WorldWideScience

Sample records for non-local thermodynamic equilibrium

  1. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia.

    Science.gov (United States)

    Glavatskiy, K S

    2015-10-28

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval.

  2. Local equilibrium and the second law of thermodynamics for irreversible systems with thermodynamic inertia

    International Nuclear Information System (INIS)

    Glavatskiy, K. S.

    2015-01-01

    Validity of local equilibrium has been questioned for non-equilibrium systems which are characterized by delayed response. In particular, for systems with non-zero thermodynamic inertia, the assumption of local equilibrium leads to negative values of the entropy production, which is in contradiction with the second law of thermodynamics. In this paper, we address this question by suggesting a variational formulation of irreversible evolution of a system with non-zero thermodynamic inertia. We introduce the Lagrangian, which depends on the properties of the normal and the so-called “mirror-image” systems. We show that the standard evolution equations, in particular, the Maxwell-Cattaneo-Vernotte equation, can be derived from the variational procedure without going beyond the assumption of local equilibrium. We also argue that the second law of thermodynamics in non-equilibrium should be understood as a consequence of the variational procedure and the property of local equilibrium. For systems with instantaneous response this leads to the standard requirement of the local instantaneous entropy production being always positive. However, if a system is characterized by delayed response, the formulation of the second law of thermodynamics should be altered. In particular, the quantity, which is always positive, is not the instantaneous entropy production, but the entropy production averaged over a proper time interval

  3. On the forces and fluxes in non-equilibrium thermodynamics

    International Nuclear Information System (INIS)

    Kitahara, Kazuo

    1986-01-01

    A formulation of non-equilibrium thermodynamics of continuum systems based on local equilibrium assumption is reported. Thermodynamic forces are defined from a generalized local entropy and irreversible fluxes are defined as non-advective parts of fluxes of conservative quantities. The validity of the general evolution criterion and its generalization is discussed. (author)

  4. Understanding Non-equilibrium Thermodynamics Foundations, Applications, Frontiers

    CERN Document Server

    Jou, David; Lebon, Georgy

    2007-01-01

    This book offers a homogeneous presentation of the many faces of non-equilibrium thermodynamics. The first part is devoted to a description of the nowadays thermodynamic formalism recognized as the classical theory of non-equilibrium processes. This part of the book may serve as a basis to an introductory course dedicated to first-year graduate students in sciences and engineering. The classical description can however not be complete, as it rests on the hypothesis of local equilibrium. This has fostered the development of many theories going beyond local equilibrium and which cannot be put aside. The second part of the book is concerned with these different approaches, and will be of special interest for PhD students and researchers. For the sake of homogeneity, the authors have used the general structure and methods presented in the first part. Indeed, besides their differences, all these formalisms are not closed boxes but present some overlappings and parallelisms which are emphasized in this book. For pe...

  5. Non-Equilibrium Thermodynamics of Self-Replicating Protocells

    DEFF Research Database (Denmark)

    Fellermann, Harold; Corominas-Murtra, Bernat; Hansen, Per Lyngs

    2018-01-01

    We provide a non-equilibrium thermodynamic description of the life-cycle of a droplet based, chemically feasible, system of protocells. By coupling the protocells metabolic kinetics with its thermodynamics, we demonstrate how the system can be driven out of equilibrium to ensure protocell growth...... and replication. This coupling allows us to derive the equations of evolution and to rigorously demonstrate how growth and replication life-cycle can be understood as a non-equilibrium thermodynamic cycle. The process does not appeal to genetic information or inheritance, and is based only on non......-equilibrium physics considerations. Our non-equilibrium thermodynamic description of simple, yet realistic, processes of protocell growth and replication, represents an advance in our physical understanding of a central biological phenomenon both in connection to the origin of life and for modern biology....

  6. Non-equilibrium thermodynamics

    CERN Document Server

    De Groot, Sybren Ruurds

    1984-01-01

    The study of thermodynamics is especially timely today, as its concepts are being applied to problems in biology, biochemistry, electrochemistry, and engineering. This book treats irreversible processes and phenomena - non-equilibrium thermodynamics.S. R. de Groot and P. Mazur, Professors of Theoretical Physics, present a comprehensive and insightful survey of the foundations of the field, providing the only complete discussion of the fluctuating linear theory of irreversible thermodynamics. The application covers a wide range of topics: the theory of diffusion and heat conduction, fluid dyn

  7. The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics

    Directory of Open Access Journals (Sweden)

    Hameed Metghalchi

    2012-01-01

    Full Text Available The Rate-Controlled Constrained-Equilibrium (RCCE method for the description of the time-dependent behavior of dynamical systems in non-equilibrium states is a general, effective, physically based method for model order reduction that was originally developed in the framework of thermodynamics and chemical kinetics. A generalized mathematical formulation is presented here that allows including nonlinear constraints in non-local equilibrium systems characterized by the existence of a non-increasing Lyapunov functional under the system’s internal dynamics. The generalized formulation of RCCE enables to clarify the essentials of the method and the built-in general feature of thermodynamic consistency in the chemical kinetics context. In this paper, we work out the details of the method in a generalized mathematical-physics framework, but for definiteness we detail its well-known implementation in the traditional chemical kinetics framework. We detail proofs and spell out explicit functional dependences so as to bring out and clarify each underlying assumption of the method. In the standard context of chemical kinetics of ideal gas mixtures, we discuss the relations between the validity of the detailed balance condition off-equilibrium and the thermodynamic consistency of the method. We also discuss two examples of RCCE gas-phase combustion calculations to emphasize the constraint-dependent performance of the RCCE method.

  8. Non-Equilibrium Thermodynamics in Multiphase Flows

    CERN Document Server

    Mauri, Roberto

    2013-01-01

    Non-equilibrium thermodynamics is a general framework that allows the macroscopic description of irreversible processes. This book introduces non-equilibrium thermodynamics and its applications to the rheology of multiphase flows. The subject is relevant to graduate students in chemical and mechanical engineering, physics and material science. This book is divided into two parts. The first part presents the theory of non-equilibrium thermodynamics, reviewing its essential features and showing, when possible, some applications. The second part of this book deals with how the general theory can be applied to model multiphase flows and, in particular, how to determine their constitutive relations. Each chapter contains problems at the end, the solutions of which are given at the end of the book. No prior knowledge of statistical mechanics is required; the necessary prerequisites are elements of transport phenomena and on thermodynamics. “The style of the book is mathematical, but nonetheless it remains very re...

  9. Composition and partition functions of partially ionized hydrogen plasma in Non-Local Thermal Equilibrium (Non-LThE) and Non-Local Chemical Equilibrium (Non-LChE)

    International Nuclear Information System (INIS)

    Chen Kuan; Eddy, T.L.

    1993-01-01

    A GTME (Generalized MultiThermodynamic Equilibrium) plasma model is developed for plasmas in both Non-LThE (Non-Local Thermal Equilibrium) and Non-LChE (Non-Local Chemical Equilibrium). The model uses multitemperatures for thermal nonequilibrium and non-zero chemical affinities as a measure of the deviation from chemical equilibrium. The plasma is treated as an ideal gas with the Debye-Hueckel approximation employed for pressure correction. The proration method is used when the cutoff energy level is between two discrete levels. The composition and internal partition functions of a hydrogen plasma are presented for electron temperatures ranging from 5000 to 35000 K and pressures from 0.1 to 1000 kPa. Number densities of 7 different species of hydrogen plasma and internal partition functions of different energy modes (rotational, vibrational, and electronic excitation) are computed for three affinity values. The results differ from other plasma properties in that they 1) are not based on equilibrium properties; and 2) are expressed as a function of different energy distribution parameters (temperatures) within each energy mode of each species as appropriate. The computed number densities and partition functions are applicable to calculating the thermodynamic, transport, and radiation properties of a hydrogen plasma not in thermal and chemical equilibria. The nonequilibrium plasma model and plasma compositions presented in this paper are very useful to the diagnosis of high-speed and/or low-pressure plasma flows in which the assumptions of local thermal and chemical equilibrium are invalid. (orig.)

  10. Modelling non-equilibrium thermodynamic systems from the speed-gradient principle.

    Science.gov (United States)

    Khantuleva, Tatiana A; Shalymov, Dmitry S

    2017-03-06

    The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The options for applying the SG principle to describe the non-equilibrium transport processes in real-world environments are discussed. Investigation of a non-equilibrium system's evolution at different scale levels via the SG principle allows for a fresh look at the thermodynamics problems associated with the behaviour of the system entropy. Generalized dynamic equations for finite and infinite number of constraints are proposed. It is shown that the stationary solution to the equations, resulting from the SG principle, entirely coincides with the locally equilibrium distribution function obtained by Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate scale level of the system's internal structure. The problem of the high-rate shear flow of viscous fluid near the rigid plane plate is discussed. It is shown that the SG principle allows closed mathematical models of non-equilibrium processes to be constructed.This article is part of the themed issue 'Horizons of cybernetical physics'. © 2017 The Author(s).

  11. Deviation from local thermodynamical equilibrium in the solar atmosphere. Metodology. The line source function

    International Nuclear Information System (INIS)

    Shchukina, N.G.

    1980-01-01

    The methodology of the problem of deviation from local thermodynamical equilibrium in the solar atmosphere is presented. The difficulties of solution and methods of realization are systematized. The processes of line formation are considered which take into account velocity fields, structural inhomogeneity, radiation non-coherence etc. as applied to a quiet solar atmosphere. The conclusion is made on the regularity of deviation of the local thermodynamic equilibrium in upper layers of the solar atmosphere

  12. Supersymmetric Field Theory of Non-Equilibrium Thermodynamic System

    OpenAIRE

    Olemskoi, Alexander I.; Brazhnyi, Valerii A.

    1998-01-01

    On the basis of Langevin equation the optimal SUSY field scheme is formulated to discribe a non-equilibrium thermodynamic system with quenched disorder and non-ergodicity effects. Thermodynamic and isothermal susceptibilities, memory parameter and irreversible response are determined at different temperatures and quenched disorder intensities.

  13. Non-equilibrium thermodynamics, maximum entropy production and Earth-system evolution.

    Science.gov (United States)

    Kleidon, Axel

    2010-01-13

    The present-day atmosphere is in a unique state far from thermodynamic equilibrium. This uniqueness is for instance reflected in the high concentration of molecular oxygen and the low relative humidity in the atmosphere. Given that the concentration of atmospheric oxygen has likely increased throughout Earth-system history, we can ask whether this trend can be generalized to a trend of Earth-system evolution that is directed away from thermodynamic equilibrium, why we would expect such a trend to take place and what it would imply for Earth-system evolution as a whole. The justification for such a trend could be found in the proposed general principle of maximum entropy production (MEP), which states that non-equilibrium thermodynamic systems maintain steady states at which entropy production is maximized. Here, I justify and demonstrate this application of MEP to the Earth at the planetary scale. I first describe the non-equilibrium thermodynamic nature of Earth-system processes and distinguish processes that drive the system's state away from equilibrium from those that are directed towards equilibrium. I formulate the interactions among these processes from a thermodynamic perspective and then connect them to a holistic view of the planetary thermodynamic state of the Earth system. In conclusion, non-equilibrium thermodynamics and MEP have the potential to provide a simple and holistic theory of Earth-system functioning. This theory can be used to derive overall evolutionary trends of the Earth's past, identify the role that life plays in driving thermodynamic states far from equilibrium, identify habitability in other planetary environments and evaluate human impacts on Earth-system functioning. This journal is © 2010 The Royal Society

  14. Note: Local thermal conductivities from boundary driven non-equilibrium molecular dynamics simulations

    International Nuclear Information System (INIS)

    Bresme, F.; Armstrong, J.

    2014-01-01

    We report non-equilibrium molecular dynamics simulations of heat transport in models of molecular fluids. We show that the “local” thermal conductivities obtained from non-equilibrium molecular dynamics simulations agree within numerical accuracy with equilibrium Green-Kubo computations. Our results support the local equilibrium hypothesis for transport properties. We show how to use the local dependence of the thermal gradients to quantify the thermal conductivity of molecular fluids for a wide range of thermodynamic states using a single simulation

  15. Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas

    Science.gov (United States)

    Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.

    1998-05-01

    Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet's model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature Tz. An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z* and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated.

  16. Electrolytes: transport properties and non-equilibrium thermodynamics

    International Nuclear Information System (INIS)

    Miller, D.G.

    1980-12-01

    This paper presents a review on the application of non-equilibrium thermodynamics to transport in electrolyte solutions, and some recent experimental work and results for mutual diffusion in electrolyte solutions

  17. Non local-thermodynamical-equilibrium effects in the simulation of laser-produced plasmas

    International Nuclear Information System (INIS)

    Klapisch, M.; Bar-Shalom, A.; Oreg, J.; Colombant, D.

    1998-01-01

    Local thermodynamic equilibrium (LTE) breaks down in directly or indirectly driven laser plasmas because of sharp gradients, energy deposition, etc. For modeling non-LTE effects in hydrodynamical simulations, Busquet close-quote s model [Phys. Fluids B 5, 4191 (1993)] is very convenient and efficient. It uses off-line generated LTE opacities and equation of states via an effective, radiation-dependent ionization temperature T z . An overview of the model is given. The results are compared with an elaborate collisional radiative model based on superconfigurations. The agreements for average charge Z * and opacities are surprisingly good, even more so when the plasma is immersed in a radiation field. Some remaining discrepancy at low density is attributed to dielectronic recombination. Improvement appears possible, especially for emissivities, because the concept of ionization temperature seems to be validated. copyright 1998 American Institute of Physics

  18. New insights for mesospheric OH: multi-quantum vibrational relaxation as a driver for non-local thermodynamic equilibrium

    Directory of Open Access Journals (Sweden)

    K. S. Kalogerakis

    2018-01-01

    Full Text Available The question of whether mesospheric OH(v rotational population distributions are in equilibrium with the local kinetic temperature has been debated over several decades. Despite several indications for the existence of non-equilibrium effects, the general consensus has been that emissions originating from low rotational levels are thermalized. Sky spectra simultaneously observing several vibrational levels demonstrated reproducible trends in the extracted OH(v rotational temperatures as a function of vibrational excitation. Laboratory experiments provided information on rotational energy transfer and direct evidence for fast multi-quantum OH(high-v vibrational relaxation by O atoms. We examine the relationship of the new relaxation pathways with the behavior exhibited by OH(v rotational population distributions. Rapid OH(high-v + O multi-quantum vibrational relaxation connects high and low vibrational levels and enhances the hot tail of the OH(low-v rotational distributions. The effective rotational temperatures of mesospheric OH(v are found to deviate from local thermodynamic equilibrium for all observed vibrational levels. Dedicated to Tom G. Slanger in celebration of his 5 decades of research in aeronomy.

  19. Potential and flux field landscape theory. II. Non-equilibrium thermodynamics of spatially inhomogeneous stochastic dynamical systems

    International Nuclear Information System (INIS)

    Wu, Wei; Wang, Jin

    2014-01-01

    We have established a general non-equilibrium thermodynamic formalism consistently applicable to both spatially homogeneous and, more importantly, spatially inhomogeneous systems, governed by the Langevin and Fokker-Planck stochastic dynamics with multiple state transition mechanisms, using the potential-flux landscape framework as a bridge connecting stochastic dynamics with non-equilibrium thermodynamics. A set of non-equilibrium thermodynamic equations, quantifying the relations of the non-equilibrium entropy, entropy flow, entropy production, and other thermodynamic quantities, together with their specific expressions, is constructed from a set of dynamical decomposition equations associated with the potential-flux landscape framework. The flux velocity plays a pivotal role on both the dynamic and thermodynamic levels. On the dynamic level, it represents a dynamic force breaking detailed balance, entailing the dynamical decomposition equations. On the thermodynamic level, it represents a thermodynamic force generating entropy production, manifested in the non-equilibrium thermodynamic equations. The Ornstein-Uhlenbeck process and more specific examples, the spatial stochastic neuronal model, in particular, are studied to test and illustrate the general theory. This theoretical framework is particularly suitable to study the non-equilibrium (thermo)dynamics of spatially inhomogeneous systems abundant in nature. This paper is the second of a series

  20. Non-local thermodynamic equilibrium stellar spectroscopy with 1D and 3D models - II. Chemical properties of the Galactic metal-poor disk and the halo

    DEFF Research Database (Denmark)

    Bergemann, Maria; Collet, Remo; Schönrich, Ralph

    2016-01-01

    We have analysed high-resolution spectra of 328 stars and derived Mg abundances using non-local thermodynamic equilibrium (NLTE) spectral line formation calculations and plane-parallel model stellar atmospheres derived from the mean stratification of 3D hydrodynamical surface convection simulations...

  1. Non-equilibrium thermodynamics of radiation-induced processes in solids

    International Nuclear Information System (INIS)

    Yurov, V.M.; Eshchanov, A.N.; Kuketaev, A.T.; Sidorenya, Yu.S.

    2005-01-01

    In the paper an item about a defect system response in solids on external action (temperature, pressure, light, etc.) from the point of view of non-equilibrium statistical thermodynamics is considered

  2. Thermodynamic chemical energy transfer mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium chemical reactions

    International Nuclear Information System (INIS)

    Roh, Heui-Seol

    2015-01-01

    Chemical energy transfer mechanisms at finite temperature are explored by a chemical energy transfer theory which is capable of investigating various chemical mechanisms of non-equilibrium, quasi-equilibrium, and equilibrium. Gibbs energy fluxes are obtained as a function of chemical potential, time, and displacement. Diffusion, convection, internal convection, and internal equilibrium chemical energy fluxes are demonstrated. The theory reveals that there are chemical energy flux gaps and broken discrete symmetries at the activation chemical potential, time, and displacement. The statistical, thermodynamic theory is the unification of diffusion and internal convection chemical reactions which reduces to the non-equilibrium generalization beyond the quasi-equilibrium theories of migration and diffusion processes. The relationship between kinetic theories of chemical and electrochemical reactions is also explored. The theory is applied to explore non-equilibrium chemical reactions as an illustration. Three variable separation constants indicate particle number constants and play key roles in describing the distinct chemical reaction mechanisms. The kinetics of chemical energy transfer accounts for the four control mechanisms of chemical reactions such as activation, concentration, transition, and film chemical reactions. - Highlights: • Chemical energy transfer theory is proposed for non-, quasi-, and equilibrium. • Gibbs energy fluxes are expressed by chemical potential, time, and displacement. • Relationship between chemical and electrochemical reactions is discussed. • Theory is applied to explore nonequilibrium energy transfer in chemical reactions. • Kinetics of non-equilibrium chemical reactions shows the four control mechanisms

  3. Non equilibrium atomic processes and plasma spectroscopy

    International Nuclear Information System (INIS)

    Kato, Takako

    2003-01-01

    Along with the technical progress in plasma spectroscopy, non equilibrium ionization processes have been recently observed. We study non local thermodynamic equilibrium and non ionization equilibrium for various kinds of plasmas. Specifically we discuss non equilibrium atomic processes in magnetically confined plasmas, solar flares and laser produced plasmas using a collisional radiative model based on plasma spectroscopic data. (author)

  4. A NON-LOCAL THERMODYNAMIC EQUILIBRIUM ANALYSIS OF BORON ABUNDANCES IN METAL-POOR STARS

    International Nuclear Information System (INIS)

    Tan Kefeng; Shi Jianrong; Zhao Gang

    2010-01-01

    The non-local thermodynamic equilibrium (NLTE) line formation of neutral boron in the atmospheres of cool stars are investigated. Our results confirm that NLTE effects for the B I resonance lines, which are due to a combination of overionization and optical pumping effects, are most important for hot, metal-poor, and low-gravity stars; however, the amplitude of departures from local thermodynamic equilibrium (LTE) found by this work is smaller than that of previous studies. In addition, our calculation shows that the line formation of B I will get closer to LTE if the strength of collisions with neutral hydrogen increases, which is contrary to the result of previous studies. The NLTE line formation results are applied to the determination of boron abundances for a sample of 16 metal-poor stars with the method of spectrum synthesis of the B I 2497 A resonance lines using the archived HST/GHRS spectra. Beryllium and oxygen abundances are also determined for these stars with the published equivalent widths of the Be II 3131 A resonance and O I 7774 A triplet lines, respectively. The abundances of the nine stars which are not depleted in Be or B show that, no matter what the strength of collisions with neutral hydrogen may be, both Be and B increase with O quasilinearly in the logarithmic plane, which confirms the conclusions that Be and B are mainly produced by the primary process in the early Galaxy. The most noteworthy result of this work is that B increases with Fe or O at a very similar speed as, or a bit faster than, Be does, which is in accord with the theoretical models. The B/Be ratios remain almost constant over the metallicity range investigated here. Our average B/Be ratio falls in the interval [13 ± 4, 17 ± 4], which is consistent with the predictions of the spallation process. The contribution of B from the ν-process may be required if the 11 B/ 10 B isotopic ratios in metal-poor stars are the same as the meteoric value. An accurate measurement of the

  5. Thermodynamics of Growth, Non-Equilibrium Thermodynamics of Bacterial Growth : The Phenomenological and the Mosaic Approach

    NARCIS (Netherlands)

    Westerhoff, Hans V.; Lolkema, Juke S.; Otto, Roel; Hellingwerf, K

    1982-01-01

    Microbial growth is analyzed in terms of mosaic and phenomenological non-equilibrium thermodynamics. It turns out that already existing parameters devised to measure bacterial growth, such as YATP, µ, and Qsubstrate, have as thermodynamic equivalents flow ratio, output flow and input flow. With this

  6. Equilibrium thermodynamics in modified gravitational theories

    International Nuclear Information System (INIS)

    Bamba, Kazuharu; Geng, C.-Q.; Tsujikawa, Shinji

    2010-01-01

    We show that it is possible to obtain a picture of equilibrium thermodynamics on the apparent horizon in the expanding cosmological background for a wide class of modified gravity theories with the Lagrangian density f(R,φ,X), where R is the Ricci scalar and X is the kinetic energy of a scalar field φ. This comes from a suitable definition of an energy-momentum tensor of the 'dark' component that respects to a local energy conservation in the Jordan frame. In this framework the horizon entropy S corresponding to equilibrium thermodynamics is equal to a quarter of the horizon area A in units of gravitational constant G, as in Einstein gravity. For a flat cosmological background with a decreasing Hubble parameter, S globally increases with time, as it happens for viable f(R) inflation and dark energy models. We also show that the equilibrium description in terms of the horizon entropy S is convenient because it takes into account the contribution of both the horizon entropy S in non-equilibrium thermodynamics and an entropy production term.

  7. Coherent application of a contact structure to formulate Classical Non-Equilibrium Thermodynamics

    NARCIS (Netherlands)

    Knobbe, E; Roekaerts, D.J.E.M.

    2017-01-01

    This contribution presents an outline of a new mathematical formulation for
    Classical Non-Equilibrium Thermodynamics (CNET) based on a contact
    structure in differential geometry. First a non-equilibrium state space is introduced as the third key element besides the first and second law of

  8. The energy balance of a plasma in partial local thermodynamic equilibrium

    NARCIS (Netherlands)

    Kroesen, G.M.W.; Schram, D.C.; Timmermans, C.J.; de Haas, J.C.M.

    1990-01-01

    The energy balance for electrons and heavy particles constituting a plasma in partial local thermodynamic equilibrium is derived. The formulation of the energy balance used allows for evaluation of the source terms without knowledge of the particle and radiation transport situation, since most of

  9. Extended irreversible thermodynamics and non-equilibrium temperature

    Directory of Open Access Journals (Sweden)

    Casas-Vazquez, Jose'

    2008-02-01

    Full Text Available We briefly review the concept of non-equilibrium temperature from the perspectives of extended irreversible thermodynamics, fluctuation theory, and statistical mechanics. The relations between different proposals are explicitly examined in two especially simple systems: an ideal gas in steady shear flow and a forced harmonic oscillator in a thermal bath. We examine with special detail temperatures related to the average molecular kinetic energy along different spatial directions, to the average configurational energy, to the derivative of the entropy with respect to internal energy, to fluctuation-dissipation relation and discuss their measurement.

  10. Experimental benchmark of non-local-thermodynamic-equilibrium plasma atomic physics codes

    International Nuclear Information System (INIS)

    Nagels-Silvert, V.

    2004-09-01

    The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)

  11. Thermodynamics Far from Equilibrium: from Glasses to Black Holes

    OpenAIRE

    Nieuwenhuizen, Th. M.

    2001-01-01

    A framework for the non-equilibrium thermodynamics of glasses is discussed. It also explains the non-equilibrium thermodynamics of a black hole isolated from matter. The first and second laws of black dynamics and black hole thermodynamics are shown to coincide, while the third laws deal with different issues.

  12. Non-equilibrium thermodynamical description of rhythmic motion patterns of active systems: a canonical-dissipative approach.

    Science.gov (United States)

    Dotov, D G; Kim, S; Frank, T D

    2015-02-01

    We derive explicit expressions for the non-equilibrium thermodynamical variables of a canonical-dissipative limit cycle oscillator describing rhythmic motion patterns of active systems. These variables are statistical entropy, non-equilibrium internal energy, and non-equilibrium free energy. In particular, the expression for the non-equilibrium free energy is derived as a function of a suitable control parameter. The control parameter determines the Hopf bifurcation point of the deterministic active system and describes the effective pumping of the oscillator. In analogy to the equilibrium free energy of the Landau theory, it is shown that the non-equilibrium free energy decays as a function of the control parameter. In doing so, a similarity between certain equilibrium and non-equilibrium phase transitions is pointed out. Data from an experiment on human rhythmic movements is presented. Estimates for pumping intensity as well as the thermodynamical variables are reported. It is shown that in the experiment the non-equilibrium free energy decayed when pumping intensity was increased, which is consistent with the theory. Moreover, pumping intensities close to zero could be observed at relatively slow intended rhythmic movements. In view of the Hopf bifurcation underlying the limit cycle oscillator model, this observation suggests that the intended limit cycle movements were actually more similar to trajectories of a randomly perturbed stable focus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. A Tightly Coupled Non-Equilibrium Magneto-Hydrodynamic Model for Inductively Coupled RF Plasmas

    Science.gov (United States)

    2016-02-29

    development a tightly coupled magneto-hydrodynamic model for Inductively Coupled Radio- Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE...for Inductively Coupled Radio-Frequency (RF) Plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State...Inductively Coupled Plasma (ICP) torches have wide range of possible applications which include deposition of metal coatings, synthesis of ultra-fine powders

  14. Non-equilibrium Thermodynamics and the Production of Entropy Life, Earth, and Beyond

    CERN Document Server

    Kleidon, Axel

    2005-01-01

    The present volume studies the application of concepts from non-equilibrium thermodynamics to a variety of research topics. Emphasis is on the Maximum Entropy Production (MEP) principle and applications to Geosphere-Biosphere couplings. Written by leading researchers form a wide range of background, the book proposed to give a first coherent account of an emerging field at the interface of thermodynamics, geophysics and life sciences.

  15. Stochastic approach to equilibrium and nonequilibrium thermodynamics.

    Science.gov (United States)

    Tomé, Tânia; de Oliveira, Mário J

    2015-04-01

    We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.

  16. Equilibrium and out-of-equilibrium thermodynamics in supercooled liquids and glasses

    International Nuclear Information System (INIS)

    Mossa, S; Nave, E La; Tartaglia, P; Sciortino, F

    2003-01-01

    We review the inherent structure thermodynamical formalism and the formulation of an equation of state (EOS) for liquids in equilibrium based on the (volume) derivatives of the statistical properties of the potential energy surface. We also show that, under the hypothesis that during ageing the system explores states associated with equilibrium configurations, it is possible to generalize the proposed EOS to out-of-equilibrium (OOE) conditions. The proposed formulation is based on the introduction of one additional parameter which, in the chosen thermodynamic formalism, can be chosen as the local minimum where the slowly relaxing OOE liquid is trapped

  17. Atomistic-level non-equilibrium model for chemically reactive systems based on steepest-entropy-ascent quantum thermodynamics

    International Nuclear Information System (INIS)

    Li, Guanchen; Al-Abbasi, Omar; Von Spakovsky, Michael R

    2014-01-01

    This paper outlines an atomistic-level framework for modeling the non-equilibrium behavior of chemically reactive systems. The framework called steepest- entropy-ascent quantum thermodynamics (SEA-QT) is based on the paradigm of intrinsic quantum thermodynamic (IQT), which is a theory that unifies quantum mechanics and thermodynamics into a single discipline with wide applications to the study of non-equilibrium phenomena at the atomistic level. SEA-QT is a novel approach for describing the state of chemically reactive systems as well as the kinetic and dynamic features of the reaction process without any assumptions of near-equilibrium states or weak-interactions with a reservoir or bath. Entropy generation is the basis of the dissipation which takes place internal to the system and is, thus, the driving force of the chemical reaction(s). The SEA-QT non-equilibrium model is able to provide detailed information during the reaction process, providing a picture of the changes occurring in key thermodynamic properties (e.g., the instantaneous species concentrations, entropy and entropy generation, reaction coordinate, chemical affinities, reaction rate, etc). As an illustration, the SEA-QT framework is applied to an atomistic-level chemically reactive system governed by the reaction mechanism F + H 2 ↔ FH + H

  18. Elemental transport coefficients in viscous plasma flows near local thermodynamic equilibrium

    International Nuclear Information System (INIS)

    Orsini, Alessio; Kustova, Elena V.

    2009-01-01

    We propose a convenient formulation of elemental transport coefficients in chemically reacting and plasma flows locally approaching thermodynamic equilibrium. A set of transport coefficients for elemental diffusion velocities, heat flux, and electric current is introduced. These coefficients relate the transport fluxes with the electric field and with the spatial gradients of elemental fractions, pressure, and temperature. The proposed formalism based on chemical elements and fully symmetric with the classical transport theory based on chemical species, is particularly suitable to model mixing and demixing phenomena due to diffusion of chemical elements. The aim of this work is threefold: to define a simple and rigorous framework suitable for numerical implementation, to allow order of magnitude estimations and qualitative predictions of elemental transport phenomena, and to gain a deeper insight into the physics of chemically reacting flows near local equilibrium.

  19. Departure from Local Thermodynamic Equilibrium in argon plasmas sustained in a Torche à Injection Axiale sur Guide d'Ondes

    International Nuclear Information System (INIS)

    Rincón, R.; Muñoz, J.; Calzada, M.D.

    2015-01-01

    Plasma torches are suitable plasma sources for a wide range of applications. The capability of these discharges to produce processes like sample excitation or decomposition of molecules inside them depends on the density of the plasma species and their energies (temperatures). The relation between these parameters determines the specific state of thermodynamic equilibrium in the discharge. Thus, the understanding of plasma possibilities for application purposes is related to the knowledge of the plasma thermodynamic equilibrium degree. In this paper a discussion about the equilibrium state for Ar plasmas generated by using a Torche à Injection Axiale sur Guide d'Ondes, TIAGO device, is presented. Emission spectroscopy techniques were used to measure gas temperature and electron density at the exit of the nozzle torch and along the dart. Boltzmann-plots as well as b p parameters were calculated to characterize the type and degree of departure from partial Local Saha Equilibrium (pLSE). This study indicates that the closer situation to Local Thermodynamic Equilibrium (LTE) of the plasma corresponds to larger Ar flows which highlights the importance of the nitrogen (atmosphere surrounding the plasma) in the kinetics of Ar-TIAGO discharges. - Highlights: • Discharges sustained in Ar using a TIAGO Torch show a significant departure from Local Thermodynamic Equilibrium. • Nitrogen entrance from surrounding air highly influences Thermodynamic Equilibrium. • Departure from LTE has been studied by means of Boltzmann plots and b p parameters. • The discharge is ionizing at the nozzle exit plasma, while along the dart it becomes recombining

  20. A thermodynamic analysis of non-equilibrium heat conduction in a semi-infinite medium subjected to a step change in temperature

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, A.K.; Hussain, T.A.; Shahad, Haroun A.K. [Babylon Univ., Dept. of Mechanical Engineering, Babylon (Iraq)

    2003-05-01

    The problem of non-equilibrium heat conduction in a semi-infinite medium subjected to a step change in temperature is analyzed thermodynamically using the extended irreversible thermodynamic approach. The results show clearly the wave nature of the dimensionless temperature distribution, Stanton number and the dimensionless entropy change profiles. The non-equilibrium profiles approach the equilibrium profiles as the speed of wave propagation is increased. The results also show that the non-equilibrium temperature is higher than the equilibrium temperature but the difference decreases as the wave propagation speed increases. (Author)

  1. Relation between absorbed dose, charged particle equilibrium and nuclear transformations: A non-equilibrium thermodynamics point of view

    International Nuclear Information System (INIS)

    Alvarez-Romero, J. T.

    2006-01-01

    We present a discussion to show that the absorbed dose D is a time-dependent function. This time dependence is demonstrated based on the concepts of charged particle equilibrium and on radiation equilibrium within the context of thermodynamic non-equilibrium. In the latter, the time dependence is due to changes of the rest mass energy of the nuclei and elementary particles involved in the terms ΣQ and Q that appear in the definitions of energy imparted ε and energy deposit ε i , respectively. In fact, nothing is said about the averaging operation of the non-stochastic quantity mean energy imparted ε-bar, which is used in the definition of D according to ICRU 60. It is shown in this research that the averaging operation necessary to define the ε-bar employed to get D cannot be performed with an equilibrium statistical operator ρ(r) as could be expected. Rather, the operation has to be defined with a time-dependent non-equilibrium statistical operator (r, t) therefore, D is a time-dependent function D(r, t). (authors)

  2. The Matrix model, a driven state variables approach to non-equilibrium thermodynamics

    NARCIS (Netherlands)

    Jongschaap, R.J.J.

    2001-01-01

    One of the new approaches in non-equilibrium thermodynamics is the so-called matrix model of Jongschaap. In this paper some features of this model are discussed. We indicate the differences with the more common approach based upon internal variables and the more sophisticated Hamiltonian and GENERIC

  3. Thermodynamic theory of equilibrium fluctuations

    International Nuclear Information System (INIS)

    Mishin, Y.

    2015-01-01

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  4. Non-Equilibrium Thermodynamic Chemistry and the Composition of the Atmosphere of Mars

    Science.gov (United States)

    Levine, J. S.; Summers, M. E.

    2003-01-01

    A high priority objective of the Mars Exploration Program is to Determine if life exists today (MEPAG Goal I, Objective A). The measurement of gases of biogenic origin may be an approach to detect the presence of microbial life on the surface or subsurface of Mars. Chemical thermodynamic calculations indicate that on both Earth and Mars, certain gases should exist in extremely low concentrations, if at all. Microbial metabolic activity is an important non-equilibrium chemistry process on Earth, and if microbial life exists on Mars, may be an important nonequilibrium chemistry process on Mars. The non-equilibrium chemistry of the atmosphere of Mars is discussed in this paper.

  5. Temperature in non-equilibrium states: a review of open problems and current proposals

    International Nuclear Information System (INIS)

    Casas-Vazquez, J; Jou, D

    2003-01-01

    The conceptual problems arising in the definition and measurement of temperature in non-equilibrium states are discussed in this paper in situations where the local-equilibrium hypothesis is no longer satisfactory. This is a necessary and urgent discussion because of the increasing interest in thermodynamic theories beyond local equilibrium, in computer simulations, in non-linear statistical mechanics, in new experiments, and in technological applications of nanoscale systems and material sciences. First, we briefly review the concept of temperature from the perspectives of equilibrium thermodynamics and statistical mechanics. Afterwards, we explore which of the equilibrium concepts may be extrapolated beyond local equilibrium and which of them should be modified, then we review several attempts to define temperature in non-equilibrium situations from macroscopic and microscopic bases. A wide review of proposals is offered on effective non-equilibrium temperatures and their application to ideal and real gases, electromagnetic radiation, nuclear collisions, granular systems, glasses, sheared fluids, amorphous semiconductors and turbulent fluids. The consistency between the different relativistic transformation laws for temperature is discussed in the new light gained from this perspective. A wide bibliography is provided in order to foster further research in this field

  6. Deviation from local thermodynamic equilibrium in a cesium-seeded argon plasma

    International Nuclear Information System (INIS)

    Stefanov, B.; Zarkova, L.

    1985-11-01

    The possibility of deviations from local thermodynamic equilibrium of a cesium seeded argon plasma has been analyzed. A four level model of cesium has been employed. Overpopulations of the ground state and the first excited state as well as the corresponding reduction of the electron density are calculated for cylindrical discharge structures by solving stationary rate equations. Numerical results are presented. These results indicate that in a large regime of plasma conditions the LTE assumption is valid for electron temperatures larger than 3000 K. (orig.)

  7. A facilitated diffusion model constrained by the probability isotherm: a pedagogical exercise in intuitive non-equilibrium thermodynamics.

    Science.gov (United States)

    Chapman, Brian

    2017-06-01

    This paper seeks to develop a more thermodynamically sound pedagogy for students of biological transport than is currently available from either of the competing schools of linear non-equilibrium thermodynamics (LNET) or Michaelis-Menten kinetics (MMK). To this end, a minimal model of facilitated diffusion was constructed comprising four reversible steps: cis- substrate binding, cis → trans bound enzyme shuttling, trans -substrate dissociation and trans → cis free enzyme shuttling. All model parameters were subject to the second law constraint of the probability isotherm, which determined the unidirectional and net rates for each step and for the overall reaction through the law of mass action. Rapid equilibration scenarios require sensitive 'tuning' of the thermodynamic binding parameters to the equilibrium substrate concentration. All non-equilibrium scenarios show sigmoidal force-flux relations, with only a minority of cases having their quasi -linear portions close to equilibrium. Few cases fulfil the expectations of MMK relating reaction rates to enzyme saturation. This new approach illuminates and extends the concept of rate-limiting steps by focusing on the free energy dissipation associated with each reaction step and thereby deducing its respective relative chemical impedance. The crucial importance of an enzyme's being thermodynamically 'tuned' to its particular task, dependent on the cis- and trans- substrate concentrations with which it deals, is consistent with the occurrence of numerous isoforms for enzymes that transport a given substrate in physiologically different circumstances. This approach to kinetic modelling, being aligned with neither MMK nor LNET, is best described as intuitive non-equilibrium thermodynamics, and is recommended as a useful adjunct to the design and interpretation of experiments in biotransport.

  8. Non-equilibrium supramolecular polymerization.

    Science.gov (United States)

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-09-18

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  9. Effect of configuration widths on the spectra of local thermodynamic equilibrium plasmas

    International Nuclear Information System (INIS)

    Bar-Shalom, A.; Oreg, J.; Goldstein, W.H.

    1995-01-01

    We present the extension of the supertransition-array (STA) theory to include configuration widths in the spectra of local thermodynamic equilibrium (LTE) plasmas. Exact analytic expressions for the moments of a STA are given, accounting for the detailed contributions of individual levels within the configurations that belong to a STA. The STA average energy is shifted and an additional term appears in its variance. Various cases are presented, demonstrating the effect of these corrections on the LTE spectrum

  10. Equilibrium thermodynamics - Callen's postulational approach

    NARCIS (Netherlands)

    Jongschaap, R.J.J.; Öttinger, Hans Christian

    2001-01-01

    In order to provide the background for nonequilibrium thermodynamics, we outline the fundamentals of equilibrium thermodynamics. Equilibrium thermodynamics must not only be obtained as a special case of any acceptable nonequilibrium generalization but, through its shining example, it also elucidates

  11. Measurements and non-local thermodynamic equilibrium modeling of mid-Z plasma emission

    International Nuclear Information System (INIS)

    Jacquet, L.; Primout, M.; Kaiser, P.; Clouët, J. F.; Girard, F.; Villette, B.; Reverdin, C.; Oudot, G.

    2015-01-01

    The x-ray yields from laser-irradiated thin foils of iron, copper, zinc, and germanium have been measured in the soft and multi-keV x-ray ranges at the OMEGA laser at the Laboratory for Laser Energetics. The incident laser power had a pre-pulse to enhance the x-ray emission of a 1 ns flat-top main pulse. The experimental results have been compared with post-shot simulations performed with the two-dimensional radiation-hydrodynamics code FCI2. A new non-local thermodynamic equilibrium model, NOO-RAD, have been incorporated into FCI2. In this approach, the plasma ionization state is in-line calculated by the atomic physics NOHEL package. In the soft x-ray bands, both simulations using RADIOM [M. Busquet, Phys. Fluids B 5, 4191 (1993)] and NOO-RAD clearly over-predict the powers and energies measured by a broad-band spectrometer. In one case (the iron foil), the discrepancy between the measured and simulated x-ray output is nevertheless significantly reduced when NOO-RAD is used in the simulations. In the multi-keV x-ray bands, the simulations display a strong sensitivity to the coupling between the electron thermal conductivity and the NLTE models, and for some particular combinations of these, provide a close match to the measured emission. The comparison between the measured and simulated H-like to He-like line-intensity ratios deduced from high-resolution spectra indicates higher experimental electron temperatures were achieved, compared to the simulated ones. Measurements of the plasma conditions have been achieved using the Thomson-scattering diagnostic. The electron temperatures are found to range from 3 to 5 keV at the end of the laser pulse and are greater than predicted by the simulations. The measured flow velocities are in reasonable agreement with the calculated ones. This last finding gives us confidence in our numerical predictions for the plasma parameters, which are over that time mainly determined by hydrodynamics, such as the mass densities and

  12. Measurements and non-local thermodynamic equilibrium modeling of mid-Z plasma emission

    Science.gov (United States)

    Jacquet, L.; Primout, M.; Kaiser, P.; Clouët, J. F.; Girard, F.; Villette, B.; Reverdin, C.; Oudot, G.

    2015-12-01

    The x-ray yields from laser-irradiated thin foils of iron, copper, zinc, and germanium have been measured in the soft and multi-keV x-ray ranges at the OMEGA laser at the Laboratory for Laser Energetics. The incident laser power had a pre-pulse to enhance the x-ray emission of a 1 ns flat-top main pulse. The experimental results have been compared with post-shot simulations performed with the two-dimensional radiation-hydrodynamics code FCI2. A new non-local thermodynamic equilibrium model, NOO-RAD, have been incorporated into FCI2. In this approach, the plasma ionization state is in-line calculated by the atomic physics NOHEL package. In the soft x-ray bands, both simulations using RADIOM [M. Busquet, Phys. Fluids B 5, 4191 (1993)] and NOO-RAD clearly over-predict the powers and energies measured by a broad-band spectrometer. In one case (the iron foil), the discrepancy between the measured and simulated x-ray output is nevertheless significantly reduced when NOO-RAD is used in the simulations. In the multi-keV x-ray bands, the simulations display a strong sensitivity to the coupling between the electron thermal conductivity and the NLTE models, and for some particular combinations of these, provide a close match to the measured emission. The comparison between the measured and simulated H-like to He-like line-intensity ratios deduced from high-resolution spectra indicates higher experimental electron temperatures were achieved, compared to the simulated ones. Measurements of the plasma conditions have been achieved using the Thomson-scattering diagnostic. The electron temperatures are found to range from 3 to 5 keV at the end of the laser pulse and are greater than predicted by the simulations. The measured flow velocities are in reasonable agreement with the calculated ones. This last finding gives us confidence in our numerical predictions for the plasma parameters, which are over that time mainly determined by hydrodynamics, such as the mass densities and the

  13. Measurements and non-local thermodynamic equilibrium modeling of mid-Z plasma emission

    Energy Technology Data Exchange (ETDEWEB)

    Jacquet, L., E-mail: laurent.jacquet@cea.fr; Primout, M.; Kaiser, P.; Clouët, J. F.; Girard, F.; Villette, B.; Reverdin, C.; Oudot, G. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-12-15

    The x-ray yields from laser-irradiated thin foils of iron, copper, zinc, and germanium have been measured in the soft and multi-keV x-ray ranges at the OMEGA laser at the Laboratory for Laser Energetics. The incident laser power had a pre-pulse to enhance the x-ray emission of a 1 ns flat-top main pulse. The experimental results have been compared with post-shot simulations performed with the two-dimensional radiation-hydrodynamics code FCI2. A new non-local thermodynamic equilibrium model, NOO-RAD, have been incorporated into FCI2. In this approach, the plasma ionization state is in-line calculated by the atomic physics NOHEL package. In the soft x-ray bands, both simulations using RADIOM [M. Busquet, Phys. Fluids B 5, 4191 (1993)] and NOO-RAD clearly over-predict the powers and energies measured by a broad-band spectrometer. In one case (the iron foil), the discrepancy between the measured and simulated x-ray output is nevertheless significantly reduced when NOO-RAD is used in the simulations. In the multi-keV x-ray bands, the simulations display a strong sensitivity to the coupling between the electron thermal conductivity and the NLTE models, and for some particular combinations of these, provide a close match to the measured emission. The comparison between the measured and simulated H-like to He-like line-intensity ratios deduced from high-resolution spectra indicates higher experimental electron temperatures were achieved, compared to the simulated ones. Measurements of the plasma conditions have been achieved using the Thomson-scattering diagnostic. The electron temperatures are found to range from 3 to 5 keV at the end of the laser pulse and are greater than predicted by the simulations. The measured flow velocities are in reasonable agreement with the calculated ones. This last finding gives us confidence in our numerical predictions for the plasma parameters, which are over that time mainly determined by hydrodynamics, such as the mass densities and

  14. Local thermodynamic equilibrium in a laser-induced plasma evidenced by blackbody radiation

    Science.gov (United States)

    Hermann, Jörg; Grojo, David; Axente, Emanuel; Craciun, Valentin

    2018-06-01

    We show that the plasma produced by laser ablation of solid materials in specific conditions has an emission spectrum that is characterized by the saturation of the most intense spectral lines at the blackbody radiance. The blackbody temperature equals the excitation temperature of atoms and ions, proving directly and unambiguously a plasma in local thermodynamic equilibrium. The present investigations take benefit from the very rich and intense emission spectrum generated by ablation of a nickel-chromium-molybdenum alloy. This alternative and direct proof of the plasma equilibrium state re-opens the perspectives of quantitative material analyses via calibration-free laser-induced breakdown spectroscopy. Moreover, the unique properties of this laser-produced plasma promote its use as radiation standard for intensity calibration of spectroscopic instruments.

  15. Thermodynamic evolution far from equilibrium

    Science.gov (United States)

    Khantuleva, Tatiana A.

    2018-05-01

    The presented model of thermodynamic evolution of an open system far from equilibrium is based on the modern results of nonequilibrium statistical mechanics, the nonlocal theory of nonequilibrium transport developed by the author and the Speed Gradient principle introduced in the theory of adaptive control. Transition to a description of the system internal structure evolution at the mesoscopic level allows a new insight at the stability problem of non-equilibrium processes. The new model is used in a number of specific tasks.

  16. Equilibrium econophysics: A unified formalism for neoclassical economics and equilibrium thermodynamics

    Science.gov (United States)

    Sousa, Tânia; Domingos, Tiago

    2006-11-01

    We develop a unified conceptual and mathematical structure for equilibrium econophysics, i.e., the use of concepts and tools of equilibrium thermodynamics in neoclassical microeconomics and vice versa. Within this conceptual structure the results obtained in microeconomic theory are: (1) the definition of irreversibility in economic behavior; (2) the clarification that the Engel curve and the offer curve are not descriptions of real processes dictated by the maximization of utility at constant endowment; (3) the derivation of a relation between elasticities proving that economic elasticities are not all independent; (4) the proof that Giffen goods do not exist in a stable equilibrium; (5) the derivation that ‘economic integrability’ is equivalent to the generalized Le Chatelier principle and (6) the definition of a first order phase transition, i.e., a transition between separate points in the utility function. In thermodynamics the results obtained are: (1) a relation between the non-dimensional isothermal and adiabatic compressibilities and the increase or decrease in the thermodynamic potentials; (2) the distinction between mathematical integrability and optimization behavior and (3) the generalization of the Clapeyron equation.

  17. Local Thermodynamic Equilibrium in Laser-Induced Breakdown Spectroscopy: Beyond the McWhirter criterion

    International Nuclear Information System (INIS)

    Cristoforetti, G.; De Giacomo, A.; Dell'Aglio, M.; Legnaioli, S.; Tognoni, E.; Palleschi, V.; Omenetto, N.

    2010-01-01

    In the Laser-Induced Breakdown Spectroscopy (LIBS) technique, the existence of Local Thermodynamic Equilibrium (LTE) is the essential requisite for meaningful application of theoretical Boltzmann-Maxwell and Saha-Eggert expressions that relate fundamental plasma parameters and concentration of analyte species. The most popular criterion reported in the literature dealing with plasma diagnostics, and usually invoked as a proof of the existence of LTE in the plasma, is the McWhirter criterion [R.W.P. McWhirter, in: Eds. R.H. Huddlestone, S.L. Leonard, Plasma Diagnostic Techniques, Academic Press, New York, 1965, pp. 201-264]. However, as pointed out in several papers, this criterion is known to be a necessary but not a sufficient condition to insure LTE. The considerations reported here are meant to briefly review the theoretical analysis underlying the concept of thermodynamic equilibrium and the derivation of the McWhirter criterion, and to critically discuss its application to a transient and non-homogeneous plasma, like that created by a laser pulse on solid targets. Specific examples are given of theoretical expressions involving relaxation times and diffusion coefficients, as well as a discussion of different experimental approaches involving space and time-resolved measurements that could be used to complement a positive result of the calculation of the minimum electron number density required for LTE using the McWhirter formula. It is argued that these approaches will allow a more complete assessment of the existence of LTE and therefore permit a better quantitative result. It is suggested that the mere use of the McWhirter criterion to assess the existence of LTE in laser-induced plasmas should be discontinued.

  18. Non-local thermodynamic equilibrium effects on isentropic coefficient in argon and helium thermal plasmas

    International Nuclear Information System (INIS)

    Sharma, Rohit; Singh, Kuldip

    2014-01-01

    In the present work, two cases of thermal plasma have been considered; the ground state plasma in which all the atoms and ions are assumed to be in the ground state and the excited state plasma in which atoms and ions are distributed over various possible excited states. The variation of Zγ, frozen isentropic coefficient and the isentropic coefficient with degree of ionization and non-equilibrium parameter θ(= T e /T h ) has been investigated for the ground and excited state helium and argon plasmas at pressures 1 atm, 10 atm, and 100 atm in the temperature range from 6000 K to 60 000 K. For a given value of non-equilibrium parameter, the relationship of Zγ with degree of ionization does not show any dependence on electronically excited states in helium plasma whereas in case of argon plasma this dependence is not appreciable till degree of ionization approaches 2. The minima of frozen isentropic coefficient shifts toward lower temperature with increase of non-equilibrium parameter for both the helium and argon plasmas. The lowering of non-equilibrium parameter decreases the frozen isentropic coefficient more emphatically in helium plasma at high pressures in comparison to argon plasma. The increase of pressure slightly reduces the ionization range over which isentropic coefficient almost remains constant and it does not affect appreciably the dependence of isentropic coefficient on non-equilibrium parameter

  19. Coronal and local thermodynamic equilibriums in a hollow cathode discharge

    International Nuclear Information System (INIS)

    Zheng Xutao

    2005-01-01

    A characteristic two-section profile of excited-state populations is observed in a hollow cathode discharge and is explained by coexistence of the coronal equilibrium (CE) and the local thermodynamic equilibrium (LTE). At helium pressure 0.1 Torr and cathode current 200-300 mA, vacuum ultraviolet radiations from He I 1snp 1 P (n=2-16) and He II np 2 P (n=2-14) are resolved with a 2.2-M McPherson spectrometer. Relative populations of these states are deduced from the discrete line intensities and are plotted against energy levels. For both the He I and He II series, as energy level increases, populations of high-n (n>10) states are found to decrease much more quickly than low-n (n<7) populations. While low-n populations are described with the CE dominated by direct electron-impact excitations, high-n populations are fitted with the LTE to calculate the population temperatures of gas atoms and ions. Validities of the CE and LTE in different n-ranges are considered on the competition between radiative decays of the excited states and their collisions with gas atoms. (author)

  20. Convection with local thermal non-equilibrium and microfluidic effects

    CERN Document Server

    Straughan, Brian

    2015-01-01

    This book is one of the first devoted to an account of theories of thermal convection which involve local thermal non-equilibrium effects, including a concentration on microfluidic effects. The text introduces convection with local thermal non-equilibrium effects in extraordinary detail, making it easy for readers newer to the subject area to understand. This book is unique in the fact that it addresses a large number of convection theories and provides many new results which are not available elsewhere. This book will be useful to researchers from engineering, fluid mechanics, and applied mathematics, particularly those interested in microfluidics and porous media.

  1. Fundamental functions in equilibrium thermodynamics

    NARCIS (Netherlands)

    Horst, H.J. ter

    In the standard presentations of the principles of Gibbsian equilibrium thermodynamics one can find several gaps in the logic. For a subject that is as widely used as equilibrium thermodynamics, it is of interest to clear up such questions of mathematical rigor. In this paper it is shown that using

  2. Non-equilibrium Thermodynamic Dissolution Theory for Multi-Component Solid/Liquid Surfaces Involving Surface Adsorption and Radiolysis Kinetics

    International Nuclear Information System (INIS)

    Stout, R B

    2001-01-01

    A theoretical expression is developed for the dissolution rate response for multi-component radioactive materials that have surface adsorption kinetics and radiolysis kinetics when wetted by a multi-component aqueous solution. An application for this type of dissolution response is the performance evaluation of multi-component spent nuclear fuels (SNFs) for long term interim storage and for geological disposition. Typically, SNF compositions depend on initial composition, uranium oxide and metal alloys being most common, and on reactor burnup which results in a wide range of fission product and actinide concentrations that decay by alpha, beta, and gamma radiation. These compositional/burnup ranges of SNFs, whether placed in interim storage or emplaced in a geologic repository, will potentially be wetted by multi-component aqueous solutions, and these solutions may be further altered by radiolytic aqueous species due to three radiation fields. The solid states of the SNFs are not thermodynamically stable when wetted and will dissolve, with or without radiolysis. The following development of a dissolution theory is based on a non-equilibrium thermodynamic analysis of energy reactions and energy transport across a solid-liquid phase change discontinuity that propagates at a quasi-steady, dissolution velocity. The integral form of the energy balance equation is used for this spatial surface discontinuity analysis. The integral formulation contains internal energy functional of classical thermodynamics for both the SNFs' solid state and surface adsorption species, and the adjacent liquid state, which includes radiolytic chemical species. The steady-state concentrations of radiolytic chemical species are expressed by an approximate analysis of the decay radiation transport equation. For purposes of illustration a modified Temkin adsorption isotherm was assumed for the surface adsorption kinetics on an arbitrary, finite area of the solid-liquid dissolution interface. For

  3. Direct evidence of departure from local thermodynamic equilibrium in a free-burning arc-discharge plasma

    International Nuclear Information System (INIS)

    Snyder, S.C.; Lassahn, G.D.; Reynolds, L.D.

    1993-01-01

    Radial profiles of gas temperature, electron temperature, and electron density were measured in a free-burning atmospheric-pressure argon arc-discharge plasma using line-shape analysis of scattered laser light. This method yields gas temperature, electron temperature, and electron density directly, with no reliance on the assumption of local thermodynamic equilibrium (LTE). Our results show a significant departure from LTE in the center of the discharge, contrary to expectations

  4. Application of non-equilibrium thermodynamics to two-phase flows with a change of phase

    International Nuclear Information System (INIS)

    Delhaye, J.M.

    1969-01-01

    In this report we use the methods of non-equilibrium thermodynamics in two-phase flows. This paper follows a prior one in which we have studied the conservation laws and derived the general equations of two-phase flow. In the first part the basic ideas of thermodynamics of irreversible systems are given. We follow the classical point of view. The second part is concerned with the derivation of a closed set of equations for the two phase elementary volume model. In this model we assume that the elementary volume contains two phases and that it is possible to define a volumetric local concentration. To obtain the entropy balance we can choose either the reversibility of the barycentric motion or the reversibility of each phase. We adopt the last assumption and our derivation is the same as this of I.Prigogine and P. Mazur about the hydrodynamics of liquid helium. The scope of this work is not to find a general solution to the problems of two phase flows but to obtain a new set of equations which may be used to explain some characteristic phenomena of two-phase flow such as wave propagation or critical states. (author) [fr

  5. Analysis of non-equilibrium phenomena in inductively coupled plasma generators

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Panesi, M., E-mail: mpanesi@illinois.edu [University of Illinois at Urbana-Champaign, Urbana, Illinois 61822 (United States); Lani, A. [Von Karman Institute for Fluid Dynamics, Rhode-Saint-Genèse (Belgium)

    2016-07-15

    This work addresses the modeling of non-equilibrium phenomena in inductively coupled plasma discharges. In the proposed computational model, the electromagnetic induction equation is solved together with the set of Navier-Stokes equations in order to compute the electromagnetic and flow fields, accounting for their mutual interaction. Semi-classical statistical thermodynamics is used to determine the plasma thermodynamic properties, while transport properties are obtained from kinetic principles, with the method of Chapman and Enskog. Particle ambipolar diffusive fluxes are found by solving the Stefan-Maxwell equations with a simple iterative method. Two physico-mathematical formulations are used to model the chemical reaction processes: (1) A Local Thermodynamics Equilibrium (LTE) formulation and (2) a thermo-chemical non-equilibrium (TCNEQ) formulation. In the TCNEQ model, thermal non-equilibrium between the translational energy mode of the gas and the vibrational energy mode of individual molecules is accounted for. The electronic states of the chemical species are assumed in equilibrium with the vibrational temperature, whereas the rotational energy mode is assumed to be equilibrated with translation. Three different physical models are used to account for the coupling of chemistry and energy transfer processes. Numerical simulations obtained with the LTE and TCNEQ formulations are used to characterize the extent of non-equilibrium of the flow inside the Plasmatron facility at the von Karman Institute. Each model was tested using different kinetic mechanisms to assess the sensitivity of the results to variations in the reaction parameters. A comparison of temperatures and composition profiles at the outlet of the torch demonstrates that the flow is in non-equilibrium for operating conditions characterized by pressures below 30 000 Pa, frequency 0.37 MHz, input power 80 kW, and mass flow 8 g/s.

  6. An introduction to equilibrium thermodynamics

    CERN Document Server

    Morrill, Bernard; Hartnett, James P; Hughes, William F

    1973-01-01

    An Introduction to Equilibrium Thermodynamics discusses classical thermodynamics and irreversible thermodynamics. It introduces the laws of thermodynamics and the connection between statistical concepts and observable macroscopic properties of a thermodynamic system. Chapter 1 discusses the first law of thermodynamics while Chapters 2 through 4 deal with statistical concepts. The succeeding chapters describe the link between entropy and the reversible heat process concept of entropy; the second law of thermodynamics; Legendre transformations and Jacobian algebra. Finally, Chapter 10 provides a

  7. Thermodynamic quantities and defect equilibrium in La2-xSrxNiO4+δ

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Yashiro, Keiji; Sato, Kazuhisa; Mizusaki, Junichiro

    2009-01-01

    In order to elucidate the relation between thermodynamic quantities, the defect structure, and the defect equilibrium in La 2-x Sr x NiO 4+δ , statistical thermodynamic calculation is carried out and calculated results are compared to those obtained from experimental data. Partial molar enthalpy of oxygen and partial molar entropy of oxygen are obtained from δ-P(O 2 )-T relation by using Gibbs-Helmholtz equation. Statistical thermodynamic model is derived from defect equilibrium models proposed before by authors, localized electron model and delocalized electron model which could well explain the variation of oxygen content of La 2-x Sr x NiO 4+δ . Although assumed defect species and their equilibrium are different, the results of thermodynamic calculation by localized electron model and delocalized electron model show minor difference. Calculated results by the both models agree with the thermodynamic quantities obtained from oxygen nonstoichiometry of La 2-x Sr x NiO 4+δ . - Graphical abstract: In order to elucidate the relation between thermodynamic quantities, the defect structure, and the defect equilibrium in La 2-x Sr x NiO 4+δ , statistics thermodynamic calculation is carried out and calculated results are compared to those obtained from experimental data.

  8. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    International Nuclear Information System (INIS)

    Aslanyan, V.; Tallents, G. J.

    2014-01-01

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance

  9. Dilepton production from quark gluon plasma using non-equilibrium thermodynamics

    International Nuclear Information System (INIS)

    Sinha, B.

    1984-01-01

    The importance of the approach phase to the thermodynamic equilibrium has been investigated for dilepton production from quark-gluon plasma - an effective temperature for the quarks as Brounian particle in a heat bath of gluons has been suggested. The spectrum for low invariant mass is, as a consequence, sharper

  10. A conservative multicomponent diffusion algorithm for ambipolar plasma flows in local thermodynamic equilibrium

    International Nuclear Information System (INIS)

    Peerenboom, Kim; Van Boxtel, Jochem; Janssen, Jesper; Van Dijk, Jan

    2014-01-01

    The usage of the local thermodynamic equilibrium (LTE) approximation can be a very powerful assumption for simulations of plasmas in or close to equilibrium. In general, the elemental composition in LTE is not constant in space and effects of mixing and demixing have to be taken into account using the Stefan–Maxwell diffusion description. In this paper, we will introduce a method to discretize the resulting coupled set of elemental continuity equations. The coupling between the equations is taken into account by the introduction of the concept of a Péclet matrix. It will be shown analytically and numerically that the mass and charge conservation constraints can be fulfilled exactly. Furthermore, a case study is presented to demonstrate the applicability of the method to a simulation of a mercury-free metal-halide lamp. The source code for the simulations presented in this paper is provided as supplementary material (stacks.iop.org/JPhysD/47/425202/mmedia). (paper)

  11. Chemical Equilibrium as Balance of the Thermodynamic Forces

    OpenAIRE

    Zilbergleyt, B.

    2004-01-01

    The article sets forth comprehensive basics of thermodynamics of chemical equilibrium as balance of the thermodynamic forces. Based on the linear equations of irreversible thermodynamics, De Donder definition of the thermodynamic force, and Le Chatelier's principle, new thermodynamics of chemical equilibrium offers an explicit account for multiple chemical interactions within the system. Basic relations between energetic characteristics of chemical transformations and reaction extents are bas...

  12. Retrieval of Kinetic Temperature and Carbon Dioxide Abundance from Non-Local Thermodynamic Equilibrium Limb Emission Measurements made by the SABER Experiment on the TIMED Satellite

    Science.gov (United States)

    Mertens, Christopher J.; Mlynczak, Martin G.; Lopez-Puertas, Manuel; Wintersteiner, Peter P.; Picard, Richard H.; Winick, Jeremy R.; Gordley, Larry L.; Russell, James M., III

    2002-01-01

    The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) experiment was launched onboard the TIMED satellite in December, 2001. SABER is designed to provide measurements of the key radiative and chemical sources and sinks of energy in the mesosphere and lower thermosphere (MLT). SABER measures Earth limb emission in 10 broadband radiometer channels ranging from 1.27 micrometers to 17 micrometers. Measurements are made both day and night over the latitude range from 54 deg. S to 87 deg. N with alternating hemisphere coverage every 60 days. In this paper we concentrate on retrieved profiles of kinetic temperature (T(sub k)) and CO2 volume mixing ratio (vmr), inferred from SABER-observed 15 micrometer and 4.3 micrometer limb emissions, respectively. SABER-measured limb radiances are in non-local thermodynamic equilibrium (non-LTE) in the MLT region. The complexity of non-LTE radiation transfer combined with the large volume of data measured by SABER requires new retrieval approaches and radiative transfer techniques to accurately and efficiently retrieve the data products. In this paper we present the salient features of the coupled non-LTE T(sub k)/CO2 retrieval algorithm, along with preliminary results.

  13. Friction-induced vibrations and self-organization mechanics and non-equilibrium thermodynamics of sliding contact

    CERN Document Server

    Nosonovsky, Michael

    2013-01-01

    Many scientists and engineers do not realize that, under certain conditions, friction can lead to the formation of new structures at the interface, including in situ tribofilms and various patterns. In turn, these structures-usually formed by destabilization of the stationary sliding regime-can lead to the reduction of friction and wear. Friction-Induced Vibrations and Self-Organization: Mechanics and Non-Equilibrium Thermodynamics of Sliding Contact combines the mechanical and thermodynamic methods in tribology, thus extending the field of mechanical friction-induced vibrations to non-mechanical instabilities and self-organization processes at the frictional interface. The book also relates friction-induced self-organization to novel biomimetic materials, such as self-lubricating, self-cleaning, and self-healing materials. Explore Friction from a Different Angle-as a Fundamental Force of Nature The book begins with an exploration of friction as a fundamental force of nature throughout the history of science....

  14. A Laser Induced Breakdown Spectroscopy application based on Local Thermodynamic Equilibrium assumption for the elemental analysis of alexandrite gemstone and copper-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    De Giacomo, A. [Department of Chemistry, University of Bari, Via Orabona 4, 70126 Bari (Italy); Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Dell' Aglio, M. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Gaudiuso, R., E-mail: rosalba.gaudiuso@ba.imip.cnr.it [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Santagata, A. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Potenza, Via S. Loja, Zona Ind., 85050 Tito Scalo (PZ) (Italy); Senesi, G.S. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy); Rossi, M.; Ghiara, M.R. [Department of Earth Sciences, University of Naples ' Federico II' , Via Mezzocannone 8, 80134 Naples (Italy); Capitelli, F. [Institute of Crystallography - CNR, Via Salaria Km 29.300, 00015 Monterotondo (Roma) (Italy); De Pascale, O. [Institute of Inorganic Methodologies and Plasmas - CNR, U.O.S. Bari, Via Amendola 122/D, 70126 Bari (Italy)

    2012-04-04

    Graphical abstract: Self-calibrated analytical techniques based on the approximation of Local Thermodynamic Equilibrium (LTE) have been employed for the analysis of gemstones and copper-based alloys by LIBS (Laser Induced Breakdown Spectroscopy), with a special focus on LTE conditions in laser induced plasmas. Highlights: Black-Right-Pointing-Pointer Discussion of Local Thermodynamic Equilibrium (LTE) condition in laser-induced plasmas. Black-Right-Pointing-Pointer LIBS enables elemental analysis with self-calibrated LTE-based methods. Black-Right-Pointing-Pointer Be detection in alexandrite gemstone is made possible by LIBS. - Abstract: Laser Induced Breakdown Spectroscopy (LIBS) is an appealing technique to study laser-induced plasmas (LIPs), both from the basic diagnostics point of view and for analytical applications. LIPs are complex dynamic systems, expanding at supersonic velocities and undergoing a transition between different plasma regimes. If the Local Thermodynamic Equilibrium (LTE) condition is valid for such plasmas, several analytical methods can be employed and fast quantitative analyses can be performed on a variety of samples. In the present paper, a discussion about LTE is carried out and an innovative application to the analysis of the alexandrite gemstone is presented. In addition, a study about the influence of plasma parameters on the performance of LTE-based methods is reported for bronze and brass targets.

  15. Non-equilibrium statistical thermodynamics of neutron gas in reactor

    International Nuclear Information System (INIS)

    Hayasaka, Hideo

    1977-01-01

    The thermodynamic structures of non-equilibrium steady states of highly rarefied neutron gas in various media are considered for the irreversible processes owing to creative and destructive reactions of neutrons with nuclei of these media and supply from the external sources. Under the so-called clean and cold condition in reactor, the medium is regarded virtually as offering the different chemical potential fields for each subsystem of a steady neutron gas system. The fluctuations around a steady state are considered in a Markovian-Gaussian process. The generalized Einstein relations are derived for stationary neutron gas systems. The forces and flows of neutron gases in a medium are defined upon the general stationary solution of the Fokker-Planck equation. There exist the symmetry of the kinetic coefficients, and the minimum entropy production upon neutron-nuclear reactions. The distribution functions in various media are determined by each corresponding extremum condition under the vanishing of changes of the respective total entropies in the Gibbs equation. (auth.)

  16. Methane on Mars: Thermodynamic Equilibrium and Photochemical Calculations

    Science.gov (United States)

    Levine, J. S.; Summers, M. E.; Ewell, M.

    2010-01-01

    The detection of methane (CH4) in the atmosphere of Mars by Mars Express and Earth-based spectroscopy is very surprising, very puzzling, and very intriguing. On Earth, about 90% of atmospheric ozone is produced by living systems. A major question concerning methane on Mars is its origin - biological or geological. Thermodynamic equilibrium calculations indicated that methane cannot be produced by atmospheric chemical/photochemical reactions. Thermodynamic equilibrium calculations for three gases, methane, ammonia (NH3) and nitrous oxide (N2O) in the Earth s atmosphere are summarized in Table 1. The calculations indicate that these three gases should not exist in the Earth s atmosphere. Yet they do, with methane, ammonia and nitrous oxide enhanced 139, 50 and 12 orders of magnitude above their calculated thermodynamic equilibrium concentration due to the impact of life! Thermodynamic equilibrium calculations have been performed for the same three gases in the atmosphere of Mars based on the assumed composition of the Mars atmosphere shown in Table 2. The calculated thermodynamic equilibrium concentrations of the same three gases in the atmosphere of Mars is shown in Table 3. Clearly, based on thermodynamic equilibrium calculations, methane should not be present in the atmosphere of Mars, but it is in concentrations approaching 30 ppbv from three distinct regions on Mars.

  17. A non-equilibrium thermodynamics model of reconstituted Ca(2+)-ATPase.

    Science.gov (United States)

    Waldeck, A R; van Dam, K; Berden, J; Kuchel, P W

    1998-01-01

    A non-equilibrium thermodynamics (NET) model describing the action of completely coupled or 'slipping' reconstituted Ca(2+)-ATPase is presented. Variation of the coupling stoichiometries with the magnitude of the electrochemical gradients, as the ATPase hydrolyzes ATP, is an indication of molecular slip. However, the Ca2+ and H+ membrane-leak conductances may also be a function of their respective gradients. Such non-ohmic leak typically yields 'flow-force' relationships that are similar to those that are obtained when the pump slips; hence, caution needs to be exercised when interpreting data of Ca(2+)-ATPase-mediated fluxes that display a non-linear dependence on the electrochemical proton (delta mu H) and/or calcium gradients (delta mu Ca). To address this issue, three experimentally verifiable relationships differentiating between membrane leak and enzymic slip were derived. First, by measuring delta mu H as a function of the rate of ATP hydrolysis by the enzyme. Second, by measuring the overall 'efficiency' of the pump as a function of delta mu H. Third, by measuring the proton ejection rate by the pump as a function of its ATP hydrolysis rate.

  18. A Local Probe for Universal Non-equilibrium Dynamics

    Science.gov (United States)

    2015-06-01

    shown are polarizing beam splitters . About 700µW are superimposed with a reference laser on a glass plate and coupled into an optical fiber to detect...A Local Probe for Universal Non -equilibrium Dynamics We report on the results obtained across a nine-month ARO-sponsored project, whose purpose was...to implement a local probe for a gas of ultracold atoms. We used a phase plate with a spiral phase gradient to create a hollow-core laser beam . This

  19. Non-equilibrium thermodynamics of highly rarefied neutron gas under creative and destructive reactions

    International Nuclear Information System (INIS)

    Hayasaka, Hideo

    1978-01-01

    The thermodynamic structures of non-equilibrium steady states of a highly rarefied neutron gas in various media are considered in terms of the irreversible processes due to creative and destructive reactions of neutrons with nuclei of these media and to neutrons supplied from external sources. The respective subsystems of the stationary neutron gas are regarded as imperfect equilibrium systems in the presence of the medium and the external neutron sources, and are treated like different species in a mixture. The entropy production due to neutron-nuclear reactions has a minimum value at the steady state. The distribution function of such a neutron gas is determined from the extremum condition in which entropy does not change, and is expressed as a shifted Boltzmann distribution specified by the respective values of the generalized chemical potential for each energy level. (author)

  20. Modeling the Non-Equilibrium Process of the Chemical Adsorption of Ammonia on GaN(0001) Reconstructed Surfaces Based on Steepest-Entropy-Ascent Quantum Thermodynamics.

    Science.gov (United States)

    Kusaba, Akira; Li, Guanchen; von Spakovsky, Michael R; Kangawa, Yoshihiro; Kakimoto, Koichi

    2017-08-15

    Clearly understanding elementary growth processes that depend on surface reconstruction is essential to controlling vapor-phase epitaxy more precisely. In this study, ammonia chemical adsorption on GaN(0001) reconstructed surfaces under metalorganic vapor phase epitaxy (MOVPE) conditions (3Ga-H and N ad -H + Ga-H on a 2 × 2 unit cell) is investigated using steepest-entropy-ascent quantum thermodynamics (SEAQT). SEAQT is a thermodynamic-ensemble based, first-principles framework that can predict the behavior of non-equilibrium processes, even those far from equilibrium where the state evolution is a combination of reversible and irreversible dynamics. SEAQT is an ideal choice to handle this problem on a first-principles basis since the chemical adsorption process starts from a highly non-equilibrium state. A result of the analysis shows that the probability of adsorption on 3Ga-H is significantly higher than that on N ad -H + Ga-H. Additionally, the growth temperature dependence of these adsorption probabilities and the temperature increase due to the heat of reaction is determined. The non-equilibrium thermodynamic modeling applied can lead to better control of the MOVPE process through the selection of preferable reconstructed surfaces. The modeling also demonstrates the efficacy of DFT-SEAQT coupling for determining detailed non-equilibrium process characteristics with a much smaller computational burden than would be entailed with mechanics-based, microscopic-mesoscopic approaches.

  1. Local thermodynamic equilibrium considerations in powerchip laser-induced plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Merten, Jonathan A., E-mail: jmerten@astate.edu; Smith, Benjamin W., E-mail: bwsmith@chem.ufl.edu; Omenetto, Nicoló, E-mail: omenetto@chem.ufl.edu

    2013-05-01

    Time-resolved emission experiments are reported in the fast-decaying transient plasma induced by a microchip laser on an aluminum target in three different cover gases, i.e., air, argon and helium. The laser operates at 532 nm, with a repetition frequency of 1 kHz and a pulse width of less than 0.5 ns. The overall persistence of plasma emission is of the order of 100 ns. We examine the existence of local thermodynamic equilibrium (LTE) by evaluating the temporal criteria required (in addition to the McWhirter criterion), as recommended by Cristoforetti et al. (Spectrochim. Acta Part B 65, 2010, 86–95). The temporal criteria examine the evolution of temperature and electron number density and compare their rate of change to the rate at which electron collisions can thermalize the change. These considerations are used to determine time windows in which LTE may be present. Our results suggest that calibration-free LIBS measurements with these lasers may be possible for some elements at early times, especially under argon. - Highlights: ► Powerchip laser-induced plasma evolution is affected by cover gas. ► Plasma often out of LTE, despite fulfilling the McWhirter criterion ► Calibration-free LIBS may be possible with powerchip laser plasmas.

  2. Model uncertainties of local-thermodynamic-equilibrium K-shell spectroscopy

    Science.gov (United States)

    Nagayama, T.; Bailey, J. E.; Mancini, R. C.; Iglesias, C. A.; Hansen, S. B.; Blancard, C.; Chung, H. K.; Colgan, J.; Cosse, Ph.; Faussurier, G.; Florido, R.; Fontes, C. J.; Gilleron, F.; Golovkin, I. E.; Kilcrease, D. P.; Loisel, G.; MacFarlane, J. J.; Pain, J.-C.; Rochau, G. A.; Sherrill, M. E.; Lee, R. W.

    2016-09-01

    Local-thermodynamic-equilibrium (LTE) K-shell spectroscopy is a common tool to diagnose electron density, ne, and electron temperature, Te, of high-energy-density (HED) plasmas. Knowing the accuracy of such diagnostics is important to provide quantitative conclusions of many HED-plasma research efforts. For example, Fe opacities were recently measured at multiple conditions at the Sandia National Laboratories Z machine (Bailey et al., 2015), showing significant disagreement with modeled opacities. Since the plasma conditions were measured using K-shell spectroscopy of tracer Mg (Nagayama et al., 2014), one concern is the accuracy of the inferred Fe conditions. In this article, we investigate the K-shell spectroscopy model uncertainties by analyzing the Mg spectra computed with 11 different models at the same conditions. We find that the inferred conditions differ by ±20-30% in ne and ±2-4% in Te depending on the choice of spectral model. Also, we find that half of the Te uncertainty comes from ne uncertainty. To refine the accuracy of the K-shell spectroscopy, it is important to scrutinize and experimentally validate line-shape theory. We investigate the impact of the inferred ne and Te model uncertainty on the Fe opacity measurements. Its impact is small and does not explain the reported discrepancies.

  3. Local thermodynamic equilibrium considerations in powerchip laser-induced plasmas

    International Nuclear Information System (INIS)

    Merten, Jonathan A.; Smith, Benjamin W.; Omenetto, Nicoló

    2013-01-01

    Time-resolved emission experiments are reported in the fast-decaying transient plasma induced by a microchip laser on an aluminum target in three different cover gases, i.e., air, argon and helium. The laser operates at 532 nm, with a repetition frequency of 1 kHz and a pulse width of less than 0.5 ns. The overall persistence of plasma emission is of the order of 100 ns. We examine the existence of local thermodynamic equilibrium (LTE) by evaluating the temporal criteria required (in addition to the McWhirter criterion), as recommended by Cristoforetti et al. (Spectrochim. Acta Part B 65, 2010, 86–95). The temporal criteria examine the evolution of temperature and electron number density and compare their rate of change to the rate at which electron collisions can thermalize the change. These considerations are used to determine time windows in which LTE may be present. Our results suggest that calibration-free LIBS measurements with these lasers may be possible for some elements at early times, especially under argon. - Highlights: ► Powerchip laser-induced plasma evolution is affected by cover gas. ► Plasma often out of LTE, despite fulfilling the McWhirter criterion ► Calibration-free LIBS may be possible with powerchip laser plasmas

  4. Non-equilibrium thermodynamics and physical kinetics

    CERN Document Server

    Bikkin, Halid

    2014-01-01

    This graduate textbook covers contemporary directions of non-equilibrium statistical mechanics as well as classical methods of kinetics. With one of the main propositions being to avoid terms such as "obviously" and "it is easy to show", this treatise is an easy-to-read introduction into this traditional, yet vibrant field.

  5. Non-Equilibrium Radiative Transfer in Structured Atmospheres

    National Research Council Canada - National Science Library

    Picard, R. H; Winick, J. R; Wintersteiner, P. P

    2002-01-01

    ... passage of both atmospheric gravity waves and transient frontal disturbances or bores. The infrared emissions from this part of the atmosphere are already typically not in local thermodynamic equilibrium (LTE...

  6. Thermodynamic equilibrium and heavy particles near a black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zeldovich, Ya B [AN SSSR, Moscow

    1976-02-23

    The purpose of this letter is to point out, that thermodynamic equilibrium in general relativity corresponds to T(r)=Tsub(infinity)g/sub 00/sup(-1/2)=Tsub(infinity)..sqrt..(r/(r-rsub(g))). The last expression is written for a static non-rotating (Schwarzschild) black hole.

  7. Understanding of surface pit formation mechanism of GaN grown in MOCVD based on local thermodynamic equilibrium assumption

    International Nuclear Information System (INIS)

    Gao Zhi-Yuan; Xue Xiao-Wei; Li Jiang-Jiang; Wang Xun; Xing Yan-Hui; Cui Bi-Feng; Zou De-Shu

    2016-01-01

    Frank’s theory describes that a screw dislocation will produce a pit on the surface, and has been evidenced in many material systems including GaN. However, the size of the pit calculated from the theory deviates significantly from experimental result. Through a careful observation of the variations of surface pits and local surface morphology with growing temperature and V/III ratio for c -plane GaN, we believe that Frank’s model is valid only in a small local surface area where thermodynamic equilibrium state can be assumed to stay the same. If the kinetic process is too vigorous or too slow to reach a balance, the local equilibrium range will be too small for the center and edge of the screw dislocation spiral to be kept in the same equilibrium state. When the curvature at the center of the dislocation core reaches the critical value 1/ r 0 , at the edge of the spiral, the accelerating rate of the curvature may not fall to zero, so the pit cannot reach a stationary shape and will keep enlarging under the control of minimization of surface energy to result in a large-sized surface pit. (paper)

  8. Effects of deviations from local thermodynamic equilibrium in the atmospheres of F supergiants. I. Overionization of Fe I atoms

    International Nuclear Information System (INIS)

    Boyarchuk, A.A.; Lyubimkov, L.S.; Sakhibullin, N.A.

    1985-01-01

    For a number of class F supergiants and dwarfs, non-LTE calculations have been made of the Fe I-Fe II ionization balance. It is shown that deviations from local thermodynamic equilibrium lead to a strong overionization of the Fe I atoms in the upper layers of the atmosphere. This confirms the conclusion obtained by Lyubimkov and Boyarchuk on the basis of an investigation of microturbulence in F supergiants. The reason for the overionization (compared with LTE) is the nonequality of the recombination and photoionization temperatures: To recombination processes there corresponds a local temperature T(/tau/), whereas the photoionization takes place under the influence of ultraviolet radiation from deeper and hotter layers of the atmosphere. The equivalent widths of some Fe I lines have been calculated. It is shown that neglect of the overionization in the analysis of sufficiently strong lines may lead to an underestimation of the iron abundance by an order of magnitude

  9. Application of the thermodynamic extremal principle to phase-field modeling of non-equilibrium solidification in multi-component alloys

    International Nuclear Information System (INIS)

    Zhang, Xiao; Wang, Haifeng; Kuang, Wangwang; Zhang, Jianbao

    2017-01-01

    Modeling of non-equilibrium solidification in multi-component alloys is of singular importance in microstructure control, which however owing to the complex systems with complex additional constraints is still an open problem. In this work, the thermodynamic extremal principle was applied to solve the complex additional constraints self-consistently in thermodynamics. Consequently, short-range solute redistribution and long-range solute diffusion that share the same mobility are integrated naturally into the solute diffusion equations, thus avoiding the introduction of additional kinetic coefficients (e.g. interface permeability) to describe solute redistribution. Application to the non-equilibrium solidification of Al-Si-Cu alloys shows that anomalous solute trapping and anomalous solute profiles within the diffuse interface could occur, thus highlighting the important effect of the interaction among the component elements on the interface kinetics. The current phase-field model might be preferred for simulations not only because of its simplest form of evolution equations but also its feasibility to increase the simulation efficiency by the “thin interface limit” analysis.

  10. Thermodynamic versus non-equilibrium stability of palmitic acid monolayers in calcium-enriched sea spray aerosol proxy systems.

    Science.gov (United States)

    Wellen Rudd, Bethany A; Vidalis, Andrew S; Allen, Heather C

    2018-04-16

    Of the major cations in seawater (Na+, Mg2+, Ca2+, K+), Ca2+ is found to be the most enriched in fine sea spray aerosols (SSA). In this work, we investigate the binding of Ca2+ to the carboxylic acid headgroup of palmitic acid (PA), a marine-abundant fatty acid, and the impact such binding has on the stability of PA monolayers in both equilibrium and non-equilibrium systems. A range of Ca2+ conditions from 10 μM to 300 mM was utilized to represent the relative concentration of Ca2+ in high and low relative humidity aerosol environments. The CO2- stretching modes of PA detected by surface-sensitive infrared reflection-absorption spectroscopy (IRRAS) reveal ionic binding motifs of the Ca2+ ion to the carboxylate group with varying degrees of hydration. Surface tensiometry was used to determine the thermodynamic equilibrium spreading pressure (ESP) of PA on the various aqueous CaCl2 subphases. Up to concentrations of 1 mM Ca2+, each system reached equilibrium, and Ca2+:PA surface complexation gave rise to a lower energy state revealed by elevated surface pressures relative to water. We show that PA films are not thermodynamically stable at marine aerosol-relevant Ca2+ concentrations ([Ca2+] ≥ 10 mM). IRRAS and vibrational sum frequency generation (VSFG) spectroscopy were used to investigate the surface presence of PA on high concentration Ca2+ aqueous subphases. Non-equilibrium relaxation (NER) experiments were also conducted and monitored by Brewster angle microscopy (BAM) to determine the effect of the Ca2+ ions on PA stability. At high surface pressures, the relaxation mechanisms of PA varied among the systems and were dependent on Ca2+ concentration.

  11. A study in cosmology and causal thermodynamics

    International Nuclear Information System (INIS)

    Oliveira, H.P. de.

    1986-01-01

    The especial relativity of thermodynamic theories for reversible and irreversible processes in continuous medium is studied. The formalism referring to equilibrium and non-equilibrium configurations, and theories which includes the presence of gravitational fields are discussed. The nebular model in contraction with dissipative processes identified by heat flux and volumetric viscosity is thermodymically analysed. This model is presented by a plane conformal metric. The temperature, pressure, entropy and entropy production within thermodynamic formalism which adopts the hypothesis of local equilibrium, is calculated. The same analysis is carried out considering a causal thermodynamics, which establishes a local entropy of non-equilibrium. Possible homogeneous and isotropic cosmological models, considering the new phenomenological equation for volumetric viscosity deriving from cause thermodynamics are investigated. The found out models have plane spatial section (K=0) and some ones do not have singularities. The energy conditions are verified and the entropy production for physically reasobable models are calculated. (M.C.K.) [pt

  12. Discussions on the non-equilibrium effects in the quantitative phase field model of binary alloys

    International Nuclear Information System (INIS)

    Zhi-Jun, Wang; Jin-Cheng, Wang; Gen-Cang, Yang

    2010-01-01

    All the quantitative phase field models try to get rid of the artificial factors of solutal drag, interface diffusion and interface stretch in the diffuse interface. These artificial non-equilibrium effects due to the introducing of diffuse interface are analysed based on the thermodynamic status across the diffuse interface in the quantitative phase field model of binary alloys. Results indicate that the non-equilibrium effects are related to the negative driving force in the local region of solid side across the diffuse interface. The negative driving force results from the fact that the phase field model is derived from equilibrium condition but used to simulate the non-equilibrium solidification process. The interface thickness dependence of the non-equilibrium effects and its restriction on the large scale simulation are also discussed. (cross-disciplinary physics and related areas of science and technology)

  13. Non-equilibrium thermodynamics in cells.

    Science.gov (United States)

    Jülicher, Frank; Grill, Stephan W; Salbreux, Guillaume

    2018-03-15

    We review the general hydrodynamic theory of active soft materials that is motivated in partic- ular by biological matter. We present basic concepts of irreversible thermodynamics of spatially extended multicomponent active systems. Starting from the rate of entropy production, we iden- tify conjugate thermodynamic fluxes and forces and present generic constitutive equations of polar active fluids and active gels. We also discuss angular momentum conservation which plays a role in the the physics of active chiral gels. The irreversible thermodynamics of active gels provides a general framework to discuss the physics that underlies a wide variety of biological processes in cells and in multicellular tissues. © 2018 IOP Publishing Ltd.

  14. Early history of extended irreversible thermodynamics (1953-1983): An exploration beyond local equilibrium and classical transport theory

    Science.gov (United States)

    Lebon, G.; Jou, D.

    2015-06-01

    This paper gives a historical account of the early years (1953-1983) of extended irreversible thermodynamics (EIT). The salient features of this formalism are to upgrade the thermodynamic fluxes of mass, momentum, energy, and others, to the status of independent variables, and to explore the consistency between generalized transport equations and a generalized version of the second law of thermodynamics. This requires going beyond classical irreversible thermodynamics by redefining entropy and entropy flux. EIT provides deeper foundations, closer relations with microscopic formalisms, a wider spectrum of applications, and a more exciting conceptual appeal to non-equilibrium thermodynamics. We first recall the historical contributions by Maxwell, Cattaneo, and Grad on generalized transport equations. A thermodynamic theory wide enough to cope with such transport equations was independently proposed between 1953 and 1983 by several authors, each emphasizing different kinds of problems. In 1983, the first international meeting on this theory took place in Bellaterra (Barcelona). It provided the opportunity for the various authors to meet together for the first time and to discuss the common points and the specific differences of their previous formulations. From then on, a large amount of applications and theoretical confirmations have emerged. From the historical point of view, the emergence of EIT has been an opportunity to revisit the foundations and to open new avenues in thermodynamics, one of the most classical and well consolidated physical theories.

  15. Thermodynamic and transport properties of gaseous tetrafluoromethane in chemical equilibrium

    Science.gov (United States)

    Hunt, J. L.; Boney, L. R.

    1973-01-01

    Equations and in computer code are presented for the thermodynamic and transport properties of gaseous, undissociated tetrafluoromethane (CF4) in chemical equilibrium. The computer code calculates the thermodynamic and transport properties of CF4 when given any two of five thermodynamic variables (entropy, temperature, volume, pressure, and enthalpy). Equilibrium thermodynamic and transport property data are tabulated and pressure-enthalpy diagrams are presented.

  16. Limiting processes in non-equilibrium classical statistical mechanics

    International Nuclear Information System (INIS)

    Jancel, R.

    1983-01-01

    After a recall of the basic principles of the statistical mechanics, the results of ergodic theory, the transient at the thermodynamic limit and his link with the transport theory near the equilibrium are analyzed. The fundamental problems put by the description of non-equilibrium macroscopic systems are investigated and the kinetic methods are stated. The problems of the non-equilibrium statistical mechanics are analyzed: irreversibility and coarse-graining, macroscopic variables and kinetic description, autonomous reduced descriptions, limit processes, BBGKY hierarchy, limit theorems [fr

  17. What Can Reinforcement Learning Teach Us About Non-Equilibrium Quantum Dynamics

    Science.gov (United States)

    Bukov, Marin; Day, Alexandre; Sels, Dries; Weinberg, Phillip; Polkovnikov, Anatoli; Mehta, Pankaj

    Equilibrium thermodynamics and statistical physics are the building blocks of modern science and technology. Yet, our understanding of thermodynamic processes away from equilibrium is largely missing. In this talk, I will reveal the potential of what artificial intelligence can teach us about the complex behaviour of non-equilibrium systems. Specifically, I will discuss the problem of finding optimal drive protocols to prepare a desired target state in quantum mechanical systems by applying ideas from Reinforcement Learning [one can think of Reinforcement Learning as the study of how an agent (e.g. a robot) can learn and perfect a given policy through interactions with an environment.]. The driving protocols learnt by our agent suggest that the non-equilibrium world features possibilities easily defying intuition based on equilibrium physics.

  18. Partition Function and Configurational Entropy in Non-Equilibrium States: A New Theoretical Model

    Directory of Open Access Journals (Sweden)

    Akira Takada

    2018-03-01

    Full Text Available A new model of non-equilibrium thermodynamic states has been investigated on the basis of the fact that all thermodynamic variables can be derived from partition functions. We have thus attempted to define partition functions for non-equilibrium conditions by introducing the concept of pseudo-temperature distributions. These pseudo-temperatures are configurational in origin and distinct from kinetic (phonon temperatures because they refer to the particular fragments of the system with specific energies. This definition allows thermodynamic states to be described either for equilibrium or non-equilibrium conditions. In addition; a new formulation of an extended canonical partition function; internal energy and entropy are derived from this new temperature definition. With this new model; computational experiments are performed on simple non-interacting systems to investigate cooling and two distinct relaxational effects in terms of the time profiles of the partition function; internal energy and configurational entropy.

  19. One-dimensional arrays of oscillators: Energy localization in thermal equilibrium

    International Nuclear Information System (INIS)

    Reigada, R.; Romero, A.H.; Sarmiento, A.; Lindenberg, K.

    1999-01-01

    All systems in thermal equilibrium exhibit a spatially variable energy landscape due to thermal fluctuations. Thus at any instant there is naturally a thermodynamically driven localization of energy in parts of the system relative to other parts of the system. The specific characteristics of the spatial landscape such as, for example, the energy variance, depend on the thermodynamic properties of the system and vary from one system to another. The temporal persistence of a given energy landscape, that is, the way in which energy fluctuations (high or low) decay toward the thermal mean, depends on the dynamical features of the system. We discuss the spatial and temporal characteristics of spontaneous energy localization in 1D anharmonic chains in thermal equilibrium. copyright 1999 American Institute of Physics

  20. Understanding of surface pit formation mechanism of GaN grown in MOCVD based on local thermodynamic equilibrium assumption

    Science.gov (United States)

    Zhi-Yuan, Gao; Xiao-Wei, Xue; Jiang-Jiang, Li; Xun, Wang; Yan-Hui, Xing; Bi-Feng, Cui; De-Shu, Zou

    2016-06-01

    Frank’s theory describes that a screw dislocation will produce a pit on the surface, and has been evidenced in many material systems including GaN. However, the size of the pit calculated from the theory deviates significantly from experimental result. Through a careful observation of the variations of surface pits and local surface morphology with growing temperature and V/III ratio for c-plane GaN, we believe that Frank’s model is valid only in a small local surface area where thermodynamic equilibrium state can be assumed to stay the same. If the kinetic process is too vigorous or too slow to reach a balance, the local equilibrium range will be too small for the center and edge of the screw dislocation spiral to be kept in the same equilibrium state. When the curvature at the center of the dislocation core reaches the critical value 1/r 0, at the edge of the spiral, the accelerating rate of the curvature may not fall to zero, so the pit cannot reach a stationary shape and will keep enlarging under the control of minimization of surface energy to result in a large-sized surface pit. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204009 and 61204011) and the Beijing Municipal Natural Science Foundation, China (Grant No. 4142005).

  1. Particle creation and non-equilibrium thermodynamical prescription of dark fluids for universe bounded by an event horizon

    OpenAIRE

    Saha, Subhajit; Biswas, Atreyee; Chakraborty, Subenoy

    2015-01-01

    In the present work, flat FRW model of the universe is considered to be an isolated open thermodynamical system where non-equilibrium prescription has been studied using the mechanism of particle creation. In the perspective of recent observational evidences, the matter distribution in the universe is assumed to be dominated by dark matter and dark energy. The dark matter is chosen as dust while for dark energy, the following choices are considered: (i) Perfect fluid with constant equation of...

  2. NON-EQUILIBRIUM HELIUM IONIZATION IN AN MHD SIMULATION OF THE SOLAR ATMOSPHERE

    International Nuclear Information System (INIS)

    Golding, Thomas Peter; Carlsson, Mats; Leenaarts, Jorrit

    2016-01-01

    The ionization state of the gas in the dynamic solar chromosphere can depart strongly from the instantaneous statistical equilibrium commonly assumed in numerical modeling. We improve on earlier simulations of the solar atmosphere that only included non-equilibrium hydrogen ionization by performing a 2D radiation-magnetohydrodynamics simulation featuring non-equilibrium ionization of both hydrogen and helium. The simulation includes the effect of hydrogen Lyα and the EUV radiation from the corona on the ionization and heating of the atmosphere. Details on code implementation are given. We obtain helium ion fractions that are far from their equilibrium values. Comparison with models with local thermodynamic equilibrium (LTE) ionization shows that non-equilibrium helium ionization leads to higher temperatures in wavefronts and lower temperatures in the gas between shocks. Assuming LTE ionization results in a thermostat-like behavior with matter accumulating around the temperatures where the LTE ionization fractions change rapidly. Comparison of DEM curves computed from our models shows that non-equilibrium ionization leads to more radiating material in the temperature range 11–18 kK, compared to models with LTE helium ionization. We conclude that non-equilibrium helium ionization is important for the dynamics and thermal structure of the upper chromosphere and transition region. It might also help resolve the problem that intensities of chromospheric lines computed from current models are smaller than those observed

  3. A survey of upwind methods for flows with equilibrium and non-equilibrium chemistry and thermodynamics

    Science.gov (United States)

    Grossman, B.; Garrett, J.; Cinnella, P.

    1989-01-01

    Several versions of flux-vector split and flux-difference split algorithms were compared with regard to general applicability and complexity. Test computations were performed using curve-fit equilibrium air chemistry for an M = 5 high-temperature inviscid flow over a wedge, and an M = 24.5 inviscid flow over a blunt cylinder for test computations; for these cases, little difference in accuracy was found among the versions of the same flux-split algorithm. For flows with nonequilibrium chemistry, the effects of the thermodynamic model on the development of flux-vector split and flux-difference split algorithms were investigated using an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Several numerical examples are presented, including nonequilibrium air chemistry in a high-temperature shock tube and nonequilibrium hydrogen-air chemistry in a supersonic diffuser.

  4. Two-temperature chemically non-equilibrium modelling of transferred arcs

    International Nuclear Information System (INIS)

    Baeva, M; Kozakov, R; Gorchakov, S; Uhrlandt, D

    2012-01-01

    A two-temperature chemically non-equilibrium model describing in a self-consistent manner the heat transfer, the plasma chemistry, the electric and magnetic field in a high-current free-burning arc in argon has been developed. The model is aimed at unifying the description of a thermionic tungsten cathode, a flat copper anode, and the arc plasma including the electrode sheath regions. The heat transfer in the electrodes is coupled to the plasma heat transfer considering the energy fluxes onto the electrode boundaries with the plasma. The results of the non-equilibrium model for an arc current of 200 A and an argon flow rate of 12 slpm are presented along with results obtained from a model based on the assumption of local thermodynamic equilibrium (LTE) and from optical emission spectroscopy. The plasma shows a near-LTE behaviour along the arc axis and in a region surrounding the axis which becomes wider towards the anode. In the near-electrode regions, a large deviation from LTE is observed. The results are in good agreement with experimental findings from optical emission spectroscopy. (paper)

  5. Is local equilibrium a useful concept in hadronic interactions

    International Nuclear Information System (INIS)

    Carruthers, P.

    1984-01-01

    Aspects of multiparticle production phenomena are reviewed, which bear on the existence of local equilibrium in all or part of a collision event. Several universal features of purely hadronic events, such as the p/sub perpendicular/ distribution of secondaries, the independence of multiplicities and multiplicity distributions on the quantum numbers of the colliding particles are easily interpreted by postulating the existence of local thermodynamic equilibrium for the dominant nondiffractive events. Except in the case of the multiplicity distribution, other interpretations often do not exist. Equilibration mechanisms which might establish local equilibrium are examined. We point out that several mechanisms besides the usual kinetic relaxation have not been seriously studied. These include collective instabilities, turbulence and chaos, which could be more effective in establishing equilibrium. Developments in the use of the hydrodynamic model are reviewed, with particular attention to the initial conditions appropriate to hadronic and nuclear collisions. We conclude that local equilibrium is indeed a useful concept but that much effort is needed to assess its accuracy and domain of applicability

  6. Self-assembled materials and supramolecular chemistry within microfluidic environments: from common thermodynamic states to non-equilibrium structures.

    Science.gov (United States)

    Sevim, S; Sorrenti, A; Franco, C; Furukawa, S; Pané, S; deMello, A J; Puigmartí-Luis, J

    2018-05-01

    Self-assembly is a crucial component in the bottom-up fabrication of hierarchical supramolecular structures and advanced functional materials. Control has traditionally relied on the use of encoded building blocks bearing suitable moieties for recognition and interaction, with targeting of the thermodynamic equilibrium state. On the other hand, nature leverages the control of reaction-diffusion processes to create hierarchically organized materials with surprisingly complex biological functions. Indeed, under non-equilibrium conditions (kinetic control), the spatio-temporal command of chemical gradients and reactant mixing during self-assembly (the creation of non-uniform chemical environments for example) can strongly affect the outcome of the self-assembly process. This directly enables a precise control over material properties and functions. In this tutorial review, we show how the unique physical conditions offered by microfluidic technologies can be advantageously used to control the self-assembly of materials and of supramolecular aggregates in solution, making possible the isolation of intermediate states and unprecedented non-equilibrium structures, as well as the emergence of novel functions. Selected examples from the literature will be used to confirm that microfluidic devices are an invaluable toolbox technology for unveiling, understanding and steering self-assembly pathways to desired structures, properties and functions, as well as advanced processing tools for device fabrication and integration.

  7. Calculating zeros: Non-equilibrium free energy calculations

    International Nuclear Information System (INIS)

    Oostenbrink, Chris; Gunsteren, Wilfred F. van

    2006-01-01

    Free energy calculations on three model processes with theoretically known free energy changes have been performed using short simulation times. A comparison between equilibrium (thermodynamic integration) and non-equilibrium (fast growth) methods has been made in order to assess the accuracy and precision of these methods. The three processes have been chosen to represent processes often observed in biomolecular free energy calculations. They involve a redistribution of charges, the creation and annihilation of neutral particles and conformational changes. At very short overall simulation times, the thermodynamic integration approach using discrete steps is most accurate. More importantly, reasonable accuracy can be obtained using this method which seems independent of the overall simulation time. In cases where slow conformational changes play a role, fast growth simulations might have an advantage over discrete thermodynamic integration where sufficient sampling needs to be obtained at every λ-point, but only if the initial conformations do properly represent an equilibrium ensemble. From these three test cases practical lessons can be learned that will be applicable to biomolecular free energy calculations

  8. Computation of thermodynamic equilibrium in systems under stress

    Science.gov (United States)

    Vrijmoed, Johannes C.; Podladchikov, Yuri Y.

    2016-04-01

    Metamorphic reactions may be partly controlled by the local stress distribution as suggested by observations of phase assemblages around garnet inclusions related to an amphibolite shear zone in granulite of the Bergen Arcs in Norway. A particular example presented in fig. 14 of Mukai et al. [1] is discussed here. A garnet crystal embedded in a plagioclase matrix is replaced on the left side by a high pressure intergrowth of kyanite and quartz and on the right side by chlorite-amphibole. This texture apparently represents disequilibrium. In this case, the minerals adapt to the low pressure ambient conditions only where fluids were present. Alternatively, here we compute that this particular low pressure and high pressure assemblage around a stressed rigid inclusion such as garnet can coexist in equilibrium. To do the computations we developed the Thermolab software package. The core of the software package consists of Matlab functions that generate Gibbs energy of minerals and melts from the Holland and Powell database [2] and aqueous species from the SUPCRT92 database [3]. Most up to date solid solutions are included in a general formulation. The user provides a Matlab script to do the desired calculations using the core functions. Gibbs energy of all minerals, solutions and species are benchmarked versus THERMOCALC, PerpleX [4] and SUPCRT92 and are reproduced within round off computer error. Multi-component phase diagrams have been calculated using Gibbs minimization to benchmark with THERMOCALC and Perple_X. The Matlab script to compute equilibrium in a stressed system needs only two modifications of the standard phase diagram script. Firstly, Gibbs energy of phases considered in the calculation is generated for multiple values of thermodynamic pressure. Secondly, for the Gibbs minimization the proportion of the system at each particular thermodynamic pressure needs to be constrained. The user decides which part of the stress tensor is input as thermodynamic

  9. Errors in Sounding of the Atmosphere Using Broadband Emission Radiometry (SABER) Kinetic Temperature Caused by Non-Local Thermodynamic Equilibrium Model Parameters

    Science.gov (United States)

    Garcia-Comas, Maya; Lopez-Puertas, M.; Funke, B.; Bermejo-Pantaleon, D.; Marshall, Benjamin T.; Mertens, Christopher J.; Remsberg, Ellis E.; Mlynczak, Martin G.; Gordley, L. L.; Russell, James M.

    2008-01-01

    The vast set of near global and continuous atmospheric measurements made by the SABER instrument since 2002, including daytime and nighttime kinetic temperature (T(sub k)) from 20 to 105 km, is available to the scientific community. The temperature is retrieved from SABER measurements of the atmospheric 15 micron CO2 limb emission. This emission separates from local thermodynamic equilibrium (LTE) conditions in the rarefied mesosphere and thermosphere, making it necessary to consider the CO2 vibrational state non-LTE populations in the retrieval algorithm above 70 km. Those populations depend on kinetic parameters describing the rate at which energy exchange between atmospheric molecules take place, but some of these collisional rates are not well known. We consider current uncertainties in the rates of quenching of CO2 (v2 ) by N2 , O2 and O, and the CO2 (v2 ) vibrational-vibrational exchange to estimate their impact on SABER T(sub k) for different atmospheric conditions. The T(sub k) is more sensitive to the uncertainty in the latter two and their effects depend on altitude. The T(sub k) combined systematic error due to non-LTE kinetic parameters does not exceed +/- 1.5 K below 95 km and +/- 4-5 K at 100 km for most latitudes and seasons (except for polar summer) if the Tk profile does not have pronounced vertical structure. The error is +/- 3 K at 80 km, +/- 6 K at 84 km and +/- 18 K at 100 km under the less favourable polar summer conditions. For strong temperature inversion layers, the errors reach +/- 3 K at 82 km and +/- 8 K at 90 km. This particularly affects tide amplitude estimates, with errors of up to +/- 3 K.

  10. Experimental benchmark of non-local-thermodynamic-equilibrium plasma atomic physics codes; Validation experimentale des codes de physique atomique des plasmas hors equilibre thermodynamique local

    Energy Technology Data Exchange (ETDEWEB)

    Nagels-Silvert, V

    2004-09-15

    The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)

  11. Experimental benchmark of non-local-thermodynamic-equilibrium plasma atomic physics codes; Validation experimentale des codes de physique atomique des plasmas hors equilibre thermodynamique local

    Energy Technology Data Exchange (ETDEWEB)

    Nagels-Silvert, V

    2004-09-15

    The main purpose of this thesis is to get experimental data for the testing and validation of atomic physics codes dealing with non-local-thermodynamical-equilibrium plasmas. The first part is dedicated to the spectroscopic study of xenon and krypton plasmas that have been produced by a nanosecond laser pulse interacting with a gas jet. A Thomson scattering diagnostic has allowed us to measure independently plasma parameters such as electron temperature, electron density and the average ionisation state. We have obtained time integrated spectra in the range between 5 and 10 angstroms. We have identified about one hundred xenon rays between 8.6 and 9.6 angstroms via the use of the Relac code. We have discovered unknown rays for the krypton between 5.2 and 7.5 angstroms. In a second experiment we have extended the wavelength range to the X UV domain. The Averroes/Transpec code has been tested in the ranges from 9 to 15 angstroms and from 10 to 130 angstroms, the first range has been well reproduced while the second range requires a more complex data analysis. The second part is dedicated to the spectroscopic study of aluminium, selenium and samarium plasmas in femtosecond operating rate. We have designed an interferometry diagnostic in the frequency domain that has allowed us to measure the expanding speed of the target's backside. Via the use of an adequate isothermal model this parameter has led us to know the plasma electron temperature. Spectra and emission times of various rays from the aluminium and selenium plasmas have been computed satisfactorily with the Averroes/Transpec code coupled with Film and Multif hydrodynamical codes. (A.C.)

  12. Thermodynamics of Fluids Under Flow Second Edition

    CERN Document Server

    Jou, David; Criado-Sancho, Manuel

    2011-01-01

    This is the second edition of the book “Thermodynamics of Fluids under Flow,” which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vázquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vázquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer ble...

  13. Experimental determination of thermodynamic equilibrium in biocatalytic transamination.

    Science.gov (United States)

    Tufvesson, Pär; Jensen, Jacob S; Kroutil, Wolfgang; Woodley, John M

    2012-08-01

    The equilibrium constant is a critical parameter for making rational design choices in biocatalytic transamination for the synthesis of chiral amines. However, very few reports are available in the scientific literature determining the equilibrium constant (K) for the transamination of ketones. Various methods for determining (or estimating) equilibrium have previously been suggested, both experimental as well as computational (based on group contribution methods). However, none of these were found suitable for determining the equilibrium constant for the transamination of ketones. Therefore, in this communication we suggest a simple experimental methodology which we hope will stimulate more accurate determination of thermodynamic equilibria when reporting the results of transaminase-catalyzed reactions in order to increase understanding of the relationship between substrate and product molecular structure on reaction thermodynamics. Copyright © 2012 Wiley Periodicals, Inc.

  14. Towards the unified non-classical physics: account for quantum fluctuations in equilibrium thermodynamics via the effective temperature

    Directory of Open Access Journals (Sweden)

    Yu.G.Rudoy

    2005-01-01

    Full Text Available The concept of effective temperature (ET T*(T0, T is used in order to approximately "quantize" the thermodynamic functions of the dynamical object which is in the thermal equilibrium with thermal bath being at constant temperature T (T0=E0/kB, where E0 is the ground-state energy, kB - Boltzmann constant, is the characteristic ``quantum'' temperature of the system itself. On these grounds the extensive comparative investigation is carried out for the ``standard model'' of statistical mechanics - the one-dimensional harmonic oscillator (HO. Three well-known approaches are considered and their thermodynamic consequences thoroughly studied. These are: the exact quantum, or non-classical Planck-Einstein approach, intermediate, or semiclassical Bloch-Wigner approach and, finally, the pure classical, or Maxwell-Boltzmann approach.

  15. Thermodynamic equilibrium-air correlations for flowfield applications

    Science.gov (United States)

    Zoby, E. V.; Moss, J. N.

    1981-01-01

    Equilibrium-air thermodynamic correlations have been developed for flowfield calculation procedures. A comparison between the postshock results computed by the correlation equations and detailed chemistry calculations is very good. The thermodynamic correlations are incorporated in an approximate inviscid flowfield code with a convective heating capability for the purpose of defining the thermodynamic environment through the shock layer. Comparisons of heating rates computed by the approximate code and a viscous-shock-layer method are good. In addition to presenting the thermodynamic correlations, the impact of several viscosity models on the convective heat transfer is demonstrated.

  16. Non-local Thermodynamic Equilibrium Stellar Spectroscopy with 1D and Models. I. Methods and Application to Magnesium Abundances in Standard Stars

    Science.gov (United States)

    Bergemann, Maria; Collet, Remo; Amarsi, Anish M.; Kovalev, Mikhail; Ruchti, Greg; Magic, Zazralt

    2017-09-01

    We determine Mg abundances in six Gaia benchmark stars using theoretical one-dimensional (1D) hydrostatic model atmospheres, as well as temporally and spatially averaged three-dimensional () model atmospheres. The stars cover a range of Teff from 4700 to 6500 K, log g from 1.6 to 4.4 dex, and [Fe/H] from -3.0 dex to solar. Spectrum synthesis calculations are performed in local thermodynamic equilibrium (LTE) and in non-LTE (NLTE) using the oscillator strengths recently published by Pehlivan Rhodin et al. We find that: (a) Mg abundances determined from the infrared spectra are as accurate as the optical diagnostics, (b) the NLTE effects on Mg I line strengths and abundances in this sample of stars are minor (although for a few Mg I lines the NLTE effects on abundance exceed 0.6 dex in and 0.1 dex in 1D, (c) the solar Mg abundance is 7.56+/- 0.05 dex (total error), in excellent agreement with the Mg abundance measured in CI chondritic meteorites, (d) the 1D NLTE and NLTE approaches can be used with confidence to analyze optical Mg I lines in spectra of dwarfs and sub-giants, but for red giants the Mg I 5711 Å line should be preferred, (e) low-excitation Mg I lines are sensitive to the atmospheric structure; for these lines, LTE calculations with models lead to significant systematic abundance errors. The methods developed in this work will be used to study Mg abundances of a large sample of stars in the next paper in the series.

  17. A non-equilibrium thermodynamic model for tumor extracellular matrix with enzymatic degradation

    Science.gov (United States)

    Xue, Shi-Lei; Li, Bo; Feng, Xi-Qiao; Gao, Huajian

    2017-07-01

    The extracellular matrix (ECM) of a solid tumor not only affords scaffolding to support tumor architecture and integrity but also plays an essential role in tumor growth, invasion, metastasis, and therapeutics. In this paper, a non-equilibrium thermodynamic theory is established to study the chemo-mechanical behaviors of tumor ECM, which is modeled as a poroelastic polyelectrolyte consisting of a collagen network and proteoglycans. By using the principle of maximum energy dissipation rate, we deduce a set of governing equations for drug transport and mechanosensitive enzymatic degradation in ECM. The results reveal that osmosis is primarily responsible for the compression resistance of ECM. It is suggested that a well-designed ECM degradation can effectively modify the tumor microenvironment for improved efficiency of cancer therapy. The theoretical predictions show a good agreement with relevant experimental observations. This study aimed to deepen our understanding of tumor ECM may be conducive to novel anticancer strategies.

  18. Non-equilibrium quantum heat machines

    Science.gov (United States)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-11-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.

  19. Non-equilibrium quantum heat machines

    International Nuclear Information System (INIS)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-01-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound. (paper)

  20. Identifying apparent local stable isotope equilibrium in a complex non-equilibrium system.

    Science.gov (United States)

    He, Yuyang; Cao, Xiaobin; Wang, Jianwei; Bao, Huiming

    2018-02-28

    Although being out of equilibrium, biomolecules in organisms have the potential to approach isotope equilibrium locally because enzymatic reactions are intrinsically reversible. A rigorous approach that can describe isotope distribution among biomolecules and their apparent deviation from equilibrium state is lacking, however. Applying the concept of distance matrix in graph theory, we propose that apparent local isotope equilibrium among a subset of biomolecules can be assessed using an apparent fractionation difference (|Δα|) matrix, in which the differences between the observed isotope composition (δ') and the calculated equilibrium fractionation factor (1000lnβ) can be more rigorously evaluated than by using a previous approach for multiple biomolecules. We tested our |Δα| matrix approach by re-analyzing published data of different amino acids (AAs) in potato and in green alga. Our re-analysis shows that biosynthesis pathways could be the reason for an apparently close-to-equilibrium relationship inside AA families in potato leaves. Different biosynthesis/degradation pathways in tubers may have led to the observed isotope distribution difference between potato leaves and tubers. The analysis of data from green algae does not support the conclusion that AAs are further from equilibrium in glucose-cultured green algae than in the autotrophic ones. Application of the |Δα| matrix can help us to locate potential reversible reactions or reaction networks in a complex system such as a metabolic system. The same approach can be broadly applied to all complex systems that have multiple components, e.g. geochemical or atmospheric systems of early Earth or other planets. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Lagrangian formulation of irreversible thermodynamics and the second law of thermodynamics.

    Science.gov (United States)

    Glavatskiy, K S

    2015-05-28

    We show that the equations which describe irreversible evolution of a system can be derived from a variational principle. We suggest a Lagrangian, which depends on the properties of the normal and the so-called "mirror-image" system. The Lagrangian is symmetric in time and therefore compatible with microscopic reversibility. The evolution equations in the normal and mirror-imaged systems are decoupled and describe therefore independent irreversible evolution of each of the systems. The second law of thermodynamics follows from a symmetry of the Lagrangian. Entropy increase in the normal system is balanced by the entropy decrease in the mirror-image system, such that there exists an "integral of evolution" which is a constant. The derivation relies on the property of local equilibrium, which states that the local relations between the thermodynamic quantities in non-equilibrium are the same as in equilibrium.

  2. Exploring Chemical and Thermal Non-equilibrium in Nitrogen Arcs

    International Nuclear Information System (INIS)

    Ghorui, S; Das, A K

    2012-01-01

    Plasma torches operating with nitrogen are of special importance as they can operate with usual tungsten based refractory electrodes and offer radical rich non-oxidizing high temperature environment for plasma chemistry. Strong gradients in temperature as well as species densities and huge convective fluxes lead to varying degrees of chemical non-equilibrium in associated regions. An axi-symmetric two-temperature chemical non-equilibrium model of a nitrogen plasma torch has been developed to understand the effects of thermal and chemical non-equilibrium in arcs. A 2-D finite volume CFD code in association with a non-equilibrium property routine enabled extraction of steady state self-consistent distributions of various plasma quantities inside the torch under various thermal and chemical non-equilibrium conditions. Chemical non-equilibrium has been incorporated through computation of diffusive and convective fluxes in each finite volume cell in every iteration and associating corresponding thermodynamic and transport properties through the scheme of 'chemical non-equilibrium parameter' introduced by Ghorui et. al. Recombination coefficient data from Nahar et. al. and radiation data from Krey and Morris have been used in the simulation. Results are presented for distributions of temperature, pressure, velocity, current density, electric potential, species densities and chemical non-equilibrium effects. Obtained results are compared with similar results under LTE.

  3. A redefinition of Hawking temperature on the event horizon: Thermodynamical equilibrium

    International Nuclear Information System (INIS)

    Saha, Subhajit; Chakraborty, Subenoy

    2012-01-01

    In this Letter we have used the recently introduced redefined Hawking temperature on the event horizon and investigated whether the generalized second law of thermodynamics (GSLT) and thermodynamic equilibrium holds for both the event and the apparent horizons. Here we have considered FRW universe and examined the GSLT and thermodynamic equilibrium with three examples. Finally, we have concluded that from the thermodynamic viewpoint, the universe bounded by the event horizon is more realistic than that by the apparent horizon at least for some examples.

  4. Wall ablation of heated compound-materials into non-equilibrium discharge plasmas

    Science.gov (United States)

    Wang, Weizong; Kong, Linghan; Geng, Jinyue; Wei, Fuzhi; Xia, Guangqing

    2017-02-01

    The discharge properties of the plasma bulk flow near the surface of heated compound-materials strongly affects the kinetic layer parameters modeled and manifested in the Knudsen layer. This paper extends the widely used two-layer kinetic ablation model to the ablation controlled non-equilibrium discharge due to the fact that the local thermodynamic equilibrium (LTE) approximation is often violated as a result of the interaction between the plasma and solid walls. Modifications to the governing set of equations, to account for this effect, are derived and presented by assuming that the temperature of the electrons deviates from that of the heavy particles. The ablation characteristics of one typical material, polytetrafluoroethylene (PTFE) are calculated with this improved model. The internal degrees of freedom as well as the average particle mass and specific heat ratio of the polyatomic vapor, which strongly depends on the temperature, pressure and plasma non-equilibrium degree and plays a crucial role in the accurate determination of the ablation behavior by this model, are also taken into account. Our assessment showed the significance of including such modifications related to the non-equilibrium effect in the study of vaporization of heated compound materials in ablation controlled arcs. Additionally, a two-temperature magneto-hydrodynamic (MHD) model accounting for the thermal non-equilibrium occurring near the wall surface is developed and applied into an ablation-dominated discharge for an electro-thermal chemical launch device. Special attention is paid to the interaction between the non-equilibrium plasma and the solid propellant surface. Both the mass exchange process caused by the wall ablation and plasma species deposition as well as the associated momentum and energy exchange processes are taken into account. A detailed comparison of the results of the non-equilibrium model with those of an equilibrium model is presented. The non-equilibrium results

  5. Are the Concepts of Dynamic Equilibrium and the Thermodynamic Criteria for Spontaneity, Nonspontaneity, and Equilibrium Compatible?

    Science.gov (United States)

    Silverberg, Lee J.; Raff, Lionel M.

    2015-01-01

    Thermodynamic spontaneity-equilibrium criteria require that in a single-reaction system, reactions in either the forward or reverse direction at equilibrium be nonspontaneous. Conversely, the concept of dynamic equilibrium holds that forward and reverse reactions both occur at equal rates at equilibrium to the extent allowed by kinetic…

  6. Entropy analysis on non-equilibrium two-phase flow models

    International Nuclear Information System (INIS)

    Karwat, H.; Ruan, Y.Q.

    1995-01-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships

  7. Entropy analysis on non-equilibrium two-phase flow models

    Energy Technology Data Exchange (ETDEWEB)

    Karwat, H.; Ruan, Y.Q. [Technische Universitaet Muenchen, Garching (Germany)

    1995-09-01

    A method of entropy analysis according to the second law of thermodynamics is proposed for the assessment of a class of practical non-equilibrium two-phase flow models. Entropy conditions are derived directly from a local instantaneous formulation for an arbitrary control volume of a structural two-phase fluid, which are finally expressed in terms of the averaged thermodynamic independent variables and their time derivatives as well as the boundary conditions for the volume. On the basis of a widely used thermal-hydraulic system code it is demonstrated with practical examples that entropy production rates in control volumes can be numerically quantified by using the data from the output data files. Entropy analysis using the proposed method is useful in identifying some potential problems in two-phase flow models and predictions as well as in studying the effects of some free parameters in closure relationships.

  8. EquilTheTA: Thermodynamic and transport properties of complex equilibrium plasmas

    International Nuclear Information System (INIS)

    Colonna, G.; D'Angola, A.

    2012-01-01

    EquilTheTA (EQUILibrium for plasma THErmodynamics and Transport Applications) is a web-based software which calculates chemical equilibrium product concentrations from any set of reactants and determines thermodynamic and transport properties for the product mixture in wide temperature and pressure ranges. The program calculates chemical equilibrium by using a hierarchical approach, thermodynamic properties and transport coefficients starting from recent and accurate databases of atomic and molecular energy levels and collision integrals. In the calculations, Debye length and cut-off are consistently updated and virial corrections (up to third order) can be considered. Transport coefficients are calculated by using high order approximations of the Chapman-Enskog method.

  9. Stochastic thermodynamics of quantum maps with and without equilibrium.

    Science.gov (United States)

    Barra, Felipe; Lledó, Cristóbal

    2017-11-01

    We study stochastic thermodynamics for a quantum system of interest whose dynamics is described by a completely positive trace-preserving (CPTP) map as a result of its interaction with a thermal bath. We define CPTP maps with equilibrium as CPTP maps with an invariant state such that the entropy production due to the action of the map on the invariant state vanishes. Thermal maps are a subgroup of CPTP maps with equilibrium. In general, for CPTP maps, the thermodynamic quantities, such as the entropy production or work performed on the system, depend on the combined state of the system plus its environment. We show that these quantities can be written in terms of system properties for maps with equilibrium. The relations that we obtain are valid for arbitrary coupling strengths between the system and the thermal bath. The fluctuations of thermodynamic quantities are considered in the framework of a two-point measurement scheme. We derive the entropy production fluctuation theorem for general maps and a fluctuation relation for the stochastic work on a system that starts in the Gibbs state. Some simplifications for the probability distributions in the case of maps with equilibrium are presented. We illustrate our results by considering spin 1/2 systems under thermal maps, nonthermal maps with equilibrium, maps with nonequilibrium steady states, and concatenations of them. Finally, and as an important application, we consider a particular limit in which the concatenation of maps generates a continuous time evolution in Lindblad form for the system of interest, and we show that the concept of maps with and without equilibrium translates into Lindblad equations with and without quantum detailed balance, respectively. The consequences for the thermodynamic quantities in this limit are discussed.

  10. Generalization of Gibbs Entropy and Thermodynamic Relation

    OpenAIRE

    Park, Jun Chul

    2010-01-01

    In this paper, we extend Gibbs's approach of quasi-equilibrium thermodynamic processes, and calculate the microscopic expression of entropy for general non-equilibrium thermodynamic processes. Also, we analyze the formal structure of thermodynamic relation in non-equilibrium thermodynamic processes.

  11. Particle creation and non-equilibrium thermodynamical prescription of dark fluids for universe bounded by an event horizon

    Science.gov (United States)

    Saha, Subhajit; Biswas, Atreyee; Chakraborty, Subenoy

    2015-03-01

    In the present work, flat FRW model of the universe is considered to be an isolated open thermodynamical system where non-equilibrium prescription has been studied using the mechanism of particle creation. In the perspective of recent observational evidences, the matter distribution in the universe is assumed to be dominated by dark matter and dark energy. The dark matter is chosen as dust while for dark energy, the following choices are considered: (i) Perfect fluid with constant equation of state and (ii) Holographic dark energy. In both the cases, the validity of generalized second law of thermodynamics (GSLT) which states that the total entropy of the fluid as well as that of the horizon should not decrease with the evolution of the universe, has been examined graphically for universe bounded by the event horizon. It is found that GSLT holds in both the cases with some restrictions on the interacting coupling parameter.

  12. A new perspective on the electron transfer: recovering the Butler-Volmer equation in non-equilibrium thermodynamics.

    Science.gov (United States)

    Dreyer, Wolfgang; Guhlke, Clemens; Müller, Rüdiger

    2016-09-28

    Electron transfer reactions are commonly described by the phenomenological Butler-Volmer equation which has its origin in kinetic theories. The Butler-Volmer equation relates interfacial reaction rates to bulk quantities like the electrostatic potential and electrolyte concentrations. Although the general structure of the equation is well accepted, for modern electrochemical systems like batteries and fuel cells there is still intensive discussion about the specific dependencies of the coefficients. A general guideline for the derivation of Butler-Volmer type equations is missing in the literature. We derive very general relations of Butler-Volmer structure which are based on a rigorous non-equilibrium thermodynamic model and allow for adaption to a wide variety of electrochemical systems. We discuss the application of the new thermodynamic approach to different scenarios like the classical electron transfer reactions at metal electrodes and the intercalation process in lithium-iron-phosphate electrodes. Furthermore we show that under appropriate conditions also adsorption processes can lead to Butler-Volmer equations. We illustrate the application of our theory by a strongly simplified example of electroplating.

  13. Considerations on non equilibrium thermodynamics of interactions

    Science.gov (United States)

    Lucia, Umberto

    2016-04-01

    Nature can be considered the ;first; engineer! For scientists and engineers, dynamics and evolution of complex systems are not easy to predict. A fundamental approach to study complex system is thermodynamics. But, the result is the origin of too many schools of thermodynamics with a consequent difficulty in communication between thermodynamicists and other scientists and, also, among themselves. The solution is to obtain a unified approach based on the fundamentals of physics. Here we suggest a possible unification of the schools of thermodynamics starting from two fundamental concepts of physics, interaction and flows.

  14. A non-local thermodynamical equilibrium line formation for neutral and singly ionized titanium in model atmospheres of reference A-K stars

    Science.gov (United States)

    Sitnova, T. M.; Mashonkina, L. I.; Ryabchikova, T. A.

    2016-09-01

    We construct a model atom for Ti I-II using more than 3600 measured and predicted energy levels of Ti I and 1800 energy levels of Ti II, and quantum mechanical photoionization cross-sections. Non-local thermodynamical equilibrium (NLTE) line formation for Ti I and Ti II is treated through a wide range of spectral types from A to K, including metal-poor stars with [Fe/H] down to -2.6 dex. NLTE leads to weakened Ti I lines and positive abundance corrections. The magnitude of NLTE corrections is smaller compared to the literature data for FGK atmospheres. NLTE leads to strengthened Ti II lines and negative NLTE abundance corrections. For the first time, we have performed NLTE calculations for Ti I-II in the 6500 ≤ Teff ≤ 13 000 K range. For four A-type stars, we derived in LTE an abundance discrepancy of up to 0.22 dex between Ti I and Ti II, which vanishes in NLTE. For four other A-B stars, with only Ti II lines observed, NLTE leads to a decrease of line-to-line scatter. An efficiency of inelastic Ti I + H I collisions was estimated from an analysis of Ti I and Ti II lines in 17 cool stars with -2.6 ≤ [Fe/H] ≤ 0.0. Consistent NLTE abundances from Ti I and Ti II were obtained by applying classical Drawinian rates for the stars with log g ≥ 4.1, and neglecting inelastic collisions with H I for the very metal-poor (VMP) giant HD 122563. For the VMP turn-off stars ([Fe/H] ≤ -2 and log g ≤ 4.1), we obtained the positive abundance difference Ti I-II already in LTE, which increases in NLTE. Accurate collisional data for Ti I and Ti II are necessary to help solve this problem.

  15. Stochastic thermodynamics

    Science.gov (United States)

    Eichhorn, Ralf; Aurell, Erik

    2014-04-01

    'Stochastic thermodynamics as a conceptual framework combines the stochastic energetics approach introduced a decade ago by Sekimoto [1] with the idea that entropy can consistently be assigned to a single fluctuating trajectory [2]'. This quote, taken from Udo Seifert's [3] 2008 review, nicely summarizes the basic ideas behind stochastic thermodynamics: for small systems, driven by external forces and in contact with a heat bath at a well-defined temperature, stochastic energetics [4] defines the exchanged work and heat along a single fluctuating trajectory and connects them to changes in the internal (system) energy by an energy balance analogous to the first law of thermodynamics. Additionally, providing a consistent definition of trajectory-wise entropy production gives rise to second-law-like relations and forms the basis for a 'stochastic thermodynamics' along individual fluctuating trajectories. In order to construct meaningful concepts of work, heat and entropy production for single trajectories, their definitions are based on the stochastic equations of motion modeling the physical system of interest. Because of this, they are valid even for systems that are prevented from equilibrating with the thermal environment by external driving forces (or other sources of non-equilibrium). In that way, the central notions of equilibrium thermodynamics, such as heat, work and entropy, are consistently extended to the non-equilibrium realm. In the (non-equilibrium) ensemble, the trajectory-wise quantities acquire distributions. General statements derived within stochastic thermodynamics typically refer to properties of these distributions, and are valid in the non-equilibrium regime even beyond the linear response. The extension of statistical mechanics and of exact thermodynamic statements to the non-equilibrium realm has been discussed from the early days of statistical mechanics more than 100 years ago. This debate culminated in the development of linear response

  16. Modeling of thermodynamic non-equilibrium flows around cylinders and in channels

    Science.gov (United States)

    Sinha, Avick; Gopalakrishnan, Shiva

    2017-11-01

    Numerical simulations for two different types of flash-boiling flows, namely shear flow (flow through a de-Laval nozzle) and free shear flow (flow past a cylinder) are carried out in the present study. The Homogenous Relaxation Model (HRM) is used to model the thermodynamic non-equilibrium process. It was observed that the vaporization of the fluid stream, which was initially maintained at a sub-cooled state, originates at the nozzle throat. This is because the fluid accelerates at the vena-contracta and subsequently the pressure falls below the saturation vapor pressure, generating a two-phase mixture in the diverging section of the nozzle. The mass flow rate at the nozzle was found to decrease with the increase in fluid inlet temperature. A similar phenomenon also occurs for the free shear case due to boundary layer separation, causing a drop in pressure behind the cylinder. The mass fraction of vapor is maximum at rear end of the cylinder, where the size of the wake is highest. As the back pressure is reduced, severe flashing behavior was observed. The numerical simulations were validated against available experimental data. The authors gratefully acknowledge funding from the public-private partnership between DST, Confederation of Indian Industry and General Electric Pvt. Ltd.

  17. Non-equilibrium relaxation and near-arrest dynamics in colloidal suspensions

    International Nuclear Information System (INIS)

    Medina-Noyola, M; RamIrez-Gonzalez, Pedro

    2009-01-01

    In this work we propose a theory to describe the irreversible diffusive relaxation of the local concentration of a colloidal dispersion that proceeds toward its stable thermodynamic equilibrium state, but which may in the process be trapped in metastable or dynamically arrested states. The central assumption of this theory is that the irreversible relaxation of the macroscopically observed mean value n-bar(r,t) of the local concentration of colloidal particles is described by a diffusion equation involving a local mobility b*(r,t) that depends not only on the mean value n-bar(r,t) but also on the covariance σ(r,r';t)≡δn(r,t)δn(r',t)-bar of the fluctuations δn(r,t)≡n(r,t)-n-bar(r,t). This diffusion equation must hence be solved simultaneously with the relaxation equation for the covariance σ(r,r';t), and here we also derive the corresponding relaxation equation. The dependence of the local mobility b*(r,t) on the mean value and the covariance is determined by a self-consistent set of equations involving now the spatially and temporally non-local time-dependent correlation functions, which in a uniform system in equilibrium reduces to the self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics. The resulting general theory considers the possibility that these relaxation processes occur under the influence of external fields, such as gravitational forces acting in the process of sedimentation. In this paper, however, we describe a simpler application, in which the system remains spatially uniform during the irreversible relaxation process, and discuss the general features of the glass transition scenario predicted by this non-equilibrium theory.

  18. Equilibrium thermodynamics

    CERN Document Server

    de Oliveira, Mário J

    2017-01-01

    This textbook provides an exposition of equilibrium thermodynamics and its applications to several areas of physics with particular attention to phase transitions and critical phenomena. The applications include several areas of condensed matter physics and include also a chapter on thermochemistry. Phase transitions and critical phenomena are treated according to the modern development of the field, based on the ideas of universality and on the Widom scaling theory. For each topic, a mean-field or Landau theory is presented to describe qualitatively the phase transitions. These theories include the van der Waals theory of the liquid-vapor transition, the Hildebrand-Heitler theory of regular mixtures, the Griffiths-Landau theory for multicritical points in multicomponent systems, the Bragg-Williams theory of order-disorder in alloys, the Weiss theory of ferromagnetism, the Néel theory of antiferromagnetism, the Devonshire theory for ferroelectrics and Landau-de Gennes theory of liquid crystals. This new edit...

  19. Thermodynamics of ion exchange equilibrium for some uni ...

    African Journals Online (AJOL)

    The study on thermodynamics of ion exchange equilibrium for uni-univalent Cl-/I-, Cl-/Br-, and uni-divalent Cl-/SO42-, Cl-/C2O42- reaction systems was carried out using ion exchange resin Indion FF-IP. The equilibrium constant K was calculated by taking into account the activity coefficient of ions both in solution as well as ...

  20. Thermodynamic equilibrium in relativistic rotating systems

    International Nuclear Information System (INIS)

    Suen, W.M.; Washington Univ., St. Louis, MO; Young, K.

    1988-01-01

    The thermodynamic equilibrium configurations of relativistic rotating stars are studied using the maximum entropy principle. It is shown that the heuristic arguments for the equilibrium conditions can be developed into a maximum entropy principle in which the variations are carried out in a fixed background spacetime. This maximum principle with the fixed background assumption is technically simpler than, but has to be justified by, a maximum entropy principle without the assumption. Such a maximum entropy principle is formulated in this paper, showing that the general relativistic system can be treated on the same footing as other long-range force systems. (author)

  1. Equilibrium, kinetic and thermodynamic studies of uranium biosorption by calcium alginate beads

    International Nuclear Information System (INIS)

    Bai, Jing; Fan, Fangli; Wu, Xiaolei; Tian, Wei; Zhao, Liang; Yin, Xiaojie; Fan, Fuyou; Li, Zhan; Tian, Longlong; Wang, Yang; Qin, Zhi; Guo, Junsheng

    2013-01-01

    Calcium alginate beads are potential biosorbent for radionuclides removal as they contain carboxyl groups. However, until now limited information is available concerning the uptake behavior of uranium by this polymer gel, especially when sorption equilibrium, kinetics and thermodynamics are concerned. In present work, batch experiments were carried out to study the equilibrium, kinetics and thermodynamics of uranium sorption by calcium alginate beads. The effects of initial solution pH, sorbent amount, initial uranium concentration and temperature on uranium sorption were also investigated. The determined optimal conditions were: initial solution pH of 3.0, added sorbent amount of 40 mg, and uranium sorption capacity increased with increasing initial uranium concentration and temperature. Equilibrium data obtained under different temperatures were fitted better with Langmuir model than Freundlich model, uranium sorption was dominated by a monolayer way. The kinetic data can be well depicted by the pseudo-second-order kinetic model. The activation energy derived from Arrhenius equation was 30.0 kJ/mol and the sorption process had a chemical nature. Thermodynamic constants such as ΔH 0 , ΔS 0 and ΔG 0 were also evaluated, results of thermodynamic study showed that the sorption process was endothermic and spontaneous. -- Highlights: • Equilibrium, kinetics and thermodynamics of uranium sorption by CaAlg were studied. • Equilibrium studies show that Langmuir isotherm better fit with experimental data. • Pseudo-second-order kinetics model is found to be well depicting the kinetic data. • Thermodynamic study shows that the sorption process is endothermic and spontaneous

  2. The thermodynamic meaning of local temperature of nonequilibrium open quantum systems

    OpenAIRE

    Ye, LvZhou; Zheng, Xiao; Yan, YiJing; Di Ventra, Massimiliano

    2016-01-01

    Measuring the local temperature of nanoscale systems out of equilibrium has emerged as a new tool to study local heating effects and other local thermal properties of systems driven by external fields. Although various experimental protocols and theoretical definitions have been proposed to determine the local temperature, the thermodynamic meaning of the measured or defined quantities remains unclear. By performing analytical and numerical analysis of bias-driven quantum dot systems both in ...

  3. A tightly coupled non-equilibrium model for inductively coupled radio-frequency plasmas

    International Nuclear Information System (INIS)

    Munafò, A.; Alfuhaid, S. A.; Panesi, M.; Cambier, J.-L.

    2015-01-01

    The objective of the present work is the development of a tightly coupled magneto-hydrodynamic model for inductively coupled radio-frequency plasmas. Non Local Thermodynamic Equilibrium (NLTE) effects are described based on a hybrid State-to-State approach. A multi-temperature formulation is used to account for thermal non-equilibrium between translation of heavy-particles and vibration of molecules. Excited electronic states of atoms are instead treated as separate pseudo-species, allowing for non-Boltzmann distributions of their populations. Free-electrons are assumed Maxwellian at their own temperature. The governing equations for the electro-magnetic field and the gas properties (e.g., chemical composition and temperatures) are written as a coupled system of time-dependent conservation laws. Steady-state solutions are obtained by means of an implicit Finite Volume method. The results obtained in both LTE and NLTE conditions over a broad spectrum of operating conditions demonstrate the robustness of the proposed coupled numerical method. The analysis of chemical composition and temperature distributions along the torch radius shows that: (i) the use of the LTE assumption may lead to an inaccurate prediction of the thermo-chemical state of the gas, and (ii) non-equilibrium phenomena play a significant role close the walls, due to the combined effects of Ohmic heating and macroscopic gradients

  4. Classical relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated reference frame

    International Nuclear Information System (INIS)

    Louis-Martinez, Domingo J

    2011-01-01

    A classical (non-quantum-mechanical) relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated frame of reference is studied using Gibbs's microcanonical and grand canonical formulations of statistical mechanics. Using these methods explicit expressions for the particle, energy and entropy density distributions are obtained, which are found to be in agreement with the well-known results of the relativistic formulation of Boltzmann's kinetic theory. Explicit expressions for the total entropy, total energy and rest mass of the gas are obtained. The position of the center of mass of the gas in equilibrium is found. The non-relativistic and ultrarelativistic approximations are also considered. The phase space volume of the system is calculated explicitly in the ultrarelativistic approximation.

  5. Local thermal equilibrium and ideal gas Stephani universes

    OpenAIRE

    Coll, Bartolomé; Ferrando, Joan Josep

    2004-01-01

    The Stephani universes that can be interpreted as an ideal gas evolving in local thermal equilibrium are determined. Five classes of thermodynamic schemes are admissible, which give rise to five classes of regular models and three classes of singular models. No Stephani universes exist representing an exact solution to a classical ideal gas (one for which the internal energy is proportional to the temperature). But some Stephani universes may approximate a classical ideal gas at first order i...

  6. The entropy concept for non-equilibrium states.

    Science.gov (United States)

    Lieb, Elliott H; Yngvason, Jakob

    2013-10-08

    In earlier work, we presented a foundation for the second law of classical thermodynamics in terms of the entropy principle. More precisely, we provided an empirically accessible axiomatic derivation of an entropy function defined on all equilibrium states of all systems that has the appropriate additivity and scaling properties, and whose increase is a necessary and sufficient condition for an adiabatic process between two states to be possible. Here, after a brief review of this approach, we address the question of defining entropy for non-equilibrium states. Our conclusion is that it is generally not possible to find a unique entropy that has all relevant physical properties. We do show, however, that one can define two entropy functions, called S - and S + , which, taken together, delimit the range of adiabatic processes that can occur between non-equilibrium states. The concept of comparability of states with respect to adiabatic changes plays an important role in our reasoning.

  7. Departures from local thermodynamic equilibrium in cutting arc plasmas derived from electron and gas density measurements using a two-wavelength quantitative Schlieren technique

    International Nuclear Information System (INIS)

    Prevosto, L.; Mancinelli, B.; Artana, G.; Kelly, H.

    2011-01-01

    A two-wavelength quantitative Schlieren technique that allows inferring the electron and gas densities of axisymmetric arc plasmas without imposing any assumption regarding statistical equilibrium models is reported. This technique was applied to the study of local thermodynamic equilibrium (LTE) departures within the core of a 30 A high-energy density cutting arc. In order to derive the electron and heavy particle temperatures from the inferred density profiles, a generalized two-temperature Saha equation together with the plasma equation of state and the quasineutrality condition were employed. Factors such as arc fluctuations that influence the accuracy of the measurements and the validity of the assumptions used to derive the plasma species temperature were considered. Significant deviations from chemical equilibrium as well as kinetic equilibrium were found at elevated electron temperatures and gas densities toward the arc core edge. An electron temperature profile nearly constant through the arc core with a value of about 14000-15000 K, well decoupled from the heavy particle temperature of about 1500 K at the arc core edge, was inferred.

  8. Local equilibrium in bird flocks

    Science.gov (United States)

    Mora, Thierry; Walczak, Aleksandra M.; Del Castello, Lorenzo; Ginelli, Francesco; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano; Cavagna, Andrea; Giardina, Irene

    2016-12-01

    The correlated motion of flocks is an example of global order emerging from local interactions. An essential difference with respect to analogous ferromagnetic systems is that flocks are active: animals move relative to each other, dynamically rearranging their interaction network. This non-equilibrium characteristic has been studied theoretically, but its impact on actual animal groups remains to be fully explored experimentally. Here, we introduce a novel dynamical inference technique, based on the principle of maximum entropy, which accommodates network rearrangements and overcomes the problem of slow experimental sampling rates. We use this method to infer the strength and range of alignment forces from data of starling flocks. We find that local bird alignment occurs on a much faster timescale than neighbour rearrangement. Accordingly, equilibrium inference, which assumes a fixed interaction network, gives results consistent with dynamical inference. We conclude that bird orientations are in a state of local quasi-equilibrium over the interaction length scale, providing firm ground for the applicability of statistical physics in certain active systems.

  9. A basic introduction to the thermodynamics of the Earth system far from equilibrium and maximum entropy production

    Science.gov (United States)

    Kleidon, A.

    2010-01-01

    The Earth system is remarkably different from its planetary neighbours in that it shows pronounced, strong global cycling of matter. These global cycles result in the maintenance of a unique thermodynamic state of the Earth's atmosphere which is far from thermodynamic equilibrium (TE). Here, I provide a simple introduction of the thermodynamic basis to understand why Earth system processes operate so far away from TE. I use a simple toy model to illustrate the application of non-equilibrium thermodynamics and to classify applications of the proposed principle of maximum entropy production (MEP) to such processes into three different cases of contrasting flexibility in the boundary conditions. I then provide a brief overview of the different processes within the Earth system that produce entropy, review actual examples of MEP in environmental and ecological systems, and discuss the role of interactions among dissipative processes in making boundary conditions more flexible. I close with a brief summary and conclusion. PMID:20368248

  10. A basic introduction to the thermodynamics of the Earth system far from equilibrium and maximum entropy production.

    Science.gov (United States)

    Kleidon, A

    2010-05-12

    The Earth system is remarkably different from its planetary neighbours in that it shows pronounced, strong global cycling of matter. These global cycles result in the maintenance of a unique thermodynamic state of the Earth's atmosphere which is far from thermodynamic equilibrium (TE). Here, I provide a simple introduction of the thermodynamic basis to understand why Earth system processes operate so far away from TE. I use a simple toy model to illustrate the application of non-equilibrium thermodynamics and to classify applications of the proposed principle of maximum entropy production (MEP) to such processes into three different cases of contrasting flexibility in the boundary conditions. I then provide a brief overview of the different processes within the Earth system that produce entropy, review actual examples of MEP in environmental and ecological systems, and discuss the role of interactions among dissipative processes in making boundary conditions more flexible. I close with a brief summary and conclusion.

  11. Thermodynamics of the Rhodamine B Lactone--Zwitterion Equilibrium.

    Science.gov (United States)

    Hinckley, Daniel A.; Seybold, Paul G.

    1987-01-01

    Discusses the benefits of thermochromic transformations for studying thermodynamic properties. Describes an experiment that uses a commercially available dye, attains equilibrium rapidly, employs a simple, single-beam spectrophotometer, and is suitable for both physical chemistry and introductory chemistry laboratories. (TW)

  12. Non-equilibrium reaction rates in chemical kinetic equations

    Science.gov (United States)

    Gorbachev, Yuriy

    2018-05-01

    Within the recently proposed asymptotic method for solving the Boltzmann equation for chemically reacting gas mixture, the chemical kinetic equations has been derived. Corresponding one-temperature non-equilibrium reaction rates are expressed in terms of specific heat capacities of the species participate in the chemical reactions, bracket integrals connected with the internal energy transfer in inelastic non-reactive collisions and energy transfer coefficients. Reactions of dissociation/recombination of homonuclear and heteronuclear diatomic molecules are considered. It is shown that all reaction rates are the complex functions of the species densities, similarly to the unimolecular reaction rates. For determining the rate coefficients it is recommended to tabulate corresponding bracket integrals, additionally to the equilibrium rate constants. Correlation of the obtained results with the irreversible thermodynamics is established.

  13. Equilibrium sampling for a thermodynamic assessment of contaminated sediments

    DEFF Research Database (Denmark)

    ) govern diffusive uptake and partitioning. Equilibrium sampling of sediment was introduced 15 years ago to measure Cfree, and it has since developed into a straightforward, precise and sensitive approach for determining Cfree and other exposure parameters that allow for thermodynamic assessment...... of polluted sediments. Glass jars with µm-thin silicone coatings on the inner walls can be used for ex situ equilibration while a device housing several silicone-coated fibers can be used for in situ equilibration. In both cases, parallel sampling with varying silicone thicknesses can be applied to confirm...... will focus at the latest developments in equilibrium sampling concepts and methods. Further, we will explain how these approaches can provide a new basis for a thermodynamic assessment of polluted sediments....

  14. Violations of local equilibrium and linear response in classical lattice systems

    International Nuclear Information System (INIS)

    Aoki, Kenichiro; Kusnezov, Dimitri

    2003-01-01

    We quantitatively and systematically analyze how local equilibrium, and linear response in transport are violated as systems move far from equilibrium. This is done by studying heat flow in classical lattice models with and without bulk transport behavior, in 1-3 dimensions, at various temperatures. Equations of motion for the system are integrated numerically to construct the non-equilibrium steady states. Linear response and local equilibrium assumptions are seen to break down in a similar manner. We quantify the breakdown through the analysis of both microscopic and macroscopic observables and examine its transformation properties under general redefinitions of the non-equilibrium temperature

  15. Effect of non-local equilibrium on minimal thermal resistance porous layered systems

    International Nuclear Information System (INIS)

    Leblond, Genevieve; Gosselin, Louis

    2008-01-01

    In this paper, the cooling of a heat-generating surface by a stacking of porous media (e.g., metallic foam) through which fluid flows parallel to the surface is considered. A two-temperature model is proposed to account for non-local thermal equilibrium (non-LTE). A scale analysis is performed to determine temperatures profiles in the boundary layer regime. The hot spot temperature is minimized with respect to the three design variables of each layer: porosity, pore diameter, and material. Global cost and mass are constrained. The optimization is performed with a hybrid genetic algorithm (GA) including local search to enhance convergence and repeatability. Results demonstrate that the optimized stacks do not operate in LTE. Therefore, we show that assuming LTE might result in underestimation of the hot spot temperature, and into different final designs as well

  16. Is neoclassical microeconomics formally valid? An approach based on an analogy with equilibrium thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Tania; Domingos, Tiago [Environment and Energy Section, DEM, Instituto Superior Tecnico, Avenida Rovisco Pais, 1, 1049-001 Lisboa (Portugal)

    2006-06-10

    The relation between Thermodynamics and Economics is a paramount issue in Ecological Economics. Two different levels can be distinguished when discussing it: formal and substantive. At the formal level, a mathematical framework is used to describe both thermodynamic and economic systems. At the substantive level, thermodynamic laws are applied to economic processes. In Ecological Economics, there is a widespread claim that neoclassical economics has the same mathematical formulation as classical mechanics and is therefore fundamentally flawed because: (1) utility does not obey a conservation law as energy does; (2) an equilibrium theory cannot be used to study irreversible processes. Here, we show that neoclassical economics is based on a wrong formulation of classical mechanics, being in fact formally analogous to equilibrium thermodynamics. The similarity between both formalisms, namely that they are both cases of constrained optimisation, is easily perceived when thermodynamics is looked upon using the Tisza-Callen axiomatisation. In this paper, we take the formal analogy between equilibrium thermodynamics and economic systems far enough to answer the formal criticisms, proving that the formalism of neoclassical economics has irreversibility embedded in it. However, the formal similarity between equilibrium thermodynamics and neoclassical microeconomics does not mean that economic models are in accordance with mass, energy and entropy balance equations. In fact, neoclassical theory suffers from flaws in the substantive integration with thermodynamic laws as has already been fully demonstrated by valuable work done by ecological economists in this field. (author)

  17. Beyond the second law entropy production and non-equilibrium systems

    CERN Document Server

    Lineweaver, Charles; Niven, Robert; Regenauer-Lieb, Klaus

    2014-01-01

    The Second Law, a cornerstone of thermodynamics, governs the average direction of dissipative, non-equilibrium processes. But it says nothing about their actual rates or the probability of fluctuations about the average. This interdisciplinary book, written and peer-reviewed by international experts, presents recent advances in the search for new non-equilibrium principles beyond the Second Law, and their applications to a wide range of systems across physics, chemistry and biology. Beyond The Second Law brings together traditionally isolated areas of non-equilibrium research and highlights potentially fruitful connections between them, with entropy production playing the unifying role. Key theoretical concepts include the Maximum Entropy Production principle, the Fluctuation Theorem, and the Maximum Entropy method of statistical inference. Applications of these principles are illustrated in such diverse fields as climatology, cosmology, crystal growth morphology, Earth system science, environmental physics, ...

  18. Non-equilibrium reversible dynamics of work production in four-spin system in a magnetic field

    Directory of Open Access Journals (Sweden)

    E.A. Ivanchenko

    2011-06-01

    Full Text Available A closed system of the equations for the local Bloch vectors and spin correlation functions is obtained by decomplexification of the Liouville-von Neumann equation for 4 magnetic particles with the exchange interaction that takes place in an arbitrary time-dependent external magnetic field. The analytical and numerical analysis of the quantum thermodynamic variables is carried out depending on separable mixed initial state and the magnetic field modulation. Under unitary evolution, non-equilibrium reversible dynamics of power production in the finite environment is investigated.

  19. Entropy production in a fluid-solid system far from thermodynamic equilibrium.

    Science.gov (United States)

    Chung, Bong Jae; Ortega, Blas; Vaidya, Ashwin

    2017-11-24

    The terminal orientation of a rigid body in a moving fluid is an example of a dissipative system, out of thermodynamic equilibrium and therefore a perfect testing ground for the validity of the maximum entropy production principle (MaxEP). Thus far, dynamical equations alone have been employed in studying the equilibrium states in fluid-solid interactions, but these are far too complex and become analytically intractable when inertial effects come into play. At that stage, our only recourse is to rely on numerical techniques which can be computationally expensive. In our past work, we have shown that the MaxEP is a reliable tool to help predict orientational equilibrium states of highly symmetric bodies such as cylinders, spheroids and toroidal bodies. The MaxEP correctly helps choose the stable equilibrium in these cases when the system is slightly out of thermodynamic equilibrium. In the current paper, we expand our analysis to examine i) bodies with fewer symmetries than previously reported, for instance, a half-ellipse and ii) when the system is far from thermodynamic equilibrium. Using two-dimensional numerical studies at Reynolds numbers ranging between 0 and 14, we examine the validity of the MaxEP. Our analysis of flow past a half-ellipse shows that overall the MaxEP is a good predictor of the equilibrium states but, in the special case of the half-ellipse with aspect ratio much greater than unity, the MaxEP is replaced by the Min-MaxEP, at higher Reynolds numbers when inertial effects come into play. Experiments in sedimentation tanks and with hinged bodies in a flow tank confirm these calculations.

  20. Thermodynamic properties and equilibrium constant of chemical reaction in nanosystem: An theoretical and experimental study

    International Nuclear Information System (INIS)

    Du, Jianping; Zhao, Ruihua; Xue, Yongqiang

    2012-01-01

    Highlights: ► There is an obvious influence of the size on thermodynamic properties for the reaction referring nano-reactants. ► Gibbs function, enthalpy, entropy and equilibrium constant are dependent on the reactant size. ► There is an approximate linear relation between them. - Abstract: The theoretical relations of thermodynamic properties, the equilibrium constant and reactant size in nanosystem are described. The effects of size on thermodynamic properties and the equilibrium constant were studied using nanosize zinc oxide and sodium bisulfate solution as a reaction system. The experimental results indicated that the molar Gibbs free energy, the molar enthalpy and the molar entropy of the reaction decrease, but the equilibrium constant increases with decreasing reactant size. Linear trends were observed between the reciprocal of size for nano-reactant and thermodynamic variable, which are consistent with the theoretical relations.

  1. Equilibrium and thermodynamics of azo dyes biosorption onto Spirulina platensis

    Directory of Open Access Journals (Sweden)

    G. L. Dotto

    2013-03-01

    Full Text Available The equilibrium and thermodynamics of azo dye (tartrazine and allura red biosorption onto Spirulina platensis biomass were investigated. The equilibrium curves were obtained at 298, 308, 318 and 328 K, and four isotherm models were fitted the experimental data. Biosorption thermodynamic parameters (ΔG, ΔH and ΔS were estimated. The results showed that the biosorption was favored by a temperature decrease. For both dyes, the Sips model was the best to represent the equilibrium experimental data (R²>0.99 and ARE<5.0% and the maximum biosorption capacities were 363.2 and 468.7 mg g-1 for tartrazine and allura red, respectively, obtained at 298 K. The negative values of ΔG and ΔH showed that the biosorption of both dyes was spontaneous, favorable and exothermic. The positive values of ΔS suggested that the system disorder increases during the biosorption process.

  2. Statistical equilibrium equations for trace elements in stellar atmospheres

    OpenAIRE

    Kubat, Jiri

    2010-01-01

    The conditions of thermodynamic equilibrium, local thermodynamic equilibrium, and statistical equilibrium are discussed in detail. The equations of statistical equilibrium and the supplementary equations are shown together with the expressions for radiative and collisional rates with the emphasize on the solution for trace elements.

  3. Kinetic, Equilibrium and thermodynamic studies on the biosorption ...

    African Journals Online (AJOL)

    The kinetics, equilibrium and thermodynamics of the biosorption of Cd (II) from aqueous solution by the leaf biomass of Calotropis procera popularly known in western Nigeria as 'bom bom'and genrally known as Sodom apple were investigated at different experimental conditions. Optimum conditions of pH, contact time, ...

  4. Measurement of the non-thermal properties in a low-pressure spraying plasma

    International Nuclear Information System (INIS)

    Jung, Yong Ho; Chung, Kyu Sun

    2002-01-01

    The non-thermal properties of a low-pressure spraying plasma have been characterized by using optical emission spectroscopy and single probes installed in a fast scanning probe system. A two-temperature model of the electrons is introduced to explain their non-isothermal properties, which are measured using single probes. The excitation temperatures of the atomic and the ionic lines are calculated from measurements of the emission intensities of Ar (I) and Ar (II), and those temperatures can be explained by using a local thermodynamic equilibrium (LTE) or a non-local thermodynamic equilibrium (non-LTE) model. In order to deduce more reasonable values (excitation temperatures), we introduce a multi-thermodynamic equilibrium (MTE) model, which gives different temperatures, depending upon the atomic excitation states

  5. Broken detailed balance and non-equilibrium dynamics in living systems: a review

    Science.gov (United States)

    Gnesotto, F. S.; Mura, F.; Gladrow, J.; Broedersz, C. P.

    2018-06-01

    Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.

  6. Broken detailed balance and non-equilibrium dynamics in living systems: a review.

    Science.gov (United States)

    Gnesotto, F S; Mura, F; Gladrow, J; Broedersz, C P

    2018-03-05

    Living systems operate far from thermodynamic equilibrium. Enzymatic activity can induce broken detailed balance at the molecular scale. This molecular scale breaking of detailed balance is crucial to achieve biological functions such as high-fidelity transcription and translation, sensing, adaptation, biochemical patterning, and force generation. While biological systems such as motor enzymes violate detailed balance at the molecular scale, it remains unclear how non-equilibrium dynamics manifests at the mesoscale in systems that are driven through the collective activity of many motors. Indeed, in several cellular systems the presence of non-equilibrium dynamics is not always evident at large scales. For example, in the cytoskeleton or in chromosomes one can observe stationary stochastic processes that appear at first glance thermally driven. This raises the question how non-equilibrium fluctuations can be discerned from thermal noise. We discuss approaches that have recently been developed to address this question, including methods based on measuring the extent to which the system violates the fluctuation-dissipation theorem. We also review applications of this approach to reconstituted cytoskeletal networks, the cytoplasm of living cells, and cell membranes. Furthermore, we discuss a more recent approach to detect actively driven dynamics, which is based on inferring broken detailed balance. This constitutes a non-invasive method that uses time-lapse microscopy data, and can be applied to a broad range of systems in cells and tissue. We discuss the ideas underlying this method and its application to several examples including flagella, primary cilia, and cytoskeletal networks. Finally, we briefly discuss recent developments in stochastic thermodynamics and non-equilibrium statistical mechanics, which offer new perspectives to understand the physics of living systems.

  7. Braun-Le Chatelier principle in dissipative thermodynamics

    OpenAIRE

    Pavelka, Michal; Grmela, Miroslav

    2016-01-01

    Braun-Le Chatelier principle is a fundamental result of equilibrium thermodynamics, showing how stable equilibrium states shift when external conditions are varied. The principle follows from convexity of thermodynamic potential. Analogously, from convexity of dissipation potential it follows how steady non-equilibrium states shift when thermodynamic forces are varied, which is the extension of the principle to dissipative thermodynamics.

  8. Analysis of the influence of the plasma thermodynamic regime in the spectrally resolved and mean radiative opacity calculations of carbon plasmas in a wide range of density and temperature

    International Nuclear Information System (INIS)

    Gil, J.M.; Rodriguez, R.; Martel, P.; Florido, R.; Rubiano, J.G.; Mendoza, M.A.; Minguez, E.

    2013-01-01

    In this work the spectrally resolved, multigroup and mean radiative opacities of carbon plasmas are calculated for a wide range of plasma conditions which cover situations where corona, local thermodynamic and non-local thermodynamic equilibrium regimes are found. An analysis of the influence of the thermodynamic regime on these magnitudes is also carried out by means of comparisons of the results obtained from collisional-radiative, corona or Saha–Boltzmann equations. All the calculations presented in this work were performed using ABAKO/RAPCAL code. -- Highlights: ► Spectrally resolved, multigroup and mean radiative opacities of carbon plasmas are calculated. ► Corona, local thermodynamic and non-local thermodynamic equilibrium regimes are analyzed. ► Simulations performed using the computational package ABAKO/RAPCAL. ► A criterion for the establishment of the thermodynamic regime is proposed.

  9. Non-equilibrium Microwave Plasma for Efficient High Temperature Chemistry.

    Science.gov (United States)

    van den Bekerom, Dirk; den Harder, Niek; Minea, Teofil; Gatti, Nicola; Linares, Jose Palomares; Bongers, Waldo; van de Sanden, Richard; van Rooij, Gerard

    2017-08-01

    A flowing microwave plasma based methodology for converting electric energy into internal and/or translational modes of stable molecules with the purpose of efficiently driving non-equilibrium chemistry is discussed. The advantage of a flowing plasma reactor is that continuous chemical processes can be driven with the flexibility of startup times in the seconds timescale. The plasma approach is generically suitable for conversion/activation of stable molecules such as CO2, N2 and CH4. Here the reduction of CO2 to CO is used as a model system: the complementary diagnostics illustrate how a baseline thermodynamic equilibrium conversion can be exceeded by the intrinsic non-equilibrium from high vibrational excitation. Laser (Rayleigh) scattering is used to measure the reactor temperature and Fourier Transform Infrared Spectroscopy (FTIR) to characterize in situ internal (vibrational) excitation as well as the effluent composition to monitor conversion and selectivity.

  10. Teaching Chemical Equilibrium and Thermodynamics in Undergraduate General Chemistry Classes.

    Science.gov (United States)

    Banerjee, Anil C.

    1995-01-01

    Discusses some of the conceptual difficulties encountered by undergraduate students in learning certain aspects of chemical equilibrium and thermodynamics. Discusses teaching strategies for dealing with these difficulties. (JRH)

  11. On the local equilibrium condition

    International Nuclear Information System (INIS)

    Hessling, H.

    1994-11-01

    A physical system is in local equilibrium if it cannot be distinguished from a global equilibrium by ''infinitesimally localized measurements''. This should be a natural characterization of local equilibrium, but the problem is to give a precise meaning to the qualitative phrase ''infinitesimally localized measurements''. A solution is suggested in form of a Local Equilibrium Condition (LEC), which can be applied to linear relativistic quantum field theories but not directly to selfinteracting quantum fields. The concept of local temperature resulting from LEC is compared to an old approach to local temperature based on the principle of maximal entropy. It is shown that the principle of maximal entropy does not always lead to physical states if it is applied to relativistic quantum field theories. (orig.)

  12. Local thermodynamic equilibrium and related metrological issues involving collisional-radiative model in laser-induced aluminum plasmas

    International Nuclear Information System (INIS)

    Travaille, G.; Peyrusse, O.; Bousquet, B.; Canioni, L.; Pierres, K. Michel-Le; Roy, S.

    2009-01-01

    We present a collisional-radiative approach of the theoretical analysis of laser-induced breakdown spectroscopy (LIBS) plasmas. This model, which relies on an optimized effective potential atomic structure code, was used to simulate a pure aluminum plasma. The description of aluminum involved a set of 220 atomic levels representative of three different stages of ionization (Al 0 , Al + and Al ++ ). The calculations were carried for stationary plasmas, with input parameters (n e and T e ) ranging respectively between 10 13-18 cm -3 and 0.3-2 eV. A comparison of our atomic data with some existing databases is made. The code was mainly developed to address the validity of the local thermodynamic equilibrium (LTE) assumption. For usual LIBS plasma parameters, we did not reveal a sizeable discrepancy of the radiative equilibrium of the plasma towards LTE. For cases where LTE was firmly believed to stand, the Boltzmann plot outputs of this code were used to check the physical accuracy of the Boltzmann temperature, as it is currently exploited in several calibration-free laser-induced breakdown spectroscopy (CF-LIBS) studies. In this paper, a deviation ranging between 10 and 30% of the measured Boltzmann temperature to the real excitation temperature is reported. This may be due to the huge dispersion induced on the line emissivities, on which the Boltzmann plots are based to extract this parameter. Consequences of this fact on the CF-LIBS procedure are discussed and further insights to be considered for the future are introduced.

  13. Vapor-liquid equilibrium thermodynamics of N2 + CH4 - Model and Titan applications

    Science.gov (United States)

    Thompson, W. R.; Zollweg, John A.; Gabis, David H.

    1992-01-01

    A thermodynamic model is presented for vapor-liquid equilibrium in the N2 + CH4 system, which is implicated in calculations of the Titan tropospheric clouds' vapor-liquid equilibrium thermodynamics. This model imposes constraints on the consistency of experimental equilibrium data, and embodies temperature effects by encompassing enthalpy data; it readily calculates the saturation criteria, condensate composition, and latent heat for a given pressure-temperature profile of the Titan atmosphere. The N2 content of condensate is about half of that computed from Raoult's law, and about 30 percent greater than that computed from Henry's law.

  14. Chemical equilibrium. [maximizing entropy of gas system to derive relations between thermodynamic variables

    Science.gov (United States)

    1976-01-01

    The entropy of a gas system with the number of particles subject to external control is maximized to derive relations between the thermodynamic variables that obtain at equilibrium. These relations are described in terms of the chemical potential, defined as equivalent partial derivatives of entropy, energy, enthalpy, free energy, or free enthalpy. At equilibrium, the change in total chemical potential must vanish. This fact is used to derive the equilibrium constants for chemical reactions in terms of the partition functions of the species involved in the reaction. Thus the equilibrium constants can be determined accurately, just as other thermodynamic properties, from a knowledge of the energy levels and degeneracies for the gas species involved. These equilibrium constants permit one to calculate the equilibrium concentrations or partial pressures of chemically reacting species that occur in gas mixtures at any given condition of pressure and temperature or volume and temperature.

  15. Equilibrium and non-equilibrium metal-ceramic interfaces

    International Nuclear Information System (INIS)

    Gao, Y.; Merkle, K.L.

    1992-01-01

    Metal-ceramic interfaces in thermodynamic equilibrium (Au/ZrO 2 ) and non-equilibrium (Au/MgO) have been studied by TEM and HREM. In the Au/ZrO 2 system, ZrO 2 precipitates formed by internal oxidation of a 7%Zr-Au alloy show a cubic ZrO 2 phase. It appears that formation of the cubic ZrO 2 is facilitated by alignment with the Au matrix. Most of the ZrO 2 precipitates have a perfect cube-on-cube orientation relationship with the Au matrix. The large number of interfacial steps observed in a short-time annealing experiment indicate that the precipitates are formed by the ledge growth mechanism. The lowest interfacial energy is indicated by the dominance of closed-packed [111] Au/ZrO 2 interfaces. In the Au/MgO system, composite films with small MgO smoke particles embedded in a Au matrix were prepared by a thin film technique. HREM observations show that most of the Au/MgO interfaces have a strong tendency to maintain a dense lattice structure across the interfaces irrespective of whether the interfaces are incoherent or semi-coherent. This paper reports that this indicates that there may be a relatively strong bond between MgO and Au

  16. College Physical Chemistry Students' Conceptions of Equilibrium and Fundamental Thermodynamics.

    Science.gov (United States)

    Thomas, Peter L.; Schwenz, Richard W.

    1998-01-01

    Focuses on many alternative conceptions and nonconceptions about material related to equilibrium and thermodynamics. Uses interviews and compares the concepts from these with those expressed by experts in textbooks. (DDR)

  17. Effect of heavy ion irradiation on thermodynamically equilibrium Zr-Excel alloy

    Science.gov (United States)

    Yu, Hongbing; Liang, Jianlie; Yao, Zhongwen; Kirk, Mark A.; Daymond, Mark R.

    2017-05-01

    The thermodynamically equilibrium state was achieved in a Zr-Sn-Nb-Mo alloy by long-term annealing at an intermediate temperature. The fcc intermetallic Zr(Mo, Nb)2 enriched with Fe was observed at the equilibrium state. In-situ 1 MeV Kr2+ heavy ion irradiation was performed in a TEM to study the stability of the intermetallic particles under irradiation and the effects of the intermetallic particle on the evolution of type dislocation loops at different temperatures from 80 to 550 °C. Chemi-STEM elemental maps were made at the same particles before and after irradiation up to 10 dpa. It was found that no elemental redistribution occurs at 200 °C and below. Selective depletion of Fe was observed from some precipitates under irradiation at higher temperatures. No change in the morphology of particles and no evidence showing a crystalline to amorphous transformation were observed at all irradiation temperatures. The formation of type dislocation loops was observed under irradiation at 80 and 200 °C, but not at 450 and 550 °C. The loops were non-uniformly distributed; a localized high density of type dislocation loops were observed near the second phase particles; we suggest that loop nucleation is favored as a result of the stress induced by the particles, rather than by elemental redistribution. The stability of the second phase particles and the formation of the type loops under heavy ion irradiation are discussed.

  18. Finite-size polyelectrolyte bundles at thermodynamic equilibrium

    Science.gov (United States)

    Sayar, M.; Holm, C.

    2007-01-01

    We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite-size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite-size aggregates.

  19. Non-Equilibrium Relations for Bounded Rational Decision-Making in Changing Environments

    Directory of Open Access Journals (Sweden)

    Jordi Grau-Moya

    2017-12-01

    Full Text Available Living organisms from single cells to humans need to adapt continuously to respond to changes in their environment. The process of behavioural adaptation can be thought of as improving decision-making performance according to some utility function. Here, we consider an abstract model of organisms as decision-makers with limited information-processing resources that trade off between maximization of utility and computational costs measured by a relative entropy, in a similar fashion to thermodynamic systems undergoing isothermal transformations. Such systems minimize the free energy to reach equilibrium states that balance internal energy and entropic cost. When there is a fast change in the environment, these systems evolve in a non-equilibrium fashion because they are unable to follow the path of equilibrium distributions. Here, we apply concepts from non-equilibrium thermodynamics to characterize decision-makers that adapt to changing environments under the assumption that the temporal evolution of the utility function is externally driven and does not depend on the decision-maker’s action. This allows one to quantify performance loss due to imperfect adaptation in a general manner and, additionally, to find relations for decision-making similar to Crooks’ fluctuation theorem and Jarzynski’s equality. We provide simulations of several exemplary decision and inference problems in the discrete and continuous domains to illustrate the new relations.

  20. Local thermodynamics and the generalized Gibbs-Duhem equation in systems with long-range interactions.

    Science.gov (United States)

    Latella, Ivan; Pérez-Madrid, Agustín

    2013-10-01

    The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.

  1. Prediction of critical heat flux by a new local condition hypothesis

    International Nuclear Information System (INIS)

    Im, J. H.; Jun, K. D.; Sim, J. W.; Deng, Zhijian

    1998-01-01

    Critical Heat Flux(CHF) was predicted for uniformly heated vertical round tube by a new local condition hypothesis which incorporates a local true steam quality. This model successfully overcame the difficulties in predicted the subcooled and quality CHF by the thermodynamic equilibrium quality. The local true steam quality is a dependent variable of the thermodynamic equilibrium quality at the exit and the quality at the Onset of Significant Vaporization(OSV). The exit thermodynamic equilibrium quality was obtained from the heat balance, and the quality at OSV was obtained from the Saha-Zuber correlation. In the past CHF has been predicted by the experimental correlation based on local or non-local condition hypothesis. This preliminary study showed that all the available world data on uniform CHF could be predicted by the model based on the local condition hypothesis

  2. A Novel Derivation of the Time Evolution of the Entropy for Macroscopic Systems in Thermal Non-Equilibrium

    Directory of Open Access Journals (Sweden)

    Enrico Sciubba

    2017-11-01

    Full Text Available The paper discusses how the two thermodynamic properties, energy (U and exergy (E, can be used to solve the problem of quantifying the entropy of non-equilibrium systems. Both energy and exergy are a priori concepts, and their formal dependence on thermodynamic state variables at equilibrium is known. Exploiting the results of a previous study, we first calculate the non-equilibrium exergy En-eq can be calculated for an arbitrary temperature distributions across a macroscopic body with an accuracy that depends only on the available information about the initial distribution: the analytical results confirm that En-eq exponentially relaxes to its equilibrium value. Using the Gyftopoulos-Beretta formalism, a non-equilibrium entropy Sn-eq(x,t is then derived from En-eq(x,t and U(x,t. It is finally shown that the non-equilibrium entropy generation between two states is always larger than its equilibrium (herein referred to as “classical” counterpart. We conclude that every iso-energetic non-equilibrium state corresponds to an infinite set of non-equivalent states that can be ranked in terms of increasing entropy. Therefore, each point of the Gibbs plane corresponds therefore to a set of possible initial distributions: the non-equilibrium entropy is a multi-valued function that depends on the initial mass and energy distribution within the body. Though the concept cannot be directly extended to microscopic systems, it is argued that the present formulation is compatible with a possible reinterpretation of the existing non-equilibrium formulations, namely those of Tsallis and Grmela, and answers at least in part one of the objections set forth by Lieb and Yngvason. A systematic application of this paradigm is very convenient from a theoretical point of view and may be beneficial for meaningful future applications in the fields of nano-engineering and biological sciences.

  3. "Non-equilibrium" block copolymer micelles with glassy cores: a predictive approach based on theory of equilibrium micelles.

    Science.gov (United States)

    Nagarajan, Ramanathan

    2015-07-01

    Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to

  4. Non-equilibrium thermodynamics theory of econometric source discovery for large data analysis

    Science.gov (United States)

    van Bergem, Rutger; Jenkins, Jeffrey; Benachenhou, Dalila; Szu, Harold

    2014-05-01

    Almost all consumer and firm transactions are achieved using computers and as a result gives rise to increasingly large amounts of data available for analysts. The gold standard in Economic data manipulation techniques matured during a period of limited data access, and the new Large Data Analysis (LDA) paradigm we all face may quickly obfuscate most tools used by Economists. When coupled with an increased availability of numerous unstructured, multi-modal data sets, the impending 'data tsunami' could have serious detrimental effects for Economic forecasting, analysis, and research in general. Given this reality we propose a decision-aid framework for Augmented-LDA (A-LDA) - a synergistic approach to LDA which combines traditional supervised, rule-based Machine Learning (ML) strategies to iteratively uncover hidden sources in large data, the artificial neural network (ANN) Unsupervised Learning (USL) at the minimum Helmholtz free energy for isothermal dynamic equilibrium strategies, and the Economic intuitions required to handle problems encountered when interpreting large amounts of Financial or Economic data. To make the ANN USL framework applicable to economics we define the temperature, entropy, and energy concepts in Economics from non-equilibrium molecular thermodynamics of Boltzmann viewpoint, as well as defining an information geometry, on which the ANN can operate using USL to reduce information saturation. An exemplar of such a system representation is given for firm industry equilibrium. We demonstrate the traditional ML methodology in the economics context and leverage firm financial data to explore a frontier concept known as behavioral heterogeneity. Behavioral heterogeneity on the firm level can be imagined as a firm's interactions with different types of Economic entities over time. These interactions could impose varying degrees of institutional constraints on a firm's business behavior. We specifically look at behavioral heterogeneity for firms

  5. CHMTRNS, Non-Equilibrium Chemical Transport Code

    International Nuclear Information System (INIS)

    Noorishad, J.; Carnahan, C.L.; Benson, L.V.

    1998-01-01

    1 - Description of program or function: CHMTRNS simulates solute transport for steady one-dimensional fluid flow by convection and diffusion or dispersion in a saturated porous medium based on the assumption of local chemical equilibrium. The chemical interactions included in the model are aqueous-phase complexation, solid-phase ion exchange of bare ions and complexes using the surface complexation model, and precipitation or dissolution of solids. The program can simulate the kinetic dissolution or precipitation for calcite and silica as well as irreversible dissolution of glass. Thermodynamic parameters are temperature dependent and are coupled to a companion heat transport simulator; thus, the effects of transient temperature conditions can be considered. Options for oxidation-reduction (redox) and C-13 fractionation as well as non-isothermal conditions are included. 2 - Method of solution: The governing equations for both reactive chemical and heat transport are discretized in time and space. For heat transport, the Crank-Nicolson approximation is used in conjunction with a LU decomposition and backward substitution solution procedure. To deal with the strong nonlinearity of the chemical transport equations, a generalized Newton-Raphson method is used

  6. Application of constrained equilibrium thermodynamics to irradiated alloy systems

    Science.gov (United States)

    Holloway, James Paul; Stubbins, James F.

    1984-05-01

    Equilibrium thermodynamics are applied to systems with an excess of point defects to calculate the relative stability of phases. It is possible to model systems with supersaturation levels of vacancies and interstitials, such as those found under irradiation. The calculations reveal the extent to which phase compositional boundaries could shift when one phase or both in a two phase system contain an excess of point defects. Phase boundary shifts in the Ni-Si, Fe-Ni, Ni-Cr, and Fe-Cr systems are examined as a function of the number of excess defects in each phase. It is also found that the critical temperature of the sigma phase in the Fe-Cr system and the fcc-bcc transition in the Fe-Ni are sensitive to excess defect concentrations. These results may apply to local irradiation-induced phase transformations in the presence of solute segregation.

  7. Allowance for effects of thermodynamic nonideality in sedimentation equilibrium distributions reflecting protein dimerization.

    Science.gov (United States)

    Wills, Peter R; Scott, David J; Winzor, Donald J

    2012-03-01

    This reexamination of a high-speed sedimentation equilibrium distribution for α-chymotrypsin under slightly acidic conditions (pH 4.1, I(M) 0.05) has provided experimental support for the adequacy of nearest-neighbor considerations in the allowance for effects of thermodynamic nonideality in the characterization of protein self-association over a moderate concentration range (up to 8 mg/mL). A widely held but previously untested notion about allowance for thermodynamic nonideality effects is thereby verified experimentally. However, it has also been shown that a greater obstacle to better characterization of protein self-association is likely to be the lack of a reliable estimate of monomer net charge, a parameter that has a far more profound effect on the magnitude of the measured equilibrium constant than any deficiency in current procedures for incorporating the effects of thermodynamic nonideality into the analysis of sedimentation equilibrium distributions reflecting reversible protein self-association. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Comparison of analytical charge-form and equilibrium thermodynamic speciation of certain radionuclides

    International Nuclear Information System (INIS)

    Jenne, E.A.; Cowan, C.E.; Robertson, D.E.

    1984-01-01

    Calculating trace element speciation with a thermodynamic model is often challenged on the basis that the existing thermodynamic data are not sufficiently reliable. Water quality data and corresponding analytical charge-form speciation analysis were available for radionuclides occurring in a low-level radioactive groundwater. This offered an opportunity for comparing the results of an equilibrium thermodynamic model with the results of analytical charge-form speciation. The charge-form speciation was determined using the Battelle Large Volume Water Sampler, which contains consecutive layers of cation resin, anion resin and activated aluminum oxide for retention of cationic, anionic and non-ionic dissolved chemical species, respectively. The thermodynamic speciation of Cs, Cr, Fe, I, Mn, Mo, Na, and Zn was calculated using the MINTEQ geochemical model. Ce, Co, Tc, Np, Pm, and Sb were speciated by hand calculation. Excellent agreement between the analytically determined charge-form and the thermodynamic speciation was observed for 54 Mn, 144 Ce, 131 I, 24 Na, 137 Cs, 99 Mo, 99 Tc, 151 Pm, 239 Np. Organic complexation by natural and/or synthetic organics in the waters may be important in the speciation of 65 An, 60 Co, 131 I, 59 Fe and possibly 51 Cr. Both 124 Sb and 125 Sb appeared to be in redox disequilibria with the groundwater. 29 references, 2 tables

  9. A non-extensive thermodynamic theory of ecological systems

    Science.gov (United States)

    Van Xuan, Le; Khac Ngoc, Nguyen; Lan, Nguyen Tri; Viet, Nguyen Ai

    2017-06-01

    After almost 30 years of development, it is not controversial issue that the so-called Tsallis entropy provides a useful approach to studying the complexity where the non-additivity of the systems under consideration is frequently met. Also, in the ecological research, Tsallis entropy, or in other words, q-entropy has been found itself as a generalized approach to define a range of diversity indices including Shannon-Wiener and Simpson indices. As a further stage of development in theoretical research, a thermodynamic theory based on Tsallis entropy or diversity indices in ecology has to be constructed for ecological systems to provide knowledge of ecological macroscopic behaviors. The standard method of theoretical physics is used in the manipulation and the equivalence between phenomenological thermodynamics and ecological aspects is the purpose of the ongoing research. The present work is in the line of the authors research to implement Tsallis non-extensivity approach to obtain the most important thermodynamic quantities of ecological systems such as internal energy Uq and temperature Tq based on a given modeled truncated Boltzmann distribution of the Whittaker plot for a dataset. These quantities have their own ecological meaning, especially the temperature Tq provides the insight of equilibrium condition among ecological systems as it is well-known in 0th law of thermodynamics.

  10. Effect of heavy ion irradiation on thermodynamically equilibrium Zr-Excel alloy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hongbing [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Liang, Jianlie [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada); College of Science, Guangxi University for Nationalities, 188, East Da Xue Rd., Nanning, Guangxi, 530006 P.R.C (China); Yao, Zhongwen, E-mail: yaoz@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada); Kirk, Mark A. [Material Science Division Argonne National Laboratory, Argonne, IL 60439 (United States); Daymond, Mark R., E-mail: mark.daymond@queensu.ca [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON, K7L 3N6 (Canada)

    2017-05-15

    The thermodynamically equilibrium state was achieved in a Zr-Sn-Nb-Mo alloy by long-term annealing at an intermediate temperature. The fcc intermetallic Zr(Mo, Nb){sub 2} enriched with Fe was observed at the equilibrium state. In-situ 1 MeV Kr{sup 2+} heavy ion irradiation was performed in a TEM to study the stability of the intermetallic particles under irradiation and the effects of the intermetallic particle on the evolution of type dislocation loops at different temperatures from 80 to 550 °C. Chemi-STEM elemental maps were made at the same particles before and after irradiation up to 10 dpa. It was found that no elemental redistribution occurs at 200 °C and below. Selective depletion of Fe was observed from some precipitates under irradiation at higher temperatures. No change in the morphology of particles and no evidence showing a crystalline to amorphous transformation were observed at all irradiation temperatures. The formation of type dislocation loops was observed under irradiation at 80 and 200 °C, but not at 450 and 550 °C. The loops were non-uniformly distributed; a localized high density of type dislocation loops were observed near the second phase particles; we suggest that loop nucleation is favored as a result of the stress induced by the particles, rather than by elemental redistribution. The stability of the second phase particles and the formation of the type loops under heavy ion irradiation are discussed.

  11. Emergence of an enslaved phononic bandgap in a non-equilibrium pseudo-crystal

    Science.gov (United States)

    Bachelard, Nicolas; Ropp, Chad; Dubois, Marc; Zhao, Rongkuo; Wang, Yuan; Zhang, Xiang

    2017-08-01

    Material systems that reside far from thermodynamic equilibrium have the potential to exhibit dynamic properties and behaviours resembling those of living organisms. Here we realize a non-equilibrium material characterized by a bandgap whose edge is enslaved to the wavelength of an external coherent drive. The structure dynamically self-assembles into an unconventional pseudo-crystal geometry that equally distributes momentum across elements. The emergent bandgap is bestowed with lifelike properties, such as the ability to self-heal to perturbations and adapt to sudden changes in the drive. We derive an exact analytical solution for both the spatial organization and the bandgap features, revealing the mechanism for enslavement. This work presents a framework for conceiving lifelike non-equilibrium materials and emphasizes the potential for the dynamic imprinting of material properties through external degrees of freedom.

  12. Emergence of an enslaved phononic bandgap in a non-equilibrium pseudo-crystal.

    Science.gov (United States)

    Bachelard, Nicolas; Ropp, Chad; Dubois, Marc; Zhao, Rongkuo; Wang, Yuan; Zhang, Xiang

    2017-08-01

    Material systems that reside far from thermodynamic equilibrium have the potential to exhibit dynamic properties and behaviours resembling those of living organisms. Here we realize a non-equilibrium material characterized by a bandgap whose edge is enslaved to the wavelength of an external coherent drive. The structure dynamically self-assembles into an unconventional pseudo-crystal geometry that equally distributes momentum across elements. The emergent bandgap is bestowed with lifelike properties, such as the ability to self-heal to perturbations and adapt to sudden changes in the drive. We derive an exact analytical solution for both the spatial organization and the bandgap features, revealing the mechanism for enslavement. This work presents a framework for conceiving lifelike non-equilibrium materials and emphasizes the potential for the dynamic imprinting of material properties through external degrees of freedom.

  13. Classical or equilibrium thermodynamics: basic conceptual aspects

    Directory of Open Access Journals (Sweden)

    Luiz Augusto Calvo Tiritan

    2008-08-01

    Full Text Available The Classical or Equilibrium Thermodynamics is one of the most consolidated fields of Physics. It is synthesized by a well-known and self coherent knowledge structure. The essence of the Classical Thermodynamics theoretical structure consists of a set of natural laws that rule the macroscopic physical systems behavior. These laws were formulated based on observations generalizations and are mostly independent of any hypotheses concerning the microscopic nature of the matter. In general, the approaches established for the Classical Thermodynamics follow one of the following alternatives: the historical approach that describes chronologically the evolution of ideas, concepts and facts, and the postulational approach in which postulates are formulated but are not demonstrated a priori but can be confirmed a posteriori. In this work, a brief review of the pre-classical historical approach conceptual evolution is elaborated, from the beginning of the seventeenth century to the middle of the nineteenth century. As for this, the following themes are dealt with in an evolutionary and phenomenological way: heat nature, thermometry, calorimetry, Carnot’s heat engine, heat mechanical equivalent and the first and second laws. The Zeroth law that was formulated afterwards is included in the discussion.

  14. Thermodynamics of open, nonisothermal chemical systems far from equilibrium

    International Nuclear Information System (INIS)

    Yoshida, Nobuo

    1992-01-01

    The thermodynamic behavior of kinetic models based on a continuously stirred tank reactor (CSTR) is studied in an attempt to seek general trends in the thermodynamic properties of open nonlinear systems. The models consist of two reversible reactions, A + nB rightleftharpoons (n + 1) B (n = 0,1,or 2) and B rightleftharpoons C, taking place in an adiabatic CSTR. The heat of reaction is incorporated, and the rate constants are assumed to follow an Arrhenius temperature dependence. The models give rise to multiple stationary states and sustained oscillations (limit cycles). The entropy difference between stationary or oscillatory states and equilibrium and the rate of entropy production in the these states are calculated as a function of the residence time in the reactor. The entropy difference and entropy production may be taken, to some extent, as indicative of the influence of irreversible processes, which disappears at equilibrium. The results of the calculations reveal the following systematic trends: (I) The entropy difference or entropy production for stable states or both always increase as the residence time is shortened, namely, as the system is displaced further from equilibrium. (II) If stable and unstable states (stationary or oscillatory) coexist under identical conditions, then the stable state invariably has a smaller value of the entropy difference or entropy production or both than the corresponding unstable state. 26 refs., 3 figs

  15. The Donnan equilibrium: I. On the thermodynamic foundation of the Donnan equation of state

    International Nuclear Information System (INIS)

    Philipse, A; Vrij, A

    2011-01-01

    The thermodynamic equilibrium between charged colloids and an electrolyte reservoir is named after Frederic Donnan who first published on it one century ago (Donnan 1911 Z. Electrochem. 17 572). One of the intriguing features of the Donnan equilibrium is the ensuing osmotic equation of state which is a nonlinear one, even when both colloids and ions obey Van 't Hoff's ideal osmotic pressure law. The Donnan equation of state, nevertheless, is internally consistent; we demonstrate it to be a rigorous consequence of the phenomenological thermodynamics of a neutral bulk suspension equilibrating with an infinite salt reservoir. Our proof is based on an exact thermodynamic relation between osmotic pressure and salt adsorption which, when applied to ideal ions, does indeed entail the Donnan equation of state. Our derivation also shows that, contrary to what is often assumed, the Donnan equilibrium does not require ideality of the colloids: the Donnan model merely evaluates the osmotic pressure of homogeneously distributed ions, in excess of the pressure exerted by an arbitrary reference fluid of uncharged colloids. We also conclude that results from the phenomenological Donnan model coincide with predictions from statistical thermodynamics in the limit of weakly charged, point-like colloids.

  16. Diffusion approximations to the chemical master equation only have a consistent stochastic thermodynamics at chemical equilibrium.

    Science.gov (United States)

    Horowitz, Jordan M

    2015-07-28

    The stochastic thermodynamics of a dilute, well-stirred mixture of chemically reacting species is built on the stochastic trajectories of reaction events obtained from the chemical master equation. However, when the molecular populations are large, the discrete chemical master equation can be approximated with a continuous diffusion process, like the chemical Langevin equation or low noise approximation. In this paper, we investigate to what extent these diffusion approximations inherit the stochastic thermodynamics of the chemical master equation. We find that a stochastic-thermodynamic description is only valid at a detailed-balanced, equilibrium steady state. Away from equilibrium, where there is no consistent stochastic thermodynamics, we show that one can still use the diffusive solutions to approximate the underlying thermodynamics of the chemical master equation.

  17. Stability of black holes based on horizon thermodynamics

    Directory of Open Access Journals (Sweden)

    Meng-Sen Ma

    2015-12-01

    Full Text Available On the basis of horizon thermodynamics we study the thermodynamic stability of black holes constructed in general relativity and Gauss–Bonnet gravity. In the framework of horizon thermodynamics there are only five thermodynamic variables E, P, V, T, S. It is not necessary to consider concrete matter fields, which may contribute to the pressure of black hole thermodynamic system. In non-vacuum cases, we can derive the equation of state, P=P(V,T. According to the requirements of stable equilibrium in conventional thermodynamics, we start from these thermodynamic variables to calculate the heat capacity at constant pressure and Gibbs free energy and analyze the local and global thermodynamic stability of black holes. It is shown that P>0 is the necessary condition for black holes in general relativity to be thermodynamically stable, however this condition cannot be satisfied by many black holes in general relativity. For black hole in Gauss–Bonnet gravity negative pressure can be feasible, but only local stable black hole exists in this case.

  18. Hot nuclear matter and thermodynamical equilibrium

    International Nuclear Information System (INIS)

    Borderie, B.; Bacri, C.O.; Dore, D.; Frankland, J.D.; Plagnol, E.; Rivet, M.F.; Tassan-Got, L.

    1999-01-01

    Quasi-complete events from collisions between 36 Ar and 58 Ni corresponding to vaporized sources have been detected with the multidetector INDRA over the excitation energy range 10 - 28 AMeV. For the first time complete information concerning kinematical properties of emitted particles and chemical composition (mean values but also variances) are derived. Despite the very extreme conditions in which such sources are produced (binary collisions with short reaction times and source life-times), their properties are in agreement with the results of a statistical model including a final state excluded volume interaction and describing a gas of fermions and bosons in thermodynamical equilibrium. (authors)

  19. Roles of bulk viscosity on Rayleigh-Taylor instability: Non-equilibrium thermodynamics due to spatio-temporal pressure fronts

    Energy Technology Data Exchange (ETDEWEB)

    Sengupta, Tapan K., E-mail: tksen@iitk.ac.in; Bhole, Ashish; Shruti, K. S. [HPCL, Department of Aerospace Engineering, IIT Kanpur, Kanpur, UP (India); Sengupta, Aditi [Department of Engineering, University of Cambridge, Cambridge (United Kingdom); Sharma, Nidhi [Graduate Student, HPCL, Department of Aerospace Engineering, IIT Kanpur, Kanpur, UP (India); Sengupta, Soumyo [Department of Mechanical and Aerospace Engineering, Ohio State University, Columbus, Ohio 43210 (United States)

    2016-09-15

    Direct numerical simulations of Rayleigh-Taylor instability (RTI) between two air masses with a temperature difference of 70 K is presented using compressible Navier-Stokes formulation in a non-equilibrium thermodynamic framework. The two-dimensional flow is studied in an isolated box with non-periodic walls in both vertical and horizontal directions. The non-conducting interface separating the two air masses is impulsively removed at t = 0 (depicting a heaviside function). No external perturbation has been used at the interface to instigate the instability at the onset. Computations have been carried out for rectangular and square cross sections. The formulation is free of Boussinesq approximation commonly used in many Navier-Stokes formulations for RTI. Effect of Stokes’ hypothesis is quantified, by using models from acoustic attenuation measurement for the second coefficient of viscosity from two experiments. Effects of Stokes’ hypothesis on growth of mixing layer and evolution of total entropy for the Rayleigh-Taylor system are reported. The initial rate of growth is observed to be independent of Stokes’ hypothesis and the geometry of the box. Following this stage, growth rate is dependent on the geometry of the box and is sensitive to the model used. As a consequence of compressible formulation, we capture pressure wave-packets with associated reflection and rarefaction from the non-periodic walls. The pattern and frequency of reflections of pressure waves noted specifically at the initial stages are reflected in entropy variation of the system.

  20. A procedure to find thermodynamic equilibrium constants for CO2 and CH4 adsorption on activated carbon.

    Science.gov (United States)

    Trinh, T T; van Erp, T S; Bedeaux, D; Kjelstrup, S; Grande, C A

    2015-03-28

    Thermodynamic equilibrium for adsorption means that the chemical potential of gas and adsorbed phase are equal. A precise knowledge of the chemical potential is, however, often lacking, because the activity coefficient of the adsorbate is not known. Adsorption isotherms are therefore commonly fitted to ideal models such as the Langmuir, Sips or Henry models. We propose here a new procedure to find the activity coefficient and the equilibrium constant for adsorption which uses the thermodynamic factor. Instead of fitting the data to a model, we calculate the thermodynamic factor and use this to find first the activity coefficient. We show, using published molecular simulation data, how this procedure gives the thermodynamic equilibrium constant and enthalpies of adsorption for CO2(g) on graphite. We also use published experimental data to find similar thermodynamic properties of CO2(g) and of CH4(g) adsorbed on activated carbon. The procedure gives a higher accuracy in the determination of enthalpies of adsorption than ideal models do.

  1. Stochastic pumping of non-equilibrium steady-states: how molecules adapt to a fluctuating environment.

    Science.gov (United States)

    Astumian, R D

    2018-01-11

    In the absence of input energy, a chemical reaction in a closed system ineluctably relaxes toward an equilibrium state governed by a Boltzmann distribution. The addition of a catalyst to the system provides a way for more rapid equilibration toward this distribution, but the catalyst can never, in and of itself, drive the system away from equilibrium. In the presence of external fluctuations, however, a macromolecular catalyst (e.g., an enzyme) can absorb energy and drive the formation of a steady state between reactant and product that is not determined solely by their relative energies. Due to the ubiquity of non-equilibrium steady states in living systems, the development of a theory for the effects of external fluctuations on chemical systems has been a longstanding focus of non-equilibrium thermodynamics. The theory of stochastic pumping has provided insight into how a non-equilibrium steady-state can be formed and maintained in the presence of dissipation and kinetic asymmetry. This effort has been greatly enhanced by a confluence of experimental and theoretical work on synthetic molecular machines designed explicitly to harness external energy to drive non-equilibrium transport and self-assembly.

  2. Local Equilibrium and Retardation Revisited.

    Science.gov (United States)

    Hansen, Scott K; Vesselinov, Velimir V

    2018-01-01

    In modeling solute transport with mobile-immobile mass transfer (MIMT), it is common to use an advection-dispersion equation (ADE) with a retardation factor, or retarded ADE. This is commonly referred to as making the local equilibrium assumption (LEA). Assuming local equilibrium, Eulerian textbook treatments derive the retarded ADE, ostensibly exactly. However, other authors have presented rigorous mathematical derivations of the dispersive effect of MIMT, applicable even in the case of arbitrarily fast mass transfer. We resolve the apparent contradiction between these seemingly exact derivations by adopting a Lagrangian point of view. We show that local equilibrium constrains the expected time immobile, whereas the retarded ADE actually embeds a stronger, nonphysical, constraint: that all particles spend the same amount of every time increment immobile. Eulerian derivations of the retarded ADE thus silently commit the gambler's fallacy, leading them to ignore dispersion due to mass transfer that is correctly modeled by other approaches. We then present a particle tracking simulation illustrating how poor an approximation the retarded ADE may be, even when mobile and immobile plumes are continually near local equilibrium. We note that classic "LEA" (actually, retarded ADE validity) criteria test for insignificance of MIMT-driven dispersion relative to hydrodynamic dispersion, rather than for local equilibrium. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  3. Non-equilibrium fluctuation-induced interactions

    International Nuclear Information System (INIS)

    Dean, David S

    2012-01-01

    We discuss non-equilibrium aspects of fluctuation-induced interactions. While the equilibrium behavior of such interactions has been extensively studied and is relatively well understood, the study of these interactions out of equilibrium is relatively new. We discuss recent results on the non-equilibrium behavior of systems whose dynamics is of the dissipative stochastic type and identify a number of outstanding problems concerning non-equilibrium fluctuation-induced interactions.

  4. Equilibrium and non-equilibrium phenomena in arcs and torches

    NARCIS (Netherlands)

    Mullen, van der J.J.A.M.

    2000-01-01

    A general treatment of non-equilibrium plasma aspects is obtained by relating transport fluxes to equilibrium restoring processes in so-called disturbed Bilateral Relations. The (non) equilibrium stage of a small microwave induced plasma serves as case study.

  5. Thermodynamic and transport properties of two-temperature SF6 plasmas

    International Nuclear Information System (INIS)

    Wang Weizong; Rong Mingzhe; Wu Yi; Spencer, Joseph W.; Yan, Joseph D.; Mei, DanHua

    2012-01-01

    This paper deals with thermodynamic and transport properties of SF 6 plasmas in a two-temperature model for both thermal equilibrium and non-equilibrium conditions. The species composition and thermodynamic properties are numerically determined using the two-temperature Saha equation and Guldberg-Waage equation according to deviation of van de Sanden et al. Transport properties including diffusion coefficient, viscosity, thermal conductivity, and electrical conductivity are calculated with most recent collision interaction potentials by adopting Devoto’s electron and heavy particle decoupling approach but expanded to the third-order approximation (second-order for viscosity) in the frame of Chapman–Enskog method. The results are computed for various values of pressures from 0.1 atm to 10 atm and ratios of the electron temperature to the heavy particle temperature from 1 to 20 with electron temperature range from 300 to 40 000 K. In the local thermodynamic equilibrium regime, results are compared with available results of previously published studies.

  6. Homogeneous non-equilibrium two-phase critical flow model

    International Nuclear Information System (INIS)

    Schroeder, J.J.; Vuxuan, N.

    1987-01-01

    An important aspect of nuclear and chemical reactor safety is the ability to predict the maximum or critical mass flow rate from a break or leak in a pipe system. At the beginning of such a blowdown, if the stagnation condition of the fluid is subcooled or slightly saturated thermodynamic non-equilibrium exists in the downstream, e.g. the fluid becomes superheated to a degree determined by the liquid pressure. A simplified non-equilibrium model, explained in this report, is valid for rapidly decreasing pressure along the flow path. It presumes that fluid has to be superheated by an amount governed by physical principles before it starts to flash into steam. The flow is assumed to be homogeneous, i.e. the steam and liquid velocities are equal. An adiabatic flow calculation mode (Fanno lines) is employed to evaluate the critical flow rate for long pipes. The model is found to satisfactorily describe critical flow tests. Good agreement is obtained with the large scale Marviken tests as well as with small scale experiments. (orig.)

  7. Bifurcation and Stability Analysis of the Equilibrium States in Thermodynamic Systems in a Small Vicinity of the Equilibrium Values of Parameters

    Science.gov (United States)

    Barsuk, Alexandr A.; Paladi, Florentin

    2018-04-01

    The dynamic behavior of thermodynamic system, described by one order parameter and one control parameter, in a small neighborhood of ordinary and bifurcation equilibrium values of the system parameters is studied. Using the general methods of investigating the branching (bifurcations) of solutions for nonlinear equations, we performed an exhaustive analysis of the order parameter dependences on the control parameter in a small vicinity of the equilibrium values of parameters, including the stability analysis of the equilibrium states, and the asymptotic behavior of the order parameter dependences on the control parameter (bifurcation diagrams). The peculiarities of the transition to an unstable state of the system are discussed, and the estimates of the transition time to the unstable state in the neighborhood of ordinary and bifurcation equilibrium values of parameters are given. The influence of an external field on the dynamic behavior of thermodynamic system is analyzed, and the peculiarities of the system dynamic behavior are discussed near the ordinary and bifurcation equilibrium values of parameters in the presence of external field. The dynamic process of magnetization of a ferromagnet is discussed by using the general methods of bifurcation and stability analysis presented in the paper.

  8. GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems

    Science.gov (United States)

    Öttinger, Hans Christian

    2018-04-01

    Thermodynamically admissible evolution equations for non-equilibrium systems are known to possess a distinct mathematical structure. Within the GENERIC (general equation for the non-equilibrium reversible-irreversible coupling) framework of non-equilibrium thermodynamics, which is based on continuous time evolution, we investigate the possibility of preserving all the structural elements in time-discretized equations. Our approach, which follows Moser's [1] construction of symplectic integrators for Hamiltonian systems, is illustrated for the damped harmonic oscillator. Alternative approaches are sketched.

  9. Disposal of high level nuclear wastes: Thermodynamic equilibrium and environment ethics

    Institute of Scientific and Technical Information of China (English)

    RANA Mukhtar Ahmed

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes.

  10. Extended Irreversible Thermodynamics

    CERN Document Server

    Jou, David

    2010-01-01

    This is the 4th edition of the highly acclaimed monograph on Extended Irreversible Thermodynamics, a theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the basic variables describing the system are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a thorough discussion of the foundations and the scope of the current theories on non-equilibrium thermodynamics. For this new edition, the authors critically revised existing material while taking into account the most recent developments in fast moving fields such as heat transport in micro- and nanosystems or fast solidification fronts in materials sciences. Several fundamental chapters have been revisited emphasizing physics and applications over mathematical derivations. Also, fundamental questions on the definition of non-equil...

  11. The Donnan equilibrium: I. On the thermodynamic foundation of the Donnan equation of state

    NARCIS (Netherlands)

    Philipse, A.P.; Vrij, A.

    2011-01-01

    The thermodynamic equilibrium between charged colloids and an electrolyte reservoir is named after Frederic Donnan who first published on it one century ago (Donnan 1911 Z. Electrochem. 17 572). One of the intriguing features of the Donnan equilibrium is the ensuing osmotic equation of state which

  12. Non-equilibrium Economics

    Directory of Open Access Journals (Sweden)

    Katalin Martinás

    2007-02-01

    Full Text Available A microeconomic, agent based framework to dynamic economics is formulated in a materialist approach. An axiomatic foundation of a non-equilibrium microeconomics is outlined. Economic activity is modelled as transformation and transport of commodities (materials owned by the agents. Rate of transformations (production intensity, and the rate of transport (trade are defined by the agents. Economic decision rules are derived from the observed economic behaviour. The non-linear equations are solved numerically for a model economy. Numerical solutions for simple model economies suggest that the some of the results of general equilibrium economics are consequences only of the equilibrium hypothesis. We show that perfect competition of selfish agents does not guarantee the stability of economic equilibrium, but cooperativity is needed, too.

  13. Decay of non-equilibrium polariton condensate in semiconductors

    International Nuclear Information System (INIS)

    Beloussov, I.V.; Shvera, Y.M.

    1993-08-01

    Excitation dynamics of polariton quantum fluctuations arising in direct-gap semi-conductor as a result of parametric decay of non-equilibrium polariton condensate with non-zero wave vector is studied. The predominant mechanism of polariton scattering is supposed to be exciton-exciton interaction. Steady state which corresponds to the case of dynamic equilibrium between the polariton condensate and quantum fluctuations is obtained. Distribution functions of non-condensate polaritons are localized in the resonant regions, corresponding to two-particle excitation of polaritons from the condensate. The spectrum of elementary excitations in steady state coincides with usual polariton energy with the shift proportional to initial density of polariton condensate. (author). 25 refs

  14. The role of non-equilibrium fluxes in the relaxation processes of the linear chemical master equation.

    Science.gov (United States)

    de Oliveira, Luciana Renata; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C

    2014-08-14

    We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their "far from equilibrium behavior," hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative "external vector field" whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the "plasticity property" of biological systems and to their

  15. The role of non-equilibrium fluxes in the relaxation processes of the linear chemical master equation

    International Nuclear Information System (INIS)

    Oliveira, Luciana Renata de; Bazzani, Armando; Giampieri, Enrico; Castellani, Gastone C.

    2014-01-01

    We propose a non-equilibrium thermodynamical description in terms of the Chemical Master Equation (CME) to characterize the dynamics of a chemical cycle chain reaction among m different species. These systems can be closed or open for energy and molecules exchange with the environment, which determines how they relax to the stationary state. Closed systems reach an equilibrium state (characterized by the detailed balance condition (D.B.)), while open systems will reach a non-equilibrium steady state (NESS). The principal difference between D.B. and NESS is due to the presence of chemical fluxes. In the D.B. condition the fluxes are absent while for the NESS case, the chemical fluxes are necessary for the state maintaining. All the biological systems are characterized by their “far from equilibrium behavior,” hence the NESS is a good candidate for a realistic description of the dynamical and thermodynamical properties of living organisms. In this work we consider a CME written in terms of a discrete Kolmogorov forward equation, which lead us to write explicitly the non-equilibrium chemical fluxes. For systems in NESS, we show that there is a non-conservative “external vector field” whose is linearly proportional to the chemical fluxes. We also demonstrate that the modulation of these external fields does not change their stationary distributions, which ensure us to study the same system and outline the differences in the system's behavior when it switches from the D.B. regime to NESS. We were interested to see how the non-equilibrium fluxes influence the relaxation process during the reaching of the stationary distribution. By performing analytical and numerical analysis, our central result is that the presence of the non-equilibrium chemical fluxes reduces the characteristic relaxation time with respect to the D.B. condition. Within a biochemical and biological perspective, this result can be related to the “plasticity property” of biological

  16. Monte Carlo estimates of interfacial tension in the two-dimensional Ising model from non-equilibrium methods

    International Nuclear Information System (INIS)

    Híjar, Humberto; Sutmann, Godehard

    2008-01-01

    Non-equilibrium methods for estimating free energy differences are used in order to calculate the interfacial tension between domains with opposite magnetizations in two-dimensional Ising lattices. Non-equilibrium processes are driven by changing the boundary conditions for two opposite sides of the lattice from periodic to antiperiodic and vice versa. This mechanism, which promotes the appearance and disappearance of the interface, is studied by means of Monte Carlo simulations performed at different rates and using different algorithms, thus allowing for testing the applicability of non-equilibrium methods for processes driven far from or close to equilibrium. Interfaces in lattices with different widths and heights are studied and the interface tension as a function of these quantities is obtained. It is found that the estimates of the interfacial tension from non-equilibrium procedures are in good agreement with previous reports as well as with exact results. The efficiency of the different procedures used is analyzed and the dynamics of the interface under these perturbations is briefly discussed. A method for determining the efficiency of non-equilibrium methods as regards thermodynamic perturbation is also presented. It is found that for all cases studied, the Crooks non-equilibrium method for estimating free energy differences is the most efficient one

  17. Quantum thermodynamics. Emergence of thermodynamic behavior within composite quantum systems. 2. ed.

    International Nuclear Information System (INIS)

    Gemmer, Jochen; Michel, M.; Mahler, Guenter

    2009-01-01

    This introductory text treats thermodynamics as an incomplete description of quantum systems with many degrees of freedom. Its main goal is to show that the approach to equilibrium -with equilibrium characterized by maximum ignorance about the open system of interest- neither requires that many particles nor is the precise way of partitioning, relevant for the salient features of equilibrium and equilibration. Furthermore, the text depicts that it is indeed quantum effects that are at work in bringing about thermodynamic behavior of modest-sized open systems, thus making Von Neumann's concept of entropy appear much more widely useful than sometimes feared, far beyond truly macroscopic systems in equilibrium. This significantly revised and expanded second edition pays more attention to the growing number of applications, especially non-equilibrium phenomena and thermodynamic processes of the nano-domain. In addition, to improve readability and reduce unneeded technical details, a large portion of this book has been thoroughly rewritten. (orig.)

  18. Thermodynamics of the multicomponent vapor-liquid equilibrium under capillary pressure difference

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    2001-01-01

    We discuss the two-phase multicomponent equilibrium, provided that the phase pressures are different due to the action of capillary forces. We prove the two general properties of such an equilibrium, which have previously been known for a single-component case, however, to the best of our knowledge......, not for the multicomponent mixtures. The importance is emphasized on the space of the intensive variables P, T and mu (i), where the laws of capillary equilibrium have a simple geometrical interpretation. We formulate thermodynamic problems specific to such an equilibrium, and outline changes to be introduced to common...... algorithms of flash calculations in order to solve these problems. Sample calculations show large variation of the capillary properties of the mixture in the very neighborhood of the phase envelope and the restrictive role of the spinodal surface as a boundary for possible equilibrium states with different...

  19. Stochastic thermodynamics, fluctuation theorems and molecular machines

    International Nuclear Information System (INIS)

    Seifert, Udo

    2012-01-01

    Stochastic thermodynamics as reviewed here systematically provides a framework for extending the notions of classical thermodynamics such as work, heat and entropy production to the level of individual trajectories of well-defined non-equilibrium ensembles. It applies whenever a non-equilibrium process is still coupled to one (or several) heat bath(s) of constant temperature. Paradigmatic systems are single colloidal particles in time-dependent laser traps, polymers in external flow, enzymes and molecular motors in single molecule assays, small biochemical networks and thermoelectric devices involving single electron transport. For such systems, a first-law like energy balance can be identified along fluctuating trajectories. For a basic Markovian dynamics implemented either on the continuum level with Langevin equations or on a discrete set of states as a master equation, thermodynamic consistency imposes a local-detailed balance constraint on noise and rates, respectively. Various integral and detailed fluctuation theorems, which are derived here in a unifying approach from one master theorem, constrain the probability distributions for work, heat and entropy production depending on the nature of the system and the choice of non-equilibrium conditions. For non-equilibrium steady states, particularly strong results hold like a generalized fluctuation–dissipation theorem involving entropy production. Ramifications and applications of these concepts include optimal driving between specified states in finite time, the role of measurement-based feedback processes and the relation between dissipation and irreversibility. Efficiency and, in particular, efficiency at maximum power can be discussed systematically beyond the linear response regime for two classes of molecular machines, isothermal ones such as molecular motors, and heat engines such as thermoelectric devices, using a common framework based on a cycle decomposition of entropy production. (review article)

  20. Local equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-12-15

    From 3-6 September the First International Workshop on Local Equilibrium in Strong Interaction Physics took place in Bad-Honnef at the Physics Centre of the German Physical Society. A number of talks covered the experimental and theoretical investigation of the 'hotspots' effect, both in high energy particle physics and in intermediate energy nuclear physics.

  1. Non-equilibrium theory of arrested spinodal decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Olais-Govea, José Manuel; López-Flores, Leticia; Medina-Noyola, Magdaleno [Instituto de Física “Manuel Sandoval Vallarta,” Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, 78000 San Luis Potosí, SLP (Mexico)

    2015-11-07

    The non-equilibrium self-consistent generalized Langevin equation theory of irreversible relaxation [P. E. Ramŕez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010); 82, 061504 (2010)] is applied to the description of the non-equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids. For model liquids with hard-sphere plus attractive (Yukawa or square well) pair potential, the theory predicts that the spinodal curve, besides being the threshold of the thermodynamic stability of homogeneous states, is also the borderline between the regions of ergodic and non-ergodic homogeneous states. It also predicts that the high-density liquid-glass transition line, whose high-temperature limit corresponds to the well-known hard-sphere glass transition, at lower temperature intersects the spinodal curve and continues inside the spinodal region as a glass-glass transition line. Within the region bounded from below by this low-temperature glass-glass transition and from above by the spinodal dynamic arrest line, we can recognize two distinct domains with qualitatively different temperature dependence of various physical properties. We interpret these two domains as corresponding to full gas-liquid phase separation conditions and to the formation of physical gels by arrested spinodal decomposition. The resulting theoretical scenario is consistent with the corresponding experimental observations in a specific colloidal model system.

  2. Local Nash equilibrium in social networks.

    Science.gov (United States)

    Zhang, Yichao; Aziz-Alaoui, M A; Bertelle, Cyrille; Guan, Jihong

    2014-08-29

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.

  3. Disposal of high level nuclear wastes: thermodynamic equilibrium and environment ethics

    International Nuclear Information System (INIS)

    Rana, M.A.

    2009-01-01

    Contamination of soil, water or air, due to a failure of containment or disposal of high level nuclear wastes, can potentially cause serious hazards to the environment or human health. Essential elements of the environment and radioactivity dangers to it are illustrated. Issues of high level nuclear waste disposal are discussed with a focus on thermodynamic equilibrium and environment ethics. Major aspects of the issues are analyzed and described briefly to build a perception of risks involved and ethical implications. Nuclear waste containment repository should be as close as possible to thermodynamic equilibrium. A clear demonstration about safety aspects of nuclear waste management is required in gaining public and political confidence in any possible scheme of permanent disposal. Disposal of high level nuclear waste offers a spectrum of environment connected challenges and a long term future of nuclear power depends on the environment friendly solution of the problem of nuclear wastes. (authors)

  4. A development of multi-Species mass transport model considering thermodynamic phase equilibrium

    DEFF Research Database (Denmark)

    Hosokawa, Yoshifumi; Yamada, Kazuo; Johannesson, Björn

    2008-01-01

    ) variation in solid-phase composition when using different types of cement, (ii) physicochemical evaluation of steel corrosion initiation behaviour by calculating the molar ratio of chloride ion to hydroxide ion [Cl]/[OH] in pore solution, (iii) complicated changes of solid-phase composition caused......In this paper, a multi-species mass transport model, which can predict time dependent variation of pore solution and solid-phase composition due to the mass transport into the hardened cement paste, has been developed. Since most of the multi-species models established previously, based...... on the Poisson-Nernst-Planck theory, did not involve the modeling of chemical process, it has been coupled to thermodynamic equilibrium model in this study. By the coupling of thermodynamic equilibrium model, the multi-species model could simulate many different behaviours in hardened cement paste such as: (i...

  5. Quantum thermodynamics of nanoscale steady states far from equilibrium

    Science.gov (United States)

    Taniguchi, Nobuhiko

    2018-04-01

    We develop an exact quantum thermodynamic description for a noninteracting nanoscale steady state that couples strongly with multiple reservoirs. We demonstrate that there exists a steady-state extension of the thermodynamic function that correctly accounts for the multiterminal Landauer-Büttiker formula of quantum transport of charge, energy, or heat via the nonequilibrium thermodynamic relations. Its explicit form is obtained for a single bosonic or fermionic level in the wide-band limit, and corresponding thermodynamic forces (affinities) are identified. Nonlinear generalization of the Onsager reciprocity relations are derived. We suggest that the steady-state thermodynamic function is also capable of characterizing the heat current fluctuations of the critical transport where the thermal fluctuations dominate. Also, the suggested nonequilibrium steady-state thermodynamic relations seemingly persist for a spin-degenerate single level with local interaction.

  6. Non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte; Lübeck, Sven

    2009-01-01

    This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.

  7. How should we understand non-equilibrium many-body steady states?

    Science.gov (United States)

    Maghrebi, Mohammad; Gorshkov, Alexey

    : Many-body systems with both coherent dynamics and dissipation constitute a rich class of models which are nevertheless much less explored than their dissipationless counterparts. The advent of numerous experimental platforms that simulate such dynamics poses an immediate challenge to systematically understand and classify these models. In particular, nontrivial many-body states emerge as steady states under non-equilibrium dynamics. In this talk, I use a field-theoretic approach based on the Keldysh formalism to study nonequilibrium phases and phase transitions in such models. I show that an effective temperature generically emerges as a result of dissipation, and the universal behavior including the dynamics near the steady state is described by a thermodynamic universality class. In the end, I will also discuss possibilities that go beyond the paradigm of an effective thermodynamic behavior.

  8. Statistical Thermodynamics of Disperse Systems

    DEFF Research Database (Denmark)

    Shapiro, Alexander

    1996-01-01

    Principles of statistical physics are applied for the description of thermodynamic equilibrium in disperse systems. The cells of disperse systems are shown to possess a number of non-standard thermodynamic parameters. A random distribution of these parameters in the system is determined....... On the basis of this distribution, it is established that the disperse system has an additional degree of freedom called the macro-entropy. A large set of bounded ideal disperse systems allows exact evaluation of thermodynamic characteristics. The theory developed is applied to the description of equilibrium...

  9. Non-equilibrium dynamics of one-dimensional Bose gases

    International Nuclear Information System (INIS)

    Langen, T.

    2013-01-01

    Understanding the non-equilibrium dynamics of isolated quantum many-body systems is an open problem on vastly different energy, length, and time scales. Examples range from the dynamics of the early universe and heavy-ion collisions to the subtle coherence and transport properties in condensed matter physics. However, realizations of such quantum many-body systems, which are both well isolated from the environment and accessible to experimental study are scarce. This thesis presents a series of experiments with ultracold one-dimensional Bose gases. These gases combine a nearly perfect isolation from the environment with many well-established methods to manipulate and probe their quantum states. This makes them an ideal model system to explore the physics of quantum many body systems out of equilibrium. In the experiments, a well-defined non-equilibrium state is created by splitting a single one-dimensional gas coherently into two parts. The relaxation of this state is probed using matter-wave interferometry. The Observations reveal the emergence of a prethermalized steady state which differs strongly from thermal equilibrium. Such thermal-like states had previously been predicted for a large variety of systems, but never been observed directly. Studying the relaxation process in further detail shows that the thermal correlations of the prethermalized state emerge locally in their final form and propagate through the system in a light-cone-like evolution. This provides first experimental evidence for the local relaxation conjecture, which links relaxation processes in quantum many-body systems to the propagation of correlations. Furthermore, engineering the initial state of the evolution demonstrates that the prethermalized state is described by a generalized Gibbs ensemble, an observation which substantiates the importance of this ensemble as an extension of standard statistical mechanics. Finally, an experiment is presented, where pairs of gases with an atom

  10. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers

    International Nuclear Information System (INIS)

    Snezhko, Alexey

    2011-01-01

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology. (topical review)

  11. Experimental thermodynamics experimental thermodynamics of non-reacting fluids

    CERN Document Server

    Neindre, B Le

    2013-01-01

    Experimental Thermodynamics, Volume II: Experimental Thermodynamics of Non-reacting Fluids focuses on experimental methods and procedures in the study of thermophysical properties of fluids. The selection first offers information on methods used in measuring thermodynamic properties and tests, including physical quantities and symbols for physical quantities, thermodynamic definitions, and definition of activities and related quantities. The text also describes reference materials for thermometric fixed points, temperature measurement under pressures, and pressure measurements. The publicatio

  12. Reply to 'Photon emission from sputtered atoms - the observation of apparent local thermodynamic equilibrium in the excitation' by R.J. MacDonald, R.F. Garrett and P.J. Martin

    International Nuclear Information System (INIS)

    Tsong, I.S.T.

    1978-01-01

    MacDonald, Garrett and Martin have measured the intensities of spectral lines of Fe and Ni in alloy samples to study the problem of local thermodynamic equilibrium (LTE) in sputtering by plotting log(Ilambda 3 /gf) versus E. The measurements were made using a spectrometer with good resolution, 0.4 A, and great care was exercised in selecting only the lines free from interference or overlap. While the author agrees that their experimental approach is superior to the one attempted earlier and their experimental data are therefore more accurate, he does not agree with their data analysis. (Auth.)

  13. Open problems in non-equilibrium physics

    International Nuclear Information System (INIS)

    Kusnezov, D.

    1997-01-01

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions

  14. Open problems in non-equilibrium physics

    Energy Technology Data Exchange (ETDEWEB)

    Kusnezov, D.

    1997-09-22

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  15. Non-local Thermodynamic Equilibrium Abundance Analyses of the Extreme Helium Stars V652 Her and HD 144941

    International Nuclear Information System (INIS)

    Pandey, Gajendra; Lambert, David L.

    2017-01-01

    Optical high-resolution spectra of V652 Her and HD 144941, the two extreme helium stars with exceptionally low C/He ratios, have been subjected to a non-LTE abundance analysis using the tools TLUSTY and SYNSPEC. Defining atmospheric parameters were obtained from a grid of non-LTE atmospheres and a variety of spectroscopic indicators including He i and He ii line profiles, and the ionization equilibrium of ion pairs such as C ii/C iii and N ii/N iii. The various indicators provide a consistent set of atmospheric parameters: T eff = 25,000 ± 300 K, log g = 3.10 ± 0.12(cgs), and ξ = 13 ± 2 km s −1 are provided for V652 Her, and T eff = 22,000 ± 600 K, log g = 3.45 ± 0.15 (cgs), and ξ = 10 km s −1 are provided for HD 144941. In contrast to the non-LTE analyses, the LTE analyses—LTE atmospheres and an LTE line analysis—with the available indicators do not provide a consistent set of atmospheric parameters. The principal non-LTE effect on the elemental abundances is on the neon abundance. It is generally considered that these extreme helium stars with their very low C/He ratio result from the merger of two helium white dwarfs. Indeed, the derived composition of V652 Her is in excellent agreement with predictions by Zhang and Jeffery, who model the slow merger of helium white dwarfs; a slow merger results in the merged star having the composition of the accreted white dwarf. In the case of HD 144941, which appears to have evolved from metal-poor stars, a slow merger is incompatible with the observed composition but variations of the merger rate may account for the observed composition. More detailed theoretical studies of the merger of a pair of helium white dwarfs are to be encouraged.

  16. Non-local Thermodynamic Equilibrium Abundance Analyses of the Extreme Helium Stars V652 Her and HD 144941

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Gajendra [Indian Institute of Astrophysics, Bangalore, 560034 (India); Lambert, David L., E-mail: pandey@iiap.res.in, E-mail: dll@astro.as.utexas.edu [The W.J. McDonald Observatory and Department of Astronomy, University of Texas at Austin, Austin, TX 78712-1083 (United States)

    2017-10-01

    Optical high-resolution spectra of V652 Her and HD 144941, the two extreme helium stars with exceptionally low C/He ratios, have been subjected to a non-LTE abundance analysis using the tools TLUSTY and SYNSPEC. Defining atmospheric parameters were obtained from a grid of non-LTE atmospheres and a variety of spectroscopic indicators including He i and He ii line profiles, and the ionization equilibrium of ion pairs such as C ii/C iii and N ii/N iii. The various indicators provide a consistent set of atmospheric parameters: T {sub eff} = 25,000 ± 300 K, log g = 3.10 ± 0.12(cgs), and ξ = 13 ± 2 km s{sup −1} are provided for V652 Her, and T {sub eff} = 22,000 ± 600 K, log g = 3.45 ± 0.15 (cgs), and ξ = 10 km s{sup −1} are provided for HD 144941. In contrast to the non-LTE analyses, the LTE analyses—LTE atmospheres and an LTE line analysis—with the available indicators do not provide a consistent set of atmospheric parameters. The principal non-LTE effect on the elemental abundances is on the neon abundance. It is generally considered that these extreme helium stars with their very low C/He ratio result from the merger of two helium white dwarfs. Indeed, the derived composition of V652 Her is in excellent agreement with predictions by Zhang and Jeffery, who model the slow merger of helium white dwarfs; a slow merger results in the merged star having the composition of the accreted white dwarf. In the case of HD 144941, which appears to have evolved from metal-poor stars, a slow merger is incompatible with the observed composition but variations of the merger rate may account for the observed composition. More detailed theoretical studies of the merger of a pair of helium white dwarfs are to be encouraged.

  17. Modern thermodynamics from heat engines to dissipative structures

    CERN Document Server

    Kondepudi, Dilip

    2014-01-01

    Modern Thermodynamics: From Heat Engines to Dissipative Structures, Second Edition presents a comprehensive introduction to 20th century thermodynamics that can be applied to both equilibrium and non-equilibrium systems, unifying what was traditionally divided into 'thermodynamics' and 'kinetics' into one theory of irreversible processes. This comprehensive text, suitable for introductory as well as advanced courses on thermodynamics, has been widely used by chemists, physicists, engineers and geologists.  Fully revised and expanded, this new edition includes the following updates and featur

  18. A consistent model for the equilibrium thermodynamic functions of partially ionized flibe plasma with Coulomb corrections

    International Nuclear Information System (INIS)

    Zaghloul, Mofreh R.

    2003-01-01

    Flibe (2LiF-BeF2) is a molten salt that has been chosen as the coolant and breeding material in many design studies of the inertial confinement fusion (ICF) chamber. Flibe plasmas are to be generated in the ICF chamber in a wide range of temperatures and densities. These plasmas are more complex than the plasma of any single chemical species. Nevertheless, the composition and thermodynamic properties of the resulting flibe plasmas are needed for the gas dynamics calculations and the determination of other design parameters in the ICF chamber. In this paper, a simple consistent model for determining the detailed plasma composition and thermodynamic functions of high-temperature, fully dissociated and partially ionized flibe gas is presented and used to calculate different thermodynamic properties of interest to fusion applications. The computed properties include the average ionization state; kinetic pressure; internal energy; specific heats; adiabatic exponent, as well as the sound speed. The presented results are computed under the assumptions of local thermodynamic equilibrium (LTE) and electro-neutrality. A criterion for the validity of the LTE assumption is presented and applied to the computed results. Other attempts in the literature are assessed with their implied inaccuracies pointed out and discussed

  19. Towards understanding how surface life can affect interior geological processes: a non-equilibrium thermodynamics approach

    Directory of Open Access Journals (Sweden)

    J. G. Dyke

    2011-06-01

    Full Text Available Life has significantly altered the Earth's atmosphere, oceans and crust. To what extent has it also affected interior geological processes? To address this question, three models of geological processes are formulated: mantle convection, continental crust uplift and erosion and oceanic crust recycling. These processes are characterised as non-equilibrium thermodynamic systems. Their states of disequilibrium are maintained by the power generated from the dissipation of energy from the interior of the Earth. Altering the thickness of continental crust via weathering and erosion affects the upper mantle temperature which leads to changes in rates of oceanic crust recycling and consequently rates of outgassing of carbon dioxide into the atmosphere. Estimates for the power generated by various elements in the Earth system are shown. This includes, inter alia, surface life generation of 264 TW of power, much greater than those of geological processes such as mantle convection at 12 TW. This high power results from life's ability to harvest energy directly from the sun. Life need only utilise a small fraction of the generated free chemical energy for geochemical transformations at the surface, such as affecting rates of weathering and erosion of continental rocks, in order to affect interior, geological processes. Consequently when assessing the effects of life on Earth, and potentially any planet with a significant biosphere, dynamical models may be required that better capture the coupled nature of biologically-mediated surface and interior processes.

  20. Self-organized crystallization mechanism of non-equilibrium 2:1 type phyllosilicate systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The crystallization mechanism of 2:1 type regular interstratified minerals is investigated in views of non-equilibrium thermodynamics. The structural chemistry of relative layers and their interstratified combinations is analyzed and six kinds of non-equilibrium chemical systems have been induced. The universal laws of chemical reactions which happened in the interface region of these non-equilibrium systems have been summarized. From these laws, two reaction systems crystallizing out Tosudite and Rectorite respectively have been recovered. The kinetic model of chemical reactions has been developed by means of the mass conservation law. The oscillatory solution showing regular interstratified features has also been obtained numerically. These results indicate that the difference in original chemical composition among systems can affect the chemical connotation of reactants, intermediate products and resultants, and the flow chart of chemical reaction, but cannot change their crystallization behavior of network-forming cations, bigger and smaller network-modifying cations during crystallization. Hence, their kinetic model reflecting the universal crystallization law of these cations is just the same. These systems will crystallize out regular interstratified minerals at suitable parameters, which always exist as domain with nanometer-sized in thickness and can be called the self-organized ordering structure.

  1. An Easy and Effective Demonstration of Enzyme Stereospecificity and Equilibrium Thermodynamics

    Science.gov (United States)

    Herdman, Chelsea; Dickman, Michael

    2011-01-01

    Enzyme stereospecificity and equilibrium thermodynamics can be demonstrated using the coupling of two amino acid derivatives by Thermoase C160. This protease will catalyze peptide bond formation between Z-L-AspOH and L-PheOMe to form the Aspartame precursor Z-L-Asp-L-PheOMe. Reaction completion manifests itself by precipitation of the product. As…

  2. Post-CHF heat transfer: a non-equilibrium, relaxation model

    International Nuclear Information System (INIS)

    Jones, O.C. Jr.; Zuber, N.

    1977-01-01

    Existing phenomenological models of heat transfer in the non-equilibrium, liquid-deficient, dispersed flow regime can sometimes predict the thermal behavior fairly well but are quite complex, requiring coupled simultaneous differential equations to describe the axial gradients of mass and energy along with those of droplet acceleration and size. In addition, empirical relations are required to express the droplet breakup and increased effective heat transfer due to holdup. This report describes the development of a different approach to the problem. It is shown that the non-equilibrium component of the total energy can be expressed as a first order, inhomogeneous relaxation equation in terms of one variable coefficient termed the Superheat Relaxation number. A demonstration is provided to show that this relaxation number can be correlated using local variables in such a manner to allow the single non-equilibrium equation to accurately calculate the effects of mass velocity and heat flux along with tube length, diameter, and critical quality for equilibrium qualities from 0.13 to over 3.0

  3. Modeling two-phase flow in a micro-model with local thermal non-equilibrium on the Darcy scale

    NARCIS (Netherlands)

    Nuske, Philipp; Ronneberger, Olaf; Karadimitriou, Nikolaos K.; Helmig, Rainer; Hassanizadeh, S. Majid

    2015-01-01

    Loosening local equilibrium assumptions in two-phase flow in porous media gives rise to new, unknown variables. More specifically, when loosening the local thermal equilibrium assumption, one has to describe the heat transfer between multiple phases, present at the same mathematical point. In this

  4. Calculation of opacities and emissivities for carbon plasmas under NLTE and LTE conditions

    International Nuclear Information System (INIS)

    Gil, J.M.; Rodriguez, R.; Florido, R.; Rubiano, J.G.; Martel, P.; Sauvan, P.; Minguez, E.

    2006-01-01

    We calculate different optical properties for carbon plasma in a wide range of temperatures and densities by using ATOM3R-OP code which has been recently developed. In this code we have implemented the rate equations, the Saha equation (for local thermodynamic equilibrium) and the coronal equilibrium model. We have calculated average ionizations, level populations, opacities and emissivities and we focus our study on the identification with our code of coronal equilibrium, non-local thermodynamic equilibrium and local thermodynamic equilibrium regions for this kind of plasma. Moreover, we analyse the differences in the optical properties when they are calculated in non-local thermodynamic equilibrium and local thermodynamic equilibrium. (authors)

  5. Calculation of opacities and emissivities for carbon plasmas under NLTE and LTE conditions

    Energy Technology Data Exchange (ETDEWEB)

    Gil, J.M.; Rodriguez, R.; Florido, R.; Rubiano, J.G.; Martel, P. [Las Palmas de Gran Canaria Univ., Dept. de Fisica (Spain); Sauvan, P. [Universidad Nacional de Educacion a Distancia, Dept. de Ingenieria Energetica, Madrid (Spain); Minguez, E. [Madrid Univ. Politecnica, Instituto de Fusion Nuclear-DENIM (Spain)

    2006-06-15

    We calculate different optical properties for carbon plasma in a wide range of temperatures and densities by using ATOM3R-OP code which has been recently developed. In this code we have implemented the rate equations, the Saha equation (for local thermodynamic equilibrium) and the coronal equilibrium model. We have calculated average ionizations, level populations, opacities and emissivities and we focus our study on the identification with our code of coronal equilibrium, non-local thermodynamic equilibrium and local thermodynamic equilibrium regions for this kind of plasma. Moreover, we analyse the differences in the optical properties when they are calculated in non-local thermodynamic equilibrium and local thermodynamic equilibrium. (authors)

  6. The effect of non-equilibrium metal cooling on the interstellar medium

    Science.gov (United States)

    Capelo, Pedro R.; Bovino, Stefano; Lupi, Alessandro; Schleicher, Dominik R. G.; Grassi, Tommaso

    2018-04-01

    By using a novel interface between the modern smoothed particle hydrodynamics code GASOLINE2 and the chemistry package KROME, we follow the hydrodynamical and chemical evolution of an isolated galaxy. In order to assess the relevance of different physical parameters and prescriptions, we constructed a suite of 10 simulations, in which we vary the chemical network (primordial and metal species), how metal cooling is modelled (non-equilibrium versus equilibrium; optically thin versus thick approximation), the initial gas metallicity (from 10 to 100 per cent solar), and how molecular hydrogen forms on dust. This is the first work in which metal injection from supernovae, turbulent metal diffusion, and a metal network with non-equilibrium metal cooling are self-consistently included in a galaxy simulation. We find that properly modelling the chemical evolution of several metal species and the corresponding non-equilibrium metal cooling has important effects on the thermodynamics of the gas, the chemical abundances, and the appearance of the galaxy: the gas is typically warmer, has a larger molecular-gas mass fraction, and has a smoother disc. We also conclude that, at relatively high metallicity, the choice of molecular-hydrogen formation rates on dust is not crucial. Moreover, we confirm that a higher initial metallicity produces a colder gas and a larger fraction of molecular gas, with the low-metallicity simulation best matching the observed molecular Kennicutt-Schmidt relation. Finally, our simulations agree quite well with observations that link star formation rate to metal emission lines.

  7. On the definition of equilibrium and non-equilibrium states in dynamical systems

    OpenAIRE

    Akimoto, Takuma

    2008-01-01

    We propose a definition of equilibrium and non-equilibrium states in dynamical systems on the basis of the time average. We show numerically that there exists a non-equilibrium non-stationary state in the coupled modified Bernoulli map lattice.

  8. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Hwang, Jeong Ui; Jang, Jong Jae; Jee, Jong Gi

    1987-01-01

    The contents of this book are thermodynamics on the law of thermodynamics, classical thermodynamics and molecule thermodynamics, basics of molecule thermodynamics, molecule and assembly partition function, molecule partition function, classical molecule partition function, thermodynamics function for ideal assembly in fixed system, thermodynamics function for ideal assembly in running system, Maxwell-Boltzmann's law of distribution, chemical equilibrium like calculation of equilibrium constant and theory of absolute reaction rate.

  9. Studies on the formulation of thermodynamics and stochastic theory for systems far from equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. [Stanford Univ., CA (United States)

    1995-12-31

    We have been working for some time on the formulation of thermodynamics and the theory of fluctuations in systems far from equilibrium and progress in several aspects of that development are reported here.

  10. Non-equilibrium Friedmann cosmologies

    International Nuclear Information System (INIS)

    Oliveira, H.P. de; Salim, J.M.

    1987-01-01

    A uniform cosmological model filled with a fluid which possesses pressure and bulk viscosity is developed using extended thermodynamics. The Einsten and thermodynamic equations can be exactly integrated on Friedmann-like situation. One of the solutions is non singular: it starts from a steady state behavior and expands to a situation where viscosity dies out. (author) [pt

  11. Thermodynamic extremal principles for irreversible processes in materials science

    Czech Academy of Sciences Publication Activity Database

    Fischer, F. D.; Svoboda, Jiří; Petryk, H.

    2014-01-01

    Roč. 67, APR (2014), s. 1-20 ISSN 1359-6454 Institutional support: RVO:68081723 Keywords : Non- equilibrium * Thermodynamics * Entropy * Onsager's principle * Thermodynamic extremal principles Subject RIV: BJ - Thermodynamics Impact factor: 4.465, year: 2014

  12. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters.

    Science.gov (United States)

    Liu, Xiang; Lee, Duu-Jong

    2014-05-01

    This meta-analysis evaluates adsorption studies that report thermodynamic parameters for heavy metals and dyes from wastewaters. The adsorbents were derived from agricultural waste, industrial wastes, inorganic particulates, or some natural products. The adsorption mechanisms, derivation of thermodynamic relationships, and possible flaws made in such evaluation are discussed. This analysis shows that conclusions from the examined standard enthalpy and entropy changes are highly contestable. The reason for this flaw may be the poor physical structure of adsorbents tested, such that pore transport controlled the solute flux, leaving a surface reaction process near equilibrium. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Accounting for thermodynamic non-ideality in the Guinier region of small-angle scattering data of proteins.

    Science.gov (United States)

    Scott, David J

    2016-12-01

    Hydrodynamic studies of the solution properties of proteins and other biological macromolecules are often hard to interpret when the sample is present at a reasonably concentrated solution. The reason for this is that solutions exhibit deviations from ideal behaviour which is manifested as thermodynamic non-ideality. The range of concentrations at which this behaviour typically is exhibited is as low as 1-2 mg/ml, well within the range of concentrations used for their analysis by techniques such as small-angle scattering. Here we discuss thermodynamic non-ideality used previously used in the context of light scattering and sedimentation equilibrium analytical ultracentrifugation and apply it to the Guinier region of small-angle scattering data. The results show that there is a complementarity between the radially averaged structure factor derived from small-angle X-ray scattering/small-angle neutron scattering studies and the second virial coefficient derived from sedimentation equilibrium analytical ultracentrifugation experiments.

  14. Equilibrium sampling to determine the thermodynamic potential for bioaccumulation of persistent organic pollutants from sediment.

    Science.gov (United States)

    Jahnke, Annika; MacLeod, Matthew; Wickström, Håkan; Mayer, Philipp

    2014-10-07

    Equilibrium partitioning (EqP) theory is currently the most widely used approach for linking sediment pollution by persistent hydrophobic organic chemicals to bioaccumulation. Most applications of the EqP approach assume (I) a generic relationship between organic carbon-normalized chemical concentrations in sediments and lipid-normalized concentrations in biota and (II) that bioaccumulation does not induce levels exceeding those expected from equilibrium partitioning. Here, we demonstrate that assumption I can be obviated by equilibrating a silicone sampler with chemicals in sediment, measuring chemical concentrations in the silicone, and applying lipid/silicone partition ratios to yield concentrations in lipid at thermodynamic equilibrium with the sediment (CLip⇌Sed). Furthermore, we evaluated the validity of assumption II by comparing CLip⇌Sed of selected persistent, bioaccumulative and toxic pollutants (polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB)) to lipid-normalized concentrations for a range of biota from a Swedish background lake. PCBs in duck mussels, roach, eel, pikeperch, perch and pike were mostly below the equilibrium partitioning level relative to the sediment, i.e., lipid-normalized concentrations were ≤CLip⇌Sed, whereas HCB was near equilibrium between biota and sediment. Equilibrium sampling allows straightforward, sensitive and precise measurement of CLip⇌Sed. We propose CLip⇌Sed as a metric of the thermodynamic potential for bioaccumulation of persistent organic chemicals from sediment useful to prioritize management actions to remediate contaminated sites.

  15. Shape characteristics of equilibrium and non-equilibrium fractal clusters.

    Science.gov (United States)

    Mansfield, Marc L; Douglas, Jack F

    2013-07-28

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other

  16. Physical phenomena in a low-temperature non-equilibrium plasma and in MHD generators with non-equilibrium conductivity

    International Nuclear Information System (INIS)

    Velikhov, E.P.; Golubev, V.S.; Dykhne, A.M.

    1976-01-01

    The paper assesses the position in 1975 of theoretical and experimental work on the physics of a magnetohydrodynamic generator with non-equilibrium plasma conductivity. This research started at the beginning of the 1960s; as work on the properties of thermally non-equilibrium plasma in magnetic fields and also in MHD generator ducts progressed, a number of phenomena were discovered and investigated that had either been unknown in plasma physics or had remained uninvestigated until that time: ionization instability and ionization turbulence of plasma in a magnetic field, acoustic instability of a plasma with anisotropic conductivity, the non-equilibrium ionization wave and the energy balance of a non-equilibrium plasma. At the same time, it was discovered what physical requirements an MHD generator with non-equilibrium conductivity must satisfy to achieve high efficiency in converting the thermal or kinetic energy of the gas flow into electric energy. The experiments on MHD power generation with thermally non-equilibrium plasma carried out up to 1975 indicated that it should be possible to achieve conversion efficiencies of up to 20-30%. (author)

  17. Non-equilibrium spectroscopy of high-Tc superconductors

    International Nuclear Information System (INIS)

    Krasnov, V M

    2009-01-01

    In superconductors, recombination of two non-equilibrium quasiparticles into a Cooper pair results in emission of excitation that mediates superconductivity. This is the basis of the proposed new type of 'non-equilibrium' spectroscopy of high T c superconductors, which may open a possibility for direct and unambiguous determination of the coupling mechanism of high T c superconductivity. In case of low T c superconductors, the feasibility of such the non-equilibrium spectroscopy was demonstrated in classical phonon generation-detection experiments almost four decades ago. Recently it was demonstrated that a similar technique can be used for high T c superconductors, using natural intrinsic Josephson junctions both for injection of non-equilibrium quasiparticles and for detection of the non-equilibrium radiation. Here I analyze theoretically non-equilibrium phenomena in intrinsic Josephson junctions. It is shown that extreme non-equilibrium state can be achieved at bias equal to integer number of the gap voltage, which can lead to laser-like emission from the stack. I argue that identification of the boson type, constituting this non-equilibrium radiation would unambiguously reveal the coupling mechanism of high Tc superconductors.

  18. Path-space variational inference for non-equilibrium coarse-grained systems

    International Nuclear Information System (INIS)

    Harmandaris, Vagelis; Kalligiannaki, Evangelia; Katsoulakis, Markos; Plecháč, Petr

    2016-01-01

    In this paper we discuss information-theoretic tools for obtaining optimized coarse-grained molecular models for both equilibrium and non-equilibrium molecular simulations. The latter are ubiquitous in physicochemical and biological applications, where they are typically associated with coupling mechanisms, multi-physics and/or boundary conditions. In general the non-equilibrium steady states are not known explicitly as they do not necessarily have a Gibbs structure. The presented approach can compare microscopic behavior of molecular systems to parametric and non-parametric coarse-grained models using the relative entropy between distributions on the path space and setting up a corresponding path-space variational inference problem. The methods can become entirely data-driven when the microscopic dynamics are replaced with corresponding correlated data in the form of time series. Furthermore, we present connections and generalizations of force matching methods in coarse-graining with path-space information methods. We demonstrate the enhanced transferability of information-based parameterizations to different observables, at a specific thermodynamic point, due to information inequalities. We discuss methodological connections between information-based coarse-graining of molecular systems and variational inference methods primarily developed in the machine learning community. However, we note that the work presented here addresses variational inference for correlated time series due to the focus on dynamics. The applicability of the proposed methods is demonstrated on high-dimensional stochastic processes given by overdamped and driven Langevin dynamics of interacting particles.

  19. Path-space variational inference for non-equilibrium coarse-grained systems

    Energy Technology Data Exchange (ETDEWEB)

    Harmandaris, Vagelis, E-mail: harman@uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete (Greece); Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), IACM/FORTH, GR-71110 Heraklion (Greece); Kalligiannaki, Evangelia, E-mail: ekalligian@tem.uoc.gr [Department of Mathematics and Applied Mathematics, University of Crete (Greece); Katsoulakis, Markos, E-mail: markos@math.umass.edu [Department of Mathematics and Statistics, University of Massachusetts at Amherst (United States); Plecháč, Petr, E-mail: plechac@math.udel.edu [Department of Mathematical Sciences, University of Delaware, Newark, Delaware (United States)

    2016-06-01

    In this paper we discuss information-theoretic tools for obtaining optimized coarse-grained molecular models for both equilibrium and non-equilibrium molecular simulations. The latter are ubiquitous in physicochemical and biological applications, where they are typically associated with coupling mechanisms, multi-physics and/or boundary conditions. In general the non-equilibrium steady states are not known explicitly as they do not necessarily have a Gibbs structure. The presented approach can compare microscopic behavior of molecular systems to parametric and non-parametric coarse-grained models using the relative entropy between distributions on the path space and setting up a corresponding path-space variational inference problem. The methods can become entirely data-driven when the microscopic dynamics are replaced with corresponding correlated data in the form of time series. Furthermore, we present connections and generalizations of force matching methods in coarse-graining with path-space information methods. We demonstrate the enhanced transferability of information-based parameterizations to different observables, at a specific thermodynamic point, due to information inequalities. We discuss methodological connections between information-based coarse-graining of molecular systems and variational inference methods primarily developed in the machine learning community. However, we note that the work presented here addresses variational inference for correlated time series due to the focus on dynamics. The applicability of the proposed methods is demonstrated on high-dimensional stochastic processes given by overdamped and driven Langevin dynamics of interacting particles.

  20. The Markov process admits a consistent steady-state thermodynamic formalism

    Science.gov (United States)

    Peng, Liangrong; Zhu, Yi; Hong, Liu

    2018-01-01

    The search for a unified formulation for describing various non-equilibrium processes is a central task of modern non-equilibrium thermodynamics. In this paper, a novel steady-state thermodynamic formalism was established for general Markov processes described by the Chapman-Kolmogorov equation. Furthermore, corresponding formalisms of steady-state thermodynamics for the master equation and Fokker-Planck equation could be rigorously derived in mathematics. To be concrete, we proved that (1) in the limit of continuous time, the steady-state thermodynamic formalism for the Chapman-Kolmogorov equation fully agrees with that for the master equation; (2) a similar one-to-one correspondence could be established rigorously between the master equation and Fokker-Planck equation in the limit of large system size; (3) when a Markov process is restrained to one-step jump, the steady-state thermodynamic formalism for the Fokker-Planck equation with discrete state variables also goes to that for master equations, as the discretization step gets smaller and smaller. Our analysis indicated that general Markov processes admit a unified and self-consistent non-equilibrium steady-state thermodynamic formalism, regardless of underlying detailed models.

  1. Interfaces at equilibrium: A guide to fundamentals.

    Science.gov (United States)

    Marmur, Abraham

    2017-06-01

    The fundamentals of the thermodynamics of interfaces are reviewed and concisely presented. The discussion starts with a short review of the elements of bulk thermodynamics that are also relevant to interfaces. It continues with the interfacial thermodynamics of two-phase systems, including the definition of interfacial tension and adsorption. Finally, the interfacial thermodynamics of three-phase (wetting) systems is discussed, including the topic of non-wettable surfaces. A clear distinction is made between equilibrium conditions, in terms of minimizing energies (internal, Gibbs or Helmholtz), and equilibrium indicators, in terms of measurable, intrinsic properties (temperature, chemical potential, pressure). It is emphasized that the equilibrium indicators are the same whatever energy is minimized, if the boundary conditions are properly chosen. Also, to avoid a common confusion, a distinction is made between systems of constant volume and systems with drops of constant volume. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. A model for non-equilibrium, non-homogeneous two-phase critical flow

    International Nuclear Information System (INIS)

    Bassel, Wageeh Sidrak; Ting, Daniel Kao Sun

    1999-01-01

    Critical two phase flow is a very important phenomena in nuclear reactor technology for the analysis of loss of coolant accident. Several recent papers, Lee and Shrock (1990), Dagan (1993) and Downar (1996) , among others, treat the phenomena using complex models which require heuristic parameters such as relaxation constants or interfacial transfer models. In this paper a mathematical model for one dimensional non equilibrium and non homogeneous two phase flow in constant area duct is developed. The model is constituted of three conservation equations type mass ,momentum and energy. Two important variables are defined in the model: equilibrium constant in the energy equation and the impulse function in the momentum equation. In the energy equation, the enthalpy of the liquid phase is determined by a linear interpolation function between the liquid phase enthalpy at inlet condition and the saturated liquid enthalpy at local pressure. The interpolation coefficient is the equilibrium constant. The momentum equation is expressed in terms of the impulse function. It is considered that there is slip between the liquid and vapor phases, the liquid phase is in metastable state and the vapor phase is in saturated stable state. The model is not heuristic in nature and does not require complex interface transfer models. It is proved numerically that for the critical condition the partial derivative of two phase pressure drop with respect to the local pressure or to phase velocity must be zero.This criteria is demonstrated by numerical examples. The experimental work of Fauske (1962) and Jeandey (1982) were analyzed resulting in estimated numerical values for important parameters like slip ratio, equilibrium constant and two phase frictional drop. (author)

  3. Thermodynamics in f(R,T) theory of gravity

    International Nuclear Information System (INIS)

    Sharif, M.; Zubair, M.

    2012-01-01

    A non-equilibrium picture of thermodynamics is discussed at the apparent horizon of FRW universe in f(R,T) gravity, where R is the Ricci scalar and T is the trace of the energy-momentum tensor. We take two forms of the energy-momentum tensor of dark components and demonstrate that equilibrium description of thermodynamics is not achievable in both cases. We check the validity of the first and second law of thermodynamics in this scenario. It is shown that the Friedmann equations can be expressed in the form of first law of thermodynamics T h dS' h +T h d jmath S' = −dE'+W'dV, where d jmath S' is the entropy production term. Finally, we conclude that the second law of thermodynamics holds both in phantom and non-phantom phases

  4. Equilibrium thermodynamics of the partitioning of non-steroidal anti-inflammatory drugs into human erythrocyte ghost membranes

    International Nuclear Information System (INIS)

    Omran, Ahmed A.

    2013-01-01

    Graphical abstract: Bar diagram representing thermodynamic parameters obtained for the partitioning of NSAIDs into human erythrocyte ghost membranes at physiological pH; 7.4. Highlights: • Partition coefficients of NSAIDs into HEG membranes were determined. • Thermodynamic parameters were evaluated and successfully analyzed. • Partitioning of NSAIDs into HEG membranes was exothermic. • Partitioning of NSAIDs into HEG is spontaneous with negative free energy values. • Identical partitioning enthalpy–entropy driven compensation mechanism was shown. -- Abstract: In this work,second derivative spectrophotometry was applied for determining the partition coefficients (K p s) of four non-steroidal anti-inflammatory drugs (NSAIDs; flufenamic, meclofenamic, mefenamic and niflumic acids) into human erythrocyte ghost (HEG) membranes over a temperature range from (283.2 to 313.2) K. The proposed method allowed the evaluation and direct analyses of thermodynamic parameters; enthalpy (ΔH W→M ), Gibbs energy (ΔG W→M ) and entropy (ΔS W→M ) changes of the partitioning of NSAIDs into HEG membranes. The partitioning of NSAIDs between polar aqueous phase and non-polar lipid bilayer HEG membrane phase was exothermic with negative (ΔH W→M ) which compensated for the changes in (ΔS W→M ). The negative values of (ΔG W→M ) revealed that the partitioning of NSAIDs into HEG, owing to their transfer from polar aqueous phase and non-polar HEG phase is spontaneous. The enthalpy–entropy correlation analysis resulted in a good linearity that suggests an identical partitioning enthalpy–entropy driven compensation mechanism for the studied NSAIDs

  5. Out-of-equilibrium dynamics driven by localized time-dependent perturbations at quantum phase transitions

    Science.gov (United States)

    Pelissetto, Andrea; Rossini, Davide; Vicari, Ettore

    2018-03-01

    We investigate the quantum dynamics of many-body systems subject to local (i.e., restricted to a limited space region) time-dependent perturbations. If the system crosses a quantum phase transition, an off-equilibrium behavior is observed, even for a very slow driving. We show that, close to the transition, time-dependent quantities obey scaling laws. In first-order transitions, the scaling behavior is universal, and some scaling functions can be computed exactly. For continuous transitions, the scaling laws are controlled by the standard critical exponents and by the renormalization-group dimension of the perturbation at the transition. Our protocol can be implemented in existing relatively small quantum simulators, paving the way for a quantitative probe of the universal off-equilibrium scaling behavior, without the need to manipulate systems close to the thermodynamic limit.

  6. Dynamics of unstable sound waves in a non-equilibrium medium at the nonlinear stage

    Science.gov (United States)

    Khrapov, Sergey; Khoperskov, Alexander

    2018-03-01

    A new dispersion equation is obtained for a non-equilibrium medium with an exponential relaxation model of a vibrationally excited gas. We have researched the dependencies of the pump source and the heat removal on the medium thermodynamic parameters. The boundaries of sound waves stability regions in a non-equilibrium gas have been determined. The nonlinear stage of sound waves instability development in a vibrationally excited gas has been investigated within CSPH-TVD and MUSCL numerical schemes using parallel technologies OpenMP-CUDA. We have obtained a good agreement of numerical simulation results with the linear perturbations dynamics at the initial stage of the sound waves growth caused by instability. At the nonlinear stage, the sound waves amplitude reaches the maximum value that leads to the formation of shock waves system.

  7. Interpreting equilibrium-conductivity and conductivity-relaxation measurements to establish thermodynamic and transport properties for multiple charged defect conducting ceramics.

    Science.gov (United States)

    Zhu, Huayang; Ricote, Sandrine; Coors, W Grover; Kee, Robert J

    2015-01-01

    A model-based interpretation of measured equilibrium conductivity and conductivity relaxation is developed to establish thermodynamic, transport, and kinetics parameters for multiple charged defect conducting (MCDC) ceramic materials. The present study focuses on 10% yttrium-doped barium zirconate (BZY10). In principle, using the Nernst-Einstein relationship, equilibrium conductivity measurements are sufficient to establish thermodynamic and transport properties. However, in practice it is difficult to establish unique sets of properties using equilibrium conductivity alone. Combining equilibrium and conductivity-relaxation measurements serves to significantly improve the quantitative fidelity of the derived material properties. The models are developed using a Nernst-Planck-Poisson (NPP) formulation, which enables the quantitative representation of conductivity relaxations caused by very large changes in oxygen partial pressure.

  8. Time-dependent two-temperature chemically non-equilibrium modelling of high-power Ar-N2 pulse-modulated inductively coupled plasmas at atmospheric pressure

    International Nuclear Information System (INIS)

    Tanaka, Yasunori

    2006-01-01

    A time-dependent, two-dimensional, two-temperature and chemical non-equilibrium model was developed for high-power Ar-N 2 pulse-modulated inductively coupled plasmas (PMICPs) at atmospheric pressure. The high-power PMICP is a new technique for sustaining high-power induction plasmas. It can control the plasma temperature and radical densities in the time domain. The PMICP promotes non-equilibrium effects by a sudden application of electric field, even in the high-power density plasmas. The developed model accounts separately for the time-dependent energy conservation equations of electrons and heavy particles. This model also considers reaction heat effects and energy transfer between electrons and heavy particles as well as enthalpy flow resulting from diffusion caused by the particle density gradient. Chemical non-equilibrium effects are also taken into account by solving time-dependent mass conservation equations for each particle, considering diffusion, convection and net production terms resulting from 30 chemical reactions. Transport and thermodynamic properties of Ar-N 2 plasmas are calculated self-consistently using the first order approximation of the Chapman-Enskog method at each position and iteration using the local particle composition, heavy particle temperature and electron temperature. This model is useful to discuss time evolution in temperature, gas flow fields and distribution of chemical species

  9. Thermodynamics for the practicing engineer

    CERN Document Server

    Theodore, Louis; Vanvliet, Timothy

    2009-01-01

    This book concentrates specifically on the applications of thermodynamics, rather than the theory. It addresses both technical and pragmatic problems in the field, and covers such topics as enthalpy effects, equilibrium thermodynamics, non-ideal thermodynamics and energy conversion applications. Providing the reader with a working knowledge of the principles of thermodynamics, as well as experience in their application, it stands alone as an easy-to-follow self-teaching aid to practical applications and contains worked examples.

  10. Non-equilibrium dynamics from RPMD and CMD.

    Science.gov (United States)

    Welsch, Ralph; Song, Kai; Shi, Qiang; Althorpe, Stuart C; Miller, Thomas F

    2016-11-28

    We investigate the calculation of approximate non-equilibrium quantum time correlation functions (TCFs) using two popular path-integral-based molecular dynamics methods, ring-polymer molecular dynamics (RPMD) and centroid molecular dynamics (CMD). It is shown that for the cases of a sudden vertical excitation and an initial momentum impulse, both RPMD and CMD yield non-equilibrium TCFs for linear operators that are exact for high temperatures, in the t = 0 limit, and for harmonic potentials; the subset of these conditions that are preserved for non-equilibrium TCFs of non-linear operators is also discussed. Furthermore, it is shown that for these non-equilibrium initial conditions, both methods retain the connection to Matsubara dynamics that has previously been established for equilibrium initial conditions. Comparison of non-equilibrium TCFs from RPMD and CMD to Matsubara dynamics at short times reveals the orders in time to which the methods agree. Specifically, for the position-autocorrelation function associated with sudden vertical excitation, RPMD and CMD agree with Matsubara dynamics up to O(t 4 ) and O(t 1 ), respectively; for the position-autocorrelation function associated with an initial momentum impulse, RPMD and CMD agree with Matsubara dynamics up to O(t 5 ) and O(t 2 ), respectively. Numerical tests using model potentials for a wide range of non-equilibrium initial conditions show that RPMD and CMD yield non-equilibrium TCFs with an accuracy that is comparable to that for equilibrium TCFs. RPMD is also used to investigate excited-state proton transfer in a system-bath model, and it is compared to numerically exact calculations performed using a recently developed version of the Liouville space hierarchical equation of motion approach; again, similar accuracy is observed for non-equilibrium and equilibrium initial conditions.

  11. Continuum model of non-equilibrium solvation and solvent effect on ultra-fast processes

    International Nuclear Information System (INIS)

    Li Xiangyuan; Fu Kexiang; Zhu Quan

    2006-01-01

    In the past 50 years, non-equilibrium solvation theory for ultra-fast processes such as electron transfer and light absorption/emission has attracted particular interest. A great deal of research efforts was made in this area and various models which give reasonable qualitative descriptions for such as solvent reorganization energy in electron transfer and spectral shift in solution, were developed within the framework of continuous medium theory. In a series of publications by the authors, we clarified that the expression of the non-equilibrium electrostatic free energy that is at the dominant position of non-equilibrium solvation and serves as the basis of various models, however, was incorrectly formulated. In this work, the authors argue that reversible charging work integration was inappropriately applied in the past to an irreversible path linking the equilibrium or the non-equilibrium state. Because the step from the equilibrium state to the nonequilibrium state is factually thermodynamically irreversible, the conventional expression for non-equilibrium free energy that was deduced in different ways is unreasonable. Here the authors derive the non-equilibrium free energy to a quite different form according to Jackson integral formula. Such a difference throws doubts to the models including the famous Marcus two-sphere model for solvent reorganization energy of electron transfer and the Lippert-Mataga equation for spectral shift. By introducing the concept of 'spring energy' arising from medium polarizations, the energy constitution of the non-equilibrium state is highlighted. For a solute-solvent system, the authors separate the total electrostatic energy into different components: the self-energies of solute charge and polarized charge, the interaction energy between them and the 'spring energy' of the solvent polarization. With detailed reasoning and derivation, our formula for non-equilibrium free energy can be reached through different ways. Based on the

  12. Modeling the nonequilibrium effects in a nonquasi-equilibrium thermodynamic cycle based on steepest entropy ascent and an isothermal-isobaric ensemble

    International Nuclear Information System (INIS)

    Li, Guanchen; Spakovsky, Michael R. von

    2016-01-01

    Conventional first principle approaches for studying nonequilibrium or far-from-equilibrium processes depend on the mechanics of individual particles or quantum states. They also require many details of the mechanical features of a system to arrive at a macroscopic property. In contrast, thermodynamics provides an approach for determining macroscopic property values without going into these details, because the overall effect of particle dynamics results, for example, at stable equilibrium in an invariant pattern of the “Maxwellian distribution”, which in turn leads to macroscopic properties. However, such an approach is not generally applicable to a nonequilibrium process except in the near-equilibrium realm. To adequately address these drawbacks, steepest-entropy-ascent quantum thermodynamics (SEAQT) provides a first principle, thermodynamic-ensemble approach applicable to the entire nonequilibrium realm. Based on prior developments by the authors, this paper applies the SEAQT framework to modeling the nonquasi-equilibrium cycle, which a system with variable volume undergoes. Using the concept of hypoequilibrium state and nonequilibrium intensive properties, this framework provides a complete description of the nonequilibrium evolution in state of the system. Results presented here reveal how nonequilibrium effects influence the performance of the cycle. - Highlights: • First-principles nonequilibrium model of thermodynamic cycles. • Study of thermal efficiency losses due to nonequilibrium effects. • Study of systems undergoing nonquasi-equilibrium processes. • Study of the coupling of system relaxation and interaction with a reservoir.

  13. The efficiency of driving chemical reactions by a physical non-equilibrium is kinetically controlled.

    Science.gov (United States)

    Göppel, Tobias; Palyulin, Vladimir V; Gerland, Ulrich

    2016-07-27

    An out-of-equilibrium physical environment can drive chemical reactions into thermodynamically unfavorable regimes. Under prebiotic conditions such a coupling between physical and chemical non-equilibria may have enabled the spontaneous emergence of primitive evolutionary processes. Here, we study the coupling efficiency within a theoretical model that is inspired by recent laboratory experiments, but focuses on generic effects arising whenever reactant and product molecules have different transport coefficients in a flow-through system. In our model, the physical non-equilibrium is represented by a drift-diffusion process, which is a valid coarse-grained description for the interplay between thermophoresis and convection, as well as for many other molecular transport processes. As a simple chemical reaction, we consider a reversible dimerization process, which is coupled to the transport process by different drift velocities for monomers and dimers. Within this minimal model, the coupling efficiency between the non-equilibrium transport process and the chemical reaction can be analyzed in all parameter regimes. The analysis shows that the efficiency depends strongly on the Damköhler number, a parameter that measures the relative timescales associated with the transport and reaction kinetics. Our model and results will be useful for a better understanding of the conditions for which non-equilibrium environments can provide a significant driving force for chemical reactions in a prebiotic setting.

  14. Combined steam and carbon dioxide reforming of methane and side reactions: Thermodynamic equilibrium analysis and experimental application

    International Nuclear Information System (INIS)

    Jang, Won-Jun; Jeong, Dae-Woon; Shim, Jae-Oh; Kim, Hak-Min; Roh, Hyun-Seog; Son, In Hyuk; Lee, Seung Jae

    2016-01-01

    Highlights: • Selected variables have a significant influence on yields of synthesis gas. • (CO_2 + H_2O)/CH_4 affects the temperature which can achieve the maximum conversion. • Coke is formed at low temperatures even with excess oxidizing agent. • The occurrence of RWGS becomes critical in real chemical reactions. • Equilibrium conversions are maintained for 500 h without detectable deactivation. - Abstract: Thermodynamic equilibrium analysis of the combined steam and carbon dioxide reforming of methane (CSCRM) and side reactions was performed using total Gibbs free energy minimization. The effects of (CO_2 + H_2O)/CH_4 ratio (0.9–2.9), CO_2:H_2O ratio (3:1–1:3), and temperature (500–1000 °C) on the equilibrium conversions, yields, coke yield, and H_2/CO ratio were investigated. A (CO_2 + H_2O)/CH_4 ratio greater than 1.2, a CO_2:H_2O ratio of 1:2.1, and a temperature of at least 850 °C are preferable reaction conditions for the synthesis gas preparation in the gas to liquid process. Simulated conditions were applied to the CSCRM reaction and the experimental data were compared with the thermodynamic equilibrium results. The thermodynamic equilibrium results were mostly consistent with the experimental data, but the reverse water gas shift reaction rapidly occurred in the real chemical reaction and under excess oxidizing agent conditions. In addition, a long-term stability test (under simulated conditions) showed that the equilibrium conversion was maintained for 500 h and that the coke formation on the used catalyst was not observed.

  15. Effect of degree of order of silicon dioxide on localization processes of non-equilibrium charge carriers under the influence of gamma-radiation

    CERN Document Server

    Garibov, A A; Agaev, T N

    1999-01-01

    The effect of the degree of order of SiO sub 2 on the localization process of non-equilibrium charge carriers (NCC) when exposed to gamma-quanta at 77 K has been investigated. It has been found that with decreasing SiO sub 2 structure degree of order, a localization probability of NCC increases. A contribution of surface defect states in SiO sub 2 to localization, migration and recombination annihilation processes of NCC induced by ionizing radiation has been determined.

  16. Non-equilibrium thermodynamics, heat transport and thermal waves in laminar and turbulent superfluid helium

    Science.gov (United States)

    Mongiovì, Maria Stella; Jou, David; Sciacca, Michele

    2018-01-01

    This review paper puts together some results concerning non equilibrium thermodynamics and heat transport properties of superfluid He II. A one-fluid extended model of superfluid helium, which considers heat flux as an additional independent variable, is presented, its microscopic bases are analyzed, and compared with the well known two-fluid model. In laminar situations, the fundamental fields are density, velocity, absolute temperature, and heat flux. Such a theory is able to describe the thermomechanical phenomena, the propagation of two sounds in liquid helium, and of fourth sound in superleak. It also leads in a natural way to a two-fluid model on purely macroscopical grounds and allows a small amount of entropy associated with the superfluid component. Other important features of liquid He II arise in rotating situations and in superfluid turbulence, both characterized by the presence of quantized vortices (thin vortex lines whose circulation is restricted by a quantum condition). Such vortices have a deep influence on the transport properties of superfluid helium, as they increase very much its thermal resistance. Thus, heat flux influences the vortices which, in turn, modify the heat flux. The dynamics of vortex lines is the central topic in turbulent superfluid helium. The model is generalized to take into account the vortices in different cases of physical interest: rotating superfluids, counterflow superfluid turbulence, combined counterflow and rotation, and mass flow in addition to heat flow. To do this, the averaged vortex line density per unit volume L, is introduced and its dynamical equations are considered. Linear and non-linear evolution equations for L are written for homogeneous and inhomogeneous, isotropic and anisotropic situations. Several physical experiments are analyzed and the influence of vortices on the effective thermal conductivity of turbulent superfluid helium is found. Transitions from laminar to turbulent flows, from diffusive to

  17. Nonideal plasmas as non-equilibrium media

    International Nuclear Information System (INIS)

    Morozov, I V; Norman, G E; Valuev, A A; Valuev, I A

    2003-01-01

    Various aspects of the collective behaviour of non-equilibrium nonideal plasmas are studied. The relaxation of kinetic energy to the equilibrium state is simulated by the molecular dynamics (MD) method for two-component non-degenerate strongly non-equilibrium plasmas. The initial non-exponential stage, its duration and the subsequent exponential stage of the relaxation process are studied for a wide range of ion charge, nonideality parameter and ion mass. A simulation model of the nonideal plasma excited by an electron beam is proposed. An approach is developed to calculate the dynamic structure factor in non-stationary conditions. Instability increment is obtained from MD simulations

  18. Colored thermal noise driven dynamical system in the presence and absence of non-equilibrium constraint: time dependence of information entropy flux and entropy production

    International Nuclear Information System (INIS)

    Goswami, Gurupada; Mukherjee, Biswajit; Bag, Bidhan Chandra

    2005-01-01

    We have studied the relaxation of non-Markovian and thermodynamically closed system both in the absence and presence of non-equilibrium constraint in terms of the information entropy flux and entropy production based on the Fokker-Planck and the entropy balance equations. Our calculation shows how the relaxation time depends on noise correlation time. It also considers how the non-equilibrium constraint is affected by system parameters such as noise correlation time, strength of dissipation and frequency of dynamical system. The interplay of non-equilibrium constraint, frictional memory kernel, noise correlation time and frequency of dynamical system reveals the extremum nature of the entropy production

  19. Colored thermal noise driven dynamical system in the presence and absence of non-equilibrium constraint: time dependence of information entropy flux and entropy production

    Science.gov (United States)

    Goswami, Gurupada; Mukherjee, Biswajit; Bag, Bidhan Chandra

    2005-06-01

    We have studied the relaxation of non-Markovian and thermodynamically closed system both in the absence and presence of non-equilibrium constraint in terms of the information entropy flux and entropy production based on the Fokker-Planck and the entropy balance equations. Our calculation shows how the relaxation time depends on noise correlation time. It also considers how the non-equilibrium constraint is affected by system parameters such as noise correlation time, strength of dissipation and frequency of dynamical system. The interplay of non-equilibrium constraint, frictional memory kernel, noise correlation time and frequency of dynamical system reveals the extremum nature of the entropy production.

  20. Improved thermodynamic treatment of vacancy-mediated diffusion and creep

    Czech Academy of Sciences Publication Activity Database

    Fischer, F. D.; Hackl, K.; Svoboda, Jiří

    2016-01-01

    Roč. 108, APR (2016), s. 347-354 ISSN 1359-6454 R&D Projects: GA ČR(CZ) GA15-06390S Institutional support: RVO:68081723 Keywords : Thermodynamics * Non-equilibrium * Diffusion * Vacancies * Thermodynamic extremal principle Subject RIV: BJ - Thermodynamics Impact factor: 5.301, year: 2016

  1. The stability of second sound waves in a rotating Darcy–Brinkman porous layer in local thermal non-equilibrium

    Energy Technology Data Exchange (ETDEWEB)

    Eltayeb, I A; Elbashir, T B A, E-mail: ieltayeb@squ.edu.om, E-mail: elbashir@squ.edu.om [Department of Mathematics and Statistics, College of Science, Sultan Qaboos University, Muscat 123 (Oman)

    2017-08-15

    The linear and nonlinear stabilities of second sound waves in a rotating porous Darcy–Brinkman layer in local thermal non-equilibrium are studied when the heat flux in the solid obeys the Cattaneo law. The simultaneous action of the Brinkman effect (effective viscosity) and rotation is shown to destabilise the layer, as compared to either of them acting alone, for both stationary and overstable modes. The effective viscosity tends to favour overstable modes while rotation tends to favour stationary convection. Rapid rotation invokes a negative viscosity effect that suppresses the stabilising effect of porosity so that the stability characteristics resemble those of the classical rotating Benard layer. A formal weakly nonlinear analysis yields evolution equations of the Landau–Stuart type governing the slow time development of the amplitudes of the unstable waves. The equilibrium points of the evolution equations are analysed and the overall development of the amplitudes is examined. Both overstable and stationary modes can exhibit supercritical stability; supercritical instability, subcritical instability and stability are not possible. The dependence of the supercritical stability on the relative values of the six dimensionless parameters representing thermal non-equilibrium, rotation, porosity, relaxation time, thermal diffusivities and Brinkman effect is illustrated as regions in regime diagrams in the parameter space. The dependence of the heat transfer and the mean heat flux on the parameters of the problem is also discussed. (paper)

  2. Shear Viscosity of Benzene, Toluene, and p-Xylene by Non-equilibrium Molecular Dynamics Simulations

    International Nuclear Information System (INIS)

    Lee, Song Hi

    2004-01-01

    Green and Kubo showed that the phenomenological coefficients describing many transport processes and time dependent phenomena in general could be written as integrals over a certain type of function called a time correlation function. The Green-Kubo formulas are the formal expressions for hydrodynamic field variables and some of the thermodynamic properties in terms of the microscopic variables of an N-particle system. The identification of microscopic expressions for macroscopic variables is made by a process of comparison of the conservation equations of hydrodynamics with the microscopic equations of change for conserved densities. The importance of these formulas is three-fold: they provide an obvious method for calculating transport coefficients using computer simulation, a convenient starting point for constructing analytic theories for non-equilibrium processes, and an essential information for designing non-equilibrium molecular dynamics (NEMD) algorithm.

  3. Non-equilibrium dog-flea model

    Science.gov (United States)

    Ackerson, Bruce J.

    2017-11-01

    We develop the open dog-flea model to serve as a check of proposed non-equilibrium theories of statistical mechanics. The model is developed in detail. Then it is applied to four recent models for non-equilibrium statistical mechanics. Comparison of the dog-flea solution with these different models allows checking claims and giving a concrete example of the theoretical models.

  4. Phase equilibrium engineering

    CERN Document Server

    Brignole, Esteban Alberto

    2013-01-01

    Traditionally, the teaching of phase equilibria emphasizes the relationships between the thermodynamic variables of each phase in equilibrium rather than its engineering applications. This book changes the focus from the use of thermodynamics relationships to compute phase equilibria to the design and control of the phase conditions that a process needs. Phase Equilibrium Engineering presents a systematic study and application of phase equilibrium tools to the development of chemical processes. The thermodynamic modeling of mixtures for process development, synthesis, simulation, design and

  5. Aerospace Applications of Non-Equilibrium Plasma

    Science.gov (United States)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  6. Non-equilibrium versus equilibrium emission of complex fragments from hot nuclei

    International Nuclear Information System (INIS)

    Viola, V.E.; Kwiatkowski, K.; Yennello, S.; Fields, D.E.

    1989-01-01

    The relative contributions of equilibrium and non-equilibrium mechanisms for intermediate-mass fragment emission have been deduced for Z=3-14 fragments formed in 3 He- and 14 N-induced reactions on Ag and Au targets. Complete inclusive excitation function measurements have been performed for 3 He projectiles from E/A=67 to 1,200 MeV and for 14 N from E/A=20 to 50 MeV. The data are consistent with a picture in which equilibrated emission is important at the lowest energies, but with increasing bombarding energy the cross sections are increasingly dominated by non-equilibrium processes. Non-equilibrium emission is also shown to be favored for light fragments relative to heavy fragments. These results are supported by coincidence studies of intermediate-mass fragments tagged by linear momentum transfer measurements

  7. A spreadsheet-coupled SOLGAS: A computerized thermodynamic equilibrium calculation tool. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Trowbridge, L.D.; Leitnaker, J.M. [Oak Ridge K-25 Site, TN (United States). Technical Analysis and Operations Div.

    1995-07-01

    SOLGAS, an early computer program for calculating equilibrium in a chemical system, has been made more user-friendly, and several ``bells and whistles`` have been added. The necessity to include elemental species has been eliminated. The input of large numbers of starting conditions has been automated. A revised spreadsheet-based format for entering data, including non-ideal binary and ternary mixtures, simplifies and reduces chances for error. Calculational errors by SOLGAS are flagged, and several programming errors are corrected. Auxiliary programs are available to assemble and partially automate plotting of large amounts of data. Thermodynamic input data can be changed on line. The program can be operated with or without a co-processor. Copies of the program, suitable for the IBM-PC or compatibles with at least 384 bytes of low RAM, are available from the authors. This user manual contains appendices with examples of the use of SOLGAS. These range from elementary examples, such as, the relationships among water, ice, and water vapor, to more complex systems: phase diagram calculation of UF{sub 4} and UF{sub 6} system; burning UF{sub 4} in fluorine; thermodynamic calculation of the Cl-F-O-H system; equilibria calculations in the CCl{sub 4}--CH{sub 3}OH system; and limitations applicable to aqueous solutions. An appendix also contains the source code.

  8. Thermodynamics for scientists and engineers

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2011-02-01

    This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.

  9. Quantitative thermodynamic predication of interactions between nucleic acid and non-nucleic acid species using Microsoft excel.

    Science.gov (United States)

    Zou, Jiaqi; Li, Na

    2013-09-01

    Proper design of nucleic acid sequences is crucial for many applications. We have previously established a thermodynamics-based quantitative model to help design aptamer-based nucleic acid probes by predicting equilibrium concentrations of all interacting species. To facilitate customization of this thermodynamic model for different applications, here we present a generic and easy-to-use platform to implement the algorithm of the model with Microsoft(®) Excel formulas and VBA (Visual Basic for Applications) macros. Two Excel spreadsheets have been developed: one for the applications involving only nucleic acid species, the other for the applications involving both nucleic acid and non-nucleic acid species. The spreadsheets take the nucleic acid sequences and the initial concentrations of all species as input, guide the user to retrieve the necessary thermodynamic constants, and finally calculate equilibrium concentrations for all species in various bound and unbound conformations. The validity of both spreadsheets has been verified by comparing the modeling results with the experimental results on nucleic acid sequences reported in the literature. This Excel-based platform described here will allow biomedical researchers to rationalize the sequence design of nucleic acid probes using the thermodynamics-based modeling even without relevant theoretical and computational skills. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Step-wise pulling protocols for non-equilibrium dynamics

    Science.gov (United States)

    Ngo, Van Anh

    The fundamental laws of thermodynamics and statistical mechanics, and the deeper understandings of quantum mechanics have been rebuilt in recent years. It is partly because of the increasing power of computing resources nowadays, that allow shedding direct insights into the connections among the thermodynamics laws, statistical nature of our world, and the concepts of quantum mechanics, which have not yet been understood. But mostly, the most important reason, also the ultimate goal, is to understand the mechanisms, statistics and dynamics of biological systems, whose prevailing non-equilibrium processes violate the fundamental laws of thermodynamics, deviate from statistical mechanics, and finally complicate quantum effects. I believe that investigations of the fundamental laws of non-equilibrium dynamics will be a frontier research for at least several more decades. One of the fundamental laws was first discovered in 1997 by Jarzynski, so-called Jarzynski's Equality. Since then, different proofs, alternative descriptions of Jarzynski's Equality, and its further developments and applications have been quickly accumulated. My understandings, developments and applications of an alternative theory on Jarzynski's Equality form the bulk of this dissertation. The core of my theory is based on stepwise pulling protocols, which provide deeper insight into how fluctuations of reaction coordinates contribute to free-energy changes along a reaction pathway. We find that the most optimal pathways, having the largest contribution to free-energy changes, follow the principle of detailed balance. This is a glimpse of why the principle of detailed balance appears so powerful for sampling the most probable statistics of events. In a further development on Jarzynski's Equality, I have been trying to use it in the formalism of diagonal entropy to propose a way to extract useful thermodynamic quantities such temperature, work and free-energy profiles from far-from-equilibrium

  11. Quantum corrections to the stress-energy tensor in thermodynamic equilibrium with acceleration

    Science.gov (United States)

    Becattini, F.; Grossi, E.

    2015-08-01

    We show that the stress-energy tensor has additional terms with respect to the ideal form in states of global thermodynamic equilibrium in flat spacetime with nonvanishing acceleration and vorticity. These corrections are of quantum origin and their leading terms are second order in the gradients of the thermodynamic fields. Their relevant coefficients can be expressed in terms of correlators of the stress-energy tensor operator and the generators of the Lorentz group. With respect to previous assessments, we find that there are more second-order coefficients and that all thermodynamic functions including energy density receive acceleration and vorticity dependent corrections. Notably, also the relation between ρ and p , that is, the equation of state, is affected by acceleration and vorticity. We have calculated the corrections for a free real scalar field—both massive and massless—and we have found that they increase, particularly for a massive field, at very high acceleration and vorticity and very low temperature. Finally, these nonideal terms depend on the explicit form of the stress-energy operator, implying that different stress-energy tensors of the scalar field—canonical or improved—are thermodynamically inequivalent.

  12. Non-equilibrium synergistic effects in atmospheric pressure plasmas.

    Science.gov (United States)

    Guo, Heng; Zhang, Xiao-Ning; Chen, Jian; Li, He-Ping; Ostrikov, Kostya Ken

    2018-03-19

    Non-equilibrium is one of the important features of an atmospheric gas discharge plasma. It involves complicated physical-chemical processes and plays a key role in various actual plasma processing. In this report, a novel complete non-equilibrium model is developed to reveal the non-equilibrium synergistic effects for the atmospheric-pressure low-temperature plasmas (AP-LTPs). It combines a thermal-chemical non-equilibrium fluid model for the quasi-neutral plasma region and a simplified sheath model for the electrode sheath region. The free-burning argon arc is selected as a model system because both the electrical-thermal-chemical equilibrium and non-equilibrium regions are involved simultaneously in this arc plasma system. The modeling results indicate for the first time that it is the strong and synergistic interactions among the mass, momentum and energy transfer processes that determine the self-consistent non-equilibrium characteristics of the AP-LTPs. An energy transfer process related to the non-uniform spatial distributions of the electron-to-heavy-particle temperature ratio has also been discovered for the first time. It has a significant influence for self-consistently predicting the transition region between the "hot" and "cold" equilibrium regions of an AP-LTP system. The modeling results would provide an instructive guidance for predicting and possibly controlling the non-equilibrium particle-energy transportation process in various AP-LTPs in future.

  13. The Thermodynamics of General and Local Anesthesia

    Science.gov (United States)

    Græsbøll, Kaare; Sasse-Middelhoff, Henrike; Heimburg, Thomas

    2014-05-01

    General anesthetics are known to cause depression of the freezing point of transitions in biomembranes. This is a consequence of ideal mixing of the anesthetic drugs in the membrane fluid phase and exclusion from the solid phase. Such a generic law provides physical justification of the famous Meyer-Overton rule. We show here that general anesthetics, barbiturates and local anesthetics all display the same effect on melting transitions. Their effect is reversed by hydrostatic pressure. Thus, the thermodynamic behavior of local anesthetics is very similar to that of general anesthetics. We present a detailed thermodynamic analysis of heat capacity profiles of membranes in the presence of anesthetics. This analysis is able to describe experimentally observed calorimetric profiles and permits prediction of the anesthetic features of arbitrary molecules. In addition, we discuss the thermodynamic origin of the cutoff-effect of long-chain alcohols and the additivity of the effect of general and local anesthetics.

  14. Equilibrium and Thermodynamic Studies of Anionic Dyes Removal by an Anionic Clay-Layered Double Hydroxide

    International Nuclear Information System (INIS)

    Kantasamy, N.; Siti Mariam Sumari

    2016-01-01

    Adsorption isotherm describes the interaction of adsorbates with adsorbent in equilibrium. Equilibrium data was examined using Langmuir and Freundlich isotherm models. Thermodynamic studies were used to evaluate the thermodynamic parameters; heat of enthalpy change (ΔH degree), Gibbs free energy change (ΔG degree) and heat of entropy change (ΔSdegree) in order to gain information regarding the nature of adsorption (exothermic or endothermic). Four reactive dyes of anionic type, Acid Blue 29 (AB29), Reactive Black 5 (RB5), Reactive Orange 16 (RO16) and Reactive Red 120 (RR120) were used to obtain equilibrium isotherms at 25, 35, 45 and 55 degree Celsius. Based on Giles' classification, the isotherm produced were of L2-type, indicating strong dye affinity towards the adsorbent, and with weak competition with the solvent molecules for active adsorption sites. Equilibrium data fitted both Langmuir and Freundlich isotherm models with high correlation coefficient (R"2 > 0.91) indicating the possibility of both homogeneity and heterogeneous nature of adsorption. The negative values of ΔGdegree indicate the adsorption processes were spontaneous and feasible. The negative values of ΔHdegree lie between -20 to -75 kJ/ mol, suggesting these processes were exothermic and physical in nature. The negative values of ΔSdegree are indication of decreased disorder and randomness of spontaneous adsorption of reactive dyes on layered double hydroxide as adsorbent. (author)

  15. Thermodynamic parameters for mixtures of quartz under shock wave loading in views of the equilibrium model

    International Nuclear Information System (INIS)

    Maevskii, K. K.; Kinelovskii, S. A.

    2015-01-01

    The numerical results of modeling of shock wave loading of mixtures with the SiO 2 component are presented. The TEC (thermodynamic equilibrium component) model is employed to describe the behavior of solid and porous multicomponent mixtures and alloys under shock wave loading. State equations of a Mie–Grüneisen type are used to describe the behavior of condensed phases, taking into account the temperature dependence of the Grüneisen coefficient, gas in pores is one of the components of the environment. The model is based on the assumption that all components of the mixture under shock-wave loading are in thermodynamic equilibrium. The calculation results are compared with the experimental data derived by various authors. The behavior of the mixture containing components with a phase transition under high dynamic loads is described

  16. SOLGAS refined: A computerized thermodynamic equilibrium calculation tool

    International Nuclear Information System (INIS)

    Trowbridge, L.D.; Leitnaker, J.M.

    1993-11-01

    SOLGAS, an early computer program for calculating equilibrium in a chemical system, has been made more user-friendly, and several open-quote bells and whistlesclose quotes have been added. The necessity to include elemental species has been eliminated. The input of large numbers of starting conditions has been automated. A revised format for entering data simplifies and reduces chances for error. Calculated errors by SOLGAS are flagged, and several programming errors are corrected. Auxiliary programs are available to assemble and partially automate plotting of large amounts of data. Thermodynamic input data can be changed open-quotes on line.close-quote The program can be operated with or without a co-processor. Copies of the program, suitable for the IBM-PC or compatible with at least 384 bytes of low RAM, are available from the authors

  17. Isospin equilibrium and non-equilibrium in heavy-ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Chen Liewen; Ge Lingxiao; Zhang Xiaodong; Zhang Fengshou

    1997-01-01

    The equilibrium and non-equilibrium of the isospin degree of freedom are studied in terms of an isospin-dependent QMD model, which includes isospin-dependent symmetry energy, Coulomb energy, N-N cross sections and Pauli blocking. It is shown that there exists a transition from the isospin equilibrium to non-equilibrium as the incident energy from below to above a threshold energy in central, asymmetric heavy-ion collisions. Meanwhile, it is found that the phenomenon results from the co-existence and competition of different reaction mechanisms, namely, the isospin degree of freedom reaches an equilibrium if the incomplete fusion (ICF) component is dominant and does not reach equilibrium if the fragmentation component is dominant. Moreover, it is also found that the isospin-dependent N-N cross sections and symmetry energy are crucial for the equilibrium of the isospin degree of freedom in heavy-ion collisions around the Fermi energy. (author)

  18. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Zhang XiaoNing; Xia WeiDong [Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026 (China); Li HePing [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Murphy, Anthony B. [CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)

    2013-03-15

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that m{sub e}/m{sub h} Much-Less-Than 1, where m{sub e} and m{sub h} are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  19. A numerical model of non-equilibrium thermal plasmas. I. Transport properties

    Science.gov (United States)

    Zhang, Xiao-Ning; Li, He-Ping; Murphy, Anthony B.; Xia, Wei-Dong

    2013-03-01

    A self-consistent and complete numerical model for investigating the fundamental processes in a non-equilibrium thermal plasma system consists of the governing equations and the corresponding physical properties of the plasmas. In this paper, a new kinetic theory of the transport properties of two-temperature (2-T) plasmas, based on the solution of the Boltzmann equation using a modified Chapman-Enskog method, is presented. This work is motivated by the large discrepancies between the theories for the calculation of the transport properties of 2-T plasmas proposed by different authors in previous publications. In the present paper, the coupling between electrons and heavy species is taken into account, but reasonable simplifications are adopted, based on the physical fact that me/mh ≪ 1, where me and mh are, respectively, the masses of electrons and heavy species. A new set of formulas for the transport coefficients of 2-T plasmas is obtained. The new theory has important physical and practical advantages over previous approaches. In particular, the diffusion coefficients are complete and satisfy the mass conversation law due to the consideration of the coupling between electrons and heavy species. Moreover, this essential requirement is satisfied without increasing the complexity of the transport coefficient formulas. Expressions for the 2-T combined diffusion coefficients are obtained. The expressions for the transport coefficients can be reduced to the corresponding well-established expressions for plasmas in local thermodynamic equilibrium for the case in which the electron and heavy-species temperatures are equal.

  20. On Thermodynamic Interpretation of Transfer Entropy

    Directory of Open Access Journals (Sweden)

    Don C. Price

    2013-02-01

    Full Text Available We propose a thermodynamic interpretation of transfer entropy near equilibrium, using a specialised Boltzmann’s principle. The approach relates conditional probabilities to the probabilities of the corresponding state transitions. This in turn characterises transfer entropy as a difference of two entropy rates: the rate for a resultant transition and another rate for a possibly irreversible transition within the system affected by an additional source. We then show that this difference, the local transfer entropy, is proportional to the external entropy production, possibly due to irreversibility. Near equilibrium, transfer entropy is also interpreted as the difference in equilibrium stabilities with respect to two scenarios: a default case and the case with an additional source. Finally, we demonstrated that such a thermodynamic treatment is not applicable to information flow, a measure of causal effect.

  1. Phase coexistence in thin liquid films stabilized by colloidal particles: equilibrium and non-equilibrium properties

    International Nuclear Information System (INIS)

    Blawzdziewicz, J.; Wajnryb, E.

    2005-01-01

    Phase equilibria between regions of different thickness in thin liquid films stabilized by colloidal particles are investigated using a quasi-two-dimensional thermodynamic formalism. Appropriate equilibrium conditions for the film tension, normal pressure, and chemical potential of the particles in the film are formulated, and it is shown that the relaxation of these parameters occurs consecutively on three distinct time scales. Film stratification is described quantitatively for a hard-sphere suspension using a Monte-Carlo method to evaluate thermodynamic equations of state. Coexisting phases are determined for systems in constrained- and full-equilibrium states that correspond to different stages of film relaxation. We also evaluated the effective viscosity coefficients for two-dimensional compressional and shear flows of a film and the self and collective mobility coefficients of the stabilizing particles. The hydrodynamic calculations were performed using a multiple-reflection representation of Stokes flow between two free surfaces. In this approach, the particle-laden film is equivalent to a periodic system of spheres with a unit cell that is much smaller in the transverse direction than in the lateral direction. (author)

  2. Non-canonical distribution and non-equilibrium transport beyond weak system-bath coupling regime: A polaron transformation approach

    Science.gov (United States)

    Xu, Dazhi; Cao, Jianshu

    2016-08-01

    The concept of polaron, emerged from condense matter physics, describes the dynamical interaction of moving particle with its surrounding bosonic modes. This concept has been developed into a useful method to treat open quantum systems with a complete range of system-bath coupling strength. Especially, the polaron transformation approach shows its validity in the intermediate coupling regime, in which the Redfield equation or Fermi's golden rule will fail. In the polaron frame, the equilibrium distribution carried out by perturbative expansion presents a deviation from the canonical distribution, which is beyond the usual weak coupling assumption in thermodynamics. A polaron transformed Redfield equation (PTRE) not only reproduces the dissipative quantum dynamics but also provides an accurate and efficient way to calculate the non-equilibrium steady states. Applications of the PTRE approach to problems such as exciton diffusion, heat transport and light-harvesting energy transfer are presented.

  3. Equilibrium Molecular Thermodynamics from Kirkwood Sampling

    OpenAIRE

    Somani, Sandeep; Okamoto, Yuko; Ballard, Andrew J.; Wales, David J.

    2015-01-01

    We present two methods for barrierless equilibrium sampling of molecular systems based on the recently proposed Kirkwood method (J. Chem. Phys. 2009, 130, 134102). Kirkwood sampling employs low-order correlations among internal coordinates of a molecule for random (or non-Markovian) sampling of the high dimensional conformational space. This is a geometrical sampling method independent of the potential energy surface. The first method is a variant of biased Monte Carlo, wher...

  4. Non-equilibrium turbulence scalings in turbulent planar jets

    Science.gov (United States)

    Cafiero, Gioacchino; Vassilicos, John Christos; Turbulence, Mixing; Flow Control Group Team

    2017-11-01

    A revised version of the Townsend George theory, as proposed by Dairay et al. 2015, is applied to the study of turbulent planar jets (Cafiero and Vassilicos 2017). Requiring the self-similarity of only few quantities along with the non-equilibrium dissipation scaling law (Vassilicos 2015), it implies new mean flow and jet width scalings. In particular, the ratio of characteristic cross-stream to centreline streamwise velocities decays as the -1/3 power of streamwise distance in the region where the non-equilibrium dissipation scaling holds. In the definition of Cɛ both in Dairay et al. 2015 and in Cafiero and Vassilicos 2017 the local Reynolds number is based on the local flow width rather than on the integral lengthscale. We verify that the ratio of the integral lengthscale to the flow width is constant, thus enabling the use of the integral flow width in place of the integral lengthscale for defining Cɛ. The importance of this result is twofold: firstly it further strengthens the scalings obtained in the works of Dairay et al. 2015 and Cafiero and Vassilicos 2017; secondly the flow width is immediately accessible by any mean flow measurement, whereas the estimation of the integral lengthscale often requires an additional hypothesis. ERC Advanced Grant 320560.

  5. Absolute determination of the gelling point of gelatin under quasi-thermodynamic equilibrium.

    Science.gov (United States)

    Bellini, Franco; Alberini, Ivana; Ferreyra, María G; Rintoul, Ignacio

    2015-05-01

    Thermodynamic studies on phase transformation of biopolymers in solution are useful to understand their nature and to evaluate their technological potentials. Thermodynamic studies should be conducted avoiding time-related phenomena. This condition is not easily achieved in hydrophilic biopolymers. In this contribution, the simultaneous effects of pH, salt concentration, and cooling rate (Cr) on the folding from random coil to triple helical collagen-like structures of gelatin were systematically studied. The phase transformation temperature at the absolute invariant condition of Cr = 0 °C/min (T(T)Cr=0) ) is introduced as a conceptual parameter to study phase transformations in biopolymers under quasi-thermodynamic equilibrium and avoiding interferences coming from time-related phenomena. Experimental phase diagrams obtained at different Cr are presented. The T(T)(Cr=0) compared with pH and TT(Cr=0) compared with [NaCl] diagram allowed to explore the transformation process at Cr = 0 °C/min. The results were explained by electrostatic interactions between the biopolymers and its solvation milieu. © 2015 Institute of Food Technologists®

  6. Non-equilibrium modelling of distillation

    NARCIS (Netherlands)

    Wesselingh, JA; Darton, R

    1997-01-01

    There are nasty conceptual problems in the classical way of describing distillation columns via equilibrium stages, and efficiencies or HETP's. We can nowadays avoid these problems by simulating the behaviour of a complete column in one go using a non-equilibrium model. Such a model has phase

  7. Monte Carlo simulations for thermodynamical properties calculations of plasmas at thermodynamical equilibrium. Applications to opacity and equation of state calculations

    International Nuclear Information System (INIS)

    Gilles, D.

    2005-01-01

    This report is devoted to illustrate the power of a Monte Carlo (MC) simulation code to study the thermodynamical properties of a plasma, composed of classical point particles at thermodynamical equilibrium. Such simulations can help us to manage successfully the challenge of taking into account 'exactly' all classical correlations between particles due to density effects, unlike analytical or semi-analytical approaches, often restricted to low dense plasmas. MC simulations results allow to cover, for laser or astrophysical applications, a wide range of thermodynamical conditions from more dense (and correlated) to less dense ones (where potentials are long ranged type). Therefore Yukawa potentials, with a Thomas-Fermi temperature- and density-dependent screening length, are used to describe the effective ion-ion potentials. In this report we present two MC codes ('PDE' and 'PUCE') and applications performed with these codes in different fields (spectroscopy, opacity, equation of state). Some examples of them are discussed and illustrated at the end of the report. (author)

  8. SOLGAS refined: A computerized thermodynamic equilibrium calculation tool

    Energy Technology Data Exchange (ETDEWEB)

    Trowbridge, L.D.; Leitnaker, J.M.

    1993-11-01

    SOLGAS, an early computer program for calculating equilibrium in a chemical system, has been made more user-friendly, and several{open_quote} bells and whistles{close_quotes} have been added. The necessity to include elemental species has been eliminated. The input of large numbers of starting conditions has been automated. A revised format for entering data simplifies and reduces chances for error. Calculated errors by SOLGAS are flagged, and several programming errors are corrected. Auxiliary programs are available to assemble and partially automate plotting of large amounts of data. Thermodynamic input data can be changed {open_quotes}on line.{close_quote} The program can be operated with or without a co-processor. Copies of the program, suitable for the IBM-PC or compatible with at least 384 bytes of low RAM, are available from the authors.

  9. GEODAT. Development of thermodynamic data for the thermodynamic equilibrium modeling of processes in deep geothermal formations. Combined report

    International Nuclear Information System (INIS)

    Moog, Helge C.; Regenspurg, Simona; Voigt, Wolfgang

    2015-02-01

    The concept for geothermal energy application for electricity generation can be differentiated into three compartments: In the geologic compartment cooled fluid is pressed into a porous or fractured rock formation, in the borehole compartment a hot fluid is pumped to the surface and back into the geothermal reservoir, in the aboveground facility the energy is extracted from the geothermal fluid by heat exchangers. Pressure and temperature changes influence the thermodynamic equilibrium of a system. The modeling of a geothermal system has therefore to consider besides the mass transport the heat transport and consequently changing solution compositions and the pressure/temperature effected chemical equilibrium. The GEODAT project is aimed to simulate the reactive mass transport in a geothermal reservoir in the North German basin (Gross Schoenebeck). The project was performed by the cooperation of three partners: Geoforschungsinstitut Potsdam, Bergakademie Freiberg and GRS.

  10. Observation of non-chemical equilibrium effect on Ar-CO2-H2 thermal plasma model by changing pressure

    International Nuclear Information System (INIS)

    Al-Mamun, Sharif Abdullah; Tanaka, Yasunori; Uesugi, Yoshihiko

    2009-01-01

    The authors developed a two-dimensional one-temperature chemical non-equilibrium (1T-NCE) model of Ar-CO 2 -H 2 inductively coupled thermal plasmas (ICTP) to investigate the effect of pressure variation. The basic concept of one-temperature model is the assumption and treatment of the same energy conservation equation for electrons and heavy particles. The energy conservation equations consider reaction heat effects and energy transfer among the species produced as well as enthalpy flow resulting from diffusion. Assuming twenty two (22) different particles in this model and by solving mass conservation equations for each particle, considering diffusion, convection and net production terms resulting from hundred and ninety eight (198) chemical reactions, chemical non-equilibrium effects were taken into account. Transport and thermodynamic properties of Ar-CO 2 -H 2 thermal plasmas were self-consistently calculated using the first-order approximation of the Chapman-Enskog method. Finally results obtained at atmospheric pressure (760 Torr) and at reduced pressure (500, 300 Torr) were compared with results from one-temperature chemical equilibrium (1T-CE) model. And of course, this comparison supported discussion of chemical non-equilibrium effects in the inductively coupled thermal plasmas (ICTP).

  11. Equilibrium Sampling to Determine the Thermodynamic Potential for Bioaccumulation of Persistent Organic Pollutants from Sediment

    DEFF Research Database (Denmark)

    Jahnke, Annika; MacLeod, Matthew; Wickström, Håkan

    2014-01-01

    Equilibrium partitioning (EqP) theory is currently the most widely used approach for linking sediment pollution by persistent hydrophobic organic chemicals to bioaccumulation. Most applications of the EqP approach assume (I) a generic relationship between organic carbon-normalized chemical...... chemical concentrations in the silicone, and applying lipid/silicone partition ratios to yield concentrations in lipid at thermodynamic equilibrium with the sediment (CLip⇌Sed). Furthermore, we evaluated the validity of assumption II by comparing CLip⇌Sed of selected persistent, bioaccumulative and toxic...... organic chemicals from sediment useful to prioritize management actions to remediate contaminated sites....

  12. Dynamic and Thermodynamic Properties of a CA Engine with Non-Instantaneous Adiabats

    Directory of Open Access Journals (Sweden)

    Ricardo T. Paéz-Hernández

    2017-11-01

    Full Text Available This paper presents an analysis of a Curzon and Alhborn thermal engine model where both internal irreversibilities and non-instantaneous adiabatic branches are considered, operating with maximum ecological function and maximum power output regimes. Its thermodynamic properties are shown, and an analysis of its local dynamic stability is performed. The results derived are compared throughout the work with the results obtained previously for a case in which the adiabatic branches were assumed as instantaneous. The results indicate a better performance for thermodynamic properties in the model with instantaneous adiabatic branches, whereas there is an improvement in robustness in the case where non-instantaneous adiabatic branches are considered.

  13. Non-LTE calculation of HCL earthlimb emission and implication for detection of HCl in the atmosphere

    Science.gov (United States)

    Kumer, J. B.; James, T. C.

    1982-01-01

    Calculation results are presented for the contribution of the non-Local Thermodynamic Equilibrium process of resonant scattering of sunlight in the 1-0 band of HCl to the earthlimb radiance, for the case of tangent altitudes from 20 to 90 km. It is established that the mechanism in question is a significant contributor to radiance at altitudes as low as 20 km, and that it becomes greater than the Local Thermodynamic Equilibrium contribution above 40 km. Attention is given to the prospects for detection of HCl at altitudes approaching 80 km, by means of the Cryogenic Limb Array Etalon Spectrometer scheduled for deployment by the NASA Upper Atmospheric Research Satellite.

  14. Equilibrium sampling for a thermodynamic assessment of contaminated sediments

    DEFF Research Database (Denmark)

    Mayer, Philipp; Nørgaard Schmidt, Stine; Mäenpää, Kimmo

    Hydrophobic organic contaminants (HOCs) reaching the aquatic environment are largely stored in sediments. The risk of contaminated sediments is challenging to assess since traditional exhaustive extraction methods yield total HOC concentrations, whereas freely dissolved concentrations (Cfree......) govern diffusive uptake and partitioning. Equilibrium sampling of sediment was introduced 15 years ago to measure Cfree, and it has since developed into a straightforward, precise and sensitive approach for determining Cfree and other exposure parameters that allow for thermodynamic assessment...... of polluted sediments. Glass jars with µm-thin silicone coatings on the inner walls can be used for ex situ equilibration while a device housing several silicone-coated fibers can be used for in situ equilibration. In both cases, parallel sampling with varying silicone thicknesses can be applied to confirm...

  15. Small angle neutron scattering (SANS) under non-equilibrium conditions

    International Nuclear Information System (INIS)

    Oberthur, R.C.

    1984-01-01

    The use of small angle neutron scattering (SANS) for the study of systems under non-equilibrium conditions is illustrated by three types of experiments in the field of polymer research: - the relaxation of a system from an initial non-equilibrium state towards equilibrium, - the cyclic or repetitive installation of a series of non-equilibrium states in a system, - the steady non-equilibrium state maintained by a constant dissipation of energy within the system. Characteristic times obtained in these experiments with SANS are compared with the times obtained from quasi-elastic neutron and light scattering, which yield information about the equilibrium dynamics of the system. The limits of SANS applied to non-equilibrium systems for the measurement of relaxation times at different length scales are shown and compared to the limits of quasielastic neutron and light scattering

  16. Achieving Radiation Tolerance through Non-Equilibrium Grain Boundary Structures.

    Science.gov (United States)

    Vetterick, Gregory A; Gruber, Jacob; Suri, Pranav K; Baldwin, Jon K; Kirk, Marquis A; Baldo, Pete; Wang, Yong Q; Misra, Amit; Tucker, Garritt J; Taheri, Mitra L

    2017-09-25

    Many methods used to produce nanocrystalline (NC) materials leave behind non-equilibrium grain boundaries (GBs) containing excess free volume and higher energy than their equilibrium counterparts with identical 5 degrees of freedom. Since non-equilibrium GBs have increased amounts of both strain and free volume, these boundaries may act as more efficient sinks for the excess interstitials and vacancies produced in a material under irradiation as compared to equilibrium GBs. The relative sink strengths of equilibrium and non-equilibrium GBs were explored by comparing the behavior of annealed (equilibrium) and as-deposited (non-equilibrium) NC iron films on irradiation. These results were coupled with atomistic simulations to better reveal the underlying processes occurring on timescales too short to capture using in situ TEM. After irradiation, NC iron with non-equilibrium GBs contains both a smaller number density of defect clusters and a smaller average defect cluster size. Simulations showed that excess free volume contribute to a decreased survival rate of point defects in cascades occurring adjacent to the GB and that these boundaries undergo less dramatic changes in structure upon irradiation. These results suggest that non-equilibrium GBs act as more efficient sinks for defects and could be utilized to create more radiation tolerant materials in future.

  17. Non-hard sphere thermodynamic perturbation theory.

    Science.gov (United States)

    Zhou, Shiqi

    2011-08-21

    A non-hard sphere (HS) perturbation scheme, recently advanced by the present author, is elaborated for several technical matters, which are key mathematical details for implementation of the non-HS perturbation scheme in a coupling parameter expansion (CPE) thermodynamic perturbation framework. NVT-Monte Carlo simulation is carried out for a generalized Lennard-Jones (LJ) 2n-n potential to obtain routine thermodynamic quantities such as excess internal energy, pressure, excess chemical potential, excess Helmholtz free energy, and excess constant volume heat capacity. Then, these new simulation data, and available simulation data in literatures about a hard core attractive Yukawa fluid and a Sutherland fluid, are used to test the non-HS CPE 3rd-order thermodynamic perturbation theory (TPT) and give a comparison between the non-HS CPE 3rd-order TPT and other theoretical approaches. It is indicated that the non-HS CPE 3rd-order TPT is superior to other traditional TPT such as van der Waals/HS (vdW/HS), perturbation theory 2 (PT2)/HS, and vdW/Yukawa (vdW/Y) theory or analytical equation of state such as mean spherical approximation (MSA)-equation of state and is at least comparable to several currently the most accurate Ornstein-Zernike integral equation theories. It is discovered that three technical issues, i.e., opening up new bridge function approximation for the reference potential, choosing proper reference potential, and/or using proper thermodynamic route for calculation of f(ex-ref), chiefly decide the quality of the non-HS CPE TPT. Considering that the non-HS perturbation scheme applies for a wide variety of model fluids, and its implementation in the CPE thermodynamic perturbation framework is amenable to high-order truncation, the non-HS CPE 3rd-order or higher order TPT will be more promising once the above-mentioned three technological advances are established. © 2011 American Institute of Physics

  18. Relativistic Fluid Dynamics Far From Local Equilibrium

    Science.gov (United States)

    Romatschke, Paul

    2018-01-01

    Fluid dynamics is traditionally thought to apply only to systems near local equilibrium. In this case, the effective theory of fluid dynamics can be constructed as a gradient series. Recent applications of resurgence suggest that this gradient series diverges, but can be Borel resummed, giving rise to a hydrodynamic attractor solution which is well defined even for large gradients. Arbitrary initial data quickly approaches this attractor via nonhydrodynamic mode decay. This suggests the existence of a new theory of far-from-equilibrium fluid dynamics. In this Letter, the framework of fluid dynamics far from local equilibrium for a conformal system is introduced, and the hydrodynamic attractor solutions for resummed Baier-Romatschke-Son-Starinets-Stephanov theory, kinetic theory in the relaxation time approximation, and strongly coupled N =4 super Yang-Mills theory are identified for a system undergoing Bjorken flow.

  19. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    International Nuclear Information System (INIS)

    Kustova, Elena V.; Kremer, Gilberto M.

    2014-01-01

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N 2 flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure

  20. Chemical reaction rates and non-equilibrium pressure of reacting gas mixtures in the state-to-state approach

    Energy Technology Data Exchange (ETDEWEB)

    Kustova, Elena V., E-mail: e.kustova@spbu.ru [Department of Mathematics and Mechanics, Saint Petersburg State University, 198504 Universitetskiy pr. 28, Saint Petersburg (Russian Federation); Kremer, Gilberto M., E-mail: kremer@fisica.ufpr.br [Departamento de Física, Universidade Federal do Paraná, Caixa Postal 19044, 81531-980 Curitiba (Brazil)

    2014-12-05

    Highlights: • State-to-state approach for coupled vibrational relaxation and chemical reactions. • Self-consistent model for rates of non-equilibrium reactions and energy transitions. • In viscous flows mass action law is violated. • Cross coupling between reaction rates and non-equilibrium pressure in viscous flow. • Results allow implementing the state-to-state approach for viscous flow simulations. - Abstract: Viscous gas flows with vibrational relaxation and chemical reactions in the state-to-state approach are analyzed. A modified Chapman–Enskog method is used for the determination of chemical reaction and vibrational transition rates and non-equilibrium pressure. Constitutive equations depend on the thermodynamic forces: velocity divergence and chemical reaction/transition affinity. As an application, N{sub 2} flow with vibrational relaxation across a shock wave is investigated. Two distinct processes occur behind the shock: for small values of the distance the affinity is large and vibrational relaxation is in its initial stage; for large distances the affinity is small and the chemical reaction is in its final stage. The affinity contributes more to the transition rate than the velocity divergence and the effect of these two contributions are more important for small distances from the shock front. For the non-equilibrium pressure, the term associated with the bulk viscosity increases by a small amount the hydrostatic pressure.

  1. Stability of the thermodynamic equilibrium - A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    Science.gov (United States)

    Faghihi, Mustafa; Scheffel, Jan; Spies, Guenther O.

    1988-05-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure.

  2. Stability of the thermodynamic equilibrium: A test of the validity of dynamic models as applied to gyroviscous perpendicular magnetohydrodynamics

    International Nuclear Information System (INIS)

    Faghihi, M.; Scheffel, J.; Spies, G.O.

    1988-01-01

    Stability of the thermodynamic equilibrium is put forward as a simple test of the validity of dynamic equations, and is applied to perpendicular gyroviscous magnetohydrodynamics (i.e., perpendicular magnetohydrodynamics with gyroviscosity added). This model turns out to be invalid because it predicts exponentially growing Alfven waves in a spatially homogeneous static equilibrium with scalar pressure

  3. Electron temperature determination in LTE and non-LTE plasmas

    International Nuclear Information System (INIS)

    Eddy, T.L.

    1983-01-01

    This article discusses how most experimental investigations assume a type of ''thermal equilibrium'' in which the excited levels are assumed to be populated according to the electron kinetic temperature, in the determination of electron temperature in LTE and non-LTE plasmas. This is justified on the basis that electron collisions dominate the equilibration of adjacent excited levels as shown by Byron, Stabler and Boartz. The comparison of temperature values calculated by various common methods as a check for local thermodynamic equilibrium (LTDE) or local thermal equilibrium (LTE) of the upper excited levels and the free electrons has been shown to indicate the excitation temperature in all cases utilized. Thomas shows that the source function of the first excited level may be dominated by non-local radiation, which would usually result in a different population than local collisional excitation would provide. Ionization from upper levels is by collisional means. The result may yield different valued excitation and electron temperatures

  4. Foundations of atmospheric pressure non-equilibrium plasmas

    Science.gov (United States)

    Bruggeman, Peter J.; Iza, Felipe; Brandenburg, Ronny

    2017-12-01

    Non-equilibrium plasmas have been intensively studied over the past century in the context of material processing, environmental remediation, ozone generation, excimer lamps and plasma display panels. Research on atmospheric pressure non-equilibrium plasmas intensified over the last two decades leading to a large variety of plasma sources that have been developed for an extended application range including chemical conversion, medicine, chemical analysis and disinfection. The fundamental understanding of these discharges is emerging but there remain a lot of unexplained phenomena in these intrinsically complex plasmas. The properties of non-equilibrium plasmas at atmospheric pressure span over a huge range of electron densities as well as heavy particle and electron temperatures. This paper provides an overview of the key underlying processes that are important for the generation and stabilization of atmospheric pressure non-equilibrium plasmas. The unique physical and chemical properties of theses discharges are also summarized.

  5. Non-equilibrium coherence dynamics in one-dimensional Bose gases.

    Science.gov (United States)

    Hofferberth, S; Lesanovsky, I; Fischer, B; Schumm, T; Schmiedmayer, J

    2007-09-20

    Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However, it remains a challenge to probe the dynamics by which this equilibrium state is reached. Here we present a direct experimental study of the coherence dynamics in both isolated and coupled degenerate 1D Bose gases. Dynamic splitting is used to create two 1D systems in a phase coherent state. The time evolution of the coherence is revealed through local phase shifts of the subsequently observed interference patterns. Completely isolated 1D Bose gases are observed to exhibit universal sub-exponential coherence decay, in excellent agreement with recent predictions. For two coupled 1D Bose gases, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena.

  6. Native characterization of nucleic acid motif thermodynamics via non-covalent catalysis

    Science.gov (United States)

    Wang, Chunyan; Bae, Jin H.; Zhang, David Yu

    2016-01-01

    DNA hybridization thermodynamics is critical for accurate design of oligonucleotides for biotechnology and nanotechnology applications, but parameters currently in use are inaccurately extrapolated based on limited quantitative understanding of thermal behaviours. Here, we present a method to measure the ΔG° of DNA motifs at temperatures and buffer conditions of interest, with significantly better accuracy (6- to 14-fold lower s.e.) than prior methods. The equilibrium constant of a reaction with thermodynamics closely approximating that of a desired motif is numerically calculated from directly observed reactant and product equilibrium concentrations; a DNA catalyst is designed to accelerate equilibration. We measured the ΔG° of terminal fluorophores, single-nucleotide dangles and multinucleotide dangles, in temperatures ranging from 10 to 45 °C. PMID:26782977

  7. Thermodynamic and Quantum Thermodynamic Analyses of Brownian Movement

    OpenAIRE

    Gyftopoulos, Elias P.

    2006-01-01

    Thermodynamic and quantum thermodynamic analyses of Brownian movement of a solvent and a colloid passing through neutral thermodynamic equilibrium states only. It is shown that Brownian motors and E. coli do not represent Brownian movement.

  8. Two-proton correlation functions for equilibrium and non-equilibrium emission

    International Nuclear Information System (INIS)

    Gong, W.G.; Gelbke, C.K.; Carlin, N.; De Souza, R.T.; Kim, Y.D.; Lynch, W.G.; Murakami, T.; Poggi, G.; Sanderson, D.; Tsang, M.B.; Xu, H.M.; Michigan State Univ., East Lansing; Fields, D.E.; Kwiatkowski, K.; Planeta, R.; Viola, V.E. Jr.; Yennello, S.J.; Indiana Univ., Bloomington; Indiana Univ., Bloomington; Pratt, S.

    1990-01-01

    Two-proton correlation functions are compared for equilibrium and non-equilibrium emission processes investigated, respectively, in ''reverse kinematics'' for the reactions 129 Xe+ 27 Al and 129 Xe+ 122 Sn at E/A=31 MeV and in ''forward kinematics'' for the reaction 14 N+ 197 Au at E/A=75 MeV. Observed differences in the shapes of the correlation functions are understood in terms of the different time scales for equilibrium and preequilibrium emission. Transverse and longitudinal correlation functions are very similar. (orig.)

  9. Thermodynamics of adaptive molecular resolution.

    Science.gov (United States)

    Delgado-Buscalioni, R

    2016-11-13

    A relatively general thermodynamic formalism for adaptive molecular resolution (AMR) is presented. The description is based on the approximation of local thermodynamic equilibrium and considers the alchemic parameter λ as the conjugate variable of the potential energy difference between the atomistic and coarse-grained model Φ=U (1) -U (0) The thermodynamic formalism recovers the relations obtained from statistical mechanics of H-AdResS (Español et al, J. Chem. Phys. 142, 064115, 2015 (doi:10.1063/1.4907006)) and provides relations between the free energy compensation and thermodynamic potentials. Inspired by this thermodynamic analogy, several generalizations of AMR are proposed, such as the exploration of new Maxwell relations and how to treat λ and Φ as 'real' thermodynamic variablesThis article is part of the themed issue 'Multiscale modelling at the physics-chemistry-biology interface'. © 2016 The Author(s).

  10. Equilibrium and non equilibrium in fragmentation

    International Nuclear Information System (INIS)

    Dorso, C.O.; Chernomoretz, A.; Lopez, J.A.

    2001-01-01

    Full text: In this communication we present recent results regarding the interplay of equilibrium and non equilibrium in the process of fragmentation of excited finite Lennard Jones drops. Because the general features of such a potential resemble the ones of the nuclear interaction (fact that is reinforced by the similarity between the EOS of both systems) these studies are not only relevant from a fundamental point of view but also shed light on the problem of nuclear multifragmentation. We focus on the microscopic analysis of the state of the fragmenting system at fragmentation time. We show that the Caloric Curve (i e. the functional relationship between the temperature of the system and the excitation energy) is of the type rise plateau with no vapor branch. The usual rise plateau rise pattern is only recovered when equilibrium is artificially imposed. This result puts a serious question on the validity of the freeze out hypothesis. This feature is independent of the dimensionality or excitation mechanism. Moreover we explore the behavior of magnitudes which can help us determine the degree of the assumed phase transition. It is found that no clear cut criteria is presently available. (Author)

  11. Thermodynamic modelling and Gulliver-Scheil simulation of multi-component Al alloys

    International Nuclear Information System (INIS)

    Du Yong; Liu Shuhong; Chang, Keke; Hu Biao; Bu Mengjie; Jie Wanqi; Huang Weidong; Wang Jincheng

    2012-01-01

    Based on critical review for the available experimental phase diagram data of the Al-Cu-Fe-Mn, Al-Cu-Fe-Ni, Al-Cu-Fe-Si, Al-Fe-Mg-Si, Al-Fe-Mn-Si, and Al-Mg-Mn-Zn systems, a set of self-consistent thermodynamic parameters for these systems has been established using CALPHAD approach. In combination with the constituent binary, ternary, and quaternary systems, a thermodynamic database for the Al-Cu-Fe-Mg-Mn-Ni-Si-Zn system is developed. The calculated phase diagrams and invariant reactions agree well with the experimental data. The obtained database has been used to describe the solidification behaviour of Al alloys: Al365.1(91.95Al-0.46Fe-0.3Mg-0.32Mn-6.97Si, in wt.%) and Al365.2 (92.77Al-0.08Fe-0.35Mg-6.8Si, in wt.%) under both equilibrium and Gulliver-Scheil non-equilibrium conditions. The reliability of the present thermodynamic database is verified by the good agreement between calculation and measurement for both equilibrium and Gulliver–Scheil non-equilibrium solidification.

  12. Diffusion in coronas around clinopyroxene: modelling with local equilibrium and steady state, and a non-steady-state modification to account for zoned actinolite-hornblende

    Science.gov (United States)

    Ashworth, J. R.; Birdi, J. J.; Emmett, T. F.

    1992-01-01

    Retrograde coronas of Caledonian age, between clinopyroxene and plagioclase in the Jotun Nappe Complex, Norway, illustrate the effects of diffusion kinetics on mineral distributions among layers and on the compositions of hornblende-actinolite. One corona type comprises a symplectite of epidote + quartz adjacent to plagioclase, and a less well-organized intergrowth of amphibole + quartz replacing clinopyroxene. The observed mineral proportions imply an open-system reaction, but the similarity of Al/Si ratios in reactant plagioclase and product symplectite indicates approximate conservation of Al2O3 and SiO2. The largest inferred open-system flux is a loss of CaO, mostly derived from consumption of clinopyroxene. The approximate layer structure, Pl|Ep + Qtz|Hbl + Qtz|Act±Hbl + Qtz|Cpx, is modelled using the theory of steady-state diffusion-controlled growth with local equilibrium. To obtain a solution, it is necessary to use a reactant plagioclase composition which takes into account aluminous (epidote) inclusions. The results indicate that, in terms of Onsager diffusion coefficients L ii , Ca is more mobile than AL ( L CaCa/ L AlAl≳3.) (where ≳ means greater than or approximately equal to). This behaviour of Ca is comparable with that of Mg in previously studied coronas around olivine. Si is non-diffusing in the present modelling, because of silica saturation. Oxidation of some Fe2+ to Fe3+ occurs within the corona. Mg diffuses towards its source (clinopyroxene) to maintain local equilibrium. Other coronas consist of two layers, hornblende adjacent to plagioclase and zoned amphibole + quartz adjacent to clinopyroxene. In the zoned layer, actinolitic hornblende forms relict patches, separated from quartz blebs by more aluminous hornblende. A preliminary steady-state, local-equilibrium model of grain-boundary diffusion explains the formation of low-Al and high-Al layers as due to Al immobility. Zoning and replacement are qualitatively explained in terms of

  13. The zeroth law of thermodynamics and volume-preserving conservative system in equilibrium with stochastic damping

    International Nuclear Information System (INIS)

    Qian, Hong

    2014-01-01

    We propose a mathematical formulation of the zeroth law of thermodynamics and develop a stochastic dynamical theory, with a consistent irreversible thermodynamics, for systems possessing sustained conservative stationary current in phase space while in equilibrium with a heat bath. The theory generalizes underdamped mechanical equilibrium: dx=gdt+{−D∇ϕdt+√(2D)dB(t)}, with ∇⋅g=0 and {⋯} respectively representing phase-volume preserving dynamics and stochastic damping. The zeroth law implies stationary distribution u ss (x)=e −ϕ(x) . We find an orthogonality ∇ϕ⋅g=0 as a hallmark of the system. Stochastic thermodynamics based on time reversal (t,ϕ,g)→(−t,ϕ,−g) is formulated: entropy production e p # (t)=−dF(t)/dt; generalized “heat” h d # (t)=−dU(t)/dt, U(t)=∫ R n ϕ(x)u(x,t)dx being “internal energy”, and “free energy” F(t)=U(t)+∫ R n u(x,t)lnu(x,t)dx never increases. Entropy follows (dS)/(dt) =e p # −h d # . Our formulation is shown to be consistent with an earlier theory of P. Ao. Its contradistinctions to other theories, potential-flux decomposition, stochastic Hamiltonian system with even and odd variables, Klein–Kramers equation, Freidlin–Wentzell's theory, and GENERIC, are discussed.

  14. Kinetic and thermodynamic control of butyrate conversion in non-defined methanogenic communities.

    Science.gov (United States)

    Junicke, H; van Loosdrecht, M C M; Kleerebezem, R

    2016-01-01

    Many anaerobic conversions proceed close to thermodynamic equilibrium and the microbial groups involved need to share their low energy budget to survive at the thermodynamic boundary of life. This study aimed to investigate the kinetic and thermodynamic control mechanisms of the electron transfer during syntrophic butyrate conversion in non-defined methanogenic communities. Despite the rather low energy content of butyrate, results demonstrate unequal energy sharing between the butyrate-utilizing species (17 %), the hydrogenotrophic methanogens (9-10 %), and the acetoclastic methanogens (73-74 %). As a key finding, the energy disproportion resulted in different growth strategies of the syntrophic partners. Compared to the butyrate-utilizing partner, the hydrogenotrophic methanogens compensated their lower biomass yield per mole of electrons transferred with a 2-fold higher biomass-specific electron transfer rate. Apart from these thermodynamic control mechanisms, experiments revealed a ten times lower hydrogen inhibition constant on butyrate conversion than proposed by the Anaerobic Digestion Model No. 1, suggesting a much stronger inhibitory effect of hydrogen on anaerobic butyrate conversion. At hydrogen partial pressures exceeding 40 Pa and at bicarbonate limited conditions, a shift from methanogenesis to reduced product formation was observed which indicates an important role of the hydrogen partial pressure in redirecting electron fluxes towards reduced products such as butanol. The findings of this study demonstrate that a careful consideration of thermodynamics and kinetics is required to advance our current understanding of flux regulation in energy-limited syntrophic ecosystems.

  15. Studying effects of non-equilibrium radiative transfer via HPC

    Energy Technology Data Exchange (ETDEWEB)

    Holladay, Daniel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-24

    This report presents slides on Ph.D. Research Goals; Local Thermodynamic Equilibrium (LTE) Implications; Calculating an Opacity; Opacity: Pictographic Representation; Opacity: Pictographic Representation; Opacity: Pictographic Representation; Collisional Radiative Modeling; Radiative and Collisional Excitation; Photo and Electron Impact Ionization; Autoionization; The Rate Matrix; Example: Total Photoionization rate; The Rate Coefficients; inlinlte version 1.1; inlinlte: Verification; New capabilities: Rate Matrix – Flexibility; Memory Option Comparison; Improvements over previous DCA solver; Inter- and intra-node load balancing; Load Balance – Full Picture; Load Balance – Full Picture; Load Balance – Internode; Load Balance – Scaling; Description; Performance; xRAGE Simulation; Post-process @ 2hr; Post-process @ 4hr; Post-process @ 8hr; Takeaways; Performance for 1 realization; Motivation for QOI; Multigroup Er; Transport and NLTE large effects (1mm, 1keV); Transport large effect, NLTE lesser (1mm, 750eV); Blastwave Diagnostici – Description & Performance; Temperature Comparison; NLTE has effect on dynamics at wall; NLTE has lesser effect in the foam; Global Takeaways; The end.

  16. Cross-coupling effects in chemically non-equilibrium viscous compressible flows

    International Nuclear Information System (INIS)

    Kustova, E.V.; Giordano, D.

    2011-01-01

    Graphical abstract: Self-cosistent kinetic-theory description of chemical-reaction rates and mean normal stress in one-temperature viscous compressible gas flows. Reaearch highlights: → In chemically non-equilibrium viscous compressible flows, the rate of each reaction depends on the velocity divergence and rates of all other reactions. → Cross effects between the rates of chemical reactions and normal mean stress can be found in the symmetric form and expressed in terms of the reaction affinities. → In the case of small affinities, the entropy production is unconditionally non-negative; in the case of finite affinities, the entropy production related to the scalar forces has no definite sign. - Abstract: A closed self-consistent description of a one-temperature non-equilibrium reacting flow is presented on the basis of the kinetic theory methods. A general case including internal degrees of freedom, dissociation-recombination and exchange reactions, and arbitrary values of affinities of chemical reactions is considered. Chemical-reaction rates and mean normal stress in viscous compressible flows are studied and a symmetric cross coupling between these terms is found. It is shown that the rate of each chemical reaction and the mean normal stress depend on velocity divergence and affinities of all chemical reactions; the law of mass action is violated in viscous flows. The results obtained in the frame of linear irreversible thermodynamics can be deduced from the proposed model for the particular case of small affinities. The reciprocal Onsager-Casimir relations are verified, the symmetry of kinetic coefficients is demonstrated, and the entropy production in a viscous flow is studied.

  17. Examples of equilibrium and non-equilibrium behavior in evolutionary systems

    Science.gov (United States)

    Soulier, Arne

    With this thesis, we want to shed some light into the darkness of our understanding of simply defined statistical mechanics systems and the surprisingly complex dynamical behavior they exhibit. We will do so by presenting in turn one equilibrium and then one non-equilibrium system with evolutionary dynamics. In part 1, we will present the seceder-model, a newly developed system that cannot equilibrate. We will then study several properties of the system and obtain an idea of the richness of the dynamics of the seceder model, which is particular impressive given the minimal amount of modeling necessary in its setup. In part 2, we will present extensions to the directed polymer in random media problem on a hypercube and its connection to the Eigen model of evolution. Our main interest will be the influence of time-dependent and time-independent changes in the fitness landscape viewed by an evolving population. This part contains the equilibrium dynamics. The stochastic models and the topic of evolution and non-equilibrium in general will allow us to point out similarities to the various lines of thought in game theory.

  18. Transition from equilibrium ignition to non-equilibrium burn for ICF capsules surrounded by a high-Z pusher

    International Nuclear Information System (INIS)

    Li, Ji W.; Chang, Lei; Li, Yun S.; Li, Jing H.

    2011-01-01

    For the ICF capsule surrounded by a high-Z pusher which traps the radiation and confines the hot fuel, the fuel will first be ignited in thermal equilibrium with radiation at a much lower temperature than hot-spot ignition, which is also the low temperature ignition. Because of the lower areal density for ICF capsules, the equilibrium ignition must be developed into a non-equilibrium burn to shorten the reaction time and lower the drive energy. In this paper, the transition from the equilibrium ignition to non-equilibrium burn is discussed and the energy deposited by α particles required for the equilibrium ignition and non-equilibrium burn to occur is estimated.

  19. Non-equilibrium Quasi-Chemical Nucleation Model

    Science.gov (United States)

    Gorbachev, Yuriy E.

    2018-04-01

    Quasi-chemical model, which is widely used for nucleation description, is revised on the basis of recent results in studying of non-equilibrium effects in reacting gas mixtures (Kolesnichenko and Gorbachev in Appl Math Model 34:3778-3790, 2010; Shock Waves 23:635-648, 2013; Shock Waves 27:333-374, 2017). Non-equilibrium effects in chemical reactions are caused by the chemical reactions themselves and therefore these contributions should be taken into account in the corresponding expressions for reaction rates. Corrections to quasi-equilibrium reaction rates are of two types: (a) spatially homogeneous (caused by physical-chemical processes) and (b) spatially inhomogeneous (caused by gas expansion/compression processes and proportional to the velocity divergency). Both of these processes play an important role during the nucleation and are included into the proposed model. The method developed for solving the generalized Boltzmann equation for chemically reactive gases is applied for solving the set of equations of the revised quasi-chemical model. It is shown that non-equilibrium processes lead to essential deviation of the quasi-stationary distribution and therefore the nucleation rate from its traditional form.

  20. Isotope effects in the equilibrium and non-equilibrium vaporization of tritiated water and ice

    International Nuclear Information System (INIS)

    Baumgaertner, F.; Kim, M.-A.

    1990-01-01

    The vaporization isotope effect of the HTO/H 2 O system has been measured at various temperatures and pressures under equilibrium as well as non-equilibrium conditions. The isotope effect values measured in equilibrium sublimation or distillation are in good agreement with the theoretical values based on the harmonic oscillator model. In non-equilibrium vaporization at low temperatures ( 0 C), the isotope effect decreases rapidly with decreasing system pressure and becomes negligible when the system pressure is lowered more than one tenth of the equilibrium vapor pressure. At higher temperatures, the isotope effect decreases very slowly with decreasing system pressure. Discussion is extended for the application of the present results to the study of biological enrichment of tritium. (author)

  1. A New Thermodynamics from Nuclei to Stars

    Directory of Open Access Journals (Sweden)

    Dieter H.E. Gross

    2004-03-01

    Full Text Available Abstract: Equilibrium statistics of Hamiltonian systems is correctly described by the microcanonical ensemble. Classically this is the manifold of all points in the N-body phase space with the given total energy. Due to Boltzmann's principle, eS=tr(δ(E-H, its geometrical size is related to the entropy S(E,N,.... This definition does not invoke any information theory, no thermodynamic limit, no extensivity, and no homogeneity assumption, as are needed in conventional (canonical thermo-statistics. Therefore, it describes the equilibrium statistics of extensive as well of non-extensive systems. Due to this fact it is the fundamental definition of any classical equilibrium statistics. It can address nuclei and astrophysical objects as well. All kind of phase transitions can be distinguished sharply and uniquely for even small systems. It is further shown that the second law is a natural consequence of the statistical nature of thermodynamics which describes all systems with the same -- redundant -- set of few control parameters simultaneously. It has nothing to do with the thermodynamic limit. It even works in systems which are by far than any thermodynamic "limit".

  2. Cluster expansion for ground states of local Hamiltonians

    Directory of Open Access Journals (Sweden)

    Alvise Bastianello

    2016-08-01

    Full Text Available A central problem in many-body quantum physics is the determination of the ground state of a thermodynamically large physical system. We construct a cluster expansion for ground states of local Hamiltonians, which naturally incorporates physical requirements inherited by locality as conditions on its cluster amplitudes. Applying a diagrammatic technique we derive the relation of these amplitudes to thermodynamic quantities and local observables. Moreover we derive a set of functional equations that determine the cluster amplitudes for a general Hamiltonian, verify the consistency with perturbation theory and discuss non-perturbative approaches. Lastly we verify the persistence of locality features of the cluster expansion under unitary evolution with a local Hamiltonian and provide applications to out-of-equilibrium problems: a simplified proof of equilibration to the GGE and a cumulant expansion for the statistics of work, for an interacting-to-free quantum quench.

  3. Final Report on DTRA Basic Research Project #BRCALL08-Per3-C-2-0006 "High-Z Non-Equilibrium Physics and Bright X-ray Sources with New Laser Targets"

    Energy Technology Data Exchange (ETDEWEB)

    Colvin, Jeffrey D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-06-01

    This project had two major goals. Final Goal: obtain spectrally resolved, absolutely calibrated x-ray emission data from uniquely uniform mm-scale near-critical-density high-Z plasmas not in local thermodynamic equilibrium (LTE) to benchmark modern detailed atomic physics models. Scientific significance: advance understanding of non-LTE atomic physics. Intermediate Goal: develop new nano-fabrication techniques to make suitable laser targets that form the required highly uniform non-LTE plasmas when illuminated by high-intensity laser light. Scientific significance: advance understanding of nano-science. The new knowledge will allow us to make x-ray sources that are bright at the photon energies of most interest for testing radiation hardening technologies, the spectral energy range where current x-ray sources are weak. All project goals were met.

  4. Non-additive dissipation in open quantum networks out of equilibrium

    Science.gov (United States)

    Mitchison, Mark T.; Plenio, Martin B.

    2018-03-01

    We theoretically study a simple non-equilibrium quantum network whose dynamics can be expressed and exactly solved in terms of a time-local master equation. Specifically, we consider a pair of coupled fermionic modes, each one locally exchanging energy and particles with an independent, macroscopic thermal reservoir. We show that the generator of the asymptotic master equation is not additive, i.e. it cannot be expressed as a sum of contributions describing the action of each reservoir alone. Instead, we identify an additional interference term that generates coherences in the energy eigenbasis, associated with the current of conserved particles flowing in the steady state. Notably, non-additivity arises even for wide-band reservoirs coupled arbitrarily weakly to the system. Our results shed light on the non-trivial interplay between multiple thermal noise sources in modular open quantum systems.

  5. Equilibrium, kinetics and thermodynamics studies of textile dyes adsorption on modified Tunisian clay

    Directory of Open Access Journals (Sweden)

    naghmouchi nahed

    2016-04-01

    Full Text Available The adsorption capacity of two anionic textile dyes (RR120 and BB150 on DMSO intercalated Tunisian raw clay was investigated with respect to contact time, initial dye concentration, pH and Temperature. The equilibrium data were fitted into Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms. The kinetic parameters were calculated using pseudo-first order, pseudo second-order, intra-particle diffusion and Elovich kinetic models. The thermodynamic parameters (DH°, DS° and DG° of the adsorption process were also evaluated.

  6. Measurement of Stark width of some Ar I transitions and the investigation of local thermodynamic equilibrium (LTE) in an atmospheric d.c. argon plasma jet

    International Nuclear Information System (INIS)

    Bakshi, V.

    1988-01-01

    The Stark widths of seven Ar I transitions are reported. Axial line shape data from an atmospheric d.c. argon plasma jet were Abel-inverted to obtain radial line shapes. The electron-density was determined by Stark width measurements of the hydrogen H β transition. In the electron-density region of ≤6 x 10 22 m -3 the experimental Ar I Stark widths are fitted to a linear dependence on the electron-density. Values of Stark width extrapolated to other electron densities are compared to measurements reported in the literature on the 4s-4p array. Experimental values are up to 45% smaller than those predicted by Griem's theory of Stark broadening. Conditions for local thermodynamic equilibrium (LTE) to exist in an atmospheric argon plasma jet were studied. The experiment measures the emission coefficient of seven Ar I transitions and the line shape of the hydrogen H beta transition. After transforming the side-on data into radial space the excited neutral argon atom-density and the electron-density are determined. It is found LTE does not exist below an electron-density of 6 x 10 33 m -3 in the experimental conditions

  7. Non-equilibrium transport in the quantum dot: quench dynamics and non-equilibrium steady state

    Science.gov (United States)

    Culver, Adrian; Andrei, Natan

    We present an exact method of calculating the non-equilibrium current driven by a voltage drop across a quantum dot. The system is described by the two lead Anderson model at zero temperature with on-site Coulomb repulsion and non-interacting, linearized leads. We prepare the system in an initial state consisting of a free Fermi sea in each lead with the voltage drop given as the difference between the two Fermi levels. We quench the system by coupling the dot to the leads at t = 0 and following the time evolution of the wavefunction. In the long time limit a new type of Bethe Ansatz wavefunction emerges, which satisfies the Lippmann-Schwinger equation with the two Fermi seas serving as the boundary conditions. This exact, non-perturbative solution describes the non-equilibrium steady state of the system. We describe how to use this solution to compute the infinite time limit of the expectation value of the current operator at a given voltage, which would yield the I-V characteristic of the dot. Research supported by NSF Grant DMR 1410583.

  8. Small Systems and Limitations on the Use of Chemical Thermodynamics

    Science.gov (United States)

    Tovbin, Yu. K.

    2018-01-01

    Limitations on using chemical thermodynamics to describe small systems are formulated. These limitations follow from statistical mechanics for equilibrium and nonequilibrium processes and reflect (1) differences between characteristic relaxation times in momentum, energy, and mass transfer in different aggregate states of investigated systems; (2) achievements of statistical mechanics that allow us to determine criteria for the size of smallest region in which thermodynamics can be applied and the scale of the emergence of a new phase, along with criteria for the conditions of violating a local equilibrium. Based on this analysis, the main thermodynamic results are clarified: the phase rule for distorted interfaces, the sense and area of applicability of Gibbs's concept of passive forces, and the artificiality of Kelvin's equation as a result of limitations on the thermodynamic approach to considering small bodies. The wrongness of introducing molecular parameters into thermodynamic derivations, and the activity coefficient for an activated complex into the expression for a reaction rate constant, is demonstrated.

  9. Paths to equilibrium in non-conformal collisions

    Directory of Open Access Journals (Sweden)

    Attems Maximilian

    2018-01-01

    Full Text Available Ever since fast hydrodynamization has been observed in heavy ion collisions the understanding of the hot early out-of-equilibrium stage of such collisions has been a topic of intense research. We use the gauge/gravity duality to model the creation of a strongly coupled Quark-Gluon plasma in a non-conformal gauge theory. This numerical relativity study is the first non-conformal holographic simulation of a heavy ion collision and reveals the existence of new relaxation channels due to the presence of non-vanishing bulk viscosity. We study shock wave collisions at different energies in gauge theories with different degrees of non-conformality and compare three relaxation times which can occur in different orderings: the hydrodynamization time (when hydrodynamics becomes applicable, the EoSization time (when the average pressure approaches its equilibrium value and the condensate relaxation time (when the expectation value of a scalar operator approaches its equilibrium value. We find that these processes can occur in several different orderings. In particular, the condensate can remain far from equilibrium even long after the plasma has hydrodynamized and EoSized.

  10. A framework for modelling gene regulation which accommodates non-equilibrium mechanisms.

    Science.gov (United States)

    Ahsendorf, Tobias; Wong, Felix; Eils, Roland; Gunawardena, Jeremy

    2014-12-05

    Gene regulation has, for the most part, been quantitatively analysed by assuming that regulatory mechanisms operate at thermodynamic equilibrium. This formalism was originally developed to analyse the binding and unbinding of transcription factors from naked DNA in eubacteria. Although widely used, it has made it difficult to understand the role of energy-dissipating, epigenetic mechanisms, such as DNA methylation, nucleosome remodelling and post-translational modification of histones and co-regulators, which act together with transcription factors to regulate gene expression in eukaryotes. Here, we introduce a graph-based framework that can accommodate non-equilibrium mechanisms. A gene-regulatory system is described as a graph, which specifies the DNA microstates (vertices), the transitions between microstates (edges) and the transition rates (edge labels). The graph yields a stochastic master equation for how microstate probabilities change over time. We show that this framework has broad scope by providing new insights into three very different ad hoc models, of steroid-hormone responsive genes, of inherently bounded chromatin domains and of the yeast PHO5 gene. We find, moreover, surprising complexity in the regulation of PHO5, which has not yet been experimentally explored, and we show that this complexity is an inherent feature of being away from equilibrium. At equilibrium, microstate probabilities do not depend on how a microstate is reached but, away from equilibrium, each path to a microstate can contribute to its steady-state probability. Systems that are far from equilibrium thereby become dependent on history and the resulting complexity is a fundamental challenge. To begin addressing this, we introduce a graph-based concept of independence, which can be applied to sub-systems that are far from equilibrium, and prove that history-dependent complexity can be circumvented when sub-systems operate independently. As epigenomic data become increasingly

  11. Non-equilibrium coupling of protein structure and function to translation-elongation kinetics.

    Science.gov (United States)

    Sharma, Ajeet K; O'Brien, Edward P

    2018-04-01

    Protein folding research has been dominated by the assumption that thermodynamics determines protein structure and function. And that when the folding process is compromised in vivo the proteostasis machinery-chaperones, deaggregases, the proteasome-work to restore proteins to their soluble, functional form or degrade them to maintain the cellular pool of proteins in a quasi-equilibrium state. During the past decade, however, more and more proteins have been identified for which altering only their speed of synthesis alters their structure and function, the efficiency of the down-stream processes they take part in, and cellular phenotype. Indeed, evidence has emerged that evolutionary selection pressures have encoded translation-rate information into mRNA molecules to coordinate diverse co-translational processes. Thus, non-equilibrium physics can play a fundamental role in influencing nascent protein behavior, mRNA sequence evolution, and disease. Here, we discuss how our understanding of this phenomenon is being advanced by the application of theoretical tools from the physical sciences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Non-equilibrium effects upon the non-Markovian Caldeira-Leggett quantum master equation

    International Nuclear Information System (INIS)

    Bolivar, A.O.

    2011-01-01

    Highlights: → Classical Brownian motion described by a non-Markovian Fokker-Planck equation. → Quantization process. → Quantum Brownian motion described by a non-Markovian Caldeira-Leggett equation. → A non-equilibrium quantum thermal force is predicted. - Abstract: We obtain a non-Markovian quantum master equation directly from the quantization of a non-Markovian Fokker-Planck equation describing the Brownian motion of a particle immersed in a generic environment (e.g. a non-thermal fluid). As far as the especial case of a heat bath comprising of quantum harmonic oscillators is concerned, we derive a non-Markovian Caldeira-Leggett master equation on the basis of which we work out the concept of non-equilibrium quantum thermal force exerted by the harmonic heat bath upon the Brownian motion of a free particle. The classical limit (or dequantization process) of this sort of non-equilibrium quantum effect is scrutinized, as well.

  13. Local fractional variational iteration algorithm II for non-homogeneous model associated with the non-differentiable heat flow

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2015-10-01

    Full Text Available In this article, we begin with the non-homogeneous model for the non-differentiable heat flow, which is described using the local fractional vector calculus, from the first law of thermodynamics in fractal media point view. We employ the local fractional variational iteration algorithm II to solve the fractal heat equations. The obtained results show the non-differentiable behaviors of temperature fields of fractal heat flow defined on Cantor sets.

  14. Basic Thermodynamics

    International Nuclear Information System (INIS)

    Duthil, P

    2014-01-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered

  15. Basic Thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Duthil, P [Orsay, IPN (France)

    2014-07-01

    The goal of this paper is to present a general thermodynamic basis that is useable in the context of superconductivity and particle accelerators. The first part recalls the purpose of thermodynamics and summarizes its important concepts. Some applications, from cryogenics to magnetic systems, are covered. In the context of basic thermodynamics, only thermodynamic equilibrium is considered.

  16. Non-equilibrium phase transition

    International Nuclear Information System (INIS)

    Mottola, E.; Cooper, F.M.; Bishop, A.R.; Habib, S.; Kluger, Y.; Jensen, N.G.

    1998-01-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Non-equilibrium phase transitions play a central role in a very broad range of scientific areas, ranging from nuclear, particle, and astrophysics to condensed matter physics and the material and biological sciences. The aim of this project was to explore the path to a deeper and more fundamental understanding of the common physical principles underlying the complex real time dynamics of phase transitions. The main emphasis was on the development of general theoretical tools to deal with non-equilibrium processes, and of numerical methods robust enough to capture the time-evolving structures that occur in actual experimental situations. Specific applications to Laboratory multidivisional efforts in relativistic heavy-ion physics (transition to a new phase of nuclear matter consisting of a quark-gluon plasma) and layered high-temperature superconductors (critical currents and flux flow at the National High Magnetic Field Laboratory) were undertaken

  17. The development of flux-split algorithms for flows with non-equilibrium thermodynamics and chemical reactions

    Science.gov (United States)

    Grossman, B.; Cinella, P.

    1988-01-01

    A finite-volume method for the numerical computation of flows with nonequilibrium thermodynamics and chemistry is presented. A thermodynamic model is described which simplifies the coupling between the chemistry and thermodynamics and also results in the retention of the homogeneity property of the Euler equations (including all the species continuity and vibrational energy conservation equations). Flux-splitting procedures are developed for the fully coupled equations involving fluid dynamics, chemical production and thermodynamic relaxation processes. New forms of flux-vector split and flux-difference split algorithms are embodied in a fully coupled, implicit, large-block structure, including all the species conservation and energy production equations. Several numerical examples are presented, including high-temperature shock tube and nozzle flows. The methodology is compared to other existing techniques, including spectral and central-differenced procedures, and favorable comparisons are shown regarding accuracy, shock-capturing and convergence rates.

  18. Non-equilibrium phase transitions in complex plasma

    International Nuclear Information System (INIS)

    Suetterlin, K R; Raeth, C; Ivlev, A V; Thomas, H M; Khrapak, S; Zhdanov, S; Rubin-Zuzic, M; Morfill, G E; Wysocki, A; Loewen, H; Goedheer, W J; Fortov, V E; Lipaev, A M; Molotkov, V I; Petrov, O F

    2010-01-01

    Complex plasma being the 'plasma state of soft matter' is especially suitable for investigations of non-equilibrium phase transitions. Non-equilibrium phase transitions can manifest in dissipative structures or self-organization. Two specific examples are lane formation and phase separation. Using the permanent microgravity laboratory PK-3 Plus, operating onboard the International Space Station, we performed unique experiments with binary mixtures of complex plasmas that showed both lane formation and phase separation. These observations have been augmented by comprehensive numerical and theoretical studies. In this paper we present an overview of our most important results. In addition we put our results in context with research of complex plasmas, binary systems and non-equilibrium phase transitions. Necessary and promising future complex plasma experiments on phase separation and lane formation are briefly discussed.

  19. Choice of the thermodynamic variables

    International Nuclear Information System (INIS)

    Balian, R.

    1985-09-01

    Some basic ideas of thermodynamics and statistical mechanics, both at equilibrium and off equilibrium, are recalled. In particular, the selection of relevant variables which underlies any macroscopic description is discussed, together with the meaning of the various thermodynamic quantities, in order to set the thermodynamic approaches used in nuclear physics in a general prospect [fr

  20. Equilibrium, kinetic and thermodynamic studies of adsorption of Th(IV) from aqueous solution onto kaolin

    International Nuclear Information System (INIS)

    Hongxia Zhang; Zhiwei Niu; Zhi Liu; Zhaodong Wen; Weiping Li; Xiaoyun Wang; Wangsuo Wu

    2015-01-01

    The kinetics and thermodynamics of the adsorption of Th(IV) on the kaolin were studied by using batch method. In addition, the experimental data were studied by dynamic and thermodynamic models. The results showed that the adsorption capacity of the adsorbent increased with increasing temperature and solid liquid ratio, but decreased with increasing initial Th(IV) ion concentration, and the best fit was obtained for the pseudo-second-order kinetics model. The calculated activation energy for adsorption was about 45 kJ/mol, which indicated the adsorption process to be chemisorption. The adsorption isotherm data could be well described by the Langmuir as well as Dubinin-Radushkevich model. The mean free energy (E) of adsorption was calculated to be about 15 kJ/mol. The thermodynamic data calculated showed that the adsorption was spontaneous and enhanced at higher temperature. Considering kinetics and equilibrium studies, the adsorption on the sites was the rate-limiting step and that adsorption was mainly a chemisorption process through cation exchange. (author)

  1. Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics

    International Nuclear Information System (INIS)

    Altaner, Bernhard

    2017-01-01

    Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. (paper)

  2. Non-grey benchmark results for two temperature non-equilibrium radiative transfer

    International Nuclear Information System (INIS)

    Su, B.; Olson, G.L.

    1999-01-01

    Benchmark solutions to time-dependent radiative transfer problems involving non-equilibrium coupling to the material temperature field are crucial for validating time-dependent radiation transport codes. Previous efforts on generating analytical solutions to non-equilibrium radiative transfer problems were all restricted to the one-group grey model. In this paper, a non-grey model, namely the picket-fence model, is considered for a two temperature non-equilibrium radiative transfer problem in an infinite medium. The analytical solutions, as functions of space and time, are constructed in the form of infinite integrals for both the diffusion description and transport description. These expressions are evaluated numerically and the benchmark results are generated. The asymptotic solutions for large and small times are also derived in terms of elementary functions and are compared with the exact results. Comparisons are given between the transport and diffusion solutions and between the grey and non-grey solutions. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  3. Thermodynamic Optimality criteria for biological systems in linear irreversible thermodynamics

    International Nuclear Information System (INIS)

    Chimal, J C; Sánchez, N; Ramírez, PR

    2017-01-01

    In this paper the methodology of the so-called Linear Irreversible Thermodynamics (LIT) is applied; although traditionally used locally to study general systems in non-equilibrium states in which it is consider both internal and external contributions to the entropy increments in order to analyze the efficiency of two coupled processes with generalized fluxes J 1 , J 2 and their corresponding forces X 1 , X 2 . We extend the former analysis to takes into account two different operating regimes namely: Omega Function and Efficient Power criterion, respectively. Results show analogies in the optimal performance between and we can say that there exist a criteria of optimization which can be used specially for biological systems where a good design of the biological parameters made by nature at maximum efficient power conditions lead to more efficient engines than those at the maximum power conditions or ecological conditions. (paper)

  4. Thermodynamics and economics

    International Nuclear Information System (INIS)

    Mansson, B.A.

    1990-01-01

    Economics, as the social science most concerned with the use and distribution of natural resources, must start to make use of the knowledge at hand in the natural sciences about such resources. In this, thermodynamics is an essential part. In a physicists terminology, human economic activity may be described as a dissipative system which flourishes by transforming and exchanging resources, goods and services. All this involves complex networks of flows of energy and materials. This implies that thermodynamics, the physical theory of energy and materials flows, must have implications for economics. On another level, thermodynamics has been recognized as a physical theory of value, with value concepts similar to those of economic theory. This paper discusses some general aspects of the significance of non-equilibrium thermodynamics for economics. The role of exergy, probably the most important of the physical measures of value, is elucidated. Two examples of integration of thermodynamics with economic theory are reviewed. First, a simple model of a steady-state production system is sued to illustrate the effects of thermodynamic process constraints. Second, the framework of a simple macroeconomic growth model is used to illustrate how some thermodynamic limitations may be integrated in macroeconomic theory

  5. Advanced thermodynamics engineering

    CERN Document Server

    Annamalai, Kalyan; Jog, Milind A

    2011-01-01

    Thermolab Excel-Based Software for Thermodynamic Properties and Flame Temperatures of Fuels IntroductionImportance, Significance and LimitationsReview of ThermodynamicsMathematical BackgroundOverview of Microscopic/NanothermodynamicsSummaryAppendix: Stokes and Gauss Theorems First Law of ThermodynamicsZeroth LawFirst Law for a Closed SystemQuasi Equilibrium (QE) and Nonquasi-equilibrium (NQE) ProcessesEnthalpy and First LawAdiabatic Reversible Process for Ideal Gas with Constant Specific HeatsFirst Law for an Open SystemApplications of First Law for an Open SystemIntegral and Differential Form

  6. Thermodynamic parameters for adsorption equilibrium of heavy metals and dyes from wastewaters: Research updated.

    Science.gov (United States)

    Chang, Yingju; Lai, Juin-Yih; Lee, Duu-Jong

    2016-12-01

    The standard Gibbs free energy, enthalpy and entropy change data for adsorption equilibrium reported in biosorption literature during January 2013-May2016 were listed. Since the studied biosorption systems are all near-equilibrium processes, the enthalpy and entropy change data evaluated by fitting temperature-dependent free energy data using van Hoff's equation reveal a compensation artifact. Additional confusion is introduced with arbitrarily chosen adsorbate concentration unit in bulk solution that added free energy change of mixing into the reported free energy and enthalpy change data. Different standard states may be chosen for properly describing biosorption processes; however, this makes the general comparison between data from different systems inappropriate. No conclusion should be drawn based on unjustified thermodynamic parameters reported in biosorption studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Thermodynamics and proton activities of protic ionic liquids with quantum cluster equilibrium theory

    Science.gov (United States)

    Ingenmey, Johannes; von Domaros, Michael; Perlt, Eva; Verevkin, Sergey P.; Kirchner, Barbara

    2018-05-01

    We applied the binary Quantum Cluster Equilibrium (bQCE) method to a number of alkylammonium-based protic ionic liquids in order to predict boiling points, vaporization enthalpies, and proton activities. The theory combines statistical thermodynamics of van-der-Waals-type clusters with ab initio quantum chemistry and yields the partition functions (and associated thermodynamic potentials) of binary mixtures over a wide range of thermodynamic phase points. Unlike conventional cluster approaches that are limited to the prediction of thermodynamic properties, dissociation reactions can be effortlessly included into the bQCE formalism, giving access to ionicities, as well. The method is open to quantum chemical methods at any level of theory, but combination with low-cost composite density functional theory methods and the proposed systematic approach to generate cluster sets provides a computationally inexpensive and mostly parameter-free way to predict such properties at good-to-excellent accuracy. Boiling points can be predicted within an accuracy of 50 K, reaching excellent accuracy for ethylammonium nitrate. Vaporization enthalpies are predicted within an accuracy of 20 kJ mol-1 and can be systematically interpreted on a molecular level. We present the first theoretical approach to predict proton activities in protic ionic liquids, with results fitting well into the experimentally observed correlation. Furthermore, enthalpies of vaporization were measured experimentally for some alkylammonium nitrates and an excellent linear correlation with vaporization enthalpies of their respective parent amines is observed.

  8. Influence of condensed species on thermo-physical properties of LTE and non-LTE SF6-Cu mixture

    Science.gov (United States)

    Chen, Zhexin; Wu, Yi; Yang, Fei; Sun, Hao; Rong, Mingzhe; Wang, Chunlin

    2017-10-01

    SF6-Cu mixture is frequently formed in high-voltage circuit breakers due to the electrode erosion and metal vapor diffusion. During the interruption process, the multiphase effect and deviation from local thermal equilibrium (non-LTE assumption) can both affect the thermo-physical of the arc plasma and further influence the performance of circuit breaker. In this paper, thermo-physical properties, namely composition, thermodynamic properties and transport coefficients are calculated for multiphase SF6-Cu mixture with and without LTE assumption. The composition is confirmed by combining classical two-temperature mass action law with phase equilibrium condition deduced from second law of thermodynamics. The thermodynamic properties and transport coefficients are calculated using the multiphase composition result. The influence of condensed species on thermo-physical properties is discussed at different temperature, pressure (0.1-10 atm), non-equilibrium degrees (1-10), and copper molar proportions (0-50%). It is found that the multiphase effect has significant influence on specific enthalpy, specific heat and heavy species thermal conductivity in both LTE and non-LTE SF6-Cu system. This paper provides a more accurate database for computational fluid dynamic calculation.

  9. Equilibrium and non-equilibrium extraction separation of rare earth metals in presence of diethylenetriaminepentaacetic acid in aqueous phase

    International Nuclear Information System (INIS)

    Azis, Abdul; Teramoto, Masaaki; Matsuyama, Hideto.

    1995-01-01

    Equilibrium and non-equilibrium extraction separations of rare earth metals were carried out in the presence of chelating agent in the aqueous phase. The separation systems of the rare earth metal mixtures used were Y/Dy, Y/Ho, Y/Er and Y/Tm, and the chelating agent and the extractant were diethylenetriaminepentaacetic acid (DTPA) and bis (2,4,4-trimethylpentyl) phosphinic acid (CYANEXR 272), respectively. For Y/Dy and Y/Ho systems, higher selectivities were obtained in equilibrium separation compared with those in non-equilibrium separation. On the other hand, the selectivities in non-equilibrium separation were higher for Y/Er and Y/Tm systems. In the separation condition suitable to each system, the addition of DTPA to the aqueous phase was found to be very effective for obtaining higher selectivities. The distribution ratios of the rare earth metals and the selectivities in the equilibrium separations obtained experimentally were thoroughly analyzed by considering various equilibria such as the extraction equilibrium and the complex formation equilibrium between rare earth metals and DTPA in the aqueous phase. Moreover, the extraction rates and the selectivities in the non-equilibrium separations were also analyzed by the extraction model considering the dissociation reactions of the rare earth metal-DTPA complexes in the aqueous stagnant layer. Based on these analyses, we presented an index which is useful for selecting the optimum operation mode. Using this index, we can predict that the selectivities under equilibrium conditions are higher than those under non-equilibrium conditions for Y/Dy and Y/Ho systems, while for Y/Er and Y/Tm systems, higher selectivities are obtained under non-equilibrium conditions. The experimental results were in agreement with predictions by this index. Further, the selectivities in various systems including other chelating agents and extractants were discussed based on this index. (J.P.N.)

  10. Coherence and measurement in quantum thermodynamics.

    Science.gov (United States)

    Kammerlander, P; Anders, J

    2016-02-26

    Thermodynamics is a highly successful macroscopic theory widely used across the natural sciences and for the construction of everyday devices, from car engines to solar cells. With thermodynamics predating quantum theory, research now aims to uncover the thermodynamic laws that govern finite size systems which may in addition host quantum effects. Recent theoretical breakthroughs include the characterisation of the efficiency of quantum thermal engines, the extension of classical non-equilibrium fluctuation theorems to the quantum regime and a new thermodynamic resource theory has led to the discovery of a set of second laws for finite size systems. These results have substantially advanced our understanding of nanoscale thermodynamics, however putting a finger on what is genuinely quantum in quantum thermodynamics has remained a challenge. Here we identify information processing tasks, the so-called projections, that can only be formulated within the framework of quantum mechanics. We show that the physical realisation of such projections can come with a non-trivial thermodynamic work only for quantum states with coherences. This contrasts with information erasure, first investigated by Landauer, for which a thermodynamic work cost applies for classical and quantum erasure alike. Repercussions on quantum work fluctuation relations and thermodynamic single-shot approaches are also discussed.

  11. Applicability of Donnan equilibrium theory at nanochannel-reservoir interfaces.

    Science.gov (United States)

    Tian, Huanhuan; Zhang, Li; Wang, Moran

    2015-08-15

    Understanding ionic transport in nanochannels has attracted broad attention from various areas in energy and environmental fields. In most pervious research, Donnan equilibrium has been applied widely to nanofluidic systems to obtain ionic concentration and electrical potential at channel-reservoir interfaces; however, as well known that Donnan equilibrium is derived from classical thermodynamic theories with equilibrium assumptions. Therefore the applicability of the Donnan equilibrium may be questionable when the transport at nanochannel-reservoir interface is strongly non-equilibrium. In this work, the Poisson-Nernst-Planck model for ion transport is numerically solved to obtain the exact distributions of ionic concentration and electrical potential. The numerical results are quantitatively compared with the Donnan equilibrium predictions. The applicability of Donnan equilibrium is therefore justified by changing channel length, reservoir ionic concentration, surface charge density and channel height. The results indicate that the Donnan equilibrium is not applicable for short nanochannels, large concentration difference and wide openings. A non-dimensional parameter, Q factor, is proposed to measure the non-equilibrium extent and the relation between Q and the working conditions is studied in detail. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Stochastic Independence as a Resource for Small-Scale Thermodynamics

    Science.gov (United States)

    Lostaglio, Matteo; Mueller, Markus P.; Pastena, Michele

    It is well-known in thermodynamics that the creation of correlations costs work. It seems then a truism that if a thermodynamic transformation A --> B is impossible, so will be any transformation that in sending A to B also correlates among them some auxiliary systems C. Surprisingly, we show that this is not the case for non-equilibrium thermodynamics of microscopic systems. On the contrary, the creation of correlations greatly extends the set of accessible states, to the point that we can perform on individual systems and in a single shot any transformation that would otherwise be possible only if the number of systems involved was very large. We also show that one only ever needs to create a vanishingly small amount of correlations (as measured by mutual information) among a small number of auxiliary systems (never more than three). The many, severe constraints of microscopic thermodynamics are reduced to the sole requirement that the non-equilibrium free energy decreases in the transformation. This shows that, in principle, reliable extraction of work equal to the free energy of a system can be performed by microscopic engines.

  13. Influence of condensed species on thermo-physical properties of LTE and non-LTE SF6–Cu mixture

    International Nuclear Information System (INIS)

    Chen, Zhexin; Wu, Yi; Yang, Fei; Sun, Hao; Rong, Mingzhe; Wang, Chunlin

    2017-01-01

    SF 6 –Cu mixture is frequently formed in high-voltage circuit breakers due to the electrode erosion and metal vapor diffusion. During the interruption process, the multiphase effect and deviation from local thermal equilibrium (non-LTE assumption) can both affect the thermo-physical of the arc plasma and further influence the performance of circuit breaker. In this paper, thermo-physical properties, namely composition, thermodynamic properties and transport coefficients are calculated for multiphase SF 6 –Cu mixture with and without LTE assumption. The composition is confirmed by combining classical two-temperature mass action law with phase equilibrium condition deduced from second law of thermodynamics. The thermodynamic properties and transport coefficients are calculated using the multiphase composition result. The influence of condensed species on thermo-physical properties is discussed at different temperature, pressure (0.1–10 atm), non-equilibrium degrees (1–10), and copper molar proportions (0–50%). It is found that the multiphase effect has significant influence on specific enthalpy, specific heat and heavy species thermal conductivity in both LTE and non-LTE SF 6 –Cu system. This paper provides a more accurate database for computational fluid dynamic calculation. (paper)

  14. Two-temperature thermodynamic and transport properties of SF6–Cu plasmas

    International Nuclear Information System (INIS)

    Wu, Yi; Chen, Zhexin; Yang, Fei; Rong, Mingzhe; Sun, Hao; Cressault, Yann; Murphy, Anthony B; Guo, Anxiang; Liu, Zirui

    2015-01-01

    SF 6 and Cu are widely adopted in electrical equipment as a dielectric medium and for conductive components, respectively. SF 6 –Cu plasmas are frequently formed, particularly in high-voltage circuit breaker arcs and fault current arcs, due to erosion of the Cu components. In this paper, calculated values of the thermodynamic and transport properties of plasmas in SF 6 –Cu mixtures are presented for both thermal equilibrium and non-equilibrium conditions. The composition is determined by the two-temperature Saha equation and Guldberg–Waage equation in the form derived by van de Sanden. The composition and the thermodynamic properties are evaluated through a classical statistical mechanics approach. For the transport coefficients, the simplified Chapman–Enskog method developed by Devoto, which decouples the electrons and heavy species, has been applied using the most recent collision integrals. The thermodynamic and transport properties are calculated for different electron temperatures (300–40 000 K), ratios of electron to heavy-species temperature (1–10), pressures (0.1–10 atm) and copper molar proportions (0–50%). It is found that deviations from thermal equilibrium strongly affect the thermodynamic and transport properties of the SF 6 –Cu plasmas. Further, the presence of copper has different effects on some of the properties for plasmas in and out of thermal equilibrium. The main reason for these changes is that dissociation reactions are delayed for non-thermal equilibrium plasmas, which in turn influences the ionization reactions that occur. (paper)

  15. Nonequilibrium thermodynamic models and applications to hydrogen plasma

    International Nuclear Information System (INIS)

    Cho, K.Y.

    1988-01-01

    A generalized multithermal equilibrium (GMTE) thermodynamic model is developed and presented with applications to hydrogen. A new chemical equilibrium equation for GMTE is obtained without the ensemble temperature concept, used by a previous MTE model. The effects of the GMTE model on the derivation and calculation of the thermodynamic, transport, and radiative properties are presented and significant differences from local thermal equilibrium (LTE) and two temperature model are discussed. When the electron translational temperature (T e ) is higher than the translational temperature of the heavy particles, the effects of hydrogen molecular species to the properties are significant at high T e compared with LTE results. The density variations of minor species are orders of magnitude with kinetic nonequilibrium at a constant electron temperature. A collisional-radiative model is also developed with the GMTE chemical equilibrium equation to study the effects of radiative transfer and the ambipolar diffusion on the population distribution of the excited atoms. The nonlocal radiative transfer effect is parameterized by an absorption factor, which is defined as a ratio of the absorbed intensity to the spontaneous emission coefficient

  16. Thermodynamic and structure-property study of liquid-vapor equilibrium for aroma compounds.

    Science.gov (United States)

    Tromelin, Anne; Andriot, Isabelle; Kopjar, Mirela; Guichard, Elisabeth

    2010-04-14

    Thermodynamic parameters (T, DeltaH degrees , DeltaS degrees , K) were collected from the literature and/or calculated for five esters, four ketones, two aldehydes, and three alcohols, pure compounds and compounds in aqueous solution. Examination of correlations between these parameters and the range values of DeltaH degrees and DeltaS degrees puts forward the key roles of enthalpy for vaporization of pure compounds and of entropy in liquid-vapor equilibrium of compounds in aqueous solution. A structure-property relationship (SPR) study was performed using molecular descriptors on aroma compounds to better understand their vaporization behavior. In addition to the role of polarity for vapor-liquid equilibrium of compounds in aqueous solution, the structure-property study points out the role of chain length and branching, illustrated by the correlation between the connectivity index CHI-V-1 and the difference between T and log K for vaporization of pure compounds and compounds in aqueous solution. Moreover, examination of the esters' enthalpy values allowed a probable conformation adopted by ethyl octanoate in aqueous solution to be proposed.

  17. Statistical thermodynamics

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2008-03-01

    This book consists of 15 chapters, which are basic conception and meaning of statistical thermodynamics, Maxwell-Boltzmann's statistics, ensemble, thermodynamics function and fluctuation, statistical dynamics with independent particle system, ideal molecular system, chemical equilibrium and chemical reaction rate in ideal gas mixture, classical statistical thermodynamics, ideal lattice model, lattice statistics and nonideal lattice model, imperfect gas theory on liquid, theory on solution, statistical thermodynamics of interface, statistical thermodynamics of a high molecule system and quantum statistics

  18. Combined equilibrium and non-equilibrium phosphorus segregation to grain boundaries in a 2.25Cr1Mo steel

    International Nuclear Information System (INIS)

    Song, S.-H.; Shen, D.-D.; Yuan, Z.-X.; Liu, J.; Xu, T.-D.; Weng, L.-Q.

    2003-01-01

    Grain boundary segregation of phosphorus in a P-doped 2.25Cr1Mo steel during ageing at 540 deg. C after quenching from 980 deg. C is examined by Auger electron spectroscopy. The segregation is a combined effect of equilibrium segregation and non-equilibrium segregation. The effect of phosphorus non-equilibrium segregation is to enhance the kinetics of its equilibrium segregation

  19. An upwind, kinetic flux-vector splitting method for flows in chemical and thermal non-equilibrium

    Science.gov (United States)

    Eppard, W. M.; Grossman, B.

    1993-01-01

    We have developed new upwind kinetic difference schemes for flows with non-equilibrium thermodynamics and chemistry. These schemes are derived from the Boltzmann equation with the resulting Euler schemes developed as moments of the discretized Boltzmann scheme with a locally Maxwellian velocity distribution. Splitting the velocity distribution at the Boltzmann level is seen to result in a flux-split Euler scheme and is called Kinetic Flux Vector Splitting (KFVS). Extensions to flows with finite-rate chemistry and vibrational relaxation is accomplished utilizing nonequilibrium kinetic theory. Computational examples are presented comparing KFVS with the schemes of Van Leer and Roe for a quasi-one-dimensional flow through a supersonic diffuser, inviscid flow through two-dimensional inlet, and viscous flow over a cone at zero angle-of-attack. Calculations are also shown for the transonic flow over a bump in a channel and the transonic flow over an NACA 0012 airfoil. The results show that even though the KFVS scheme is a Riemann solver at the kinetic level, its behavior at the Euler level is more similar to the existing flux-vector splitting algorithms than to the flux-difference splitting scheme of Roe.

  20. New methods of thermodynamics; Nouvelles methodes en thermodynamique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This day, organized by the SFT French Society of Thermology, took stock on the new methods in the domain of the thermodynamics. Eight papers have been presented during this day: new developments of the thermodynamics in finite time; the optimal efficiency of energy converters; a version of non-equilibrium thermodynamics with entropy and information as positive and negative thermal change; the role of thermodynamics in process integration; application of the thermodynamics to critical nuclear accidents; the entropic analysis help in the case of charge and discharge state of an energy storage process; fluid flow threw a stable state in the urban hydraulic; a computer code for phase diagram prediction. (A.L.B.)

  1. A thermodynamic derivation of the stress-strain relations for Burgers media and related substances

    NARCIS (Netherlands)

    Kluitenberg, G.A.

    1968-01-01

    A generalization is given of the author's thermodynamic theory for mechanical phenomena in continuous media. The developments are based on the general methods of non-equilibrium thermodynamics. Temperature effects are fully taken into account. It is assumed that several microscopic phenomena occur

  2. The Non-Equilibrium Statistical Distribution Function for Electrons and Holes in Semiconductor Heterostructures in Steady-State Conditions

    Directory of Open Access Journals (Sweden)

    Krzysztof Jόzwikowska

    2015-06-01

    Full Text Available The main goal of this work is to determine a statistical non-equilibrium distribution function for the electron and holes in semiconductor heterostructures in steady-state conditions. Based on the postulates of local equilibrium, as well as on the integral form of the weighted Gyarmati’s variational principle in the force representation, using an alternative method, we have derived general expressions, which have the form of the Fermi–Dirac distribution function with four additional components. The physical interpretation of these components has been carried out in this paper. Some numerical results of a non-equilibrium distribution function for an electron in HgCdTe structures are also presented.

  3. Life, hierarchy, and the thermodynamic machinery of planet Earth.

    Science.gov (United States)

    Kleidon, Axel

    2010-12-01

    Throughout Earth's history, life has increased greatly in abundance, complexity, and diversity. At the same time, it has substantially altered the Earth's environment, evolving some of its variables to states further and further away from thermodynamic equilibrium. For instance, concentrations in atmospheric oxygen have increased throughout Earth's history, resulting in an increased chemical disequilibrium in the atmosphere as well as an increased redox gradient between the atmosphere and the Earth's reducing crust. These trends seem to contradict the second law of thermodynamics, which states for isolated systems that gradients and free energy are dissipated over time, resulting in a state of thermodynamic equilibrium. This seeming contradiction is resolved by considering planet Earth as a coupled, hierarchical and evolving non-equilibrium thermodynamic system that has been substantially altered by the input of free energy generated by photosynthetic life. Here, I present this hierarchical thermodynamic theory of the Earth system. I first present simple considerations to show that thermodynamic variables are driven away from a state of thermodynamic equilibrium by the transfer of power from some other process and that the resulting state of disequilibrium reflects the past net work done on the variable. This is applied to the processes of planet Earth to characterize the generation and transfer of free energy and its dissipation, from radiative gradients to temperature and chemical potential gradients that result in chemical, kinetic, and potential free energy and associated dynamics of the climate system and geochemical cycles. The maximization of power transfer among the processes within this hierarchy yields thermodynamic efficiencies much lower than the Carnot efficiency of equilibrium thermodynamics and is closely related to the proposed principle of Maximum Entropy Production (MEP). The role of life is then discussed as a photochemical process that generates

  4. Use of the SSF equations in the Kojima-Moon-Ochi thermodynamic consistency test of isothermal vapour-liquid equilibrium data

    Directory of Open Access Journals (Sweden)

    SLOBODAN P. SERBANOVIC

    2000-12-01

    Full Text Available The Kojima-Moon-Ochi (KMO thermodynamic consistency test of vapour–liquid equilibrium (VLE measurements for 32 isothermal data sets of binary systems of various complexity was applied using two fitting equations: the Redlich-Kister equation and the Sum of Symmetrical Functions. It was shown that the enhanced reliability of the fitting of the experimental data can change the conclusions drawn on their thermodynamic consistency in those cases of VLE data sets that are estimated to be near the border of consistency.

  5. Thermodynamic approach to biomass gasification

    International Nuclear Information System (INIS)

    Boissonnet, G.; Seiler, J.M.

    2003-01-01

    The document presents an approach of biomass transformation in presence of steam, hydrogen or oxygen. Calculation results based on thermodynamic equilibrium are discussed. The objective of gasification techniques is to increase the gas content in CO and H 2 . The maximum content in these gases is obtained when thermodynamic equilibrium is approached. Any optimisation action of a process. will, thus, tend to approach thermodynamic equilibrium conditions. On the other hand, such calculations can be used to determine the conditions which lead to an increase in the production of CO and H 2 . An objective is also to determine transformation enthalpies that are an important input for process calculations. Various existing processes are assessed, and associated thermodynamic limitations are evidenced. (author)

  6. Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems

    Czech Academy of Sciences Publication Activity Database

    Svoboda, Jiří; Fischer, F. D.

    2014-01-01

    Roč. 22, č. 1 (2014), Art . No. 015013 ISSN 0965-0393 Institutional support: RVO:68081723 Keywords : grain boundary segregation * abnormal grain growth * theory * modelling * solute drag Subject RIV: BJ - Thermodynamics Impact factor: 2.167, year: 2014

  7. Non-Equilibrium Thermodynamic Analysis of Double Diffusive, Nanofluid Forced Convection in Catalytic Microreactors with Radiation Effects

    Directory of Open Access Journals (Sweden)

    Lilian Govone

    2017-12-01

    Full Text Available This paper presents a theoretical investigation of the second law performance of double diffusive forced convection in microreactors with the inclusion of nanofluid and radiation effects. The investigated microreactors consist of a single microchannel, fully filled by a porous medium. The transport of heat and mass are analysed by including the thick walls and a first order, catalytic chemical reaction on the internal surfaces of the microchannel. Two sets of thermal boundary conditions are considered on the external surfaces of the microchannel; (1 constant temperature and (2 constant heat flux boundary condition on the lower wall and convective boundary condition on the upper wall. The local thermal non-equilibrium approach is taken to thermally analyse the porous section of the system. The mass dispersion equation is coupled with the transport of heat in the nanofluid flow through consideration of Soret effect. The problem is analytically solved and illustrations of the temperature fields, Nusselt number, total entropy generation rate and performance evaluation criterion (PEC are provided. It is shown that the radiation effect tends to modify the thermal behaviour within the porous section of the system. The radiation parameter also reduces the overall temperature of the system. It is further demonstrated that, expectedly, the nanoparticles reduce the temperature of the system and increase the Nusselt number. The total entropy generation rate and consequently PEC shows a strong relation with radiation parameter and volumetric concentration of nanoparticles.

  8. Transonic flow of steam with non-equilibrium and homogenous condensation

    Science.gov (United States)

    Virk, Akashdeep Singh; Rusak, Zvi

    2017-11-01

    A small-disturbance model for studying the physical behavior of a steady transonic flow of steam with non-equilibrium and homogeneous condensation around a thin airfoil is derived. The steam thermodynamic behavior is described by van der Waals equation of state. The water condensation rate is calculated according to classical nucleation and droplet growth models. The current study is based on an asymptotic analysis of the fluid flow and condensation equations and boundary conditions in terms of the small thickness of the airfoil, small angle of attack, closeness of upstream flow Mach number to unity and small amount of condensate. The asymptotic analysis gives the similarity parameters that govern the problem. The flow field may be described by a non-homogeneous transonic small-disturbance equation coupled with a set of four ordinary differential equations for the calculation of the condensate mass fraction. An iterative numerical scheme which combines Murman & Cole's (1971) method with Simpson's integration rule is applied to solve the coupled system of equations. The model is used to study the effects of energy release from condensation on the aerodynamic performance of airfoils operating at high pressures and temperatures and near the vapor-liquid saturation conditions.

  9. Non-equilibrium oxidation states of zirconium during early stages of metal oxidation

    International Nuclear Information System (INIS)

    Ma, Wen; Yildiz, Bilge; Herbert, F. William; Senanayake, Sanjaya D.

    2015-01-01

    The chemical state of Zr during the initial, self-limiting stage of oxidation on single crystal zirconium (0001), with oxide thickness on the order of 1 nm, was probed by synchrotron x-ray photoelectron spectroscopy. Quantitative analysis of the Zr 3d spectrum by the spectrum reconstruction method demonstrated the formation of Zr 1+ , Zr 2+ , and Zr 3+ as non-equilibrium oxidation states, in addition to Zr 4+ in the stoichiometric ZrO 2 . This finding resolves the long-debated question of whether it is possible to form any valence states between Zr 0 and Zr 4+ at the metal-oxide interface. The presence of local strong electric fields and the minimization of interfacial energy are assessed and demonstrated as mechanisms that can drive the formation of these non-equilibrium valence states of Zr

  10. Coupling between chemical kinetics and mechanics that is both nonlinear and compatible with thermodynamics

    Czech Academy of Sciences Publication Activity Database

    Klika, Václav; Grmela, M.

    2013-01-01

    Roč. 87, č. 1 (2013), s. 1-9 ISSN 1539-3755 Institutional support: RVO:61388998 Keywords : gemneric * non- equilibrium thermodynamics * coupling Subject RIV: BJ - Thermodynamics Impact factor: 2.326, year: 2013 http://link.aps.org/doi/10.1103/PhysRevE.87.012141

  11. Local approximation of a metapopulation's equilibrium.

    Science.gov (United States)

    Barbour, A D; McVinish, R; Pollett, P K

    2018-04-18

    We consider the approximation of the equilibrium of a metapopulation model, in which a finite number of patches are randomly distributed over a bounded subset [Formula: see text] of Euclidean space. The approximation is good when a large number of patches contribute to the colonization pressure on any given unoccupied patch, and when the quality of the patches varies little over the length scale determined by the colonization radius. If this is the case, the equilibrium probability of a patch at z being occupied is shown to be close to [Formula: see text], the equilibrium occupation probability in Levins's model, at any point [Formula: see text] not too close to the boundary, if the local colonization pressure and extinction rates appropriate to z are assumed. The approximation is justified by giving explicit upper and lower bounds for the occupation probabilities, expressed in terms of the model parameters. Since the patches are distributed randomly, the occupation probabilities are also random, and we complement our bounds with explicit bounds on the probability that they are satisfied at all patches simultaneously.

  12. Failure of Local Thermal Equilibrium in Quantum Friction

    Science.gov (United States)

    Intravaia, F.; Behunin, R. O.; Henkel, C.; Busch, K.; Dalvit, D. A. R.

    2016-09-01

    Recent progress in manipulating atomic and condensed matter systems has instigated a surge of interest in nonequilibrium physics, including many-body dynamics of trapped ultracold atoms and ions, near-field radiative heat transfer, and quantum friction. Under most circumstances the complexity of such nonequilibrium systems requires a number of approximations to make theoretical descriptions tractable. In particular, it is often assumed that spatially separated components of a system thermalize with their immediate surroundings, although the global state of the system is out of equilibrium. This powerful assumption reduces the complexity of nonequilibrium systems to the local application of well-founded equilibrium concepts. While this technique appears to be consistent for the description of some phenomena, we show that it fails for quantum friction by underestimating by approximately 80% the magnitude of the drag force. Our results show that the correlations among the components of driven, but steady-state, quantum systems invalidate the assumption of local thermal equilibrium, calling for a critical reexamination of this approach for describing the physics of nonequilibrium systems.

  13. Numerical simulation of hypersonic inlet flows with equilibrium or finite rate chemistry

    Science.gov (United States)

    Yu, Sheng-Tao; Hsieh, Kwang-Chung; Shuen, Jian-Shun; Mcbride, Bonnie J.

    1988-01-01

    An efficient numerical program incorporated with comprehensive high temperature gas property models has been developed to simulate hypersonic inlet flows. The computer program employs an implicit lower-upper time marching scheme to solve the two-dimensional Navier-Stokes equations with variable thermodynamic and transport properties. Both finite-rate and local-equilibrium approaches are adopted in the chemical reaction model for dissociation and ionization of the inlet air. In the finite rate approach, eleven species equations coupled with fluid dynamic equations are solved simultaneously. In the local-equilibrium approach, instead of solving species equations, an efficient chemical equilibrium package has been developed and incorporated into the flow code to obtain chemical compositions directly. Gas properties for the reaction products species are calculated by methods of statistical mechanics and fit to a polynomial form for C(p). In the present study, since the chemical reaction time is comparable to the flow residence time, the local-equilibrium model underpredicts the temperature in the shock layer. Significant differences of predicted chemical compositions in shock layer between finite rate and local-equilibrium approaches have been observed.

  14. Evolution and non-equilibrium physics

    DEFF Research Database (Denmark)

    Becker, Nikolaj; Sibani, Paolo

    2014-01-01

    We argue that the stochastic dynamics of interacting agents which replicate, mutate and die constitutes a non-equilibrium physical process akin to aging in complex materials. Specifically, our study uses extensive computer simulations of the Tangled Nature Model (TNM) of biological evolution...

  15. Local effect of equilibrium current on tearing mode stability

    International Nuclear Information System (INIS)

    Cozzani, F.

    1985-12-01

    The local effect of the equilibrium current on the linear stability of low poloidal number tearing modes in tokamaks is investigated analytically. The plasma response inside the tearing layer is derived from fluid theory and the local equilibrium current is shown to couple to the mode dynamics through its gradient, which is proportional to the local electron temperature gradient under the approximations used in the analysis. The relevant eigenmode equations, expressing Ampere's law and the plasma quasineutrality condition, respectively, are suitably combined in a single integral equation, from which a variational principle is formulated to derive the mode dispersion relations for several cases of interest. The local equilibrium current is treated as a small perturbation of the known results for the m greater than or equal to 2 and the m = 1 tearing modes in the collisional regime, and the m greater than or equal to 2 tearing mode in the semicollisional regime; its effect is found to enhance stabilization for the m greater than or equal to 2 drift-tearing mode in the collisional regime, whereas the m = 1 growth rate is very slightly increased and the stabilizing effect of the parallel thermal conduction on the m greater than or equal to 2 mode in the semicollisional regime is slightly reduced

  16. Non-Local Thermodynamic Equilibrium Spectrum Synthesis of Type IA Supernovae

    Science.gov (United States)

    Nugent, Peter Edward

    1997-09-01

    Type Ia supernovae (SNe Ia) are valuable distance indicators for cosmology and the elements they eject are are important for nucleosynthesis. They appear to be thermonuclear disruptions of carbon-oxygen white dwarfs that accrete from companion stars until they approach the Chandrasekbar mass, and there is a suspicion that the propagation of the nuclear burning front involves a transition from a deflagration to a detonation. Detailed modeling of the atmospheres and spectra of SNe Ia is needed to advance our understanding of SNe Ia. Comparison of synthetic and observed spectra provides information on the temperature, density, velocity, and composition of the ejected matter and thus constrain hydrodynamical models. In addition, the expanding photosphere method yields distances to individual events that are independent of distances based on the decay of 56Ni in SNe Ia and of Cepheid variable stars in the parent galaxies. This thesis is broken down into 4 major sections, each highlighting a different way with which to use spectrum synthesis to analyze SNe Ia. Chapters 2 and 3 look at normal SNe Ia and their potential use as distance indicators using SEAM. Chapter 4 examines spectral correlations with luminosity in SNe Ia and provides a plausible explanation for these correlations via spectrum synthesis. In Chapter 5 the spectra of various hydrodynamical models are calculated in an effort to answer the question of which current progenitor/explosion model is the most plausible for a SN Ia. Finally, we look at the importance of NLTE calculations and line identifications in Chapter 6. Also included are two appendices which contain more technical information concerning γ-ray deposition and the thermalization parameter.

  17. Neutron scattering on equilibrium and nonequilibrium phonons, excitons and polaritons

    International Nuclear Information System (INIS)

    Broude, V.L.; Sheka, E.F.

    1978-01-01

    A number of problems of solid-state physics representing interest for neutron spectroscopy of future is considered. The development of the neutron inelastic scattering spectroscopy (neutron spectroscopy of equilibrium phonons) is discussed with application to nuclear dynamics of crystals in the thermodynamic equilibrium. The results of high-flux neutron source experiments on molecular crystals are presented. The advantages of neutron inelastic scattering over optical spectroscopy are discussed. The spectroscopy of quasi-equilibrium and non-equilibrium quasi-particles is discussed. In particular, the neutron scattering on polaritons, excitons in thermal equilibrium and production of light-excitons are considered. The problem of the possibility of such experiments is elucidated

  18. Thermodynamic Calculations for Systems Biocatalysis

    DEFF Research Database (Denmark)

    Abu, Rohana; Gundersen, Maria T.; Woodley, John M.

    2015-01-01

    the transamination of a pro-chiral ketone into a chiral amine (interesting in many pharmaceutical applications). Here, the products are often less energetically stable than the reactants, meaning that the reaction may be thermodynamically unfavourable. As in nature, such thermodynamically-challenged reactions can...... on the basis of kinetics. However, many of the most interesting non-natural chemical reactions which could potentially be catalysed by enzymes, are thermodynamically unfavourable and are thus limited by the equilibrium position of the reaction. A good example is the enzyme ω-transaminase, which catalyses...... be altered by coupling with other reactions. For instance, in the case of ω-transaminase, such a coupling could be with alanine dehydrogenase. Herein, the aim of this work is to identify thermodynamic bottlenecks within a multi-enzyme process, using group contribution method to calculate the Gibbs free...

  19. Investigation of Non-Equilibrium Radiation for Earth Entry

    Science.gov (United States)

    Brandis, A. M.; Johnston, C. O.; Cruden, B. A.

    2016-01-01

    For Earth re-entry at velocities between 8 and 11.5 km/s, the accuracy of NASA's computational uid dynamic and radiative simulations of non-equilibrium shock layer radiation is assessed through comparisons with measurements. These measurements were obtained in the NASA Ames Research Center's Electric Arc Shock Tube (EAST) facility. The experiments were aimed at measuring the spatially and spectrally resolved radiance at relevant entry conditions for both an approximate Earth atmosphere (79% N2 : 21% O2 by mole) as well as a more accurate composition featuring the trace species Ar and CO2 (78.08% N2 : 20.95% O2 : 0.04% CO2 : 0.93% Ar by mole). The experiments were configured to target a wide range of conditions, of which shots from 8 to 11.5 km/s at 0.2 Torr (26.7 Pa) are examined in this paper. The non-equilibrium component was chosen to be the focus of this study as it can account for a significant percentage of the emitted radiation for Earth re-entry, and more importantly, non-equilibrium has traditionally been assigned a large uncertainty for vehicle design. The main goals of this study are to present the shock tube data in the form of a non-equilibrium metric, evaluate the level of agreement between the experiment and simulations, identify key discrepancies and to examine critical aspects of modeling non-equilibrium radiating flows. Radiance pro les integrated over discreet wavelength regions, ranging from the Vacuum Ultra Violet (VUV) through to the Near Infra-Red (NIR), were compared in order to maximize both the spectral coverage and the number of experiments that could be used in the analysis. A previously defined non-equilibrium metric has been used to allow comparisons with several shots and reveal trends in the data. Overall, LAURA/HARA is shown to under-predict EAST by as much as 40% and over-predict by as much as 12% depending on the shock speed. DPLR/NEQAIR is shown to under-predict EAST by as much as 50% and over-predict by as much as 20% depending

  20. The Use of VMD Data/Model to Test Different Thermodynamic Models for Vapour-Liquid Equilibrium

    DEFF Research Database (Denmark)

    Abildskov, Jens; Azquierdo-Gil, M.A.; Jonsson, Gunnar Eigil

    2004-01-01

    Vacuum membrane distillation (VMD) has been studied as a separation process to remove volatile organic compounds from aqueous streams. A vapour pressure difference across a microporous hydrophobic membrane is the driving force for the mass transport through the membrane pores (this transport take...... place in vapour phase). The vapour pressure difference is obtained in VMD processes by applying a vacuum on one side of the membrane. The membrane acts as a mere support for the liquid-vapour equilibrium. The evaporation of the liquid stream takes place on the feed side of the membrane...... values; membrane type: PTFE/PP/PVDF; feed flow rate; feed temperature. A comparison is made between different thermodynamic models for calculating the vapour-liquid equilibrium at the membrane/pore interface. (C) 2004 Elsevier B.V. All rights reserved....

  1. Method of non-interacting thermodynamic calculation of binary phase diagrams containing p disordered phases with variable composition and q phases with constant composition at (p, q) ≤ 10

    International Nuclear Information System (INIS)

    Udovskij, A.L.; Karpushkin, V.N.; Nikishina, E.A.

    1991-01-01

    Method of non-interacting thermodynamic calculation of state diagram of binary systems contacting p disordered phases with variable composition and q phases with constant composition for (p, q) ≤ 10 case is developed. Determination of all possible solutions of phase equilibrium equations is realized in the method. Certain application examples of computer-realized method of T-x thermodynamic calculation using PC for Cr-W, Ni-W, Ni-Al, Ni-Re binary systems are given

  2. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Azouaou, N., E-mail: azouaou20@yahoo.fr [Laboratory of Reaction Genius, Faculty of Mechanical and Processes Genius, University of Sciences and Technology Houari - Boumediene, USTHB, BP no 32 El Alia bab ezzouar, 16111 Algiers (Algeria); Sadaoui, Z. [Laboratory of Reaction Genius, Faculty of Mechanical and Processes Genius, University of Sciences and Technology Houari - Boumediene, USTHB, BP no 32 El Alia bab ezzouar, 16111 Algiers (Algeria); Djaafri, A. [Central laboratory, SEAAL, 97 Parc ben omar, Kouba, Algiers (Algeria); Mokaddem, H. [Laboratory of Reaction Genius, Faculty of Mechanical and Processes Genius, University of Sciences and Technology Houari - Boumediene, USTHB, BP no 32 El Alia bab ezzouar, 16111 Algiers (Algeria)

    2010-12-15

    Adsorption can be used as a cost effective and efficient technique for the removal of toxic heavy metals from wastewater. Waste materials with no further treatment such as coffee grounds from cafeterias may act as adsorbents for the removal of cadmium. Batch kinetic and equilibrium experiments were conducted to study the effects of contact time, adsorbent dose, initial pH, particle size, initial concentration of cadmium and temperature. Three adsorption isotherm models namely, Langmuir, Freundlich and Dubinin-Radushkevich were used to analyse the equilibrium data. The Langmuir isotherm which provided the best correlation for Cd{sup 2+} adsorption onto coffee grounds, shows that the adsorption was favourable and the adsorption capacity found was equal to 15.65 mg g{sup -1}. Thermodynamic parameters were evaluated and the adsorption was exothermic. The equilibrium was achieved less than 120 min. The adsorption kinetic data was fitted with first and second order kinetic models. Finally it was concluded that the cadmium adsorption kinetic onto coffee grounds was well fitted by second order kinetic model rather than first order model. The results suggest that coffee grounds have high possibility to be used as effective and economical adsorbent for Cd{sup 2+} removal.

  3. Adsorption of cadmium from aqueous solution onto untreated coffee grounds: Equilibrium, kinetics and thermodynamics

    International Nuclear Information System (INIS)

    Azouaou, N.; Sadaoui, Z.; Djaafri, A.; Mokaddem, H.

    2010-01-01

    Adsorption can be used as a cost effective and efficient technique for the removal of toxic heavy metals from wastewater. Waste materials with no further treatment such as coffee grounds from cafeterias may act as adsorbents for the removal of cadmium. Batch kinetic and equilibrium experiments were conducted to study the effects of contact time, adsorbent dose, initial pH, particle size, initial concentration of cadmium and temperature. Three adsorption isotherm models namely, Langmuir, Freundlich and Dubinin-Radushkevich were used to analyse the equilibrium data. The Langmuir isotherm which provided the best correlation for Cd 2+ adsorption onto coffee grounds, shows that the adsorption was favourable and the adsorption capacity found was equal to 15.65 mg g -1 . Thermodynamic parameters were evaluated and the adsorption was exothermic. The equilibrium was achieved less than 120 min. The adsorption kinetic data was fitted with first and second order kinetic models. Finally it was concluded that the cadmium adsorption kinetic onto coffee grounds was well fitted by second order kinetic model rather than first order model. The results suggest that coffee grounds have high possibility to be used as effective and economical adsorbent for Cd 2+ removal.

  4. ``Statistical treatment of the spectral properties of plasmas in local thermodynamical equilibrium using a screened hydrogenic model``; ``Traitement statistique des proprietes spectrales des plasmas a l`equilibre thermodynamique local dans le cadre du modele hydrogenique ecrante``

    Energy Technology Data Exchange (ETDEWEB)

    Faussurier, G.

    1996-12-31

    A new screened hydrogenic model is presented. The screening constants depend both on the principal n and orbital l quantum numbers. They have been obtained from numerical fits over a large data base containing ionization potentials and one-electron excitation energies of ions. A rapid and original method to compute the bound-bound and bound-free oscillator strengths is proposed. The discrete spectrum and the series continuum are connected by continuity, and the sum rules are respected. The screened hydrogenic average atom is well-adapted to describe multicharged ion plasmas in local thermodynamic equilibrium (LTE). Using the key principle of statistical mechanics, it is shown first that this model is properly defined and thermodynamically coherent. Secondly, a new method of detailed ionization stage accounting of a LTE plasma is explained. It can be used to reconstruct the distribution of integer charge states in such a plasma from any average atom model. The l -splitting allows one-electron transitions between two subshells with the same principal quantum number n. They may be of great importance when the Rosseland opacity is computed. Though, methods of classical statistical mechanics are required to calculate the distribution of the configurations around the average atom one and so to improve the spectral opacities. The splitting in integer ionic stages can be easily included. The formalism is tested by comparisons with theoretical and experimental results published in the literature. From the photoabsorption spectra encountered, the main results are the correct estimations of both the Rosseland opacity and the detailed charge degrees accounting. (author).

  5. Thermodynamic effect of elastic stress on grain boundary segregation of phosphorus in a low alloy steel

    International Nuclear Information System (INIS)

    Zheng, Lei; Lejček, Pavel; Song, Shenhua; Schmitz, Guido; Meng, Ye

    2015-01-01

    Grain boundary (GB) segregation of P in 2.25Cr1Mo steel induced by elastic stress shows that the P equilibrium concentration, after reaching the non-equilibrium concentration maximum at critical time, returns to its initial thermal equilibrium level. This finding confirms the interesting phenomenon that the effect of elastic stress on GB segregation of P is significant in kinetics while slight in thermodynamics. Through extending the “pressure” in classical theory of chemical potential to the “elastic stress”, the thermodynamic effect of elastic stress on GB segregation is studied, and the relationship between elastic stress and segregation Gibbs energy is formulated. The formulas reveal that the difference in the segregation Gibbs energy between the elastically-stressed and non-stressed states depends on the excess molar volume of GB segregation and the magnitude of elastic stress. Model calculations in segregation Gibbs energy confirm that the effect of elastic stress on the thermodynamics of equilibrium GB segregation is slight, and the theoretical analyses considerably agree with the experimental results. The confirmation indicates that the nature of the thermodynamic effect is well captured. - Highlights: • GB segregation of P after stress aging returns to its initial thermal equilibrium level. • Relationship between elastic stress and segregation energy is formulated. • Thermodynamic effect relies on excess molar volume and magnitude of elastic stress. • Effect of elastic stress on Gibbs energy of GB segregation is estimated to be slight. • Complete theory of the effect of elastic stress on grain boundary segregation is setup

  6. On non-equilibrium states in QFT model with boundary interaction

    International Nuclear Information System (INIS)

    Bazhanov, Vladimir V.; Lukyanov, Sergei L.; Zamolodchikov, Alexander B.

    1999-01-01

    We prove that certain non-equilibrium expectation values in the boundary sine-Gordon model coincide with associated equilibrium-state expectation values in the systems which differ from the boundary sine-Gordon in that certain extra boundary degrees of freedom (q-oscillators) are added. Applications of this result to actual calculation of non-equilibrium characteristics of the boundary sine-Gordon model are also discussed

  7. Non-Equilibrium Properties from Equilibrium Free Energy Calculations

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.

  8. Thermodynamics of quasi-topological cosmology

    International Nuclear Information System (INIS)

    Dehghani, M.H.; Sheykhi, A.; Dehghani, R.

    2013-01-01

    In this Letter, we study thermodynamical properties of the apparent horizon in a universe governed by quasi-topological gravity. Our aim is twofold. First, by using the variational method we derive the general form of Friedmann equation in quasi-topological gravity. Then, by applying the first law of thermodynamics on the apparent horizon, after using the entropy expression associated with the black hole horizon in quasi-topological gravity, and replacing the horizon radius, r + , with the apparent horizon radius, r -tilde A , we derive the corresponding Friedmann equation in quasi-topological gravity. We find that these two different approaches yield the same result which shows the profound connection between the first law of thermodynamics and the gravitational field equations of quasi-topological gravity. We also study the validity of the generalized second law of thermodynamics in quasi-topological cosmology. We find that, with the assumption of the local equilibrium hypothesis, the generalized second law of thermodynamics is fulfilled for the universe enveloped by the apparent horizon for the late time cosmology

  9. Analysis of radioactive-matter interaction near thermodynamical equilibrium states

    International Nuclear Information System (INIS)

    Damamme, G.

    1993-01-01

    We study the absorption/emission process of photon by matter in the framework of a radiativo-collisionnal model of atom, a thermodynamical approach being used. The considered matter description is the atomic sphere one. First we give the expression of the balance equation around an equilibrium state. Then we express the atomic populations in function of the characteristics of the radiation and of the free electrons and of their time history. This permit us to interpret the photon balance as being due to true emission/absorption process of photons as well as fluorescence terms, all these processes being affected by relaxation effects. The total energy balance between matter and radiation can also be analyzed in the same way and conduct to introduce one photon effective interactions terms for each radiative proper mode, terms also affected by retardation effects. Such a taking into account of atom populations has no consequence on the radiative flux equation (i.e. the transfer opacity) but can considerably modify the energy balance between matter and radiation. (author). 11 refs., 3 figs

  10. Statistical equilibrium and symplectic geometry in general relativity

    International Nuclear Information System (INIS)

    Iglesias, P.

    1981-09-01

    A geometrical construction is given of the statistical equilibrium states of a system of particles in the gravitational field in general relativity. By a method of localization variables, the expression of thermodynamic values is given and the compatibility of this description is shown with a macroscopic model of a relativistic continuous medium for a given value of the free-energy function [fr

  11. Thermodynamic equilibrium solubility measurements in simulated fluids by 96-well plate method in early drug discovery.

    Science.gov (United States)

    Bharate, Sonali S; Vishwakarma, Ram A

    2015-04-01

    An early prediction of solubility in physiological media (PBS, SGF and SIF) is useful to predict qualitatively bioavailability and absorption of lead candidates. Despite of the availability of multiple solubility estimation methods, none of the reported method involves simplified fixed protocol for diverse set of compounds. Therefore, a simple and medium-throughput solubility estimation protocol is highly desirable during lead optimization stage. The present work introduces a rapid method for assessment of thermodynamic equilibrium solubility of compounds in aqueous media using 96-well microplate. The developed protocol is straightforward to set up and takes advantage of the sensitivity of UV spectroscopy. The compound, in stock solution in methanol, is introduced in microgram quantities into microplate wells followed by drying at an ambient temperature. Microplates were shaken upon addition of test media and the supernatant was analyzed by UV method. A plot of absorbance versus concentration of a sample provides saturation point, which is thermodynamic equilibrium solubility of a sample. The established protocol was validated using a large panel of commercially available drugs and with conventional miniaturized shake flask method (r(2)>0.84). Additionally, the statistically significant QSPR models were established using experimental solubility values of 52 compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Non-equilibrium mean-field theories on scale-free networks

    International Nuclear Information System (INIS)

    Caccioli, Fabio; Dall'Asta, Luca

    2009-01-01

    Many non-equilibrium processes on scale-free networks present anomalous critical behavior that is not explained by standard mean-field theories. We propose a systematic method to derive stochastic equations for mean-field order parameters that implicitly account for the degree heterogeneity. The method is used to correctly predict the dynamical critical behavior of some binary spin models and reaction–diffusion processes. The validity of our non-equilibrium theory is further supported by showing its relation with the generalized Landau theory of equilibrium critical phenomena on networks

  13. Kinetic and Thermodynamic Studies for the Removal of Europium Ions from Waste Solution Using Some Local Clay Minerals

    International Nuclear Information System (INIS)

    El-Kamash, A.M.; El-Masry, E.H.; El-Dessouky, M.I.

    2008-01-01

    Thermodynamic and kinetic investigations on the removal of Eu 3+ ions from aqueous waste solution using bentonite and sandstone, as local clay minerals, has been done using batch technique. The influences of ph, contact time between liquid and solid phases, initial metal ion concentration, and temperature have been evaluated. Pseudo first-order and pseudo second-order kinetic models were used to analyze the sorption rate data and the results showed that the pseudo second-order model is best correlate the kinetic data. Equilibrium isotherms were determined to assess the maximum sorption capacity of bentonite and sandstone and the equilibrium sorption data were analyzed using Freundlich, Langmuir and Dubinin-Radushkevich (D-R) isotherm models. All tested models fit the data reasonably well in terms of regression coefficients. The maximum sorption capacity of bentonite was found to be greater than that of sandstone and the mean free energy is in all cases in the range corresponding to the ion exchange type of sorption. Sorption studies were also performed at different temperatures to obtain the thermodynamic parameters of the process. The numerical value of δG degree decreases with an increase in temperature, indicating that the sorption reaction is more favorable at higher temperature. The positive values of δH degree correspond to the endothermic nature of the sorption process

  14. Non-equilbrium behavior of low-pressure plasma jets

    International Nuclear Information System (INIS)

    Chang, C.H.; Pfender, E.

    1989-01-01

    After establishing the basic equations, some sample calculations are presented to examine the thermodynamic state of the plasma from atmospheric to low pressures (80 mbar). These results indicate the validity of local thermodynamic equilibrium (LTE) at atmospheric pressure as well as strong deviations from LTE at lower pressures especially in terms of chemical equilibrium. Departures from kinetic equilibrium are not as severe as those from chemical equilibrium along the centerline of the jet. However, there are some departures from transitional equilibrium in the fringes of the jet. It is demonstrated that conventional methods based on the LTE assumption are not appropriate for describing low-pressure plasma jets

  15. Information theory explanation of the fluctuation theorem, maximum entropy production and self-organized criticality in non-equilibrium stationary states

    CERN Document Server

    Dewar, R

    2003-01-01

    Jaynes' information theory formalism of statistical mechanics is applied to the stationary states of open, non-equilibrium systems. First, it is shown that the probability distribution p subGAMMA of the underlying microscopic phase space trajectories GAMMA over a time interval of length tau satisfies p subGAMMA propor to exp(tau sigma subGAMMA/2k sub B) where sigma subGAMMA is the time-averaged rate of entropy production of GAMMA. Three consequences of this result are then derived: (1) the fluctuation theorem, which describes the exponentially declining probability of deviations from the second law of thermodynamics as tau -> infinity; (2) the selection principle of maximum entropy production for non-equilibrium stationary states, empirical support for which has been found in studies of phenomena as diverse as the Earth's climate and crystal growth morphology; and (3) the emergence of self-organized criticality for flux-driven systems in the slowly-driven limit. The explanation of these results on general inf...

  16. Non-Equilibrium Heavy Flavored Hadron Yields from Chemical Equilibrium Strangeness-Rich QGP

    OpenAIRE

    Kuznetsova, Inga; Rafelski, Johann

    2008-01-01

    The yields of heavy flavored hadrons emitted from strangeness-rich QGP are evaluated within chemical non-equilibrium statistical hadronization model, conserving strangeness, charm, and entropy yields at hadronization.

  17. Thermodynamic Equilibrium Calculations on Cd Transformation during Sewage Sludge Incineration.

    Science.gov (United States)

    Liu, Jing-yong; Huang, Limao; Sun, Shuiyu; Ning, Xun'an; Kuo, Jiahong; Sun, Jian; Wang, Yujie; Xie, Wuming

    2016-06-01

    Thermodynamic equilibrium calculations were performed to reveal the distribution of cadmium during the sewage sludge incineration process. During sludge incineration in the presence of major minerals, such as SiO2, Al2O3 and CaO, the strongest effect was exerted by SiO2 on the Cd transformation compared with the effect of others. The stable solid product of CdSiO3 was formed easily with the reaction between Cd and SiO2, which can restrain the emissions of gaseous Cd pollutants. CdCl2 was formed more easily in the presence of chloride during incineration, thus, the volatilization of Cd was advanced by increasing chlorine content. At low temperatures, the volatilization of Cd was restrained due to the formation of the refractory solid metal sulfate. At high temperatures, the speciation of Cd was not affected by the presence of sulfur, but sulfur could affect the formation temperature of gaseous metals.

  18. Thermodynamics of Radiation Modes

    Science.gov (United States)

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  19. Contact Geometry of Mesoscopic Thermodynamics and Dynamics

    Directory of Open Access Journals (Sweden)

    Miroslav Grmela

    2014-03-01

    Full Text Available The time evolution during which macroscopic systems reach thermodynamic equilibrium states proceeds as a continuous sequence of contact structure preserving transformations maximizing the entropy. This viewpoint of mesoscopic thermodynamics and dynamics provides a unified setting for the classical equilibrium and nonequilibrium thermodynamics, kinetic theory, and statistical mechanics. One of the illustrations presented in the paper is a new version of extended nonequilibrium thermodynamics with fluxes as extra state variables.

  20. Non-Equilibrium Solidification of Undercooled Metallic Melts

    Directory of Open Access Journals (Sweden)

    Dieter M. Herlach

    2014-06-01

    Full Text Available If a liquid is undercooled below its equilibrium melting temperature an excess Gibbs free energy is created. This gives access to solidification of metastable solids under non-equilibrium conditions. In the present work, techniques of containerless processing are applied. Electromagnetic and electrostatic levitation enable to freely suspend a liquid drop of a few millimeters in diameter. Heterogeneous nucleation on container walls is completely avoided leading to large undercoolings. The freely suspended drop is accessible for direct observation of rapid solidification under conditions far away from equilibrium by applying proper diagnostic means. Nucleation of metastable crystalline phases is monitored by X-ray diffraction using synchrotron radiation during non-equilibrium solidification. While nucleation preselects the crystallographic phase, subsequent crystal growth controls the microstructure evolution. Metastable microstructures are obtained from deeply undercooled melts as supersaturated solid solutions, disordered superlattice structures of intermetallics. Nucleation and crystal growth take place by heat and mass transport. Comparative experiments in reduced gravity allow for investigations on how forced convection can be used to alter the transport processes and design materials by using undercooling and convection as process parameters.

  1. The critical roles of information and nonequilibrium thermodynamics in evolution of living systems.

    Science.gov (United States)

    Gatenby, Robert A; Frieden, B Roy

    2013-04-01

    Living cells are spatially bounded, low entropy systems that, although far from thermodynamic equilibrium, have persisted for billions of years. Schrödinger, Prigogine, and others explored the physical principles of living systems primarily in terms of the thermodynamics of order, energy, and entropy. This provided valuable insights, but not a comprehensive model. We propose the first principles of living systems must include: (1) Information dynamics, which permits conversion of energy to order through synthesis of specific and reproducible, structurally-ordered components; and (2) Nonequilibrium thermodynamics, which generate Darwinian forces that optimize the system.Living systems are fundamentally unstable because they exist far from thermodynamic equilibrium, but this apparently precarious state allows critical response that includes: (1) Feedback so that loss of order due to environmental perturbations generate information that initiates a corresponding response to restore baseline state. (2) Death due to a return to thermodynamic equilibrium to rapidly eliminate systems that cannot maintain order in local conditions. (3) Mitosis that rewards very successful systems, even when they attain order that is too high to be sustainable by environmental energy, by dividing so that each daughter cell has a much smaller energy requirement. Thus, nonequilibrium thermodynamics are ultimately responsible for Darwinian forces that optimize system dynamics, conferring robustness sufficient to allow continuous existence of living systems over billions of years.

  2. Stochastic linearization of turbulent dynamics of dispersive waves in equilibrium and non-equilibrium state

    International Nuclear Information System (INIS)

    Jiang, Shixiao W; Lu, Haihao; Zhou, Douglas; Cai, David

    2016-01-01

    Characterizing dispersive wave turbulence in the long time dynamics is central to understanding of many natural phenomena, e.g., in atmosphere ocean dynamics, nonlinear optics, and plasma physics. Using the β -Fermi–Pasta–Ulam nonlinear system as a prototypical example, we show that in thermal equilibrium and non-equilibrium steady state the turbulent state even in the strongly nonlinear regime possesses an effective linear stochastic structure in renormalized normal variables. In this framework, we can well characterize the spatiotemporal dynamics, which are dominated by long-wavelength renormalized waves. We further demonstrate that the energy flux is nearly saturated by the long-wavelength renormalized waves in non-equilibrium steady state. The scenario of such effective linear stochastic dynamics can be extended to study turbulent states in other nonlinear wave systems. (paper)

  3. Spectral non-equilibrium property in homogeneous isotropic turbulence and its implication in subgrid-scale modeling

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Le [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); Zhu, Ying [Laboratory of Mathematics and Physics, Ecole Centrale de Pékin, Beihang University, Beijing 100191 (China); National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Liu, Yangwei, E-mail: liuyangwei@126.com [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Lu, Lipeng [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, School of Energy and Power Engineering, Beihang University, Beijing 100191 (China)

    2015-10-09

    The non-equilibrium property in turbulence is a non-negligible problem in large-eddy simulation but has not yet been systematically considered. The generalization from equilibrium turbulence to non-equilibrium turbulence requires a clear recognition of the non-equilibrium property. As a preliminary step of this recognition, the present letter defines a typical non-equilibrium process, that is, the spectral non-equilibrium process, in homogeneous isotropic turbulence. It is then theoretically investigated by employing the skewness of grid-scale velocity gradient, which permits the decomposition of resolved velocity field into an equilibrium one and a time-reversed one. Based on this decomposition, an improved Smagorinsky model is proposed to correct the non-equilibrium behavior of the traditional Smagorinsky model. The present study is expected to shed light on the future studies of more generalized non-equilibrium turbulent flows. - Highlights: • A spectral non-equilibrium process in isotropic turbulence is defined theoretically. • A decomposition method is proposed to divide a non-equilibrium turbulence field. • An improved Smagorinsky model is proposed to correct the non-equilibrium behavior.

  4. Non-equilibrium concentration fluctuations in binary liquids with realistic boundary conditions.

    Science.gov (United States)

    Ortiz de Zárate, J M; Kirkpatrick, T R; Sengers, J V

    2015-09-01

    Because of the spatially long-ranged nature of spontaneous fluctuations in thermal non-equilibrium systems, they are affected by boundary conditions for the fluctuating hydrodynamic variables. In this paper we consider a liquid mixture between two rigid and impervious plates with a stationary concentration gradient resulting from a temperature gradient through the Soret effect. For liquid mixtures with large Lewis and Schmidt numbers, we are able to obtain explicit analytical expressions for the intensity of the non-equilibrium concentration fluctuations as a function of the frequency ω and the wave number q of the fluctuations. In addition we elucidate the spatial dependence of the intensity of the non-equilibrium fluctuations responsible for a non-equilibrium Casimir effect.

  5. Thermodynamic equilibrium model to predict the cobalt distribution coefficient in the CoCl2--HCl--H2O--TBP liquid--liquid extraction system

    International Nuclear Information System (INIS)

    Nevarez, M.; Bautista, R.G.

    1976-01-01

    The development of a thermodynamic equilibrium model to predict the cobalt distribution coefficient in the CoCl 2 -HCl-H 2 O-TBP system is described. The model makes use of the various aqueous phase cobaltous chloride complexes stoichiometric stability constants expressed as their degree of formation, their mechanism of extraction into the organic phase, and the equilibrium constant for the extraction reaction. The model was verified by the good agreement between the calculated cobalt distribution coefficients and those obtained experimentally both in the present study and published by other investigators. The optimum extraction of cobalt by the TBP occurred at an HCl equilibrium aqueous place concentration between 8.5 and 9.5M. The development of efficient procedures for the separation and concentration of important industrial metals from their aqueous solutions by liquid-liquid extraction has recently been given impetus by the realization of an impending shortage of energy and mineral resources. Liquid-liquid extraction is one of the few methods by which it is possible to quantitatively separate elements which are similar in properties. The use of liquid-liquid extraction to separate cobalt and nickel, which very frequently occur in nature together, is an important separation problem in nonferrous metallurgy. There is some fundamental information available in the chemical literature regarding the mechanism and equilibrium thermodynamic properties of selected liquid-liquid extraction systems. This research effort shows how this available information can be utilized to improve existing separation and concentration theory and technique. The development and application of a thermodynamic equilibrium model for describing the liquid-liquid extraction of cobaltous chloride from aqueous HCl solutions by tributyl phosphate (TBP) using experimental data obtained in this investigation and from the literature are presented

  6. Chemical equilibrium of glycerol carbonate synthesis from glycerol

    International Nuclear Information System (INIS)

    Li Jiabo; Wang Tao

    2011-01-01

    Research highlights: → Transesterification of glycerol with cyclic carbonates or alkyl carbonates is thermodynamically favourable for the preparation of glycerol carbonate from glycerol. → The reaction of glycerol and carbon dioxide is thermodynamically limited. → High temperature and low pressure is favourable to the reaction of glycerol and urea. → Increasing temperature can increase the chemical equilibrium constant for the reaction of glycerol and dimethyl carbonate. → For the reaction of glycerol and ethylene carbonate, increasing temperature can decrease the chemical equilibrium constant. - Abstract: In this paper, the chemical equilibrium for the glycerol carbonate preparation from glycerol was investigated. The chemical equilibrium constants were calculated for the reactions to produce glycerol carbonate from glycerol. The theoretical calculation was compared with the experimental results for the transesterification of glycerol with dimethyl carbonate. Transesterification of glycerol with cyclic carbonates or alkyl carbonates is thermodynamically favourable for producing glycerol carbonate from glycerol according to the equilibrium constant. Increasing temperature can increase the chemical equilibrium constant for the reaction of glycerol with dimethyl carbonate. For the reaction of glycerol with ethylene carbonate, increasing temperature can decrease the chemical equilibrium constant. The reaction of glycerol with carbon dioxide is thermodynamically limited. High temperature and low pressure are favourable to the reaction of glycerol and urea.

  7. Force-dominated non-equilibrium oxidation kinetics of tantalum

    International Nuclear Information System (INIS)

    Kar, Prasenjit; Wang, Ke; Liang, Hong

    2008-01-01

    Using a combined electrochemical and mechanical manipulation technique, we compared the equilibrium and non-equilibrium oxidation processes and states of tantalum. Experimentally, a setup was developed with an electrochemical system attached to a sliding mechanical configuration capable of friction force measurement. The surface chemistry of a sliding surface, i.e., tantalum, was modified through the electrolyte. The mechanically applied force was fixed and the dynamics of the surface was monitored in situ through a force sensor. The formation of non-equilibrium oxidation states of tantalum was found in oxidation limiting environment of acetic acid. An oxidative environment of deionized water saturated with KCl was used as comparison. We proposed a modified Arrhenius-Eyring equation in which the mechanical factor was considered. We found that the mechanical energy induced the non-stable-state reactions leading to metastable oxidation states of tantalum. This equation can be used to predict mechanochemical reactions that are important in many industrial applications

  8. Non-equilibrium many body dynamics

    International Nuclear Information System (INIS)

    Creutz, M.; Gyulassy, M.

    1997-01-01

    This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop

  9. Non-equilibrium many body dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, M.; Gyulassy, M.

    1997-09-22

    This Riken BNL Research Center Symposium on Non-Equilibrium Many Body Physics was held on September 23-25, 1997 as part of the official opening ceremony of the Center at Brookhaven National Lab. A major objective of theoretical work at the center is to elaborate on the full spectrum of strong interaction physics based on QCD, including the physics of confinement and chiral symmetry breaking, the parton structure of hadrons and nuclei, and the phenomenology of ultra-relativistic nuclear collisions related to the up-coming experiments at RHIC. The opportunities and challenges of nuclear and particle physics in this area naturally involve aspects of the many body problem common to many other fields. The aim of this symposium was to find common theoretical threads in the area of non-equilibrium physics and modern transport theories. The program consisted of invited talks on a variety topics from the fields of atomic, condensed matter, plasma, astrophysics, cosmology, and chemistry, in addition to nuclear and particle physics. Separate abstracts have been indexed into the database for contributions to this workshop.

  10. Experimental verification of the thermodynamic properties for a jet-A fuel

    Science.gov (United States)

    Graciasalcedo, Carmen M.; Brabbs, Theodore A.; Mcbride, Bonnie J.

    1988-01-01

    Thermodynamic properties for a Jet-A fuel were determined by Shell Development Company in 1970 under a contract for NASA Lewis Research Center. The polynomial fit necessary to include Jet-A fuel (liquid and gaseous phases) in the library of thermodynamic properties of the NASA Lewis Chemical Equilibrium Program is calculated. To verify the thermodynamic data, the temperatures of mixtures of liquid Jet-A injected into a hot nitrogen stream were experimentally measured and compared to those calculated by the program. Iso-octane, a fuel for which the thermodynamic properties are well known, was used as a standard to calibrate the apparatus. The measured temperatures for the iso-octane/nitrogen mixtures reproduced the calculated temperatures except for a small loss due to the non-adiabatic behavior of the apparatus. The measurements for Jet-A were corrected for this heat loss and showed excellent agreement with the calculated temperatures. These experiments show that this process can be adequately described by the thermodynamic properties fitted for the Chemical Equilibrium Program.

  11. Application of Enzyme Coupling Reactions to Shift Thermodynamically Limited Biocatalytic Reactions

    DEFF Research Database (Denmark)

    Abu, Rohana; Woodley, John M.

    2015-01-01

    , it can be challenging to combine several engineered enzymes in vitro for the conversion of non-natural substrates. In this mini-review we focus on enzyme coupling reactions as a tool to alleviate thermodynamic constraints in synthetically useful biocatalytic reactions. The implications of thermodynamic...... shift the equilibrium of otherwise thermodynamically unfavourable reactions to give a higher conversion of the target product. By coupling an energetically unfavourable reaction with a more favourable one, the multi-enzyme cascade mimics the approach taken in nature in metabolic pathways. Nevertheless...

  12. Non-equilibrium scaling analysis of the Kondo model with voltage bias

    International Nuclear Information System (INIS)

    Fritsch, Peter; Kehrein, Stefan

    2009-01-01

    The quintessential description of Kondo physics in equilibrium is obtained within a scaling picture that shows the buildup of Kondo screening at low temperature. For the non-equilibrium Kondo model with a voltage bias, the key new feature are decoherence effects due to the current across the impurity. In the present paper, we show how one can develop a consistent framework for studying the non-equilibrium Kondo model within a scaling picture of infinitesimal unitary transformations (flow equations). Decoherence effects appear naturally in third order of the β-function and dominate the Hamiltonian flow for sufficiently large voltage bias. We work out the spin dynamics in non-equilibrium and compare it with finite temperature equilibrium results. In particular, we report on the behavior of the static spin susceptibility including leading logarithmic corrections and compare it with the celebrated equilibrium result as a function of temperature.

  13. Formation of super disperse phase and its influence on equilibrium and thermodynamics of thermal dehydration

    Energy Technology Data Exchange (ETDEWEB)

    Polyachenok, O.G. [Department of Chemistry, Mogilev State University of Foodstuffs, 212027 (Belarus)], E-mail: polyachenok@mogilev.by; Dudkina, E.N.; Branovitskaya, N.V. [Department of Chemistry, Mogilev State University of Foodstuffs, 212027 (Belarus); Polyachenok, L.D. [Department of Chemistry, Mogilev State University of A.A. Kuleshov, 212022 (Belarus)

    2008-01-30

    New data on the dehydration and rehydration processes of calcium, manganese and copper dichlorides are presented that reveal surprising, in a certain sense, behaviour difficult to be explained for the last two chlorides in terms of the usual conception of thermodynamic equilibrium. A substantial role of a super disperse phase at studying the equilibrium of the thermal decomposition of a hydrate is postulated to explain the experimental results for manganese and copper dichlorides. It is shown that the formation of such a phase of the hydrate is able to change appreciably the experimental results, causing the increase of water vapour pressure and the decrease of the derived enthalpy of a reaction. The results obtained allow to understand the reasons for considerable differences of some literature data. They enable to receive more precise and reliable data for thermal dehydration and probably for some other decomposition processes.

  14. The local temperature and chemical potential inside a mesoscopic device driven out of equilibrium

    International Nuclear Information System (INIS)

    Wang, Pei

    2011-01-01

    In this paper we introduce a method for calculating the local temperature and chemical potential inside a mesoscopic device out of equilibrium. We show how to check the conditions of local thermal equilibrium when the whole system is out of equilibrium. In particular, we study the on-site chemical potentials inside a chain coupled to two reservoirs at a finite voltage bias. We observe in the presence of disorder a large fluctuation in on-site chemical potentials, which can be suppressed by the electron–electron interaction. By taking the average with respect to the configurations of the disorder, we recover the classical picture where the voltage drops monotonically through the resistance wire. We prove the existence of local intensive variables in a mesoscopic device which is in equilibrium or not far from equilibrium

  15. The virial equation of state for unitary fermion thermodynamics with non-Gaussian correlations

    International Nuclear Information System (INIS)

    Chen Jisheng; Li Jiarong; Wang Yanping; Xia Xiangjun

    2008-01-01

    We study the roles of the dynamical high order perturbation and statistically non-linear infrared fluctuation/correlation in the virial equation of state for the Fermi gas in the unitary limit. Incorporating the quantum level crossing rearrangement effects, the spontaneously generated entropy departing from the mean-field theory formalism leads to concise thermodynamical expressions. The dimensionless virial coefficients with complex non-local correlations are calculated up to the fourth order for the first time. The virial coefficients of unitary Fermi gas are found to be proportional to those of the ideal quantum gas with integer ratios through a general term formula. Counterintuitively, contrary to those of the ideal bosons (a (0) 2 =-(1/4√2)) or fermions (a (0) 2 =(1/4√2)), the second virial coefficient a 2 of Fermi gas at unitarity is found to be equal to zero. With the vanishing leading order quantum correction, the BCS–BEC crossover thermodynamics manifests the famous pure classical Boyle's law in the Boltzmann regime. The non-Gaussian correlation phenomena can be validated by studying the Joule–Thomson effect

  16. Deviations from thermal equilibrium in plasmas

    International Nuclear Information System (INIS)

    Burm, K.T.A.L.

    2004-01-01

    A plasma system in local thermal equilibrium can usually be described with only two parameters. To describe deviations from equilibrium two extra parameters are needed. However, it will be shown that deviations from temperature equilibrium and deviations from Saha equilibrium depend on one another. As a result, non-equilibrium plasmas can be described with three parameters. This reduction in parameter space will ease the plasma describing effort enormously

  17. A two-temperature chemical non-equilibrium modeling of DC arc plasma

    International Nuclear Information System (INIS)

    Qian Haiyang; Wu Bin

    2011-01-01

    To a better understanding of non-equilibrium characteristics of DC arc plasma,a two-dimensional axisymmetric two-temperature chemical non-equilibrium (2T-NCE) model is applied for direct current arc argon plasma generator with water-cooled constrictor at atmospheric pressure. The results show that the electron temperature and heavy particle temperature has a relationship under different working parameters, indicating that DC arc plasma has a strong non-equilibrium characteristic, and the variation is obvious. (authors)

  18. Implementing an Equilibrium Law Teaching Sequence for Secondary School Students to Learn Chemical Equilibrium

    Science.gov (United States)

    Ghirardi, Marco; Marchetti, Fabio; Pettinari, Claudio; Regis, Alberto; Roletto, Ezio

    2015-01-01

    A didactic sequence is proposed for the teaching of chemical equilibrium law. In this approach, we have avoided the kinetic derivation and the thermodynamic justification of the equilibrium constant. The equilibrium constant expression is established empirically by a trial-and-error approach. Additionally, students learn to use the criterion of…

  19. Advanced classical thermodynamics

    International Nuclear Information System (INIS)

    Emanuel, G.

    1987-01-01

    The theoretical and mathematical foundations of thermodynamics are presented in an advanced text intended for graduate engineering students. Chapters are devoted to definitions and postulates, the fundamental equation, equilibrium, the application of Jacobian theory to thermodynamics, the Maxwell equations, stability, the theory of real gases, critical-point theory, and chemical thermodynamics. Diagrams, graphs, tables, and sample problems are provided. 38 references

  20. Non-equilibrium solid-to-plasma transition dynamics using XANES diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Dorchies, F., E-mail: dorchies@celia.u-bordeaux1.fr [Univ. Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33400 Talence (France); Recoules, V. [CEA-DAM-DIF, F-91297 Arpajon (France)

    2016-10-31

    The advent of femtosecond lasers has shed new light on non-equilibrium high energy density physics. The ultrafast energy absorption by electrons and the finite rate of their energy transfer to the lattice creates non-equilibrium states of matter, triggering a new class of non-thermal processes from the ambient solid up to extreme conditions of temperature and pressure, referred as the warm dense matter regime. The dynamical interplay between electron and atomic structures is the key issue that drives the ultrafast phase transitions dynamics. Bond weakening or bond hardening are predicted, but strongly depends on the material considered. Many studies have been conducted but this physics is still poorly understood. The experimental tools used up-to-now have provided an incomplete insight. Pure optical techniques measure only indirectly atomic motion through changes in the dielectric function whereas X-ray or electron diffraction only probes the average long-range order. This review is dedicated to recent developments in time-resolved X-ray absorption near-edge spectroscopy, which is expected to give a more complete picture by probing simultaneously the modifications of the near-continuum electron and local atomic structures. Results are reported for three different types of metals (simple, transition and noble metals) in which a confrontation has been carried out between measurements and ab initio simulations.

  1. Ligand exchange in uranyl complexes in non-aqueous solutions: equilibrium properties

    International Nuclear Information System (INIS)

    Egozy, Y.; Weiss, S.

    1976-01-01

    The systems uranyl nitrate, tributylphosphate and 8-hydroxyquinoline or diphenylcarbazone were studied in chloroform, carbon tetrachloride and 1,2-dichloroethane at a number of temperatures. The nature of the complexes formed was determined and the equilibrium constants and several thermodynamic functions were measured. 8-hydroxyquinoline and diphenylcarbazone will be valuable as indicators for uranyl in kinetic studies. They are also interesting since they participate, along with tributylphosphate, in formation of synergistic complexes. (author)

  2. A phase-field model for non-equilibrium solidification of intermetallics

    International Nuclear Information System (INIS)

    Assadi, H.

    2007-01-01

    Intermetallics may exhibit unique solidification behaviour-including slow growth kinetics, anomalous partitioning and formation of unusual growth morphologies-because of departure from local equilibrium. A phase-field model is developed and used to illustrate these non-equilibrium effects in solidification of a prototype B2 intermetallic phase. The model takes sublattice compositions as primary field variables, from which chemical long-range order is derived. The diffusive reactions between the two sublattices, and those between each sublattice and the liquid phase are taken as 'internal' kinetic processes, which take place within control volumes of the system. The model can thus capture solute and disorder trapping effects, which are consistent-over a wide range of the solid/liquid interface thickness-with the predictions of the sharp-interface theory of solute and disorder trapping. The present model can also take account of solid-state ordering and thus illustrate the effects of chemical ordering on microstructure formation and crystal growth kinetics

  3. Non-equilibrium Dynamics, Thermalization and Entropy Production

    International Nuclear Information System (INIS)

    Hinrichsen, Haye; Janotta, Peter; Gogolin, Christian

    2011-01-01

    This paper addresses fundamental aspects of statistical mechanics such as the motivation of a classical state space with spontaneous transitions, the meaning of non-equilibrium in the context of thermalization, and the justification of these concepts from the quantum-mechanical point of view. After an introductory part we focus on the problem of entropy production in non-equilibrium systems. In particular, the generally accepted formula for entropy production in the environment is analyzed from a critical perspective. It is shown that this formula is only valid in the limit of separated time scales of the system's and the environmental degrees of freedom. Finally, we present an alternative simple proof of the fluctuation theorem.

  4. Equilibrium Constant as Solution to the Open Chemical Systems

    OpenAIRE

    Zilbergleyt, B.

    2008-01-01

    According to contemporary views, equilibrium constant is relevant only to true thermodynamic equilibria in isolated systems with one chemical reaction. The paper presents a novel formula that ties-up equilibrium constant and chemical system composition at any state, isolated or open as well. Extending the logarithmic logistic map of the Discrete Thermodynamics of Chemical Equilibria, this formula maps the system population at isolated equilibrium into the population at any open equilibrium at...

  5. Microcanonical ensemble extensive thermodynamics of Tsallis statistics

    International Nuclear Information System (INIS)

    Parvan, A.S.

    2005-01-01

    The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics.The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ = 1/q - 1 in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z bar = 1/(q - 1)N = const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit

  6. Microcanonical ensemble extensive thermodynamics of Tsallis statistics

    International Nuclear Information System (INIS)

    Parvan, A.S.

    2006-01-01

    The microscopic foundation of the generalized equilibrium statistical mechanics based on the Tsallis entropy is given by using the Gibbs idea of statistical ensembles of the classical and quantum mechanics. The equilibrium distribution functions are derived by the thermodynamic method based upon the use of the fundamental equation of thermodynamics and the statistical definition of the functions of the state of the system. It is shown that if the entropic index ξ=1/(q-1) in the microcanonical ensemble is an extensive variable of the state of the system, then in the thermodynamic limit z-bar =1/(q-1)N=const the principle of additivity and the zero law of thermodynamics are satisfied. In particular, the Tsallis entropy of the system is extensive and the temperature is intensive. Thus, the Tsallis statistics completely satisfies all the postulates of the equilibrium thermodynamics. Moreover, evaluation of the thermodynamic identities in the microcanonical ensemble is provided by the Euler theorem. The principle of additivity and the Euler theorem are explicitly proved by using the illustration of the classical microcanonical ideal gas in the thermodynamic limit

  7. Modelling Thomson scattering for systems with non-equilibrium electron distributions

    Directory of Open Access Journals (Sweden)

    Chapman D.A.

    2013-11-01

    Full Text Available We investigate the effect of non-equilibrium electron distributions in the analysis of Thomson scattering for a range of conditions of interest to inertial confinement fusion experiments. Firstly, a generalised one-component model based on quantum statistical theory is given in the random phase approximation (RPA. The Chihara expression for electron-ion plasmas is then adapted to include the new non-equilibrium electron physics. The theoretical scattering spectra for both diffuse and dense plasmas in which non-equilibrium electron distributions are expected to arise are considered. We find that such distributions strongly influence the spectra and are hence an important consideration for accurately determining the plasma conditions.

  8. Non-equilibrium plasma chemistry at high pressure and its applications

    International Nuclear Information System (INIS)

    Bai Xiyao; Zhang Zhitao; Bai Mindong; Zhu Qiaoying

    2000-01-01

    A review is presented of research and development of gas discharge and non-equilibrium plasma including, new ideas of non-equilibrium plasma at high gas pressure. With special technology, strong electric fields (>400 Td) can be achieved by which electrons are accelerated suddenly, becoming high energy electrons (> 10 eV) at high pressure. On impact with the electrons, the gas molecules dissociate into ions, atomic ions, atoms and free radicals, and new substances or molecules can be synthesized through custom design. Chemical reaction difficult to achieve by conventional method can be realized or accelerated. Non-equilibrium plasma chemistry at high pressure has wide application prospects

  9. X-ray scattering studies of non-equilibrium ordering processes

    International Nuclear Information System (INIS)

    Nagler, S.E.

    1990-01-01

    We report on the progress of our project entitled ''X-ray Scattering of Non-Equilibrium Ordering Processes.'' During the past year we have made the first synchrotron measurements of ordering in Cu 3 Au have revealed the presence of an intermediate, non-equilibrium ordered state. Preliminary work involving x-ray magnetic scattering has been carried out. Work is continuing in these areas as well as on related problems. 5 refs

  10. Thermodynamics of nanoadsorption from solution: Theoretical and experimental research

    International Nuclear Information System (INIS)

    Wen, Yan-Zhen; Xue, Yong-Qiang; Cui, Zi-Xiang; Wang, Yan

    2015-01-01

    Highlights: • The thermodynamic theory of nanoadsorption was proposed. • The thermodynamic relations of nanoadsorption were derived. • The results of the experiments are accord with the theory. - Abstract: In this study, the effect of nanoparticle size on adsorption thermodynamics was investigated. The results of theoretical and experimental studies show that particle size significantly affects the equilibrium constant and thermodynamic properties of nanoadsorption. Relationships between the equilibrium constant, thermodynamic properties and particle size were derived using the thermodynamic theory of nanoadsorption. The equilibrium constant and thermodynamic properties were obtained by investigating the adsorption of Cu 2+ onto different sizes of nano-ZnO and the adsorption of Ag + onto different sizes of nano-TiO 2 . Good agreement was achieved between results obtained by experiments and predicted by theoretical analyses. The equilibrium constant and the molar Gibbs free energy of nanoadsorption were found to increase with smaller nanoparticle size. However, the effects of particle size on the molar enthalpy and the molar entropy are uncertain. In addition, the molar Gibbs free energy, the molar enthalpy, the molar entropy and the logarithm of the equilibrium constant are linearly related to the reciprocal of the diameter of the nanoparticle. The thermodynamic properties revealed in this study may provide important guidelines for research and application in the field of nanoadsorption

  11. Nonequilibrium thermodynamics and information theory: basic concepts and relaxing dynamics

    Science.gov (United States)

    Altaner, Bernhard

    2017-11-01

    Thermodynamics is based on the notions of energy and entropy. While energy is the elementary quantity governing physical dynamics, entropy is the fundamental concept in information theory. In this work, starting from first principles, we give a detailed didactic account on the relations between energy and entropy and thus physics and information theory. We show that thermodynamic process inequalities, like the second law, are equivalent to the requirement that an effective description for physical dynamics is strongly relaxing. From the perspective of information theory, strongly relaxing dynamics govern the irreversible convergence of a statistical ensemble towards the maximally non-commital probability distribution that is compatible with thermodynamic equilibrium parameters. In particular, Markov processes that converge to a thermodynamic equilibrium state are strongly relaxing. Our framework generalizes previous results to arbitrary open and driven systems, yielding novel thermodynamic bounds for idealized and real processes. , which features invited work from the best early-career researchers working within the scope of J. Phys. A. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Bernhard Altaner was selected by the Editorial Board of J. Phys. A as an Emerging Talent.

  12. A non-local thermodynamic equilibrium, line-blanketed synthetic spectrum of Iota Herculis - C, Al, and Si lines

    Science.gov (United States)

    Grigsby, James A.

    1991-01-01

    A non-LTE line-blanketed model stellar atmosphere is used to compute a model of I Herculis (B3 IV) with a Teff of 17,500 K and a log g of 3.75, following the conclusions of Peters and Polidan (1985). Detailed profiles of a number of lines of C, Al, and Si in the 1200-2000-A region are computed, including the resonance lines of C II, Al II, and Al III. These profiles are compared to observations obtained from the coaddition of eight IUE SWP images, using a technique developed by Leckrone and Adelman (1989). Comparison of carbon lines with a model that is underabundant in carbon by a factor of 2 relative to the sun indicates that the C abundance of Iota Her is at most one-half solar. Non-LTE effects are examined by comparing an LTE model possessing identical atmospheric parameters with the non-LTE model. Substantial differences in the populations of the model atomic states are found, but differences in the temperature structure of the two models often mask the non-LTE effects in the synthetic spectra.

  13. Influence of arc current and pressure on non-chemical equilibrium air arc behavior

    Science.gov (United States)

    Yi, WU; Yufei, CUI; Jiawei, DUAN; Hao, SUN; Chunlin, WANG; Chunping, NIU

    2018-01-01

    The influence of arc current and pressure on the non-chemical equilibrium (non-CE) air arc behavior of a nozzle structure was investigated based on the self-consistent non-chemical equilibrium model. The arc behavior during both the arc burning and arc decay phases were discussed at different currents and different pressures. We also devised the concept of a non-equilibrium parameter for a better understanding of non-CE effects. During the arc burning phase, the increasing current leads to a decrease of the non-equilibrium parameter of the particles in the arc core, while the increasing pressure leads to an increase of the non-equilibrium parameter of the particles in the arc core. During the arc decay phase, the non-CE effect will decrease by increasing the arc burning current and the nozzle pressure. Three factors together—convection, diffusion and chemical reactions—influence non-CE behavior.

  14. Entropy Production and Equilibrium Conditions of General-Covariant Spin Systems

    Directory of Open Access Journals (Sweden)

    Wolfgang Muschik

    2015-12-01

    Full Text Available In generalizing the special-relativistic one-component version of Eckart’s continuum thermodynamics to general-relativistic space-times with Riemannian or post-Riemannian geometry as presented by Schouten (Schouten, J.A. Ricci-Calculus, 1954 and Blagojevic (Blagojevic, M. Gauge Theories of Gravitation, 2013 we consider the entropy production and other thermodynamical quantities, such as the entropy flux and the Gibbs fundamental equation. We discuss equilibrium conditions in gravitational theories, which are based on such geometries. In particular, thermodynamic implications of the non-symmetry of the energy-momentum tensor and the related spin balance equations are investigated, also for the special case of general relativity.

  15. Evaluating equilibrium and non-equilibrium transport of bromide and isoproturon in disturbed and undisturbed soil columns

    Science.gov (United States)

    Dousset, S.; Thevenot, M.; Pot, V.; Šimunek, J.; Andreux, F.

    2007-12-01

    In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due

  16. Thermodynamics of Micellar Systems : Comparison of Mass Action and Phase Equilibrium Models for the Calculation of Standard Gibbs Energies of Micelle Formation

    NARCIS (Netherlands)

    Blandamer, Michael J.; Cullis, Paul M.; Soldi, L. Giorgio; Engberts, Jan B.F.N.; Kacperska, Anna; Os, Nico M. van

    1995-01-01

    Micellar colloids are distinguished from other colloids by their association-dissociation equilibrium in solution between monomers, counter-ions and micelles. According to classical thermodynamics, the standard Gibbs energy of formation of micelles at fixed temperature and pressure can be related to

  17. Light-induced electronic non-equilibrium in plasmonic particles.

    Science.gov (United States)

    Kornbluth, Mordechai; Nitzan, Abraham; Seideman, Tamar

    2013-05-07

    We consider the transient non-equilibrium electronic distribution that is created in a metal nanoparticle upon plasmon excitation. Following light absorption, the created plasmons decohere within a few femtoseconds, producing uncorrelated electron-hole pairs. The corresponding non-thermal electronic distribution evolves in response to the photo-exciting pulse and to subsequent relaxation processes. First, on the femtosecond timescale, the electronic subsystem relaxes to a Fermi-Dirac distribution characterized by an electronic temperature. Next, within picoseconds, thermalization with the underlying lattice phonons leads to a hot particle in internal equilibrium that subsequently equilibrates with the environment. Here we focus on the early stage of this multistep relaxation process, and on the properties of the ensuing non-equilibrium electronic distribution. We consider the form of this distribution as derived from the balance between the optical absorption and the subsequent relaxation processes, and discuss its implication for (a) heating of illuminated plasmonic particles, (b) the possibility to optically induce current in junctions, and (c) the prospect for experimental observation of such light-driven transport phenomena.

  18. Computing Properties Of Chemical Mixtures At Equilibrium

    Science.gov (United States)

    Mcbride, B. J.; Gordon, S.

    1995-01-01

    Scientists and engineers need data on chemical equilibrium compositions to calculate theoretical thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93 is general program that calculates chemical equilibrium compositions and properties of mixtures for any chemical system for which thermodynamic data are available. Includes thermodynamic data for more than 1,300 gaseous and condensed species and thermal-transport data for 151 gases. Written in FORTRAN 77.

  19. A numerical study of EGS heat extraction process based on a thermal non-equilibrium model for heat transfer in subsurface porous heat reservoir

    Science.gov (United States)

    Chen, Jiliang; Jiang, Fangming

    2016-02-01

    With a previously developed numerical model, we perform a detailed study of the heat extraction process in enhanced or engineered geothermal system (EGS). This model takes the EGS subsurface heat reservoir as an equivalent porous medium while it considers local thermal non-equilibrium between the rock matrix and the fluid flowing in the fractured rock mass. The application of local thermal non-equilibrium model highlights the temperature-difference heat exchange process occurring in EGS reservoirs, enabling a better understanding of the involved heat extraction process. The simulation results unravel the mechanism of preferential flow or short-circuit flow forming in homogeneously fractured reservoirs of different permeability values. EGS performance, e.g. production temperature and lifetime, is found to be tightly related to the flow pattern in the reservoir. Thermal compensation from rocks surrounding the reservoir contributes little heat to the heat transmission fluid if the operation time of an EGS is shorter than 15 years. We find as well the local thermal equilibrium model generally overestimates EGS performance and for an EGS with better heat exchange conditions in the heat reservoir, the heat extraction process acts more like the local thermal equilibrium process.

  20. Geometric description of BTZ black hole thermodynamics

    International Nuclear Information System (INIS)

    Quevedo, Hernando; Sanchez, Alberto

    2009-01-01

    We study the properties of the space of thermodynamic equilibrium states of the Banados-Teitelboim-Zanelli (BTZ) black hole in (2+1) gravity. We use the formalism of geometrothermodynamics to introduce in the space of equilibrium states a two-dimensional thermodynamic metric whose curvature is nonvanishing, indicating the presence of thermodynamic interaction, and free of singularities, indicating the absence of phase transitions. Similar results are obtained for generalizations of the BTZ black hole which include a Chern-Simons term and a dilatonic field. Small logarithmic corrections of the entropy turn out to be represented by small corrections of the thermodynamic curvature, reinforcing the idea that thermodynamic curvature is a measure of thermodynamic interaction.

  1. Thermodynamic restrictions on linear reversible and irreversible thermo-electro-magneto-mechanical processes

    Directory of Open Access Journals (Sweden)

    Sushma Santapuri

    2016-10-01

    Full Text Available A unified thermodynamic framework for the characterization of functional materials is developed. This framework encompasses linear reversible and irreversible processes with thermal, electrical, magnetic, and/or mechanical effects coupled. The comprehensive framework combines the principles of classical equilibrium and non-equilibrium thermodynamics with electrodynamics of continua in the infinitesimal strain regime.In the first part of this paper, linear Thermo-Electro-Magneto-Mechanical (TEMM quasistatic processes are characterized. Thermodynamic stability conditions are further imposed on the linear constitutive model and restrictions on the corresponding material constants are derived. The framework is then extended to irreversible transport phenomena including thermoelectric, thermomagnetic and the state-of-the-art spintronic and spin caloritronic effects. Using Onsager's reciprocity relationships and the dissipation inequality, restrictions on the kinetic coefficients corresponding to charge, heat and spin transport processes are derived. All the constitutive models are accompanied by multiphysics interaction diagrams that highlight the various processes that can be characterized using this framework. Keywords: Applied mathematics, Materials science, Thermodynamics

  2. Entropy is in Flux V3.4

    Science.gov (United States)

    Kadanoff, Leo P.

    2017-05-01

    The science of thermodynamics was put together in the Nineteenth Century to describe large systems in equilibrium. One part of thermodynamics defines entropy for equilibrium systems and demands an ever-increasing entropy for non-equilibrium ones. Since thermodynamics does not define entropy out of equilibrium, pure thermodynamics cannot follow the details of how this increase occurs. However, starting with the work of Ludwig Boltzmann in 1872, and continuing to the present day, various models of non-equilibrium behavior have been put together with the specific aim of generalizing the concept of entropy to non-equilibrium situations. This kind of entropy has been termed kinetic entropy to distinguish it from the thermodynamic variety. Knowledge of kinetic entropy started from Boltzmann's insight about his equation for the time dependence of gaseous systems. In this paper, his result is stated as a definition of kinetic entropy in terms of a local equation for the entropy density. This definition is then applied to Landau's theory of the Fermi liquid thereby giving the kinetic entropy within that theory. The dynamics of many condensed matter systems including Fermi liquids, low temperature superfluids, and ordinary metals lend themselves to the definition of kinetic entropy. In fact, entropy has been defined and used for a wide variety of situations in which a condensed matter system has been allowed to relax for a sufficient period so that the very most rapid fluctuations have been ironed out. One of the broadest applications of non-equilibrium analysis considers quantum degenerate systems using Martin-Schwinger Green's functions (Phys Rev 115:1342-1373, 1959) as generalized Wigner functions, g^({p},ω ,{R},T). This paper describes once again how the quantum kinetic equations for these functions give locally defined conservation laws for mass momentum and energy. In local thermodynamic equilibrium, this kinetic theory enables a reasonable definition of the density

  3. Fragmentation function in non-equilibrium QCD using closed-time path integral formalism

    International Nuclear Information System (INIS)

    Nayak, Gouranga C.

    2009-01-01

    In this paper we implement the Schwinger-Keldysh closed-time path integral formalism in non-equilibrium QCD in accordance to the definition of the Collins-Soper fragmentation function. We consider a high-p T parton in QCD medium at initial time τ 0 with an arbitrary non-equilibrium (non-isotropic) distribution function f(vector (p)) fragmenting to a hadron. We formulate the parton-to-hadron fragmentation function in non-equilibrium QCD in the light-cone quantization formalism. It may be possible to include final-state interactions with the medium via a modification of the Wilson lines in this definition of the non-equilibrium fragmentation function. This may be relevant to the study of hadron production from a quark-gluon plasma at RHIC and LHC. (orig.)

  4. Investigation on non-equilibrium performance of composite adsorbent for resorption refrigeration

    International Nuclear Information System (INIS)

    Jiang, L.; Wang, L.W.; Zhou, Z.S.; Zhu, F.Q.; Wang, R.Z.

    2016-01-01

    Highlights: • Performance of resorption refrigeration is analyzed based on non-equilibrium reaction process. • The porous matrix improves the heat and mass performance of composite adsorbent. • The actual desorption process has the significant hysteresis phenomenon. • The highest energy efficiency of Manganese and Calcium chloride working pair is 0.272. - Abstract: The aims of this paper is to indicate that the non-equilibrium adsorption testing results is more suitable for prediction of real refrigeration performance than equilibrium data. Therefore, a test unit is constructed to test the non-equilibrium performance of different composite adsorbents. The adsorption and desorption quantity are measured and calculated by smart differential pressure transmitter. The non-equilibrium adsorption performances of working pair of Manganese chloride–ammonia, Calcium chloride–ammonia and Ammonium chloride–ammonia are investigated respectively. Results show that hysteresis phenomena happens obviously in non-equilibrium desorption process, which is related with dual variables rather than single variable. Based on the testing results, resorption refrigeration performance is analyzed, in which Manganese chloride is used as high temperature salt (HTS), and Calcium chloride, Ammonium chloride are selected as low temperature salt (LTS) for comparison. Results show that the highest COP and SCP for resorption refrigeration are about 0.272 and 45.6 W/kg, respectively. Performance of Manganese chloride–Calcium chloride and Manganese chloride–Ammonium chloride working pairs are much lower when compared with theoretical data.

  5. Entropy equilibrium equation and dynamic entropy production in environment liquid

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The entropy equilibrium equation is the basis of the nonequilibrium state thermodynamics. But the internal energy implies the kinetic energy of the fluid micelle relative to mass center in the classical entropy equilibrium equation at present. This internal energy is not the mean kinetic energy of molecular movement in thermodynamics. Here a modified entropy equilibrium equation is deduced, based on the concept that the internal energy is just the mean kinetic energy of the molecular movement. A dynamic entropy production is introduced into the entropy equilibrium equation to describe the dynamic process distinctly. This modified entropy equilibrium equation can describe not only the entropy variation of the irreversible processes but also the reversible processes in a thermodynamic system. It is more reasonable and suitable for wider applications.

  6. Initial conditions of non-equilibrium quark-gluon plasma evolution

    International Nuclear Information System (INIS)

    Shmatov, S.V.

    2002-01-01

    In accordance with the hydrodynamic Bjorken limit, the initial energy density and temperature for a chemical non-equilibrium quark-gluon system formed in the heavy ion collisions at the LHC are computed. The dependence of this value on the type of colliding nuclei and the collision impact parameter is studied. The principle possibility of the non-equilibrium quark-gluon plasma (QGP) formation in the light nuclei collisions is shown. The life time of QGP is calculated. (author)

  7. Correlations in plasma in thermodynamic equilibrium; Les correlations dans un plasma en equilibre

    Energy Technology Data Exchange (ETDEWEB)

    Yvon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    This paper treats of a fully, ionized plasma in thermodynamic equilibrium. An attempt is made at reviewing the calculation of spatial correlations in such a plasma. The equation of recurrence and the principle of superposition are used. The linear approximation is first treated. The next higher approximation is studied in the case of a neutral homogeneous and isotropic plasma. (author) [French] Un plasma completement ionise est en equilibre thermodynamique. On tente une mise au point du calcul des correlations de position dans ce plasma. On utilise les equations de recurrence et le principe de superposition. On expose d'abord l'approximation lineaire. Dans le cas d'un plasma neutre homogene et isotrope l'etude est poursuivie a l'approximation suivante. (auteur)

  8. Ion acceleration in non-equilibrium plasmas driven by fast drifting electron

    Energy Technology Data Exchange (ETDEWEB)

    Castro, G. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Di Bartolo, F., E-mail: fdibartolo@unime.it [Università di Messina, V.le F. Stagno D’Alcontres 31, 98166, Messina (Italy); Gambino, N. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Metodologie Fisiche e Chimiche per L’ingegneria, Viale A.Doria 6, 95125 Catania (Italy); Mascali, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Romano, F.P. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CNR-IBAM Via Biblioteca 4, 95124 Catania (Italy); Anzalone, A.; Celona, L.; Gammino, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Di Giugno, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Lanaia, D. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Miracoli, R. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); Università degli Studi di Catania, Dipartimento di Fisica e Astronomia, V. S.Sofia 64, 95123 Catania (Italy); Serafino, T. [CSFNSM, Viale A. Doria 6, 95125 Catania (Italy); Tudisco, S. [INFN- Laboratori Nazionali del Sud, via S.Sofia 62, 95123 Catania (Italy); CSFNSM, Viale A. Doria 6, 95125 Catania (Italy)

    2013-05-01

    We hereby present results on ion acceleration mechanisms in non equilibrium plasmas generated by microwaves or high intensity laser pulses. Experiments point out that in magnetized plasmas X–B conversion takes place for under resonance values of the magnetic field, i.e. an electromagnetic mode is converted into an electrostatic wave. The strong self-generated electric field, of the order of 10{sup 7} V/m, causes a E × B drift which accelerates both ions and electrons, as it is evident by localized sputtering in the plasma chamber. These fields are similar (in magnitude) to the ones obtainable in laser generated plasmas at intensity of 10{sup 12} W/cm{sup 2}. In this latter case, we observe that the acceleration mechanism is driven by electrons drifting much faster than plasma bulk, thus generating an extremely strong electric field ∼10{sup 7} V/m. The two experiments confirm that ions acceleration at low energy is possible with table-top devices and following complementary techniques: i.e. by using microwave-driven (producing CW beams) plasmas, or non-equilibrium laser-driven plasmas (producing pulsed beams). Possible applications involve ion implantation, materials surface modifications, ion beam assisted lithography, etc.

  9. Non-Equilibrium Liouville and Wigner Equations: Moment Methods and Long-Time Approximations

    Directory of Open Access Journals (Sweden)

    Ramon F. Álvarez-Estrada

    2014-03-01

    Full Text Available We treat the non-equilibrium evolution of an open one-particle statistical system, subject to a potential and to an external “heat bath” (hb with negligible dissipation. For the classical equilibrium Boltzmann distribution, Wc,eq, a non-equilibrium three-term hierarchy for moments fulfills Hermiticity, which allows one to justify an approximate long-time thermalization. That gives partial dynamical support to Boltzmann’s Wc,eq, out of the set of classical stationary distributions, Wc;st, also investigated here, for which neither Hermiticity nor that thermalization hold, in general. For closed classical many-particle systems without hb (by using Wc,eq, the long-time approximate thermalization for three-term hierarchies is justified and yields an approximate Lyapunov function and an arrow of time. The largest part of the work treats an open quantum one-particle system through the non-equilibrium Wigner function, W. Weq for a repulsive finite square well is reported. W’s (< 0 in various cases are assumed to be quasi-definite functionals regarding their dependences on momentum (q. That yields orthogonal polynomials, HQ,n(q, for Weq (and for stationary Wst, non-equilibrium moments, Wn, of W and hierarchies. For the first excited state of the harmonic oscillator, its stationary Wst is a quasi-definite functional, and the orthogonal polynomials and three-term hierarchy are studied. In general, the non-equilibrium quantum hierarchies (associated with Weq for the Wn’s are not three-term ones. As an illustration, we outline a non-equilibrium four-term hierarchy and its solution in terms of generalized operator continued fractions. Such structures also allow one to formulate long-time approximations, but make it more difficult to justify thermalization. For large thermal and de Broglie wavelengths, the dominant Weq and a non-equilibrium equation for W are reported: the non-equilibrium hierarchy could plausibly be a three-term one and possibly not

  10. Statistical thermodynamics of equilibrium polymers at interfaces

    NARCIS (Netherlands)

    Gucht, van der J.; Besseling, N.A.M.

    2002-01-01

    The behavior of a solution of equilibrium polymers (or living polymers) at an interface is studied, using a Bethe-Guggenheim lattice model for molecules with orientation dependent interactions. The density profile of polymers and the chain length distribution are calculated. For equilibrium polymers

  11. Mathematical foundations of thermodynamics

    CERN Document Server

    Giles, R; Stark, M; Ulam, S

    2013-01-01

    Mathematical Foundations of Thermodynamics details the core concepts of the mathematical principles employed in thermodynamics. The book discusses the topics in a way that physical meanings are assigned to the theoretical terms. The coverage of the text includes the mechanical systems and adiabatic processes; topological considerations; and equilibrium states and potentials. The book also covers Galilean thermodynamics; symmetry in thermodynamics; and special relativistic thermodynamics. The book will be of great interest to practitioners and researchers of disciplines that deal with thermodyn

  12. Self-assembly and transformation of hybrid nano-objects and nanostructures under equilibrium and non-equilibrium conditions

    Science.gov (United States)

    Mann, Stephen

    2009-10-01

    Understanding how chemically derived processes control the construction and organization of matter across extended and multiple length scales is of growing interest in many areas of materials research. Here we review present equilibrium and non-equilibrium self-assembly approaches to the synthetic construction of discrete hybrid (inorganic-organic) nano-objects and higher-level nanostructured networks. We examine a range of synthetic modalities under equilibrium conditions that give rise to integrative self-assembly (supramolecular wrapping, nanoscale incarceration and nanostructure templating) or higher-order self-assembly (programmed/directed aggregation). We contrast these strategies with processes of transformative self-assembly that use self-organizing media, reaction-diffusion systems and coupled mesophases to produce higher-level hybrid structures under non-equilibrium conditions. Key elements of the constructional codes associated with these processes are identified with regard to existing theoretical knowledge, and presented as a heuristic guideline for the rational design of hybrid nano-objects and nanomaterials.

  13. Partition functions. I. Improved partition functions and thermodynamic quantities for normal, equilibrium, and ortho and para molecular hydrogen

    Science.gov (United States)

    Popovas, A.; Jørgensen, U. G.

    2016-11-01

    Context. Hydrogen is the most abundant molecule in the Universe. Its thermodynamic quantities dominate the physical conditions in molecular clouds, protoplanetary disks, etc. It is also of high interest in plasma physics. Therefore thermodynamic data for molecular hydrogen have to be as accurate as possible in a wide temperature range. Aims: We here rigorously show the shortcomings of various simplifications that are used to calculate the total internal partition function. These shortcomings can lead to errors of up to 40 percent or more in the estimated partition function. These errors carry on to calculations of thermodynamic quantities. Therefore a more complicated approach has to be taken. Methods: Seven possible simplifications of various complexity are described, together with advantages and disadvantages of direct summation of experimental values. These were compared to what we consider the most accurate and most complete treatment (case 8). Dunham coefficients were determined from experimental and theoretical energy levels of a number of electronically excited states of H2. Both equilibrium and normal hydrogen was taken into consideration. Results: Various shortcomings in existing calculations are demonstrated, and the reasons for them are explained. New partition functions for equilibrium, normal, and ortho and para hydrogen are calculated and thermodynamic quantities are reported for the temperature range 1-20 000 K. Our results are compared to previous estimates in the literature. The calculations are not limited to the ground electronic state, but include all bound and quasi-bound levels of excited electronic states. Dunham coefficients of these states of H2 are also reported. Conclusions: For most of the relevant astrophysical cases it is strongly advised to avoid using simplifications, such as a harmonic oscillator and rigid rotor or ad hoc summation limits of the eigenstates to estimate accurate partition functions and to be particularly careful when

  14. Thermodynamics and kinetics of vesicles formation processes.

    Science.gov (United States)

    Guida, Vincenzo

    2010-12-15

    Vesicles are hollow aggregates, composed of bilayers of amphiphilic molecules, dispersed into and filled with a liquid solvent. These aggregates can be formed either as equilibrium or as out of equilibrium meta-stable structures and they exhibit a rich variety of different morphologies. The surprising richness of structures, the vast range of industrial applications and the presence of vesicles in a number of biological systems have attracted the interest of numerous researchers and scientists. In this article, we review both the thermodynamics and the kinetics aspects of the phenomena of formation of vesicles. We start presenting the thermodynamics of bilayer membranes formation and deformation, with the aim of deriving the conditions for the existence of equilibrium vesicles. Specifically, we use the results from continuum thermodynamics to discuss the possibility of formation of stable equilibrium vesicles, from both mixed amphiphiles and single component systems. We also link the bilayer membrane properties to the molecular structure of the starting amphiphiles. In the second part of this article, we focus on the dynamics and kinetics of vesiculation. We review the process of vesicles formation both from planar lamellar phase under shear and from isotropic micelles. In order to clarify the physical mechanisms of vesicles formation, we continuously draw a parallel between emulsification and vesiculation processes. Specifically, we compare the experimental results, the driving forces and the relative scaling laws identified for the two processes. Describing the dynamics of vesicles formation, we also discuss why non equilibrium vesicles can be formed by kinetics control and why they are meta-stable. Understanding how to control the properties, the stability and the formation process of vesicles is of fundamental importance for a vast number of industrial applications. Copyright © 2009. Published by Elsevier B.V.

  15. Experimental determination of thermodynamic equilibrium in biocatalytic transamination

    DEFF Research Database (Denmark)

    Tufvesson, Pär; Jensen, Jacob Skibsted; Kroutil, Wolfgang

    2012-01-01

    The equilibrium constant is a critical parameter for making rational design choices in biocatalytic transamination for the synthesis of chiral amines. However, very few reports are available in the scientific literature determining the equilibrium constant (K) for the transamination of ketones....... Various methods for determining (or estimating) equilibrium have previously been suggested, both experimental as well as computational (based on group contribution methods). However, none of these were found suitable for determining the equilibrium constant for the transamination of ketones. Therefore...

  16. Non-equilibrium umbrella sampling applied to force spectroscopy of soft matter.

    Science.gov (United States)

    Gao, Y X; Wang, G M; Williams, D R M; Williams, Stephen R; Evans, Denis J; Sevick, E M

    2012-02-07

    Physical systems often respond on a timescale which is longer than that of the measurement. This is particularly true in soft matter where direct experimental measurement, for example in force spectroscopy, drives the soft system out of equilibrium and provides a non-equilibrium measure. Here we demonstrate experimentally for the first time that equilibrium physical quantities (such as the mean square displacement) can be obtained from non-equilibrium measurements via umbrella sampling. Our model experimental system is a bead fluctuating in a time-varying optical trap. We also show this for simulated force spectroscopy on a complex soft molecule--a piston-rotaxane.

  17. Comparing different approaches to nonequilibrium thermodynamics in the context of warm inflation

    International Nuclear Information System (INIS)

    Ramos, Rudnei O.; Vicente, Gustavo S.

    2011-01-01

    Full text: Cosmological inflationary models are usually described by the evolution of a background scalar field, the inflaton. These models can be separated in isentropic (cold) and non isentropic (warm) when regarding the production of radiation. In isentropic or cold inflation, inflaton's dynamics occurs with no interactions, driving the universe to a stage of supercooling. In non isentropic inflation, however, the inflaton is coupled to other fields, which cause its decay into radiation. The radiation produced then compensates the supercooling due to expansion. This work is focused in warm inflation. There is a dissipative term in both inflaton's and radiation fluid's equations, due to inflatons decay. Nevertheless, an additional effect arises due to inner couplings in the radiation fluid, which causes internal decays within it. Therefore, the radiation fluid behaves as a nonideal fluid and viscosity effects must be taken into account. We consider here, in particular, bulk viscosity. The presence of dissipative effects leads the radiation fluid out of equilibrium. Hence, an extended thermodynamics is necessary to handle with this departure from equilibrium. Most theories, like the widely used Israel-Stewart (IS) second order theory, works well only near equilibrium (due to the linearity in the thermodynamic flux). In warm inflation, however, we cannot assure that inflation will happen in near equilibrium regime. For this reason, we consider different thermodynamic approaches of nonequilibrium statistical physics that can properly account for beyond equilibrium systems and apply them in the context of warm inflation. The effect of bulk viscosity, as well as shear viscosity, in the context of density perturbation calculations are also briefly compared in these frameworks. (author)

  18. Non-dissipative effects in nonequilibrium systems

    CERN Document Server

    Maes, Christian

    2018-01-01

    This book introduces and discusses both the fundamental aspects and the measurability of applications of time-symmetric kinetic quantities, outlining the features that constitute the non-dissipative branch of non-equilibrium physics. These specific features of non-equilibrium dynamics have largely been ignored in standard statistical mechanics texts. This introductory-level book offers novel material that does not take the traditional line of extending standard thermodynamics to the irreversible domain. It shows that although stationary dissipation is essentially equivalent with steady non-equilibrium and ubiquitous in complex phenomena, non-equilibrium is not determined solely by the time-antisymmetric sector of energy-entropy considerations. While this should not be very surprising, this book provides timely, simple reminders of the role of time-symmetric and kinetic aspects in the construction of non-equilibrium statistical mechanics.

  19. Partial local thermal equilibrium in a low-temperature hydrogen plasma

    International Nuclear Information System (INIS)

    Hey, J.D.; Chu, C.C.; Rash, J.P.S.

    1999-01-01

    If the degree of ionisation is sufficient, competition between de-excitation by electron collisions and radiative decay determines the smallest principal quantum number (the so-called 'thermal limit') above which partial local thermodynamic equilibrium (PLTE) holds under the particular conditions of electron density and temperature. The LTE (PLTE) criteria of Wilson (JQSRT 1962;2:477-90), Griem (Phys Rev 1963;131:1170-6; Plasma Spectroscopy. New York: McGraw-Hill, 1964), Drawin (Z Physik 1969;228: 99-119), Hey (JQSRT 1976;16:69-75), and Fujimoto and McWhirter (Phys Rev A 1990;42:6588-601) are examined as regards their applicability to neutral atoms. For these purposes, we consider for simplicity an idealised, steady-state, homogeneous and primarily optically thin plasma, with some additional comments and numerical estimates on the roles of opacity and of atom-atom collisions. Particularly for atomic states of lower principal quantum number, the first two of the above criteria should be modified quite appreciably before application to neutral radiators in plasmas of low temperature, because of the profoundly different nature of the near-threshold collisional cross-sections for atoms and ions, while the most recent criterion should be applied with caution to PLTE of atoms in cold plasmas in ionisation balance. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  20. The second-order description of rotational non-equilibrium effects in polyatomic gases

    Science.gov (United States)

    Myong, Rho Shin

    2017-11-01

    The conventional description of gases is based on the physical laws of conservation (mass, momentum, and energy) in conjunction with the first-order constitutive laws, the two-century old so-called Navier-Stokes-Fourier (NSF) equation based on a critical assumption made by Stokes in 1845 that the bulk viscosity vanishes. While the Stokes' assumption is certainly legitimate in the case of dilute monatomic gases, ever increasing evidences, however, now indicate that such is not the case, in particular, in the case of polyatomic gases-like nitrogen and carbon dioxide-far-from local thermal equilibrium. It should be noted that, from room temperature acoustic attenuation data, the bulk viscosity for carbon dioxide is three orders of magnitude larger than its shear viscosity. In this study, this fundamental issue in compressible gas dynamics is revisited and the second-order constitutive laws are derived by starting from the Boltzmann-Curtiss kinetic equation. Then the topology of the second-order nonlinear coupled constitutive relations in phase space is investigated. Finally, the shock-vortex interaction problem where the strong interaction of two important thermal (translational and rotational) non-equilibrium phenomena occurs is considered in order to highlight the rotational non-equilibrium effects in polyatomic gases. This work was supported by the National Research Foundation of South Korea (NRF 2017-R1A2B2-007634).

  1. Non-equilibrium coherence dynamics in one-dimensional Bose gases

    DEFF Research Database (Denmark)

    Hofferberth, S.; Lesanovsky, Igor; Fischer, B.

    2007-01-01

    Low-dimensional systems provide beautiful examples of many-body quantum physics. For one-dimensional (1D) systems, the Luttinger liquid approach provides insight into universal properties. Much is known of the equilibrium state, both in the weakly and strongly interacting regimes. However......, the coherence factor is observed to approach a non-zero equilibrium value, as predicted by a Bogoliubov approach. This coupled-system decay to finite coherence is the matter wave equivalent of phase-locking two lasers by injection. The non-equilibrium dynamics of superfluids has an important role in a wide...... range of physical systems, such as superconductors, quantum Hall systems, superfluid helium and spin systems. Our experiments studying coherence dynamics show that 1D Bose gases are ideally suited for investigating this class of phenomena....

  2. Modern thermodynamics

    CERN Document Server

    Ben-Naim, Arieh

    2017-01-01

    This textbook introduces thermodynamics with a modern approach, starting from four fundamental physical facts (the atomic nature of matter, the indistinguishability of atoms and molecules of the same species, the uncertainty principle, and the existence of equilibrium states) and analyzing the behavior of complex systems with the tools of information theory, in particular with Shannon's measure of information (or SMI), which can be defined on any probability distribution. SMI is defined and its properties and time evolution are illustrated, and it is shown that the entropy is a particular type of SMI, i.e. the SMI related to the phase-space distribution for a macroscopic system at equilibrium. The connection to SMI allows the reader to understand what entropy is and why isolated systems follow the Second Law of Thermodynamics. The Second Llaw is also formulated for other systems, not thermally isolated and even open with respect to the transfer of particles. All the fundamental aspects of thermodynamics are d...

  3. Nanofluidics thermodynamic and transport properties

    CERN Document Server

    Michaelides, Efstathios E (Stathis)

    2014-01-01

    This volume offers a comprehensive examination of the subject of heat and mass transfer with nanofluids as well as a critical review of the past and recent research projects in this area. Emphasis is placed on the fundamentals of the transport processes using particle-fluid suspensions, such as nanofluids. The nanofluid research is examined and presented in a holistic way using a great deal of our experience with the subjects of continuum mechanics, statistical thermodynamics, and non-equilibrium thermodynamics of transport processes. Using a thorough database, the experimental, analytical, and numerical advances of recent research in nanofluids are critically examined and connected to past research with medium and fine particles as well as to functional engineering systems. Promising applications and technological issues of heat/mass transfer system design with nanofluids are also discussed. This book also: Provides a deep scientific analysis of nanofluids using classical thermodynamics and statistical therm...

  4. The generalized second law of thermodynamics for the interacting polytropic dark energy in non-flat FRW universe enclosed by the apparent horizon

    International Nuclear Information System (INIS)

    Karami, K.; Ghaffari, S.

    2010-01-01

    We investigate the validity of the generalized second law of thermodynamics in a non-flat FRW universe containing the interacting polytropic dark energy with cold dark matter. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon. We show that for this model under thermal equilibrium with the Hawking radiation, the generalized second law is always satisfied throughout the history of the universe for any spatial curvature, independently of the deceleration parameter.

  5. The generalized second law of thermodynamics for the interacting polytropic dark energy in non-flat FRW universe enclosed by the apparent horizon

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K., E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Ghaffari, S. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2010-05-03

    We investigate the validity of the generalized second law of thermodynamics in a non-flat FRW universe containing the interacting polytropic dark energy with cold dark matter. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon. We show that for this model under thermal equilibrium with the Hawking radiation, the generalized second law is always satisfied throughout the history of the universe for any spatial curvature, independently of the deceleration parameter.

  6. Thermodynamics and statistical physics. 2. rev. ed.

    International Nuclear Information System (INIS)

    Schnakenberg, J.

    2002-01-01

    This textbook covers tthe following topics: Thermodynamic systems and equilibrium, irreversible thermodynamics, thermodynamic potentials, stability, thermodynamic processes, ideal systems, real gases and phase transformations, magnetic systems and Landau model, low temperature thermodynamics, canonical ensembles, statistical theory, quantum statistics, fermions and bosons, kinetic theory, Bose-Einstein condensation, photon gas

  7. Relations between dissipated work in non-equilibrium process and the family of Rényi divergences

    International Nuclear Information System (INIS)

    Wei, Bo-Bo; Plenio, M B

    2017-01-01

    In this paper, we establish a general relation which directly links the dissipated work done on a system driven arbitrarily far from equilibrium, a fundamental quantity in thermodynamics, and the family of Rényi divergences between two states along the forward and reversed dynamics, a fundamental concept in information theory. Specifically, we find that the generating function of the dissipated work under an arbitrary time-dependent driving is related to the family of Rényi divergences between a non-equilibrium state along the forward process and a non-equilibrium state along its time-reversed process. This relation is a consequence of the principle of conservation of information and time reversal symmetry and is universally applicable to both finite classical system and finite quantum system under arbitrary driving process. The significance of the relation between the generating function of dissipated work and the family of Rényi divergences are two fold. On the one hand, the relation establishes that the macroscopic entropy production and its fluctuations are determined by the family of Rényi divergences, a measure of distinguishability of two states, between a microscopic process and its time reversal. On the other hand, this relation tells us that we can extract the family of Renyi divergences from the work measurement in a microscopic process. For classical systems the work measurement is straightforward, from which the family of Rényi divergences can be obtained; for quantum systems under time-dependent driving the characteristic function of work distributions can be measured from Ramsey interferences of a single spin, then we can extract the family of Renyi divergences from Ramsey interferences of a single spin. (paper)

  8. Searching the laws of thermodynamics in the Lorentz-invariant thermal energy propagation equation

    International Nuclear Information System (INIS)

    Szőllősi, Tibor; Márkus, Ferenc

    2015-01-01

    Highlights: • We study the laws of thermodynamics in a Lorentz-invariant Lagrangian model. • We calculate the canonical momenta and tensor. • We give the correspondents of the laws of thermodynamics in the model. • The developed theory is considered to be coherent with the laws of thermodynamics. - Abstract: In earlier works it has been shown that the Lorentz-invariant description of thermal energy transfer can be deduced from a Lagrangian description, by which the definition of a dynamic temperature is involved at the same time. It is also proved that this formulation includes the classical Fourier heat propagation as a natural limit. However, the relation of the elaborated theory to the basic laws of thermodynamics remained open. This connection is studied in details in the present paper. It is posted that though strictly speaking the model is meaningless in equilibrium and corresponds only to the non-equilibrium parts of the temperature, it respects the laws of thermodynamics and provides a way to transfer some form of them into the validity-area of the model

  9. Two-phase, mass-transport model for direct methanol fuel cells with effect of non-equilibrium evaporation and condensation

    Science.gov (United States)

    Yang, W. W.; Zhao, T. S.

    A two-phase, mass-transport model for liquid-feed direct methanol fuel cells (DMFCs) is developed by taking into account the effect of non-equilibrium evaporation and condensation of methanol and water. The comparison between the present model and other models indicates that the present model yields more reasonable predictions of cell performance. Particularly, it is shown that the models that invoke a thermodynamic-equilibrium assumption between phases will overestimate mass-transport rates of methanol and water, thereby resulting in an inaccurate prediction of cell performance. The parametric study using the present model reveals that the gas coverage at the flow channel-diffusion-layer interface is directly related to the gas-void fraction inside the anode porous region; increasing the gas-void fraction will increase the mass-transfer resistance of methanol and thus lower cell performance. The effects of the geometric dimensions of the cell structure, such as channel width and rib width, on cell performance are also investigated with the model developed in this work.

  10. Irreversible thermodynamics of dark energy on the entropy-corrected apparent horizon

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K; Sahraei, N [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of); Jamil, M, E-mail: KKarami@uok.ac.i, E-mail: mjamil@camp.nust.edu.p [Center for Advanced Mathematics and Physics (CAMP), National University of Sciences and Technology (NUST), Islamabad (Pakistan)

    2010-10-15

    We study the irreversible (non-equilibrium) thermodynamics of the Friedmann-Robertson-Walker (FRW) universe containing only dark energy. Using the modified entropy-area relation that is motivated by loop quantum gravity, we calculate the entropy-corrected form of the apparent horizon of the FRW universe.

  11. Simulations of NMR pulse sequences during equilibrium and non-equilibrium chemical exchange

    International Nuclear Information System (INIS)

    Helgstrand, Magnus; Haerd, Torleif; Allard, Peter

    2000-01-01

    The McConnell equations combine the differential equations for a simple two-state chemical exchange process with the Bloch differential equations for a classical description of the behavior of nuclear spins in a magnetic field. This equation system provides a useful starting point for the analysis of slow, intermediate and fast chemical exchange studied using a variety of NMR experiments. The McConnell equations are in the mathematical form of an inhomogeneous system of first-order differential equations. Here we rewrite the McConnell equations in a homogeneous form in order to facilitate fast and simple numerical calculation of the solution to the equation system. The McConnell equations can only treat equilibrium chemical exchange. We therefore also present a homogeneous equation system that can handle both equilibrium and non-equilibrium chemical processes correctly, as long as the kinetics is of first-order. Finally, the same method of rewriting the inhomogeneous form of the McConnell equations into a homogeneous form is applied to a quantum mechanical treatment of a spin system in chemical exchange. In order to illustrate the homogeneous McConnell equations, we have simulated pulse sequences useful for measuring exchange rates in slow, intermediate and fast chemical exchange processes. A stopped-flow NMR experiment was simulated using the equations for non-equilibrium chemical exchange. The quantum mechanical treatment was tested by the simulation of a sensitivity enhanced 15 N-HSQC with pulsed field gradients during slow chemical exchange and by the simulation of the transfer efficiency of a two-dimensional heteronuclear cross-polarization based experiment as a function of both chemical shift difference and exchange rate constants

  12. Some aspects of plasma thermodynamics

    International Nuclear Information System (INIS)

    Gorgoraki, V.I.

    1986-01-01

    The objective reasons which have inhibited the development of a plasma-thermodynamics theory are discussed and the authors formulate the fundamental principles which can be the basis of a common plasma-thermodynamics theory. Two kinds of thermodynamic equilibrium plasmas are discussed, an isothermal plasma and a nonisothermal plasma. An isothermal plasma is a high-temperature plasma; the Saha-Eggert equation describes its behavior. A nonisothermal plasma is a low-temperature plasma, and the reactions taking place therein are purely plasma-chemical. The ionization equilibrium and the composition of such a plasma can be found with the aid of the equations presented in this paper

  13. Magnetic field and contact resistance dependence of non-local charge imbalance

    International Nuclear Information System (INIS)

    Kleine, A; Baumgartner, A; Trbovic, J; Schoenenberger, C; Golubev, D S; Zaikin, A D

    2010-01-01

    Crossed Andreev reflection (CAR) in metallic nanostructures, a possible basis for solid-state electron entangler devices, is usually investigated by detecting non-local voltages in multi-terminal superconductor/normal metal devices. This task is difficult because other subgap processes may mask the effects of CAR. One of these processes is the generation of charge imbalance (CI) and the diffusion of non-equilibrium quasi-particles in the superconductor. Here we demonstrate a characteristic dependence of non-local CI on a magnetic field applied parallel to the superconducting wire, which can be understood by a generalization of the standard description of CI to non-local experiments. These results can be used to distinguish CAR and CI and to extract CI relaxation times in superconducting nanostructures. In addition, we investigate the dependence of non-local CI on the resistance of the injector and detector contacts and demonstrate a quantitative agreement with a recent theory using only material and junction characteristics extracted from separate direct measurements.

  14. The thermodynamics of a strictly non-ideal Coulomb system

    International Nuclear Information System (INIS)

    Krikorian V, R.

    1982-01-01

    Using the equation of state for a symmetric quantum Coulomb system with strong interactions, the phase transition and the existence of the plasma state are analyzed. With a reduction potential which includes quantum effects, a generalization of Saha's formula is obtained. The thermodynamics stability of the system is demonstrated analytically. The isotherms for equilibrium ionization are presented and the stability of the system is studied. The electrical conductivity is analyzed in a region of critical values, and the predictions are compared with experimental data for which one observes a quantitative change in the conductivity. (L.C.) [pt

  15. Covariant Thermodynamics of Quantum Systems: Passivity, Semipassivity, and the Unruh Effect

    NARCIS (Netherlands)

    Kuckert, Bernd

    2001-01-01

    According to the Second Law of Thermodynamics, cycles applied to thermodynamic equilibrium states cannot perform any work (passivity property of thermodynamic equilibrium states). In the presence of matter this can hold only in the rest frame of the matter, as moving matter makes windmills and

  16. BGK-type models in strong reaction and kinetic chemical equilibrium regimes

    International Nuclear Information System (INIS)

    Monaco, R; Bianchi, M Pandolfi; Soares, A J

    2005-01-01

    A BGK-type procedure is applied to multi-component gases undergoing chemical reactions of bimolecular type. The relaxation process towards local Maxwellians, depending on mass and numerical densities of each species as well as common velocity and temperature, is investigated in two different cases with respect to chemical regimes. These cases are related to the strong reaction regime characterized by slow reactions, and to the kinetic chemical equilibrium regime where fast reactions take place. The consistency properties of both models are stated in detail. The trend to equilibrium is numerically tested and comparisons for the two regimes are performed within the hydrogen-air and carbon-oxygen reaction mechanism. In the spatial homogeneous case, it is also shown that the thermodynamical equilibrium of the models recovers satisfactorily the asymptotic equilibrium solutions to the reactive Euler equations

  17. Modeling of two-phase flow with thermal and mechanical non-equilibrium

    International Nuclear Information System (INIS)

    Houdayer, G.; Pinet, B.; Le Coq, G.; Reocreux, M.; Rousseau, J.C.

    1977-01-01

    To improve two-phase flow modeling by taking into account thermal and mechanical non-equilibrium a joint effort on analytical experiment and physical modeling has been undertaken. A model describing thermal non-equilibrium effects is first presented. A correlation of mass transfer has been developed using steam water critical flow tests. This model has been used to predict in a satisfactory manner blowdown tests. It has been incorporated in CLYSTERE system code. To take into account mechanical non-equilibrium, a six equations model is written. To get information on the momentum transfers special nitrogen-water tests have been undertaken. The first results of these studies are presented

  18. A Comparison of Local and Global Formulations of Thermodynamics

    Science.gov (United States)

    DeVoe, Howard

    2013-01-01

    Several educators have advocated teaching thermodynamics using a"global" approach in place of the conventional "local" approach. This article uses four examples of experiments to illustrate the two formulations and the definitions of heat and work associated with them. Advantages and disadvantages of both approaches are…

  19. A general maximum entropy framework for thermodynamic variational principles

    International Nuclear Information System (INIS)

    Dewar, Roderick C.

    2014-01-01

    Minimum free energy principles are familiar in equilibrium thermodynamics, as expressions of the second law. They also appear in statistical mechanics as variational approximation schemes, such as the mean-field and steepest-descent approximations. These well-known minimum free energy principles are here unified and extended to any system analyzable by MaxEnt, including non-equilibrium systems. The MaxEnt Lagrangian associated with a generic MaxEnt distribution p defines a generalized potential Ψ for an arbitrary probability distribution p-hat, such that Ψ is a minimum at (p-hat) = p. Minimization of Ψ with respect to p-hat thus constitutes a generic variational principle, and is equivalent to minimizing the Kullback-Leibler divergence between p-hat and p. Illustrative examples of min–Ψ are given for equilibrium and non-equilibrium systems. An interpretation of changes in Ψ is given in terms of the second law, although min–Ψ itself is an intrinsic variational property of MaxEnt that is distinct from the second law

  20. A general maximum entropy framework for thermodynamic variational principles

    Energy Technology Data Exchange (ETDEWEB)

    Dewar, Roderick C., E-mail: roderick.dewar@anu.edu.au [Research School of Biology, The Australian National University, Canberra ACT 0200 (Australia)

    2014-12-05

    Minimum free energy principles are familiar in equilibrium thermodynamics, as expressions of the second law. They also appear in statistical mechanics as variational approximation schemes, such as the mean-field and steepest-descent approximations. These well-known minimum free energy principles are here unified and extended to any system analyzable by MaxEnt, including non-equilibrium systems. The MaxEnt Lagrangian associated with a generic MaxEnt distribution p defines a generalized potential Ψ for an arbitrary probability distribution p-hat, such that Ψ is a minimum at (p-hat) = p. Minimization of Ψ with respect to p-hat thus constitutes a generic variational principle, and is equivalent to minimizing the Kullback-Leibler divergence between p-hat and p. Illustrative examples of min–Ψ are given for equilibrium and non-equilibrium systems. An interpretation of changes in Ψ is given in terms of the second law, although min–Ψ itself is an intrinsic variational property of MaxEnt that is distinct from the second law.