walled spherical vessel, a cylindrical vessel, and a uniform disk are all determined analytically at a specified constant surface temperature and at a constant angular velocity. The inner and outer pressures are both included in the formulation of annular structures made of an isotropic and homogeneous linear elastic material. Governing equations in the form of Euler-Cauchy differential equation with constant coefficients are solved and results are presented in compact forms. For disks, three different boundary conditions are taken into account to consider mechanical engineering applications. The present study is also peppered with numerical results in graphical forms.

  19. Fundamental solutions for transversely isotropic piezoelectric media

    Institute of Scientific and Technical Information of China (English)

    丁皓江; 梁剑; 陈波

    1996-01-01

    A general solution for the.equilibrium equations of pieajelectric media under body forces is obtained. With regard to the transversely isotropic piezoelectric material, closed forms for the displacements and electric potential function for an infinite solid loaded with point forces and point charge are then obtained by using the general solution together with potential theory and constructing a kind of harmonic functions. Thus, the fundamental solutions which are utilizable in boundary element method are obtained.

  20. Invariance of the magnetic behavior and AMI in ferromagnetic biphase films with distinct non-magnetic metallic spacers

    Energy Technology Data Exchange (ETDEWEB)

    Silva, E.F. [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Gamino, M. [Departamento de Física, Universidade Federal de Pernambuco, 50670-901 Recife, PE (Brazil); Instituto de Física, Universidade Federal do Rio Grande de Sul, 91501-970 Porto Alegre, RS (Brazil); Andrade, A.M.H. de [Instituto de Física, Universidade Federal do Rio Grande de Sul, 91501-970 Porto Alegre, RS (Brazil); Vázquez, M. [Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid (Spain); Correa, M.A. [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil); Bohn, F., E-mail: felipebohn@fisica.ufrn.br [Departamento de Física, Universidade Federal do Rio Grande do Norte, 59078-900 Natal, RN (Brazil)

    2017-02-01

    We investigate the quasi-static magnetic, magnetotransport, and dynamic magnetic properties in ferromagnetic biphase films with distinct non-magnetic metallic spacer layers. We observe that the nature of the non-magnetic metallic spacer material does not have significant influence on the overall biphase magnetic behavior, and, consequently, on the magnetotransport and dynamic magnetic responses. We focus on the magnetoimpedance effect and verify that the films present asymmetric magnetoimpedance effect. Moreover, we explore the possibility of tuning the linear region of the magnetoimpedance curves around zero magnetic field by varying the probe current frequency in order to achieve higher sensitivity values. The invariance of the magnetic behavior and the asymmetric magnetoimpedance effect in ferromagnetic biphase films with distinct non-magnetic metallic spacers place them as promising candidates for probe element and open possibilities to the development of lower-cost high sensitivity linear magnetic field sensor devices.

  1. Invariance of the magnetic behavior and AMI in ferromagnetic biphase films with distinct non-magnetic metallic spacers

    Science.gov (United States)

    Silva, E. F.; Gamino, M.; Andrade, A. M. H. de; Vázquez, M.; Correa, M. A.; Bohn, F.

    2017-02-01

    We investigate the quasi-static magnetic, magnetotransport, and dynamic magnetic properties in ferromagnetic biphase films with distinct non-magnetic metallic spacer layers. We observe that the nature of the non-magnetic metallic spacer material does not have significant influence on the overall biphase magnetic behavior, and, consequently, on the magnetotransport and dynamic magnetic responses. We focus on the magnetoimpedance effect and verify that the films present asymmetric magnetoimpedance effect. Moreover, we explore the possibility of tuning the linear region of the magnetoimpedance curves around zero magnetic field by varying the probe current frequency in order to achieve higher sensitivity values. The invariance of the magnetic behavior and the asymmetric magnetoimpedance effect in ferromagnetic biphase films with distinct non-magnetic metallic spacers place them as promising candidates for probe element and open possibilities to the development of lower-cost high sensitivity linear magnetic field sensor devices.

  2. Giant magneto-optical response in non-magnetic semiconductor BiTeI driven by bulk Rashba spin splitting

    OpenAIRE

    Demkó, L.; Schober, G. A. H.; Kocsis, V.; Bahramy, M.S.; Murakawa, H.; Lee, J. S.; Kézsmárki, I.; Arita, R.; Nagaosa, N.; Tokura, Y.

    2012-01-01

    We study the magneto-optical (MO) response of polar semiconductor BiTeI with giant bulk Rashba spin splitting at various carrier densities. Despite being non-magnetic, the material is found to yield a huge MO activity in the infrared region under moderate magnetic fields (

  3. Magnetism of Rare-Earth Compounds with Non-Magnetic Crystal-Field Ground Levels

    Institute of Scientific and Technical Information of China (English)

    LIU Zhao-Sen

    2007-01-01

    @@ Among rare-earth compounds, there are many materials having non-magnetic crystal-field (CF) ground levels.To understand their magnetic behaviour at low temperatures, we study the effects of the CF levels and the Heisenberg-like coupling on the magnetic process of such a crystalline with mean-field and CF theory. It is found that the material can be magnetically ordered if the Heisenberg exchange is sufficiently strong. Additionally we obtain a condition for initial magnetic ordering, and derive a formula for estimating the Curie temperature if the ordering occurs.

  4. Non-magnetic simplified cylindrical cloak with suppressed zero-th order scattering

    CERN Document Server

    Yan, Wei; Qiu, Min

    2008-01-01

    A new type of simplified cloaks with matched exterior boundaries is proposed. The cloak uses non-magnetic material for the TM polarization and can function with a relatively thin thickness. It is shown that the $zero^{th}$ order scattering of such cloak is dominant among all cylindrical scattering terms. A gap is added at the cloak's inner surface to eliminate the zero-th order scattering, through the mechanism of scattering resonance. The reduction in scattering is relatively smooth, indicating that the proposed scattering reduction method has good tolerance to perturbations. Numerical simulations also confirm that the proposed structure has very low scattering.

  5. Distributed chaos and isotropic turbulence

    CERN Document Server

    Bershadskii, A

    2015-01-01

    Power spectrum of the distributed chaos can be represented by a weighted superposition of the exponential functions which is converged to a stretched exponential $\\exp-(k/k_{\\beta})^{\\beta }$. An asymptotic theory has been developed in order to estimate the value of $\\beta$ for the isotropic turbulence. This value has been found to be $\\beta =3/4$. Excellent agreement has been established between this theory and the data of direct numerical simulations not only for the velocity field but also for the passive scalar and energy dissipation fields. One can conclude that the isotropic turbulence emerges from the distributed chaos.

  6. Elastic-plastic Transition of Transversely Isotropic Thick-walled Rotating Cylinder under Internal Pressure

    Directory of Open Access Journals (Sweden)

    Sanjeev Sharma

    2009-05-01

    Full Text Available Elastic-plastic stresses for a transversely isotropic thick-walled rotating cylinder under internal pressure have been obtained by using Seth’s transition theory. It has been observed that a thick-walled circular cylinder made of isotropic material yields at the internal surface at a high pressure as compared to cylinder made of transversely isotropic material. With the increase in angular speed, much less pressure is required for initial yielding at the internal surface for transversely isotropic material as compared to isotropic material. For fullyplastic state, circumferential stress is maximum at the external surface. Thick-walled circular cylinder made of transversely isotropic material requires high percentage increase in pressure to become fully plastic as compared to isotropic cylinder. Therefore, circular cylinder made of transversely isotropic material is on the safer side of the design as compared to cylinder made of  isotropic material.Defence Science Journal, 2009, 59(3, pp.260-264, DOI:http://dx.doi.org/10.14429/dsj.59.1519

  7. Spherical 3D isotropic wavelets

    Science.gov (United States)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  8. S-curvature of isotropic Berwald metrics

    Institute of Scientific and Technical Information of China (English)

    Akbar TAYEBI; Mehdi RAFIE-RAD

    2008-01-01

    Isotropic Berwald metrics are as a generalization of Berwald metrics. Shen proved that every Berwald metric is of vanishing S-curvature. In this paper, we generalize this fact and prove that every isotropic Berwald metric is of isotropic S-curvature. Let F = α + β be a Randers metric of isotropic Berwald curvature. Then it corresponds to a conformal vector field through navigation representation.

  9. Spherical 3D Isotropic Wavelets

    CERN Document Server

    Lanusse, F; Starck, J -L

    2011-01-01

    Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D Spherical Fourier-Bessel (SFB) analysis in is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the Fourier-Bessel decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. 2006. We also present a new fast Discrete Spherical Fourier-Bessel Transform (DSFBT) based on both a discrete Bessel Transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large...

  10. Nuclear conversion theory: molecular hydrogen in non-magnetic insulators

    Science.gov (United States)

    Ilisca, Ernest; Ghiglieno, Filippo

    2016-09-01

    The hydrogen conversion patterns on non-magnetic solids sensitively depend upon the degree of singlet/triplet mixing in the intermediates of the catalytic reaction. Three main `symmetry-breaking' interactions are brought together. In a typical channel, the electron spin-orbit (SO) couplings introduce some magnetic excitations in the non-magnetic solid ground state. The electron spin is exchanged with a molecular one by the electric molecule-solid electron repulsion, mixing the bonding and antibonding states and affecting the molecule rotation. Finally, the magnetic hyperfine contact transfers the electron spin angular momentum to the nuclei. Two families of channels are considered and a simple criterion based on the SO coupling strength is proposed to select the most efficient one. The denoted `electronic' conversion path involves an emission of excitons that propagate and disintegrate in the bulk. In the other denoted `nuclear', the excited electron states are transients of a loop, and the electron system returns to its fundamental ground state. The described model enlarges previous studies by extending the electron basis to charge-transfer states and `continui' of band states, and focuses on the broadening of the antibonding molecular excited state by the solid conduction band that provides efficient tunnelling paths for the hydrogen conversion. After working out the general conversion algebra, the conversion rates of hydrogen on insulating and semiconductor solids are related to a few molecule-solid parameters (gap width, ionization and affinity potentials) and compared with experimental measures.

  11. Critical buckling strain in high strength steel pipes using isotropic kinematic hardening

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, A.; Roger Cheng, J. J.; Adeeb, Samer [Department of Civil and Environmental Engineering, University of Alberta (Canada); Zhou, Joe [TransCanada Pipelines Ltd. (Canada)

    2010-07-01

    In the natural gas sector, the use of high strength steel pipelines (HSSP) to transport huge volumes over long distances is increasing as it yields important savings in both capital and operational expenditures. In order to design HSSP, the critical buckling strain as to be taken into consideration but the models so far developed have been for isotropic materials while important material anisotropy is observed on HSSP due to their manufacturing process. The paper presents a model to assess the critical buckling strain of HSSP. An isotropic-kinematic hardening material model was developed and isotropic and anisotropic models were used to simulate pressurized and non-pressurized HSSP and were compared to test results. Results showed that the isotropic model is not suitable for predicting the buckling strain of HSSP but that the isotropic-kinematic hardening material model is. A model to better predict the buckling strain of HSSP was developed and successfully tested herein.

  12. Magnetic Nanoparticles in Non-magnetic CNTs and Graphene

    Science.gov (United States)

    Kayondo, Moses; Seifu, Dereje

    Magnetic nanoparticles were embedded in non-magnetic CNTs and graphene matrix to incorporate all the advantages and the unique properties of CNTs and graphene. Composites of CNTs and graphene with magnetic nanoparticles may offer new opportunities for a wide variety of potential applications such as magnetic data storage, magnetic force microscopy tip, electromagnetic interference shields, thermally conductive films, reinforced polymer composites, transparent electrodes for displays, solar cells, gas sensors, magnetic nanofluids, and magnetically guided drug delivery systems. Magnetic nanoparticles coated CNTs can also be used as an electrode in lithium ion battery to replace graphite because of the higher theoretical capacity. Graphene nanocomposites, coated with magnetic sensitive nanoparticles, have demonstrated enhanced magnetic property. We would like to acknowledge support by NSF-MRI-DMR-1337339.

  13. How Isotropic is the Universe?

    Science.gov (United States)

    Saadeh, Daniela; Feeney, Stephen M; Pontzen, Andrew; Peiris, Hiranya V; McEwen, Jason D

    2016-09-23

    A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of (σ_{V}/H)_{0}Universe is strongly disfavored, with odds of 121 000:1 against.

  14. Semiflexible particles in isotropic turbulence

    Science.gov (United States)

    Ali, Aamir; Plan, Emmanuel Lance Christopher Medillo, VI; Ray, Samriddhi Sankar; Vincenzi, Dario

    2016-12-01

    The Lagrangian dynamics of semiflexible particles in homogeneous and isotropic turbulent flows is studied by means of analytically solvable stochastic models and direct numerical simulations. The stationary statistics of the bending angle shows a strong dependence on the dimension of the flow. In two-dimensional turbulence, particles are found in either a fully extended or a fully folded configuration; in three dimensions, the predominant configuration is the fully extended one. Such a sensitivity of the bending statistics on the dimensionality of the flow is peculiar to fluctuating flows and is not observed in laminar stretching flows.

  15. Scalar mixing in isotropic turbulence

    Science.gov (United States)

    Kosály, George

    1989-04-01

    Eswaran and Pope [Phys. Fluids 31, 506 (1988)] performed direct numerical simulations to study the influence of the initial scalar integral length scale on mixing in stationary, isotropic turbulence. Their data demonstrate that both the decay rate and the shape of the rms versus time curve depend on the initial value of the scalar-to-velocity integral length-scale ratio. The present paper discusses modifications of the high Reynolds number theory of Corrsin [AIChE J. 10, 870 (1964)]. The predictions mirror the behavior found in the moderate Reynolds number simulations.

  16. Designing the coordinate transformation function for non-magnetic invisibility cloaking

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xiaofei; Feng Yijun; Zhao Lin; Jiang Tian [Department of Electronic Science and Engineering, Nanjing University, Nanjing, 210093 (China); Lu Chunhua; Xu Zhongzi [College of Materials Science and Engineering, Nanjing University of Technology, Nanjing, 210009 (China)], E-mail: yjfeng@nju.edu.cn

    2008-11-07

    An optical invisibility cloak based on a transformation approach has recently been proposed by a reduced set of material properties due to their easier implementation in reality and little need for an inhomogeneous permeability distribution, but the drawback of undesired scattering caused by the impedance mismatching at the outer boundary is unavoidable in such a cloak. By properly designing the coordinate transformation function to ensure impedance matching at the outer surface, we show that the performance of a nonmagnetic cylindrical cloak could be improved with minimized scattering fields. Using either a single high order power function or an optimized piecewise continuous power function, a cylindrical non-magnetic cloak has been designed with nearly perfect cloaking performance, which is better than those generated with a linear or a quadratic function. Due to the monotonicity of the designed power functions, the resulting cloak has no restriction on the size of the cloaking shell, therefore is suitable for both thick and thin cloaking structures.

  17. Isotropic stars in general relativity

    CERN Document Server

    Mak, M K

    2013-01-01

    We present a general solution of the Einstein gravitational field equations for the static spherically symmetric gravitational interior spacetime of an isotropic fluid sphere. The solution is obtained by transforming the pressure isotropy condition, a second order ordinary differential equation, into a Riccati type first order differential equation, and using a general integrability condition for the Riccati equation. This allows us to obtain an exact non-singular solution of the interior field equations for a fluid sphere, expressed in the form of infinite power series. The physical features of the solution are studied in detail numerically by cutting the infinite series expansions, and restricting our numerical analysis by taking into account only $n=21$ terms in the power series representations of the relevant astrophysical parameters. In the present model all physical quantities (density, pressure, speed of sound etc.) are finite at the center of the sphere. The physical behavior of the solution essential...

  18. Poromechanical behaviour of hardened cement paste under isotropic loading

    CERN Document Server

    Ghabezloo, Siavash; Guédon, Sylvine; Martineau, Francçois; Saint-Marc, Jérémie

    2008-01-01

    The poromechanical behaviour of hardened cement paste under isotropic loading is studied on the basis of an experimental testing program of drained, undrained and unjacketed compression tests. The macroscopic behaviour of the material is described in the framework of the mechanics of porous media. The poroelastic parameters of the material are determined and the effect of stress and pore pressure on them is evaluated. Appropriate effective stress laws which control the evolution of total volume, pore volume, solid volume, porosity and drained bulk modulus are discussed. A phenomenon of degradation of elastic properties is observed in the test results. The microscopic observations showed that this degradation is caused by the microcracking of the material under isotropic loading. The good compatibility and the consistency of the obtained poromechanical parameters demonstrate that the behaviour of the hardened cement paste can be indeed described within the framework of the theory of porous media.

  19. Isotropic bodies and Bourgain's problem

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    [1]Milman, V. D., Pajor, A., Isotropic position and inertia ellipsoid and zonoids of the unit ball of a normed ndimensional space, Geometric aspects of functional analysis (1987-1988), Lecture Notes in Math., 1989, 1376:64-104.[2]Blaschke, W., Uber affine Geometry ⅩⅣ: eine minimum Aufgabe fur Legendres tragheits Ellipsoid, Ber. verh.sachs. Akad. d. Wiss., 1918, 70: 72-75.[3]Blaschke, W., Uber affine Geometry Ⅺ: losing der "Vierpunkproblems" von Sylvester aus der Teorie der geometrischen Wahrsdeinlichkeiten, Leipziger Berichte, 1917, 69: 436-453.[4]John, F., Polar correspondence with respect to convex regions, Duke Math. J., 1937, 3(2): 355-369.[5]Lutwak, E., Yang, D., Zhang, G., A new ellipsoid associated with convex bodes, Duke. Math. J., 2000, 104:375-390.[6]Bourgain, J., On the distribution of polynomails on high dimensional convex sets, Geometric aspects of functional analysis (1989-1990), Lecture Notes in Math., 1991, 1469: 127-137.[7]Dar, S., Remarks on Bourgain's problem on slicing of convex bodies, Geomitric aspects of functional analysis,in Oper. Theory Adv. Appl., Vol, 77, Basel: Birkhauser, 1995, 61-66.[8]Ball, K., Normed spaces with a weak-Gordon-Lewis property, in: Proc. of Funct. Anal., University of Texas and Austin (1987-1989), Lecture Notes in Math., 1991, 1470: 36-47.[9]Schneider, R., Weil, W., Zonoids and related topics, in Convexity and Its Applications (eds. Gruber, P. M., Wills,J. M.), Basel: Birkhauser, 1983, 296-317.[10]Bourgain, J., Klartag, B., Milman, V., A reduction of the slicing problem to finite volume ratio bodies, Geometry/Functional Analysis, C. R. Acad. Sci. Paris, Ser. I, 2003, 336: 331-334.[11]Ren, D. L., An Introduction to Integral Geometry (in Chinese), Shanghai: Science and Technology Press, 1988.[12]Gardner, R. J., Geometric Tomography, Cambridge: Cambridge University Press, 1995.[13]Leichtweiβ, K., Affine Geometry of Convex Bodies, Heidelberg: J. A. Barth, 1998.[14]Schneider, R., Convex Bodies: The Brunn

  20. Physical modeling and analysis of P-wave attenuation anisotropy in transversely isotropic media

    Digital Repository Service at National Institute of Oceanography (India)

    Zhu, Y.; Tsvankin, I.; Dewangan, P.; Van Wijk, K.

    Anisotropic attenuation can provide sensitive attributes for fracture detection and lithology discrimination. This paper analyzes measurements of the P-wave attenuation coefficient in a transversely isotropic sample made of phenolic material. Using...

  1. How isotropic is the Universe?

    CERN Document Server

    Saadeh, Daniela; Pontzen, Andrew; Peiris, Hiranya V; McEwen, Jason D

    2016-01-01

    A fundamental assumption in the standard model of cosmology is that the Universe is isotropic on large scales. Breaking this assumption leads to a set of solutions to Einstein's field equations, known as Bianchi cosmologies, only a subset of which have ever been tested against data. For the first time, we consider all degrees of freedom in these solutions to conduct a general test of isotropy using cosmic microwave background temperature and polarization data from Planck. For the vector mode (associated with vorticity), we obtain a limit on the anisotropic expansion of $(\\sigma_V/H)_0 < 4.7 \\times 10^{-11}$ (95% CI), which is an order of magnitude tighter than previous Planck results that used CMB temperature only. We also place upper limits on other modes of anisotropic expansion, with the weakest limit arising from the regular tensor mode, $(\\sigma_{T,\\rm reg}/H)_0<1.0 \\times 10^{-6}$ (95% CI). Including all degrees of freedom simultaneously for the first time, anisotropic expansion of the Universe is...

  2. Precession of elastic waves in vibrating isotropic spheres and transversely isotropic cylinders subjected to inertial rotation

    CSIR Research Space (South Africa)

    Joubert, S

    2006-05-01

    Full Text Available and Manufacturing TRANSVERSELY ISOTROPIC CYLINDER - 1 φ φ r z a x y Ω P P O u v w z ( )1 1 1 2 1 1 rrr rz rr zr r zrz zz rz u r r z r v r r z r w r r z r ϕ ϕϕ ϕϕ ϕϕ ϕ ϕ σσ σ σ σ ρ ϕ σσ σ σ ρ ϕ σσ σ σ ρ ϕ... ∂ ∂ ∂ + + + − = ∂ ∂ ∂ ∂∂ ∂ + + + = ∂ ∂ ∂ ∂∂ ∂ + + + = ∂ ∂ ∂ && && && 6 CSIR Material Science and Manufacturing TRANSVERSELY ISOTROPIC CYLINDER - 2 ( )1 1 1 2 1 1 rrr rz rr zr r zrz zz rz u r r z r v r r z r w r r z r ϕ ϕϕ ϕϕ ϕϕ ϕ ϕ σσ σ σ σ ρ ϕ σσ σ σ ρ ϕ σσ σ σ ρ ϕ...

  3. Empirical isotropic chemical shift surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Czinki, Eszter; Csaszar, Attila G. [Eoetvoes University, Laboratory of Molecular Spectroscopy, Institute of Chemistry (Hungary)], E-mail: csaszar@chem.elte.hu

    2007-08-15

    A list of proteins is given for which spatial structures, with a resolution better than 2.5 A, are known from entries in the Protein Data Bank (PDB) and isotropic chemical shift (ICS) values are known from the RefDB database related to the Biological Magnetic Resonance Bank (BMRB) database. The structures chosen provide, with unknown uncertainties, dihedral angles {phi} and {psi} characterizing the backbone structure of the residues. The joint use of experimental ICSs of the same residues within the proteins, again with mostly unknown uncertainties, and ab initio ICS({phi},{psi}) surfaces obtained for the model peptides For-(l-Ala){sub n}-NH{sub 2}, with n = 1, 3, and 5, resulted in so-called empirical ICS({phi},{psi}) surfaces for all major nuclei of the 20 naturally occurring {alpha}-amino acids. Out of the many empirical surfaces determined, it is the 13C{sup {alpha}} ICS({phi},{psi}) surface which seems to be most promising for identifying major secondary structure types, {alpha}-helix, {beta}-strand, left-handed helix ({alpha}{sub D}), and polyproline-II. Detailed tests suggest that Ala is a good model for many naturally occurring {alpha}-amino acids. Two-dimensional empirical 13C{sup {alpha}}-{sup 1}H{sup {alpha}} ICS({phi},{psi}) correlation plots, obtained so far only from computations on small peptide models, suggest the utility of the experimental information contained therein and thus they should provide useful constraints for structure determinations of proteins.

  4. A Relativistic Algorithm with Isotropic Coordinates

    Directory of Open Access Journals (Sweden)

    S. A. Ngubelanga

    2013-01-01

    Full Text Available We study spherically symmetric spacetimes for matter distributions with isotropic pressures. We generate new exact solutions to the Einstein field equations which also contain isotropic pressures. We develop an algorithm that produces a new solution if a particular solution is known. The algorithm leads to a nonlinear Bernoulli equation which can be integrated in terms of arbitrary functions. We use a conformally flat metric to show that the integrals may be expressed in terms of elementary functions. It is important to note that we utilise isotropic coordinates unlike other treatments.

  5. Nonlinear elastic inclusions in isotropic solids

    KAUST Repository

    Yavari, A.

    2013-10-16

    We introduce a geometric framework to calculate the residual stress fields and deformations of nonlinear solids with inclusions and eigenstrains. Inclusions are regions in a body with different reference configurations from the body itself and can be described by distributed eigenstrains. Geometrically, the eigenstrains define a Riemannian 3-manifold in which the body is stress-free by construction. The problem of residual stress calculation is then reduced to finding a mapping from the Riemannian material manifold to the ambient Euclidean space. Using this construction, we find the residual stress fields of three model systems with spherical and cylindrical symmetries in both incompressible and compressible isotropic elastic solids. In particular, we consider a finite spherical ball with a spherical inclusion with uniform pure dilatational eigenstrain and we show that the stress in the inclusion is uniform and hydrostatic. We also show how singularities in the stress distribution emerge as a consequence of a mismatch between radial and circumferential eigenstrains at the centre of a sphere or the axis of a cylinder.

  6. Isotropic metal deposition technique for metamaterials fabrication

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    In this work we will present the first steps taken towards isotropic deposition of thin metallic layers on dielectric substrates. The deposition takes place in aqueous environment thus making it both cheap and easy to be implemented....

  7. Isotropic metal deposition technique for metamaterials fabrication

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    In this work we will present the first steps taken towards isotropic deposition of thin metallic layers on dielectric substrates. The deposition takes place in aqueous environment thus making it both cheap and easy to be implemented....

  8. A generalized plane strain theory for transversely isotropic piezoelectric plates

    Institute of Scientific and Technical Information of China (English)

    XU Si-peng; WANG Wei

    2005-01-01

    Study of generalized plane strain has so far been limited to elasticity. The present is aimed at parallel development of transversely isotropic piezoelasticity. By assuming that the along depth distribution of electric potential is linear, and that commonly used Kane-Mindlin kinematical assumption is valid, two dimensional solution systems were deduced, for which, explicit solutions of the out-of-plane constraint factor, as well as the stress resultant concentration factor around a circular hole in a transversely isotropic piezoelectric plate subjected to remote biaxial tension are obtained. Comparisons of these formulas with their counterparts for elastic case yielded suggestions that whether the piezoelectric effect exacerbates or mitigates the stress resultant concentration greatly depends on material properties, particularly, the piezoelectric coefficients;the effect of plate thickness was extensively investigated.

  9. Systematic effects induced by a flat isotropic dielectric slab

    CERN Document Server

    Macculi, C; Cortiglioni, S; Peverini, O A; Tascone, R; Zannoni, M; Carretti, Ettore; Cortiglioni, Stefano; Macculi, Claudio; Peverini, Oscar Antonio; Tascone, Riccardo; Zannoni, Mario

    2006-01-01

    The instrumental polarization induced by a flat isotropic dielectric slab in microwave frequencies is faced. We find that, in spite of its isotropic nature, such a dielectric can produce spurious polarization either by transmitting incoming anisotropic diffuse radiation or emitting when it is thermally inhomogeneous. We present evaluations of instrumental polarization generated by materials usually adopted in Radioastronomy, by using the Mueller matrix formalism. As an application, results for different slabs in front of a 32 GHz receiver are discussed. Such results are based on measurements of their complex dielectric constant. We evaluate that a 0.33 cm thick Teflon slab introduces negligible spurious polarization ($< 2.6 \\times 10^{-5}$ in transmission and $< 6 \\times 10^{-7}$ in emission), even minimizing the leakage ($< 10^{-8}$ from $Q$ to $U$ Stokes parameters, and viceversa) and the depolarization ($\\sim 1.3 \\times 10^{-3}$).

  10. Phase conjugation, isotropic and anisotropic higher order diffraction generation, and image correlation using photorefractive barium titanate

    Science.gov (United States)

    Buranasiri, Prathan

    2005-04-01

    Using barium titanate as the photorefractive material, we demonstrate phase conjugation, beam coupling, higher diffraction order generation. At small incident angles less than 0.015 radian, both codirectional isotropic self-diffraction (CODIS) and contradirectional isotropic self-diffraction (CONDIS) are generated simultaneously. At bigger incident angles approximately more than 0.2094 radian, only codirectional anisotropic-self diffraction (CODAS) are generated. On going imaging correlation is also showing.

  11. Isotropic Growth of Graphene toward Smoothing Stitching.

    Science.gov (United States)

    Zeng, Mengqi; Tan, Lifang; Wang, Lingxiang; Mendes, Rafael G; Qin, Zhihui; Huang, Yaxin; Zhang, Tao; Fang, Liwen; Zhang, Yanfeng; Yue, Shuanglin; Rümmeli, Mark H; Peng, Lianmao; Liu, Zhongfan; Chen, Shengli; Fu, Lei

    2016-07-26

    The quality of graphene grown via chemical vapor deposition still has very great disparity with its theoretical property due to the inevitable formation of grain boundaries. The design of single-crystal substrate with an anisotropic twofold symmetry for the unidirectional alignment of graphene seeds would be a promising way for eliminating the grain boundaries at the wafer scale. However, such a delicate process will be easily terminated by the obstruction of defects or impurities. Here we investigated the isotropic growth behavior of graphene single crystals via melting the growth substrate to obtain an amorphous isotropic surface, which will not offer any specific grain orientation induction or preponderant growth rate toward a certain direction in the graphene growth process. The as-obtained graphene grains are isotropically round with mixed edges that exhibit high activity. The orientation of adjacent grains can be easily self-adjusted to smoothly match each other over a liquid catalyst with facile atom delocalization due to the low rotation steric hindrance of the isotropic grains, thus achieving the smoothing stitching of the adjacent graphene. Therefore, the adverse effects of grain boundaries will be eliminated and the excellent transport performance of graphene will be more guaranteed. What is more, such an isotropic growth mode can be extended to other types of layered nanomaterials such as hexagonal boron nitride and transition metal chalcogenides for obtaining large-size intrinsic film with low defect.

  12. Transversely isotropic higher-order averaged structure tensors

    Science.gov (United States)

    Hashlamoun, Kotaybah; Federico, Salvatore

    2017-08-01

    For composites or biological tissues reinforced by statistically oriented fibres, a probability distribution function is often used to describe the orientation of the fibres. The overall effect of the fibres on the material response is accounted for by evaluating averaging integrals over all possible directions in space. The directional average of the structure tensor (tensor product of the unit vector describing the fibre direction by itself) is of high significance. Higher-order averaged structure tensors feature in several models and carry similarly important information. However, their evaluation has a quite high computational cost. This work proposes to introduce mathematical techniques to minimise the computational cost associated with the evaluation of higher-order averaged structure tensors, for the case of a transversely isotropic probability distribution of orientation. A component expression is first introduced, using which a general tensor expression is obtained, in terms of an orthonormal basis in which one of the vectors coincides with the axis of symmetry of transverse isotropy. Then, a higher-order transversely isotropic averaged structure tensor is written in an appropriate basis, constructed starting from the basis of the space of second-order transversely isotropic tensors, which is constituted by the structure tensor and its complement to the identity.

  13. Hypersurfaces with Isotropic Para-Blaschke Tensor

    Institute of Scientific and Technical Information of China (English)

    Jian Bo FANG; Kun ZHANG

    2014-01-01

    Let Mn be an n-dimensional submanifold without umbilical points in the (n+1)-dimen-sional unit sphere Sn+1. Four basic invariants of Mn under the Moebius transformation group of Sn+1 are a1-form Φ called moebius form, a symmetric (0, 2) tensor A called Blaschke tensor, a symmetric (0, 2) tensor B called Moebius second fundamental form and a positive definite (0, 2) tensor g called Moebius metric. A symmetric (0, 2) tensor D = A+μB called para-Blaschke tensor, where μ is constant, is also an Moebius invariant. We call the para-Blaschke tensor is isotropic if there exists a function λ such that D = λg. One of the basic questions in Moebius geometry is to classify the hypersurfaces with isotropic para-Blaschke tensor. When λ is not constant, all hypersurfaces with isotropic para-Blaschke tensor are explicitly expressed in this paper.

  14. Derivatives on the isotropic tensor functions

    Institute of Scientific and Technical Information of China (English)

    DUI; Guansuo; WANG; Zhengdao; JIN; Ming

    2006-01-01

    The derivative of the isotropic tensor function plays an important part in continuum mechanics and computational mechanics, and also it is still an opening problem. By means of a scalar response function and solving a tensor equation, this problem is well studied. A compact explicit expression for the derivative of the isotropic tensor function is presented, which is valid for both distinct and repeated eigenvalue cases. Throughout the analysis, the formulation holds for general isotropic tensor functions without need to solve eigenvector problems or determine coefficients. On the theoretical side, a very simple solution of a tensor equation is obtained. As an application to continuum mechanics, a base-free expression for the Hill's strain rate is given, which is more compact than the existent results. Finally, with an example we compute the derivative of an exponent tensor function. And the efficiency of the present formulations is demonstrated.

  15. Static spherically symmetric wormholes with isotropic pressure

    CERN Document Server

    Cataldo, Mauricio; Rodríguez, Pablo

    2016-01-01

    In this paper we study static spherically symmetric wormhole solutions sustained by matter sources with isotropic pressure. We show that such spherical wormholes do not exist in the framework of zero-tidal-force wormholes. On the other hand, it is shown that for the often used power-law shape function there is no spherically symmetric traversable wormholes sustained by sources with a linear equation of state $p=\\omega \\rho$ for the isotropic pressure, independently of the form of the redshift function $\\phi(r)$. We consider a solution obtained by Tolman at 1939 for describing static spheres of isotropic fluids, and show that it also may describe wormhole spacetimes with a power-law redshift function, which leads to a polynomial shape function, generalizing a power-law shape function, and inducing a solid angle deficit.

  16. Local destruction of superconductivity by non-magnetic impurities in mesoscopic iron-based superconductors.

    Science.gov (United States)

    Li, Jun; Ji, Min; Schwarz, Tobias; Ke, Xiaoxing; Van Tendeloo, Gustaaf; Yuan, Jie; Pereira, Paulo J; Huang, Ya; Zhang, Gufei; Feng, Hai-Luke; Yuan, Ya-Hua; Hatano, Takeshi; Kleiner, Reinhold; Koelle, Dieter; Chibotaru, Liviu F; Yamaura, Kazunari; Wang, Hua-Bing; Wu, Pei-Heng; Takayama-Muromachi, Eiji; Vanacken, Johan; Moshchalkov, Victor V

    2015-07-03

    The determination of the pairing symmetry is one of the most crucial issues for the iron-based superconductors, for which various scenarios are discussed controversially. Non-magnetic impurity substitution is one of the most promising approaches to address the issue, because the pair-breaking mechanism from the non-magnetic impurities should be different for various models. Previous substitution experiments demonstrated that the non-magnetic zinc can suppress the superconductivity of various iron-based superconductors. Here we demonstrate the local destruction of superconductivity by non-magnetic zinc impurities in Ba0.5K0.5Fe2As2 by exploring phase-slip phenomena in a mesoscopic structure with 119 × 102 nm(2) cross-section. The impurities suppress superconductivity in a three-dimensional 'Swiss cheese'-like pattern with in-plane and out-of-plane characteristic lengths slightly below ∼1.34 nm. This causes the superconducting order parameter to vary along abundant narrow channels with effective cross-section of a few square nanometres. The local destruction of superconductivity can be related to Cooper pair breaking by non-magnetic impurities.

  17. Preferential sampling of helicity by isotropic helicoids

    CERN Document Server

    Gustavsson, Kristian

    2016-01-01

    We present a theoretical and numerical study on the motion of isotropic helicoids in complex flows. These are particles whose motion is invariant under rotations but not under mirror reflections of the particle. This is the simplest, yet unexplored, extension of the much studied case of small spherical particles. We show that heavy isotropic helicoids, due to the coupling between translational and rotational degrees of freedom, preferentially sample different helical regions in laminar or chaotic advecting flows. This opens the way to control and engineer particles able to track complex flow structures with potential applications to microfluidics and turbulence.

  18. Mechanical metamaterials at the theoretical limit of isotropic elastic stiffness

    Science.gov (United States)

    Berger, J. B.; Wadley, H. N. G.; McMeeking, R. M.

    2017-02-01

    A wide variety of high-performance applications require materials for which shape control is maintained under substantial stress, and that have minimal density. Bio-inspired hexagonal and square honeycomb structures and lattice materials based on repeating unit cells composed of webs or trusses, when made from materials of high elastic stiffness and low density, represent some of the lightest, stiffest and strongest materials available today. Recent advances in 3D printing and automated assembly have enabled such complicated material geometries to be fabricated at low (and declining) cost. These mechanical metamaterials have properties that are a function of their mesoscale geometry as well as their constituents, leading to combinations of properties that are unobtainable in solid materials; however, a material geometry that achieves the theoretical upper bounds for isotropic elasticity and strain energy storage (the Hashin–Shtrikman upper bounds) has yet to be identified. Here we evaluate the manner in which strain energy distributes under load in a representative selection of material geometries, to identify the morphological features associated with high elastic performance. Using finite-element models, supported by analytical methods, and a heuristic optimization scheme, we identify a material geometry that achieves the Hashin–Shtrikman upper bounds on isotropic elastic stiffness. Previous work has focused on truss networks and anisotropic honeycombs, neither of which can achieve this theoretical limit. We find that stiff but well distributed networks of plates are required to transfer loads efficiently between neighbouring members. The resulting low-density mechanical metamaterials have many advantageous properties: their mesoscale geometry can facilitate large crushing strains with high energy absorption, optical bandgaps and mechanically tunable acoustic bandgaps, high thermal insulation, buoyancy, and fluid storage and transport. Our relatively simple

  19. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  20. The thermoelectric magnetic field of isotropic inclusions in anisotropic metals

    Science.gov (United States)

    Faidi, W. I.; Nayfeh, A. H.

    2006-02-01

    In this paper we model the thermoelectric magnetic field around isotropic inclusions in anisotropic media. It is demonstrated that while the presence of the inclusion will be the dominant source of the thermoelectric signal, the anisotropy of the host material will affect the signal. Although such a phenomenon will occur for all shapes of inclusions, for simplicity we shall demonstrate our theoretical and numerical modeling on the more mathematically tractable case of a cylindrical inclusion aligned along an axis of symmetry of an anisotropic metal medium.

  1. The comparative study for the isotropic and orthotropic circular plates

    Science.gov (United States)

    Popa, C.; Tomescu, G.

    2016-08-01

    The aim of study is static bending analysis of an isotropic circular plate using analytical method i.e. Classical Plate Theory, Finite Element software ANSYS and experimental methods. The diameter of circular plate, material properties, like modulus of elasticity (E), poissons ratio (µ) and intensity of loading is assumed at the initial stage of research work. In comparison with this plane plate we analyze a plate of same dimensions and charge, but having ribs, to see the advantage of the rigidify. The two plates are fixed supported subjected to uniformly distributed load.

  2. Silicone elastomers capable of large isotropic dimensional change

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, James; Worsley, Marcus A.

    2017-07-18

    Described herein is a highly effective route towards the controlled and isotropic reduction in size-scale, of complex 3D structures using silicone network polymer chemistry. In particular, a class of silicone structures were developed that once patterned and cured can `shrink` micron scale additive manufactured and lithographically patterned structures by as much as 1 order of magnitude while preserving the dimensions and integrity of these parts. This class of silicone materials is compatible with existing additive manufacture and soft lithographic fabrication processes and will allow access to a hitherto unobtainable dimensionality of fabrication.

  3. Magnetofluidic concentration and separation of non-magnetic particles using two magnet arrays.

    Science.gov (United States)

    Hejazian, Majid; Nguyen, Nam-Trung

    2016-07-01

    The present paper reports the use of diluted ferrofluid and two arrays of permanent magnets for the size-selective concentration of non-magnetic particles. The micro magnetofluidic device consists of a straight channels sandwiched between two arrays of permanent magnets. The permanent magnets create multiple capture zones with minimum magnetic field strength along the channel. The complex interaction between magnetic forces and hydrodynamic force allows the device to operate in different regimes suitable for concentration of non-magnetic particles with small difference in size. Our experimental results show that non-magnetic particles with diameters of 3.1 μm and 4.8 μm can be discriminated and separated with this method. The results from this study could be used as a guide for the design of size-sensitive separation devices for particle and cell based on negative magnetophoresis.

  4. Approximating a harmonizable isotropic random field

    Directory of Open Access Journals (Sweden)

    Randall J. Swift

    2001-01-01

    Full Text Available The class of harmonizable fields is a natural extension of the class of stationary fields. This paper considers a stochastic series approximation of a harmonizable isotropic random field. This approximation is useful for numerical simulation of such a field.

  5. Mapping of moveout in tilted transversely isotropic media

    KAUST Repository

    Stovas, A.

    2013-09-09

    The computation of traveltimes in a transverse isotropic medium with a tilted symmetry axis tilted transversely isotropic is very important both for modelling and inversion. We develop a simple analytical procedure to map the traveltime function from a transverse isotropic medium with a vertical symmetry axis (vertical transversely isotropic) to a tilted transversely isotropic medium by applying point-by-point mapping of the traveltime function. This approach can be used for kinematic modelling and inversion in layered tilted transversely isotropic media. © 2013 European Association of Geoscientists & Engineers.

  6. Plane contact problem on indentation of a flat punch into a transversely-isotropic half-plane with functionally graded transversely-isotropic coating

    Science.gov (United States)

    Vasiliev, A. S.; Volkov, S. S.; Aizikovich, S. M.; Mitrin, B. I.

    2017-02-01

    Plane contact problem of the theory of elasticity on indentation of a non-deformable punch with a flat base into an elastic transversely-isotropic half-plane with a transversely-isotropic functionally graded coating is considered. Elastic moduli of the coating vary with depth according to arbitrary functions. An approximated analytical solution effective for a whole range of geometrical parameter (relative layer thickness) of the problem is constructed. Some properties of the contact normal pressure under the punch are obtained analytically and illustrated by the numerical examples for a transversely-isotropic homogeneous and functionally graded coatings with different types of variation of elastic moduli with depth. The distinctions in distribution of contact normal pressure for homogeneous and functionally graded materials, coated and non-coated bodies are studied analytically and numerically.

  7. Design and testing of piezo motors for non-magnetic and/or fine positioning applications

    Science.gov (United States)

    Six, M. F.; Le Letty, R.; Seiler, R.; Coste, P.

    2005-07-01

    cup configuration, in which the stator is placed in the inner diameter of a duplex ball bearing assembly. Despite the mass penalty of the rotor suspension, this configuration has been preferred for an easier wear debris confinement and higher support stiffness. Development testing examined two routes for the friction material (that should exhibit a low wear rate and a high friction coefficient, which should be similar in air and in vacuum): a polymer solution, already known and tested by CEDRAT TECHNOLOGIES, and a ceramic solution. Some potential applications have been identified both in the space sector (for instance magnetometer motorisation for the SWARM mission) and in other sectors, such as motorisation of equipment for Magnetic Resonant Imaging, taking benefit from the non-magnetic design option of the RPA. The second concept (RPMHPP) aims at providing very high pointing accuracy for future instruments such as the one foreseen for telescope pointing in the LISA constellation. In this concept, the piezo actuators operate in quasi-static mode and lead to a robust design, able to withstand a large non-operational temperature range (-140 to +140°C). Although the concept could allow for a full rotation, the prototype was implemented with an elastic guiding of the shaft: the angular stroke is +/-1° and the measured angular positioning accuray is in the range of 100 nrad.

  8. Nurse Outcomes in Magnet® and Non-Magnet Hospitals

    Science.gov (United States)

    Kelly, Lesly A.; McHugh, Matthew D.; Aiken, Linda H.

    2017-01-01

    The important goals of Magnet® hospitals are to create supportive professional nursing care environments. A recently published paper found little difference in work environments between Magnet and non-Magnet hospitals. The aim of this study was to determine whether work environments, staffing, and nurse outcomes differ between Magnet and non-Magnet hospitals. A secondary analysis of data from a 4-state survey of 26,276 nurses in 567 acute care hospitals to evaluate differences in work environments and nurse outcomes in Magnet and non-Magnet hospitals was conducted. Magnet hospitals had significantly better work environments (t = −5.29, P < .001) and more highly educated nurses (t = −2.27, P < .001). Magnet hospital nurses were 18% less likely to be dissatisfied with their job (P < .05) and 13% less likely to report high burnout (P < .05). Magnet hospitals have significantly better work environments than non-Magnet hospitals. The better work environments of Magnet hospitals are associated with lower levels of nurse job dissatisfaction and burnout. PMID:22976894

  9. Pulsed remote field eddy current technique applied to non-magnetic flat conductive plates

    Science.gov (United States)

    Yang, Binfeng; Zhang, Hui; Zhang, Chao; Zhang, Zhanbin

    2013-12-01

    Non-magnetic metal plates are widely used in aviation and industrial applications. The detection of cracks in thick plate structures, such as multilayered structures of aircraft fuselage, has been challenging in nondestructive evaluation societies. The remote field eddy current (RFEC) technique has shown advantages of deep penetration and high sensitivity to deeply buried anomalies. However, the RFEC technique is mainly used to evaluate ferromagnetic tubes. There are many problems that should be fixed before the expansion and application of this technique for the inspection of non-magnetic conductive plates. In this article, the pulsed remote field eddy current (PRFEC) technique for the detection of defects in non-magnetic conducting plates was investigated. First, the principle of the PRFEC technique was analysed, followed by the analysis of the differences between the detection of defects in ferromagnetic and non-magnetic plain structures. Three different models of the PRFEC probe were simulated using ANSYS. The location of the transition zone, defect detection sensitivity and the ability to detect defects in thick plates using three probes were analysed and compared. The simulation results showed that the probe with a ferrite core had the highest detecting ability. The conclusions derived from the simulation study were also validated by conducting experiments.

  10. ISOTROPIC TEXTURING OF POLYCRYSTALLINE SILICON WAFERS

    Institute of Scientific and Technical Information of China (English)

    L. Wang; H. Shen; Y.F. Hu

    2005-01-01

    An isotropic etching technique of texturing silicon solar cells has been applied to polycrystalline silicon wafers with different acid concentrations. Optimal etching conditions have been determined by etching rate calculation, scanning electron microscope (SEM) image and reflectance measurement. The surface morphology of the textured wafers varies in accordance with the different etchant concentration which in turn leads to the dissimilarity of etching speed. Textured polycrystalline silicon wafer surfaces display randomly located etched pits which can reduce the surface reflection and enhance the light absorption. The special relationship between reflectivity and etching rate was studied. Reflectance measurements show that isotropic texturing is one of the suitable techniques for texturing polycrystalline silicon wafers and benefits solar cells performances.

  11. Isotropic-planar illumination for PIV experiments

    Science.gov (United States)

    Atkins, Michael D.; Kim, Tongbeum

    2015-03-01

    A new method for laser illumination in particle image velocimetry (PIV) has been introduced: internal "isotropic-planar" illumination that provides laser light to regions of the flow field that were previously cast into shadow using the conventional external (laser light sheet) illumination method. To demonstrate the effectiveness of the isotropic-planar illumination method, a comparison of the measured velocity field around five side-by-side circular cylinders that are immersed in uniform flow is made against the conventional external illumination method. The new method is effective at eliminating the shadow region, allowing the velocity field of the upstream, gap and downstream regions around the five side-by-side circular cylinders to be measured simultaneously. These PIV measurements provide new insight into the behavior of the gap flow that passes between the cylinders.

  12. Isotropization of the quark gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Epelbaum, T.; Gelis, F.

    2014-06-15

    We report here recent analytical and numerical work on the theoretical treatment of the early stages of heavy ion collisions, that amounts to solving the classical Yang–Mills equations with fluctuating initial conditions. Our numerical simulations suggest a fast isotropization of the pressure tensor of the system. This trend appears already for small values of the coupling constant α{sub s}. In addition, the system exhibits an anomalously small shear viscosity.

  13. Taming electromagnetic metamaterials for isotropic perfect absorbers

    Directory of Open Access Journals (Sweden)

    Doan Tung Anh

    2015-07-01

    Full Text Available Conventional metamaterial absorbers, which consist of a dielectric spacer sandwiched between metamaterial resonators and a metallic ground plane, have been inherently anisotropic. In this paper, we present an alternative approach for isotropic perfect absorbers using symmetric metamaterial structures. We show that by systematically manipulating the electrically and magnetically induced losses, one can achieve a desired absorption without breaking the structural homogeneity. Finite integration simulations and standard retrieval method are performed to elaborate on our idea.

  14. Infinite Products of Random Isotropically Distributed Matrices

    CERN Document Server

    Il'yn, A S; Zybin, K P

    2016-01-01

    Statistical properties of infinite products of random isotropically distributed matrices are investigated. Both for continuous processes with finite correlation time and discrete sequences of independent matrices, a formalism that allows to calculate easily the Lyapunov spectrum and generalized Lyapunov exponents is developed. This problem is of interest to probability theory, statistical characteristics of matrix T-exponentials are also needed for turbulent transport problems, dynamical chaos and other parts of statistical physics.

  15. Conserved quantities in isotropic loop quantum cosmology

    CERN Document Server

    Cartin, Daniel

    2012-01-01

    We develop an action principle for those models arising from isotropic loop quantum cosmology, and show that there is a natural conserved quantity $Q$ for the discrete difference equation arising from the Hamiltonian constraint. This quantity $Q$ relates the semi-classical limit of the wavefunction at large values of the spatial volume, but opposite triad orientations. Moreover, there is a similar quantity for generic difference equations of one parameter arising from a self-adjoint operator.

  16. Infinite Products of Random Isotropically Distributed Matrices

    Science.gov (United States)

    Il'yn, A. S.; Sirota, V. A.; Zybin, K. P.

    2017-01-01

    Statistical properties of infinite products of random isotropically distributed matrices are investigated. Both for continuous processes with finite correlation time and discrete sequences of independent matrices, a formalism that allows to calculate easily the Lyapunov spectrum and generalized Lyapunov exponents is developed. This problem is of interest to probability theory, statistical characteristics of matrix T-exponentials are also needed for turbulent transport problems, dynamical chaos and other parts of statistical physics.

  17. Killing Forms of Isotropic Lie Algebras

    CERN Document Server

    Malagon, Audrey

    2010-01-01

    This paper presents a method for computing the Killing form of an isotropic Lie algebra defined over an arbitrary field based on the Killing form of a subalgebra containing its anisotropic kernel. This approach allows for streamlined formulas for many Lie algebras of types E6 and E7 and yields a unified formula for all Lie algebras of inner type E6, including the anisotropic ones.

  18. A New Type of Isotropic Cosmological Model

    CERN Document Server

    Naboulsi, R

    2003-01-01

    The Einstein equations with quantum one-loop contributions of conformally covariant matter fields in the poresence of frac{1}{t^2} decaying matter density and decaying cosmological constant is used to study an isotropic homogenous FRW space-time. We show that scale factor depends on the sums of contributions from quantum fields with different spin values. For some specific values of this later, the Universe could be in an accelerated regime.

  19. Representation and prediction for locally harmonizable isotropic random fields

    Directory of Open Access Journals (Sweden)

    Randall J. Swift

    1995-01-01

    Full Text Available The class of harmonizable fields is a natural extension of the class of stationary fields. This paper considers fields whose increments are harmonizable and isotropic. Spectral representations are obtained for locally harmonizable isotropic fields. A linear least squares prediction for locally harmonizable isotropic fields is considered.

  20. Magnetic properties and the effect of non-magnetic impurities in the quasi-2D quantum magnet

    Science.gov (United States)

    Khuntia, P.; Dey, T.; Mahajan, A. V.

    2016-09-01

    We present synthesis, x-ray diffraction, magnetisation and specific heat studies on the quasi-two-dimensional (2D) S = 1/2 antiferromagnet (CuCl)LaNb2O7 and its doping analogues (Cu1-x Zn x Cl)LaNb2O7 (0 ≤ x ≤ 0.05), (Cu0.95Mg0.05Cl)LaNb2O7, and (CuCl)La1-y Ba y Nb2O7 (0 ≤ y ≤ 0.10). The magnetic susceptibility and specific heat of the parent compound and its isovalent or hetereovalent counterparts do not display any signature of magnetic ordering down to 1.8 K. The parent compound and its doping variants exhibit spin-singlet behaviour with a finite gap in the spin excitation spectrum due to dimerisation of the dominant intradimer interactions as evidenced from our magnetic susceptibility and specific heat data. The systematic increase of magnetic susceptibility at low temperature with non-magnetic Zn2+ and Mg2+ (S = 0) substitution at the Cu2+ site reflect that impurities induce local moments around the non-magnetic sites. While heterovalent Ba2+ substitution at the La3+ site do not result in mobile holes but rather give rise to a Curie term in the susceptibility due to localisation. The low value of spin S = 1/2, and absence of long range ordering or spin freezing, and the presence of competing exchange interactions hold special significance in hosting novel magnetic properties in this class of quasi-2D quantum material.

  1. 电力调峰用同性材料飞轮电池转子设计分析%Design and Analysis of Isotropic Material Rotor of Flywheel Battery for Peak Power Shaving

    Institute of Scientific and Technical Information of China (English)

    张维超; 杨万利

    2014-01-01

    Flywheel battery,which uses mechanical energy to store energy,is a new type of the energy storage,compared to pumping energy storage methods,flywheel battery enjoys a good potential in power peaking. Through an analysis,this paper obtains the stress distribution of the flywheel rotor,designs the inner and outer radii ratio, and calculates the mechanical structure of the ultra-high strength steel flywheel rotor which can store 90 MJ of energy. It is concluded that the metallic material has superior advantages to the fiber material for the flywheel in the power peaking.%飞轮电池是一种利用机械能进行能量储存的新型储能方式,相比抽水储能方法,飞轮电池在电力调峰中拥有很好的发展潜力。通过分析得出圆环状飞轮转子的应力分布,设计了飞轮转子的内外半径比,计算得出了有效储能为90 MJ的超强度钢飞轮转子参数;通过对比指出,同性材料飞轮相比纤维材料飞轮在电力调峰中有较好的综合优势。

  2. Geometric Models for Isotropic Random Porous Media: A Review

    Directory of Open Access Journals (Sweden)

    Helmut Hermann

    2014-01-01

    Full Text Available Models for random porous media are considered. The models are isotropic both from the local and the macroscopic point of view; that is, the pores have spherical shape or their surface shows piecewise spherical curvature, and there is no macroscopic gradient of any geometrical feature. Both closed-pore and open-pore systems are discussed. The Poisson grain model, the model of hard spheres packing, and the penetrable sphere model are used; variable size distribution of the pores is included. A parameter is introduced which controls the degree of open-porosity. Besides systems built up by a single solid phase, models for porous media with the internal surface coated by a second phase are treated. Volume fraction, surface area, and correlation functions are given explicitly where applicable; otherwise numerical methods for determination are described. Effective medium theory is applied to calculate physical properties for the models such as isotropic elastic moduli, thermal and electrical conductivity, and static dielectric constant. The methods presented are exemplified by applications: small-angle scattering of systems showing fractal-like behavior in limited ranges of linear dimension, optimization of nanoporous insulating materials, and improvement of properties of open-pore systems by atomic layer deposition of a second phase on the internal surface.

  3. Direction of unsaturated flow in a homogeneous and isotropic hillslope

    Science.gov (United States)

    Lu, Ning; Kaya, Basak Sener; Godt, Jonathan W.

    2011-01-01

    The distribution of soil moisture in a homogeneous and isotropic hillslope is a transient, variably saturated physical process controlled by rainfall characteristics, hillslope geometry, and the hydrological properties of the hillslope materials. The major driving mechanisms for moisture movement are gravity and gradients in matric potential. The latter is solely controlled by gradients of moisture content. In a homogeneous and isotropic saturated hillslope, absent a gradient in moisture content and under the driving force of gravity with a constant pressure boundary at the slope surface, flow is always in the lateral downslope direction, under either transient or steady state conditions. However, under variably saturated conditions, both gravity and moisture content gradients drive fluid motion, leading to complex flow patterns. In general, the flow field near the ground surface is variably saturated and transient, and the direction of flow could be laterally downslope, laterally upslope, or vertically downward. Previous work has suggested that prevailing rainfall conditions are sufficient to completely control these flow regimes. This work, however, shows that under time-varying rainfall conditions, vertical, downslope, and upslope lateral flow can concurrently occur at different depths and locations within the hillslope. More importantly, we show that the state of wetting or drying in a hillslope defines the temporal and spatial regimes of flow and when and where laterally downslope and/or laterally upslope flow occurs.

  4. Role of elastic effects in the secondary instabilities of the nematic-isotropic interface

    Science.gov (United States)

    Oswald, P.

    1991-05-01

    We show experimentally that certain secondary instabilities of the nematic-isotropic interface depend both on the topology of the disclination line which is pinned to the meniscus and on the elastic anisotropy of the material chosen. Nous montrons expérimentalement que certaines instabilités secondaires du front nématique-isotrope dépendent de la topologie de la ligne de disinclinaison qui est accrochée au ménisque et de l'anisotropie élastique du matériau choisi.

  5. Isotropic Broadband E-Field Probe

    Directory of Open Access Journals (Sweden)

    Béla Szentpáli

    2008-01-01

    Full Text Available An E-field probe has been developed for EMC immunity tests performed in closed space. The leads are flexible resistive transmission lines. Their influence on the field distribution is negligible. The probe has an isotropic reception from 100 MHz to 18 GHz; the sensitivity is in the 3 V/m–10 V/m range. The device is an accessory of the EMC test chamber. The readout of the field magnitude is carried out by personal computer, which fulfils also the required corrections of the raw data.

  6. ON NON-ISOTROPIC JACOBI PSEUDOSPECTRAL METHOD

    Institute of Scientific and Technical Information of China (English)

    Benyu Guo; Keji Zhang

    2008-01-01

    In this paper,a non-isotropic Jacobi pseudospectral method is proposed and its applications are considered.Some results on the multi-dimensional Jacobi-Gauss type interpolation and the related Bernstein-Jackson type inequalities are established,which play an important role in pseudospectral method.The pseudospectral method is applied to a twodimensional singular problem and a problem on axisymmetric domain.The convergence of proposed schemes is established.Numerical results demonstrate the efficiency of the proposed method.

  7. Linearized Holographic Isotropization at Finite Coupling

    CERN Document Server

    Atashi, Mahdi; Jafari, Ghadir

    2016-01-01

    We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that increasing the Gauss-Bonnet coupling leads to significant increasing of the thermalization time. By including higher order corrections, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon.

  8. Isotropic cosmological singularities other matter models

    CERN Document Server

    Tod, K P

    2003-01-01

    Isotropic cosmological singularities are singularities which can be removed by rescaling the metric. In some cases already studied (gr-qc/9903008, gr-qc/9903009, gr-qc/9903018) existence and uniqueness of cosmological models with data at the singularity has been established. These were cosmologies with, as source, either perfect fluids with linear equations of state or massless, collisionless particles. In this article we consider how to extend these results to a variety of other matter models. These are scalar fields, massive collisionless matter, the Yang-Mills plasma of Choquet-Bruhat, or matter satisfying the Einstein-Boltzmann equation.

  9. Qualitative analysis of collapsing isotropic fluid spacetimes

    CERN Document Server

    Giambò, Roberto

    2013-01-01

    The structure of the Einstein field equations describing the gravitational collapse of spherically symmetric isotropic fluids is analyzed here for general equations of state. A suitable system of coordinates is constructed which allows us, under a hypothesis of Taylor-expandability with respect to one of the coordinates, to approach the problem of the nature of the final state without knowing explicitely the metric. The method is applied to investigate the singularities of linear barotropic perfect fluids solutions and to a family of accelerating fluids.

  10. Incoherent subharmonic light scattering in isotropic media.

    Science.gov (United States)

    Feng, D H; Xu, Z Z; Feng, X L; Jia, T Q; Li, X X; Liu, J S

    2005-02-01

    Incoherent subharmonic light scattering in isotropic media is a new kind of nonlinear light scattering, which involves single input photon and multiple output photons of equal frequency. We investigate theoretically the dependence of the subharmonic scattering intensity on the hyperpolarizability of molecules and the incident intensity using nonlinear optics theory similar to that used for Hyper-Rayleigh scattering and degenerate optical parametric oscillators. It is derived that the subharmonic scattering intensities grow exponentially or superexponentially with the hyperpolarizability of molecules and the incident intensity.

  11. Droplet size distribution in homogeneous isotropic turbulence

    Science.gov (United States)

    Perlekar, Prasad; Biferale, Luca; Sbragaglia, Mauro; Srivastava, Sudhir; Toschi, Federico

    2012-06-01

    We study the physics of droplet breakup in a statistically stationary homogeneous and isotropic turbulent flow by means of high resolution numerical investigations based on the multicomponent lattice Boltzmann method. We verified the validity of the criterion proposed by Hinze [AIChE J. 1, 289 (1955)] for droplet breakup and we measured the full probability distribution function of droplets radii at different Reynolds numbers and for different volume fractions. By means of a Lagrangian tracking we could follow individual droplets along their trajectories, define a local Weber number based on the velocity gradients, and study its cross-correlation with droplet deformation.

  12. Extensibility enables locomotion under isotropic drag

    CERN Document Server

    Pak, On Shun

    2011-01-01

    Anisotropic viscous drag is usually believed to be a requirement for the low Reynolds number locomotion of slender bodies such as flagella and cilia. Here we show that locomotion under isotropic drag is possible for extensible slender bodies. After general considerations, a two-ring swimmer and a model dinoflagellate flagellum are studied analytically to illustrate how extensibility can be exploited for self-propulsion without drag anisotropy. This new degree of freedom could be useful for some complex swimmer geometries and locomotion in complex fluid environments where drag anisotropy is weak or even absent.

  13. Temperature profile along an induction heated, moving non-magnetic charge

    Energy Technology Data Exchange (ETDEWEB)

    Januszkiewicz, K.

    1984-01-01

    Induction heating system, comprising three sections of a heating coil connected in series and supplied from one source, will be discussed. The charge to be heated is a non-magnetic pipe moving with steady speed. The heating coil is water cooled. Digital methods are used to compute temperature variations along the charge from start up to steady state temperature and also to determine power development in the heating circuit. Cooling zones between the heating coil sections are taken into account.

  14. The space density and X-ray luminosity function of non-magnetic cataclysmic variables

    CERN Document Server

    Pretorius, Magaretha L

    2011-01-01

    We combine two complete, X-ray flux-limited surveys, the ROSAT Bright Survey (RBS) and the ROSAT North Ecliptic Pole (NEP) survey, to measure the space density (\\rho) and X-ray luminosity function (\\Phi) of non-magnetic CVs. The combined survey has a flux limit of F_X \\ga 1.1 \\times 10^{-12} erg cm^{-2}s^{-1} over most of its solid angle of just over 2\\pi, but is as deep as \\simeq 10^{-14} erg cm^{-2}s^{-1} over a small area. The CV sample that we construct from these two surveys contains 20 non-magnetic systems. We carefully include all sources of statistical error in calculating \\rho and \\Phi by using Monte Carlo simulations; the most important uncertainty proves to be the often large errors in distances estimates. If we assume that the 20 CVs in the combined RBS and NEP survey sample are representative of the intrinsic population, the space density of non-magnetic CVs is 4^{+6}_{-2} \\times 10^{-6} pc^{-3}. We discuss the difficulty in measuring \\Phi in some detail---in order to account for biases in the me...

  15. Non-Magnetic, Tough, Corrosion- and Wear-Resistant Knives From Bulk Metallic Glasses and Composites

    Science.gov (United States)

    Hoffman, Douglas C.; Potter, Benjamin

    2013-01-01

    Quality knives are typically fabricated from high-strength steel alloys. Depending on the application, there are different requirements for mechanical and physical properties that cause problems for steel alloys. For example, diver's knives are generally used in salt water, which causes rust in steel knives. Titanium diver's knives are a popular alternative due to their salt water corrosion resistance, but are too soft to maintain a sharp cutting edge. Steel knives are also magnetic, which is undesirable for military applications where the knives are used as a tactical tool for diffusing magnetic mines. Steel is also significantly denser than titanium (8 g/cu cm vs. 4.5 g/cu cm), which results in heavier knives for the same size. Steel is hard and wear-resistant, compared with titanium, and can keep a sharp edge during service. A major drawback of both steel and titanium knives is that they must be ground or machined into the final knife shape from a billet. Since most knives have a mirrored surface and a complex shape, manufacturing them is complex. It would be more desirable if the knife could be cast into a net or near-net shape in a single step. The solution to the deficiencies of titanium, steel, and ceramic knives is to fabricate them using bulk metallic glasses (or composites). These alloys can be cast into net or near-net shaped knives with a combination of properties that exceed both titanium and steel. A commercially viable BMG (bulk metallic glass) or composite knife is one that exhibits one or all of the following properties: It is based on titanium, has a self-sharpening edge, can retain an edge during service, is hard, is non-magnetic, is corrosion-resistant against a variety of corrosive environments, is tough (to allow for prying), can be cast into a net-shape with a mirror finish and a complex shape, has excellent wear resistance, and is low-density. These properties can be achieved in BMG and composites through alloy chemistry and processing. For

  16. Controlled isotropic or anisotropic nanoscale growth of coordination polymers: formation of hybrid coordination polymer particles.

    Science.gov (United States)

    Lee, Hee Jung; Cho, Yea Jin; Cho, Won; Oh, Moonhyun

    2013-01-22

    The ability to fabricate multicompositional hybrid materials in a precise and controlled manner is one of the primary goals of modern materials science research. In addition, an understanding of the phenomena associated with the systematic growth of one material on another can facilitate the evolution of multifunctional hybrid materials. Here, we demonstrate precise manipulation of the isotropic and/or anisotropic nanoscale growth of various coordination polymers (CPs) to obtain heterocompositional hybrid coordination polymer particles. Chemical composition analyses conducted at every growth step reveal the formation of accurately assembled hybrid nanoscale CPs, and microscopy images are used to examine the morphology of the particles and visualize the hybrid structures. The dissimilar growth behavior, that is, growth in an isotropic or anisotropic fashion, is found to be dependent on the size of the metal ions involved within the CPs.

  17. Vector solitons in nonlinear isotropic chiral metamaterials

    CERN Document Server

    Tsitsas, N L; Frantzeskakis, D J

    2011-01-01

    Starting from the Maxwell equations, we used the reductive perturbation method to derive a system of two coupled nonlinear Schr\\"{o}dinger (NLS) equations for the two Beltrami components of the electromagnetic field propagating along a fixed direction in an isotropic nonlinear chiral metamaterial. With single-resonance Lorentz models for the permittivity and permeability and a Condon model for the chirality parameter, in certain spectral regimes, one of the two Beltrami components exhibits a negative real refractive index when nonlinearity is ignored and the chirality parameter is sufficiently large.We found that, inside such a spectral regime, there may exist a subregime wherein the system of the NLS equations can be approximated by the Manakov system. Bright-bright, dark-dark, and dark-bright vector solitons can be formed in that spectral subregime.

  18. A tilted transversely isotropic slowness surface approximation

    KAUST Repository

    Stovas, A.

    2012-05-09

    The relation between vertical and horizontal slownesses, better known as the dispersion relation, for transversely isotropic media with a tilted symmetry axis (TTI) requires solving a quartic polynomial equation, which does not admit a practical explicit solution to be used, for example, in downward continuation. Using a combination of the perturbation theory with respect to the anelliptic parameter and Shanks transform to improve the accuracy of the expansion, we develop an explicit formula for the vertical slowness that is highly accurate for all practical purposes. It also reveals some insights into the anisotropy parameter dependency of the dispersion relation including the low impact that the anelliptic parameter has on the vertical placement of reflectors for a small tilt in the symmetry angle. © 2012 European Association of Geoscientists & Engineers.

  19. Linearized holographic isotropization at finite coupling

    Energy Technology Data Exchange (ETDEWEB)

    Atashi, Mahdi; Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Physics Department (Iran, Islamic Republic of); Jafari, Ghadir [Institute for Research in Fundamental Sciences (IPM), School of Physics, Tehran (Iran, Islamic Republic of)

    2017-06-15

    We study holographic isotropization of an anisotropic homogeneous non-Abelian strongly coupled plasma in the presence of Gauss-Bonnet corrections. It was verified before that one can linearize Einstein's equations around the final black hole background and simplify the complicated setup. Using this approach, we study the expectation value of the boundary stress tensor. Although we consider small values of the Gauss-Bonnet coupling constant, it is found that finite coupling leads to significant increasing of the thermalization time. By including higher order corrections in linearization, we extend the results to study the effect of the Gauss-Bonnet coupling on the entropy production on the event horizon. (orig.)

  20. Direct numerical simulation of compressible isotropic turbulence

    Institute of Scientific and Technical Information of China (English)

    LI; Xinliang(李新亮); FU; Dexun(傅德薰); MAYanwen(马延文)

    2002-01-01

    Direct numerical simulation (DNS) of decaying compressible isotropic turbulence at tur-bulence Mach numbers of Mt = 0.2-0.7 and Taylor Reynolds numbers of 72 and 153 is per-formed by using the 7th order upwind-biased difference and 8th order center difference schemes.Results show that proper upwind-biased difference schemes can release the limit of "start-up"problem to Mach numbers.Compressibility effects on the statistics of turbulent flow as well as the mechanics of shockletsin compressible turbulence are also studied, and the conclusion is drawn that high Mach numberleads to more dissipation. Scaling laws in compressible turbulence are also analyzed. Evidence isobtained that scaling laws and extended self similarity (ESS) hold in the compressible turbulentflow in spite of the presence of shocklets, and compressibility has little effect on scaling exponents.

  1. An exhaustive list of isotropic apocalyptic scenarios

    CERN Document Server

    Parnovsky, S L

    2016-01-01

    We study the possible types of future singularities in the isotropic homogeneous cosmological models for the arbitrary equation of state of the contents of the Universe. We obtain all known types of these singularities as well as two new types using a simple approach. No additional singularity types are possible. We name the new singularities type "Big Squeeze" and "Little Freeze". The "Big Squeeze" is possible only in the flat Universe after a finite time interval. The density of the matter and dark energy tends to zero and its pressure to minus infinity. This requires the dark energy with a specific equation of state that has the same asymptotical behaviour at low densities as the generalised Chaplygin gas. The "Little Freeze" involves an eternal expansion of the Universe. Some solutions can mimic the $\\Lambda$CDM model.

  2. Kinematical uniqueness of homogeneous isotropic LQC

    Science.gov (United States)

    Engle, Jonathan; Hanusch, Maximilian

    2017-01-01

    In a paper by Ashtekar and Campiglia, invariance under volume preserving residual diffeomorphisms has been used to single out the standard representation of the reduced holonomy-flux algebra in homogeneous loop quantum cosmology (LQC). In this paper, we use invariance under all residual diffeomorphisms to single out the standard kinematical Hilbert space of homogeneous isotropic LQC for both the standard configuration space {{{R}}\\text{Bohr}} , as well as for the Fleischhack one {R}\\sqcup {{{R}}\\text{Bohr}} . We first determine the scale invariant Radon measures on these spaces, and then show that the Haar measure on {{{R}}\\text{Bohr}} is the only such measure for which the momentum operator is hermitian w.r.t. the corresponding inner product. In particular, the measure is forced to be identically zero on {R} in the Fleischhack case, so that for both approaches, the standard kinematical LQC-Hilbert space is singled out.

  3. New Isotropic and Anisotropic Sudden Singularities

    CERN Document Server

    Barrow, J D; Barrow, John D.; Tsagas, Christos G.

    2004-01-01

    We show the existence of an infinite family of finite-time singularities in isotropically expanding universes which obey the weak, strong, and dominant energy conditions. We show what new type of energy condition is needed to exclude them ab initio. We also determine the conditions under which finite-time future singularities can arise in a wide class of anisotropic cosmological models. New types of finite-time singularity are possible which are characterised by divergences in the time-rate of change of the anisotropic-pressure tensor. We investigate the conditions for the formation of finite-time singularities in a Bianchi type $VII_{0}$ universe with anisotropic pressures and construct specific examples of anisotropic sudden singularities in these universes.

  4. Vector solitons in nonlinear isotropic chiral metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Tsitsas, N L [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografos, Athens 15773 (Greece); Lakhtakia, A [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States); Frantzeskakis, D J, E-mail: dfrantz@phys.uoa.gr [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784 (Greece)

    2011-10-28

    Starting from the Maxwell equations, we used the reductive perturbation method to derive a system of two coupled nonlinear Schroedinger (NLS) equations for the two Beltrami components of the electromagnetic field propagating along a fixed direction in an isotropic nonlinear chiral metamaterial. With single-resonance Lorentz models for the permittivity and permeability and a Condon model for the chirality parameter, in certain spectral regimes, one of the two Beltrami components exhibits a negative-real refractive index when nonlinearity is ignored and the chirality parameter is sufficiently large. We found that, inside such a spectral regime, there may exist a subregime wherein the system of the NLS equations can be approximated by the Manakov system. Bright-bright, dark-dark, and dark-bright vector solitons can be formed in that spectral subregime. (paper)

  5. Kinematical uniqueness of homogeneous isotropic LQC

    CERN Document Server

    Engle, Jonathan

    2016-01-01

    In a paper by Ashtekar and Campiglia, invariance under volume preserving residual diffeomorphisms has been used to single out the standard representation of the reduced holonomy-flux algebra in homogeneous loop quantum cosmology (LQC). In this paper, we use invariance under all residual diffeomorphisms to single out the standard kinematical Hilbert space of homogeneous isotropic LQC for both the standard configuration space $\\mathbb{R}_{\\mathrm{Bohr}}$, as well as for the Fleischhack one $\\mathbb{R} \\sqcup \\mathbb{R}_{\\mathrm{Bohr}}$. We first determine the scale invariant Radon measures on these spaces, and then show that the Haar measure on $\\mathbb{R}_{\\mathrm{Bohr}}$ is the only such measure for which the momentum operator is hermitian w.r.t. the corresponding inner product. In particular, the measure is forced to be identically zero on $\\mathbb{R}$ in the Fleischhack case, so that for both approaches, the standard kinematical LQC-Hilbert space is singled out.

  6. Can we remove the systematic error due to isotropic inhomogeneities?

    Science.gov (United States)

    Negishi, Hiroyuki; Nakao, Ken-ichi

    2017-01-01

    Usually, we assume that there is no inhomogeneity isotropic in terms of our location in our Universe. This assumption has not been observationally confirmed yet in sufficient accuracy, and we need to consider the possibility that there are non-negligible large-scale isotropic inhomogeneities in our Universe. The existence of large-scale isotropic inhomogeneities affects the determination of cosmological parameters. In particular, from only the distance-redshift relation, we cannot distinguish the inhomogeneous isotropic universe model from the homogeneous isotropic one, because of the ambiguity in the cosmological parameters. In this paper, in order to avoid such ambiguity, we consider three observables—the distance-redshift relation, the fluctuation spectrum of the cosmic microwave background radiation, and the scale of the baryon acoustic oscillation—and compare these observables in two universe models. One is the inhomogeneous isotropic universe model with the cosmological constant, and the other is the homogeneous isotropic universe model with dark energy other than the cosmological constant. We show that these two universe models cannot predict the same observational data of all three observables but the same ones of only two of three, as long as the perturbations are adiabatic. In principle, we can distinguish the inhomogeneous isotropic universe from the homogeneous isotropic one through the appropriate three observables, if the perturbations are adiabatic.

  7. Viscous propulsion in active transversely isotropic media

    Science.gov (United States)

    Cupples, G.; Dyson, R. J.; Smith, D. J.

    2017-02-01

    Taylor's swimming sheet is a classical model of microscale propulsion and pumping. Many biological fluids and substances are fibrous, having a preferred direction in their microstructure; for example cervical mucus is formed of polymer molecules which create an oriented fibrous network. Moreover, suspensions of elongated motile cells produce a form of active oriented matter. To understand how these effects modify viscous propulsion, we extend Taylor's classical model of small-amplitude zero-Reynolds-number propulsion of a 'swimming sheet' via the transversely-isotropic fluid model of Ericksen, which is linear in strain rate and possesses a distinguished direction. The energetic costs of swimming are significantly altered by all rheological parameters and the initial fibre angle. Propulsion in a passive transversely-isotropic fluid produces an enhanced mean rate of working, independent of the initial fibre orientation, with an approximately linear dependence of energetic cost on the extensional and shear enhancements to the viscosity caused by fibres. In this regime the mean swimming velocity is unchanged from the Newtonian case. The effect of the constant term in Ericksen's model for the stress, which can be identified as a fibre tension or alternatively a stresslet characterising an active fluid, is also considered. This stress introduces an angular dependence and dramatically changes the streamlines and flow field; fibres aligned with the swimming direction increase the energetic demands of the sheet. The constant fibre stress may result in a reversal of the mean swimming velocity and a negative mean rate of working if sufficiently large relative to the other rheological parameters.

  8. Development of a Non-Magnetic Inertial Sensor for Vibration Stabilization in a Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, Josef; Decker, Valentin; Doyle, Eric; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Seryi, Andrei; /SLAC; Chang, Allison; Partridge, Richard; /Brown U.

    2006-09-01

    One of the options for controlling vibration of the final focus magnets in a linear collider is to use active feedback based on accelerometers. While commercial geophysics sensors have noise performance that substantially exceeds the requirements for a linear collider, they are physically large, and cannot operate in the strong magnetic field of the detector. Conventional nonmagnetic sensors have excessive noise for this application. We report on the development of a non-magnetic inertial sensor, and on a novel commercial sensor both of which have demonstrated the required noise levels for this application.

  9. The space density and X-ray luminosity function of non-magnetic cataclysmic variables

    Science.gov (United States)

    Pretorius, Magaretha L.; Knigge, Christian

    2012-01-01

    We combine two complete, X-ray flux-limited surveys, the ROSAT Bright Survey (RBS) and the ROSAT North Ecliptic Pole (NEP) survey, to measure the space density (ρ) and X-ray luminosity function (Φ) of non-magnetic cataclysmic variables (CVs). The combined survey has a flux limit of FX≳ 1.1 × 10-12 erg cm-2 s-1 over most of its solid angle of just over ?, but is as deep as ≃10-14 erg cm-2 s-1 over a small area. The CV sample that we construct from these two surveys contains 20 non-magnetic systems. We carefully include all sources of statistical error in calculating ρ and Φ by using Monte Carlo simulations; the most important uncertainty proves to be the often large errors in distances estimates. If we assume that the 20 CVs in the combined RBS and NEP survey sample are representative of the intrinsic population, the space density of non-magnetic CVs is ?. We discuss the difficulty in measuring Φ in some detail - in order to account for biases in the measurement, we have to adopt a functional form for Φ. Assuming that the X-ray luminosity function of non-magnetic CVs is a truncated power law, we constrain the power-law index to -0.80 ± 0.05. It seems likely that the two surveys have failed to detect a large, faint population of short-period CVs, and that the true space density may well be a factor of 2 or 3 larger than what we have measured; this is possible, even if we only allow for undetected CVs to have X-ray luminosities in the narrow range 28.7 log(LX/erg s-1) < 29.7. However, ρ as high as 2 × 10-4 pc-3 would require that the majority of CVs has X-ray luminosities below LX= 4 × 1028 erg s-1 in the 0.5-2.0 keV band.

  10. Design of 3D isotropic metamaterial device using smart transformation optics.

    Science.gov (United States)

    Shin, Dongheok; Kim, Junhyun; Yoo, Do-Sik; Kim, Kyoungsik

    2015-08-24

    We report here a design method for a 3 dimensional (3D) isotropic transformation optical device using smart transformation optics. Inspired by solid mechanics, smart transformation optics regards a transformation optical medium as an elastic solid and deformations as coordinate transformations. Further developing from our previous work on 2D smart transformation optics, we introduce a method of 3D smart transformation optics to design 3D transformation optical devices by maintaining isotropic materials properties for all types of polarizations imposing free or nearly free boundary conditions. Due to the material isotropy, it is possible to fabricate such devices with structural metamaterials made purely of common dielectric materials. In conclusion, the practical importance of the method reported here lies in the fact that it enables us to fabricate, without difficulty, arbitrarily shaped 3D devices with existing 3D printing technology.

  11. Practical improvements on photon diffusion theory : application to isotropic scattering

    NARCIS (Netherlands)

    Graaff, R; Rinzema, K

    2001-01-01

    Based on the analysis of an isotropic point source in an infinite, isotropically scattering turbid medium, we suggest several modifications to the well-known diffusion theory. Compared with standard diffusion theory these modifications, which require very little extra mathematics, lead to a substant

  12. Isotropic-to-nematic nucleation in suspensions of colloidal rods

    NARCIS (Netherlands)

    Cuetos, A.; van Roij, R.H.H.G.; Dijkstra, M.

    2008-01-01

    Using computer simulations, we study the isotropic-to-nematic nucleation in a fluid of colloidal hard rods as well as in a mixture of colloidal rods and non-adsorbing polymer. In order to follow the transformation of the system from the isotropic to the nematic phase, we use a new cluster criterion

  13. On the decay of homogeneous isotropic turbulence

    Science.gov (United States)

    Skrbek, L.; Stalp, Steven R.

    2000-08-01

    Decaying homogeneous, isotropic turbulence is investigated using a phenomenological model based on the three-dimensional turbulent energy spectra. We generalize the approach first used by Comte-Bellot and Corrsin [J. Fluid Mech. 25, 657 (1966)] and revised by Saffman [J. Fluid Mech. 27, 581 (1967); Phys. Fluids 10, 1349 (1967)]. At small wave numbers we assume the spectral energy is proportional to the wave number to an arbitrary power. The specific case of power 2, which follows from the Saffman invariant, is discussed in detail and is later shown to best describe experimental data. For the spectral energy density in the inertial range we apply both the Kolmogorov -5/3 law, E(k)=Cɛ2/3k-5/3, and the refined Kolmogorov law by taking into account intermittency. We show that intermittency affects the energy decay mainly by shifting the position of the virtual origin rather than altering the power law of the energy decay. Additionally, the spectrum is naturally truncated due to the size of the wind tunnel test section, as eddies larger than the physical size of the system cannot exist. We discuss effects associated with the energy-containing length scale saturating at the size of the test section and predict a change in the power law decay of both energy and vorticity. To incorporate viscous corrections to the model, we truncate the spectrum at an effective Kolmogorov wave number kη=γ(ɛ/v3)1/4, where γ is a dimensionless parameter of order unity. We show that as the turbulence decays, viscous corrections gradually become more important and a simple power law can no longer describe the decay. We discuss the final period of decay within the framework of our model, and show that care must be taken to distinguish between the final period of decay and the change of the character of decay due to the saturation of the energy containing length scale. The model is applied to a number of experiments on decaying turbulence. These include the downstream decay of turbulence in

  14. Quantifying absolute spin polarization with non-magnetic contacts in FM/ n-GaAs heterostructures

    Science.gov (United States)

    Geppert, Chad; Wienkes, Lee; Christie, Kevin; Patel, Sahil; Palmstrøm, Chris; Crowell, Paul

    2014-03-01

    We report on a novel method of quantifying spin accumulation in Co2MnSi/ n-GaAs and Fe/ n-GaAs heterostructures using a non-magnetic probe. The presence of a non-equilibrium spin polarization generates a large electrostatic potential shift relative to the equilibrium state. This is due to the combination of (1) the parabolic (non-constant) density of states and (2) the population imbalance between the two spin sub-bands. We observe this shift as a Hanle effect in a non-local, non-magnetic semiconducting contact. Since this signal depends only on experimentally accessible parameters of the bulk semiconductor, its magnitude may be used to quantify the injected spin polarization in absolute terms. By comparison with the (smaller) spin-valve signal observed with a second ferromagnetic contact, we demonstrate that this electrostatic shift scales quadratically with spin polarization, dephases in the presence of both applied and hyperfine fields, and is observable to higher temperatures than traditional non-local measurements. Quantitative modeling allows extraction of absolute polarizations in excess of 50 % at low temperatures, and further indicates that this contribution constitutes a large fraction of the three-terminal signal observed in these devices. Supported by NSF DMR-1104951; by STARnet, a SRC program sponsored by MARCO and DARPA; and by the NSF MRSEC program.

  15. Kramers non-magnetic superconductivity in LnNiAsO superconductors.

    Science.gov (United States)

    Li, Yuke; Luo, Yongkang; Li, Lin; Chen, Bin; Xu, Xiaofeng; Dai, Jianhui; Yang, Xiaojun; Zhang, Li; Cao, Guanghan; Xu, Zhu-an

    2014-10-22

    We investigated a series of nickel-based oxyarsenides LnNiAsO (Ln=La, Ce, Pr, Nd, Sm) compounds. CeNiAsO undergoes two successive anti-ferromagnetic transitions at TN1=9.3 K and TN2=7.3 K; SmNiAsO becomes an anti-ferromagnet below TN≃3.5 K; NdNiAsO keeps paramagnetic down to 2 K but orders anti-ferromagnetically below TN≃1.3 K. Superconductivity was observed only in Kramers non-magnetic LaNiAsO and PrNiAsO with Tc=2.7 K and 0.93 K, respectively. The superconductivity of PrNiAsO is further studied by upper critical field and specific heat measurements, which reveal that PrNiAsO is a weakly coupled Kramers non-magnetic superconductor. Our work confirms that the nickel-based oxyarsenide superconductors are substantially different in mechanism to iron-based ones, and are likely to be described by the conventional superconductivity theory.

  16. Component masses of young, wide, non-magnetic white dwarf binaries in the SDSS DR7

    CERN Document Server

    Baxter, R B; Parker, Q A; Casewell, S L; Lodieu, N; Burleigh, M R; Lawrie, K A; Kulebi, B; Koester, D; Holland, B R

    2014-01-01

    We present a spectroscopic component analysis of 18 candidate young, wide, non-magnetic, double-degenerate binaries identified from a search of the Sloan Digital Sky Survey Data Release 7 (DR7). All but two pairings are likely to be physical systems. We show SDSS J084952.47+471247.7 + SDSS J084952.87+471249.4 to be a wide DA+DB binary, only the second identified to date. Combining our measurements for the components of 16 new binaries with results for three similar, previously known systems within the DR7, we have constructed a mass distribution for the largest sample to date (38) of white dwarfs in young, wide, non-magnetic, double-degenerate pairings. This is broadly similar in form to that of the isolated field population with a substantial peak around M~0.6 Msun. We identify an excess of ultra-massive white dwarfs and attribute this to the primordial separation distribution of their progenitor systems peaking at relatively larger values and the greater expansion of their binary orbits during the final sta...

  17. Non-magnetic impurity effects in LiFeAs studied by STM/STS

    Science.gov (United States)

    Hanaguri, T.; Khim, Seung Hyun; Lee, Bumsung; Kim, Kee Hoon; Kitagawa, K.; Matsubayashi, K.; Mazaki, Y.; Uwatoko, Y.; Takigawa, M.; Takagi, H.

    2012-02-01

    Detecting the possible sign reversal of the superconducting gap in iron-based superconductors is highly non-trivial. Here we use non-magnetic impurity as a sign indicator. If the sign of the superconducting gap is positive everywhere in momentum space, in-gap bound state should not be observed near the impurity site unless it is magnetic. On the other hand, if there is a sign-reversal in the gap, even non-magnetic impurity may create in-gap bound state [1]. We performed STM/STS experiments on self-flux and Sn-flux grown LiFeAs crystals and examined the effects of Sn impurity. In STM images of Sn-flux grown samples, we found a ring-like object which may represent Sn. Tunneling spectrum taken at this defect site exhibits in-gap bound state. Together with flat-bottom superconducting gap observed far from the defects, sign-reversing s-wave gap is the most plausible gap structure in LiFeAs. [1] T. Kariyado and M. Ogata, JPSJ 79, 083704 (2010).

  18. A modified failure criterion for transversely isotropic rocks

    Institute of Scientific and Technical Information of China (English)

    Omid Saeidi; Vamegh Rasouli; Rashid Geranmayeh Vaneghi; Raoof Gholami; Seyed Rahman Torabi

    2014-01-01

    A modified failure criterion is proposed to determine the strength of transversely isotropic rocks. Me-chanical properties of some metamorphic and sedimentary rocks including gneiss, slate, marble, schist, shale, sandstone and limestone, which show transversely isotropic behavior, were taken into consider-ation. Afterward, introduced triaxial rock strength criterion was modified for transversely isotropic rocks. Through modification process an index was obtained that can be considered as a strength reduction parameter due to rock strength anisotropy. Comparison of the parameter with previous anisotropy in-dexes in literature showed reasonable results for the studied rock samples. The modified criterion was compared to modified Hoek-Brown and Ramamurthy criteria for different transversely isotropic rocks. It can be concluded that the modified failure criterion proposed in this study can be used for predicting the strength of transversely isotropic rocks.

  19. On the algebraic structure of isotropic generalized elasticity theories

    CERN Document Server

    Auffray, Nicolas

    2013-01-01

    In this paper the algebraic structure of the isotropic nth-order gradient elasticity is investigated. In the classical isotropic elasticity it is well-known that the constitutive relation can be broken down into two uncoupled relations between elementary part of the strain and the stress tensors (deviatoric and spherical). In this paper we demonstrate that this result can not be generalized and since 2nd-order isotropic elasticity there exist couplings between elementary parts of higher-order strain and stress tensors. Therefore, and in certain way, nth-order isotropic elasticity have the same kind of algebraic structure as anisotropic classical elasticity. This structure is investigated in the case of 2nd-order isotropic elasticity, and moduli characterizing the behavior are provided.

  20. Shocklet statistics in compressible isotropic turbulence

    Science.gov (United States)

    Wang, Jianchun; Gotoh, Toshiyuki; Watanabe, Takeshi

    2017-02-01

    Shocklet statistics in compressible isotropic turbulence are studied by using numerical simulations with solenoidal forcing, at the turbulent Mach number Mt ranging from 0.5 up to 1.0 and at the Taylor Reynolds number Reλ ranging from 110 to 250. A power-law region of the probability density function (PDF) of the shocklet strength Mn-1 (Mn is the normal shock Mach number) is observed. The magnitude of the power-law exponent is found to decrease with the increase of Mt. We show that the most probable shocklet strength is proportional to Mt3, and the shocklet thickness corresponding to the most probable shock Mach number is proportional to Mt-2 in our numerical simulations. The PDFs of the jumps of the velocity and thermodynamic variables across a shocklet exhibit a similar power-law scaling. The statistics of the jumps of the velocity and thermodynamic variables are further investigated by conditioned average. Nonlinear models for the conditional average of the jumps of the velocity and thermodynamic variables are developed and verified.

  1. Near isotropic behaviour of turbulent thermal convection

    CERN Document Server

    Nath, Dinesh; Kumar, Abhishek; Verma, Mahendra K

    2016-01-01

    We investigate the anisotropy in turbulent convection in a 3D box using direct numerical simulation. We compute the anisotropic parameter $A = u_\\perp^{2}/(2u_{\\parallel}^{2})$, where $u_{\\perp}$ and $u_{\\parallel}$ are the components of velocity perpendicular and parallel to the buoyancy direction, the shell and ring spectra, and shell-to-shell energy transfers. We observe that the flow is nearly isotropic for the Prandtl number $\\mathrm{Pr} \\approx 1$, but the anisotropy increases with the Prandtl number. For $\\mathrm{Pr}=\\infty$, $A \\approx 0.3$, thus anisotropy is not very significant even in extreme cases. We also observe that $u_{\\parallel}$ feeds energy to $u_{\\perp}$ via pressure. The computation of shell-to-shell energy transfers show that the energy transfer in turbulent convection is local and forward, similar to fluid turbulence. These results are consistent with the Kolmogorov's spectrum observed by Kumar et al.~[Phys. Rev. E {\\bf 90}, 023016 (2014)] for turbulent convection.

  2. DYNAMICAL FORMATION OF CAVITY IN TRANSVERSELY ISOTROPIC HYPER-ELASTIC SPHERES

    Institute of Scientific and Technical Information of China (English)

    任九生; 程昌钧

    2003-01-01

    The cavity formation in a radial transversely isotropic hyper-elastic sphere of an incompressible Ogden material, subjected to a suddenly applied uniform radial tensile boundary deadload, is studied following the theory of finite deformation dynamics. A cavity forms at the center of the sphere when the tensile load is greater than its critical value. It is proved that the evolution of the cavity radius with time follows that of nonlinear periodic oscillations.

  3. Development of a Pressure-Dependent Constitutive Model with Combined Multilinear Kinematic and Isotropic Hardening

    Science.gov (United States)

    Allen Phillip A.; Wilson, Christopher D.

    2003-01-01

    The development of a pressure-dependent constitutive model with combined multilinear kinematic and isotropic hardening is presented. The constitutive model is developed using the ABAQUS user material subroutine (UMAT). First the pressure-dependent plasticity model is derived. Following this, the combined bilinear and combined multilinear hardening equations are developed for von Mises plasticity theory. The hardening rule equations are then modified to include pressure dependency. The method for implementing the new constitutive model into ABAQUS is given.

  4. Photosensitivity control of an isotropic medium through polarization of light pulses with tilted intensity front.

    Science.gov (United States)

    Kazansky, Peter G; Shimotsuma, Yasuhiko; Sakakura, Masaaki; Beresna, Martynas; Gecevičius, Mindaugas; Svirko, Yuri; Akturk, Selcuk; Qiu, Jianrong; Miura, Kiyotaka; Hirao, Kazuyuki

    2011-10-10

    We present the first experimental evidence of anisotropic photosensitivity of an isotropic homogeneous medium under uniform illumination. Our experiments reveal fundamentally new type of light induced anisotropy originated from the hidden asymmetry of pulsed light beam with a finite tilt of intensity front. We anticipate that the observed phenomenon, which enables employing mutual orientation of a light polarization plane and pulse front tilt to control interaction of matter with ultrashort light pulses, will open new opportunities in material processing.

  5. Sudden relaminarisation and lifetimes in forced isotropic turbulence

    CERN Document Server

    Linkmann, Moritz

    2015-01-01

    We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall-bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase super-exponentially with the Reynolds number. Our results suggest that both isotropic turbulence and wall-bounded shear flows share the same phase-space dynamics.

  6. Killing vector fields and a homogeneous isotropic universe

    CERN Document Server

    Katanaev, M O

    2016-01-01

    Some basic theorems on Killing vector fields are reviewed. In particular, the topic of a constant-curvature space is examined. A detailed proof is given for a theorem describing the most general form of the metric of a homogeneous isotropic space-time. Although this theorem can be considered to be commonly known, its complete proof is difficult to find in the literature. An example metric is presented such that all its spatial cross sections correspond to constant-curvature spaces, but it is not homogeneous and isotropic as a whole. An equivalent definition of a homogeneous and isotropic space-time in terms of embedded manifolds is also given.

  7. Non-magnetic photospheric bright points in 3D simulations of the solar atmosphere

    Science.gov (United States)

    Calvo, F.; Steiner, O.; Freytag, B.

    2016-11-01

    Context. Small-scale bright features in the photosphere of the Sun, such as faculae or G-band bright points, appear in connection with small-scale magnetic flux concentrations. Aims: Here we report on a new class of photospheric bright points that are free of magnetic fields. So far, these are visible in numerical simulations only. We explore conditions required for their observational detection. Methods: Numerical radiation (magneto-)hydrodynamic simulations of the near-surface layers of the Sun were carried out. The magnetic field-free simulations show tiny bright points, reminiscent of magnetic bright points, only smaller. A simple toy model for these non-magnetic bright points (nMBPs) was established that serves as a base for the development of an algorithm for their automatic detection. Basic physical properties of 357 detected nMBPs were extracted and statistically evaluated. We produced synthetic intensity maps that mimic observations with various solar telescopes to obtain hints on their detectability. Results: The nMBPs of the simulations show a mean bolometric intensity contrast with respect to their intergranular surroundings of approximately 20%, a size of 60-80 km, and the isosurface of optical depth unity is at their location depressed by 80-100 km. They are caused by swirling downdrafts that provide, by means of the centripetal force, the necessary pressure gradient for the formation of a funnel of reduced mass density that reaches from the subsurface layers into the photosphere. Similar, frequently occurring funnels that do not reach into the photosphere, do not produce bright points. Conclusions: Non-magnetic bright points are the observable manifestation of vertically extending vortices (vortex tubes) in the photosphere. The resolving power of 4-m-class telescopes, such as the DKIST, is needed for an unambiguous detection of them. The movie associated to Fig. 1 is available at http://www.aanda.org

  8. Large-deviation statistics of vorticity stretching in isotropic turbulence.

    Science.gov (United States)

    Johnson, Perry L; Meneveau, Charles

    2016-03-01

    A key feature of three-dimensional fluid turbulence is the stretching and realignment of vorticity by the action of the strain rate. It is shown in this paper, using the cumulant-generating function, that the cumulative vorticity stretching along a Lagrangian path in isotropic turbulence obeys a large deviation principle. As a result, the relevant statistics can be described by the vorticity stretching Cramér function. This function is computed from a direct numerical simulation data set at a Taylor-scale Reynolds number of Re(λ)=433 and compared to those of the finite-time Lyapunov exponents (FTLE) for material deformation. As expected, the mean cumulative vorticity stretching is slightly less than that of the most-stretched material line (largest FTLE), due to the vorticity's preferential alignment with the second-largest eigenvalue of strain rate and the material line's preferential alignment with the largest eigenvalue. However, the vorticity stretching tends to be significantly larger than the second-largest FTLE, and the Cramér functions reveal that the statistics of vorticity stretching fluctuations are more similar to those of the largest FTLE. In an attempt to relate the vorticity stretching statistics to the vorticity magnitude probability density function in statistically stationary conditions, a model Kramers-Moyal equation is constructed using the statistics encoded in the Cramér function. The model predicts a stretched-exponential tail for the vorticity magnitude probability density function, with good agreement for the exponent but significant difference (35%) in the prefactor.

  9. Isotropic copper-invar alloys for microelectronics packaging

    Science.gov (United States)

    Cottle, Rand Duprez

    The recent trend in microelectronics packaging toward surface mounted devices (SMD) has created a need for new types of materials that possess low thermal expansion and high electrical and thermal conductivity. Laminates that combine the high thermal and electrical conductivity of copper with the low thermal expansion of Invar, know as CuInvarCu or CIC, are widely use as core constraining materials in printed wire boards where SMDs are to be employed. CIC is highly anisotropic, and there are potential problems resulting from its anisotropy. An isotropic CuInvar alloy would be of great interest for a variety of applications. In suitable Cu-Fe-Ni alloys, a copper-rich solid solution equilibrates with an Invar-rich solid solution; casting such alloys invariably produces Invar-rich dendrites in a copper-rich solid solution. Casting followed by suitable heat treatments can produce two-phase alloys that combine the properties of copper and Invar. The overall composition controls the relative fractions of Invar and copper and the resulting trade-off between low thermal expansivity and electrical conductivity. Measured thermal expansivities (CTE) of CuInvar alloys follow very closely a linear rule of mixing. Electrical conductivities of as-cast specimens are quite poor due to iron and nickel contamination. Theoretical phase diagrams indicate that nearly pure copper equilibrates with an Invar-rich phase at temperatures below, roughly, 500°C. However, equilibrium compositions have been shown to take extremely, long to form, due to the very sluggish kinetics in the system. Long-term annealing was shown to improve conductivity significantly, but much greater improvements are needed to make CuInvar viable as an electrical conductive material.

  10. Renormalization of Hierarchically Interacting Isotropic Diffusions

    Science.gov (United States)

    den Hollander, F.; Swart, J. M.

    1998-10-01

    We study a renormalization transformation arising in an infinite system of interacting diffusions. The components of the system are labeled by the N-dimensional hierarchical lattice ( N≥2) and take values in the closure of a compact convex set bar D subset {R}^d (d ≥slant 1). Each component starts at some θ ∈ D and is subject to two motions: (1) an isotropic diffusion according to a local diffusion rate g: bar D to [0,infty ] chosen from an appropriate class; (2) a linear drift toward an average of the surrounding components weighted according to their hierarchical distance. In the local mean-field limit N→∞, block averages of diffusions within a hierarchical distance k, on an appropriate time scale, are expected to perform a diffusion with local diffusion rate F ( k) g, where F^{(k)} g = (F_{c_k } circ ... circ F_{c_1 } ) g is the kth iterate of renormalization transformations F c ( c>0) applied to g. Here the c k measure the strength of the interaction at hierarchical distance k. We identify F c and study its orbit ( F ( k) g) k≥0. We show that there exists a "fixed shape" g* such that lim k→∞ σk F ( k) g = g* for all g, where the σ k are normalizing constants. In terms of the infinite system, this property means that there is complete universal behavior on large space-time scales. Our results extend earlier work for d = 1 and bar D = [0,1], resp. [0, ∞). The renormalization transformation F c is defined in terms of the ergodic measure of a d-dimensional diffusion. In d = 1 this diffusion allows a Yamada-Watanabe-type coupling, its ergodic measure is reversible, and the renormalization transformation F c is given by an explicit formula. All this breaks down in d≥2, which complicates the analysis considerably and forces us to new methods. Part of our results depend on a certain martingale problem being well-posed.

  11. The isotropic blackbody CMB as evidence for a homogeneous universe

    CERN Document Server

    Clifton, Timothy; Bull, Philip

    2011-01-01

    The question of whether the Universe is spatially homogeneous and isotropic on the largest scales is of fundamental importance to cosmology, but has not yet been answered decisively. Surprisingly, neither an isotropic primary CMB nor combined observations of luminosity distances and galaxy number counts are sufficient to establish such a result. The inclusion of the Sunyaev-Zel'dovich effect in CMB observations, however, dramatically improves this situation. We show that even a solitary observer who sees an isotropic blackbody CMB can conclude that the universe is homogeneous and isotropic in their causal past when the Sunyaev-Zel'dovich effect is present. Critically, however, the CMB must either be viewed for an extended period of time, or CMB photons that have scattered more than once must be detected. This result provides a theoretical underpinning for testing the Cosmological Principle with observations of the CMB alone.

  12. Characterizing error propagation in quantum circuits: the Isotropic Index

    Science.gov (United States)

    Fonseca de Oliveira, André L.; Buksman, Efrain; Cohn, Ilan; García López de Lacalle, Jesús

    2017-02-01

    This paper presents a novel index in order to characterize error propagation in quantum circuits by separating the resultant mixed error state in two components: an isotropic component that quantifies the lack of information, and a disalignment component that represents the shift between the current state and the original pure quantum state. The Isotropic Triangle, a graphical representation that fits naturally with the proposed index, is also introduced. Finally, some examples with the analysis of well-known quantum algorithms degradation are given.

  13. Some exact solutions in K-essence theory isotropic cosmology

    CERN Document Server

    Pimentel, Luis O

    2016-01-01

    We use a simple form of the K-essence theory and apply it to the classic isotropic cosmological model and seek exact solutions. The particular form of the kinetic term that we choose is $K \\left(\\phi, X \\right)= K_0(\\phi)X^m +K_1$. The resulting field equations in the homogeneous and isotropic cosmology (FRW)is considered. Several exact solutions are obtained.

  14. A defect mediated lamellar to isotropic transition of amphiphile bilayers

    OpenAIRE

    Pal, Antara; Pabst, Georg; Raghunathan, V. A.

    2011-01-01

    We report the observation of a novel isotropic phase of amphiphile bilayers in a mixed system consisting of the ionic surfactant, sodium docecylsulphate (SDS), and the organic salt p-toludine hydrochloride (PTHC). This system forms a collapsed lamellar ($L_\\alpha$) phase over a wide range of water content, which transforms into an isotropic phase on heating. This transition is not observed in samples without excess water, where the $L_\\alpha$ phase is stable at higher temperatures. Our observ...

  15. The isotropic blackbody CMB as evidence for a homogeneous universe

    OpenAIRE

    Clifton, Timothy; Clarkson, Chris; Bull, Philip

    2011-01-01

    The question of whether the Universe is spatially homogeneous and isotropic on the largest scales is of fundamental importance to cosmology, but has not yet been answered decisively. Surprisingly, neither an isotropic primary CMB nor combined observations of luminosity distances and galaxy number counts are sufficient to establish such a result. The inclusion of the Sunyaev-Zel'dovich effect in CMB observations, however, dramatically improves this situation. We show that even a solitary obser...

  16. Optimization of a partially non-magnetic primary radiation shielding for the triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II

    CERN Document Server

    Pyka, N M; Rogov, A

    2002-01-01

    Monte Carlo simulations have been used to optimize the monochromator shielding of the polarized cold-neutron triple-axis spectrometer PANDA at the Munich high-flux reactor FRM-II. By using the Monte Carlo program MCNP-4B, the density of the total spectrum of incoming neutrons and gamma radiation from the beam tube SR-2 has been determined during the three-dimensional diffusion process in different types of heavy concrete and other absorbing material. Special attention has been paid to build a compact and highly efficient shielding, partially non-magnetic, with a total biological radiation dose of less than 10 mu Sv/h at its outsides. Especially considered was the construction of an albedo reducer, which serves to reduce the background in the experiment outside the shielding. (orig.)

  17. Isotropic properties of the photonic band gap in quasicrystals with low-index contrast

    CERN Document Server

    Rose, Priya; Abbate, G; Andreone, A

    2011-01-01

    We report on the formation and development of the photonic band gap in two-dimensional 8-, 10- and 12-fold symmetry quasicrystalline lattices of low index contrast. Finite size structures made of dielectric cylindrical rods were studied and measured in the microwave region, and their properties compared with a conventional hexagonal crystal. Band gap characteristics were investigated by changing the direction of propagation of the incident beam inside the crystal. Various angles of incidence from 0 \\degree to 30\\degree were used in order to investigate the isotropic nature of the band gap. The arbitrarily high rotational symmetry of aperiodically ordered structures could be practically exploited to manufacture isotropic band gap materials, which are perfectly suitable for hosting waveguides or cavities.

  18. General thermo-elastic solution of radially heterogeneous, spherically isotropic rotating sphere

    Energy Technology Data Exchange (ETDEWEB)

    Bayat, Yahya; EkhteraeiToussi, THamid [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of)

    2015-06-15

    A thick walled rotating spherical object made of transversely isotropic functionally graded materials (FGMs) with general types of thermo-mechanical boundary conditions is studied. The thermo-mechanical governing equations consisting of decoupled thermal and mechanical equations are represented. The centrifugal body forces of the rotation are considered in the modeling phase. The unsymmetrical thermo-mechanical boundary conditions and rotational body forces are expressed in terms of the Legendre series. The series method is also implemented in the solution of the resulting equations. The solutions are checked with the known literature and FEM based solutions of ABAQUS software. The effects of anisotropy and heterogeneity are studied through the case studies and the results are represented in different figures. The newly developed series form solution is applicable to the rotating FGM spherical transversely isotropic vessels having nonsymmetrical thermo-mechanical boundary condition.

  19. Surface wave characteristics in a micropolar transversely isotropic halfspace underlying an inviscid liquid layer

    Directory of Open Access Journals (Sweden)

    Gupta R.R.

    2014-02-01

    Full Text Available The present investigation deals with the propagation of waves in a micropolar transversely isotropic half space with an overlying inviscid fluid layer. Effects of fluid loading and anisotropy on the phase velocity, attenuation coefficient, specific loss and relative frequency shift. Finally, a numerical solution was carried out for aluminium epoxy material and the computer simulated results for the phase velocity, attenuation coefficient, specific loss and relative frequency shift are presented graphically. A particular case for the propagation of Rayleigh waves in a micropolar transversely isotropic half-space is deduced and dispersion curves are plotted for the same as functions of the wave number. An amplitude of displacements and microrotation together with the path of surface particles are also calculated for the propagation of Rayleigh waves in the latter case

  20. Multiaxial yield surface of transversely isotropic foams: Part II—Experimental

    Science.gov (United States)

    Shafiq, Muhammad; Ayyagari, Ravi Sastri; Ehaab, Mohammad; Vural, Murat

    2015-03-01

    A robust understanding and modeling of the yield behavior in solid foams under complex stress states is essential to design and analysis of optimal structures using these lightweight materials. In pursuit of this objective a new custom-built Multi-Axial Testing Apparatus (MATA) is developed to probe the yield surface of transversely isotropic Divinycell H-100 PVC foam under a multitude of uniaxial, biaxial and triaxial strain paths. Experimental yield data produced constitutes the most comprehensive data set ever produced for any foam as it covers the entire spectrum of stress paths from hydrostatic compression to hydrostatic tension. Experimental results reveal that yielding in foams exhibits not only a quadratic pressure dependence, which is widely recognized in literature, but also a significant linear pressure dependence, which has been largely overlooked in previous studies. A new energy-based yield criterion developed for transversely isotropic foams is also validated using the experimental yield data.

  1. Transverse isotropic modeling of the ballistic response of glass reinforced plastic composites

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P.A. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31

    The use of glass reinforced plastic (GRP) composites is gaining significant attention in the DoD community for use in armor applications. These materials typically possess a laminate structure consisting of up to 100 plies, each of which is constructed of a glass woven roving fabric that reinforces a plastic matrix material. Current DoD attention is focused on a high strength, S-2 glass cross-weave (0/90) fabric reinforcing a polyester matrix material that forms each ply of laminate structure consisting anywhere from 20 to 70 plies. The resulting structure displays a material anisotropy that is, to a reasonable approximation, transversely isotropic. When subjected to impact and penetration from a metal fragment projectile, the GRP displays damage and failure in an anisotropic manner due to various mechanisms such as matrix cracking, fiber fracture and pull-out, and fiber-matrix debonding. In this presentation, the author will describe the modeling effort to simulate the ballistic response of the GRP material described above using the transversely isotropic (TI) constitutive model which has been implemented in the shock physics code, CTH. The results of this effort suggest that the model is able to describe the delamination behavior of the material but has some difficulty capturing the in-plane (i.e., transverse) response of the laminate due to its cross-weave fabric reinforcement pattern which causes a departure from transverse isotropy.

  2. Scattering of obliquely incident standing wave by a rotating transversely isotropic cylinder

    CSIR Research Space (South Africa)

    Shatalov, MY

    2006-05-01

    Full Text Available stream_source_info Shatalov2_2006.pdf.txt stream_content_type text/plain stream_size 15905 Content-Encoding UTF-8 stream_name Shatalov2_2006.pdf.txt Content-Type text/plain; charset=UTF-8 1 CSIR Material Science..., Tshwane University of Technology, South Africa. 2 CSIR Material Science and Manufacturing Abstract It is known that vibrating patterns of an isotropic cylinder, subjected to inertial rotation over the symmetry axis, precess in the direction...

  3. PLASTIC ZONES IN AN INFINITELY LONG TRANSVERSELY ISOTROPIC SOLID CYLINDER CONTAINING A RINGSHAPED CRACK

    Directory of Open Access Journals (Sweden)

    Mesut UYANER

    1999-02-01

    Full Text Available In this study, the problem of a ring shaped-crack contained in an infinitely long solid cylinder of elastic perfectly-plastic material is considered. The problem is formulated for a transversely isotropic material by using integral transform technique under uniform load. Due to the geometry of the configuration, Hankel and Fourier integral transform techniques are chosen and the problem is reduced to a singular integral equation. This integral equation is solved numerically by using Gaussian Quadrature Formulae and the values are evaluated for discrete points. The plastic zone lengths are obtained by using the plastic strip model.

  4. Instrumented sphere method for measuring thermal pressure in fluids and isotropic stresses and reaction kinetics in thermosetting resins

    Science.gov (United States)

    Merzlyakov, Mikhail; Meng, Yan; Simon, Sindee L.; McKenna, Gregory B.

    2004-10-01

    A novel technique is described for measuring thermal pressure in fluids and for measuring isotropic stress development and reaction kinetics in thermosetting resins during cure and thermal cycling. The method uses a 12.7-mm-diam sealed stainless steel spherical pressure vessel to impose three-dimensional isotropic constraints. The vessel is instrumented with strain gauges and thermocouples. Both isotropic stresses and reaction kinetics during cure at cure temperatures as high as 300 °C can be measured. In addition, measurement of the isotropic stress as a function of temperature yields the thermal pressure coefficient in both the glassy and rubbery (or liquid) states. Experimental results are presented for sucrose benzoate, a pressure-transmitting oil di-2-ethylhexylsebacate and an epoxy resin. The method provides reproducible estimates for the thermal pressure coefficient and the stresses are highly isotropic. A suggestion for improved versions of the device is: thicker walled vessels can be used to increase the upper stress limit (currently at 30 MPa). Also if a lower temperature range is to be studied, then aluminum can be used as a vessel material. Since epoxy resins have better adhesion to aluminum than to stainless steel, there may be an advantage to this.

  5. Voigt waves in homogenized particulate composites based on isotropic dielectric components

    CERN Document Server

    Mackay, Tom G

    2011-01-01

    Homogenized composite materials (HCMs) can support a singular form of optical propagation, known as Voigt wave propagation, while their component materials do not. This phenomenon was investigated for biaxial HCMs arising from nondissipative isotropic dielectric component materials. The biaxiality of these HCMs stems from the oriented spheroidal shapes of the particles which make up the component materials. An extended version of the Bruggeman homogenization formalism was used to investigate the influence of component particle orientation, shape and size, as well as volume fraction of the component materials, upon Voigt wave propagation. Our numerical studies revealed that the directions in which Voigt waves propagate is highly sensitive to the orientation of the component particles and to the volume fraction of the component materials, but less sensitive to the shape of the component particles and less sensitive still to the size of the component particles. Furthermore, whether or not such an HCM supports Vo...

  6. Fabrication of a Textured Non-Magnetic Ni-12at.%V Alloy Substrate for Coated Conductors

    DEFF Research Database (Denmark)

    Gao, M. M.; Grivel, Jean-Claude; Suo, H. L.;

    2011-01-01

    Ni-12at.%V alloy is a promising candidate for non-magnetic cube textured metallic substrates used for high temperature coated conductors. In this work, a textured Ni-12at.%V substrate has been fabricated by powder metallurgy route. After cold rolling and recrystallization annealing, a cube texture...

  7. Plane Strain Deformation of a Poroelastic Half-space in Welded Contact with Transversely Isotropic Elastic Half-Space

    Directory of Open Access Journals (Sweden)

    NEELAM KUMARI

    2012-11-01

    Full Text Available The Biot linearized theory for fluid saturated porous materials is used to study the plane strain deformation of an isotropic, homogeneous, poroelastPic half space in welded contact with a homogeneous, transversely isotropic, elastic half space caused by an inclined line-load in elastic half space. The integral expressions for the displacements and stresses in the two half spaces in welded contact are obtained from the corresponding expressions for an unbounded transversely isotropic elastic and poroelastic medium by applying boundary conditions at the interface. The integrals for the inclined line-load are solved analytically for the limiting casei.e. undrained conditions in high frequency limit. The undrained displacements, stresses and pore pressure are shown graphically. Expression for the pore pressure is also calculated for undrained conditions in the high frequency limit.

  8. Chelating capture and magnetic removal of non-magnetic heavy metal substances from soil

    Science.gov (United States)

    Fan, Liren; Song, Jiqing; Bai, Wenbo; Wang, Shengping; Zeng, Ming; Li, Xiaoming; Zhou, Yang; Li, Haifeng; Lu, Haiwei

    2016-02-01

    A soil remediation method based on magnetic beneficiation is reported. A new magnetic solid chelator powder, FS@IDA (core-shell Fe3O4@SiO2 nanoparticles coated with iminodiacetic acid chelators), was used as a reactive magnetic carrier to selectively capture non-magnetic heavy metals in soil by chelation and removal by magnetic separation. FS@IDA was prepared via inorganic-organic and organic synthesis reactions that generated chelating groups on the surface of magnetic, multi-core, core-shell Fe3O4@SiO2 (FS) nanoparticles. These reactions used a silane coupling agent and sodium chloroacetate. The results show that FS@IDA could chelate the heavy metal component of Cd, Zn, Pb, Cu and Ni carbonates, lead sulfate and lead chloride in water-insoluble salt systems. The resulting FS@IDA-Cd and FS@IDA-Pb chelates could be magnetically separated, resulting in removal rates of approximately 84.9% and 72.2% for Cd and Pb, respectively. FS@IDA could not remove the residual heavy metals and those bound to organic matter in the soil. FS@IDA did not significantly alter the chemical composition of the soil, and it allowed for fast chelating capture, simple magnetic separation and facilitated heavy metal elution. FS@IDA could also be easily prepared and reprocessed.

  9. Are non-magnetic mechanisms such as temporal solar diameter variations conceivable for an irradiance variability?

    CERN Document Server

    Rozelot, J P; Pireaux, S; Ajabshirizadeh, A

    2004-01-01

    Irradiance variability has been monitored from space for more than two decades. Even if data are coming from different sources, it is well established that a temporal variability exists which can be set to as approximately 0.1%, in phase with the solar cycle. Today, one of the best explanation for such an irradiance variability is provided by the evolution of the solar surface magnetic fields. But if some 90 to 95% can be reproduced, what would be the origin of the 10 to 5% left? Non magnetic effects are conceivable. In this paper we will consider temporal variations of the diameter of the Sun as a possible contributor for the remaining part. Such an approach imposes strong constraints on the solar radius variability. We will show that over a solar cycle, variations of no more than 20 mas of amplitude can be considered. Such a variability (far from what is reported by observers conducting measurements by means of ground-based solar astrolabes) may explain a little part of the irradiance changes not explained ...

  10. Controlling magnetism on metal surfaces with non-magnetic means: electric fields and surface charging.

    Science.gov (United States)

    Brovko, Oleg O; Ruiz-Díaz, Pedro; Dasa, Tamene R; Stepanyuk, Valeri S

    2014-03-01

    We review the state of the art of surface magnetic property control with non-magnetic means, concentrating on metallic surfaces and techniques such as charge-doping or external electric field (EEF) application. Magneto-electric coupling via EEF-based charge manipulation is discussed as a way to tailor single adatom spins, exchange interaction between adsorbates or anisotropies of layered systems. The mechanisms of paramagnetic and spin-dependent electric field screening and the effect thereof on surface magnetism are discussed in the framework of theoretical and experimental studies. The possibility to enhance the effect of EEF by immersing the target system into an electrolyte or ionic liquid is discussed by the example of substitutional impurities and metallic alloy multilayers. A similar physics is pointed out for the case of charge traps, metallic systems decoupled from a bulk electron bath. In that case the charging provides the charge carrier density changes necessary to affect the magnetic moments and anisotropies in the system. Finally, the option of using quasi-free electrons rather than localized atomic spins for surface magnetism control is discussed with the example of Shockley-type metallic surface states confined to magnetic nanoislands.

  11. Efficient anisotropic wavefield extrapolation using effective isotropic models

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-06-10

    Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented in the high-frequency asymptotic approximation by the eikonal equation, to develop effective isotropic models, which are used to efficiently and approximately extrapolate anisotropic wavefields using the isotropic, relatively cheaper, operators. These effective velocity models are source dependent and tend to embed the anisotropy in the inhomogeneity. Though this isotropically generated wavefield theoretically shares the same kinematic behavior as that of the first arrival anisotropic wavefield, it also has the ability to include all the arrivals resulting from a complex wavefield propagation. In fact, the effective models reduce to the original isotropic model in the limit of isotropy, and thus, the difference between the effective model and, for example, the vertical velocity depends on the strength of anisotropy. For reverse time migration (RTM), effective models are developed for the source and receiver fields by computing the traveltime for a plane wave source stretching along our source and receiver lines in a delayed shot migration implementation. Applications to the BP TTI model demonstrates the effectiveness of the approach.

  12. Diffraction of SH-waves by topographic features in a layered transversely isotropic half-space

    Science.gov (United States)

    Ba, Zhenning; Liang, Jianwen; Zhang, Yanju

    2017-01-01

    The scattering of plane SH-waves by topographic features in a layered transversely isotropic (TI) half-space is investigated by using an indirect boundary element method (IBEM). Firstly, the anti-plane dynamic stiffness matrix of the layered TI half-space is established and the free fields are solved by using the direct stiffness method. Then, Green's functions are derived for uniformly distributed loads acting on an inclined line in a layered TI half-space and the scattered fields are constructed with the deduced Green's functions. Finally, the free fields are added to the scattered ones to obtain the global dynamic responses. The method is verified by comparing results with the published isotropic ones. Both the steady-state and transient dynamic responses are evaluated and discussed. Numerical results in the frequency domain show that surface motions for the TI media can be significantly different from those for the isotropic case, which are strongly dependent on the anisotropy property, incident angle and incident frequency. Results in the time domain show that the material anisotropy has important effects on the maximum duration and maximum amplitudes of the time histories.

  13. A Transversely Isotropic Thermo-mechanical Framework for Oil Shale

    Science.gov (United States)

    Semnani, S. J.; White, J. A.; Borja, R. I.

    2014-12-01

    The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers

  14. Magnetic reversal in iron thin films interspersed with non-magnetic pinning sites

    Energy Technology Data Exchange (ETDEWEB)

    Nau, Stefan; Wiedwald, Ulf; Wiedemann, Stefan; Plettl, Alfred; Ziemann, Paul [Institut fuer Festkoerperphysik, Universitaet Ulm (Germany)

    2010-07-01

    Magnetic switching of continuous iron thin films is tailored by structuring a periodic array of nonmagnetic holes acting as pinning centers for domain walls. Contrary to common lithographically prepared antidots, nanostructures are prepared by deposition of densely packed monolayers of polystyrene (PS) spheres on silicon and silicon nitride substrates. Isotropic plasma etching leads to adjustable PS diameters between 20% and 80% of the initial value while conserving the particle spacing. The influence on the magnetic reversal process is studied as a function of diameter and distance of the PS spheres. Iron films are deposited by pulsed laser deposition. Antidot arrays of 100 nm period lead to up to 15 times increased in-plane coercive fields at 300 K, depending on dot diameters and film thicknesses. The magnetic reversal is imaged by scanning transmission x-ray microscopy accompanied by micromagnetic simulations in order to understand domain nucleation and propagation in varying external fields.

  15. Sudden relaminarisation and lifetimes in forced isotropic turbulence

    Science.gov (United States)

    Linkmann, Moritz; Morozov, Alexander

    2015-11-01

    We demonstrate an unexpected connection between isotropic turbulence and wall-bounded shear flows. We perform direct numerical simulations of isotropic turbulence forced at large scales at moderate Reynolds numbers and observe sudden transitions from chaotic dynamics to a spatially simple flow, analogous to the laminar state in wall bounded shear flows. We find that the survival probabilities of turbulence are exponential and the typical lifetimes increase super-exponentially with the Reynolds number, similar to results on relaminarisation of localised turbulence in pipe and plane Couette flow. Results from simulations subjecting the observed large-scale flow to random perturbations of variable amplitude demonstrate that it is a linearly stable simple exact solution that can be destabilised by a finite-amplitude perturbation, like the Hagen-Poiseuille profile in pipe flow. Our results suggest that both isotropic turbulence and wall-bounded shear flows qualitatively share the same phase-space dynamics.

  16. The refined theory of transversely isotropic piezoelectric rectangular beams

    Institute of Scientific and Technical Information of China (English)

    GAO; Yang; WANG; Minzhong

    2006-01-01

    The problem of deducing one-dimensional theory from two-dimensional theory for a transversely isotropic piezoelectric rectangular beam is investigated. Based on the piezoelasticity theory, the refined theory of piezoelectric beams is derived by using the general solution of transversely isotropic piezoelasticity and Lur'e method without ad hoc assumptions. Based on the refined theory of piezoelectric beams, the exact equations for the beams without transverse surface loadings are derived, which consist of two governing differential equations: the fourth-order equation and the transcendental equation. The approximate equations for the beams under transverse loadings are derived directly from the refined beam theory. As a special case, the governing differential equations for transversely isotropic elastic beams are obtained from the corresponding equations of piezoelectric beams. To illustrate the application of the beam theory developed, a uniformly loaded and simply supported piezoelectric beam is examined.

  17. Isotropic radical CO{sub 2}{sup -} in biological apatites

    Energy Technology Data Exchange (ETDEWEB)

    Rudko, V.V. [Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, 45, pr. Nauky, Kiev 03028 (Ukraine)], E-mail: vv_rudko@yahoo.com; Ishchenko, S.S.; Vorona, I.P.; Baran, N.P. [Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, 45, pr. Nauky, Kiev 03028 (Ukraine)

    2007-10-15

    The isotropic CO{sub 2}{sup -} EPR spectrum at g{approx}2.0006 for {gamma}-irradiated powders of dental enamel annealed at different temperatures up to 320{sup 0}C is studied. The signal intensity is found to increase with the growth of annealing temperature up to 240{sup 0}C. This finding contradicts to the existing model of isotropic CO{sub 2}{sup -} radical in apatites. The possible models of the radical in biological apatite are analyzed and discussed. On the basis of the results obtained it is suggested that in tooth enamel apatite the isotropic CO{sub 2}{sup -} radical is the bulk radical localized in structural voids of hydroxyapatite lattice, which occur in the vicinity of a carbon radical in position B.

  18. Comparative analysis of isotropic diffusion weighted imaging sequences

    Science.gov (United States)

    Vellmer, Sebastian; Stirnberg, Rüdiger; Edelhoff, Daniel; Suter, Dieter; Stöcker, Tony; Maximov, Ivan I.

    2017-02-01

    Visualisation of living tissue structure and function is a challenging problem of modern imaging techniques. Diffusion MRI allows one to probe in vivo structures on a micrometer scale. However, conventional diffusion measurements are time-consuming procedures, because they require several measurements with different gradient directions. Considerable time savings are therefore possible by measurement schemes that generate an isotropic diffusion weighting in a single shot. Multiple approaches for generating isotropic diffusion weighting are known and have become very popular as useful tools in clinical research. Thus, there is a strong need for a comprehensive comparison of different isotropic weighting approaches. In the present work we introduce two new sequences based on simple (co)sine modulations and compare their performance to established q-space magic-angle spinning sequences and conventional DTI, using a diffusion phantom assembled from microcapillaries and in vivo experiments at 7 T. The advantages and disadvantages of all compared schemes are demonstrated and discussed.

  19. Scaling of Lyapunov Exponents in Homogeneous, Isotropic DNS

    Science.gov (United States)

    Fitzsimmons, Nicholas; Malaya, Nicholas; Moser, Robert

    2013-11-01

    Lyapunov exponents measure the rate of separation of initially infinitesimally close trajectories in a chaotic system. Using the exponents, we are able to probe the chaotic nature of homogeneous isotropic turbulence and study the instabilities of the chaotic field. The exponents are measured by calculating the instantaneous growth rate of a linear disturbance, evolved with the linearized Navier-Stokes equation, at each time step. In this talk, we examine these exponents in the context of homogeneous isotropic turbulence with two goals: 1) to investigate the scaling of the exponents with respect to the parameters of forced homogeneous isotropic turbulence, and 2) to characterize the instabilities that lead to chaos in turbulence. Specifically, we explore the scaling of the Lyapunov exponents with respect to the Reynolds number and with respect to the ratio of the integral length scale and the computational domain size.

  20. Thermalization and isotropization in heavy-ion collisions

    Indian Academy of Sciences (India)

    Michael Strickland

    2015-05-01

    Our current understanding of the processes driving the thermalization and isotropization of the quark gluon plasma (QGP) created in ultrarelativistic heavy-ion collisions (URHICs) is reviewed. Initially, the phenomenological evidence in favour of the creation of a thermal but momentum–space anisotropic QGP in URHICs is discussed. Further, the degree of isotropization using viscous (dissipative) hydrodynamics, weak-coupling approaches to QGP dynamics, and strong-coupling approaches to QGP dynamics are discussed. Finally, recent progress in the area of real-time non-Abelian gauge field simulations and non-Abelian Boltzmann–Vlasov-based hard-loop simulations are reported.

  1. Designing isotropic interactions for self-assembly of complex lattices.

    Science.gov (United States)

    Edlund, E; Lindgren, O; Jacobi, M Nilsson

    2011-08-19

    We present a direct method for solving the inverse problem of designing isotropic potentials that cause self-assembly into target lattices. Each potential is constructed by matching its energy spectrum to the reciprocal representation of the lattice to guarantee that the desired structure is a ground state. We use the method to self-assemble complex lattices not previously achieved with isotropic potentials, such as a snub square tiling and the kagome lattice. The latter is especially interesting because it provides the crucial geometric frustration in several proposed spin liquids. © 2011 American Physical Society

  2. Isotropic Scale-Invariant Dissipation of Solar Wind Turbulence

    CERN Document Server

    Kiyani, K H; Khotyaintsev, Yu V; Turner, A; Hnat, B; Sahraoui, F

    2010-01-01

    The anisotropic nature of solar wind magnetic fluctuations is investigated scale-by-scale using high cadence in-situ magnetic field measurements spanning five decades in scales from the inertial to dissipation ranges of plasma turbulence. We find an abrupt transition at ion kinetic scales to a single isotropic stochastic process that characterizes the dissipation range on all observable scales. In contrast to the inertial range, this is accompanied by a successive scale-invariant reduction in the ratio between parallel and transverse power. We suggest a possible phase space mechanism for this, based on nonlinear wave-particle interactions, operating in this scale-invariant isotropic manner.

  3. Massive gravity: nonlinear instability of the homogeneous and isotropic universe

    CERN Document Server

    De Felice, Antonio; Mukohyama, Shinji

    2012-01-01

    We study the propagating modes for nonlinear massive gravity on a Bianchi type--I manifold. We analyze their kinetic terms and dispersion relations as the background manifold approaches the homogeneous and isotropic limit. We show that in this limit, at least one ghost always exists and that its frequency tends to vanish for large scales, meaning that it cannot be integrated out from the low energy effective theory. Since this ghost mode can be considered as a leading nonlinear perturbation around a homogeneous and isotropic background, we conclude that the universe in this theory must be either inhomogeneous or anisotropic.

  4. The problem of isotropic rectangular plate with four clamped edges

    Indian Academy of Sciences (India)

    C Erdem İmrak; Ismail Gerdemeli

    2007-06-01

    The examination of the exact solution of the governing equation of the rectangular plate is important for many reasons. This report discusses in exact solution of the governing equation of an isotropic rectangular plate with four clamped edges. A numerical method for clamped isotropic rectangular plate under distributed loads and an exact solution of the governing equation in terms of trigonometric and hyperbolic function are given. Finally, an illustrative example is given and the results are compared with those reported earlier. This method is found to be easier and effective. The results show reasonable agreement with other available results, but with a simpler and practical approach.

  5. Effect of stellar wind induced magnetic fields on planetary obstacles of non-magnetized hot Jupiters

    Science.gov (United States)

    Erkaev, N. V.; Odert, P.; Lammer, H.; Kislyakova, K. G.; Fossati, L.; Mezentsev, A. V.; Johnstone, C. P.; Kubyshkina, D. I.; Shaikhislamov, I. F.; Khodachenko, M. L.

    2017-10-01

    We investigate the interaction between the magnetized stellar wind plasma and the partially ionized hydrodynamic hydrogen outflow from the escaping upper atmosphere of non-magnetized or weakly magnetized hot Jupiters. We use the well-studied hot Jupiter HD 209458b as an example for similar exoplanets, assuming a negligible intrinsic magnetic moment. For this planet, the stellar wind plasma interaction forms an obstacle in the planet's upper atmosphere, in which the position of the magnetopause is determined by the condition of pressure balance between the stellar wind and the expanded atmosphere, heated by the stellar extreme ultraviolet radiation. We show that the neutral atmospheric atoms penetrate into the region dominated by the stellar wind, where they are ionized by photoionization and charge exchange, and then mixed with the stellar wind flow. Using a 3D magnetohydrodynamic (MHD) model, we show that an induced magnetic field forms in front of the planetary obstacle, which appears to be much stronger compared to those produced by the solar wind interaction with Venus and Mars. Depending on the stellar wind parameters, because of the induced magnetic field, the planetary obstacle can move up to ≈0.5-1 planetary radii closer to the planet. Finally, we discuss how estimations of the intrinsic magnetic moment of hot Jupiters can be inferred by coupling hydrodynamic upper planetary atmosphere and MHD stellar wind interaction models together with UV observations. In particular, we find that HD 209458b should likely have an intrinsic magnetic moment of 10-20 per cent that of Jupiter.

  6. Finite element modeling of impulsive excitation and shear wave propagation in an incompressible, transversely isotropic medium.

    Science.gov (United States)

    Rouze, Ned C; Wang, Michael H; Palmeri, Mark L; Nightingale, Kathy R

    2013-11-15

    Elastic properties of materials can be measured by observing shear wave propagation following localized, impulsive excitations and relating the propagation velocity to a model of the material. However, characterization of anisotropic materials is difficult because of the number of elasticity constants in the material model and the complex dependence of propagation velocity relative to the excitation axis, material symmetries, and propagation directions. In this study, we develop a model of wave propagation following impulsive excitation in an incompressible, transversely isotropic (TI) material such as muscle. Wave motion is described in terms of three propagation modes identified by their polarization relative to the material symmetry axis and propagation direction. Phase velocities for these propagation modes are expressed in terms of five elasticity constants needed to describe a general TI material, and also in terms of three constants after the application of two constraints that hold in the limit of an incompressible material. Group propagation velocities are derived from the phase velocities to describe the propagation of wave packets away from the excitation region following localized excitation. The theoretical model is compared to the results of finite element (FE) simulations performed using a nearly incompressible material model with the five elasticity constants chosen to preserve the essential properties of the material in the incompressible limit. Propagation velocities calculated from the FE displacement data show complex structure that agrees quantitatively with the theoretical model and demonstrates the possibility of measuring all three elasticity constants needed to characterize an incompressible, TI material.

  7. Dependence of the magnetization on the interface morphology in ultra-thin magnetic/non-magnetic films: Monte Carlo approach

    Energy Technology Data Exchange (ETDEWEB)

    Razouk, A. [Laboratoire de Physique et Mecanique des Materiaux, Faculte des Sciences et Techniques, Universite Sultan Moulay Slimane, BP 523, 23000 Beni-Mellal (Morocco); Sahlaoui, M., E-mail: msahlaoui@yahoo.fr [Laboratoire de Physique et Mecanique des Materiaux, Faculte des Sciences et Techniques, Universite Sultan Moulay Slimane, BP 523, 23000 Beni-Mellal (Morocco); Sajieddine, M. [Laboratoire de Physique et Mecanique des Materiaux, Faculte des Sciences et Techniques, Universite Sultan Moulay Slimane, BP 523, 23000 Beni-Mellal (Morocco)

    2009-07-30

    Using Monte Carlo simulations, we have studied the dependence of magnetic properties on interface morphology in magnetic/non-magnetic (M/NM) multilayers. Our aim is to relate macroscopic magnetic properties of the multilayers to their concentration profile at the interface. Our model consists of an alternate staking of magnetic and non-magnetic layers with disordered interfaces. We have considered different concentration and the existence of local magnetic domains at the interface. The results indicate the crucial dependence of magnetization amplitude with interface multilayers atomic composition and the spatial arrangement of magnetic atoms. In particular, we show that isolated islands at the interface leads to the apparition of super-paramagnetic behavior.

  8. Reflection of plane waves in an initially stressed perfectly conducting transversely isotropic solid half-space

    Indian Academy of Sciences (India)

    Baljeet Singh; Anand Kumar Yadav

    2013-08-01

    Reflection of plane waves is studied at a free surface of a perfectly conducting transversely isotropic elastic solid half-space with initial stress. The governing equations are solved to obtain the velocity equation which indicates the existence of two quasi planar waves in the medium. Reflection coefficients and energy ratios for reflected qP and qSV waves are derived and computed numerically for a particular material. Effects of the initial stress and magnetic field are shown graphically on these reflection coefficients and energy ratios.

  9. Design of Matched Zero-Index Metamaterials Using Non-Magnetic Inclusions in Epsilon-Near-Zero (ENZ) Media

    OpenAIRE

    Silveirinha, Mario; Engheta, Nader

    2006-01-01

    In this work, we study the electrodynamics of metamaterials that consist of resonant non-magnetic inclusions embedded in an epsilon-near-zero (ENZ) host medium. It is shown that the inclusions can be designed in such a way that both the effective permittivity and permeability of the composite structure are simultaneously zero. Two different metamaterial configurations are studied and analyzed in detail. For a particular class of problems, it is analytically proven that such matched zero-index...

  10. INDUCTION HEATING OF NON-MAGNETIC SHEET METALS IN THE FIELD OF A FLAT CIRCULAR MULTITURN SOLENOID

    Directory of Open Access Journals (Sweden)

    Y. Batygin

    2016-06-01

    Full Text Available The theoretical analysis of electromagnetic processes in the system for induction heating presented by a flat circular multiturn solenoid positioned above a plane of thin sheet non-magnetic metal has been conducted. The calculated dependences for the current induced in a metal sheet blank and ratio of transformation determined have been obtained. The maximal value of the transformation ratio with regard to spreading the eddy-currents over the whole area of the sheet metal has been determined.

  11. Switch isotropic/anisotropic wettability via dual-scale rods

    Directory of Open Access Journals (Sweden)

    Yang He

    2014-10-01

    Full Text Available It is the first time to demonstrate the comparison of isotropic/anisotropic wettability between dual-scale micro-nano-rods and single-scale micro-rods. Inspired by the natural structures of rice leaf, a series of micro-nano-rods and micro-rods with different geometric parameters were fabricated using micro-fabrication technology. Experimental measured apparent contact angles and advancing and receding contact angles from orthogonal orientations were characterized. The difference of contact angles from orthogonal orientation on dual-scale rods was much smaller than those on single-scale rods in both static and dynamic situation. It indicated that the dual-scale micro-nano-rods showed isotropic wettability, while single-scale micro-rods showed anisotropic wettability. The switch of isotropic/anisotropic wettability could be illustrated by different wetting state and contact line moving. It offers a facial way to switch isotropic/anisotropic wettability of the surface via dual-scale or single-scale structure.

  12. Guided waves in a fluid-loaded transversely isotropic plate

    Directory of Open Access Journals (Sweden)

    Ahmad F.

    2002-01-01

    Full Text Available Dispersion relations are obtained for the propagation of symmetric and antisymmetric modes in a free transversely isotropic plate. Dispersion curves are plotted for the first four symmetric modes for a magnesium plate immersed in water. The first mode is highly damped and switches over to the second mode when the normalized frequency exceeds 12.

  13. A Simple Mechanical Model for the Isotropic Harmonic Oscillator

    Science.gov (United States)

    Nita, Gelu M.

    2010-01-01

    A constrained elastic pendulum is proposed as a simple mechanical model for the isotropic harmonic oscillator. The conceptual and mathematical simplicity of this model recommends it as an effective pedagogical tool in teaching basic physics concepts at advanced high school and introductory undergraduate course levels. (Contains 2 figures.)

  14. Switch isotropic/anisotropic wettability via dual-scale rods

    Science.gov (United States)

    He, Yang; Jiang, Chengyu; Wang, Shengkun; Ma, Zhibo; Yuan, Weizheng

    2014-10-01

    It is the first time to demonstrate the comparison of isotropic/anisotropic wettability between dual-scale micro-nano-rods and single-scale micro-rods. Inspired by the natural structures of rice leaf, a series of micro-nano-rods and micro-rods with different geometric parameters were fabricated using micro-fabrication technology. Experimental measured apparent contact angles and advancing and receding contact angles from orthogonal orientations were characterized. The difference of contact angles from orthogonal orientation on dual-scale rods was much smaller than those on single-scale rods in both static and dynamic situation. It indicated that the dual-scale micro-nano-rods showed isotropic wettability, while single-scale micro-rods showed anisotropic wettability. The switch of isotropic/anisotropic wettability could be illustrated by different wetting state and contact line moving. It offers a facial way to switch isotropic/anisotropic wettability of the surface via dual-scale or single-scale structure.

  15. Semiclassical States Associated with Isotropic Submanifolds of Phase Space

    Science.gov (United States)

    Guillemin, V.; Uribe, A.; Wang, Z.

    2016-05-01

    We define classes of quantum states associated with isotropic submanifolds of cotangent bundles. The classes are stable under the action of semiclassical pseudo-differential operators and covariant under the action of semiclassical Fourier integral operators. We develop a symbol calculus for them; the symbols are symplectic spinors. We outline various applications.

  16. Angular Momentum of Supersymmetric Non-isotropic Traps

    Institute of Scientific and Technical Information of China (English)

    XU Qiang

    2001-01-01

    A simple way to explain quantum behavior of supersymmetric non-isotropic traps is proposed in the framework of sermiunitary formulation of supersymmetric quantum mechanics. Using semiunitary formulation we can simultaneously supersymmetrize the complete set of observables, especially including angular moment.

  17. Coupling of Elastic Isotropic Medium Parameters in Iterative Linearized Inversion

    NARCIS (Netherlands)

    Anikiev, D.V.; Kashtan, B.M.; Mulder, W.A.; Troyan, V.N.

    2014-01-01

    An elastic isotropic medium is described with three parameters. In seismic migration the perturbation of one elastic parameter affects the images of all the three, which means that these parameters are coupled. For an effective quantitative reconstruction of the true elastic medium reflectivity one

  18. Exact isotropic scalar field cosmologies in Einstein-Cartan theory

    Energy Technology Data Exchange (ETDEWEB)

    Galiakhmetov, A M, E-mail: agal17@mail.r [Department of Physics, Donetsk National Technical University, Kirova street 51, 84646, Gorlovka (Ukraine)

    2010-03-07

    Exact general solutions to the Einstein-Cartan equations are obtained for spatially flat isotropic and homogeneous cosmologies with a nonminimally coupled scalar field. It is shown that both singular and nonsingular models are possible. Exact general solutions of an analogous problem in the torsion-less case are derived. The role of torsion in the evolution of models is elucidated.

  19. NON-ISOTROPIC JACOBI SPECTRAL METHODS FOR UNBOUNDED DOMAINS

    Institute of Scientific and Technical Information of China (English)

    王立联; 郭本瑜

    2004-01-01

    Some specific non-isotropic Jacobi approximations in multiple-dimensions are investigated, which are used for numerical solutions of differential equations on various unbounded domains. The convergence of proposed schemes are proved. Some efficient algorithms are provided. Numerical results are presented to illustrate the efficiency of this new approach.

  20. Solitary plane waves in an isotropic hexagonal lattice

    DEFF Research Database (Denmark)

    Zolotaryuk, Yaroslav; Savin, A.V.; Christiansen, Peter Leth

    1998-01-01

    Solitary plane-wave solutions in a two-dimensional hexagonal lattice which can propagate in different directions on the plane are found by using the pseudospectral method. The main point of our studies is that the lattice model is isotropic and we show that the sound velocity is the same for diff...

  1. Seeing is believing : communication performance under isotropic teleconferencing conditions

    NARCIS (Netherlands)

    Werkhoven, P.J.; Schraagen, J.M.C.; Punte, P.A.J.

    2001-01-01

    The visual component of conversational media such as videoconferencing systems communicates important non-verbal information such as facial expressions, gestures, posture and gaze. Unlike the other cues, selective gaze depends critically on the configuration of cameras and monitors. Under isotropic

  2. Spin-dependent boundary conditions for isotropic superconducting Green’s functions

    NARCIS (Netherlands)

    Cottet, A.; Huertas-Hernando, D.; Belzig, W.; Nazarov, Y.V.

    2009-01-01

    The quasiclassical theory of superconductivity provides the most successful description of diffusive heterostructures comprising superconducting elements, namely, the Usadel equations for isotropic Green’s functions. Since the quasiclassical and isotropic approximations break down close to interface

  3. Dielectrophoretic manipulation of the mixture of isotropic and nematic liquid

    Science.gov (United States)

    Kim, Soo-Dong; Lee, Bomi; Kang, Shin-Woong; Song, Jang-Kun

    2015-08-01

    In various applications involving liquid crystals, the manipulation of the nanoscale molecular assembly and microscale director alignment is highly useful. Here we show that a nematic-isotropic mixture, a unique bi-liquid system, has potential for the fabrication of microstructures having an ordered phase within a disordered phase, or vice versa. The volume expansion and shrinkage, migration, splitting, mergence and elongation of one phase within the other are easily accomplished via thermal treatment and dielectrophoretic manipulation. This is particularly achievable when one phase is suspended in the middle. In that case, a highly biased ordered-phase preference of surfaces, that is, the nematic-philic nature of a polyimide layer and the nematic-phobic nature of a self-assembled monolayer of chlorosilane derivatives, is used. Further, by combining this approach with photopolymerization, the patterned microstructure is solidified as a patterned polymer film having both isotropic and anisotropic molecular arrangements simultaneously, or as a template with a morphological variation.

  4. On the elasticity of transverse isotropic soft tissues (L).

    Science.gov (United States)

    Royer, Daniel; Gennisson, Jean-Luc; Deffieux, Thomas; Tanter, Mickaël

    2011-05-01

    Quantitative elastography techniques have recently been developed to estimate the shear modulus μ of soft tissues in vivo. In the case of isotropic and quasi-incompressible media, the Young's modulus E is close to 3 μ, which is not true in transverse anisotropic tissues such as muscles. In this letter, the transverse isotropic model established for hexagonal crystals is revisited in the case of soft solids. Relationships between elastic constants and Young's moduli are derived and validated on experimental data found in the literature. It is shown that 3 μ(⊥) ≤ E(⊥) ≤ 4 μ(⊥) and that E(//) cannot only be determined from the measurements of μ(//) and μ(⊥).

  5. 3D geometrically isotropic metamaterial for telecom wavelengths

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    We present a new design for a unit cell with the cubic symmetry and sizes less than one sixth of the vacuum wavelength possessing a negative refractive index in the IR region. The main challenges in designing and fabricating metamaterials nowadays are in obtaining isotropic electric and magnetic...... in a cage-like structure. For the magnetic response we use metallic plates forming an open cube located inside the “cage”. For this topology the plates can be thought of as capacitors in a resonant LC circuit [4]. By adjusting the resonant circuit frequency in the IR range a double negative response......). At this wavelength the refraction index is equal to -1.44. These values together with the effective cubic symmetry of the unit cell entitle us to assume the high potential of the suggested design as a constitutive block for an isotropic, relatively low-loss, metamaterial in the near IR region....

  6. Viscous propulsion in active transversely-isotropic media

    CERN Document Server

    Cupples, Gemma; Smith, David J

    2016-01-01

    Taylor's swimming sheet is a classical model of microscale propulsion and pumping. Many biological fluids and substances are fibrous, having a preferred direction in their microstructure; for example cervical mucus is formed of polymer molecules which create an oriented fibrous network. Moreover, suspensions of elongated motile cells produce a form of active oriented matter. To understand how these effects modify viscous propulsion, we extend Taylor's classical model of small-amplitude zero-Reynolds-number propulsion of a 'swimming sheet' via the transversely-isotropic fluid model of Ericksen, which is linear in strain rate and possesses a distinguished direction. The energetic costs of swimming are significantly altered by all rheological parameters and the initial fibre angle. Propulsion in a passive transversely-isotropic fluid produces an enhanced mean rate of working, independent of the initial fibre orientation, with an approximately linear dependence of energetic cost on the extensional and shear enhan...

  7. Bounding Isotropic Lorentz Violation Using Synchrotron Losses at LEP

    CERN Document Server

    Altschul, Brett

    2009-01-01

    Some deviations from special relativity--especially isotropic effects--are most efficiently constrained using particles with velocities very close to 1. While there are extremely tight bounds on some of the relevant parameters coming from astrophysical observations, many of these rely on our having an accurate understanding of the dynamics of high-energy sources. It is desirable to have reliable laboratory constraints on these same parameters. The fastest-moving particles in a laboratory were electrons and positrons at LEP. The energetics of the LEP beams were extremely well understood, and measurements of the synchrotron emission rate indicates that that any isotropic deviation of the speed of light from 1 must be smaller than 1.2 x 10^(-15).

  8. Bounding isotropic Lorentz violation using synchrotron losses at LEP

    Science.gov (United States)

    Altschul, Brett

    2009-11-01

    Some deviations from special relativity—especially isotropic effects—are most efficiently constrained using particles with velocities very close to 1. While there are extremely tight bounds on some of the relevant parameters coming from astrophysical observations, many of these rely on our having an accurate understanding of the dynamics of these high-energy sources. It is desirable to have reliable laboratory constraints on these same parameters. The fastest-moving particles in a laboratory were electrons and positrons at LEP. The energetics of the LEP beams were extremely well understood, and measurements of the synchrotron emission rate indicate that the isotropic Lorentz violation coefficient |κ˜tr-(4)/(3)c00| must be smaller than 5×10-15.

  9. Isotropic Optical Mouse Placement for Mobile Robot Velocity Estimation

    Directory of Open Access Journals (Sweden)

    Sungbok Kim

    2014-06-01

    Full Text Available This paper presents the isotropic placement of multiple optical mice for the velocity estimation of a mobile robot. It is assumed that there can be positional restriction on the installation of optical mice at the bottom of a mobile robot. First, the velocity kinematics of a mobile robot with an array of optical mice is obtained and the resulting Jacobian matrix is analysed symbolically. Second, the isotropic, anisotropic and singular optical mouse placements are identified, along with the corresponding characteristic lengths. Third, the least squares mobile robot velocity estimation from the noisy optical mouse velocity measurements is discussed. Finally, simulation results for several different placements of three optical mice are given.

  10. Gravitational Landau damping for an isotropic cluster of stars

    Science.gov (United States)

    Habib, Salman; Kandrup, Henry E.; Yip, Ping F.

    1986-01-01

    The problem of ascertaining the dynamical stability and the existence of Landau damping in static, isotropic 'collisionless' star clusters is addressed. The second-order formalism of Kandrup and Sygnet (1985) is applied to a homogeneous and isotropic plasma, demonstrating formally that the unperturbed configuration will always be stable and that the modes must be purely oscillatory. The form of these modes is explicitly examined, culminating in an analytic expression for the time evolution of the density induced by an initial perturbation. It is shown how these considerations can be adapted trivially to localized, nonradial disturbances of a self-gravitating system of stars. The possible existence of gravitational Landau damping for more generic perturbations is discussed.

  11. Quasi-isotropic cascade in MHD turbulence with mean field

    CERN Document Server

    Grappin, Roland; Gürcan, Özgür

    2012-01-01

    We propose a phenomenological theory of incompressible magnetohydrodynamic turbulence in the presence of a strong large-scale magnetic field, which establishes a link between the known anisotropic models of strong and weak MHD turbulence We argue that the Iroshnikov-Kraichnan isotropic cascade develops naturally within the plane perpendicular to the mean field, while oblique-parallel cascades with weaker amplitudes can develop, triggered by the perpendicular cascade, with a reduced flux resulting from a quasi-resonance condition. The resulting energy spectrum $E(k_\\parallel,k_\\bot)$ has the same slope in all directions. The ratio between the extents of the inertial range in the parallel and perpendicular directions is equal to $b_{rms}/B_0$. These properties match those found in recent 3D MHD simulations with isotropic forcing reported in [R. Grappin and W.-C. M\\"uller, Phys. Rev. E \\textbf{82}, 26406 (2010)].

  12. Cracking and instability of isotropic and anisotropic relativistic spheres

    CERN Document Server

    Gonzalez, Guillermo A; Nunez, Luis A

    2014-01-01

    Using the concept of cracking, we have explored the influence of density fluctuations on the stability of isotropic and anisotropic matter configurations in General Relativity with "barotropic" equations of state, $P = P(\\rho)$ and $P_{\\perp}= P_{\\perp}(\\rho)$. The concept of cracking, conceived to describe the behaviour of a fluid distribution just after its departure from equilibrium, provides an alternative and complementary approach to consider the stability of selfgravitating compact objects. We have refined the idea that density fluctuations affect other physical variables, but now including perturbation on radial pressure gradient and, the fact that perturbations must to be considered local, i.e. $\\delta \\rho = \\delta \\rho(r)$ and are represented by any function of compact support defined in a closed interval $\\Delta r \\ll 1$. It is found that not only anisotropic models could present cracking (or overturning), but also isotropic matter configurations could be affected by density fluctuation. We have a...

  13. 3D geometrically isotropic metamaterial for telecom wavelengths

    DEFF Research Database (Denmark)

    Malureanu, Radu; Andryieuski, Andrei; Lavrinenko, Andrei

    2009-01-01

    We present a new design for a unit cell with the cubic symmetry and sizes less than one sixth of the vacuum wavelength possessing a negative refractive index in the IR region. The main challenges in designing and fabricating metamaterials nowadays are in obtaining isotropic electric and magnetic...... is obtained in a certain bandwidth. The proposed unit cell has the cubic point group of symmetry and being repeatedly placed in space can effectively reveal isotropic optical properties. We use the CST commercial software to characterise the “cube-in-cage” structure. Reflection and transmission spectra...... are shown in Fig.1a. The effective refractive index is retrieved accordingly to the standard algorithm [5] (see Fig.1b). After several cycles of naïve optimizations, the refractive index reaches -2.4 at 1.55μm (ca. 192.5THz). The maximum FOM in the band, where Re(n)

  14. Reynolds number scaling of velocity increments in isotropic turbulence

    Science.gov (United States)

    Iyer, Kartik P.; Sreenivasan, Katepalli R.; Yeung, P. K.

    2017-02-01

    Using the largest database of isotropic turbulence available to date, generated by the direct numerical simulation (DNS) of the Navier-Stokes equations on an 81923 periodic box, we show that the longitudinal and transverse velocity increments scale identically in the inertial range. By examining the DNS data at several Reynolds numbers, we infer that the contradictory results of the past on the inertial-range universality are artifacts of low Reynolds number and residual anisotropy. We further show that both longitudinal and transverse velocity increments scale on locally averaged dissipation rate, just as postulated by Kolmogorov's refined similarity hypothesis, and that, in isotropic turbulence, a single independent scaling adequately describes fluid turbulence in the inertial range.

  15. Gravitational radiation of a free isotropic plasma. I

    Energy Technology Data Exchange (ETDEWEB)

    Galtsov, D.V.; Grats, IU.V.; Melkumova, E.IU.

    1985-06-01

    The gravitational radiation of a free isotropic plasma is studied on the basis of kinetic theory. It is demonstrated that gravitational-wave effects are determined by the correlation function of the energy-momentum tensors of the particles and electromagnetic field. Finally, a formula is obtained which defines the total gravitational radiation of a nonrelativistic plasma, taking into account all possible radiation mechanisms. 10 references.

  16. Plane Waves in a Transparent Isotropic Chiral Medium

    Science.gov (United States)

    Fisanov, V. V.

    2015-04-01

    A homogeneous isotropic transparent chiral medium supports two normal plane waves with left and right circular polarization and differently valued positive wave numbers. The presence or absence of forward and backward Beltrami waves and their helicity are regulated by the signs of the permittivity and permeability and the strength of the chirality. The ray refractive index is a universal parameter whose sign differentiates the forward and backward waves.

  17. Isotropic Forms of Dynamics in the Relativistic Direct Interaction Theory

    CERN Document Server

    Duviryak, A A; Tretyak, V I

    1998-01-01

    The Lagrangian relativistic direct interaction theory in the various forms of dynamics is formulated and its connections with the Fokker-type action theory and with the constrained Hamiltonian mechanics are established. The motion of classical two-particle system with relativistic direct interaction is analysed within the framework of isotropic forms of dynamics in the two- and four-dimensional space-time. Some relativistic exactly solvable quantum-mechanical models are also discussed.

  18. The universe as a black hole in isotropic coordinates

    OpenAIRE

    Poplawski, Nikodem J.

    2009-01-01

    We show that the radial geodesic motion of a particle inside a black hole in isotropic coordinates (the Einstein-Rosen bridge) is physically different from the radial motion inside a Schwarzschild black hole. A particle enters the interior region of an Einstein-Rosen black hole which is regular and physically equivalent to the asymptotically flat exterior of a white hole, and the particle's proper time extends to infinity. Because the motion across the Einstein-Rosen bridge is unidirectional,...

  19. Collapse Pressure Analysis of Transversely Isotropic Thick-Walled Cylinder Using Lebesgue Strain Measure and Transition Theory

    Directory of Open Access Journals (Sweden)

    A. K. Aggarwal

    2014-01-01

    Full Text Available The objective of this paper is to provide guidance for the design of the thick-walled cylinder made up of transversely isotropic material so that collapse of cylinder due to influence of internal and external pressure can be avoided. The concept of transition theory based on Lebesgue strain measure has been used to simplify the constitutive equations. Results have been analyzed theoretically and discussed numerically. From this analysis, it has been concluded that, under the influence of internal and external pressure, circular cylinder made up of transversely isotropic material (beryl is on the safer side of the design as compared to the cylinders made up of isotropic material (steel. This is because of the reason that percentage increase in effective pressure required for initial yielding to become fully plastic is high for beryl as compared to steel which leads to the idea of “stress saving” that reduces the possibility of collapse of thick-walled cylinder due to internal and external pressure.

  20. Negative refraction in (bi)-isotropic periodic arrangements of chiral SRRs

    CERN Document Server

    Jelinek, L; Mesa, F; Baena, J D

    2007-01-01

    Bi-isotropic and isotropic negative refractive index (NRI) 3D metamaterials made from periodic arrangements of chiral split ring resonators (SRRs) are proposed and demonstrated. An analytical theory for the characterization and design of these metamaterials is provided and validated by careful full-wave electromagnetic simulations. The reported results are expected to pave the way to the design of practical 3D bi-isotropic and isotropic NRI metamaterials made from a single kind of inclusions.

  1. Isotropic Compression Behaviour of Fibre Reinforced Cemented Sand

    Directory of Open Access Journals (Sweden)

    Salahuddin

    2013-07-01

    Full Text Available Fibre-reinforced cemented sands have many applications in improving the response of soils. In this paper, an experimental investigation for the analysis of fiber-reinforced cemented sand in the framework of isotropic compression is presented. The experimental investigations were carried out using a high pressure triaxial apparatus having the capacity of 64 MPa of confining pressure. Tests have been conducted on Portaway sand specimens reinforced with randomly oriented discrete polypropylene fibers with different percentages of fiber and cement contents. Results are presented in the form of e-logp` curves as well as SEM (Scanning Electron Microscopy micrographs. The effects of the addition of fibre in sand and cemented sand for different initial void ratios were investigated. The results demonstrate that the influence of fibre is not significant in both cemented and uncemented sand during the isotropic compression stage. Moreover, from the SEM micrographs it could be seen that there is breakage of sand particles and cement bonds. The fiber threads were seen pinched and found rarely broken in the specimen exhumed after isotropic compression.

  2. The Isotropic Radio Background and Annihilating Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Hooper, Dan [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Belikov, Alexander V. [Institut d' Astrophysique (France); Jeltema, Tesla E. [Univ. of California, Santa Cruz, CA (United States); Linden, Tim [Univ. of California, Santa Cruz, CA (United States); Profumo, Stefano [Univ. of California, Santa Cruz, CA (United States); Slatyer, Tracy R. [Princeton Univ., Princeton, NJ (United States)

    2012-11-01

    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, similar to the value predicted for a simple thermal relic (sigma v ~ 3 x 10^-26 cm^3/s). We find that in any scenario in which dark matter annihilations are responsible for the observed excess radio emission, a significant fraction of the isotropic gamma ray background observed by Fermi must result from dark matter as well.

  3. Tricritical wetting in the two-dimensional Ising magnet due to the presence of localized non-magnetic impurities.

    Science.gov (United States)

    Trobo, Marta L; Albano, Ezequiel V

    2016-03-31

    Fixed vacancies (non-magnetic impurities) are placed along the centre of Ising strips in order to study the wetting behaviour in this confined system, by means of numerical simulations analysed with the aid of finite size scaling and thermodynamic integration methods. By considering strips of size L × M (L interface between magnetic domains of different orientation (driven by the corresponding surface fields), which are the precursors of the wetting transitions that occur in the thermodynamic limit. By placing vacancies or equivalently non-magnetic impurities along the centre of the sample, we found that for low vacancy densities the wetting transitions are of second order, while by increasing the concentration of vacancies the transitions become of first order. Second- and first-order lines meet in tricritical wetting points (H(tric)(SW), T(tric)(W)), where H(tric)(SW) and T(Tric)(W) are the magnitude of the surface field and the temperature, respectively. In the phase diagram, tricritical points shift from the high temperature and weak surface field regime at large vacancy densities to the T --> 0, H(tric)(SW) --> 1 limit for low vacancy densities. By comparing the locations of the tricritical points with those corresponding to the case of mobile impurities, we conclude that in order to observe similar effects, in the latter the required density of impurities is much smaller (e.g. by a factor 3-5). Furthermore, a proper density of non magnetic impurities placed along the centre of a strip can effectively pin rather flat magnetic interfaces for suitable values of the competing surface fields and temperature.

  4. Dilution Effects on Two-Dimensional Heisenberg Antiferromagnets with Non-Magnetic Spin-Gapped Ground State

    OpenAIRE

    Yasuda, Chitoshi; Todo, Synge; Matsumoto, Munehisa; Takayama, Hajime

    2002-01-01

    Dilution effects on spin-1/2 quantum Heisenberg antiferromagnets with a non-magnetic spin-gapped ground state are studied by means of the qunatum Monte Carlo simulation. In the site-diluted system, an antiferromagnetic long-range order (AF-LRO) is induced at an infinitesimal concentration of dilution due to an effective coupling $\\tilde{J}_{mn}$ between induced magnetic moments. In the bond-diluted case, on the other hand, the AF-LRO is not induced up to a certain concentration of dilution du...

  5. Influence of Non-Magnetic Substitutional Atoms on Spontaneous Moment and Curie Temperature of Ce2Co17 Compounds

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The structure and magnetic properties of Ce2Co17-xMx(M=Ga,Al and Si) compounds for M concentrations up to x=5 were studied by means of X-ray diffraction and magnetic measurements. The experimental results show that the Curie temperatures and Co spontaneous magnetization decrease significantly with increasing the addition of non-magnetic substitutional atoms, and that Si which has a minimum solid solubility in Ce2Co17 causes a largest reduction of Curie temperature, spontaneous magnetization and moment per Co atom compared with Ga and Al.

  6. Dynamic wetting model for the isotropic-to-nematic transition over a flat substrate.

    Science.gov (United States)

    Rey, Alejandro D; Herrera-Valencia, E E

    2014-03-14

    Phase ordering over solid substrates is a ubiquitous and important soft material transformation process whose description incorporates wetting, anchoring and phase transition kinetics. In this paper the kinetics of the isotropic-to-nematic isothermal phase transition over a flat solid surface in a growing spherical drop is analyzed based on the Landau-de Gennes Q-tensor order parameter equations. The model, based on a previously derived interface force balance and a newly derived contact line force balance, is shown to be consistent with the generic model of conservative interface and contact line motions. The advancing dynamic contact angle equation is extracted from kinematic compatibility between the moving isotropic-nematic interface and contact line. A tractable surface phase transition kinetic model obtained by focusing on the dominant phase transition and wetting driving forces yields: (i) the constant advancing dynamic contact angle θ, and (ii) the contact line speed as a function of undercooling ΔT. It is shown that as undercooling increases, the surface phase transition mode approaches the bulk phase transition mode, such that θ approaches π. The elastic and wetting parameters that control the phase transformation process are identified and experiments for their determination are defined. These dynamic wetting and surface phase transition results significantly expand existing characterization methods of LC-substrate interfaces based on static phase transition droplet methods.

  7. Growth-induced axial buckling of a slender elastic filament embedded in an isotropic elastic matrix

    KAUST Repository

    O'Keeffe, Stephen G.

    2013-11-01

    We investigate the problem of an axially loaded, isotropic, slender cylinder embedded in a soft, isotropic, outer elastic matrix. The cylinder undergoes uniform axial growth, whilst both the cylinder and the surrounding elastic matrix are confined between two rigid plates, so that this growth results in axial compression of the cylinder. We use two different modelling approaches to estimate the critical axial growth (that is, the amount of axial growth the cylinder is able to sustain before it buckles) and buckling wavelength of the cylinder. The first approach treats the filament and surrounding matrix as a single 3-dimensional elastic body undergoing large deformations, whilst the second approach treats the filament as a planar, elastic rod embedded in an infinite elastic foundation. By comparing the results of these two approaches, we obtain an estimate of the foundation modulus parameter, which characterises the strength of the foundation, in terms of the geometric and material properties of the system. © 2013 Elsevier Ltd. All rights reserved.

  8. A controllable viewing angle LCD with an optically isotropic liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Su; Lim, Young Jin; Yoon, Sukin; Kang, Shin-Woong; Lee, Seung Hee [Department of BIN Fusion Technology and Department of Polymer-Nano Science and Technology, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kim, Miyoung [Korea Electronics Technology Institute, Jeonju, Jeonbuk 561-844 (Korea, Republic of); Wu, Shin-Tson, E-mail: lsh1@chonbuk.ac.k, E-mail: swu@creol.ucf.ed [College of Optics and Photonics, University of Central Florida, Orlando, FL 32816 (United States)

    2010-04-14

    An optically isotropic liquid crystal (LC) such as a blue phase LC or an optically isotropic nano-structured LC exhibits a very wide viewing angle because the induced birefringence is along the in-plane electric field. Utilizing such a material, we propose a liquid crystal display (LCD) whose viewing angle can be switched from wide view to narrow view using only one panel. In the device, each pixel is divided into two parts: a major pixel and a sub-pixel. The main pixels display the images while the sub-pixels control the viewing angle. In the main pixels, birefringence is induced by horizontal electric fields through inter-digital electrodes leading to a wide viewing angle, while in the sub-pixels, birefringence is induced by the vertical electric field so that phase retardation occurs only at oblique angles. As a result, the dark state (or contrast ratio) of the entire pixel can be controlled by the voltage of the sub-pixels. Such a switchable viewing angle LCD is attractive for protecting personal privacy.

  9. A new three-dimensional magneto-viscoelastic model for isotropic magnetorheological elastomers

    Science.gov (United States)

    Agirre-Olabide, I.; Lion, A.; Elejabarrieta, M. J.

    2017-03-01

    In this work, a four-parameter fractional derivative viscoelastic model was developed to describe the dynamic shear behaviour of magnetorheological elastomers (MREs) as a function of the matrix, particle content and magnetic field. The material parameters were obtained from experimental data measured with a Physica MCR 501 rheometer from the Anton Paar Company, equipped with a magnetorheological cell. The synthetised isotropic MRE samples were based on room-temperature vulcanising silicone rubber and spherical carbonyl iron powder micro particles as fillers, and seven volumetric particle contents were studied. The influence of particle contents was included in each parameter of the four-parameter fractional derivative model. The dependency of the storage modulus as a function of an external magnetic field (magnetorheological (MR) effect) was studied, and a dipole–dipole interaction model was used. A new three-dimensional magneto-viscoelastic model was developed to couple the viscoelastic model, the particle-matrix interaction and the magneto-induced modulus model, which predicts the influence of the magnetic field and the particle content in the MR effect of isotropic MREs.

  10. Component masses of young, wide, non-magnetic white dwarf binaries in the Sloan Digital Sky Survey Data Release 7

    Science.gov (United States)

    Baxter, R. B.; Dobbie, P. D.; Parker, Q. A.; Casewell, S. L.; Lodieu, N.; Burleigh, M. R.; Lawrie, K. A.; Külebi, B.; Koester, D.; Holland, B. R.

    2014-06-01

    We present a spectroscopic component analysis of 18 candidate young, wide, non-magnetic, double-degenerate binaries identified from a search of the Sloan Digital Sky Survey Data Release 7 (DR7). All but two pairings are likely to be physical systems. We show SDSS J084952.47+471247.7 + SDSS J084952.87+471249.4 to be a wide DA + DB binary, only the second identified to date. Combining our measurements for the components of 16 new binaries with results for three similar, previously known systems within the DR7, we have constructed a mass distribution for the largest sample to date (38) of white dwarfs in young, wide, non-magnetic, double-degenerate pairings. This is broadly similar in form to that of the isolated field population with a substantial peak around M ˜ 0.6 M⊙. We identify an excess of ultramassive white dwarfs and attribute this to the primordial separation distribution of their progenitor systems peaking at relatively larger values and the greater expansion of their binary orbits during the final stages of stellar evolution. We exploit this mass distribution to probe the origins of unusual types of degenerates, confirming a mild preference for the progenitor systems of high-field-magnetic white dwarfs, at least within these binaries, to be associated with early-type stars. Additionally, we consider the 19 systems in the context of the stellar initial mass-final mass relation. None appear to be strongly discordant with current understanding of this relationship.

  11. Scanning anisotropy parameters in horizontal transversely isotropic media

    KAUST Repository

    Masmoudi, Nabil

    2016-10-12

    The horizontal transversely isotropic model, with arbitrary symmetry axis orientation, is the simplest effective representative that explains the azimuthal behaviour of seismic data. Estimating the anisotropy parameters of this model is important in reservoir characterisation, specifically in terms of fracture delineation. We propose a travel-time-based approach to estimate the anellipticity parameter η and the symmetry axis azimuth ϕ of a horizontal transversely isotropic medium, given an inhomogeneous elliptic background model (which might be obtained from velocity analysis and well velocities). This is accomplished through a Taylor\\'s series expansion of the travel-time solution (of the eikonal equation) as a function of parameter η and azimuth angle ϕ. The accuracy of the travel time expansion is enhanced by the use of Shanks transform. This results in an accurate approximation of the solution of the non-linear eikonal equation and provides a mechanism to scan simultaneously for the best fitting effective parameters η and ϕ, without the need for repetitive modelling of travel times. The analysis of the travel time sensitivity to parameters η and ϕ reveals that travel times are more sensitive to η than to the symmetry axis azimuth ϕ. Thus, η is better constrained from travel times than the azimuth. Moreover, the two-parameter scan in the homogeneous case shows that errors in the background model affect the estimation of η and ϕ differently. While a gradual increase in errors in the background model leads to increasing errors in η, inaccuracies in ϕ, on the other hand, depend on the background model errors. We also propose a layer-stripping method valid for a stack of arbitrary oriented symmetry axis horizontal transversely isotropic layers to convert the effective parameters to the interval layer values.

  12. Assessment of the modulated gradient model in decaying isotropic turbulence

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    A recently introduced nonlinear model undergoes evaluations based on two isotropic turbulent cases:a University of Wiscosion-Madison case at a moderate Reynolds number and a Johns Hopkins University case at a high Reynolds number.The model uses an estimation of the subgrid-scale(SGS) kinetic energy to model the magnitude of the SGS stress tensor,and uses the normalized velocity gradient tensor to model the structure of the SGS stress tensor.Testing is performed for the first case through a comparison betwee...

  13. New Sedov-Type Solution of Isotropic Turbulence

    Institute of Scientific and Technical Information of China (English)

    RAN Zheng

    2008-01-01

    @@ The starting point lies in the results obtained by Sedov (1944) for isotropic turbulence with a self-preserving hypothesis.A careful consideration of the mathematical structure of the Kaxman-Howaxth equation leads to an exact analysis of all cases possible and to all admissible solutions of the problem.I study this interesting problem from a new point of view.New solutions axe obtained.Based on these exact solutions, some physical significant consequences of recent advances in the theory of self-preserved homogeneous statistical solution of the Navier-Stokes equations axe presented.

  14. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  15. A fast algorithm for radiative transport in isotropic media

    CERN Document Server

    Ren, Kui; Zhong, Yimin

    2016-01-01

    We propose in this work a fast numerical algorithm for solving the equation of radiative transfer (ERT) in isotropic media. The algorithm has two steps. In the first step, we derive an integral equation for the angularly averaged ERT solution by taking advantage of the isotropy of the scattering kernel, and solve the integral equation with a fast multipole method (FMM). In the second step, we solve a scattering-free transport equation to recover the original ERT solution. Numerical simulations are presented to demonstrate the performance of the algorithm for both homogeneous and inhomogeneous media.

  16. Bending dynamics of semi-flexible macromolecules in isotropic turbulence

    CERN Document Server

    Ali, Aamir; Vincenzi, Dario

    2014-01-01

    We study the Lagrangian dynamics of semi-flexible macromolecules in laminar as well as in homogeneous and isotropic turbulent flows by means of analytically solvable stochastic models and direct numerical simulations. The statistics of the bending angle is qualitatively different in laminar and turbulent flows and exhibits a strong dependence on the topology of the velocity field. In particular, in two-dimensional turbulence, particles are either found in a fully extended or in a fully folded configuration; in three dimensions, the predominant configuration is the fully extended one.

  17. Gravitational waves in a free isotropic plasma. II

    Energy Technology Data Exchange (ETDEWEB)

    Galtsov, D.V.; Grats, IU.V.; Melkumova, E.IU.

    1985-07-01

    The generation of gravitational waves in an isotropic homogeneous plasma is investigated theoretically, within the frame work of a recently developed formalism. The effectiveness of different mechanisms generating gravitational waves is considered. Attention is given to thermal gravitational radiation by a two-component plasma; the transformation of longitudinal plasma waves into gravitons due to current fluctuations; and the generation of gravitational waves due to Langmuir turbulence. It is shown that collective plasma effects play a critical role in the generation of gravitational waves.

  18. RAYLEIGH LAMB WAVES IN MICROPOLAR ISOTROPIC ELASTIC PLATE

    Institute of Scientific and Technical Information of China (English)

    Rajneesh Kumar; Geeta Partap

    2006-01-01

    The propagation of waves in a homogeneous isotropic micropolar elastic cylindrical plate subjected to stress free conditions is investigated. The secular equations for symmetric and skew symmetric wave mode propagation are derived. At short wave limit,the secular equations for symmetric and skew symmetric waves in a stress free circular plate reduces to Rayleigh surface wave frequency equation. Thin plate results are also obtained. The amplitudes of displacements and microrotation components are obtained and depicted graphically. Some special cases are also deduced from the present investigations. The secular equations for symmetric and skew symmetric modes are also presented graphically.

  19. Genericness of Big Bounce in isotropic loop quantum cosmology

    OpenAIRE

    Date, Ghanashyam; Hossain, Golam Mortuza

    2004-01-01

    The absence of isotropic singularity in loop quantum cosmology can be understood in an effective classical description as the universe exhibiting a Big Bounce. We show that with scalar matter field, the big bounce is generic in the sense that it is independent of quantization ambiguities and details of scalar field dynamics. The volume of the universe at the bounce point is parametrized by a single parameter. It provides a minimum length scale which serves as a cut-off for computations of den...

  20. Cluster Monte Carlo simulations of the nematic-isotropic transition

    Science.gov (United States)

    Priezjev, N. V.; Pelcovits, Robert A.

    2001-06-01

    We report the results of simulations of the three-dimensional Lebwohl-Lasher model of the nematic-isotropic transition using a single cluster Monte Carlo algorithm. The algorithm, first introduced by Kunz and Zumbach to study two-dimensional nematics, is a modification of the Wolff algorithm for spin systems, and greatly reduces critical slowing down. We calculate the free energy in the neighborhood of the transition for systems up to linear size 70. We find a double well structure with a barrier that grows with increasing system size. We thus obtain an upper estimate of the value of the transition temperature in the thermodynamic limit.

  1. Phenomenological Theory of Isotropic-Genesis Nematic Elastomers

    Science.gov (United States)

    Lu, Bing-Sui; Ye, Fangfu; Xing, Xiangjun; Goldbart, Paul M.

    2012-06-01

    We consider the impact of the elastomer network on the nematic structure and fluctuations in isotropic-genesis nematic elastomers, via a phenomenological model that underscores the role of network compliance. The model contains a network-mediated nonlocal interaction as well as a new kind of random field that reflects the memory of the nematic order present at network formation and also encodes local anisotropy due to localized nematogenic polymers. This model enables us to predict regimes of short-ranged oscillatory spatial correlations (thermal and glassy) in the nematic alignment.

  2. Triangular Wavelets: An Isotropic Image Representation with Hexagonal Symmetry

    Directory of Open Access Journals (Sweden)

    Kensuke Fujinoki

    2009-01-01

    Full Text Available This paper introduces triangular wavelets, which are two-dimensional nonseparable biorthogonal wavelets defined on the regular triangular lattice. The construction that we propose is a simple nonseparable extension of one-dimensional interpolating wavelets followed by a straightforward generalization. The resulting three oriented high-pass filters are symmetrically arranged on the lattice, while low-pass filters have hexagonal symmetry, thereby allowing an isotropic image processing in the sense that three detail components are distributed uniformly. Applying the triangular filter to images, we explore applications that truly benefit from the triangular wavelets in comparison with the conventional tensor product transforms.

  3. Triangular Wavelets: An Isotropic Image Representation with Hexagonal Symmetry

    Directory of Open Access Journals (Sweden)

    Fujinoki Kensuke

    2009-01-01

    Full Text Available Abstract This paper introduces triangular wavelets, which are two-dimensional nonseparable biorthogonal wavelets defined on the regular triangular lattice. The construction that we propose is a simple nonseparable extension of one-dimensional interpolating wavelets followed by a straightforward generalization. The resulting three oriented high-pass filters are symmetrically arranged on the lattice, while low-pass filters have hexagonal symmetry, thereby allowing an isotropic image processing in the sense that three detail components are distributed uniformly. Applying the triangular filter to images, we explore applications that truly benefit from the triangular wavelets in comparison with the conventional tensor product transforms.

  4. Are EeV cosmic rays isotropic at intermediate scales?

    CERN Document Server

    Zotov, M Yu

    2014-01-01

    We study anisotropy of cosmic rays in the energy range 0.2-1.4 EeV at intermediate angular scales using the public data set of the Pierre Auger Observatory. At certain scales, the analysis reveals a number of deviations from the isotropic distribution with the statistical significance above three standard deviations. It also demonstrates that the anisotropy evolves with energy. If confirmed with the complete Auger or Telescope Array data sets, the result can shed new light on the structure of galactic magnetic fields and the problem of transition from galactic to extragalactic cosmic rays.

  5. Isotropic Stars in Higher-Order Torsion Scalar Theories

    Directory of Open Access Journals (Sweden)

    Gamal G. L. Nashed

    2016-01-01

    Full Text Available Two different nondiagonal tetrad spaces reproducing spherically symmetric spacetime are applied to the field equations of higher-order torsion scalar theories. Assuming the existence of conformal Killing vector, two isotropic solutions are derived. We show that the first solution is not stable while the second one confirms a stable behavior. We also discuss the construction of the stellar model and show that one of our solutions is capable of such construction while the other is not. Finally, we discuss the generalized Tolman-Oppenheimer-Volkoff and show that one of our models has a tendency to equilibrium.

  6. Isotropic stars in higher-order torsion scalar theories

    CERN Document Server

    Nashed, Gamal G L

    2016-01-01

    Two tetrad spaces reproducing spherically symmetric spacetime are applied to the equations of motion of higher-order torsion theories. Assuming the existence of conformal Killing vector, two isotropic solutions are derived. We show that the first solution is not stable while the second one confirms a stable behavior. We also discuss the construction of the stellar model and show that one of our solution capable of such construction while the other cannot. Finally, we discuss the generalized Tolman-Oppenheimer-Volkoff and show that one of our models has a tendency to equilibrium.

  7. A symplectic eigensolution method in transversely isotropic piezoelectric cylindrical media

    Institute of Scientific and Technical Information of China (English)

    XU Xin-sheng; GU Qian; LEUNG Andrew Y.T.; ZHENG Jian-jun

    2005-01-01

    This paper reports establishment ofa symplectic system and introduces a 3D sub-symplectic structure for transversely isotropic piezoelectric media. A complete space of eigensolutions is obtained directly. Thus all solutions of the problem are reduced to finding eigenvalues and eigensolutions, which include zero-eigenvalue solutions and all their Jordan normal form of the corresponding Hamiltonian matrix and non-zero-eigenvalue solutions. The classical solutions are described by zero-eigensolutions and non-zero-eigensolutions show localized solutions. Numerical results show some rules of non-zero-eigenvalue and their eigensolutions.

  8. Anisotropic light emissions in luminescent solar concentrators-isotropic systems.

    Science.gov (United States)

    Verbunt, Paul P C; Sánchez-Somolinos, Carlos; Broer, Dirk J; Debije, Michael G

    2013-05-06

    In this paper we develop a model to describe the emission profile from randomly oriented dichroic dye molecules in a luminescent solar concentrator (LSC) waveguide as a function of incoming light direction. The resulting emission is non-isotropic, in contradiction to what is used in almost all previous simulations on the performance of LSCs, and helps explain the large surface losses measured in these devices. To achieve more precise LSC performance simulations we suggest that the dichroic nature of the dyes must be included in the future modeling efforts.

  9. Localization by Acoustic Emission in Transversely Isotropic Slate

    Directory of Open Access Journals (Sweden)

    Bjorn Debecker

    2011-01-01

    Full Text Available A method for localization by acoustic emission in transversely isotropic media is developed and validated. Velocities are experimentally measured and then used to calculate a database of theoretical arrival times for a large number of positions. During an actual test, positions are assigned by comparing measured arrival times with the database's arrival times. The method is applied during load tests on slate samples and compared with visual observations of fractures. The localization method allowed for a good identification of the regions of fracturing at different stages during the test.

  10. Observation of isotropic electron temperature in the turbulent E region

    Directory of Open Access Journals (Sweden)

    S. Saito

    Full Text Available Using EISCAT radar data, we find that electrons are strongly heated in the magnetic field-line direction during high electric field events. The remote site data show that the electron temperature increases in almost the same way in the field-perpendicular direction; electron heating by E region plasma turbulence is isotropic. We discuss the implications of our observation for the "plasmon"-electron as well as the wave Joule heating models of the anomalous electron heating in the E region.

    Key words. Ionosphere (auroral ionosphere; plasma temperature and density; plasma waves and instabilities

  11. Thermo elastic waves with thermal relaxation in isotropic micropolar plate

    Indian Academy of Sciences (India)

    Soumen Shaw; Basudeb Mukhopadhyay

    2011-04-01

    In the present investigation, we have discussed about the features of waves in different modes of wave propagation in an infinitely long thermoelastic, isotropic micropolar plate, when the generalized theory of Lord–Shulman (L–S) is considered. A more general dispersion equation is obtained. The different analytic expressions in symmetric and anti-symmetric vibration for short as well as long waves are obtained in different regions of phase velocities. It is found that results agree with that of the existing results predicted by Sharma and Eringen in the context of various theories of classical as well as micropolar thermoelasticity.

  12. Rotation of slender swimmers in isotropic-drag media

    CERN Document Server

    Koens, Lyndon

    2016-01-01

    The drag anisotropy of slender filaments is a critical physical property allowing swimming in low-Reynolds number flows, and without it linear translation is impossible. Here we show that, in contrast, net rotation can occur under isotropic drag. We first demonstrate this result formally by considering the consequences of the force- and torque-free conditions on swimming bodies and we then illustrate it with two examples (a simple swimmers made of three rods and a model bacterium with two helical flagellar filaments). Our results highlight the different role of hydrodynamic forces in generating translational vs.~rotational propulsion.

  13. Modelling of the decay of isotropic turbulence by the LES

    Energy Technology Data Exchange (ETDEWEB)

    Abdibekov, U S; Zhakebaev, D B, E-mail: uali1@mail.ru, E-mail: daurjaz@mail.ru [Al-Farabi Kazakh National University (Kazakhstan)

    2011-12-22

    This work deals with the modelling of degeneration of isotropic turbulence. To simulate the turbulent process the filtered three-dimensional nonstationary Navier-Stokes equation is used. The basic equation is closed with the dynamic model. The problem is solved numerically, and the equation of motion is solved by a modified method of fractional steps using compact schemes, the equation for pressure is solved by the Fourier method with a combination of matrix factorization. In the process of simulation changes of the kinetic energy of turbulence in the time, micro scale of turbulence and changes of inlongitudinal-transverse correlation functions are obtained, longitudinal and transverse one-dimensional spectra are defined.

  14. Isotropic Lifshitz behavior in block copolymer-homopolymer blends

    DEFF Research Database (Denmark)

    Bates, F.S.; Maurer, W.; Lodge, T.P.

    1995-01-01

    A series of mixtures composed of a symmetric A-B diblock copolymer and a symmetric blend of A and B homopolymers was investigated by small-angle neutron scattering. Mean-field theory predicts that a line of lamellar-disorder transitions with wave-vector instability q* > 0 will meet a line...... of critical points with q* = 0 in the three-component mixture at an isotropic Lifshitz point. Mean-field Lifshitz behavior (gamma = 1 and nu = 1/4) was observed in the disordered state at the anticipated composition to within 1 K of the phase transition....

  15. Effective equations for isotropic quantum cosmology including matter

    CERN Document Server

    Bojowald, Martin; Skirzewski, Aureliano

    2007-01-01

    Effective equations often provide powerful tools to develop a systematic understanding of detailed properties of a quantum system. This is especially helpful in quantum cosmology where several conceptual and technical difficulties associated with the full quantum equations can be avoided in this way. Here, effective equations for Wheeler-DeWitt and loop quantizations of spatially flat, isotropic cosmological models sourced by a massive or interacting scalar are derived and studied. The resulting systems are remarkably different from that given for a free, massless scalar. This has implications for the coherence of evolving states and the realization of a bounce in loop quantum cosmology.

  16. P-wave seismic imaging through dipping transversely isotropic media

    Science.gov (United States)

    Leslie, Jennifer Meryl

    2000-10-01

    P-wave seismic anisotropy is of growing concern to the exploration industry. The transmissional effects through dipping anisotropic strata, such as shales, cause substantial depth and lateral positioning errors when imaging subsurface targets. Using anisotropic physical models the limitations of conventional isotropic migration routines were determined to be significant. In addition, these models were used to validate both anisotropic depth migration routines and an anisotropic, numerical raytracer. In order to include anisotropy in these processes, one must be able to quantify the anisotropy using two parameters, epsilon and delta. These parameters were determined from headwave velocity measurements on anisotropic strata, in the parallel-, perpendicular- and 45°-to-bedding directions. This new method was developed using refraction seismic techniques to measure the necessary velocities in the Wapiabi Formation shales, the Brazeau Group interbedded sandstones and shales, the Cardium Formation sandstones and the Palliser Formation limestones. The Wapiabi Formation and Brazeau Group rocks were determined to be anisotropic with epsilon = 0.23 +/- 0.05, delta = --0.05 +/- 0.07 and epsilon = 0.11 +/- 0.04, delta = 0.42 +/- 0.06, respectively. The sandstones and limestones of the Cardium and Palliser formations were both determined to be isotropic, in these studies. In a complementary experiment, a new procedure using vertical seismic profiling (VSP) techniques was developed to measure the anisotropic headwave velocities. Using a multi-offset source configuration on an appropriately dipping, uniform panel of anisotropic strata, the required velocities were measured directly and modelled. In this study, the geologic model was modelled using an anisotropic raytracer, developed for the experiment. The anisotropy was successfully modelled using anisotropic parameters based on the refraction seismic results. With a firm idea of the anisotropic parameters from the

  17. Investigation of Mechanical Properties of Magneto-Rheological Ethylene Propylene Diene Monomer and Natural Rubber Type Synthetic Rubbers for Both Isotropic and Anisotropic Situations

    Directory of Open Access Journals (Sweden)

    Uğur Mazlum

    2015-12-01

    Full Text Available Magneto-rheological (MR materials are in a smart material class that has the rheological properties to be quickly and reversibly controlled with the external magnetic field applications. Considering the technological developments the rubber-like smart materials has had a more functional usage area with magneto- rheological effect. This study investigates the axial mechanical properties of magneto-rheological Ethylene Propylene Diene Monomer (EPDM and Natural Rubber (NR type synthetic rubbers for isotropic and anisotropic situations. Also, these composite materials were built by means of hot press systems as either isotropic or anisotropic using magnetic field application after addition of ferromagnetic powders. The influence of magnetic field was investigated. In this study, NR rubber was found to be more susceptible in terms of smart material properties unlike EPDM synthetic rubber.

  18. Charged isotropic non-Abelian dyonic black branes

    Directory of Open Access Journals (Sweden)

    Yves Brihaye

    2015-05-01

    Full Text Available We construct black holes with a Ricci-flat horizon in Einstein–Yang–Mills theory with a negative cosmological constant, which approach asymptotically an AdSd spacetime background (with d≥4. These solutions are isotropic, i.e. all space directions in a hypersurface of constant radial and time coordinates are equivalent, and possess both electric and magnetic fields. We find that the basic properties of the non-Abelian solutions are similar to those of the dyonic isotropic branes in Einstein–Maxwell theory (which, however, exist in even spacetime dimensions only. These black branes possess a nonzero magnetic field strength on the flat boundary metric, which leads to a divergent mass of these solutions, as defined in the usual way. However, a different picture is found for odd spacetime dimensions, where a non-Abelian Chern–Simons term can be incorporated in the action. This allows for black brane solutions with a magnetic field which vanishes asymptotically.

  19. PDF Modeling of Evaporating Droplets in Isotropic Turbulence.

    Science.gov (United States)

    Mashayek, F.; Pandya, R. V. R.

    2000-11-01

    We use a statistical closure scheme of Van Kampen [1] to obtain an approximate equation for probability density function p(τ_d, t) to predict the time (t) evolution of statistical properties related to particle time constant τd of collisionless evaporating droplets suspended in isothermal isotropic turbulent flows. The resulting Fokker-Planck equation for p(τ_d, t) has non-linear, time-dependent drift and diffusion coefficients that depend on the statistical properties of droplet's slip velocity. Approximate analytical expressions for these properties are derived and the equation is solved numerically after implementing a numerical method based on path-integral formalism. Time evolution of various droplet diameter related statistical properties are then calculated and are compared with the data available from the stochastic and direct numerical simulations (DNS) studies performed by Mashayek[2]. A good agreement for temporal evolution of mean and standard deviation of particle diameter is observed with DNS results. Reference [1] Van Kampen, N.G., Stochastic Processes in Physics and Chemistry, Elsevier Science Publishers, North Holland, Amsterdam, 1992. [2] Mashayek, F., Stochastic Simulations of Particle-Laden Isotropic Turbulent Flow, Int. J. Multiphase Flow, 25(8):1575-1599 (1999).

  20. The Isotropic Radio Background and Annihilating Dark Matter

    CERN Document Server

    Hooper, Dan; Jeltema, Tesla E; Linden, Tim; Profumo, Stefano; Slatyer, Tracy R

    2012-01-01

    Observations by ARCADE-2 and other telescopes sensitive to low frequency radiation have revealed the presence of an isotropic radio background with a hard spectral index. The intensity of this observed background is found to exceed the flux predicted from astrophysical sources by a factor of approximately 5-6. In this article, we consider the possibility that annihilating dark matter particles provide the primary contribution to the observed isotropic radio background through the emission of synchrotron radiation from electron and positron annihilation products. For reasonable estimates of the magnetic fields present in clusters and galaxies, we find that dark matter could potentially account for the observed radio excess, but only if it annihilates mostly to electrons and/or muons, and only if it possesses a mass in the range of approximately 5-50 GeV. For such models, the annihilation cross section required to normalize the synchrotron signal to the observed excess is sigma v ~ (0.4-30) x 10^-26 cm^3/s, sim...

  1. An Areal Isotropic Spline Filter for Surface Metrology.

    Science.gov (United States)

    Zhang, Hao; Tong, Mingsi; Chu, Wei

    2015-01-01

    This paper deals with the application of the spline filter as an areal filter for surface metrology. A profile (2D) filter is often applied in orthogonal directions to yield an areal filter for a three-dimensional (3D) measurement. Unlike the Gaussian filter, the spline filter presents an anisotropic characteristic when used as an areal filter. This disadvantage hampers the wide application of spline filters for evaluation and analysis of areal surface topography. An approximation method is proposed in this paper to overcome the problem. In this method, a profile high-order spline filter serial is constructed to approximate the filtering characteristic of the Gaussian filter. Then an areal filter with isotropic characteristic is composed by implementing the profile spline filter in the orthogonal directions. It is demonstrated that the constructed areal filter has two important features for surface metrology: an isotropic amplitude characteristic and no end effects. Some examples of applying this method on simulated and practical surfaces are analyzed.

  2. Isotropic extensions of the vacuum solutions in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Molina, C. [Universidade de Sao Paulo (USP), SP (Brazil); Martin-Moruno, Prado [Victoria University of Wellington (New Zealand); Gonzalez-Diaz, Pedro F. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain)

    2012-07-01

    Full text: Spacetimes described by spherically symmetric solutions of Einstein's equations are of paramount importance both in astrophysical applications and theoretical considerations. And among those, black holes are highlighted. In vacuum, Birkhoff's theorem and its generalizations to non-asymptotically flat cases uniquely fix the metric as the Schwarzschild, Schwarzschild-de Sitter or Schwarzschild-anti-de Sitter geometries, the vacuum solutions of the usual general relativity with zero, positive or negative values for the cosmological constant, respectively. In this work we are mainly interested in black holes in a cosmological environment. Of the two main assumptions of the cosmological principle, homogeneity is lost when compact objects are considered. Nevertheless isotropy is still possible, and we enforce this condition. Within this context, we investigate spatially isotropic solutions close - continuously deformable - to the usual vacuum solutions. We obtain isotropic extensions of the usual spherically symmetric vacuum geometries in general relativity. Exact and perturbative solutions are derived. Maximal extensions are constructed and their causal structures are discussed. The classes of geometries obtained include black holes in compact and non-compact universes, wormholes in the interior region of cosmological horizons, and anti-de Sitter geometries with excess/deficit solid angle. The tools developed here are applicable in more general contexts, with extensions subjected to other constraints. (author)

  3. The universe as a black hole in isotropic coordinates

    CERN Document Server

    Poplawski, Nikodem J

    2009-01-01

    We show that the radial geodesic motion of a particle inside a black hole in isotropic coordinates (the Einstein-Rosen bridge) is physically different from the radial motion inside a Schwarzschild black hole. A particle enters the interior region of an Einstein-Rosen black hole which is regular and physically equivalent to the asymptotically flat exterior of a white hole, and the particle's proper time extends to infinity. Because the motion across the Einstein-Rosen bridge is unidirectional, and the surface of a black hole is the event horizon for distant observers, an Einstein-Rosen black hole is indistinguishable from a Schwarzschild black hole for such observers. Observers inside an Einstein-Rosen black hole perceive its interior as a closed universe that began when the black hole formed, with an initial radius equal to the Schwarzschild radius of the black hole $r_g$, and with an initial accelerated expansion. Therefore the model of a universe as a black hole in isotropic coordinates explains the origin ...

  4. Fluctuational shift of nematic-isotropic phase transition temperature

    Science.gov (United States)

    Kats, E. I.

    2017-02-01

    In this work we discuss a macroscopic counterpart to the microscopic mechanism of the straightening dimer mesogens conformations, proposed recently by S.M. Saliti, M.G.Tamba, S.N. Sprunt, C.Welch, G.H.Mehl, A. Jakli, J.T. Gleeson (Phys. Rev. Lett. 116, 217801 (2016)) to explain their experimental observation of the unprecedentedly large shift of the nematic-isotropic transition temperature. Our interpretation is based on singular longitudinal fluctuations of the nematic order parameter. Since these fluctuations are governed by the Goldstone director fluctuations they exist only in the nematic state. External magnetic field suppresses the singular longitudinal fluctuations of the order parameter (similarly as it is the case for the transverse director fluctuations, although with a different scaling over the magnetic field). The reduction of the fluctuations changes the equilibrium value of the modulus of the order parameter in the nematic state. Therefore it leads to additional (with respect to the mean field contribution) fluctuational shift of the nematic-isotropic transition temperature. Our mechanism works for any nematic liquid crystals, however the magnitude of the fluctuational shift increases with decrease of the Frank elastic moduli. Since some of these moduli supposed to be anomalously small for so-called bent-core or dimer nematic liquid crystals, just these liquid crystals are promising candidates for the observation of the predicted fluctuational shift of the phase transition temperature.

  5. Even harmonic generation in isotropic media of dissociating homonuclear molecules

    CERN Document Server

    Silva, R E F; Morales, F; Smirnova, O; Ivanov, M; Martín, F

    2016-01-01

    Isotropic gases irradiated by long pulses of intense IR light can generate very high harmonics of the incident field. It is generally accepted that, due to the symmetry of the generating medium, be it an atomic or an isotropic molecular gas, only odd harmonics of the driving field can be produced. Here we show how the interplay of electronic and nuclear dynamics can lead to a marked breakdown of this standard picture: a substantial part of the harmonic spectrum can consist of even rather than odd harmonics. We demonstrate the effect using ab-initio solutions of the time-dependent Schr\\"odinger equation for $H$$_2$$^+$ and its isotopes in full dimensionality. By means of a simple analytical model, we identify its physical origin, which is the appearance of a permanent dipole moment in dissociating homonuclear molecules, caused by light-induced localization of the electric charge during dissociation. The effect arises for sufficiently long laser pulses and the region of the spectrum where even harmonics are pro...

  6. Calculation of point isotropic buildup factors of gamma rays for water and lead

    Directory of Open Access Journals (Sweden)

    A. S. H.

    2001-12-01

    Full Text Available   Exposure buildup factors for water and lead have been calculated by the Monte-Carlo method for an isotropic point source in an infinite homogeneous medium, using the latest cross secions available on the Internet. The types of interactions considered are ,photoelectric effect, incoherent (or bound-electron Compton. Scattering, coherent (or Rayleigh scattering and pair production. Fluorescence radiations have also been taken into acount for lead. For each material, calculations were made at 10 gamma ray energies in the 40 keV to 10 MeV range and up to penetration depths of 10 mean free paths at each energy point. The results presented in this paper can be considered as modified gamma ray exposure buildup factors and be used in radiation shielding designs.

  7. Sedimentation of elongated non-motile prolate spheroids in homogenous isotropic turbulence

    CERN Document Server

    Ardekani, M Niazi; Brandt, L; Karp-Boss, L; Bearon, R N; Variano, E A

    2016-01-01

    Phytoplankton are the foundation of aquatic food webs. Through photosynthesis, phytoplankton draw down CO2 at magnitudes equivalent to forests and other terrestrial plants and convert it to organic material that is then consumed by other organisms of phytoplankton in higher trophic levels. Mechanisms that affect local concentrations and velocities are of primary significance to many encounter-based processes in the plankton including prey-predator interactions, fertilization and aggregate formation. We report results from simulations of sinking phytoplankton, considered as elongated spheroids, in homogenous isotropic turbulence to answer the question of whether trajectories and velocities of sinking phytoplankton are altered by turbulence. We show in particular that settling spheroids with physical characteristics similar to those of diatoms weakly cluster and preferentially sample regions of down-welling flow, corresponding to an increase of the mean settling speed with respect to the mean settling speed in ...

  8. Dynamic properties of magnets with spin S = 3/2 and non-Heisenberg isotropic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Kosmachev, O. A.; Fridman, Yu. A., E-mail: yuriifridman@gmail.com [Vernadsky Taurida National University (Russian Federation); Galkina, E. G. [National Academy of Sciences of Ukraine, Institute of Physics (Ukraine); Ivanov, B. A. [National Academy of Sciences of Ukraine, Institute of Magnetism (Ukraine)

    2015-02-15

    The dynamic properties of a magnet with magnetic-ion spin of 3/2 and an isotropic spin interaction of a general form have been investigated. Only four phase states can be realized in the system under consideration at various relationships between the material parameters: the ferro- and antiferromagnetic phases with saturated spin and the states with tensor order parameters, the nematic and antinematic ones. For these phases, the spontaneous symmetry breaking is determined by the octupole order parameter containing the mean values trilinear in spin operator components at a given site. The spectra of elementary excitations have been determined in all phases. Additional branches of excitations arise in all four phase states.

  9. Transient response of isotropic, orthotropic and anisotropic composite-sandwich shells with the superparametric element

    Science.gov (United States)

    Mallikarjuna; Kant, T.; Fafard, M.

    1992-09-01

    The first-order Reissner-Mindlin shear deformation theory is employed to investigate the transient response of isotropic, layered orthotropic and anisotropic composite and sandwich shells. The eight-noded Serendipity and nine-noded Lagrangian quadrilateral superparametric shell elements are used. Numerical convergence and stability of the elements are established using an explicit central difference technique with a special mass matrix diagonalization scheme. The effects of transverse shear modulii of stiff layers, length/thickness and radius/length ratios, time step, finite element mesh, orientation of fibers and degree of orthotropy on the transient response of shells are studied. The variety of results presented here, based on realistic material properties of more commonly used advanced laminated composite shells, should serve as references for future investigations.

  10. Fundamental connections between models of active suspensions and transversely-isotropic fluids

    CERN Document Server

    Holloway, Craig R; Smith, David J; Green, J Edward F; Clarke, Richard J; Dyson, Rosemary J

    2016-01-01

    Suspensions of self-motile, elongated particles are a topic of significant current interest, exemplifying a form of `active matter'. Examples include self-propelling bacteria, algae and sperm, and artificial swimmers. Ericksen's model of a transversely-isotropic fluid [J. L. Ericksen, Colloid Polym. Sci. 173(2):117-122 (1960)] treats suspensions of non-motile particles as a continuum with an evolving preferred direction; this model describes fibrous materials as diverse as extracellular matrix, textile tufts and cellulose microfibres. Director-dependent effects are incorporated through a modified stress tensor with four viscosity-like parameters. By making fundamental connections with recent models for active suspensions, we establish how these viscosity-like parameters relate to the solvent viscosity, volume fraction of particles and their aspect ratio. This comparison reveals previously neglected components of the stress tensor that significantly alter the rheology; these components should be included in mo...

  11. Generalization of the ordinary state-based peridynamic model for isotropic linear viscoelasticity

    Science.gov (United States)

    Delorme, Rolland; Tabiai, Ilyass; Laberge Lebel, Louis; Lévesque, Martin

    2017-02-01

    This paper presents a generalization of the original ordinary state-based peridynamic model for isotropic linear viscoelasticity. The viscoelastic material response is represented using the thermodynamically acceptable Prony series approach. It can feature as many Prony terms as required and accounts for viscoelastic spherical and deviatoric components. The model was derived from an equivalence between peridynamic viscoelastic parameters and those appearing in classical continuum mechanics, by equating the free energy densities expressed in both frameworks. The model was simplified to a uni-dimensional expression and implemented to simulate a creep-recovery test. This implementation was finally validated by comparing peridynamic predictions to those predicted from classical continuum mechanics. An exact correspondence between peridynamics and the classical continuum approach was shown when the peridynamic horizon becomes small, meaning peridynamics tends toward classical continuum mechanics. This work provides a clear and direct means to researchers dealing with viscoelastic phenomena to tackle their problem within the peridynamic framework.

  12. Low-velocity impact response of a pre-stressed isotropic Uflyand-Mindlin plate

    Directory of Open Access Journals (Sweden)

    Rossikhin Yury

    2017-01-01

    Full Text Available The low-velocity impact response of a precompressed circular isotropic elastic plate is investigated in the case when the dynamic behavior of the plate is described by equations taking the rotary inertia and transverse shear deformations into account. Contact interaction between the rigid impactor and the target is modeled by a generalized Hertz contact force, since it is assumed that the viscoelastic features of the plate represent themselves only in the place of contact and are governed by the standard linear solid model with fractional derivatives due to the fact that during the impact process decrosslinking occurs within the domain of the contact of the plate with the sphere, resulting in more free displacements of molecules with respect to each other, and finally in the decrease of the plate material viscosity in the contact zone.

  13. Love waves propagation in a transversely isotropic piezoelectric layer on a piezomagnetic half-space.

    Science.gov (United States)

    Ezzin, Hamdi; Ben Amor, Morched; Ben Ghozlen, Mohamed Hédi

    2016-07-01

    A theoretical approach is taken into consideration to investigate Love wave propagation in a transversely isotropic piezoelectric layer on a piezomagnetic half-space. The magneto-electrically open and short conditions are applied to solve the problem. The phase and group velocity of the Love wave is numerically calculated for the magneto-electrically open and short cases, respectively. The variations of magneto-electromechanical coupling factor, mechanical displacements, electric and magnetic potentials along the thickness direction of the layers are obtained and discussed. The numerical results clearly show the influence of different stacking sequences on dispersion curves and on magneto-electromechanical coupling factor. This work may be relevant to analysis and design of various acoustic surface wave devices constructed from piezoelectric and piezomagnetic materials.

  14. Stochastic representations of seismic anisotropy: transversely isotropic effective media models

    Science.gov (United States)

    Song, Xin; Jordan, Thomas H.

    2017-06-01

    We apply Jordan's self-consistent, second-order Born theory to compute the effective stiffness tensor for spatially stationary, stochastic models of 3-D elastic heterogeneity. The effects of local anisotropy can be separated from spatially extended geometric anisotropy by factoring the covariance of the moduli into a one-point variance tensor and a two-point correlation function. The latter is incorporated into the rescaled Kneer tensor, which is contracted against the one-point variance tensor to yield a second-order perturbation to the Voigt average. The theory can handle heterogeneity with orthotropic stochastic symmetry, but the calculations presented here are restricted to media with transversely isotropic (TI) statistics. We thoroughly investigate TI stochastic media that are locally isotropic. If the heterogeneity aspect ratio η is unity, the effective medium is isotropic, and the main effect of the scattering is to reduce the moduli. The two limiting regimes are a 2-D vertical stochastic bundle (η → 0), where the P and S anisotropy ratios are negative, and a 1-D horizontal stochastic laminate (η → ∞), where they are positive. The effective-medium equations for the latter yield the second-order approximation to Backus's exact solution, demonstrating the connection between Backus theory and self-consistent effective-media theory. Comparisons of the exact and second-order results for non-Gaussian laminates indicate that the approximation should be adequate for moduli heterogeneities less than about 30 per cent and thus valid for most seismological purposes. We apply the locally isotropic theory to data from the Los Angeles Basin to illustrate how it can be used to explain shallow seismic anisotropy. To assess the relative contributions of geometric and local anisotropy to the effective anisotropy, we consider a rotational model for stochastic anisotropic variability proposed by Jordan. In this model, the axis of a hexagonally symmetric stiffness

  15. Imaging of room-temperature ferromagnetic nano-domains at the surface of a non-magnetic oxide

    Science.gov (United States)

    Taniuchi, T.; Motoyui, Y.; Morozumi, K.; Rödel, T. C.; Fortuna, F.; Santander-Syro, A. F.; Shin, S.

    2016-06-01

    Two-dimensional electron gases at oxide surfaces or interfaces show exotic ordered states of matter, like superconductivity, magnetism or spin-polarized states, and are a promising platform for alternative oxide-based electronics. Here we directly image a dense population of randomly distributed ferromagnetic domains of ~40 nm typical sizes at room temperature at the oxygen-deficient surface of SrTiO3, a non-magnetic transparent insulator in the bulk. We use laser-based photoemission electron microscopy, an experimental technique that gives selective spin detection of the surface carriers, even in bulk insulators, with a high spatial resolution of 2.6 nm. We furthermore find that the Curie temperature in this system is as high as 900 K. These findings open perspectives for applications in nano-domain magnetism and spintronics using oxide-based devices, for instance through the nano-engineering of oxygen vacancies at surfaces or interfaces of transition-metal oxides.

  16. Non-Equilibrium Chemistry of Dynamically Evolving Prestellar Cores: I. Basic Magnetic and Non-Magnetic Models and Parameter Studies

    CERN Document Server

    Tassis, Konstantinos; Yorke, Harold W; Turner, Neal

    2011-01-01

    We combine dynamical and non-equilibrium chemical modeling of evolving prestellar molecular cloud cores, and explore the evolution of molecular abundances in the contracting core. We model both magnetic cores, with varying degrees of initial magnetic support, and non-magnetic cores, with varying collapse delay times. We explore, through a parameter study, the competing effects of various model parameters in the evolving molecular abundances, including the elemental C/O ratio, the temperature, and the cosmic-ray ionization rate. We find that different models show their largest quantitative differences at the center of the core, whereas the outer layers, which evolve slower, have abundances which are severely degenerate among different dynamical models. There is a large range of possible abundance values for different models at a fixed evolutionary stage (central density), which demonstrates the large potential of chemical differentiation in prestellar cores. However, degeneracies among different models, compou...

  17. The non-magnetic collapsed tetragonal phase of CaFe2As2 and superconductivity in the iron pnictides

    Science.gov (United States)

    Soh, J. H.; Tucker, G. S.; Pratt, D. K.; Abernathy, D. L.; Stone, M. B.; Ran, S.; Bud'Ko, S. L.; Canfield, P. C.; Kreyssig, A.; McQueeney, R. J.; Goldman, A. I.

    2014-03-01

    The relationship between antiferromagnetic spin fluctuations and superconductivity has become a central topic of research in studies of superconductivity in the iron pnictides. We present unambiguous evidence of the absence of magnetic fluctuations in the non-superconducting collapsed tetragonal phase of CaFe2As2 via inelastic neutron scattering time-of-flight data, which is consistent with the view that spin fluctuations are a necessary ingredient for unconventional superconductivity in the iron pnictides. We demonstrate that the collapsed tetragonal phase of CaFe2As2 is non-magnetic, and discuss this result in light of recent reports of high-temperature superconductivity in the collapsed tetragonal phase of closely related compounds. Work at the Ames Laboratory was supported by the Department of Energy, Basic Energy Sciences. Work at ORNL's Spallation Neutron Source was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences.

  18. Study on the cutting mechanism and the brittle ductile transition model of isotropic pyrolyric graphite

    Science.gov (United States)

    Wang, Minghai; Wang, Hujun; Liu, Zhonghai

    2011-05-01

    Isotropic pyrolyric graphite (IPG) is a new kind of brittle material, it can be used for sealing the aero-engine turbine shaft and the ethylene high-temperature equipment. It not only has the general advantages of ordinal carbonaceous materials such as high temperature resistance, lubrication and abrasion resistance, but also has the advantages of impermeability and machinability that carbon/carbon composite doesn't have. Therefore, it has broad prospects for development. Mechanism of brittle-ductile transition of IPG is the foundation of precision cutting while the plastic deformation of IPG is the essential and the most important mechanical behavior of precision cutting. Using the theory of strain gradient, the mechanism of this material removal during the precision cutting is analyzed. The critical cutting thickness of IPG is calculated for the first time. Furthermore, the cutting process parameters such as cutting depth, feed rate which corresponding to the scale of brittle-ductile transition deformation of IPG are calculated. In the end, based on the theory of micromechanics, the deformation behaviors of IPG such as brittle fracture, plastic deformation and mutual transformation process are all simulated under the Sih.G.C fracture criterion. The condition of the simulation is that the material under the pressure-shear loading conditions .The result shows that the best angle during the IPG precision cutting is -30°. The theoretical analysis and the simulation result are validated by precision cutting experiments.

  19. Cosmological Simulations of Isotropic Conduction in Galaxy Clusters

    CERN Document Server

    Smith, Britton D; Voit, G Mark; Ventimiglia, David; Skillman, Samuel W

    2013-01-01

    Simulations of galaxy clusters have a difficult time reproducing the radial gas-property gradients and red central galaxies observed to exist in the cores of galaxy clusters. Thermal conduction has been suggested as a mechanism that can help bring simulations of cluster cores into better alignment with observations by stabilizing the feedback processes that regulate gas cooling, but this idea has not yet been well tested with cosmological numerical simulations. Here we present cosmological simulations of ten galaxy clusters performed with five different levels of isotropic Spitzer conduction, which alters both the cores and outskirts of clusters, but not dramatically. In the cores, conduction flattens central temperature gradients, making them nearly isothermal and slightly lowering the central density but failing to prevent a cooling catastrophe there. Conduction has little effect on temperature gradients outside of cluster cores because outward conductive heat flow tends to inflate the outer parts of the in...

  20. Shape-dependence of particle rotation in isotropic turbulence

    CERN Document Server

    Byron, M; Gustavsson, K; Voth, G; Mehlig, B; Variano, E

    2014-01-01

    We consider the rotation of neutrally buoyant axisymmetric particles suspended in isotropic turbulence. Using laboratory experiments as well as numerical and analytical calculations, we explore how particle rotation depends upon particle shape. We find that shape strongly affects orientational trajectories, but that it has negligible effect on the variance of the particle angular velocity. Previous work has shown that shape significantly affects the variance of the tumbling rate of axisymmetric particles. It follows that shape affects the spinning rate in a way that is, on average, complementary to the shape-dependence of the tumbling rate. We confirm this relationship using direct numerical simulations, showing how tumbling rate and spinning rate variances show complementary trends for rod-shaped and disk-shaped particles. We also consider a random but non-turbulent flow. This allows us to explore which of the features observed for rotation in turbulent flow are due to the effects of particle alignment in vo...

  1. A new approach to Lagrangian investigations of isotropic turbulence

    Science.gov (United States)

    Barjona, Manuel; B. da Silva, Carlos; Idmec Team

    2016-11-01

    A new numerical approach is used in conjunction with direct numerical simulations (DNS) of statistically stationary (forced) isotropic turbulence to investigate the high Reynolds number scaling properties of turbulence characteristics in a Lagrangian frame. The new method provides an alternative route to the determination of the classical Lagrangian turbulence quantities, such as the second order Lagrangian velocity structure function and two point particle separation, at a much higher Reynolds number than as obtained in previous numerical simulations, and displays excellent agreement with the classical theoretical predictions and existing numerical simulations and experimental data. The authors acknowledge the Laboratory for Advanced Computing at University of Coimbra for providing HPC, computing, consulting resources that have contributed to the research results reported within this paper. URL http://www.lca.uc.pt.

  2. A spatially homogeneous and isotropic Einstein-Dirac cosmology

    Science.gov (United States)

    Finster, Felix; Hainzl, Christian

    2011-04-01

    We consider a spatially homogeneous and isotropic cosmological model where Dirac spinors are coupled to classical gravity. For the Dirac spinors we choose a Hartree-Fock ansatz where all one-particle wave functions are coherent and have the same momentum. If the scale function is large, the universe behaves like the classical Friedmann dust solution. If however the scale function is small, quantum effects lead to oscillations of the energy-momentum tensor. It is shown numerically and proven analytically that these quantum oscillations can prevent the formation of a big bang or big crunch singularity. The energy conditions are analyzed. We prove the existence of time-periodic solutions which go through an infinite number of expansion and contraction cycles.

  3. A Spatially Homogeneous and Isotropic Einstein-Dirac Cosmology

    CERN Document Server

    Finster, Felix

    2011-01-01

    We consider a spatially homogeneous and isotropic cosmological model where Dirac spinors are coupled to classical gravity. For the Dirac spinors we choose a Hartree-Fock ansatz where all one-particle wave functions are coherent and have the same momentum. If the scale function is large, the universe behaves like the classical Friedmann dust solution. If however the scale function is small, quantum effects lead to oscillations of the energy-momentum tensor. It is shown numerically and proven analytically that these quantum oscillations can prevent the formation of a big bang or big crunch singularity. The energy conditions are analyzed. We prove the existence of time-periodic solutions which go through an infinite number of expansion and contraction cycles.

  4. Determination of the decay exponent in mechanically stirred isotropic turbulence

    Directory of Open Access Journals (Sweden)

    J. Blair Perot

    2011-06-01

    Full Text Available Direct numerical simulation is used to investigate the decay exponent of isotropic homogeneous turbulence over a range of Reynolds numbers sufficient to display both high and low Re number decay behavior. The initial turbulence is generated by the stirring action of the flow past many small randomly placed cubes. Stirring occurs at 1/30th of the simulation domain size so that the low-wavenumber and large scale behavior of the turbulent spectrum is generated by the fluid and is not imposed. It is shown that the decay exponent in the resulting turbulence matches the theoretical predictions for a k2 low-wavenumber spectrum at both high and low Reynolds numbers. The transition from high Reynolds number behavior to low Reynolds number behavior occurs relatively abruptly at a turbulent Reynolds number of around 250 ( Re λ≈41.

  5. Helicity statistics in homogeneous and isotropic turbulence and turbulence models

    CERN Document Server

    Sahoo, Ganapati; Biferale, Luca

    2016-01-01

    We study the statistical properties of helicity in direct numerical simulations of fully developed homogeneous and isotropic turbulence and in a class of turbulence shell models. We consider correlation functions based on combinations of vorticity and velocity increments that are not invariant under mirror symmetry. We also study the scaling properties of high-order structure functions based on the moments of the velocity increments projected on a subset of modes with either positive or negative helicity (chirality). We show that mirror symmetry is recovered at small-scales, i.e. chiral terms are always subleading and they are well captured by a dimensional argument plus a small anomalous correction. We confirm these findings with numerical study of helical shell models at high Reynolds numbers.

  6. From Weakly to Strongly Magnetized Isotropic MHD Turbulence

    CERN Document Server

    Alexakis, Alexandros

    2012-01-01

    High Reynolds number isotropic magneto-hydro-dynamic turbulence in the presence of large scale magnetic fields is investigated as a function of the magnetic field strength. For a variety of flow configurations the energy dissipation rate \\epsilon, follows the Kolmogorov scaling \\epsilon ~ U^3/L even when the large scale magnetic field energy is twenty times larger than the kinetic. Further increase of the magnetic energy showed a transition to the \\epsilon ~ U^2 B / L scaling implying that magnetic shear becomes more efficient at this point at cascading the energy than the velocity fluctuations. Strongly helical configurations form helicity condensates that deviate from these scalings. Weak turbulence scaling was absent from the investigation. Finally, the magnetic energy spectra showed support for the Kolmogorov spectrum k^{-5/3} while kinetic energy spectra are closer to the Iroshnikov-Kraichnan spectrum k^{-3/2}.

  7. Rotations of small, inertialess triaxial ellipsoids in isotropic turbulence

    CERN Document Server

    Pujara, Nimish

    2016-01-01

    The statistics of rotational motion of small, inertialess triaxial ellipsoids are computed along Lagrangian trajectories extracted from direct numerical simulations of homogeneous isotropic turbulence. The particle angular velocity and its components along the three principal axes of the particle are considered, expanding on the results presented by \\citet{ChevillardMeneveau13}. The variance of the particle angular velocity, referred to as the particle enstrophy, is found to increase for particles with elongated shapes. This trend is explained by considering the contributions of vorticity and strain-rate to particle rotation. It is found that the majority of particle enstrophy is due to fluid vorticity. Strain-rate-induced rotations, which are sensitive to shape, are mostly cancelled by strain-vorticity interactions. The remainder of the strain-rate-induced rotations are responsible for weak variations in particle enstrophy. For particles of all shapes, the majority of the enstrophy is in rotations about the ...

  8. Assessing the Structure of Isotropic and Anisotropic Turbulent Magnetic Fields

    Science.gov (United States)

    Fatuzzo, Marco; Holden, Lisa; Grayson, Lindsay; Wallace, Kirk

    2016-10-01

    Turbulent magnetic fields permeate our universe, impacting a wide range of astronomical phenomena across all cosmic scales. A clear example is the magnetic field that threads the interstellar medium (ISM), which impacts the motion of cosmic rays through that medium. Understanding the structure of magnetic turbulence within the ISM and how it relates to the physical quantities that characterize it can thus inform our analysis of particle transport within these regions. Toward that end, we probe the structure of magentic turbulence through the use of Lyapunov exponents for a suite of isotropic and nonisotropic Alfvénic turbulence profiles. Our results provide a means of calculating a “turbulence lengthscale” that can then be connected to how cosmic rays propagate through magentically turbulent environments, and we perform such an analysis for molecular cloud environments.

  9. Helicity statistics in homogeneous and isotropic turbulence and turbulence models

    Science.gov (United States)

    Sahoo, Ganapati; De Pietro, Massimo; Biferale, Luca

    2017-02-01

    We study the statistical properties of helicity in direct numerical simulations of fully developed homogeneous and isotropic turbulence and in a class of turbulence shell models. We consider correlation functions based on combinations of vorticity and velocity increments that are not invariant under mirror symmetry. We also study the scaling properties of high-order structure functions based on the moments of the velocity increments projected on a subset of modes with either positive or negative helicity (chirality). We show that mirror symmetry is recovered at small scales, i.e., chiral terms are subleading and they are well captured by a dimensional argument plus anomalous corrections. These findings are also supported by a high Reynolds numbers study of helical shell models with the same chiral symmetry of Navier-Stokes equations.

  10. Sand - rubber mixtures submitted to isotropic loading: a minimal model

    Science.gov (United States)

    Platzer, Auriane; Rouhanifar, Salman; Richard, Patrick; Cazacliu, Bogdan; Ibraim, Erdin

    2017-06-01

    The volume of scrap tyres, an undesired urban waste, is increasing rapidly in every country. Mixing sand and rubber particles as a lightweight backfill is one of the possible alternatives to avoid stockpiling them in the environment. This paper presents a minimal model aiming to capture the evolution of the void ratio of sand-rubber mixtures undergoing an isotropic compression loading. It is based on the idea that, submitted to a pressure, the rubber chips deform and partially fill the porous space of the system, leading to a decrease of the void ratio with increasing pressure. Our simple approach is capable of reproducing experimental data for two types of sand (a rounded one and a sub-angular one) and up to mixtures composed of 50% of rubber.

  11. Instability induced pressure isotropization in a longitudinally expanding system

    CERN Document Server

    Dusling, Kevin; Gelis, François; Venugopalan, Raju

    2012-01-01

    In two previous works [arXiv:1009.4363,arXiv:1107.0668], we studied the time evolution of a system of real scalar fields with quartic coupling which shares important features with the Color Glass Condensate description of heavy ion collisions. Our primary objective was to understand how such a system, when initialized with a non-perturbatively large classical field configuration, reaches thermal equilibrium. An essential goal of these works was to highlight the role played by the quantum fluctuations. However, these studies considered only a system confined within a box of fixed volume. In the present paper, we extend this work to a system that expands in the longitudinal direction thereby more closely mimicking a heavy ion collision. We conclude that the microscopic processes that drive the system towards equilibrium are able to keep up with the expansion of the system; the pressure tensor becomes isotropic despite the anisotropic expansion.

  12. Viscous dissipative Chaplygin gas dominated homogenous and isotropic cosmological models

    CERN Document Server

    Pun, C S J; Mak, M K; Kovács, Z; Szabó, G M; Harko, T

    2008-01-01

    The generalized Chaplygin gas, which interpolates between a high density relativistic era and a non-relativistic matter phase, is a popular dark energy candidate. We consider a generalization of the Chaplygin gas model, by assuming the presence of a bulk viscous type dissipative term in the effective thermodynamic pressure of the gas. The dissipative effects are described by using the truncated Israel-Stewart model, with the bulk viscosity coefficient and the relaxation time functions of the energy density only. The corresponding cosmological dynamics of the bulk viscous Chaplygin gas dominated universe is considered in detail for a flat homogeneous isotropic Friedmann-Robertson-Walker geometry. For different values of the model parameters we consider the evolution of the cosmological parameters (scale factor, energy density, Hubble function, deceleration parameter and luminosity distance, respectively), by using both analytical and numerical methods. In the large time limit the model describes an acceleratin...

  13. Influence of stable stratification on three-dimensional isotropic turbulence

    Science.gov (United States)

    Metais, O.

    The influence of a stable stratification on three-dimensional homogeneous turbulence is investigated by performing large eddy simulations with the subgrid scales procedure developed by Chollet and Lesieur for isotropic turbulence. Computational initial conditions close to those of the experiments performed by Itsweire, Helland and Van Atta allow the comparison of the experimental and numerical evolutions of density-stratified turbulent flows. Theoretical works by Riley, Metcalfe and Weisman and by Lilly suggest that low Froude number stably-stratified turbulence may be a nearly noninteracting superposition of wave and quasi-horizontal turbulent vortex motions. For our computations the stably-stratified turbulence seems to be a decaying three-dimensional turbulence pulsed by internal gravity waves. However some tendencies towards two-dimensional turbulence are observed.

  14. The Characteristic of Thermoelastic Waves in Transversely Isotropic Finite Cylinders

    Directory of Open Access Journals (Sweden)

    Bai Hao

    2017-01-01

    Full Text Available A theoretical as well as a numerical investigation of the propagation of thermoelastic waves and vibration of transversely isotropic cylinders of finite length is discussed. Lord-Shulman theory is adopted here to model the thermoelastic deformation of cylinders. A semi analytical finite element (SAFE method is employed to study dispersion of thermoelastic waves and natural frequencies of vibration of finite cylinders with traction free curved surfaces having both ends insulated and constrained by frictionless rigid walls. Numerical results obtained by the SAFE method for the frequencies of vibration of a sapphire rod are found to be in excellent agreement with published results. Natural frequencies of vibration for first three axisymmetric and asymmetric modes are presented graphically for a silicon nitride thermoelastic cylinder. Also, numerical results showing dispersion of both propagating and evanescent circumferential waves in infinite and finite cylinders are presented also.

  15. Homogeneous, isotropic turbulence phenomenology, renormalization, and statistical closures

    CERN Document Server

    McComb, W David

    2014-01-01

    Fluid turbulence is often referred to as 'the unsolved problem of classical physics'. Yet, paradoxically, its mathematical description resembles quantum field theory. The present book addresses the idealised problem posed by homogeneous, isotropic turbulence, in order to concentrate on the fundamental aspects of the general problem. It is written from the perspective of a theoretical physicist, but is designed to be accessible to all researchers in turbulence, both theoretical and experimental, and from all disciplines. The book is in three parts, and begins with a very simple overview of the basic statistical closure problem, along with a summary of current theoretical approaches. This is followed by a precise formulation of the statistical problem, along with a complete set of mathematical tools (as needed in the rest of the book), and a summary of the generally accepted phenomenology of the subject. Part 2 deals with current issues in phenomenology, including the role of Galilean invariance, the physics of...

  16. The modified cumulant expansion for two-dimensional isotropic turbulence

    Science.gov (United States)

    Tatsumi, T.; Yanase, S.

    1981-09-01

    The two-dimensional isotropic turbulence in an incompressible fluid is investigated using the modified zero fourth-order cumulant approximation. The dynamical equation for the energy spectrum obtained under this approximation is solved numerically and the similarity laws governing the solution in the energy-containing and enstrophy-dissipation ranges are derived analytically. At large Reynolds numbers the numerical solutions yield the k to the -3rd power inertial subrange spectrum which was predicted by Kraichnan (1967), Leith (1968) and Batchelor (1969), assuming a finite enstrophy dissipation in the inviscid limit. The energy-containing range is found to satisfy an inviscid similarity while the enstrophy-dissipation range is governed by the quasi-equilibrium similarity with respect to the enstrophy dissipation as proposed by Batchelor (1969). There exists a critical time which separates the initial period and the similarity period in which the enstrophy dissipation vanishes and remains non-zero respectively in the inviscid limit.

  17. Modes and frequencies of transversely isotropic slightly curved Timoshenko beams.

    Science.gov (United States)

    Rossettos, J. N.; Squires, D. C.

    1973-01-01

    An analysis of the vibration of transversely isotropic Timoshenko beams, which have small constant initial curvature, is presented, and a closed-form general solution to the governing equations is derived. Natural modes and frequencies are determined for both clamped and simply supported end conditions, and comparisons are made. The combined effects of initial curvature, transverse shear deformation, and boundary conditions are evaluated and discussed. Specifically, it is shown in what manner the clamped beam tends to be more sensitive to shear deformation than the simply supported beam, and how initial curvature reduces the difference. Calculations also show how, in cases where shear deformation becomes more important, the initial curvature has a correspondingly smaller influence on the results.

  18. Coherent inelastic backscattering of laser light from three isotropic atoms

    CERN Document Server

    Ketterer, Andreas; Shatokhin, Vyacheslav N

    2014-01-01

    We study the impact of double and triple scattering contributions on coherent backscattering of laser light from saturated isotropic atoms, in the helicity preserving polarization channel. Using the recently proposed diagrammatic pump-probe approach, we analytically derive single-atom spectral responses to a classical polychromatic driving field, combine them self-consistently to double and triple scattering processes, and numerically deduce the corresponding elastic and inelastic spectra, as well as the total backscattered intensities. We find that account of the triple scattering contribution leads to a faster decay of phase-coherence with increasing saturation of the atomic transition as compared to double scattering alone, and to a better agreement with the experiment on strontium atoms.

  19. Component Separation of a Isotropic Gravitational Wave Background

    CERN Document Server

    Parida, Abhishek; Jhingan, Sanjay

    2015-01-01

    A Gravitational Wave Background (GWB) is expected in the universe from the superposition of a large number of unresolved astrophysical sources and phenomena in the early universe. Each component of the background (e.g., from primordial metric perturbations, binary neutron stars, milli-second pulsars etc.) has its own spectral shape. Many ongoing experiments aim to probe GWB at a variety of frequency bands. In the last two decades, using data from ground-based laser interferometric gravitational wave (GW) observatories, upper limits on GWB were placed in the frequency range of ~50-1000 Hz, considering one spectral shape at a time. However, one strong component can significantly enhance the estimated strength of another component. Hence, estimation of the amplitudes of the components with different spectral shapes should be done jointly. Here we propose a method for "component separation" of a statistically isotropic background, that can, for the first time, jointly estimate the amplitudes of many components an...

  20. The signature of initial production mechanisms in isotropic turbulence decay

    Science.gov (United States)

    Meldi, M.

    2016-03-01

    In the present work the quantification of the time-lasting effects of production mechanisms in homogeneous isotropic turbulence decay is addressed. The analysis is developed through the use of theoretical tools as well as numerical calculations based on the eddy damped quasinormal Markovian (EDQNM) model. In both cases a modified Lin equation is used, which accounts for production mechanisms as proposed by Meldi, Lejemble, and Sagaut ["On the emergence of non-classical decay regimes in multiscale/fractal generated isotropic turbulence," J. Fluid Mech. 756, 816-843 (2014)]. The approaches used show that an exponential decay law can be observed if the intensity of the forcing is strong enough to drive the turbulence dynamics, before a power-law decay is eventually attained. The EDQNM numerical results indicate that the exponential regime can persist for long evolution times, longer than the observation time in grid turbulence experiments. A rigorous investigation of the self-similar behavior of the pressure spectrum has been performed by a comprehensive comparison of EDQNM data with direct numerical simulation (DNS)/experiments in the literature. While DNS and free decay EDQNM simulations suggest the need of a very high Reλ threshold in order to observe a clear -7/3 slope of the pressure inertial range, experimental data and forced EDQNM calculations indicate a significantly lower value. This observation suggests that the time-lasting effects of production mechanisms, which cannot be excluded in experiments, play a role in the lack of general agreement with classical numerical approaches. These results reinforce the urge to evolve the numerical simulation state of the art towards the prediction of realistic physical states.

  1. Materials

    Science.gov (United States)

    Glaessgen, Edward H.; Schoeppner, Gregory A.

    2006-01-01

    NASA Langley Research Center has successfully developed an electron beam freeform fabrication (EBF3) process, a rapid metal deposition process that works efficiently with a variety of weldable alloys. The EBF3 process can be used to build a complex, unitized part in a layer-additive fashion, although the more immediate payoff is for use as a manufacturing process for adding details to components fabricated from simplified castings and forgings or plate products. The EBF3 process produces structural metallic parts with strengths comparable to that of wrought product forms and has been demonstrated on aluminum, titanium, and nickel-based alloys to date. The EBF3 process introduces metal wire feedstock into a molten pool that is created and sustained using a focused electron beam in a vacuum environment. Operation in a vacuum ensures a clean process environment and eliminates the need for a consumable shield gas. Advanced metal manufacturing methods such as EBF3 are being explored for fabrication and repair of aerospace structures, offering potential for improvements in cost, weight, and performance to enhance mission success for aircraft, launch vehicles, and spacecraft. Near-term applications of the EBF3 process are most likely to be implemented for cost reduction and lead time reduction through addition of details onto simplified preforms (casting or forging). This is particularly attractive for components with protruding details that would require a significantly large volume of material to be machined away from an oversized forging, offering significant reductions to the buy-to-fly ratio. Future far-term applications promise improved structural efficiency through reduced weight and improved performance by exploiting the layer-additive nature of the EBF3 process to fabricate tailored unitized structures with functionally graded microstructures and compositions.

  2. Qualitative and quantitative assessment of wrist MRI at 3.0T - Comparison between isotropic 3D turbo spin echo and isotropic 3D fast field echo and 2D turbo spin echo

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jee Young [Dept. of Radiology, Chungang Univ. Hospital, School of Medicine, Chungang Univ. (Korea, Republic of); Yoon, Young Cheol [Dept. of Radiology, Samsung Medical Center, School of Medicine, Sungkyunkwan Univ. (Korea, Republic of)], e-mail: ycyoon@skku.edu; Jung, Jin Young [Dept. of Radiology, Saint Paul' s Hospital, The Catholic Univ. (Korea, Republic of); Choe, Bong-Keun [Dept. of Preventive Medicine, School of Medicine, Kyung Hee Univ., Seoul (Korea, Republic of)

    2013-04-15

    Background: Isotropic three-dimensional (3D) magnetic resonance imaging (MRI) has been applied to various joints. However, comparison for image quality between isotropic 3D MRI and two-dimensional (2D) turbo spin echo (TSE) sequence of the wrist at a 3T MR system has not been investigated. Purpose: To compare the image quality of isotropic 3D MRI including TSE intermediate-weighted (VISTA) sequence and fast field echo (FFE) sequence with 2D TSE intermediate-weighted sequence of the wrist joint at 3.0 T. Material and Methods: MRI was performed in 10 wrists of 10 healthy volunteers with isotropic 3D sequences (VISTA and FFE) and 2D TSE intermediate-weighted sequences at 3.0 T. The signal-to-noise ratio (SNR) was obtained by imaging phantom and noise-only image. Contrast ratios (CRs) were calculated between fluid and cartilage, triangular fibrocartilage complex (TFCC), and the scapholunate ligament. Two radiologists independently assessed the visibility of TFCC, carpal ligaments, cartilage, tendons and nerves with a four-point grading scale. Statistical analysis to compare CRs (one way ANOVA with a Tukey test) and grades of visibility (Kruskal-Wallis test) between three sequences and those for inter-observer agreement (kappa analysis) were performed. Results: The SNR of 2D TSE (46.26) was higher than those of VISTA (23.34) and 3D FFE (19.41). CRs were superior in 2D TSE than VISTA (P = 0.02) for fluid-cartilage and in 2D TSE than 3D FFE (P < 0.01) for fluid-TFCC. The visibility was best in 2D TSE (P < 0.01) for TFCC and in VISTA (P = 0.01) for scapholunate ligament. The visibility was better in 2D TSE and 3D FFE (P 0.04) for cartilage and in VISTA than 3D FFE (P < 0.01) for TFCC. The inter-observer agreement for the visibility of anatomic structures was moderate or substantial. Conclusion: Image quality of 2D TSE was superior to isotropic 3D MR imaging for cartilage, and TFCC. 3D FFE has better visibility for cartilage than VISTA and VISTA has superior visibility for

  3. Isotropic band gaps and freeform waveguides observed in hyperuniform disordered photonic solids.

    Science.gov (United States)

    Man, Weining; Florescu, Marian; Williamson, Eric Paul; He, Yingquan; Hashemizad, Seyed Reza; Leung, Brian Y C; Liner, Devin Robert; Torquato, Salvatore; Chaikin, Paul M; Steinhardt, Paul J

    2013-10-01

    Recently, disordered photonic media and random textured surfaces have attracted increasing attention as strong light diffusers with broadband and wide-angle properties. We report the experimental realization of an isotropic complete photonic band gap (PBG) in a 2D disordered dielectric structure. This structure is designed by a constrained optimization method, which combines advantages of both isotropy due to disorder and controlled scattering properties due to low-density fluctuations (hyperuniformity) and uniform local topology. Our experiments use a modular design composed of Al2O3 walls and cylinders arranged in a hyperuniform disordered network. We observe a complete PBG in the microwave region, in good agreement with theoretical simulations, and show that the intrinsic isotropy of this unique class of PBG materials enables remarkable design freedom, including the realization of waveguides with arbitrary bending angles impossible in photonic crystals. This experimental verification of a complete PBG and realization of functional defects in this unique class of materials demonstrate their potential as building blocks for precise manipulation of photons in planar optical microcircuits and has implications for disordered acoustic and electronic band gap materials.

  4. Structural, elastic and electronic Properties of isotropic cubic crystals of carbon and silicon nanotubes : Density functional based tight binding calculations.

    Directory of Open Access Journals (Sweden)

    Alexander L. Ivanovskii

    2008-01-01

    Full Text Available Atomic models of cubic crystals (CC of carbon and graphene-like Si nanotubes are offered and their structural, cohesive, elastic and electronic properties are predicted by means of the DFTB method. Our main findings are that the isotropic crystals of carbon nanotubes adopt a very high elastic modulus B and low compressibility β, namely B = 650 GPa, β = 0.0015 1/GPa. In addition, these crystals preserve the initial conductivity type of their “building blocks”, i.e. isolated carbon and Si nanotubes. This feature may be important for design of materials with the selected conductivity type.

  5. GENERAL FORMULA AND RECURRENCE FORMULA FOR RADIAL MATRIX ELEMENTS OF N-DIMENSIONAL ISOTROPIC HARMONIC OSCILLATOR

    Institute of Scientific and Technical Information of China (English)

    CHEN CHANG-YUAN

    2000-01-01

    In this paper, the general formulas and the recurrence formulas for radial matrix elements of N-dimensional isotropic harmonic oscillator are obtained. The relevant results of 2- dimensional and 3- dimensiona] isotropic harmonic oscillators reported in the reference papers are contained in a more general equations derived in this paper as special cases.

  6. Observation of dynamical precursors of the isotropic-nematic transition by computer simulation

    NARCIS (Netherlands)

    Allen, M.P.; Frenkel, D.

    1987-01-01

    We present the results of the first molecular-dynamics simulations of a molecular liquid, namely a system of prolate hard ellipsoids of revolution, near the isotropic-nematic liquid-crystal phase transition. Collective rotational motion in the isotropic phase slows down on approach to the transition

  7. Isotropic three-dimensional MRI-Fricke-infused gel dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nai-Yu; Chu, Woei-Chyn [Institute of Biomedical Engineering, National Yang-Ming University, Taipei 11221, Taiwan (China); Huang, Sung-Cheng [Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California 90095 (United States); Chung, Wen-Yuh [Neurological Institute, Taipei Veterans General Hospital, Taipei 11217, Taiwan (China); Guo, Wan-Yuo [Department of Radiology, Taipei Veterans General Hospital, Taipei 11217, Taiwan (China)

    2013-05-15

    Purpose: Fricke-infused gel has been shown to be a simple and attainable method for the conformal measurement of absorbed radiation dose. Nevertheless, its accuracy is seriously hindered by the irreversible ferric ion diffusion during magnetic resonance imaging, particularly when three-dimensional (3D) dose measurement in radiosurgery is considered. In this study, the authors developed a fast three-dimensional spin-echo based Fricke gel dosimetry technique to reduce the adverse effects of ferric ion diffusion and to obtain an accurate isotropic 3D dose measurement. Methods: A skull shaped phantom containing Fricke-infused gel was irradiated using Leksell Gamma Knife. The rapid image-based dosimetry technique was applied with the use of a 3D fast spin-echo magnetic resonance imaging sequence. The authors mathematically derived and experimentally validated the correlations between dose-response characteristics and parameters of the 3D fast spin-echo MR imaging sequence. Absorbed dose profiles were assessed and compared to the calculated profiles given by the Gamma Knife treatment planning system. Coefficient of variance (CV%) and coefficient of determination (R{sup 2}) were used to evaluate the precision of dose-response curve estimation. The agreement between the measured and the planned 3D dose distributions was quantified by gamma-index analysis of two acceptance criteria. Results: Proper magnetic resonance imaging parameters were explored to render an accurate three-dimensional absorbed dose mapping with a 1 mm{sup 3} isotropic image resolution. The efficacy of the dose-response estimation was approved by an R{sup 2} > 0.99 and an average CV% of 1.6%. Average gamma pass-rate between the experimentally measured and GammaPlan calculated dose distributions were 83.8% and 99.7% for 2%/2 and 3%/3 mm criteria, respectively. Conclusions: With the designed MR imaging sequence and parameters, total 3D MR acquisition time was confined to within 20 min postirradiation

  8. Modification of homogeneous and isotropic turbulence by solid particles

    Science.gov (United States)

    Hwang, Wontae

    2005-12-01

    Particle-laden flows are prevalent in natural and industrial environments. Dilute loadings of small, heavy particles have been observed to attenuate the turbulence levels of the carrier-phase flow, up to 80% in some cases. We attempt to increase the physical understanding of this complex phenomenon by studying the interaction of solid particles with the most fundamental type of turbulence, which is homogeneous and isotropic with no mean flow. A flow facility was developed that could create air turbulence in a nearly-spherical chamber by means of synthetic jet actuators mounted on the corners. Loudspeakers were used as the actuators. Stationary turbulence and natural decaying turbulence were investigated using two-dimensional particle image velocimetry for the base flow qualification. Results indicated that the turbulence was fairly homogeneous throughout the measurement domain and very isotropic, with small mean flow. The particle-laden flow experiments were conducted in two different environments, the lab and in micro-gravity, to examine the effects of particle wakes and flow structure distortion caused by settling particles. The laboratory experiments showed that glass particles with diameters on the order of the turbulence Kolmogorov length scale attenuated the fluid turbulent kinetic energy (TKE) and dissipation rate with increasing particle mass loadings. The main source of fluid TKE production in the chamber was the speakers, but the loss of potential energy of the settling particles also resulted in a significant amount of production of extra TKE. The sink of TKE in the chamber was due to the ordinary fluid viscous dissipation and extra dissipation caused by particles. This extra dissipation could be divided into "unresolved" dissipation caused by local velocity disturbances in the vicinity of the small particles and dissipation caused by large-scale flow distortions from particle wakes and particle clusters. The micro-gravity experiments in NASA's KC-135

  9. Comparison of the enrollment percentages of magnet and non-magnet schools in a large urban school district.

    Directory of Open Access Journals (Sweden)

    Emily Arcia

    2006-12-01

    Full Text Available Are magnet schools in a position to meet diversity ideals? As districts are declared unitary and released from court ordered desegregation, many are framing their commitments to fairness and equity in terms of diversity˜i.e., comparable rates of participation and comparable educational outcomes in all segments the student population. In this study, the enrollment statistics for magnet and contiguous non-magnet public schools in Miami-Dade County Public Schools, a large, urban district that had been released from court ordered desegregation, were compared to each other and to district enrollment averages at two time points: the year the district was declared unitary and four years hence. Findings indicated that within four years of being declared unitary, the gains that the magnet schools had made with regards to Black/non-Black desegregation had eroded substantially. Also, in the four year span, magnet schools had not made significant strides in meeting the diversity ideals adopted by the district at being released from supervision by the court. These findings highlight the difficulty of attaining diversity in student enrollment characteristics when quotas are not used and suggest that recruitment and enrollment policies must be crafted with care if districts are to achieve diversity goals.

  10. A photometric study of chemically peculiar stars with the STEREO satellites. II. Non-magnetic chemically peculiar stars

    CERN Document Server

    Paunzen, E; Fossati, L; Netopil, M; White, G J; Bewsher, D

    2012-01-01

    We have analysed the photometric data obtained with the STEREO spacecraft for 558 non-magnetic chemically peculiar (CP) stars to search for rotational and pulsational variability. Applying the Lomb-Scargle and the phase dispersion minimisation methods, we have detected photometric variability for 44 objects from which 35 were previously unknown. The new objects are all bright stars on the Ecliptic Plane (magnitude range 4.7 < V < 11.7) and will therefore be of great interest to studies of stellar structure and evolution. In particular, several show multiple signals consistent with hybrid delta Scuti and gamma Doradus pulsation, with different periodicities allowing very different regions of the stellar interior to be studied. There are two subgroups of stars in our sample: the cool metallic line Am (CP1) and the hot HgMn (CP3) stars. These objects fall well inside the classical instability strip where delta Scuti, gamma Doradus and slowly pulsating B-type stars are located. We also expect to find period...

  11. Isotropic-Cholesteric Co-Existence and Magnetic Field-Induced Isotropic-Nematic Transition of Filamentous Bacteriophage FD in Aqueous Suspension.

    Science.gov (United States)

    Tang, Jianxin

    1995-01-01

    Isotropic to liquid crystalline phase transition for a lyotropic suspension of geometrically asymmetric macromolecules occurs to a wild class of synthetic polymers and biopolymers. Although in decades statistical mechanical theories have been developed to predict the thermodynamic conditions and the properties of such transition, quantitative comparison with theory has been compounded with complications such as charge, shape, polydispersity in size, and additional interactions with the solvent and among the macromolecules themselves. We chose the aqueous suspension of the filamentous bacteriophage fd as a model system to study the isotropic to liquid crystalline transition. The co-existence concentrations, as a function of ionic strength, were measured directly by spectrophotometry. Our data confirm quantitatively the predictions of a statistical mechanic treatment first described by Onsager, modified to include the effects of charge and flexibility of rodlike particles. We have also extended a previous study of the pretransitional angular correlations in the isotropic solutions of fd through the measurement of the magnetic-field-induced birefringence, i.e. the measurement of the Cotton-Mouton constant. At several ionic strengths the magnetic-field-induced birefringence, which is proportional to the number of particles in a correlation volume N_{rm corr}, was measured for fd concentrations spanning the entire isotropic region. From this data the limiting concentration of stability (spinodal) of the isotropic phase is obtained. A theoretical expression for the magnetic birefringence of persistent polymers was derived and agreed well with the data with the exception that N_{rm corr} at the isotropic to liquid crystal transition was smaller than predicted. In the proximity of the highest possible isotropic concentration, that is the isotropic in co-existence with anisotropic, we studied the effect of a high magnetic field. A first order field-induced isotropic

  12. Invariant imbedding theory of wave propagation in arbitrarily inhomogeneous stratified bi-isotropic media

    CERN Document Server

    Kim, Seulong

    2016-01-01

    Bi-isotropic media, which include isotropic chiral media and Tellegen media as special cases, are the most general form of linear isotropic media where the electric displacement and the magnetic induction are related to both the electric field and the magnetic intensity. In inhomogeneous bi-isotropic media, electromagnetic waves of two different polarizations are coupled to each other. In this paper, we develop a generalized version of the invariant imbedding method for the study of wave propagation in arbitrarily-inhomogeneous stratified bi-isotropic media, which can be used to solve the coupled wave propagation problem accurately and efficiently. We verify the validity and usefulness of the method by applying it to several examples, including the wave propagation in a uniform chiral slab, the surface wave excitation in a bilayer system made of a layer of Tellegen medium and a metal layer, and the mode conversion of transverse electromagnetic waves into longitudinal plasma oscillations in inhomogeneous Telle...

  13. Density functional theory predictions of isotropic hyperfine coupling constants.

    Science.gov (United States)

    Hermosilla, L; Calle, P; García de la Vega, J M; Sieiro, C

    2005-02-17

    The reliability of density functional theory (DFT) in the determination of the isotropic hyperfine coupling constants (hfccs) of the ground electronic states of organic and inorganic radicals is examined. Predictions using several DFT methods and 6-31G, TZVP, EPR-III and cc-pVQZ basis sets are made and compared to experimental values. The set of 75 radicals here studied was selected using a wide range of criteria. The systems studied are neutral, cationic, anionic; doublet, triplet, quartet; localized, and conjugated radicals, containing 1H, 9Be, 11B, 13C, 14N, 17O, 19F, 23Na, 25Mg, 27Al, 29Si, 31P, 33S, and 35Cl nuclei. The considered radicals provide 241 theoretical hfcc values, which are compared with 174 available experimental ones. The geometries of the studied systems are obtained by theoretical optimization using the same functional and basis set with which the hfccs were calculated. Regression analysis is used as a basic and appropriate methodology for this kind of comparative study. From this analysis, we conclude that DFT predictions of the hfccs are reliable for B3LYP/TZVP and B3LYP/EPR-III combinations. Both functional/basis set scheme are the more useful theoretical tools for predicting hfccs if compared to other much more expensive methods.

  14. Simulations of (an)isotropic diffusion on curved biological surfaces.

    Science.gov (United States)

    Sbalzarini, Ivo F; Hayer, Arnold; Helenius, Ari; Koumoutsakos, Petros

    2006-02-01

    We present a computational particle method for the simulation of isotropic and anisotropic diffusion on curved biological surfaces that have been reconstructed from image data. The method is capable of handling surfaces of high curvature and complex shape, which are often encountered in biology. The method is validated on simple benchmark problems and is shown to be second-order accurate in space and time and of high parallel efficiency. It is applied to simulations of diffusion on the membrane of endoplasmic reticula (ER) in live cells. Diffusion simulations are conducted on geometries reconstructed from real ER samples and are compared to fluorescence recovery after photobleaching experiments in the same ER samples using the transmembrane protein tsO45-VSV-G, C-terminally tagged with green fluorescent protein. Such comparisons allow derivation of geometry-corrected molecular diffusion constants for membrane components from fluorescence recovery after photobleaching data. The results of the simulations indicate that the diffusion behavior of molecules in the ER membrane differs significantly from the volumetric diffusion of soluble molecules in the lumen of the same ER. The apparent speed of recovery differs by a factor of approximately 4, even when the molecular diffusion constants of the two molecules are identical. In addition, the specific shape of the membrane affects the recovery half-time, which is found to vary by a factor of approximately 2 in different ER samples.

  15. Clustering of vertically constrained passive particles in homogeneous isotropic turbulence

    Science.gov (United States)

    De Pietro, Massimo; van Hinsberg, Michel A. T.; Biferale, Luca; Clercx, Herman J. H.; Perlekar, Prasad; Toschi, Federico

    2015-05-01

    We analyze the dynamics of small particles vertically confined, by means of a linear restoring force, to move within a horizontal fluid slab in a three-dimensional (3D) homogeneous isotropic turbulent velocity field. The model that we introduce and study is possibly the simplest description for the dynamics of small aquatic organisms that, due to swimming, active regulation of their buoyancy, or any other mechanism, maintain themselves in a shallow horizontal layer below the free surface of oceans or lakes. By varying the strength of the restoring force, we are able to control the thickness of the fluid slab in which the particles can move. This allows us to analyze the statistical features of the system over a wide range of conditions going from a fully 3D incompressible flow (corresponding to the case of no confinement) to the extremely confined case corresponding to a two-dimensional slice. The background 3D turbulent velocity field is evolved by means of fully resolved direct numerical simulations. Whenever some level of vertical confinement is present, the particle trajectories deviate from that of fluid tracers and the particles experience an effectively compressible velocity field. Here, we have quantified the compressibility, the preferential concentration of the particles, and the correlation dimension by changing the strength of the restoring force. The main result is that there exists a particular value of the force constant, corresponding to a mean slab depth approximately equal to a few times the Kolmogorov length scale η , that maximizes the clustering of the particles.

  16. Three-dimensional magnetospheric equilibrium with isotropic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Z.

    1995-05-01

    In the absence of the toroidal flux, two coupled quasi two-dimensional elliptic equilibrium equations have been derived to describe self-consistent three-dimensional static magnetospheric equilibria with isotropic pressure in an optimal ({Psi},{alpha},{chi}) flux coordinate system, where {Psi} is the magnetic flux function, {chi} is a generalized poloidal angle, {alpha} is the toroidal angle, {alpha} = {phi} {minus} {delta}({Psi},{phi},{chi}) is the toroidal angle, {delta}({Psi},{phi},{chi}) is periodic in {phi}, and the magnetic field is represented as {rvec B} = {del}{Psi} {times} {del}{alpha}. A three-dimensional magnetospheric equilibrium code, the MAG-3D code, has been developed by employing an iterative metric method. The main difference between the three-dimensional and the two-dimensional axisymmetric solutions is that the field-aligned current and the toroidal magnetic field are finite for the three-dimensional case, but vanish for the two-dimensional axisymmetric case. With the same boundary flux surface shape, the two-dimensional axisymmetric results are similar to the three-dimensional magnetosphere at each local time cross section.

  17. Magnetic resonance investigations of lipid motion in isotropic bicelles.

    Science.gov (United States)

    Andersson, August; Mäler, Lena

    2005-08-16

    The dynamics of DMPC in different isotropic bicelles have been investigated by NMR and EPR methods. The local dynamics were obtained by interpretation of 13C NMR relaxation measurements of DMPC in the bicelles, and these results were compared to EPR spectra of spin-labeled lipids. The overall size of the bicelles was investigated by PFG NMR translational diffusion measurements. The dynamics and relative sizes were compared among three different bicelles: [DMPC]/[DHPC] = 0.25, [DMPC]/[DHPC] = 0.5, and [DMPC]/[CHAPS] = 0.5. The local motion is found to depend much more strongly on the choice of the detergent, rather than the overall size of the bicelle. The results provide an explanation for differences in apparent dynamics for different peptides, which are bound to bicelles. This in turn determines under what conditions reasonable NMR spectra can be observed. A model is presented in which extensive local motion, in conjunction with the overall size, affects the spectral properties. An analytical expression for the size dependence of the bicelles, relating the radius of the bilayer region with physical properties of the detergent and the lipid, is also presented.

  18. DLVO interactions of carbon nanotubes with isotropic planar surfaces.

    Science.gov (United States)

    Wu, Lei; Gao, Bin; Tian, Yuan; Muñoz-Carpena, Rafael; Zigler, Kirk J

    2013-03-26

    Knowledge of the interaction between carbon nanotubes (CNTs) and planar surfaces is essential to optimizing CNT applications as well as reducing their environmental impact. In this work, the surface element integration (SEI) technique was coupled with the DLVO theory to determine the orientation-dependent interaction energy between a single-walled carbon nanotube (SWNT) and an infinite isotropic planar surface. For the first time, an analytical formula was developed to describe accurately the interaction between not only pristine but also surface-charged CNTs and planar surfaces with arbitrary rotational angles. Compared to other methods, the new analytical formulas were either more convenient or more accurate in describing the interaction between CNTs and planar surfaces, especially with respect to arbitrary angles. The results revealed the complex dependences of both force and torque between SWNTs and planar surfaces on the separation distances and rotational angles. With minor modifications, the analytical formulas derived for SWNTs can also be applied to multiwalled carbon nanotubes (MWNTs). The new analytical expressions presented in this work can be used as a robust tool to describe the DLVO interaction between CNTs and planar surfaces under various conditions and thus to assist in the design and application of CNT-based products.

  19. The Isotropic Semicircle Law and Deformation of Wigner Matrices

    CERN Document Server

    Knowles, Antti

    2011-01-01

    We analyse the spectrum of additive finite-rank deformations of $N \\times N$ Wigner matrices $H$. The spectrum of the deformed matrix undergoes a transition, associated with the creation or annihilation of an outlier, when an eigenvalue $d_i$ of the deformation crosses a critical value $\\pm 1$. This transition happens on the scale $|d_i| - 1 \\sim N^{-1/3}$. We allow the eigenvalues $d_i$ of the deformation to depend on $N$ under the condition $|\\abs{d_i} - 1| \\geq (\\log N)^{C \\log \\log N} N^{-1/3}$. We make no assumptions on the eigenvectors of the deformation. In the limit $N \\to \\infty$, we identify the law of the outliers and prove that the non-outliers close to the spectral edge have a universal distribution coinciding with that of the extremal eigenvalues of a Gaussian matrix ensemble. A key ingredient in our proof is the \\emph{isotropic local semicircle law}, which establishes optimal high-probability bounds on the quantity $$, where $m(z)$ is the Stieltjes transform of Wigner's semicircle law and $v, w...

  20. Analysis of the Taylor dissipation surrogate in forced isotropic turbulence

    CERN Document Server

    McComb, W David; Yoffe, Samuel R

    2013-01-01

    From the energy balance in wavenumber space expressed by the Lin equation, we derive a new form for the local Karman-Howarth equation for forced isotropic turbulence in real space. This equation is then cast into a dimensionless form, from which a combined analytical and numerical study leads us to deduce a new model for the scale-independent nondimensional dissipation rate $\\Ceps$, which takes the form $\\Ceps = \\Cinf + C_L/R_L$, where the asymptotic value $\\Cinf$ can be evaluated from the third-order structure function. This is found to fit the numerical data with $\\Cinf = 0.47 \\pm 0.01$ and $C_L= 18.5 \\pm 1.3$. By considering $\\Ceps - \\Cinf$ on logarithmic scales, we show that $R_L^{-1}$ is indeed the correct Reynolds number behaviour. The model is compared to previous attempts in the literature, with encouraging agreement. The effects of the scale-dependence of the inertial and viscous terms due to finite forcing are then considered and shown to compensate one another, such that the model equation is appli...

  1. Spark ignition of aviation fuel in isotropic turbulence

    Science.gov (United States)

    Krisman, Alex; Lu, Tianfeng; Borghesi, Giulio; Chen, Jacqueline

    2016-11-01

    Turbulent spark ignition occurs in combustion engines where the spark must establish a viable flame kernel that leads to stable combustion. A competition exists between kernel growth, due to flame propagation, and kernel attenuation, due to flame stretch and turbulence. This competition can be measured by the Karlovitz number, Ka, and kernel viability decreases rapidly for Ka >> 1 . In this study, the evolution of an initially spherical flame kernel in a turbulent field is investigated at two cases: Ka- (Ka = 25) and Ka+ (Ka = 125) using direct numerical simulation (DNS). A detailed chemical mechanism for jet fuel (Jet-A) is used, which is relevant for many practical conditions, and the mechanism includes a pyrolysis sub-model which is important for the ignition of large hydrocarbon fuels. An auxiliary non-reacting DNS generates the initial field of isotropic turbulence with a turbulent Reynolds number of 500 (Ka-) and 1,500 (Ka+). The kernel is then imposed at the center of the domain and the reacting DNS is performed. The Ka- case survives and the Ka+ case is extinguished. An analysis of the turbulence chemistry interactions is performed and the process of extinction is described. Department of Energy - Office of Basic Energy Science under Award No. DE-SC0001198.

  2. Wave Propagation in Isotropic Media with Two Orthogonal Fracture Sets

    Science.gov (United States)

    Shao, S.; Pyrak-Nolte, L. J.

    2016-10-01

    Orthogonal intersecting fracture sets form fracture networks that affect the hydraulic and mechanical integrity of a rock mass. Interpretation of elastic waves propagated through orthogonal fracture networks is complicated by guided modes that propagate along and between fractures, by multiple internal reflections, as well as by scattering from fracture intersections. The existence of some or all of these potentially overlapping modes depends on local stress fields that can preferentially close or open either one or both sets of fractures. In this study, an acoustic wave front imaging system was used to examine the effect of bi-axial loading conditions on acoustic wave propagation in isotropic media containing two orthogonal fracture sets. From the experimental data, orthogonal intersecting fracture sets support guided waves that depend on fracture spacing and fracture-specific stiffnesses. In addition, fracture intersections have stronger effects on propagating wave fronts than merely the superposition of the effects of two independent fractures because of energy partitioning among transmitted/reflected waves, scattered waves and guided modes. Interpretation of the properties of fractures or fracture sets from seismic measurements must consider non-uniform fracture stiffnesses within and among fracture sets, as well as considering the striking effects of fracture intersections on wave propagation.

  3. Nonlinear optical spectroscopy of isotropic and anisotropic metallic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Hernandez, R C; Gleason-Villagran, R; Cheang-Wong, J C; Crespo-Sosa, A; Rodriguez-Fernandez, L; Lopez-Suarez, A; Oliver, A; Reyes-Esqueda, J A [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, D. F. 04510 (Mexico); Torres-Torres, C [Seccion de Estudios de Posgrado e Investigacion, ESIME-Zacatenco, Instituto Politecnico Nacional, Mexico, D. F. 07338 (Mexico); Rangel-Rojo, R, E-mail: reyes@fisica.unam.mx [CICESE/Depto. de Optica, A.P. 360, Ensenada, B. C. 22860 (Mexico)

    2011-01-01

    In this work, we studied the nonlinear absorption and refraction of isotropic and anisotropic metallic nanocomposites, which consist of Au and Ag nanoparticles (NPs) embedded in matrices of SiO{sub 2}. We performed this study at different wavelengths using the Z-scan technique in the picosecond regime. The wavelengths were selected accordingly to the absorption spectra of the nanocomposites, choosing wavelengths into the inter- and intra-band transitions regions, including the surface plasmon (SP) resonance, as well as in the transparent region. For the anisotropic nanocomposites, the polarization and the incident angle were varied in order to evaluate the different components of the third order susceptibility tensor, {chi}{sup (3)}. We observed dramatic changes of sign for both, nonlinear refraction and absorption, when passing from Au to Ag and/or varying the wave length. The results accentuate the importance of the hot-electrons contribution to the nonlinear optical response at this temporal regime, when compared to inter-band and intra-band transitions contributions.

  4. Calculation of Theoretical Isotropic Compton Profile for Many Particle Systems

    Science.gov (United States)

    Alzubadi, Ali A.; Albayati, Khalil H.

    Theoretical isotropic (spherically symmetric) Compton profiles (ICP) have been calculated for many particle systems' He, Li, Be and B atoms in their ground states. Our calculations were performed using Roothan-Hartree-Fock (RHF) wave function, HF wave function of Thakkar and re-optimized HF wave function of Clementi-Roetti, taking into account the impulse approximation. The theoretical analysis included a decomposition of the various intra and inter shells and their contributions in the total ICP. A high momentum region of up to 4 a.u. was investigated and a non-negligible tail was observed in all ICP curves. The existence of a high momentum tail was mainly due to the electron-electron interaction. The ICP for the He atom has been compared with the available experimental data and it is found that the ICP values agree very well with them. A few low order radial momentum expectation values and the total energy for these atomic systems have also been calculated and compared with their counterparts' wave functions.

  5. Preferential Rotation of Chiral Dipoles in Isotropic Turbulence

    Science.gov (United States)

    Kramel, Stefan; Voth, Greg A.; Tympel, Saskia; Toschi, Federico

    2016-10-01

    We introduce a new particle shape which shows preferential rotation in three dimensional homogeneous isotropic turbulence. We call these particles chiral dipoles because they consist of a rod with two helices of opposite handedness, one at each end. 3D printing is used to fabricate these particles with a length in the inertial range and their rotations are tracked in a turbulent flow between oscillating grids. High aspect ratio chiral dipoles preferentially align with their long axis along the extensional eigenvectors of the strain rate tensor, and the helical ends respond to the extensional strain rate with a mean spinning rate that is nonzero. We use Stokesian dynamics simulations of chiral dipoles in pure strain flow to quantify the dependence of spinning on particle shape. Based on the known response to pure strain, we build a model that gives the spinning rate of small chiral dipoles using velocity gradients along Lagrangian trajectories from high resolution direct numerical simulations. The statistics of chiral dipole spinning determined with this model show surprisingly good agreement with the measured spinning of much larger chiral dipoles in the experiments.

  6. Preferential rotation of chiral dipoles in isotropic turbulence

    CERN Document Server

    Kramel, Stefan; Toschi, Federico; Voth, Greg A

    2016-01-01

    Particles in the shape of chiral dipoles show a preferential rotation in three dimensional homogeneous isotropic turbulence. A chiral dipole consists of a rod with two helices of opposite handedness, one at each end. We can use 3d printing to fabricate these particles with length in the inertial range and track their rotations in a turbulent flow between oscillating grids. High aspect ratio chiral dipoles will align with the extensional eigenvectors of the strain rate tensor and the helical ends will respond to the strain field by spinning around its long axis. The mean of the measured spinning rate is non-zero and reflects the average stretching the particles experience. We use Stokesian dynamics simulations of chiral dipoles in pure strain flow to quantify the dependence of spinning on particle shape. Based on the known response to pure strain, we build a model that gives the spinning rate of small chiral dipoles using Lagrangian velocity gradients from high resolution direct numerical simulations. The stat...

  7. Investigation of a Biocompatible Polyurethane-Based Isotropically Conductive Adhesive for UHF RFID Tag Antennas

    Science.gov (United States)

    Yang, Cheng; Yuen, Matthew M. F.; Gao, Bo; Ma, Yuhui; Wong, C. P.

    2011-01-01

    As a candidate dispersant for silver-based isotropically conductive adhesives (ICAs), polyurethane (PU) is an environmentally benign material that can withstand a high deformation rate and that exhibits excellent reliability. In this work we investigated methyl ethyl ketoxime (MEKO) blocked isophorone diisocyanate (IPDI) and MEKO blocked hexamethylene diisocyanate (HDI) as dispersant materials, and we characterize the electrical conductivity, mechanical properties, and reliability of these PU-based ICAs with silver-flake filler content ranging from 30 wt.% to 75 wt.%. Results of temperature-humidity testing (THT) at 85°C and 85% relative humidity (RH) and thermal cycling testing (TCT) at -40°C to 125°C show that these ICAs have excellent reliability. Our experimental results suggest that the MEKO blocked PU dispersants are suitable for preparing ultralow-cost, flexible, high-performance ICAs for printing antennas for ultrahigh-frequency radiofrequency identification (RFID) tags. These tags can potentially be used for identifying washable items and food packaging.

  8. Investigation of wall-slip effect on lead-free solder paste and isotropic conductive adhesives

    Indian Academy of Sciences (India)

    R Durairaj; S Mallik; A Seman; N N Ekere

    2009-10-01

    Slippage due to wall depletion effect is well-known in rheological investigation. The aim of this study was to investigate the influence of the paste microstructure on slip formation for the paste materials (lead-free solder paste and isotropic conductive adhesives). The effect of different flow geometries, gap heights and surface roughness on the paste viscosity was investigated. The utilisation of different measuring geometries has not clearly showed the presence of wall-slip in the paste samples. The existence of wall-slip was found to be pronounced when gap heights were varied using the parallel plate geometry. It was also found that altering the surface roughness of the parallel plate measuring geometry did not significantly eliminate wall-slip as expected. But results indicate that the use of a relatively rough surface helps to increase paste adhesion to the plates and to a certain extent inducing structural breakdown in the paste. Most importantly, the study also demonstrated on how the wall-slip formation in the paste material could be utilised for understanding of the paste microstructure and its flow behaviour.

  9. Nonlinear ultrasonic stimulated thermography for damage assessment in isotropic fatigued structures

    Science.gov (United States)

    Fierro, Gian Piero Malfense; Calla', Danielle; Ginzburg, Dmitri; Ciampa, Francesco; Meo, Michele

    2017-09-01

    Traditional non-destructive evaluation (NDE) and structural health monitoring (SHM) systems are used to analyse that a structure is free of any harmful damage. However, these techniques still lack sensitivity to detect the presence of material micro-flaws in the form of fatigue damage and often require time-consuming procedures and expensive equipment. This research work presents a novel "nonlinear ultrasonic stimulated thermography" (NUST) method able to overcome some of the limitations of traditional linear ultrasonic/thermography NDE-SHM systems and to provide a reliable, rapid and cost effective estimation of fatigue damage in isotropic materials. Such a hybrid imaging approach combines the high sensitivity of nonlinear acoustic/ultrasonic techniques to detect micro-damage, with local defect frequency selection and infrared imaging. When exciting structures with an optimised frequency, nonlinear elastic waves are observed and higher frictional work at the fatigue damaged area is generated due to clapping and rubbing of the crack faces. This results in heat at cracked location that can be measured using an infrared camera. A Laser Vibrometer (LV) was used to evaluate the extent that individual frequency components contribute to the heating of the damage region by quantifying the out-of-plane velocity associated with the fundamental and second order harmonic responses. It was experimentally demonstrated the relationship between a nonlinear ultrasound parameter (βratio) of the material nonlinear response to the actual temperature rises near the crack. These results demonstrated that heat generation at damaged regions could be amplified by exciting at frequencies that provide nonlinear responses, thus improving the imaging of material damage and the reliability of NUST in a quick and reproducible manner.

  10. Cosmological simulations of isotropic conduction in galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Britton; O' Shea, Brian W.; Voit, G. Mark; Ventimiglia, David [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Skillman, Samuel W., E-mail: smit1685@msu.edu [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Science, University of Colorado, Boulder, CO 80309 (United States)

    2013-12-01

    Simulations of galaxy clusters have a difficult time reproducing the radial gas-property gradients and red central galaxies observed to exist in the cores of galaxy clusters. Thermal conduction has been suggested as a mechanism that can help bring simulations of cluster cores into better alignment with observations by stabilizing the feedback processes that regulate gas cooling, but this idea has not yet been well tested with cosmological numerical simulations. Here we present cosmological simulations of 10 galaxy clusters performed with five different levels of isotropic Spitzer conduction, which alters both the cores and outskirts of clusters, though not dramatically. In the cores, conduction flattens central temperature gradients, making them nearly isothermal and slightly lowering the central density, but failing to prevent a cooling catastrophe there. Conduction has little effect on temperature gradients outside of cluster cores because outward conductive heat flow tends to inflate the outer parts of the intracluster medium (ICM), instead of raising its temperature. In general, conduction tends reduce temperature inhomogeneity in the ICM, but our simulations indicate that those homogenizing effects would be extremely difficult to observe in ∼5 keV clusters. Outside the virial radius, our conduction implementation lowers the gas densities and temperatures because it reduces the Mach numbers of accretion shocks. We conclude that, despite the numerous small ways in which conduction alters the structure of galaxy clusters, none of these effects are significant enough to make the efficiency of conduction easily measurable, unless its effects are more pronounced in clusters hotter than those we have simulated.

  11. Glycolaldehyde and Ethylene Glycol on Nearly Isotropic Comets

    Science.gov (United States)

    Butler, Jayden; Zellner, Nicolle; McCaffrey, Vanessa

    2017-01-01

    The delivery of glycolaldehyde (GLA) and ethylene glycol (EG) could be could be important for understanding the origin of life. GLA, the simplest sugar, is a building block for ribose, the backbone of RNA; EG is a reduced alcohol variant of GLA, found to be created by the impact of GLA under simulated cometary impact conditions (McCaffrey et al. 2014). GLA and EG have been found in regions of the interstellar medium and recently on nearly isotropic comets (NICs), which originate in the Oort Cloud. NICs are long period comets (P > 200 years) and have orbits that are nearly randomly inclined to the ecliptic plane (Mumma & Charnley et al. 2011). Based on impact experiments that assess survivability of these molecules (McCaffrey et al. 2014), we aim to determine the mass of GLA and EG that could have been delivered on comets since the formation of the Solar System. The focus of the current study is to determine the abundances of GLA and EG on C/1995 O1 (Hale-Bopp), C/2012 F6 (Lemmon), C/2013 R1 (Lovejoy 2013), and C/2014 Q2 (Lovejoy 2014), all of which have been found to possess at least one of these molecules. Using published values of observed production rates of water, GLA, and EG (e.g., Biver et al. 2015), we have estimated a range of masses of these molecules of interest on their host comets. Even with a high degree of uncertainty in comet diameters and volumes, we estimate that 109 to 1017 kg of these molecules could be delivered by a single comet, and that 108 to 1017 kg could have survived the impact.

  12. Traveltime approximations for transversely isotropic media with an inhomogeneous background

    KAUST Repository

    Alkhalifah, Tariq

    2011-05-01

    A transversely isotropic (TI) model with a tilted symmetry axis is regarded as one of the most effective approximations to the Earth subsurface, especially for imaging purposes. However, we commonly utilize this model by setting the axis of symmetry normal to the reflector. This assumption may be accurate in many places, but deviations from this assumption will cause errors in the wavefield description. Using perturbation theory and Taylor\\'s series, I expand the solutions of the eikonal equation for 2D TI media with respect to the independent parameter θ, the angle the tilt of the axis of symmetry makes with the vertical, in a generally inhomogeneous TI background with a vertical axis of symmetry. I do an additional expansion in terms of the independent (anellipticity) parameter in a generally inhomogeneous elliptically anisotropic background medium. These new TI traveltime solutions are given by expansions in and θ with coefficients extracted from solving linear first-order partial differential equations. Pade approximations are used to enhance the accuracy of the representation by predicting the behavior of the higher-order terms of the expansion. A simplification of the expansion for homogenous media provides nonhyperbolic moveout descriptions of the traveltime for TI models that are more accurate than other recently derived approximations. In addition, for 3D media, I develop traveltime approximations using Taylor\\'s series type of expansions in the azimuth of the axis of symmetry. The coefficients of all these expansions can also provide us with the medium sensitivity gradients (Jacobian) for nonlinear tomographic-based inversion for the tilt in the symmetry axis. © 2011 Society of Exploration Geophysicists.

  13. Joint Statistics of Finite Time Lyapunov Exponents in Isotropic Turbulence

    Science.gov (United States)

    Johnson, Perry; Meneveau, Charles

    2014-11-01

    Recently, the notion of Lagrangian Coherent Structures (LCS) has gained attention as a tool for qualitative visualization of flow features. LCS visualize repelling and attracting manifolds marked by local ridges in the field of maximal and minimal finite-time Lyapunov exponents (FTLE), respectively. To provide a quantitative characterization of FTLEs, the statistical theory of large deviations can be used based on the so-called Cramér function. To obtain the Cramér function from data, we use both the method based on measuring moments and measuring histograms (with finite-size correction). We generalize the formalism to characterize the joint distributions of the two independent FTLEs in 3D. The ``joint Cramér function of turbulence'' is measured from the Johns Hopkins Turbulence Databases (JHTDB) isotropic simulation at Reλ = 433 and results are compared with those computed using only the symmetric part of the velocity gradient tensor, as well as with those of instantaneous strain-rate eigenvalues. We also extend the large-deviation theory to study the statistics of the ratio of FTLEs. When using only the strain contribution of the velocity gradient, the maximal FTLE nearly doubles in magnitude and the most likely ratio of FTLEs changes from 4:1:-5 to 8:3:-11, highlighting the role of rotation in de-correlating the fluid deformations along particle paths. Supported by NSF Graduate Fellowship (DGE-1232825), a JHU graduate Fellowship, and NSF Grant CMMI-0941530. CM thanks Prof. Luca Biferale for useful discussions on the subject.

  14. Energy transfer and constrained simulations in isotropic turbulence

    Science.gov (United States)

    Jimenez, Javier

    1993-01-01

    The defining characteristic of turbulent flows is their ability to dissipate energy, even in the limit of zero viscosity. The Euler equations, if constrained in such a way that the velocity derivatives remain bounded, conserve energy. But when they arise as the limit of the Navier-Stokes (NS) equations, when the Reynolds number goes to infinity, there is persuasive empirical evidence that the gradients become singular as just the right function of Re for the dissipation to remain non-zero and to approach a well defined limit. It is generally believed that this limiting value of the dissipation is a property of the Euler equations themselves, independent of the particular dissipative mechanism involved, and that it can be normalized with the large scale properties of the turbulent flow (e.g. the kinetic energy per unit volume u'(exp 2)/2, and the integral scale L) without reference to the Reynolds number or to other dissipative quantities. This is usually taken to imply that the low wave number end of the energy spectrum, far from the dissipative range, is also independent of the particular mechanism chosen to dispose of the energy transfer. In the following sections, we present some numerical experiments on the effect of substituting different dissipation models into the truncated Euler equations. We will see that the effect is mainly felt in the 'near dissipation' range of the energy spectrum, but that this range can be quite wide in some cases, contaminating a substantial range of wave numbers. In the process, we will develop a 'practical' approximation to the subgrid energy transfer in isotropic turbulence, and we will gain insight into the structure of the nonlinear interactions among turbulent scales of comparable size, and into the nature of energy backscatter. Some considerations on future research directions are offered at the end.

  15. Scale Properties of Anisotropic and Isotropic Turbulence in the Urban Surface Layer

    Science.gov (United States)

    Liu, Hao; Yuan, Renmin; Mei, Jie; Sun, Jianning; Liu, Qi; Wang, Yu

    2017-06-01

    The scale properties of anisotropic and isotropic turbulence in the urban surface layer are investigated. A dimensionless anisotropic tensor is introduced and the turbulent tensor anisotropic coefficient, defined as C, where C = 3d3 + 1 (d3 is the minimum eigenvalue of the tensor) is used to characterize the turbulence anisotropy or isotropy. Turbulence is isotropic when C ≈ 1 , and anisotropic when C ≪ 1 . Three-dimensional velocity data collected using a sonic anemometer are analyzed to obtain the anisotropic characteristics of atmospheric turbulence in the urban surface layer, and the tensor anisotropic coefficient of turbulent eddies at different spatial scales calculated. The analysis shows that C is strongly dependent on atmospheric stability ξ = (z-zd)/L_{MO} , where z is the measurement height, zd is the displacement height, and L_{MO} is the Obukhov length. The turbulence at a specific scale in unstable conditions (i.e., ξ < 0 ) is closer to isotropic than that at the same scale under stable conditions. The maximum isotropic scale of turbulence is determined based on the characteristics of the power spectrum in three directions. Turbulence does not behave isotropically when the eddy scale is greater than the maximum isotropic scale, whereas it is horizontally isotropic at relatively large scales. The maximum isotropic scale of turbulence is compared to the outer scale of temperature, which is obtained by fitting the temperature fluctuation spectrum using the von Karman turbulent model. The results show that the outer scale of temperature is greater than the maximum isotropic scale of turbulence.

  16. Early spreading and propagation of human bone marrow stem cells on isotropic and anisotropic topographies of silica thin films produced via microstamping.

    Science.gov (United States)

    Pelaez-Vargas, A; Gallego-Perez, D; Ferrell, N; Fernandes, M H; Hansford, D; Monteiro, F J

    2010-12-01

    While there has been rapid development of microfabrication techniques to produce high-resolution surface modifications on a variety of materials in the last decade, there is still a strong need to produce novel alternatives to induce guided tissue regeneration on dental implants. High-resolution microscopy provides qualitative and quantitative techniques to study cellular guidance in the first stages of cell-material interactions. The purposes of this work were (1) to produce and characterize the surface topography of isotropic and anisotropic microfabricated silica thin films obtained by sol-gel processing, and (2) to compare the in vitro biological behavior of human bone marrow stem cells on these surfaces at early stages of adhesion and propagation. The results confirmed that a microstamping technique can be used to produce isotropic and anisotropic micropatterned silica coatings. Atomic force microscopy analysis was an adequate methodology to study in the same specimen the sintering derived contraction of the microfabricated coatings, using images obtained before and after thermal cycle. Hard micropatterned coatings induced a modulation in the early and late adhesion stages of cell-material and cell-cell interactions in a geometry-dependent manner (i.e., isotropic versus anisotropic), as it was clearly determined, using scanning electron and fluorescence microscopies.

  17. Isotropic in-plane quenched disorder and dilution induce a robust nematic state in electron-doped pnictides

    Science.gov (United States)

    Liang, Shuhua; Bishop, Christopher B.; Moreo, Adriana; Dagotto, Elbio

    2015-09-01

    The phase diagram of electron-doped pnictides is studied varying the temperature, electronic density, and isotropic in-plane quenched disorder strength and dilution by means of computational techniques applied to a three-orbital (x z ,y z ,x y ) spin-fermion model with lattice degrees of freedom. In experiments, chemical doping introduces disorder but in theoretical studies the relationship between electronic doping and the randomly located dopants, with their associated quenched disorder, is difficult to address. In this publication, the use of computational techniques allows us to study independently the effects of electronic doping, regulated by a global chemical potential, and impurity disorder at randomly selected sites. Surprisingly, our Monte Carlo simulations reveal that the fast reduction with doping of the Néel TN and the structural TS transition temperatures, and the concomitant stabilization of a robust nematic state, is primarily controlled in our model by the magnetic dilution associated with the in-plane isotropic disorder introduced by Fe substitution. In the doping range studied, changes in the Fermi surface produced by electron doping affect only slightly both critical temperatures. Our results also suggest that the specific material-dependent phase diagrams experimentally observed could be explained as a consequence of the variation in disorder profiles introduced by the different dopants. Our findings are also compatible with neutron scattering and scanning tunneling microscopy, unveiling a patchy network of locally magnetically ordered clusters with anisotropic shapes, even though the quenched disorder is locally isotropic. This study reveals a remarkable and unexpected degree of complexity in pnictides: the fragile tendency to nematicity intrinsic of translational invariant electronic systems needs to be supplemented by quenched disorder and dilution to stabilize the robust nematic phase experimentally found in electron-doped 122 compounds.

  18. CRADA/NFE-15-05761 Report: Additive Manufacturing of Isotropic NdFeB Bonded Permanent Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Paranthaman, M Parans [ORNL

    2016-07-18

    The technical objective of this technical collaboration phase I proposal is to fabricate net shape isotropic NdFeB bonded magnets utilizing additive manufacturing technologies at the ORNL MDF. The goal is to form complex shapes of thermoplastic and/or thermoset bonded magnets without expensive tooling and with minimal wasted material. Two additive manufacturing methods; the binder jet process; and big area additive manufacturing (BAAM) were used. Binder jetting produced magnets with the measured density of the magnet of 3.47 g/cm3, close to 46% relative to the NdFeB single crystal density of 7.6 g/cm3 were demonstrated. Magnetic measurements indicate that there is no degradation in the magnetic properties. In addition, BAAM was used to fabricate isotropic near-net-shape NdFeB bonded magnets with magnetic and mechanical properties comparable or better than those of traditional injection molded magnets. The starting polymer magnet composite pellets consist of 65 vol% isotropic NdFeB powder and 35 vol% polyamide (Nylon-12). The density of the final BAAM magnet product reached 4.8 g/cm3, and the room temperature magnetic properties are: Intrinsic coercivity Hci = 8.65 kOe, Remanence Br = 5.07 kG, and energy product (BH)max = 5.47 MGOe (43.50 kJ/m3). This study provides a new pathway for preparing near-net shape bonded magnets for various magnetic applications.

  19. KINETICS OF TRANSITION FROM ISOTROPIC TO CHOLESTERIC PHASE FOR A THERMOTROPIC CELLULOSE DERIVATIVE

    Institute of Scientific and Technical Information of China (English)

    CHEN Shouxi; SUN Zheng; SONG Wenhui; JIN Yongze; HUANG Yong

    1996-01-01

    The kinetics of mesophase formation of a thermotropic hydroxyethyl cellulose acetate from isotropic phase to cholesteric mesophase has been studied by means of depolarizing transmittance method. Avrami type analysis of the data gives an exponent n close to 1, which suggests the nucleation followed by rod-like growth. It means that the kinetic behavior of phase transition from isotropic to cholesteric mesophase is very similar to that of the mesophase formation from isotropic to nematic mesophase.This work was supported by the National Basic Research Project-Macromolecular Condensed State.

  20. On Isotropic Sets of Points in the Plane. Application to the Design of Robot Archirectures

    CERN Document Server

    Angeles, Jorge

    2000-01-01

    Various performance indices are used for the design of serial manipulators. One method of optimization relies on the condition number of the Jacobian matrix. The minimization of the condition number leads, under certain conditions, to isotropic configurations, for which the roundoff-error amplification is lowest. In this paper, the isotropy conditions, introduced elsewhere, are the motivation behind the introduction of isotropic sets of points. By connecting together these points, we define families of isotropic manipulators. This paper is devoted to planar manipulators, the concepts being currently extended to their spatial counterparts. Furthermore, only manipulators with revolute joints are considered here.

  1. Structural and electronic properties of non-magnetic intermetallic YAuX (X = Ge and Si) in hexagonal and cubic phases

    Indian Academy of Sciences (India)

    A Lekhal; F Z Benkhelifa; S Méçabih; B Abbar; B Bouhafs

    2016-02-01

    The structural and electronic properties of non-magnetic intermetallic YAuX (X = Ge and Si) crystallized in hexagonal phase have been investigated using the full potential linearized augmented-plane wave (FPLAPW) method based on the density functional theory (DFT), within the generalized gradient approximation (GGA). The calculated lattice parameters were in good agreement with experiment. Also, the structural and electronic properties of the non-magnetic half-Heusler YAuPb compound including the artificial YAuX (X = Ge and Si) calculated in cubic phase were determined. It was found that the half-Heusler YAuPb compound presented metallic character. The results showed that YAuGe in cubic phase is a semiconductor whereas the cubic YAuSi is an isolator.

  2. Edge wrinkling in elastically supported pre-stressed incompressible isotropic plates

    Science.gov (United States)

    Destrade, Michel; Fu, Yibin; Nobili, Andrea

    2016-09-01

    The equations governing the appearance of flexural static perturbations at the edge of a semi-infinite thin elastic isotropic plate, subjected to a state of homogeneous bi-axial pre-stress, are derived and solved. The plate is incompressible and supported by a Winkler elastic foundation with, possibly, wavenumber dependence. Small perturbations superposed onto the homogeneous state of pre-stress, within the three-dimensional elasticity theory, are considered. A series expansion of the plate kinematics in the plate thickness provides a consistent expression for the second variation of the potential energy, whose minimization gives the plate governing equations. Consistency considerations supplement a constraint on the scaling of the pre-stress so that the classical Kirchhoff-Love linear theory of pre-stretched elastic plates is retrieved. Moreover, a scaling constraint for the foundation stiffness is also introduced. Edge wrinkling is investigated and compared with body wrinkling. We find that the former always precedes the latter in a state of uni-axial pre-stretch, regardless of the foundation stiffness. By contrast, a general bi-axial pre-stretch state may favour body wrinkling for moderate foundation stiffness. Wavenumber dependence significantly alters the predicted behaviour. The results may be especially relevant to modelling soft biological materials, such as skin or tissues, or stretchable organic thin-films, embedded in a compliant elastic matrix.

  3. Interactive Simulation and Visualization of Lamb Wave Propagation in Isotropic and Anisotropic Structures

    Energy Technology Data Exchange (ETDEWEB)

    Moll, J; Schulte, R T; Fritzen, C-P [Institute of Mechanics and Control Engineering - Mechatronics, University of Siegen (Germany); Rezk-Salama, C [Mediadesign University of Applied Science Duesseldorf (Germany); Klinkert, T; Kolb, A, E-mail: moll@imr.mb.uni-siegen.de [Computer Graphics and Multimedia Systems, University of Siegen (Germany)

    2011-07-19

    Structural health monitoring systems allow a continuous surveillance of the structural integrity of operational systems. As a result, it is possible to reduce time and costs for maintenance without decreasing the level of safety. In this paper, an integrated simulation and visualization environment is presented that enables a detailed study of Lamb wave propagation in isotropic and anisotropic materials. Thus, valuable information about the nature of Lamb wave propagation and its interaction with structural defects become available. The well-known spectral finite element method is implemented to enable a time-efficient calculation of the wave propagation problem. The results are displayed in an interactive visualization framework accounting for the human perception that is much more sensitive to motion than to changes in color. In addition, measurements have been conducted experimentally to record the full out-of-plane wave-field using a Laser-Doppler vibrometry setup. An aluminum structure with two synthetic cuts has been investigated, where the elongated defects have a different orientation with respect to the piezoelectric actuator. The resulting wave-field is also displayed interactively showing that the scattered wave-field at the defect is highly directional.

  4. Identification of thin elastic isotropic plate parameters applying Guided Wave Measurement and Artificial Neural Networks

    Science.gov (United States)

    Pabisek, Ewa; Waszczyszyn, Zenon

    2015-12-01

    A new hybrid computational system for material identification (HCSMI) is presented, developed for the identification of homogeneous, elastic, isotropic plate parameters. Attention is focused on the construction of dispersion curves, related to Lamb waves. The main idea of the system HCSMI lies in separation of two essential basic computational stages, corresponding to direct or inverse analyses. In the frame of the first stage an experimental dispersion curve DCexp is constructed, applying Guided Wave Measurement (GWM) technique. Then, in the other stage, corresponding to the inverse analysis, an Artificial Neural Network (ANN) is trained 'off line'. The substitution of results of the first stage, treated as inputs of the ANN, gives the values of identified plate parameters. In such a way no iteration is needed, unlike to the classical approach. In such an approach, the "distance" between the approximate experimental curves DCexp and dispersion curves DCnum obtained in the direct analysis, is iteratively minimized. Two case studies are presented, corresponding either to measurements in laboratory tests or those related to pseudo-experimental noisy data of computer simulations. The obtained results prove high numerical efficiency of HCSMI, applied to the identification of aluminum plate parameters.

  5. Isotropic incompressible hyperelastic models for modelling the mechanical behaviour of biological tissues: a review.

    Science.gov (United States)

    Wex, Cora; Arndt, Susann; Stoll, Anke; Bruns, Christiane; Kupriyanova, Yuliya

    2015-12-01

    Modelling the mechanical behaviour of biological tissues is of vital importance for clinical applications. It is necessary for surgery simulation, tissue engineering, finite element modelling of soft tissues, etc. The theory of linear elasticity is frequently used to characterise biological tissues; however, the theory of nonlinear elasticity using hyperelastic models, describes accurately the nonlinear tissue response under large strains. The aim of this study is to provide a review of constitutive equations based on the continuum mechanics approach for modelling the rate-independent mechanical behaviour of homogeneous, isotropic and incompressible biological materials. The hyperelastic approach postulates an existence of the strain energy function--a scalar function per unit reference volume, which relates the displacement of the tissue to their corresponding stress values. The most popular form of the strain energy functions as Neo-Hookean, Mooney-Rivlin, Ogden, Yeoh, Fung-Demiray, Veronda-Westmann, Arruda-Boyce, Gent and their modifications are described and discussed considering their ability to analytically characterise the mechanical behaviour of biological tissues. The review provides a complete and detailed analysis of the strain energy functions used for modelling the rate-independent mechanical behaviour of soft biological tissues such as liver, kidney, spleen, brain, breast, etc.

  6. Investigating the thermally induced acoustoelastic effect in isotropic media with Lamb waves.

    Science.gov (United States)

    Dodson, Jacob C; Inman, Daniel J

    2014-11-01

    Elastic wave velocities in metallic structures are affected by variations in environmental conditions such as changing temperature. This paper extends the theory of acoustoelasticity by allowing thermally induced strains in unconstrained isotropic media, and it experimentally examines the velocity variation of Lamb waves in aluminum plates (AL-6061) due to isothermal temperature deviations. This paper presents both thermally induced acoustoelastic constants and thermally varying effective Young's modulus and Poisson's ratio which include the third order elastic material constants. The experimental thermal sensitivity of the phase velocity (∂v(P)/∂θ) for both the symmetric and antisymmetric modes are bounded by two theories, the acoustoelastic Lamb wave theory with thermo-acoustoelastic tensors and the thermoelastic Lamb wave theory using an effective thermo-acoustoelastic moduli. This paper shows the theoretical thermally induced acoustoelastic Lamb wave thermal sensitivity (∂v(P)/∂θ) is an upper bound approximation of the experimental thermal changes, but the acoustoelastic Lamb wave theory is not valid for predicting the antisymmetric (A0) phase velocity at low frequency-thickness values, <1.55 MHz mm for various temperatures.

  7. Signal generation in an isotropic medium in scanning electron acoustic microscope

    Institute of Scientific and Technical Information of China (English)

    QIAN Menglu; PENG Ruolong

    2008-01-01

    Based on the research in Ref. [5][Materials Science and Engineering, 1989; A122:57-63], an improved model of heat source is set up, the different modes of Lamb wave in an isotropic sample generated by a chopped electron beam at frequency f are obtained with integral transform and normal function expansion method, and the output signal of PZT coupled at the back surface of the sample is found out. The generation mechanism of SEAM (Scanning Electron Acoustic Microscopy) signal is discussed. It shows that the SEAM is a near field imaging technique with high spatial resolution and its best lateral spatial resolution is about 2√2a (a is the radius of the focused electron beam).Some of experimental results of SEAM images are presented in the paper and it shows that the spatial resolution of SEAM is better than 0.5 μm and smaller than the thermal diffusion length of the sample. Therefore the character of near field imaging in SEAM is also proved experimentally.

  8. Preferential concentration of heavy particles in compressible isotropic turbulence

    Science.gov (United States)

    Zhang, Qingqing; Liu, Han; Ma, Zongqiang; Xiao, Zuoli

    2016-05-01

    Numerical simulations of particle-laden compressible isotropic turbulence with Taylor Reynolds number Reλ ˜ 100 are conducted by using a high-order turbulence solver, which is based on high-order compact finite difference method in the whole flow domain and localized artificial diffusivities for discontinuities. For simplicity, only one-way coupling (i.e., the influence of fluid on particles) between the carrier flow and particles is considered. The focus is on the study of the preferential concentration of heavy particles in dissipative scale of turbulence and the underlying mechanisms. Firstly, the effect of Stokes number (St) on the particle distribution in flow of Mach 1.01 (referred to as high-Mach-number case in this study) is investigated as a necessary supplementation for the previous studies in incompressible and weakly compressible flows. It turns out that heavy particles with Stokes number close to unity exhibit the strongest preferential concentration, which is in agreement with the observation in incompressible flow. All types of heavy particles have a tendency to accumulate in high-density regions of the background flow. While all kinds of particles dominantly collect in low-vorticity regions, intermediate and large particles (St = 1 and St = 5) are also found to collect in high-vorticity regions behind the randomly formed shocklets. Secondly, the impact of turbulent Mach number (Mt) (or the compressibility) of the carrier flow on the spatial distribution of the particles with St = 1 is discussed using the simulated compressible flows with Mt being 0.22, 0.68, and 1.01, respectively. In low-Mach-number flow, particles tend to concentrate in regions of low vorticity due to the centrifuge effect of vortices and particle concentration decreases monotonically with the increasing vorticity magnitude. As Mach number increases, the degree of particle clustering is slightly weakened in low-vorticity regions but is enhanced in high-vorticity regions, which

  9. The evolution of a spatially homogeneous and isotropic universe filled with a collisionless gas

    CERN Document Server

    Astorga, Francisco; Zannias, Thomas

    2014-01-01

    We review the evolution of a spatially homogeneous and isotropic universe described by a Friedmann-Robertson-Walker spacetime filled with a collisionless, neutral, simple, massive gas. The gas is described by a one-particle distribution function which satisfies the Liouville equation and is assumed to be homogeneous and isotropic. Making use of the isometries of the spacetime, we define precisely the homogeneity and isotropicity property of the distribution function, and based on this definition we give a concise derivation of the most general family of such distribution functions. For this family, we construct the particle current density and the stress-energy tensor and consider the coupled Einstein-Liouville system of equations. We find that as long as the distribution function is collisionless, homogenous and isotropic, the evolution of a Friedmann-Robertson-Walker universe exhibits a singular origin. Its future development depends upon the curvature of the spatial sections: spatially flat or hyperboloid ...

  10. Investigation into the temperature dependence of isotropic- nematic phase transition of Gay- Berne liquid crystals

    Directory of Open Access Journals (Sweden)

    A Avazpour

    2014-12-01

    Full Text Available Density functional approach was used to study the isotropic- nematic (I-N transition and calculate the values of freezing parameters of the Gay- Berne liquid crystal model. New direct and pair correlation functions of a molecular fluid with Gay- Berne pair potential were used. These new functions were used in density functional theory as input to calculate the isotropic- nematic transition densities for elongation at various reduced temperatures. It was observed that the isotropic- nematic transition densities increase as the temperature increases. It was found that the new direct correlation function is suitable to study the isotropic- nematic transition of Gay- Berne liquids. Comparison to other works showed qualitative agreement

  11. Supersymmetry and the constants of motion of the two-dimensional isotropic harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Torres del Castillo, G.F. [Departamento de Fisica Matematica, Instituto de Ciencias, Universidad Autonoma de Puebla, 72570 Puebla (Mexico); Tepper G, T. [Escuela de Ciencias, Departamento de Fisica y Matematicas, Universidad de Las Americas-Puebla, Santa Catarina Martir, 72820 Cholula, Puebla (Mexico)

    2002-07-01

    It is shown that the constants of motion of the two-dimensional isotropic harmonic oscillator not related to the rotational invariance of the Hamiltonian can be derived using the ideas of supersymmetric quantum mechanics. (Author)

  12. Temperature Isotropization in Solar Flare Plasmas due to the Electron Firehose Instability

    CERN Document Server

    Messmer, P

    2002-01-01

    The isotropization process of a collisionless plasma with an electron temperature anisotropy along an external magnetic field ($T_\\| ^e\\gg T_\\perp^e$, $\\|$ and $\\perp$ with respect to the background magnetic field) and isotropic protons is investigated using a particle-in-cell(PIC) code. Restricting wave growth mainly parallel to the external magnetic field, the isotropization mechanism is identified to be the Electron Firehose Instability (EFI). The free energy in the electrons is first transformed into left-hand circularly polarized transverse low-frequency waves by a non-resonant interaction. Fast electrons can then be scattered towards higher perpendicular velocities by gyroresonance, leading finally to a complete isotropization of the velocity distribution. During this phase of the instability, Langmuir waves are generated which may lead to the emission of radio waves. A large fraction of the protons is resonant with the left-hand polarized electromagnetic waves, creating a proton temperature anisotropy ...

  13. A strong law of large numbers for harmonizable isotropic random fields

    Directory of Open Access Journals (Sweden)

    Randall J. Swift

    1997-01-01

    Full Text Available The class of harmonizable fields is a natural extension of the class of stationary fields. This paper considers a strong law of large numbers for the spherical average of a harmonizable isotropic random field.

  14. Entanglement of Formation for Werner States and Isotropic States via Logical Gates

    Science.gov (United States)

    Bertini, Cesarino; Chiara, Maria Luisa Dalla; Leporini, Roberto

    To what extent is a logical characterization of entanglement possible? We investigate some correlations that hold between the concept of entanglement of formation for Werner states and for isotropic states and the probabilistic behavior of some quantum logical gates.

  15. STUDY ON THE TENSILE FATIGUE DAMAGE OF QUASI-ISOTROPIC COMPOSITE LAMINATES

    Institute of Scientific and Technical Information of China (English)

    I.G.Kim; I.S.Kim; O.S.Kim; Yaragarra K.D.V. Prasad4

    2003-01-01

    Quasi-isotropic laminates have isotropic elastic properties in all in-plane directions.Therefore, this kind of laminate is widely used for structural elements. The simpleststacking sequence of quasi-isotropic laminates is [0/-60/60]s. When the direction ofapplied axial load to [0/-60/60]s laminate is inclined at a 30-degree angle, we havethe other quasi-isotropic laminate [30/-30/90]s under axial load. The failure mecha-nisms of these two laminates are, however, entirely different from each other becausethese two laminates have different distribution of the interlaminar stresses. It wasconfirmed by tensile fatigue tests that the [0/-60/60]s laminate does not show any vis-ible fatigue damage, but the [30/-30/90]s laminate develops edge-delamination duringcyclic loading. The analytical results were in good agreement with the experimental results.

  16. Isotropically Driven versus Outflow Driven Turbulence: Observational Consequences for Molecular Clouds

    CERN Document Server

    Carroll, Jonathan J; Blackman, Eric G

    2010-01-01

    Feedback from protostellar outflows can influence the nature of turbulence in star forming regions even if they are not the primary source of velocity dispersion for all scales of molecular clouds. For the rate and power expected in star forming regions, we previously (Carroll et al. 2009) demonstrated that outflows could drive supersonic turbulence at levels consistent with the scaling relations from Matzner 2007 although with a steeper velocity power spectrum than expected for an isotropically driven supersonic turbulent cascade. Here we perform higher resolution simulations and combine simulations of outflow driven turbulence with those of isotropically forced turbulence. We find that the presence of outflows within an ambient isotropically driven turbulent environment produces a knee in the velocity power spectrum at the outflow scale and a steeper slope at sub-outflow scales than for a purely isotropically forced case. We also find that the presence of outflows flattens the density spectrum at large scal...

  17. Galactic winds driven by isotropic and anisotropic cosmic ray diffusion in disk galaxies

    CERN Document Server

    Pakmor, Ruediger; Simpson, Christine M; Springel, Volker

    2016-01-01

    The physics of cosmic rays (CR) is a promising candidate for explaining the driving of galactic winds and outflows. Recent galaxy formation simulations have demonstrated the need for active CR transport either in the form of diffusion or streaming to successfully launch winds in galaxies. However, due to computational limitations, most previous simulations have modeled CR transport isotropically. Here, we discuss high resolution simulations of isolated disk galaxies in a $10^{11}\\rm{M_\\odot}$ halo with the moving mesh code {\\sc Arepo} that include injection of CRs from supernovae, advective transport, CR cooling, and CR transport through isotropic or anisotropic diffusion. We show that either mode of diffusion leads to the formation of strong bipolar outflows. However, they develop significantly later in the simulation with anisotropic diffusion compared to the simulation with isotropic diffusion. Moreover, we find that isotropic diffusion allows most of the CRs to quickly diffuse out of the disk, while in th...

  18. Isotropic blackbody cosmic microwave background radiation as evidence for a homogeneous universe.

    Science.gov (United States)

    Clifton, Timothy; Clarkson, Chris; Bull, Philip

    2012-08-03

    The question of whether the Universe is spatially homogeneous and isotropic on the largest scales is of fundamental importance to cosmology but has not yet been answered decisively. Surprisingly, neither an isotropic primary cosmic microwave background (CMB) nor combined observations of luminosity distances and galaxy number counts are sufficient to establish such a result. The inclusion of the Sunyaev-Zel'dovich effect in CMB observations, however, dramatically improves this situation. We show that even a solitary observer who sees an isotropic blackbody CMB can conclude that the Universe is homogeneous and isotropic in their causal past when the Sunyaev-Zel'dovich effect is present. Critically, however, the CMB must either be viewed for an extended period of time, or CMB photons that have scattered more than once must be detected. This result provides a theoretical underpinning for testing the cosmological principle with observations of the CMB alone.

  19. Isotropic Super-symmetric Descartes Tensor%各向同性超对称Descartes张量

    Institute of Scientific and Technical Information of China (English)

    秦清锋; 吴伟; 尹红然

    2011-01-01

    Isotropic tensor plays an extremely role in constructing elastic solid constitutive equations. Based on the expression of isotropic Descartes tensor and the proposition of super-symmetric tensor, the scalars of isotropic Descartes tensor are discussed. Then it comes to the representations of isotropic super-symmetric Descartes tensor from two order to six order.%各向同性张量在构造各向同性弹性固体的本构方程时有着极其重要的作用.基于各向同性Descartes张量的表达式并结合超对称张量的性质,探讨了各向同性Descartes张量各标量之间的关系,进而得出了二到六阶各向同性超对称Descartes 张量的一般表达式.

  20. A Method of Function Space for Vertical Impedance Function of a Circular Rigid Foundation on a Transversely Isotropic Ground

    Directory of Open Access Journals (Sweden)

    Morteza Eskandari-Ghadi

    2014-06-01

    Full Text Available This paper is concerned with investigation of vertical impedance function of a surface rigid circular foundation resting on a semi-infinite transversely isotropic alluvium. To this end, the equations of motion in cylindrical coordinate system, which because of axissymmetry are two coupled equations, are converted into one partial differential equation using a method of potential function. The governing partial differential equation for the potential function is solved via implementing Hankel integral transforms in radial direction. The vertical and radial components of displacement vector are determined with the use of transformed displacement-potential function relationships. The mixed boundary conditions at the surface are satisfied by specifying the traction between the rigid foundation and the underneath alluvium in a special function space introduced in this paper, where the vertical displacements are forced to satisfy the rigid boundary condition. Through exercising these restraints, the normal traction and then the vertical impedance function are obtained. The results are then compared with the existing results in the literature for the simpler case of isotropic half-space, which shows an excellent agreement. Eventually, the impedance functions are presented in terms of dimensionless frequency for different materials. The method presented here may be used to obtain the impedance function in any other direction as well as in buried footing in layered media.

  1. Optical Rectification in Isotropic Thin Film Composed of Chiral Molecules with a Tripod-Like Structure

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Ou; GONG Li-Jing; LI Chun-Fei

    2008-01-01

    @@ Optical rectification (OR) effect in the isotropic thin film consisting of chiral molecules with a tripod-like structure is investigated.The expressions of static-electric polarization in the isotropic chiral thin films and the relations between the OR and microscopic parameters of chiral medium are obtaineel by theoretical derivation,Furthermore,the relations of static electric polarization with the wavelength of incident light and parameters of chiral molecules are simulated numerically.

  2. A new approach to design of quasi-isotropic antenna systems for satellite applications

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans; Hansen, J.E.

    1976-01-01

    The new approach considered takes into account the maximum error of the quasi-isotropic radiation pattern relative to the ideal pattern. A design example involving a spherical satellite with quarter wave monopoles is used to demonstrate the effectiveness of the new approach. An investigation...... is conducted concerning the minimax optimization of power radiation patterns. It is shown that the minimax objective represents a useful alternative to the isotropy concept in the design of quasi-isotropic antenna systems for satellite applications....

  3. A new approach to design of quasi-isotropic antenna systems for satellite applications

    DEFF Research Database (Denmark)

    Schjær-Jacobsen, Hans; Hansen, J.E.

    1976-01-01

    The new approach considered takes into account the maximum error of the quasi-isotropic radiation pattern relative to the ideal pattern. A design example involving a spherical satellite with quarter wave monopoles is used to demonstrate the effectiveness of the new approach. An investigation...... is conducted concerning the minimax optimization of power radiation patterns. It is shown that the minimax objective represents a useful alternative to the isotropy concept in the design of quasi-isotropic antenna systems for satellite applications....

  4. GENERAL SOLUTION FOR THE COUPLED EQUATIONS OF TRANSVERSELY ISOTROPIC MAGNETOELECTROELASTIC SOLIDS

    Institute of Scientific and Technical Information of China (English)

    刘金喜; 王祥琴; 王彪

    2003-01-01

    The coupling feature of transversely isotropic magnetoelectroelastic solids aregoverned by a system of five partial differential equations with respect to the elasticdisplacerments, the electric potential and the magnetic potential. Based on the potentialtheory, the coupled equations are reduced to the five uncoupled generalized Laplaceequations with respect to five potential functions. Further, the elastic fields andelectromagnetic fields are expressed in terms of the potential functions. These expressionsconstruct the general solution of transversely isotropic magnetoelectroelastic media.

  5. High-throughput in-volume processing in glass with isotropic spatial resolutions in three dimensions

    CERN Document Server

    Tan, Yuanxin; Chu, Wei; Liao, Yang; Qiao, Lingling; Cheng, Ya

    2016-01-01

    We report on fabrication of three dimensional (3D) microstructures in glass with isotropic spatial resolutions. To achieve high throughput fabrication, we expand the focal spot size with a low-numerical-aperture lens, which naturally results in a degraded axial resolution. We solve the problem with simultaneous spatial temporal focusing which leads to an isotropic laser-affected volume with a spatial resolution of ~100 micron.

  6. A new isotropic cell for studying the thermo-mechanical behavior of unsaturated expansive clays

    CERN Document Server

    Tang, Anh-Minh; Barnel, Nathalie

    2007-01-01

    This paper presents a new suction-temperature controlled isotropic cell that can be used to study the thermo-mechanical behavior of unsaturated expansive clays. The vapor equilibrium technique is used to control the soil suction; the temperature of the cell is controlled using a thermostat bath. The isotropic pressure is applied using a volume/pressure controller that is also used to monitor the volume change of soil specimen. Preliminary experimental results showed good performance of the cell.

  7. Dispersion of Rayleigh, Scholte, Stoneley and Love waves in a model consisting of a liquid layer overlying a two-layer transversely isotropic solid medium

    Science.gov (United States)

    Bagheri, Amirhossein; Greenhalgh, Stewart; Khojasteh, Ali; Rahimian, Mohammad

    2015-10-01

    The dispersion of interface waves is studied theoretically in a model consisting of a liquid layer of finite thickness overlying a transversely isotropic solid layer which is itself underlain by a transversely isotropic solid of dissimilar elastic properties. The method of potential functions and Hankel transformation was utilized to solve the equations of motion. Two frequency equations were developed: one for Love waves and the other for the remaining surface and interface waves. Numerical group and phase velocity dispersion curves were computed for four different classes of model, in which the substratum is stiffer or weaker than the overlying layer, and for various thickness combinations of the layers. Dispersion curves are presented for generalized Rayleigh, Scholte, Stoneley and Love waves, each of which are possible in all proposed models. They show the dependence of the velocity on layer thicknesses and material properties (elastic constants). Special cases involving zero thickness for the water layer or the solid layer, and/or isotropic material properties for the solid exhibit interesting features and agree favourably with previously published results for these simpler cases, thus validating the new formulation.

  8. Analysis of Mancos shale failure in light of localization theory for transversely isotropic materials.

    Science.gov (United States)

    Ingraham, M. D.; Dewers, T. A.; Heath, J. E.

    2016-12-01

    Utilizing the localization conditions laid out in Rudnicki 2002, the failure of a series of tests performed on Mancos shale has been analyzed. Shale specimens were tested under constant mean stress conditions in an axisymmetric stress state, with specimens cored both parallel and perpendicular to bedding. Failure data indicates that for the range of pressures tested the failure surface is well represented by a Mohr- Coulomb failure surface with a friction angle of 34.4 for specimens cored parallel to bedding, and 26.5 for specimens cored perpendicular to bedding. There is no evidence of a yield cap up to 200 MPa mean stress. Comparison with the theory shows that the best agreement in terms of band angles comes from assuming normality of the plastic strain increment. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  9. Failure Criteria for Reinforced Materials

    DEFF Research Database (Denmark)

    Rathkjen, Arne

    Failure of materials is often characterized as ductile yielding, brittle fracture, creep rupture, etc., and different criteria given in terms of different parameters have been used to describe different types of failure. Only criteria expressing failure in terms of stress are considered in what...... place until the matrix, the continuous component of the composite, fails. When an isotropic matrix is reinforced as described above, the result is an anisotropic composite material. Even if the material is anisotropic, it usually exhibits a rather high degree of symmetry and such symmetries place...... certain restrictions on the form of the failure criteria for anisotropic materials. In section 2, some failure criteria for homogenous materials are reviewed. Both isotropic and anisotropic materials are described, and in particular the constraints imposed on the criteria from the symmetries orthotropy...

  10. Exact axisymmetric solutions for laminated transversely isotropic piezoelectric circular plate (Ⅰ)——Exact solutions for piezoelectric circular plate

    Institute of Scientific and Technical Information of China (English)

    丁皓江; 徐荣桥; 国凤林

    1999-01-01

    Based on three-dimensional elastic equations for piezoelectric materials, the state equations for piezoelectric circular plate under axisymmetric deformation are derived. Applying Hankel transform to them and letting the free boundary terms resulting from Hankel transform be zero, a set of ordinary differential equations with constant coefficients and associated boundary conditions are obtained. Furthermore, two exact solutions corresponding to generalized rigid slipping and generalized elastic simple support are deduced. Then, the governing equations obtained reduce to equations for axisymmetric problem of transversely isotropic circular plate. Under the two types of boundary conditions of elastic simple support and rigid slipping, exact solutions are derived. Finally, numerical results are presented and applicability of the classical plate theory is discussed.

  11. Ultra low-loss, isotropic 2D optical negative-index metamaterial based on hybrid metal-semiconductor nanowires

    CERN Document Server

    Paniagua-Dominguez, R; Sanchez-Gil, J A

    2012-01-01

    In the past few years, many of the fascinating and previously almost unconceivable properties predicted for those novel, artificial, man-made materials, so called metamaterials, were demonstrated to be not only a tangible reality, but a very useful one. However, plenty of the best achievements in that newly discovered field are far from having a direct translation to the, in many aspects more interesting, high frequency range, without being burdened not only by technological difficulties, but also conceptual ones. Of particular importance within the realm of optical metamaterials having a negative index of refraction, often designated negative-index metamaterials (NIM), is the issue of simultaneously achieving a strong response of the system and low associated losses. In the present work, we demonstrate the possibility to use hybrid metal-semiconductor nanowires to obtain an isotropic optical NIM, with very strong electric and magnetic responses, which exhibits extremely low losses (about two orders of magnit...

  12. Investigating the magnetovolume effect in isotropic body-centered-cubic iron using spin-lattice dynamics simulations

    Directory of Open Access Journals (Sweden)

    C. P. Chui

    2014-08-01

    Full Text Available The understanding of the magnetovolume effect lacks explicit consideration of spin-lattice coupling at the atomic level, despite abundant theoretical and experimental studies throughout the years. This research gap is filled by the recently developed spin-lattice dynamics technique implemented in this study, which investigates the magnetovolume effect of isotropic body-centered-cubic (BCC iron, a topic that has previously been subject to macroscopic analysis only. This approach demonstrates the magnetic anomaly followed by the volumetric changes associated with the effect, each characterized by the corresponding field-induced inflection temperature. The temperature of the heat capacity peaks is useful in determining the temperature for retarding the atomic volume increase. Moreover, this work shows the correlation between the effects of temperature and field strength in determining the equilibrium atomic volume of a ferromagnetic material under a magnetic field.

  13. Axisymmetric smooth contact for an elastic isotropic infinite hollow cylinder compressed by an outer rigid ring with circular profile

    Institute of Scientific and Technical Information of China (English)

    A.Avci; A.Bulu; A.Yapici

    2006-01-01

    A contact problem for an infinitely long hollow cylinder is considered.The cylinder is compressed by an outer rigid ring with a circular profile.The material of the cylinder is linearly elastic and isotropic.The extent of the contact region and the pressure distribution are sought.Governing equations of the elasticity theory for the axisymmetric problem in cylindrical coordinates are solved by Fourier transfoms and general expressions for the displacements are obtained.Using the boundary conditions,the formulation is reduced to a singular integral equation.This equation is solved by using the Gaussian quadrature.Then the pressure distribution on the contact region is determined.Numerical results for the contact pressure and the distance characterizing the contact area are given in graphical form.

  14. Antiferromagnetic vs. non-magnetic ε phase of solid oxygen. Periodic density functional theory studies using a localized atomic basis set and the role of exact exchange.

    Science.gov (United States)

    Ramírez-Solís, A; Zicovich-Wilson, C M; Hernández-Lamoneda, R; Ochoa-Calle, A J

    2017-01-25

    The question of the non-magnetic (NM) vs. antiferromagnetic (AF) nature of the ε phase of solid oxygen is a matter of great interest and continuing debate. In particular, it has been proposed that the ε phase is actually composed of two phases, a low-pressure AF ε1 phase and a higher pressure NM ε0 phase [Crespo et al., Proc. Natl. Acad. Sci. U. S. A., 2014, 111, 10427]. We address this problem through periodic spin-restricted and spin-polarized Kohn-Sham density functional theory calculations at pressures from 10 to 50 GPa using calibrated GGA and hybrid exchange-correlation functionals with Gaussian atomic basis sets. The two possible configurations for the antiferromagnetic (AF1 and AF2) coupling of the 0 ≤ S ≤ 1 O2 molecules in the (O2)4 unit cell were studied. Full enthalpy-driven geometry optimizations of the (O2)4 unit cells were done to study the pressure evolution of the enthalpy difference between the non-magnetic and both antiferromagnetic structures. We also address the evolution of structural parameters and the spin-per-molecule vs. pressure. We find that the spin-less solution becomes more stable than both AF structures above 50 GPa and, crucially, the spin-less solution yields lattice parameters in much better agreement with experimental data at all pressures than the AF structures. The optimized AF2 broken-symmetry structures lead to large errors of the a and b lattice parameters when compared with experiments. The results for the NM model are in much better agreement with the experimental data than those found for both AF models and are consistent with a completely non-magnetic (O2)4 unit cell for the low-pressure regime of the ε phase.

  15. Isotropically Driven Versus Outflow Driven Turbulence: Observational Consequences for Molecular Clouds

    Science.gov (United States)

    Carroll, Jonathan J.; Frank, Adam; Blackman, Eric G.

    2010-10-01

    Feedback from protostellar outflows can influence the nature of turbulence in star-forming regions even if they are not the primary source of velocity dispersion for all scales of molecular clouds. For the rate and power expected in star-forming regions, we previously (Carroll et al.) demonstrated that outflows could drive supersonic turbulence at levels consistent with the scaling relations from Matzner although with a steeper velocity power spectrum than expected for an isotropically driven supersonic turbulent cascade. Here, we perform higher resolution simulations and combine simulations of outflow driven turbulence with those of isotropically forced turbulence. We find that the presence of outflows within an ambient isotropically driven turbulent environment produces a knee in the velocity power spectrum at the outflow scale and a steeper slope at sub-outflow scales than for a purely isotropically forced case. We also find that the presence of outflows flattens the density spectrum at large scales effectively reducing the formation of large-scale turbulent density structures. These effects are qualitatively independent of resolution. We have also carried out Principal Component Analysis (PCA) for synthetic data from our simulations. We find that PCA as a tool for identifying the driving scale of turbulence has a misleading bias toward low amplitude large-scale velocity structures even when they are not necessarily the dominant energy containing scales. This bias is absent for isotropically forced turbulence but manifests strongly for collimated outflow driven turbulence.

  16. Durability-Based Design Criteria for a Quasi-Isotropic Carbon-Fiber Automotive Composite

    Energy Technology Data Exchange (ETDEWEB)

    Corum, J.M.

    2002-04-17

    This report provides recommended durability-based design properties and criteria for a quasi-isotropic carbon-fiber composite for possible automotive structural applications. The composite, which was made by a rapid molding process suitable for high-volume automotive applications, consisted of continuous Thornel T300 fibers (6K tow) in a Baydur 420 IMR urethane matrix. The reinforcement was in the form of four {+-}45{sup o} stitch-bonded mats in the following layup: [0/90{sup o}/{+-}45{sup o}]{sub S}. This material is the second in a progression of three candidate thermoset composites to be characterized and modeled as part of an Oak Ridge National Laboratory project entitled Durability of Carbon-Fiber Composites. The overall goal of the project, which is sponsored by the U.S. Department of Energy's Office of Advanced Automotive Technologies and is closely coordinated with the industry Automotive Composites Consortium, is to develop durability-driven design data and criteria to assure the long-term integrity of carbon-fiber-based composite systems for large automotive structural components. This document is in two parts. Part I provides the design criteria, and Part 2 provides the underlying experimental data and models. The durability issues addressed include the effects on deformation, strength, and stiffness of cyclic and sustained loads, operating temperature, automotive fluid environments, and low-energy impacts (e.g., tool drops and kickups of roadway debris). Guidance is provided for design analysis, time-dependent allowable stresses, rules for cyclic loadings, and damage tolerance design guidance, including the effects of holes. Chapter 6 provides a brief summary of the design criteria.

  17. Design of materials with extreme thermal expansion using a three-phase topology optimization method

    DEFF Research Database (Denmark)

    Sigmund, Ole; Torquato, S.

    1997-01-01

    Composites with extremal or unusual thermal expansion coefficients are designed using a three-phase topology optimization method. The composites are made of two different material phases and a void phase. The topology optimization method consists in finding the distribution of material phases...... materials having maximum directional thermal expansion (thermal actuators), zero isotropic thermal expansion, and negative isotropic thermal expansion. It is shown that materials with effective negative thermal expansion coefficients can be obtained by mixing two phases with positive thermal expansion...

  18. Fading Characteristics and Capacity of Deterministic Downlink MIMO Fading Channel with Non-Isotropic Scattering

    Institute of Scientific and Technical Information of China (English)

    WUGang; TANGYouxi; LIShaoqian

    2004-01-01

    A novel deterministic model for downlink Multiple-input multiple-output (MIMO) channel with nonisotropic scattering around Mobile station (MS) is presented. For both Space-time codes (STC) scenario and Downlink beam-forming (DBF) scenario, statistical fading characteristics, including level-crossing rate, average duration of fades, and envelope cross-correlation are investigated in frequency-selective fast fading channels. The impact of non-isotropic scattering on capacity of MIMO channel is also studied. Numerical results show that loss of ergodic capacity caused by non-isotropic scattering almost reach 1bit/Hz/s for a 2×2 MIMO channel and maximum achievable capacity will be degraded mainly by transmit correlation rather than non-isotropic scattering.

  19. Excitation of surface waves on the interfaces of general bi-isotropic media

    CERN Document Server

    Kim, Seulong

    2016-01-01

    We study theoretically the characteristics of surface waves excited at the interface between a metal and a general bi-isotropic medium, which includes isotropic chiral media and Tellegen media as special cases. We derive an analytical dispersion relation for surface waves, using which we calculate the effective index and the propagation length numerically. We also calculate the absorptance, the cross-polarized reflectance and the spatial distribution of the electromagnetic fields for plane waves incident on a bilayer system consisting of a metal layer and a bi-isotropic layer in the Kretschmann configuration, using the invariant imbedding method. The results obtained using the invariant imbedding method agree with those obtained from the dispersion relation perfectly. In the case of chiral media, the effective index is an increasing function of the chirality index, whereas in Tellegen media, it is a decreasing function of the Tellegen parameter. The propagation length for surface waves in both cases increase ...

  20. Torsional vibration of a pipe pile in transversely isotropic saturated soil

    Science.gov (United States)

    Zheng, Changjie; Hua, Jianmin; Ding, Xuanming

    2016-09-01

    This study considers the torsional vibration of a pipe pile in a transversely isotropic saturated soil layer. Based on Biot's poroelastic theory and the constitutive relations of the transversely isotropic medium, the dynamic governing equations of the outer and inner transversely isotropic saturated soil layers are derived. The Laplace transform is used to solve the governing equations of the outer and inner soil layers. The dynamic torsional response of the pipe pile in the frequency domain is derived utilizing 1D elastic theory and the continuous conditions at the interfaces between the pipe pile and the soils. The time domain solution is obtained by Fourier inverse transform. A parametric study is conducted to demonstrate the influence of the anisotropies of the outer and inner soil on the torsional dynamic response of the pipe pile.

  1. Correlation functions in isotropic and anisotropic turbulence the role of the symmetry group

    CERN Document Server

    Arad, I; Procaccia, I; Arad, Itai; L'vov, Victor S.; Procaccia, Itamar

    1998-01-01

    The theory of fully developed turbulence is usually considered in an idealized homogeneous and isotropic state. Real turbulent flows exhibit the effects of anisotropic forcing. The analysis of correlation functions and structure functions in isotropic and anisotropic situations is facilitated and made rational when performed in terms of the irreducible representations of the relevant symmetry group which is the group of all rotations SO(3). In this paper we firstly consider the needed general theory and explain why we expect different (universal) scaling exponents in the different sectors of the symmetry group. We exemplify the theory context of isotropic turbulence (for third order tensorial structure functions) and in weakly anisotropic turbulence (for the second order structure function). The utility of the resulting expressions for the analysis of experimental data is demonstrated in the context of high Reynolds number measurements of turbulence in the atmosphere.

  2. Magnetization reversal processes of isotropic permanent magnets with various inter-grain exchange interactions

    Directory of Open Access Journals (Sweden)

    Hiroshi Tsukahara

    2017-05-01

    Full Text Available We performed a large-scale micromagnetics simulation on a supercomputing system to investigate the properties of isotropic nanocrystalline permanent magnets consisting of cubic grains. In the simulation, we solved the Landau–Lifshitz–Gilbert equation under a periodic boundary condition for accurate calculation of the magnetization dynamics inside the nanocrystalline isotropic magnet. We reduced the inter-grain exchange interaction perpendicular and parallel to the external field independently. Propagation of the magnetization reversal process is inhibited by reducing the inter-grain exchange interaction perpendicular to the external field, and the coercivity is enhanced by this restraint. In contrast, when we reduce the inter-grain exchange interaction parallel to the external field, the coercivity decreases because the magnetization reversal process propagates owing to dipole interaction. These behaviors show that the coercivity of an isotropic permanent magnet depends on the direction of the inter-grain exchange interaction.

  3. Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry

    CERN Document Server

    Baena, J D; Marques, R

    2007-01-01

    In this paper a systematic approach to the design of bulk isotropic magnetic metamaterials is presented. The role of the symmetries of both the constitutive element and the lattice are analyzed. For this purpose it is assumed that the metamaterial is composed by cubic SRR resonators, arranged in a cubic lattice. The minimum symmetries needed to ensure an isotropic behavior are analyzed, and some particular configurations are proposed. Besides, an equivalent circuit model is proposed for the considered cubic SRR resonators. Experiments are carried out in order to validate the proposed theory. We hope that this analysis will pave the way to the design of bulk metamaterials with strong isotropic magnetic response, including negative permeability and left-handed metamaterials.

  4. TORSIONAL VIBRATIONS OF RIGID CIRCULAR PLATE ON TRANSVERSELY ISOTROPIC SATURATED SOIL

    Institute of Scientific and Technical Information of China (English)

    WU Da-zhi; CAI Yuan-qiang; XU Chang-jie; ZHAN Hong

    2006-01-01

    An analytical method was presented for the torsional vibrations of a rigid disk resting on transversely isotropic saturated soil. By Hankel transform, the dynamic governing differential equations for transversely isotropic saturated poroelastic medium were solved. Considering the mixed boundary-value conditions, the dual integral equations of torsional vibrations of a rigid circular plate resting on transversely isotropic saturated soil were established. By appropriate transform, the dual integral equations were converted into a Fredholm integral equation of the second kind. Subsequently, the dynamic compliance coefficient, the torsional angular amplitude of the foundation and the contact shear stress were expressed explicitly. Selected examples were presented to analyse the influence of saturated soil's anisotropy on the foundation's vibrations.

  5. Buckling analysis of thick isotropic plates by using exponential shear deformation theory

    Directory of Open Access Journals (Sweden)

    Sayyad A. S.

    2012-12-01

    Full Text Available In this paper, an exponential shear deformation theory is presented for the buckling analysis of thick isotropic plates subjected to uniaxial and biaxial in-plane forces. The theory accounts for a parabolic distribution of the transverse shear strains across the thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. Governing equations and associated boundary conditions of the theory are obtained using the principle of virtual work. The simply supported thick isotropic square plates are considered for the detailed numerical studies. A closed form solutions for buckling analysis of square plates are obtained. Comparison studies are performed to verify the validity of the present results. The effects of aspect ratio on the critical buckling load of isotropic plates is investigated and discussed.

  6. Isotropic negative permeability composite based on Mie resonance of the BST-MgO dielectric medium

    Institute of Scientific and Technical Information of China (English)

    ZHAO Qian; KANG Lei; DU Bo; ZHAO HongJie; XIE Qin; LI Bo; ZHOU Ji; LI LongTu; MENG YongGang

    2008-01-01

    Isotropic negative permeability composite, composed of BST-MgO dielectric cubes with high permit-tivity dispersed in the Teflon substrate with low permittivity, was designed and fabricated based on Mie resonance and the effective medium theory. Measurements and simulations showed that the dielectric composite exhibited a strong sub-wavelength magnetic resonance at the first Mie resonance and possessed isotropic negative permeability, which resulted from the displacement current excited in the cubes. The dielectric particle was equivalent to a magnetic dipole at the magnetic resonance, which could be adjusted by the size and permitllvity of the particles. It may provide a convenient method to design isotropic metamaterials and invisible cloak at infrared and visible frequencies.

  7. Proposal for the award of a contract for the supply of austenitic steel strips for non-magnetic laminations of the LHC superconducting dipole magnets

    CERN Document Server

    1999-01-01

    This document concerns the award of a contract for the supply of 2 400 tonnes of cold-rolled austenitic steel strips for non-magnetic laminations of the cold mass of the LHC superconducting dipole magnets. Following a market survey carried out among 32 firms in fourteen Member States and two firms in Japan, a call for tenders (IT-2617/LHC/LHC) was sent on 3 June 1999 to three firms in two Member States and two firms in Japan. The Council agreed to the Management?s proposal to invite Japanese industry to participate, where appropriate, in calls for tenders for supplies for the LHC Project (CERN/CC/2110). By the closing date, CERN had received four tenders. The Finance Committee is invited to approve the negotiation of a contract with the firm KAWASAKI STEEL (JP), the lowest bidder complying with the technical specification, for the supply of 2 400 tonnes of cold-rolled austenitic steel for non-magnetic laminations of the cold mass of the LHC superconducting dipole magnets for a total amount of 1 277 856 000 Ja...

  8. Magnetism without magnetic ions in non-magnetic perovskites SrTiO 3, SrZrO 3 and SrSnO 3

    Science.gov (United States)

    Bannikov, V. V.; Shein, I. R.; Kozhevnikov, V. L.; Ivanovskii, A. L.

    Using the full-potential linearized augmented plane-wave (FP-LAPW) method with the generalized gradient approximation (GGA) for the exchange-correlation potential, we studied spin polarization induced by replacement of oxygen atoms by non-magnetic 2p impurities (B, C and N) in non-magnetic cubic SrMO 3 perovskites, where M=Ti, Zr and Sn. The results show that the magnetization may appear because of the spin-split impurity bands inside the energy gap of the insulating SrMO 3 matrix. Large magnetic moments are found for the impurity centers. Smaller magnetic moments are induced on the oxygen atoms around impurities. It is shown that SrTiO 3:C and SrSnO 3:C should be magnetic semiconductors while other compounds in this series (SrTiO 3:B, SrTiO 3:N and SrZrO 3:C) are expected to exhibit magnetic half-metallic or pseudo-half-metallic properties.

  9. Magnetism without magnetic ions in non-magnetic perovskites SrTiO{sub 3}, SrZrO{sub 3} and SrSnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bannikov, V.V.; Shein, I.R.; Kozhevnikov, V.L. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 620041 Ekaterinburg (Russian Federation); Ivanovskii, A.L. [Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences, 620041 Ekaterinburg (Russian Federation)], E-mail: ivanovskii@ihim.uran.ru

    2008-03-15

    Using the full-potential linearized augmented plane-wave (FP-LAPW) method with the generalized gradient approximation (GGA) for the exchange-correlation potential, we studied spin polarization induced by replacement of oxygen atoms by non-magnetic 2p impurities (B, C and N) in non-magnetic cubic SrMO{sub 3} perovskites, where M=Ti, Zr and Sn. The results show that the magnetization may appear because of the spin-split impurity bands inside the energy gap of the insulating SrMO{sub 3} matrix. Large magnetic moments are found for the impurity centers. Smaller magnetic moments are induced on the oxygen atoms around impurities. It is shown that SrTiO{sub 3}:C and SrSnO{sub 3}:C should be magnetic semiconductors while other compounds in this series (SrTiO{sub 3}:B, SrTiO{sub 3}:N and SrZrO{sub 3}:C) are expected to exhibit magnetic half-metallic or pseudo-half-metallic properties.

  10. Small-angle neutron scattering in materials science - an introduction

    Energy Technology Data Exchange (ETDEWEB)

    Fratzl, P. [Vienna Univ., Inst. fuer Materialphysik, Vienna (Austria)

    1996-12-31

    The basic principles of the application of small-angle neutron scattering to materials research are summarized. The text focusses on the classical methods of data evaluation for isotropic and for anisotropic materials. Some examples of applications to the study of alloys, porous materials, composites and other complex materials are given. (author) 9 figs., 38 refs.

  11. Refractive Index and Wave Resistance of Homogeneous Plane Waves in Isotropic Media with Losses and Gain

    Science.gov (United States)

    Fisanov, V. V.

    2017-09-01

    Analytical expressions for complex values of the wave number, refractive index, and the characteristic wave impedance of homogeneous electromagnetic plane waves propagating in a linear, homogeneous, isotropic medium with losses and gain are derived. Formulas for determining the type of normal wave as a function of the values of the real and imaginary parts of the permittivity and permeability are obtained, and conditions for the appearance of positive and negative refraction at the interface of two isotropic media are indicated. In the approach applied here, the concept of a negative refractive index is not used.

  12. CHARACTERISTIC ANALYSIS FOR STRESS WAVE PROPAGATION IN TRANSVERSELY ISOTROPIC FLUID-SATURATED POROUS MEDIA

    Institute of Scientific and Technical Information of China (English)

    刘颖; 刘凯欣

    2004-01-01

    According to generalized characteristic theory,a characteristic analysis for stress wave propagation in transversely isotropic fluid-saturated porous media was performed.The characteristic differential equations and compatibility relations along bicharacteristics were deduced and the analytical expressions for wave surfaces were obtained.The characteristic and shapes of the velocity surfaces and wave surfaces in the transversely isotropic fluid-saturated porous media were discussed in detail.The results also show that the characteristic equations for stress waves in pure solids are particular cases of the characteristic equations for fluid-saturated porous media.

  13. How to estimate isotropic distributions and mean values in crystalline solids

    Science.gov (United States)

    Kontrym-Sznajd, G.; Dugdale, S. B.

    2015-11-01

    The concept of special directions in the Brillouin zone and the applicability of Houston’s formula (or its extended versions) to both theoretical and experimental investigations are discussed. We propose some expressions to describe the isotropic component in systems having both cubic and non-cubic symmetry. The results presented have implications for both experimentalists who want to obtain average properties from a small number of measurements on single crystals, and for theoretical calculations which are to be compared with isotropic experimental measurements, for example coming from investigations of polycrystalline or powder samples. As George Orwell might have put it: all directions are equal, but some directions are more equal than others.

  14. Completeness of General Solutions to Axisymmetric Problems of Transversely Isotropic Body

    Institute of Scientific and Technical Information of China (English)

    王炜; 徐新生; 王敏中

    1994-01-01

    In this paper a kind of problems,which are a little wider than the axisymmetric problems of a transversely isotropic elastic body,are considered in a rectangular coordinates system.Two new general solutions of the axisymmetric problems of a transversely isotropic body are concisely obtained in a cylindrical coordinates system.Their completeness is also proved.It is worth while pointing out thai whether the meridional half-section is simply connected or multiply connected,both the new general solutions are single-valued.Using these results eight special general solutions are derived,including some known famous solutions.

  15. Isotropic proton-detected local-field nuclear magnetic resonancein solids

    Energy Technology Data Exchange (ETDEWEB)

    Havlin, Robert H.; Walls, Jamie D.; Pines, Alexander

    2004-08-04

    A new nuclear magnetic resonance (NMR) method is presented which produces linear, isotropic proton-detected local-field spectra for InS spin systems in powdered samples. The method, HETeronuclear Isotropic Evolution (HETIE), refocuses the anisotropic portion of the heteronuclear dipolar coupling frequencies by evolving the system under a series of specially designed Hamiltonians and evolution pathways. The theory behind HETIE is represented along with experimental studies conducted on a powdered sample of ferrocene, demonstrating the methodology outlined in this paper. Applications of HETIE for structural determination in solid-state NMR are discussed.

  16. Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi Yong, E-mail: huangzy@scu.edu.cn [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Chaboche, Jean-Louis [ONERA, DMSM, 29 avenue de la Division Lecerc, F-92320 Chatillon (France); Wang, Qing Yuan [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wagner, Danièle; Bathias, Claude [Université ParisOuest Nanterre La Défense (France)

    2014-01-01

    Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C.

  17. CIRCULAR CRACK IN A TRANSVERSELY ISOTROPIC PIEZOELECTRIC SPACE UNDER POINT FORCES AND POINT CHARGES

    Institute of Scientific and Technical Information of China (English)

    侯鹏飞; 丁皓江; 关富玲

    2002-01-01

    In this paper, two kinds of circular crack including external circular crack and penny-shaped crack in a transversely isotropic piezoelectric space are considered. Firstly, we obtain the solution to the problem of an external circular crack in a transversely isotropic piezoelectric space subjected to antisymmetric normal point forces and point charges. Based on this, the solution of one-sided loading of an external circular crack is constructed. Secondly, the real shape of an external circular crack and the opening displacement of a penny-shaped crack under an arbitrary point force and point charge are further obtained. At last, the results are presented in a graphical form.

  18. Fabrication of Isotropic Pyrocarbon at 1400℃ by Thermal Gradient Chemical Vapor Deposition Apparatus

    Institute of Scientific and Technical Information of China (English)

    GUO Lingjun; ZHANG Dongsheng; LI Kezhi; LI Hejun

    2009-01-01

    An experiment was designed to prepare isotropic pyrocarbon by thermal gradient chemical vapor deposition apparatus.The deposition was performed under ambient atmosphere at 1400℃,with natural gas volume flow of 3.5 m~3/h for 80 h.The results show that the thickness and the bulk density of the deposit are about 1.95 g/cm~3 and 10 mm,respectively.The microstructure of the deposit was examined by polarized light microscopy and scanning electron microscopy,which shows that the deposit is constituted of sphere isotropic pyrocarbon,pebble pyrocarbon and laminar pyrocarbon.

  19. How to estimate isotropic distributions and mean values in crystalline solids.

    Science.gov (United States)

    Kontrym-Sznajd, G; Dugdale, S B

    2015-11-04

    The concept of special directions in the Brillouin zone and the applicability of Houston's formula (or its extended versions) to both theoretical and experimental investigations are discussed. We propose some expressions to describe the isotropic component in systems having both cubic and non-cubic symmetry. The results presented have implications for both experimentalists who want to obtain average properties from a small number of measurements on single crystals, and for theoretical calculations which are to be compared with isotropic experimental measurements, for example coming from investigations of polycrystalline or powder samples. As George Orwell might have put it: all directions are equal, but some directions are more equal than others.

  20. The comparative study on analytical solutions and numerical solutions of displacement in transversely isotropic rock mass

    Science.gov (United States)

    Zhang, Zhizeng; Zhao, Zhao; Li, Yongtao

    2016-06-01

    This paper attempts to verify the correctness of the analytical displacement solution in transversely isotropic rock mass, and to determine the scope of its application. The analytical displacement solution of a circular tunnel in transversely isotropic rock mass was derived firstly. The analytical solution was compared with the numerical solution, which was carried out by FLAC3D software. The results show that the expression of the analytical displacement solution is correct, and the allowable engineering range is that the dip angle is less than 15 degrees.

  1. A Simple Free Energy for the Isotropic-Nematic Phase Transition of Rods

    Directory of Open Access Journals (Sweden)

    Remco Tuinier

    2016-01-01

    Full Text Available A free energy expression is proposed that describes the isotropic-nematic binodal concentrations of hard rods. A simple analytical form for this free energy was yet only available using a Gaussian trial function for the orientation distribution function (ODF, leading, however, to a significant deviation of the predicted binodals. The new free energy proposed here is based upon a rationalized correction to the orientational and packing entropies when using the Gaussian ODF. In combination with Parsons-Lee theory or scaled particle theory, it enables describing the isotropic-nematic phase coexistence concentrations of rods accurately using the simple Gaussian ODF for a wide range of aspect ratios.

  2. Material properties of Ni-Cr-Al alloy and design of a 4 GPa class non-magnetic high-pressure cell

    CERN Document Server

    Uwatoko, Y; Ueda, K; Uchida, A; Kosaka, M; Mori, N; Matsumoto, T

    2002-01-01

    The Ni-Cr-Al Russian alloy was prepared. Its magnetic and mechanical properties were better than those of MP35N alloy. We fabricated the a piston-cylinder-type hybrid high-pressure cell using the Ni-Cr-Al alloy. It has been found that the maximum working pressure can be repeatedly raised to 3.5 GPa at T = 2 K without any difficulties.

  3. Omnidirectional surface wave cloak using an isotropic homogeneous dielectric coating

    Science.gov (United States)

    Mitchell-Thomas, R. C.; Quevedo-Teruel, O.; Sambles, J. R.; Hibbins, A. P.

    2016-08-01

    The field of transformation optics owes a lot of its fame to the concept of cloaking. While some experimental progress has been made towards free-space cloaking in three dimensions, the material properties required are inherently extremely difficult to achieve. The approximations that then have to be made to allow fabrication produce unsatisfactory device performance. In contrast, when surface wave systems are the focus, it has been shown that a route distinct from those used to design free-space cloaks can be taken. This results in very simple solutions that take advantage of the ability to incorporate surface curvature. Here, we provide a demonstration in the microwave regime of cloaking a bump in a surface. The distortion of the shape of the surface wave fronts due to the curvature is corrected with a suitable refractive index profile. The surface wave cloak is fabricated from a metallic backed homogeneous dielectric waveguide of varying thickness, and exhibits omnidirectional operation.

  4. Isotropic inelastic and superelastic collisional rates in a multiterm atom

    CERN Document Server

    Belluzzi, L; Bueno, J Trujillo

    2013-01-01

    The spectral line polarization of the radiation emerging from a magnetized astrophysical plasma depends on the state of the atoms within the medium, whose determination requires considering the interactions between the atoms and the magnetic field, between the atoms and photons (radiative transitions), and between the atoms and other material particles (collisional transitions). In applications within the framework of the multiterm model atom (which accounts for quantum interference between magnetic sublevels pertaining either to the same J-level or to different J-levels within the same term) collisional processes are generally neglected when solving the master equation for the atomic density matrix. This is partly due to the lack of experimental data and/or of approximate theoretical expressions for calculating the collisional transfer and relaxation rates (in particular the rates for interference between sublevels pertaining to different J-levels, and the depolarizing rates due to elastic collisions). In th...

  5. Computer simulation of model cohesive powders: Plastic consolidation, structural changes, and elasticity under isotropic loads

    Science.gov (United States)

    Gilabert, F. A.; Roux, J.-N.; Castellanos, A.

    2008-09-01

    The quasistatic behavior of a simple two-dimensional model of a cohesive powder under isotropic loads is investigated by discrete element simulations. We ignore contact plasticity and focus on the effect of geometry and collective rearrangements on the material behavior. The loose packing states, as assembled and characterized in a previous numerical study [Gilabert, Roux, and Castellanos, Phys. Rev. E 75, 011303 (2007)], are observed, under growing confining pressure P , to undergo important structural changes, while solid fraction Φ irreversibly increases (typically, from 0.4-0.5 to 0.75-0.8). The system state goes through three stages, with different forms of the plastic consolidation curve, i.e., Φ as a function of the growing reduced pressure P*=Pa/F0 , defined with adhesion force F0 and grain diameter a . In the low-confinement regime (I), the system undergoes negligible plastic compaction, and its structure is influenced by the assembling process. In regime II the material state is independent of initial conditions, and the void ratio varies linearly with lnP [i.e., Δ(1/Φ)=λΔ(lnP*) ], as described in the engineering literature. Plasticity index λ is reduced in the presence of a small rolling resistance (RR). In the last stage of compaction (III), Φ approaches an asymptotic, maximum solid fraction Φmax , as a power law Φmax-Φ∝(P*)-α , with α≃1 , and properties of cohesionless granular packs are gradually retrieved. Under consolidation, while the range ξ of fractal density correlations decreases, force patterns reorganize from self-balanced clusters to force chains, with correlative evolutions of force distributions, and elastic moduli increase by a large amount. Plastic deformation events correspond to very small changes in the network topology, while the denser regions tend to move like rigid bodies. Elastic properties are dominated by the bending of thin junctions in loose systems. For growing RR those tend to form particle chains, the

  6. Renal Arteries: Isotropic, High-Spatial-Resolution, Unenhanced MR Angiography with Three-dimensional Radial Phase Contrast1

    Science.gov (United States)

    Lum, Darren P.; Johnson, Kevin M.; Landgraf, Benjamin R.; Bley, Thorsten A.; Reeder, Scott B.; Schiebler, Mark L.; Grist, Thomas M.; Wieben, Oliver

    2011-01-01

    Purpose: To prospectively compare a new three-dimensional (3D) radial phase-contrast magnetic resonance (MR) angiographic method with contrast material–enhanced MR angiography for anatomic assessment of the renal arteries. Materials and Methods: An institutional review board approved this prospective HIPAA-compliant study. Informed consent was obtained. Twenty-seven subjects (mean age, 52.6 years ± 20.5 [standard deviation]) were imaged with respiratory-gated phase-contrast vastly undersampled isotropic projection reconstruction (VIPR) prior to contrast-enhanced MR angiographic acquisition with a 3.0-T clinical system. The imaging duration for phase-contrast VIPR was 10 minutes and provided magnitude and complex difference (“angiographic”) images with 3D volumetric (320 mm) coverage and isotropic high spatial resolution (1.25 mm3). Quantitative analysis consisted of comparing vessel diameters between the two techniques. Qualitative assessment included evaluation of the phase-contrast VIPR and contrast-enhanced MR angiographic techniques for artifacts, noise, and image quality. Bland-Altman analysis was used for comparison of quantitative measurements, and the Wilcoxon signed rank test was used for comparison of qualitative scores. Results: Phase-contrast VIPR images were successfully acquired in all subjects. The vessel diameters measured with phase-contrast VIPR were slightly greater than those measured with contrast-enhanced MR angiography (mean bias = 0.09 mm). Differences in mean artifact, quality scores for the proximal renal arteries, and overall image quality scores between phase-contrast VIPR and contrast-enhanced MR angiographic techniques were not statistically significant (P = .31 and .29, .27 and .39, and .43 and .69 for readers 1 and 2, respectively). The quality scores for the segmental renal arteries were higher for phase-contrast VIPR than for contrast-enhanced MR angiography (P contrast-enhanced MR angiography and were statistically

  7. Wavelet Analysis of the Conditional Vorticity Budget in Fully Developed Homogeneous Isotropic Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, M; Friedrich, R [Institute for Theoretical Physics, University of Muenster, Wilhelm-Klemm-Str. 9, 48149 Muenster (Germany); Kadoch, B [Aix-Marseille Universite and M2P2-CNRS Ecole Centrale de Marseille, 38 Rue Joliot-Curie, 13451 Marseille Cedex 20 (France); Schneider, K [M2P2-CNRS and CMI, Universite de Provence, 39 Rue Joliot-Curie, 13453 Marseille Cedex 13 (France); Farge, M, E-mail: mwilczek@uni-muenster.de [LMD-CNRS, Ecole Normale Superieure, 24 Rue Lhomond, 75231 Paris Cedex 5 (France)

    2011-12-22

    We study the conditional balance of vortex stretching and vorticity diffusion of fully developed three-dimensional homogeneous isotropic turbulence with respect to coherent and incoherent flow contributions. This decomposition is achieved by the Coherent Vorticity Extraction based on orthogonal wavelets applied to DNS data, which yields insights into the influence of the different contributions as well as their interaction.

  8. Fresnel Coefficients of Forward and Backward Waves Refracting at the Interface of Isotropic Media

    Science.gov (United States)

    Fisanov, V. V.

    2017-01-01

    The Fresnel coefficients are derived for cross- and co-polarization states of plane electromagnetic wave incident at the interface between two isotropic media. The media can support forward or backward normal waves. Based on introduction of wave type identifiers, without application of the notion of the negative refractive index, phenomena of positive and negative refractions are considered in the general case.

  9. Can the isotropic-smectic transition of colloidal hard rods occur via nucleation and growth?

    NARCIS (Netherlands)

    Cuetos, A.|info:eu-repo/dai/nl/311488447; Sanz, E.; Dijkstra, M.|info:eu-repo/dai/nl/123538807

    2010-01-01

    We investigate the isotropic-to-smectic transformation in a fluid of colloidal hard rods using computer simulations. At high supersaturation, we observe spinodal decomposition: many small clusters are formed at the initial stage of the phase transformation, which form a percolating network that

  10. Monte Carlo study of the isotropic-nematic transition in a fluid of thin hard disk

    NARCIS (Netherlands)

    Frenkel, D.; Eppenga, R.

    1982-01-01

    The first numerical determination of the thermodynamic isotropic-nematic transition in a simple three-dimensional model fluid, viz., a system of infinitely thin hard platelets, is reported. Thermodynamic properties were studied with use of the constant-pressure Monte Carlo method; Widom's particle-i

  11. Limit on an Isotropic Diffuse Gamma-Ray Population with HAWC

    CERN Document Server

    ,

    2015-01-01

    Data from 105 days from the High Altitude Water Cherenkov Observatory (HAWC) have been used to place a new limit on an isotropic diffuse gamma-ray population above 10 TeV. High- energy isotropic diffuse gamma-ray emission is produced by unresolved extragalactic objects such as active galactic nuclei, with potential contributions from interactions of high-energy cosmic rays with the inter-Galactic medium, or dark matter annihilation. Isotropic diffuse gamma-ray emission has been observed up to nearly 1 TeV. Above this energy, only upper limits have been reported. Observations or limits of the isotropic photon population above these energies are very sensitive to local astrophysical particle production. Of particular note, we expect a photon population to accompany the TeV-PeV astrophysical neutrino detection seen in the IceCube instrument. Observations or limits of a photon population above this energy can point to the origin of these neutrinos, indicating whether they are within the gamma-ray horizon or not. ...

  12. Band absorption in nonhomogeneous, isotropically-scattering planetary atmospheres - Theory and experiment

    Science.gov (United States)

    Page, W. A.; Sutton, R. E.; Miller, R. J.

    1973-01-01

    A computer program is developed which predicts the vertical distribution of an absorbing species in an isotropically-scattering, finite planetary atmosphere from measurements of the upwelling band radiance determined by a vertically traversing 2-channel radiometer. Comparison is made with experiment.

  13. Constants of motion, ladder operators and supersymmetry of the two-dimensional isotropic harmonic oscillator

    Energy Technology Data Exchange (ETDEWEB)

    Mota, R.D. [Unidad Profesional Interdisciplinaria de Ingenieria y Tecnologias Avanzadas, Mexico DF (Mexico)]. E-mail: mota@gina.esfm.ipn.mx; ravelo@esfm.ipn.mx; Granados, V.D.; Queijeiro, A.; Garcia, J. [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, Mexico DF (Mexico)

    2002-03-29

    For the quantum two-dimensional isotropic harmonic oscillator we show that the Infeld-Hull radial operators, as well as those of the supersymmetric approach for the radial equation, are contained in the constants of motion of the problem. (author)

  14. European Pulsar Timing Array limits on an isotropic stochastic gravitational-wave background

    NARCIS (Netherlands)

    Lentati, L.; Taylor, S.R.; Mingarelli, C.M.F.; Sesana, A.; Sanidas, S.A.; Vecchio, A.; Caballero, R.N.; Lee, K.J.; van Haasteren, R.; Babak, S.; Bassa, C.G.; Brem, P.; Burgay, M.; Champion, D.J.; Cognard, I.; Desvignes, G.; Gair, J.R.; Guillemot, L.; Hessels, J.W.T.; Janssen, G.H.; Karuppusamy, R.; Kramer, M.; Lassus, A.; Lazarus, P.; Liu, K.; Osłowski, S.; Perrodin, D.; Petiteau, A.; Possenti, A.; Purver, M.B.; Rosado, P.A.; Smits, R.; Stappers, B.; Theureau, G.; Tiburzi, C.; Verbiest, J.P.W.

    2015-01-01

    We present new limits on an isotropic stochastic gravitational-wave background (GWB) using a six pulsar data set spanning 18 yr of observations from the 2015 European Pulsar Timing Array data release. Performing a Bayesian analysis, we fit simultaneously for the intrinsic noise parameters for each p

  15. Isotropic averaging for cell-dynamical-system simulation of spinodal decomposition

    Indian Academy of Sciences (India)

    Anand Kumar

    2003-07-01

    Formulae have been developed for the isotropic averagings in two and three dimensions. Averagings are employed in the cell-dynamical-system simulation of spinodal decomposition for inter-cell coupling. The averagings used in earlier works on spinodal decomposition have been discussed.

  16. Dielectric spectroscopy of isotropic liquids and liquid crystal phases with dispersed graphene oxide

    Science.gov (United States)

    Al-Zangana, Shakhawan; Iliut, Maria; Boran, Gökçen; Turner, Michael; Vijayaraghavan, Aravind; Dierking, Ingo

    2016-08-01

    Graphene oxide (GO) flakes of different sizes were prepared and dispersed in isotropic and nematic (anisotropic) fluid media. The dielectric relaxation behaviour of GO-dispersions was examined for a wide temperature (25-60 oC) and frequency range (100 Hz-2 MHz). The mixtures containing GO flakes exhibited varying dielectric relaxation processes, depending on the size of the flakes and the elastic properties of the dispersant fluid. Relaxation frequencies of the GO doped isotropic media, such as isopropanol IPA, were observed to be much lower than the GO doped thermotropic nematic medium 5CB. It is anticipated that the slow relaxation frequencies (~10 kHz) could be resulting from the relaxation modes of the GO flakes while the fast relaxation frequencies (~100 kHz) could indicate strongly slowed down molecular modes of the nematogenic molecules, which are anchored to the GO flakes via dispersion interactions. The relaxation frequencies decreased as the size of the GO flakes in the isotropic solvent was increased. Polarizing microscopy showed that GO flakes with a mean diameter of 10 μm, dispersed in water, formed a lyotropic nematic liquid crystal phase. This lyotropic nematic exhibited the slowest dielectric relaxation process, with relaxation frequencies in the order of 2 kHz, as compared to the GO-isotropic suspension and the GO-doped 5CB.

  17. Quasilocal Conserved Operators in the Isotropic Heisenberg Spin-1/2 Chain.

    Science.gov (United States)

    Ilievski, Enej; Medenjak, Marko; Prosen, Tomaž

    2015-09-18

    Composing higher auxiliary-spin transfer matrices and their derivatives, we construct a family of quasilocal conserved operators of isotropic Heisenberg spin-1/2 chain and rigorously establish their linear independence from the well-known set of local conserved charges.

  18. Quasilocal Conserved Operators in the Isotropic Heisenberg Spin-1/2 Chain

    NARCIS (Netherlands)

    Ilievski, E.; Medenjak, M.; Prosen, T.

    2015-01-01

    Composing higher auxiliary-spin transfer matrices and their derivatives, we construct a family of quasilocal conserved operators of isotropic Heisenberg spin-1/2 chain and rigorously establish their linear independence from the well-known set of local conserved charges.

  19. Determination of angular distribution of radiation in an isotropically scattering slab

    Science.gov (United States)

    Cengel, Y. A.; Ozisik, M. N.; Yener, Y.

    1984-02-01

    Ozisik (1982) has employed the Galerkin method to arrive at a solution of the radiative transfer equation in an absorbing, emitting, isotropically scattering plane-parallel slab in order to predict radiation flux. This method is presently developed to accurately determine the angular distribution of radiation intensity anywhere in the medium, subject to general boundary conditions.

  20. The 3-D non-axisymmetrical Lamb's problem in transversely isotropic saturated poroelastic media

    Institute of Scientific and Technical Information of China (English)

    HUANG; Yi; WANG; Xiaogang

    2004-01-01

    Based on Biot's theory on fluid-saturated porous media, the displacement functions are adopted to convert the 3-D Biot's wave equations in the cylindrical coordinate for transversely isotropic saturated poroelastic media into two--one 6-order and one 2-order--uncoupling differential governing equations. Then, the differential equations are solved by the Fourier expanding and Hankel integral transform method.Integral solutions of soil skeleton displacements and pore pressure as well as the total stresses for poroelastic media are obtained. Furthermore, the systematic study on Lamb's problems for the transversely isotropic saturated poroelastic media is performed. Integral solutions for surface radial, vertical and circumferential displacements are obtained in both cases of drained surface and undrained surface under the vertical and horizontal harmonic excitation force. In the end of this paper, the numerical examples are presented.The calculation results indicate that the difference between the model of isotropic saturated poroelastic media and that of transversely isotropic saturated poroelastic media is obvious.

  1. LOCALIZED BUCKLING OF THE SEMI-INFINITE ISOTROPIC PLATE NEAR ELASTICALLY FASTENED EDGE

    Directory of Open Access Journals (Sweden)

    Sharifian R.

    2012-06-01

    Full Text Available Localized buckling of a semi-infinite isotropic plate near elastically fastened edge has been investigated. Mathematical model is of structure is provided and characteristic equation of the problem is derived. The existence conditions of localized buckling are derived analytically. For the cases when localized buckling exists numerical solutions and plots for the critical loads are provided.

  2. The isotropic-nematic phase transition of tangent hard-sphere chain fluids—Pure components

    NARCIS (Netherlands)

    Van Westen, T.; Oyarzun, B.; Vlugt, T.J.H.; Gross, J.

    2013-01-01

    An extension of Onsager's second virial theory is developed to describe the isotropic-nematic phase transition of tangent hard-sphere chain fluids. Flexibility is introduced by the rod-coil model. The effect of chain-flexibility on the second virial coefficient is described using an accurate, analyt

  3. Multiscale modeling of residual stresses in isotropic conductive adhesives with nano particles

    NARCIS (Netherlands)

    Erinc, M.; Dijk, M. van; Kouznetsova, V.H.

    2012-01-01

    Isotropic Conductive Adhesives (ICAs) are promising candidates for low temperature joining technologies in microelectronics, enabling ultra-fine pitch sizes. Especially in solar and automotive applications, long-term reliability is a prerequisite in new generation electronics. It is essential that

  4. A new isotropic vector Preisach-type model of hysteresis and its identification

    Energy Technology Data Exchange (ETDEWEB)

    Mayergoyz, I.D.; Adly, A.A. (Univ. of Maryland, College Park, MD (United States))

    1993-11-01

    A new vector isotropic Preisach-type model of hysteresis is introduced and the identification problem for this model is posed. A mathematical machinery for the solution of the identification problem by using ''scalar'' and ''rotational'' experimental data is presented.

  5. Reliability investigations on LIFT-printed isotropic conductive adhesive joints for system-in-foil applications

    NARCIS (Netherlands)

    Sridhar, A.; Perinchery, S.M.; Smits, E.C.P.; Mandamparambil, R.; Brand, J. van den

    2015-01-01

    The reliability of a commercially available isotropic conductive adhesive (ICA) deposited via laser induced forward transfer (LIFT) printing is reported. ICAs are particularly important for surfacemount device (SMD) integration onto low-cost, large-area system-in-foil (SiF) applications such as radi

  6. Reliability investigations on LIFT-printed isotropic conductive adhesive joints for system-in-foil applications

    NARCIS (Netherlands)

    Sridhar, A.; Perinchery, S.M.; Smits, E.C.P.; Mandamparambil, R.; Brand, J. van den

    2015-01-01

    The reliability of a commercially available isotropic conductive adhesive (ICA) deposited via laser induced forward transfer (LIFT) printing is reported. ICAs are particularly important for surfacemount device (SMD) integration onto low-cost, large-area system-in-foil (SiF) applications such as radi

  7. Multiscale modeling of residual stresses in isotropic conductive adhesives with nano particles

    NARCIS (Netherlands)

    Erinc, M.; Dijk, M. van; Kouznetsova, V.H.

    2012-01-01

    Isotropic Conductive Adhesives (ICAs) are promising candidates for low temperature joining technologies in microelectronics, enabling ultra-fine pitch sizes. Especially in solar and automotive applications, long-term reliability is a prerequisite in new generation electronics. It is essential that r

  8. Constraining dark matter annihilation with the isotropic γ-ray background: updated limits and future potential

    NARCIS (Netherlands)

    Bringmann, T.; Calore, F.; Di Mauro, M.; Donato, F.

    2014-01-01

    The nature of the isotropic γ-ray background (IGRB) measured by the Large Area Telescope (LAT) on the Fermi γ-ray space telescope (Fermi) remains partially unexplained. Non-negligible contributions may originate from extragalactic populations of unresolved sources such as blazars, star-forming galax

  9. Reliability investigations on LIFT-printed isotropic conductive adhesive joints for system-in-foil applications

    NARCIS (Netherlands)

    Sridhar, A.; Perinchery, S.M.; Smits, E.C.P.; Mandamparambil, R.; Brand, J. van den

    2015-01-01

    The reliability of a commercially available isotropic conductive adhesive (ICA) deposited via laser induced forward transfer (LIFT) printing is reported. ICAs are particularly important for surfacemount device (SMD) integration onto low-cost, large-area system-in-foil (SiF) applications such as

  10. Multiaxial yield surface of transversely isotropic foams: Part I-Modeling

    Science.gov (United States)

    Ayyagari, Ravi Sastri; Vural, Murat

    2015-01-01

    A new yield criterion is proposed for transversely isotropic solid foams. Its derivation is based on the hypothesis that the yielding in foams is driven by the total strain energy density, rather than a completely phenomenological approach. This allows defining the yield surface with minimal number of parameters and does not require complex experiments. The general framework used leads to the introduction of new scalar measures of stress and strain (characteristic stress and strain) for transversely isotropic foams. Furthermore, the central hypothesis that the total strain energy density drives yielding in foams ascribes to the characteristic stress an analogous role of von Mises stress in metal plasticity. Unlike the overwhelming majority of yield models in literature the proposed model recognizes the tension-compression difference in yield behavior of foams through a linear mean stress term. Predictions of the proposed yield model are in excellent agreement with the results of uniaxial, biaxial and triaxial FE analyses implemented on both isotropic and transversely isotropic Kelvin foam models.

  11. Translation surfaces in the three-dimensional simply isotropic space 𝕀31

    Science.gov (United States)

    Karacan, Murat Kemal; Yoon, Dae Won; Bukcu, Bahaddin

    2016-05-01

    In this paper, we classify translation surfaces in the three-dimensional simply isotropic space 𝕀31 under the condition Δix i = λixi where Δ is the Laplace operator with respect to the first and second fundamental forms and λ is a real number. We also give explicit forms of these surfaces.

  12. Weighted Multi-Parameter Non-Isotropic Flag Triebel-Lizorkin and Besov Spaces

    OpenAIRE

    Liao, F; Liu, Z.

    2014-01-01

    In this paper, the authors use the discrete Littlewood-Paley-Stein theory to introduce weighted multi-parameter Triebel-Lizorkin and Besov spaces associated with non-isotropic flag singular integrals under a rather weak weight condition $(w\\in A_\\infty)$. They also obtain the boundedness of flag singular integrals on these spaces.

  13. Exploitation of homogeneous isotropic turbulence models for optimization of turbulence remote sensing

    NARCIS (Netherlands)

    Oude Nijhuis, A.C.P.; Krasnov, O.K.; Unal, C.M.H.; Russchenberg, H.W.J.; Yarovoy, A.

    2015-01-01

    Homogeneous isotropic turbulence (HIT) models are compared, with respect to optimization of turbulence remote sensing. HIT models have different applications such as load calculation for wind turbines (Mann, 1998) or droplet track modelling (Pinsky and Khain, 2006). Details of vortices seem of less

  14. Development of non-magnetic high manganese cryogenic steel for the construction of LHC project's superconducting magnet

    CERN Document Server

    Ozaki, Y; Kakihara, S; Shiraishi, M; Morito, N; Nohara, K

    2002-01-01

    High manganese steel (KHMN30L) as a cryogenic nonmagnetic material has been developed by Kawasaki Steel Corporation, which is designed for structural material for superconducting magnet in particle accelerator system. This steel satisfies the following requirements for the present use. 1) Low magnetic permeability: its relative magnetic permeability is lower than 1.002 throughout the range between 1.9 K and room temperature, and shows little temperature dependency which is the result of the highly elevated Neel temperature controlled by alloying composition design. 2) Low thermal expansion: its integrated contraction from room temperature to 4.2 K is as small as 0.18%. 3) Appropriate mechanical properties: yield strength and tensile strength can be adjusted to the desirable value by the manufacturing process condition without deteriorating physical properties. With these excellent properties, this steel is being supplied for nonmagnetic lamination of the cold mass of the LHC (Large Hadron Collider) supercondu...

  15. Isotropic-nematic phase equilibria of hard-sphere chain fluids—Pure components and binary mixtures

    NARCIS (Netherlands)

    Oyarzun, B.; Van Westen, T.; Vlugt, T.J.H.

    2015-01-01

    The isotropic-nematic phase equilibria of linear hard-sphere chains and binary mixtures of them are obtained from Monte Carlo simulations. In addition, the infinite dilution solubility of hard spheres in the coexisting isotropic and nematic phases is determined. Phase equilibria calculations are

  16. Effect of metal-to-metal interface states on the electric-field modified magnetic anisotropy in MgO/Fe/non-magnetic metal

    Science.gov (United States)

    Guan, X. W.; Cheng, X. M.; Huang, T.; Wang, S.; Xue, K. H.; Miao, X. S.

    2016-04-01

    The impact of metal-to-metal interface on electric-field modified magnetic anisotropy in MgO/Fe/non-magnetic metal (Ta, Pt, Au) is revealed by density functional calculations. We demonstrate that the contribution from the metal-to-metal interface can be strong enough to dominate the electric field effect on magnetic anisotropy of Fe/MgO-based films, and the strain could also effectively tune the electric field effect. By analyzing the interface states by density of states and band structures, the dependence of the magnetoelectric effect on metal-to-metal interface is elucidated. These results are of considerable interest in the area of electric field controlled magnetic anisotropy and switching.

  17. Properties of the antiferromagnetic selenite MnSeO3 and its non-magnetic analogue ZnSnO3 from first principles calculations

    Science.gov (United States)

    Honer, C. J.; Prosniewski, M. J.; Putatunda, A.; Singh, David J.

    2017-10-01

    We report the properties of the antiferromagnetic selenite MnSeO3 and the non-magnetic analogue ZnSeO3, based on first principles calculations. These compounds are rare examples of ABO3 perovskites with a tetravalent A-site and a divalent B-site. The electronic structure is discussed in the context of the bonding and crystal structure. There is cross-gap hybridization between the O p states that form the valence bands of these compounds and the unoccupied p states of Se, reflecting the lone pair physics that leads to the strong off-centering of Se from the perovskite A-site. The G-type antiferromagnetism of MnSeO3 is a local moment in nature arising from high spin Mn2+ with short range interactions. Additionally, there is an interesting spin-dependent hybridization of Mn d and O p states analogous to that in colossal magnetoresistance manganites.

  18. A unified formulation for guided-wave propagation in multi-layered mixed anisotropic-isotropic hybrid aerospace composites

    Science.gov (United States)

    Barazanchy, Darun; Giurgiutiu, Victor

    2016-04-01

    A unified approach was formulated to predict guided-wave propagation in a material regardless its degree of anisotropy, thereby having one solution method for both isotropic and anisotropic material. The unified approach was based on the coupled eigenvalue problem derived from Chirstoffels equation for a lamina. The eigenvalue problem yielded a set of eigenvalues, and corresponding eigenvectors that were used to obtain the stress-displacement matrix. The dispersion curves were obtained by applying the traction free boundary conditions to the stress-displacement matrix, and searching for sign changes in the complex determinant of the matrix. To search for sign changes, hence the velocity-wavenumber pairs which yielded a solution to the problem, the real and imaginary part of the complex determinant had to change sign simultaneously. A phase angle approach was, therefore, developed and successfully applied. A refinement algorithm was applied to refine the accuracy of the solution without increasing the computational time significantly. A high accuracy was required to calculated the correct partial-wave participation factors. The obtained partial-wave participation factors were used to calculate the modeshape through the thickness for each velocity-wavenumber pair. To identify the different wave types, A0, S0, SHS0, SHA0, a modeshape identification was applied successfully. The unified approach was evaluated for hybrid aerospace composites. In addition, the two most common solution methods: (i) the global matrix method; and (ii) the transfer matrix method were applied, and a comparative study between the different methods was performed.

  19. Reduction of magnetic damping and isotropic coercivity and increase of saturation magnetization in Rh-incorporated CoIr system

    Science.gov (United States)

    Wong, H. S.; He, S. K.; Chung, H. J.; Zhang, M. S.; Cher, Kelvin; Low, Melvin; Zhou, T. J.; Yang, Y.; Wong, S. K.

    2016-11-01

    Replacing Ir with Rh in a CoIr system possessing negative uniaxial magnetocrystalline anisotropy (K u ) substantially reduces its magnetic damping and coercivity by more than half while retaining its high negative K u . Moreover, a higher saturation magnetization (M s ) and more isotropic coercivity are achieved. Such material development makes it particularly suitable for use as the soft underlayer (SUL) of magnetic recording media for reducing noise, and as the oscillation layer of a spin-torque oscillator (STO) for achieving higher oscillation frequency, larger AC magnetic field and lower driving current, which can be readily integrated with the current recording head for microwave-assisted magnetic recording. Finally, we recommend a composite free layer by coupling CoIr with a spin polarizer (Co or Co/Cu/Co) for the enhancement of the spin-polarization rate and, therefore, the improvement of STO efficiency. These could pave the way for CoIr-based materials to be implemented in devices requiring a negative Ku with low damping and high ‘softness’, such as oscillators.

  20. Proton-detected 3D (15)N/(1)H/(1)H isotropic/anisotropic/isotropic chemical shift correlation solid-state NMR at 70kHz MAS.

    Science.gov (United States)

    Pandey, Manoj Kumar; Yarava, Jayasubba Reddy; Zhang, Rongchun; Ramamoorthy, Ayyalusamy; Nishiyama, Yusuke

    2016-01-01

    Chemical shift anisotropy (CSA) tensors offer a wealth of information for structural and dynamics studies of a variety of chemical and biological systems. In particular, CSA of amide protons can provide piercing insights into hydrogen-bonding interactions that vary with the backbone conformation of a protein and dynamics. However, the narrow span of amide proton resonances makes it very difficult to measure (1)H CSAs of proteins even by using the recently proposed 2D (1)H/(1)H anisotropic/isotropic chemical shift (CSA/CS) correlation technique. Such difficulties due to overlapping proton resonances can in general be overcome by utilizing the broad span of isotropic chemical shifts of low-gamma nuclei like (15)N. In this context, we demonstrate a proton-detected 3D (15)N/(1)H/(1)H CS/CSA/CS correlation experiment at fast MAS frequency (70kHz) to measure (1)H CSA values of unresolved amide protons of N-acetyl-(15)N-l-valyl-(15)N-l-leucine (NAVL).

  1. Oscillating test of the isotropic shift of the speed of light.

    Science.gov (United States)

    Baynes, Fred N; Tobar, Michael E; Luiten, Andre N

    2012-06-29

    In this Letter, we present an improved constraint on possible isotropic variations of the speed of light. Within the framework of the standard model extension, we provide a limit on the isotropic, scalar parameter κ̃(tr) of 3±11×10({-10), an improvement by a factor of 6 over previous constraints. This was primarily achieved by modulating the orientation of the experimental apparatus with respect to the velocity of Earth. This orientation modulation shifts the signal for Lorentz invariance to higher frequencies, and we have taken advantage of the higher stability of the resonator at shorter time scales, together with better rejection of systematic effects, to provide a new constraint.

  2. On the effects of isotropic turbulence on the evaporation rate of a liquid droplet

    Science.gov (United States)

    Dodd, Michael; Ferrante, Antonino

    2016-11-01

    Our objective is to explain the effects of isotropic turbulence on the vaporization rate of a liquid droplet in conditions that are relevant to spray combustion applications. To this end, we have performed direct numerical simulation (DNS) of a single droplet in homogeneous isotropic turbulence using the volume-of-fluid method for resolving fully the process of momentum, heat, and mass transfer between the liquid droplet and the gas. The simulations were performed using 10243 grid points. The effect of turbulence on the droplet vaporization rate is investigated by varying the gas-phase Reynolds number based on the Taylor microscale, Reλ. Reλ is increased from 0 to 75 by increasing the r.m.s. velocity of the gas phase while keeping all other physical properties constant. We will present the droplet evaporation rate as a function of turbulence Reynolds number and investigate the physical mechanisms.

  3. Zonal disintegration mechanism of isotropic rock masses around a deep spherical tunnel

    Institute of Scientific and Technical Information of China (English)

    谷新保; 毕靖; 许明

    2015-01-01

    In order to investigate zonal disintegration mechanism of isotropic rock masses around a deep spherical tunnel, a new mechanical model subjected to dynamic unloading under hydrostatic pressure condition is proposed. The total elastic stress-field distributions is determined using the elastodynamic equation. The effects of unloading rate and dynamic mechanical parameters of isotropic deep rock masses on the zonal disintegration phenomenon of the surrounding rock masses around a deep spherical tunnel as well as the total elastic stress field distributions are considered. The number and size of fractured and non-fractured zones are determined by using the Hoek-Brown criterion. Numerical computation is carried out. It is found from numerical results that the number of fractured zones increases with increasing the disturbance coefficient, in-situ stress, unloading time and unloading rate, and it decreases with increasing parameter geological strength index, the strength parameter and the uniaxial compressive strength of intact rock.

  4. Time delay anisotropy in photoelectron emission from the isotropic ground state of helium

    CERN Document Server

    Heuser, Sebastian; Cirelli, Claudio; Sabbar, Mazyar; Boge, Robert; Lucchini, Matteo; Gallmann, Lukas; Ivanov, Igor; Kheifets, Anatoli S; Dahlström, J Marcus; Lindroth, Eva; Argenti, Luca; Martín, Fernando; Keller, Ursula

    2015-01-01

    Time delays of electrons emitted from an isotropic initial state and leaving behind an isotropic ion are assumed to be angle-independent. Using an interferometric method involving XUV attosecond pulse trains and an IR probe field in combination with a detection scheme, which allows for full 3D momentum resolution, we show that time delays between electrons liberated from the $1s^{2}$ spherically symmetric ground state of He depend on the emission direction of the electrons with respect to the linear polarization axis of the ionizing XUV light. Such time delays can exhibit values as large as 60 attoseconds. With the help of refined theoretical models we can attribute the observed anisotropy to the interplay between different final quantum states, which arise naturally when two photons are involved in the photoionization process. Since most measurement techniques tracing attosecond electron dynamics have involved at least two photons so far, this is a general, significant, and initially unexpected effect that m...

  5. DYNAMIC CONTACT STIFFNESS OF VIBRATING RIGID SPHERE CONTACTING SEMI-INFINITE TRANSVERSELY ISOTROPIC VISCOELASTIC SOLID

    Institute of Scientific and Technical Information of China (English)

    Jiayong Tian; Zhoumin Xie

    2008-01-01

    Dynamic contact stiffness at the interface between a vibrating rigid sphere and a semi-infinite transversely isotropic viscoelastic solid is investigated. An oscillating force superimposed onto a static compressive force in the vertical direction excites the vibration of a rigid sphere, which causes variable contact radius and contact pressure distribution in the contact region. The assumption of a sufficiently small oscillating force yields a dynamic contact-pressure distribution of a constant contact radius, which gives dynamic contact stiffness at the interface between the rigid sphere and the semi-infinite solid. Numerical calculations show the influence of vibration frequency of the sphere, and elastic constants of the transversely isotropic solid on dynamic contact stiffness, which benefits quantitative evaluation of elastic constants and orientation of single hexagonal grains by resonance-frequency shifts of the oscillator in resonance ultrasound microscopy.

  6. Optimized analysis of isotropic high-nuclearity spin clusters with GPU acceleration

    Science.gov (United States)

    Lamas Daviña, A.; Ramos, E.; Roman, J. E.

    2016-12-01

    The numerical simulation of molecular clusters formed by a finite number of exchange-coupled paramagnetic centers is very relevant for many applications, modeling systems between molecules and extended solids. In the context of realistic scenarios, many centers need to be considered, and thus the required computational effort grows very fast. In a previous work (Ramos et al., 2010), a set of parallel programs were presented with standard message-passing parallelization (MPI) for both anisotropic and isotropic systems. In this work, we have further developed the code for isotropic models. On one hand, the computational cost has been significantly reduced by avoiding some of the matrix diagonalizations, corresponding to blocks with negligible contribution for the particular configuration. On the other hand, we have extended the parallelization in order to exploit available graphics processing units (GPUs). The new MPI-GPU paradigm reduces the computational time by at least one additional order of magnitude and enables the resolution of larger problems.

  7. Goos-Hänchen Lateral Displacements at the Interface between Isotropic and Gyroelectric Media

    Directory of Open Access Journals (Sweden)

    Jinbao Wang

    2013-01-01

    Full Text Available A detailed study on Goos-Hänchen (GH lateral displacements of the reflected and transmitted waves propagating at the interface between an isotropic medium and a gyroelectric medium in Voigt configuration is presented. After the reflection coefficient and transmission coefficient are derived, based on the stationary phase approach, GH lateral displacements are obtained analytically. The numerical results for a specific gyroelectric medium are also given. It shows that with the existence of an applied magnetic field, the GH effect occurs not only during total reflection but also during nontotal reflection, which is not true for isotropic media. Moreover, due to the nonreciprocal property of the gyroelectric medium, the sign of the incident angle also influences the displacements. Finite-element method simulations have verified the theoretical results.

  8. DNS study on shock/turbulence interaction in homogeneous isotropic turbulence at low turbulent Mach number

    Science.gov (United States)

    Tanaka, Kento; Watanabe, Tomoaki; Nagata, Koji; Sasoh, Akihiro; Sakai, Yasuhiko; Hayase, Toshiyuki; Nagoya Univ Collaboration

    2016-11-01

    The interaction between homogeneous isotropic turbulence and normal shock wave is investigated by direct numerical simulations (DNSs). In the DNSs, a normal shock wave with a shock Mach number 1.1 passes through homogeneous isotropic turbulence with a low turbulent Mach number and a moderate turbulent Reynolds number. The statistics are calculated conditioned on the distance from the shock wave. The results showed that the shock wave makes length scales related to turbulence small. This effect is significant for the Taylor microscale defined with the velocity derivative orthogonal to the shock wave. The decrease in the Kolmogorov scale is also found. Statistics of velocity derivative are found to be changed by the shock wave propagation. The shock wave causes enstrophy amplification due to the dilatation/vorticity interaction. By this interaction, the vorticity components parallel to the shock wave is more amplified than the normal component. The strain rate is also amplified by the shock wave.

  9. Thick brane isotropization in the 5D anisotropic standing wave braneworld model

    CERN Document Server

    Gogberashvili, Merab; Malagon-Morejon, Dagoberto; Mora-Luna, Refugio Rigel; Nucamendi, Ulises

    2014-01-01

    We study a smooth cosmological solution of the 5D anisotropic standing wave braneworld model generated by gravity coupled to a phantom-like scalar field. In this model the brane emits anisotropic waves into the bulk with different amplitudes along different spatial dimensions. We found a natural mechanism which isotropizes the braneworld, rendering a 3-brane with de Sitter symmetry embedded in a 5D de Sitter space-time for a wide class of initial conditions. The resulting thick geometrical braneworld (a de Sitter 3-brane) possesses a series of remarkable features. By explicitly solving the bulk field equations we are able to give a physical interpretation of the anisotropic dissipation: as the anisotropic energy on the 3-brane rapidly leaks into the bulk, through the nontrivial Weyl tensor components, the bulk becomes less isotropic.

  10. Lamb waves in a thin isotropic layer between two anisotropic layers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Haiyan; ZHOU Quan; L(U) Donghui

    2004-01-01

    Attenuative Lamb wave propagation in adhesively bonded anisotropic composite plates is introduced. The isotropic adhesive exhibits viscous behavior to stimulate the poor curing of the middle layer. Viscosity is assumed to vary linearly with frequency, implying that attenuation per wavelength is constant. Attenuation can be implemented in the analysis through modification of elastic properties of isotropic adhesive. The new properties become complex, but cause no further complications in the analysis. The characteristic equation is the same as that used for the elastic plate case, except that both real and imaginary parts of the wave number (i.e., the attenuation) must be computed. Based on the Lowe's solution in finding the complex roots of characteristic equation, the effect of longitudinal and shear attenuation coefficients of the middle adhesive layer on phase velocity dispersion curves and attenuation dispersion curves of Lamb waves propagating in bonded anisotropic composites is visualized numerically.

  11. Simplified P$_N$ Equations for Nonclassical Transport with Isotropic Scattering

    CERN Document Server

    Vasques, R

    2016-01-01

    A nonclassical diffusion approximation has been previously derived for the the one-speed nonclassical transport equation with isotropic scattering. In this paper we use an asymptotic analysis to derive more accurate diffusion approximations to the nonclassical transport equation. If the free-path distribution is given by an exponential (classical transport), these approximations reduce to the simplified P$_N$ (SP$_N$) equations; therefore, they are labeled nonclassical SP$_N$ equations.

  12. Magnetic Field Line Random Walk in Isotropic Turbulence with Varying Mean Field

    Science.gov (United States)

    Sonsrettee, W.; Subedi, P.; Ruffolo, D.; Matthaeus, W. H.; Snodin, A. P.; Wongpan, P.; Chuychai, P.; Rowlands, G.; Vyas, S.

    2016-08-01

    In astrophysical plasmas, the magnetic field line random walk (FLRW) plays an important role in guiding particle transport. The FLRW behavior is scaled by the Kubo number R=(b/{B}0)({{\\ell }}\\parallel /{{\\ell }}\\perp ) for rms magnetic fluctuation b, large-scale mean field {{\\boldsymbol{B}}}0, and coherence scales parallel ({{\\ell }}\\parallel ) and perpendicular ({{\\ell }}\\perp ) to {{\\boldsymbol{B}}}0. Here we use a nonperturbative analytic framework based on Corrsin’s hypothesis, together with direct computer simulations, to examine the R-scaling of the FLRW for varying B 0 with finite b and isotropic fluctuations with {{\\ell }}\\parallel /{{\\ell }}\\perp =1, instead of the well-studied route of varying {{\\ell }}\\parallel /{{\\ell }}\\perp for b \\ll {B}0. The FLRW for isotropic magnetic fluctuations is also of astrophysical interest regarding transport processes in the interstellar medium. With a mean field, fluctuations may have variance anisotropy, so we consider limiting cases of isotropic variance and transverse variance (with b z = 0). We obtain analytic theories, and closed-form solutions for extreme cases. Padé approximants are provided to interpolate all versions of theory and simulations to any B 0. We demonstrate that, for isotropic turbulence, Corrsin-based theories generally work well, and with increasing R there is a transition from quasilinear to Bohm diffusion. This holds even with b z = 0, when different routes to R\\to ∞ are mathematically equivalent; in contrast with previous studies, we find that a Corrsin-based theory with random ballistic decorrelation works well even up to R = 400, where the effects of trapping are barely perceptible in simulation results.

  13. Stress concentration in a transversely isotropic spherical shell with two circular rigid inclusions

    Science.gov (United States)

    Chekhov, V. N.; Zakora, S. V.

    2011-10-01

    The refined Timoshenko-type theory that takes into account the transverse shear strains is used to find an analytic solution for the stress state of transversely isotropic shallow spherical shell with two circular rigid inclusions. The case of a shell with closely spaced rigid inclusions of unequal radii under internal pressure is analyzed numerically. The stresses in the shell increase considerably with decrease in the distance between the inclusions and increase in the transverse shear parameter

  14. Energy landscapes of ion clusters in isotropic quadrupolar and octupolar traps

    OpenAIRE

    Yurtsever, Ersin; Calvo, F.; Wales, D.C.

    2012-01-01

    THE JOURNAL OF CHEMICAL PHYSICS 136, 024303 (2012) Energy landscapes of ion clusters in isotropic quadrupolar and octupolar traps F. Calvo,1,a) E. Yurtsever,2 and D. J. Wales3 1LASIM, Université Claude Bernard Lyon 1 and CNRS UMR 5579, 43 Bd du 11 Novembre 1918, F69622 Villeurbanne Cedex, France 2Koç University, Rumelifeneriyolu, Sariyer, Istanbul 34450, Turkey 3University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, United Kingdom (Received 4 November 201...

  15. Time Decay Rates of the Isotropic Non-Newtonian Flows in Rn

    Institute of Scientific and Technical Information of China (English)

    Bo-Qing Dong

    2007-01-01

    This paper is concerned with time decay rates for weak solutions to a class system of isotropic incompressible non-Newtonian fluid motion in Rn. With the use of the spectral decomposition methods of Stokes operator, the optimal decay estimates of weak solutions in L2 norm are derived under the different conditions on the initial velocity. Moreover, the error estimates of the difference between non-Newtonian flow and Navier-Stokes flow are also investigated.

  16. Characteristics of dissimilar laser-brazed joints of isotropic graphite to WC-Co alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nagatsuka, Kimiaki, E-mail: nagatuka@jwri.osaka-u.ac.jp [Graduate School of Engineering, Osaka University, Joining and Welding Research Institute, 11-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan); Sechi, Yoshihisa, E-mail: sechi@kagoshima-it.go.jp [Kagoshima Prefectural Institute of Industrial Technology, 1445-1 Oda, Hayato-cho, Kirishima, Kagoshima 899-5105 (Japan); Miyamoto, Yoshinari, E-mail: y_miyamoto@toyotanso.co.jp [Toyo Tanso Co., Ltd., 5-7-12 Takeshima, Nishiyodgawa-ku, Osaka 555-0011 (Japan); Nakata, Kazuhiro, E-mail: nakata@jwri.osaka-u.ac.jp [Joining and Welding Research Institute, Osaka University, 11-1, Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2012-04-25

    Highlights: Black-Right-Pointing-Pointer Ti was required in the filler metal for brazing graphite to WC-Co alloy. Black-Right-Pointing-Pointer The shear strength of the joint increased with Ti content up to 1.7 mass%. Black-Right-Pointing-Pointer Ti concentrated at the interface of graphite/filler metal. Black-Right-Pointing-Pointer TiC was formed at the interface of graphite/filler metal. - Abstract: The effect of Ti serving as an activator in a eutectic Ag-Cu alloy filler metal in dissimilar laser-brazed joints of isotropic graphite and a WC-Co alloy on the joint strength and the interface structure of the joint is investigated in this study. To evaluate the joint characteristics, the Ti content in the filler metal was increased from 0 to 2.8 mass%. The laser brazing was carried out by irradiating a laser beam selectively on the WC-Co alloy plate in Ar atmosphere. The threshold content of Ti required to join isotropic graphite to WC-Co alloy was 0.4 mass%. The shear strength at the brazed joint increased rapidly with increasing Ti content up to 1.7 mass%, and a higher Ti content was found to be likely to saturate the shear strength to a constant value of about 14 MPa. The isotropic graphite blocks also fractured at this content. The concentration of Ti observed at the interface between isotropic graphite and the filler metal indicates the formation of an intermetallic layer of TiC.

  17. Acoustoelastic effects of Stoneley waves in a borehole surrounded by a transversely isotropic elastic solid

    OpenAIRE

    Jinxia Liu; Zhiwen Cui; Zhengliang Cao; Kexie Wang

    2014-01-01

    Stoneley wave in a fluid-filled pressurized borehole surrounded by a transversely isotropic elastic solid with nine independent third-order elastic constants in presence of biaxial stresses are studied. A simplified acoustoelastic formulation of Stoneley wave is presented for the parallelism of the borehole axis and the formation axis of symmetry. Sensitivity coefficients and velocity dispersions for Stoneley wave due to the presence of stresses are numerically investigated, respectively. The...

  18. Analytical reconstruction of isotropic turbulence spectra based on the Gaussian transform

    OpenAIRE

    Wohlbrandt, Attila; Hu, Nan; Guerin, Sebastien; Ewert, Roland

    2015-01-01

    The Random Particle Mesh (RPM) method used to simulate turbulence-induced broadband noise in several aeroacoustic applications is extended to realise isotropic turbulence spectra. With this method turbulent fluctuations are synthesised by filtering white noise with a Gaussian filter kernel that in turn gives a Gaussian spectrum. The Gaussian function is smooth and its derivatives and integrals are again Gaussian functions. The Gaussian filter is efficient and finds wide-spread applications in...

  19. Linear and Nonlinear Plasmonics from Isotropic and Anisotropic Integrated Nanocomposites for Quantum Information Applications

    Science.gov (United States)

    2014-01-09

    nanoparticles (NPs) were added to luminescent porous silicon by drop casting. These NPs interact with this system by modifying its optical properties ...response by Au NPs in sapphire: Nonlinear optical response of Au metallic NPs, synthesized and embedded in sapphire by using ion implantation, as a...Linear and nonlinear plasmonics from isotropic and anisotropic integrated nanocomposites for quantum information applications. Jorge-Alejandro Reyes

  20. On the Ricci Curvature of a Randers Metric of Isotropic S-curvature

    Institute of Scientific and Technical Information of China (English)

    Xiao Huan MO; Chang Tao YU

    2008-01-01

    We derive the integral inequality of a Randers metric with isotropic S-curvature in terms of its navigation representation. Using the obtained inequality we give some rigidity results under the condition of Ricci curvature. In particular, we show the following result: Assume that an n-dimensional compact Randers manifold (M, F)hasconstantS-curvature c.Then(M, F) must be Riemannian ifits Ricci curvature satisfies that Ric < - (n - 1)c2.