WorldWideScience

Sample records for non-linear field theories

  1. A Master Equation for Multi-Dimensional Non-Linear Field Theories

    CERN Document Server

    Park, Q H

    1992-01-01

    A master equation ( $n$ dimensional non--Abelian current conservation law with mutually commuting current components ) is introduced for multi-dimensional non-linear field theories. It is shown that the master equation provides a systematic way to understand 2-d integrable non-linear equations as well as 4-d self-dual equations and, more importantly, their generalizations to higher dimensions.

  2. On the theory of a non-linear neutral scalar field with spontaneously broken symmetry

    CERN Document Server

    Poluektov, Yu M

    2015-01-01

    On the example of a real scalar field, an approach to quantization of non-linear fields and construction of the perturbation theory with account of spontaneous symmetry breaking is proposed. The method is based on using as the main approximation of the relativistic self-consistent field model, in which the influence of vacuum fluctuations is taken into account in constructing the one-particle states. The solutions of the self-consistent equations determine possible states, which also include the states with broken symmetries. Different states of the field are matched to particles, whose masses are determined by both parameters of the Lagrangian and vacuum fluctuations.

  3. The non-linear field theory III: Geometrical illustration of the electromagnetic representation of Dirac's electron theory

    OpenAIRE

    Kyriakos, Alexander G.

    2004-01-01

    The present paper is the continuity of the previous papers "Non-linear field theory" I and II. Here on the basis of the electromagnetic representation of Dirac's electron theory we consider the geometrical distribution of the electromagnetic fields of the electron-positron. This gives the posibility to obtain the explanation and solution of many fundamental problems of the QED.

  4. Non-equilibrium statistical field theory for classical particles: Non-linear structure evolution with first-order interaction

    CERN Document Server

    Bartelmann, Matthias; Berg, Daniel; Kozlikin, Elena; Lilow, Robert; Viermann, Celia

    2014-01-01

    We calculate the power spectrum of density fluctuations in the statistical non-equilibrium field theory for classical, microscopic degrees of freedom to first order in the interaction potential. We specialise our result to cosmology by choosing appropriate initial conditions and propagators and show that the non-linear growth of the density power spectrum found in numerical simulations of cosmic structure evolution is reproduced well to redshift zero and for arbitrary wave numbers. The main difference of our approach to ordinary cosmological perturbation theory is that we do not perturb a dynamical equation for the density contrast. Rather, we transport the initial phase-space distribution of a canonical particle ensemble forward in time and extract any collective information from it at the time needed. Since even small perturbations of particle trajectories can lead to large fluctuations in density, our approach allows to reach high density contrast already at first order in the perturbations of the particle...

  5. Simulation of non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Fox, Paul D.; Wilhjelm, Jens E.

    2002-01-01

    An approach for simulating non-linear ultrasound imaging using Field II has been implemented using the operator splitting approach, where diffraction, attenuation, and non-linear propagation can be handled individually. The method uses the Earnshaw/Poisson solution to Burgcrs' equation for the non......-linear ultrasound imaging in 3D using filters or pulse inversion for any kind of transducer, focusing, apodization, pulse emission and scattering phantom. This is done by first simulating the non-linear emitted field and assuming that the scattered field is weak and linear. The received signal is then the spatial...

  6. Non-linear optics and local-field factors in liquid chloroform: A time-dependent density-functional theory study

    Science.gov (United States)

    Strubbe, David A.; Andrade, Xavier; Rubio, Angel; Louie, Steven G.

    2010-03-01

    Chloroform is often used as a solvent when measuring non-linear optical properties of organic molecules. We assess the influence of the solution environment on the molecular properties by calculating directly the non-linear susceptibilities of liquid chloroform at optical frequencies. We use the Sternheimer equation in time-dependent density-functional theory [J. Chem. Phys. 126, 184106 (2007)], on snapshots from ab initio molecular dynamics. We compare the results to those in the gas and solid phases, and to experimental values. We also calculate ab initio local-field factors, used to analyze electric-field-induced second-harmonic generation (EFISH) and hyper-Rayleigh scattering (HRS) experiments.

  7. Generalized non-linear strength theory and transformed stress space

    Institute of Scientific and Technical Information of China (English)

    YAO Yangping; LU Dechun; ZHOU Annan; ZOU Bo

    2004-01-01

    Based on the test data of frictional materials and previous research achievements in this field, a generalized non-linear strength theory (GNST) is proposed. It describes non-linear strength properties on the π-plane and the meridian plane using a unified formula, and it includes almost all the present non-linear strength theories, which can be used in just one material. The shape of failure function of the GNST is a smooth curve between the SMP criterion and the Mises criterion on the π-plane, and an exponential curve on the meridian plane. Through the transformed stress space based on the GNST, the combination of the GNST and various constitutive models using p and q as stress parameters can be realized simply and rationally in three-dimensional stress state.

  8. A new numerical method to solve non-linear coupled differential equations for various field theory models

    Science.gov (United States)

    Post, U.; Kunz, J.; Mosel, U.

    1987-01-01

    We present a new method for the solution of the coupled differential equations which have to be solved in various field-theory models. For the solution of the eigenvalue problem a modified version of the imaginary time-step method is applied. Using this new scheme we prevent the solution from running into the negative-energy sea. For the boson fields we carry out a time integration with an additional damping term which forces the field to converge against the static solution. Some results are given for the Walecka model and the Friedberg-Lee model.

  9. Non-linear Realizations of Conformal Symmetry and Effective Field Theory for the Pseudo-Conformal Universe

    CERN Document Server

    Hinterbichler, Kurt; Khoury, Justin

    2012-01-01

    The pseudo-conformal scenario is an alternative to inflation in which the early universe is described by an approximate conformal field theory on flat, Minkowski space. Some fields acquire a time-dependent expectation value, which breaks the flat space so(4,2) conformal algebra to its so(4,1) de Sitter subalgebra. As a result, weight-0 fields acquire a scale invariant spectrum of perturbations. The scenario is very general, and its essential features are determined by the symmetry breaking pattern, irrespective of the details of the underlying microphysics. In this paper, we apply the well-known coset technique to derive the most general effective lagrangian describing the Goldstone field and matter fields, consistent with the assumed symmetries. The resulting action captures the low energy dynamics of any pseudo-conformal realization, including the U(1)-invariant quartic model and the Galilean Genesis scenario. We also derive this lagrangian using an alternative method of curvature invariants, consisting of ...

  10. Non-equilibrium statistical field theory for classical particles: Linear and mildly non-linear evolution of cosmological density power spectra

    CERN Document Server

    Bartelmann, Matthias; Berg, Daniel; Kozlikin, Elena; Lilow, Robert; Viermann, Celia

    2014-01-01

    We use the non-equlibrium statistical field theory for classical particles, recently developed by Mazenko and Das and Mazenko, together with the free generating functional we have previously derived for point sets initially correlated in phase space, to calculate the time evolution of power spectra in the free theory, i.e. neglecting particle interactions. We provide expressions taking linear and quadratic momentum correlations into account. Up to this point, the expressions are general with respect to the free propagator of the microscopic degrees of freedom. We then specialise the propagator to that expected for particles in cosmology treated within the Zel'dovich approximation and show that, to linear order in the momentum correlations, the linear growth of the cosmological power spectrum is reproduced. Quadratic momentum correlations return a first contribution to the non-linear evolution of the power spectrum, for which we derive a simple closed expression valid for arbitrary wave numbers. This expressio...

  11. Non-linear theory of elasticity

    CERN Document Server

    Lurie, AI

    2012-01-01

    This book examines in detail the Theory of Elasticity which is a branch of the mechanics of a deformable solid. Special emphasis is placed on the investigation of the process of deformation within the framework of the generally accepted model of a medium which, in this case, is an elastic body. A comprehensive list of Appendices is included providing a wealth of references for more in depth coverage. The work will provide both a stimulus for future research in this field as well as useful reference material for many years to come.

  12. Non-Equilibrium Real-Time Dynamics of Quantum Fields Linear and Non-Linear Relaxation in Scalar and Gauge Theories

    CERN Document Server

    Boyanovsky, D; Holman, R; Kumar, S P; Pisarski, R D; Salgado, J; Pisarski, Rob D.

    1998-01-01

    The real time evolution of field condensates is solved for small and large field amplitudes in scalar theories.For small amplitudes,the quantum equations of motion for the condensate can be linearized and solved by Laplace transform. The late time evolution turns to be determined by the singularities in the complex plane (one-particle poles, two- and multi- particle cuts, Landau cuts for non-zero initial temperature). In hot scalar electrodynamics, we solve the real time evolution of field condensates with soft length scales \\sim k^{-1}>(eT)^{-1}. Transverse gauge invariant condensates relax as 1/t^2 to amplitudes determined by the quasiparticle poles. We rederive the HTL action using the non-equilibrium field theory techniques.In the nonlinear regime (for large initial energy densities) we analyze the dynamics of dissipation and relaxation in scalar theory after linear unstabilities are shut-off by the quantum back-reaction. A new time scale emerges that separates the linear from the non-linear regimes. This...

  13. On the non-linear scale of cosmological perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego [Theory Division, CERN, 1211 Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas, E-mail: diego.blas@cern.ch, E-mail: mathias.garny@desy.de, E-mail: Thomas.Konstandin@desy.de [DESY, Notkestr. 85, 22607 Hamburg (Germany)

    2013-09-01

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections at any order in perturbation theory. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  14. On the non-linear scale of cosmological perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-04-15

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections.

  15. Comparison of Simulated and Measured Non-linear Ultrasound Fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    In this paper results from a non-linear AS (angular spectrum) based ultrasound simulation program are compared to water-tank measurements. A circular concave transducer with a diameter of 1 inch (25.4 mm) is used as the emitting source. The measured pulses are rst compared with the linear...... simulation program Field II, which will be used to generate the source for the AS simulation. The generated non-linear ultrasound eld is measured by a hydrophone in the focal plane. The second harmonic component from the measurement is compared with the AS simulation, which is used to calculate both...

  16. On the non-linear stability of scalar field cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Alho, Artur; Mena, Filipe C [Centro de Matematica, Universidade do Minho, 4710-057 Braga (Portugal); Kroon, Juan A Valiente, E-mail: aalho@math.uminho.pt, E-mail: fmena@math.uminho.pt, E-mail: jav@maths.qmul.ac.uk [School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS (United Kingdom)

    2011-09-22

    We review recent work on the stability of flat spatially homogeneous and isotropic backgrounds with a self-interacting scalar field. We derive a first order quasi-linear symmetric hyperbolic system for the Einstein-nonlinear-scalar field system. Then, using the linearized system, we show how to obtain necessary and sufficient conditions which ensure the exponential decay to zero of small non-linear perturbations.

  17. Non-linear theory of elasticity and optimal design

    CERN Document Server

    Ratner, LW

    2003-01-01

    In order to select an optimal structure among possible similar structures, one needs to compare the elastic behavior of the structures. A new criterion that describes elastic behavior is the rate of change of deformation. Using this criterion, the safe dimensions of a structure that are required by the stress distributed in a structure can be calculated. The new non-linear theory of elasticity allows one to determine the actual individual limit of elasticity/failure of a structure using a simple non-destructive method of measurement of deformation on the model of a structure while presently it

  18. A solution to the non-linear equations of D=10 super Yang-Mills theory

    CERN Document Server

    Mafra, Carlos R

    2015-01-01

    In this letter, we present a formal solution to the non-linear field equations of ten-dimensional super Yang--Mills theory. It is assembled from products of linearized superfields which have been introduced as multiparticle superfields in the context of superstring perturbation theory. Their explicit form follows recursively from the conformal field theory description of the gluon multiplet in the pure spinor superstring. Furthermore, superfields of higher mass dimensions are defined and their equations of motion spelled out.

  19. Non-linearities in Theory-of-Mind Development

    Science.gov (United States)

    Blijd-Hoogewys, Els M. A.; van Geert, Paul L. C.

    2017-01-01

    Research on Theory-of-Mind (ToM) has mainly focused on ages of core ToM development. This article follows a quantitative approach focusing on the level of ToM understanding on a measurement scale, the ToM Storybooks, in 324 typically developing children between 3 and 11 years of age. It deals with the eventual occurrence of developmental non-linearities in ToM functioning, using smoothing techniques, dynamic growth model building and additional indicators, namely moving skewness, moving growth rate changes and moving variability. The ToM sum-scores showed an overall developmental trend that leveled off toward the age of 10 years. Within this overall trend two non-linearities in the group-based change pattern were found: a plateau at the age of around 56 months and a dip at the age of 72–78 months. These temporary regressions in ToM sum-score were accompanied by a decrease in growth rate and variability, and a change in skewness of the ToM data, all suggesting a developmental shift in ToM understanding. The temporary decreases also occurred in the different ToM sub-scores and most clearly so in the core ToM component of beliefs. It was also found that girls had an earlier growth spurt than boys and that the underlying developmental path was more salient in girls than in boys. The consequences of these findings are discussed from various theoretical points of view, with an emphasis on a dynamic systems interpretation of the underlying developmental paths. PMID:28101065

  20. Non-linear affine embedding of the Dirac field from the multiplicity-free SL(4,R) unirreps

    CERN Document Server

    López-Pinto, A; Tresguerres, R

    1995-01-01

    The correspondence between the linear multiplicity-free unirreps of SL(4, R) studied by Ne'eman and {\\~{S}}ija{\\~{c}}ki and the non-linear realizations of the affine group is worked out. The results obtained clarify the inclusion of spinorial fields in a non-linear affine gauge theory of gravitation.

  1. Non Linear Force Free Field Modeling for a Pseudostreamer

    Science.gov (United States)

    Karna, Nishu; Savcheva, Antonia; Gibson, Sarah; Tassev, Svetlin V.

    2017-08-01

    In this study we present a magnetic configuration of a pseudostreamer observed on April 18, 2015 on southern west limb embedding a filament cavity. We constructed Non Linear Force Free Field (NLFFF) model using the flux rope insertion method. The NLFFF model produces the three-dimensional coronal magnetic field constrained by observed coronal structures and photospheric magnetogram. SDO/HMI magnetogram was used as an input for the model. The high spatial and temporal resolution of the SDO/AIA allows us to select best-fit models that match the observations. The MLSO/CoMP observations provide full-Sun observations of the magnetic field in the corona. The primary observables of CoMP are the four Stokes parameters (I, Q, U, V). In addition, we perform a topology analysis of the models in order to determine the location of quasi-separatrix layers (QSLs). QSLs are used as a proxy to determine where the strong electric current sheets can develop in the corona and also provide important information about the connectivity in complicated magnetic field configuration. We present the major properties of the 3D QSL and FLEDGE maps and the evolution of 3D coronal structures during the magnetofrictional process. We produce FORWARD-modeled observables from our NLFFF models and compare to a toy MHD FORWARD model and the observations.

  2. Non-linear magnetization effects within the Kosterlitz-Thouless theory

    Science.gov (United States)

    Benfatto, Lara; Castellani, Claudio; Giamarchi, Thierry

    2008-03-01

    Recent experiments in cuprate superconductors have attracted the attention on the role of vortex fluctuations. Measurements of the field-induced magnetization showed that the correlation length diverge exponentially, as predicted within the Kosterlitz-Thouless (KT) theory. However, it is somehow puzzling thepersistence of strong non-linear magnetization effects at low field. Here we address this issue by means of a new theoretical approach to the KT transition at finite magnetic field, based on the sine-Gordon model. This approach is particularly useful in two respects. First, it leads to a straightforward definition of the field-induced magnetization as a function of the external magnetic field H instead of the magnetic induction B, which is crucial to get a consistent description of the Meissner phase. Second, it allows us to identify the cross-over field Hcr from linear to non-linear magnetization both below and above the transition. Above TKT Hcr turns out to scale as the inverse correlation length, so that it decreases as the transition is approached. As a consequence, the fact that only the non-linear regime is accessible experimentally should be interpreted as a typical signature of the fast divergence of the correlation length within the KT theory. L.Benfatto, C.Castellani and T.Giamarchi, Phys. Rev. Lett. 99, 207002 (2007)

  3. Non linear bend instability theory and finite amplitude evolution of bed deformations in meandering rivers

    Science.gov (United States)

    Bolla Pittaluga, M.; Nobile, G.; Seminara, G.

    2007-12-01

    We develop a three dimensional non linear asymptotic theory for flow and bed topography in meandering channels able to describe finite amplitude perturbations of bottom topography. The model extends a previous analysis on the equilibrium finite bed deformations, accounting here for arbitrary, yet slow, variations of channel curvature. This approach then allows us to formulate a non-linear bend instability theory, which predicts several characteristic features of the actual meandering process and extends results obtained by classical linear bend theories. In agreement with previous weakly non linear findings and consistently with field observations, the bend growth rate turns out to have a peak at some value of the meander wavenumber, typically larger than the resonant value of linear stability theory. Moreover, a feature typical of non linear waves arises: the selected wavenumber depends on the amplitude of the initial perturbation and, in particular, larger wavelengths are associated with larger amplitudes. The picture offered by results obtained through the present theory seems fully satisfactory and consistent with field observations as well as previous theoretical findings. Further substantiation of the model has been achieved by comparing predictions obtained for a test case (a reach of the Cecina river, Italy) with field observations. Finally the model is also extended to follow the evolution of bed deformations in time in order to investigate the morphological response of the river to a sequence of flood events characterized by a slow temporal variation of flow and sediment supply. Such an investigation would possibly provide a rational interpretation of the as yet loosely defined notion of formative discharge of an alluvial river.

  4. Surface Tension of Acid Solutions: Fluctuations beyond the Non-linear Poisson-Boltzmann Theory

    CERN Document Server

    Markovich, Tomer; Podgornik, Rudi

    2016-01-01

    We extend our previous study of surface tension of ionic solutions and apply it to the case of acids (and salts) with strong ion-surface interactions. These ion-surface interactions yield a non-linear boundary condition with an effective surface charge due to adsorption of ions from the bulk onto the interface. The calculation is done using the loop-expansion technique, where the zero-loop (mean field) corresponds of the non-linear Poisson-Boltzmann equation. The surface tension is obtained analytically to one-loop order, where the mean-field contribution is a modification of the Poisson-Boltzmann surface tension, and the one-loop contribution gives a generalization of the Onsager-Samaras result. Our theory fits well a wide range of different acids and salts, and is in accord with the reverse Hofmeister series for acids.

  5. Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes

    DEFF Research Database (Denmark)

    Zhang, H.W.; Schäffer, Hemming Andreas

    2007-01-01

    An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....

  6. Non linear prompt neutron kinetics in multigroup diffusion theory

    Energy Technology Data Exchange (ETDEWEB)

    Ghatak, Ajoy Kumar

    1963-06-15

    It is shown that in the usual point kinetics formulation of the Fuch's model the assumption that the basic quantity is the ratio of prompt negative temperature coefficient to prompt neutron lifetime is correct in the limit that the higher mode effects can be neglected. The criticality calculation needed to calculate this coefficient is defined. The effect on the Fuch's model when the heat capacity and temperature coefficient vary linearly with temperature and delayed neutrons are taken into account is considered. The higher mode contributions in the presence of temperature feed-back effects are estimated. A method for calculating the space-dependent effects in non-linear kinetics is outlined. An analysis of the transient behavior of the TREAT reactor is also given. (C.E.S.)

  7. Time domain non linear strip theory for ship motions

    OpenAIRE

    Fan, Y.T.; Wilson, P. A.

    2004-01-01

    A new implementation of strip theory is proposed based on the strip theory by Salvesen, et al. [1] and early work by Westlake and Wilson [2]. Compared with traditional strip theory, the main difference is that the calculation is carried out in the time domain. This makes it possible to cope with relatively large-amplitude motions and non-constant forward speed problems. At each time step, the exact underwater sections are extracted; the velocity potential is required to satisfyt...

  8. Angular spectrum approach for fast simulation of pulsed non-linear ultrasound fields

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Henrik; Jensen, Jørgen Arendt

    2011-01-01

    The paper presents an Angular Spectrum Approach (ASA) for simulating pulsed non-linear ultrasound fields. The source of the ASA is generated by Field II, which can simulate array transducers of any arbitrary geometry and focusing. The non-linear ultrasound simulation program - Abersim, is used...... the fundamental and keep the second harmonic field, since Abersim simulates non-linear fields with all harmonic components. ASA and Abersim are compared for the pulsed fundamental and second harmonic fields in the time domain at depths of 30 mm, 40 mm (focal depth) and 60 mm. Full widths at -6 dB (FWHM) are f0...

  9. Non-Linear Wave Loads and Ship responses by a time-domain Strip Theory

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher

    1998-01-01

    A non-linear time-domain strip theory for vertical wave loads and ship responses is presented. The theory is generalized from a rigorous linear time-domain strip theory representaton. The hydrodynamic memory effect due to the free surface is approximated by a higher order differential equation...

  10. A new formulation and regularization of gauge theories using a non-linear wavelet expansion

    CERN Document Server

    Federbush, P G

    1995-01-01

    The Euclidean version of the Yang-Mills theory is studied in four dimensions. The field is expressed non-linearly in terms of the basic variables. The field is developed inductively, adding one excitation at a time. A given excitation is added into the ``background field'' of the excitations already added, the background field expressed in a radially axial gauge about the point where the excitation is centered. The linearization of the resultant expression for the field is an expansion A_\\mu(x) \\ \\cong \\ \\sum_\\alpha \\; c_\\alpha \\; \\psi_\\mu^\\alpha(x) where \\psi^\\alpha_\\mu(x) is a divergence-free wavelet and c_\\alpha is the associated basic variable, a Lie Algebra element of the gauge group. One is working in a particular gauge, regularization is simply cutoff regularization realized by omitting wavelet excitations below a certain length scale. We will prove in a later paper that only the usual gauge-invariant counterterms are required to renormalize perturbation theory. Using related ideas, but essentially ind...

  11. Non-linear vacuum polarization in strong fields

    Energy Technology Data Exchange (ETDEWEB)

    Gyulassy, M.

    1981-07-01

    The Wichmann-Kroll formalism for calculating the vacuum polarization density to first order in ..cap alpha.. but to all orders in Z..cap alpha.. is derived. The most essential quantity is shown to be the electrons Green's function in these calculations. The method of constructing that Green's function in the field of finite radius nuclei is then presented.

  12. Non-linear response of infinite periodic solids to homogenous electric fields and collective atomic displacements

    Science.gov (United States)

    Ghosez, Philippe

    2006-03-01

    The non-linear response of infinite periodic solids to homogenous electric fields and cooperative atomic displacements will be discussed in the framework of density functional perturbation theory. The approach is based on the “2n + 1” theorem applied to an electric field dependent energy functional. We will focus on the non-linear optical susceptibilities, Raman scattering efficiencies and electrooptic coefficients. Different formulations of third-order energy derivatives will be examined and their convergence with respect to the k-point sampling will be discussed. The method will be applied to conventional semiconductors and to ferroelectric oxides. In the latter case, we will also describe how the first- principles results can be combined to an effective Hamiltonian approach in order to provide access to the temperature dependence of the optical properties. This work was done in collabration with M. Veithen and X. Gonze and was supported by the VolkwagenStiftung, FNRS-Belgium and the FAME-NoE.

  13. Fast simulation of non-linear pulsed ultrasound fields using an angular spectrum approach

    DEFF Research Database (Denmark)

    Du, Yigang; Jensen, Jørgen Arendt

    2013-01-01

    . The accuracy of the nonlinear ASA is compared to the non-linear simulation program – Abersim, which is a numerical solution to the Burgers equation based on the OSM. Simulations are performed for a linear array transducer with 64 active elements, focus at 40 mm, and excitation by a 2-cycle sine wave......A fast non-linear pulsed ultrasound field simulation is presented. It is implemented based on an angular spectrum approach (ASA), which analytically solves the non-linear wave equation. The ASA solution to the Westervelt equation is derived in detail. The calculation speed is significantly...... increased compared to a numerical solution using an operator splitting method (OSM). The ASA has been modified and extended to pulsed non-linear ultrasound fields in combination with Field II, where any array transducer with arbitrary geometry, excitation, focusing and apodization can be simulated...

  14. Towards a non-linear theory for induced seismicity in shales

    Science.gov (United States)

    Salusti, Ettore; Droghei, Riccardo

    2014-05-01

    We here analyze the pore transmission of fluid pressure pand solute density ρ in porous rocks, within the framework of the Biot theory of poroelasticity extended to include physico-chemical interactions. In more details we here analyze the effect of a strong external stress on the non-linear evolution of p and ρ in a porous rock. We here focus on the consequent deformation of the rock pores, relative to a non-linear Hooke equation among strain, linear/quadratic pressure and osmosis in 1-D. We in particular analyze cases with a large pressure, but minor than the 'rupture point'. All this gives relations similar to those discussed by Shapiro et al. (2013), which assume a pressure dependent permeability. Thus we analyze the external stress necessary to originate quick non-linear transients of combined fluid pressure and solute density in a porous matrix, which perturb in a mild (i.e. a linear diffusive phenomenon) or a more dramatic non-linear way (Burgers solitons) the rock structure. All this gives a novel, more realistic insight about the rock evolution, fracturing and micro-earthquakes under a large external stress.

  15. GA and Lyapunov theory-based hybrid adaptive fuzzy controller for non-linear systems

    Science.gov (United States)

    Roy, Ananya; Das Sharma, Kaushik

    2015-02-01

    In this present article, a new hybrid methodology for designing stable adaptive fuzzy logic controllers (AFLCs) for a class of non-linear system is proposed. The proposed design strategy exploits the features of genetic algorithm (GA)-based stochastic evolutionary global search technique and Lyapunov theory-based local adaptation scheme. The objective is to develop a methodology for designing AFLCs with optimised free parameters and guaranteed closed-loop stability. Simultaneously, the proposed method introduces automation in the design process. The stand-alone Lyapunov theory-based design, GA-based design and proposed hybrid GA-Lyapunov design methodologies are implemented for two benchmark non-linear plants in simulation case studies with different reference signals and one experimental case study. The results demonstrate that the hybrid design methodology outperforms the other control strategies on the whole.

  16. Non-linear wave loads and ship responses by a time-domain strip theory

    DEFF Research Database (Denmark)

    Xia, Jinzhu; Wang, Zhaohui; Jensen, Jørgen Juncher

    1998-01-01

    A non-linear time-domain strip theory for vertical wave loads and ship responses is presented. The theory is generalized from a rigorous linear time-domain strip theory representation. The hydrodynamic memory effect due to the free surface is approximated by a higher order differential equation. ...... and are systematically compared with the experimental results given by Watanabe et al. (1989, J. Soc. Naval Architects Japan, 166) and O’Dea et al. (1992, Proc. 19th Symp. on Naval Hydrodynamics). The agreement between the present predictions and the experiments is very encouraging....

  17. Non-linear gauge transformations in $D=10$ SYM theory and the BCJ duality

    CERN Document Server

    Lee, Seungjin; Schlotterer, Oliver

    2015-01-01

    Recent progress on scattering amplitudes in super Yang--Mills and superstring theory benefitted from the use of multiparticle superfields. They universally capture tree-level subdiagrams, and their generating series solve the non-linear equations of ten-dimensional super Yang--Mills. We provide simplified recursions for multiparticle superfields and relate them to earlier representations through non-linear gauge transformations of their generating series. In this work we discuss the gauge transformations which enforce their Lie symmetries as suggested by the Bern--Carrasco--Johansson duality between color and kinematics. Another gauge transformation due to Harnad and Shnider is shown to streamline the theta-expansion of multiparticle superfields, bypassing the need to use their recursion relations beyond the lowest components. The findings of this work tremendously simplify the component extraction from kinematic factors in pure spinor superspace.

  18. Information field theory

    OpenAIRE

    Enßlin, Torsten

    2013-01-01

    Non-linear image reconstruction and signal analysis deal with complex inverse problems. To tackle such problems in a systematic way, I present information field theory (IFT) as a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms even for non-linear and non-Gaussian signal inference problems. IFT algorithms exploit spatial correlations of the signal fields and b...

  19. Simplified non-linear time-history analysis based on the Theory of Plasticity

    DEFF Research Database (Denmark)

    Costa, Joao Domingues

    2005-01-01

    is based on the Theory of Plasticity. Firstly, the formulation and the computational procedure to perform time-history analysis of a rigid-plastic single degree of freedom (SDOF) system are presented. The necessary conditions for the method to incorporate pinching as well as strength degradation......This paper aims at giving a contribution to the problem of developing simplified non-linear time-history (NLTH) analysis of structures which dynamical response is mainly governed by plastic deformations, able to provide designers with sufficiently accurate results. The method to be presented...

  20. The de Sitter limit of inflation and non-linear perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Jarnhus, Philip R; Sloth, Martin S, E-mail: pjarn@phys.au.dk, E-mail: sloth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C (Denmark)

    2008-02-15

    We study the fourth-order action of the comoving curvature perturbation in an inflationary universe in order to understand more systematically the de Sitter limit in non-linear cosmological perturbation theory. We derive the action of the curvature perturbation to fourth order in the comoving gauge, and show that it vanishes sufficiently fast in the de Sitter limit. By studying the de Sitter limit, we then extrapolate to the nth-order action of the comoving curvature perturbation and discuss the slow-roll order of the n-point correlation function.

  1. Simplified non-linear time-history analysis based on the Theory of Plasticity

    DEFF Research Database (Denmark)

    Costa, Joao Domingues

    2005-01-01

    is based on the Theory of Plasticity. Firstly, the formulation and the computational procedure to perform time-history analysis of a rigid-plastic single degree of freedom (SDOF) system are presented. The necessary conditions for the method to incorporate pinching as well as strength degradation......This paper aims at giving a contribution to the problem of developing simplified non-linear time-history (NLTH) analysis of structures which dynamical response is mainly governed by plastic deformations, able to provide designers with sufficiently accurate results. The method to be presented...

  2. Field computation in non-linear magnetic media using particle swarm optimization

    Energy Technology Data Exchange (ETDEWEB)

    Adly, A.A. E-mail: amradlya@intouch.com; Abd-El-Hafiz, S.K

    2004-05-01

    This paper presents an automated particle swarm optimization approach using which field computations may be carried out in devices involving non-linear magnetic media. Among the advantages of the proposed approach are its ability to handle complex geometries and its computational efficiency. The proposed approach has been implemented and computations were carried out for an electromagnet subject to different DC excitation conditions. These computations showed good agreement with the results obtained by the finite-element approach.

  3. Fully non-linear cosmological perturbations of multicomponent fluid and field systems

    Science.gov (United States)

    Hwang, Jai-chan; Noh, Hyerim; Park, Chan-Gyung

    2016-09-01

    We present fully non-linear and exact cosmological perturbation equations in the presence of multiple components of fluids and minimally coupled scalar fields. We ignore the tensor-type perturbation. The equations are presented without taking the temporal gauge condition in the Friedmann background with general curvature and the cosmological constant. We include the anisotropic stress. Even in the absence of anisotropic stress of individual component, the multiple component nature introduces the anisotropic stress in the collective fluid quantities. We prove the Newtonian limit of multiple fluids in the zero-shear gauge and the uniform-expansion gauge conditions, present the Newtonian hydrodynamic equations in the presence of general relativistic pressure in the zero-shear gauge, and present the fully non-linear equations and the third-order perturbation equations of the non-relativistic pressure fluids in the CDM-comoving gauge.

  4. On form factors of the conjugated field in the non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K.

    2011-05-15

    Izergin-Korepin's lattice discretization of the non-linear Schroedinger model along with Oota's inverse problem provides one with determinant representations for the form factors of the lattice discretized conjugated field operator. We prove that these form factors converge, in the zero lattice spacing limit, to those of the conjugated field operator in the continuous model. We also compute the large-volume asymptotic behavior of such form factors in the continuous model. These are in particular characterized by Fredholm determinants of operators acting on closed contours. We provide a way of defining these Fredholm determinants in the case of generic paramaters. (orig.)

  5. On form factors of the conjugated field in the non-linear Schroedinger model

    Energy Technology Data Exchange (ETDEWEB)

    Kozlowski, K.K.

    2011-05-15

    Izergin-Korepin's lattice discretization of the non-linear Schroedinger model along with Oota's inverse problem provides one with determinant representations for the form factors of the lattice discretized conjugated field operator. We prove that these form factors converge, in the zero lattice spacing limit, to those of the conjugated field operator in the continuous model. We also compute the large-volume asymptotic behavior of such form factors in the continuous model. These are in particular characterized by Fredholm determinants of operators acting on closed contours. We provide a way of defining these Fredholm determinants in the case of generic paramaters. (orig.)

  6. ANALYSIS OF HIGH FIELD NON-LINEAR LOSSES ON SRF SURFACES DUE TO SPECIFIC TOPOGRAPHIC ROUGHNESS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xu,Charles Reece,Michael Kelley

    2012-07-01

    The high-field performance of SRF cavities will eventually be limited by the realization of fundamental material limits, whether it is Hc1 or Hsh, or some derivative thereof, at which the superconductivity is lost. Before reaching this fundamental field limit at the macro level, it must be encountered at localized, perhaps microscopic, sites of field enhancement due to local topography. If such sites are small enough, they may produce thermally stabilized normal-conducting regions which contribute non-linear losses when viewed from the macro resonant field perspective, and thus produce degradation in Q0. We have undertaken a calculation of local surface magnetic field enhancement from specific fine topographic structure by conformal mapping method and numerically. A solution of the resulting normal conducting volume has been derived and the corresponding RF Ohmic loss simulated.

  7. Stochastic Finite Element Analysis of Non-Linear Structures Modelled by Plasticity Theory

    DEFF Research Database (Denmark)

    Frier, Christian; Sørensen, John Dalsgaard

    2003-01-01

    to estimate the probability of exceeding a critical event, defined by a so-called limit state function. The limit state function is obtained implicitly by non-linear FEM analysis from a realization of random material properties. As the latter can be modeled as random fields varying continuously over......, the gradient of the limit state function with respect to the random material variables is needed, or equivalently, the design sensitivities of the output to the FEM analysis with respect to the input. To this end, the Conditional Derivative Method (CDM) is used, which is a specialized Direct Differentiation...... the structure, a discretisation into random elements/variables is introduced. To this purpose, both the Midpoint (MP) and the Spatial Average (SA) approach are considered. The failure probability is obtained iteratively based on a first order Taylor series expansion of the limit state function. Thus...

  8. Non-linear quantum dynamics in strong and short electromagnetic fields

    CERN Document Server

    Titov, Alexander I; Hosaka, Atsushi; Takabe, Hideaki

    2016-01-01

    In our contribution we give a brief overview of two widely discussed quantum processes: electron-positron pairs production off a probe photon propagating through a polarized short-pulsed electromagnetic (e.m.) (e.g.\\ laser) wave field or generalized Breit-Wheeler process and a single a photon emission off an electron interacting with the laser pules, so-called non-linear Compton scattering. We show that at small and moderate laser field intensities the shape and duration of the pulse are very important for the probability of considered processes. However, at high intensities the multi-photon interactions of the fermions with laser field are decisive and completely determined all aspects of subthreshold electron-positron pairs and photon production

  9. Towards time-dependent current-density-functional theory in the non-linear regime.

    Science.gov (United States)

    Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  10. On the non-linear high-order theory of unidirectional sandwich panels with a transversely flexible core

    Energy Technology Data Exchange (ETDEWEB)

    Frostig, Yeoshua; Sheinman, Izhak [Technion-Israel Inst. of Technology, Faculty of Civil and Environmental Engineering, Haifa (Israel); Thomsen, Ole Thybo [Aalborg Univ., Inst. of Mechanical Engineering, Aalborg (Denmark)

    2005-03-01

    The paper presents a general geometrically non-linear high-order theory of sandwich panels that takes into account the high-order geometrical non-linearities in the core as well as in the face sheets and is based on a variational approach. The formulation, which yields a set of rather complicated governing equations, has been simplified in two different approaches and has been compared with FEA results for verification. The first formulation uses the kinematic relations of large displacements with moderate rotations for the face sheets, non-linear kinematic relations for the core and it assumes that the distribution of the vertical normal stresses through the depth of the core are linear. The second approach uses the general formulation to the non-linear high-order theory of sandwich panels (HSAPT) that considers geometrical non-linearities in the face sheets and only linear high-order effects in the core. The numerical results of the two formulations are presented for a three point bending loading scheme, which is associated with a limit point behavior. The results of the two formulations are compared in terms of displacements, bending moments and shear stresses and transverse (vertical) normal stresses at the face-core interfaces on one hand, and load versus these structural quantities on the other hand. The results have compared well with FEA results obtained using the commercial codes ADINA and ANSYS. (Author)

  11. The theory of non-linear transresonant wave phenomena and an examination of Charles Darwin's earthquake reports

    Science.gov (United States)

    Galiev, Sh. U.

    2003-08-01

    A non-linear theory of transresonant wave phenomena based on consideration of perturbed wave equations is presented. In particular, the waves in a surface layer of a porous compressible viscoelastoplastic material are considered. For such layers the 3-D equations of deformable media are reduced to 1-D or 2-D perturbed wave equations. A set of approximate, closed-form, general solutions of these equations are presented, which take into account non-linear, dissipative, dispersive, topographic and boundary effects. Then resonant, site and liquefaction effects are analysed. Resonance is considered as a global parameter. Transresonant evolution of the equations is studied. Within the resonant band, utt~a20∇2u and the perturbed wave equations transform into non-linear diffusion equations, either to a basic highly non-linear ordinary differential equation or to the basic algebraic equation for travelling waves. Resonances can destroy predictability and wave reversibility. Surface topography (valleys, islands, etc.) is considered as a series of earthquake-induced resonators. A non-linear transresonant evolution of smooth seismic waves into shock-, jet- and mushroom-like waves and vortices is studied. The amplitude of the resonant waves may be of the order of the square or cube root of the exciting amplitude. Therefore, seismic waves with a moderate amplitude can be amplified very strongly in natural resonators, whereas strong seismic waves can be attenuated. Reports of the 1835 February 20 Chilean earthquake given by Charles Darwin are qualitatively examined using the non-linear theory. The theory qualitatively describes the `shivering' of islands and ridges, volcano spouts and generation of tsunami-like waves and supports Darwin's opinion that these events were part of a single phenomenon. Same-day earthquake/eruption events and catastrophic amplification of seismic waves near the edge of sediment layers are discussed. At the same time the theory can account for recent

  12. Phantom expansion with non-linear Schr\\"{o}dinger-type formulation of scalar field cosmology

    CERN Document Server

    Phetnora, Theerakarn; Gumjudpai, Burin

    2008-01-01

    We describe non-flat standard Friedmann cosmology of canonical scalar field with barotropic fluid in form of non-linear Schr\\"{o}dinger-type (NLS) formulation in which all cosmological dynamical quantities are expressed in term of Schr\\"{o}dinger quantities as similar to those in time-independent quantum mechanics. We assume the expansion to be superfast, i.e. phantom expansion. We report all Schr\\"{o}dinger-analogous quantities to scalar field cosmology. Effective equation of state coefficient is analyzed and illustrated. We show that in a non-flat universe, there is no fixed $w_{\\rm eff}$ value for the phantom divide. In a non-flat universe, even $w_{\\rm eff} > -1$, the expansion can be phantom. Moreover, in open universe, phantom expansion can happen even with $w_{\\rm eff} > 0$. We also report scalar field exact solutions within frameworks of the Friedmann formulation and the NLS formulation in non-flat universe cases.

  13. Non-Linear Compton Scattering in a Strong Rotating Electric Field

    CERN Document Server

    Raicher, Erez; Zigler, Arie

    2016-01-01

    The non-linear Compton scattering rate in a rotating electric field is explicitly calculated for the first time. For this purpose, a novel solution to the Klein-Gordon equation in the presence of a rotating electric field is applied. An analytical expression for the emission rate is obtained, as well as a simplified approximation adequate for emplementation in kinetic codes. The spectrum is numerically calculated for nowadays optical and X-ray laser parameters. The results are compared to the standard Volkov-Ritus rate for a particle in a plane wave, which is commonly assumed to be valid for a rotating electric field under certain conditions. Subsequent deviations between the two models, both in the radiated power and the spectral shape, are demonstrated. First, the typical number of photons participating in the scattering process is much smaller compared to the Volkov-Ritus rate, resulting in up to an order of magnitude lower emitted power. Furthermore, our model predicts a discrete harmonics spectrum for el...

  14. Non-linear curvature perturbation in multi-field inflation models with non-minimal coupling

    Energy Technology Data Exchange (ETDEWEB)

    White, Jonathan; Minamitsuji, Masato; Sasaki, Misao, E-mail: jwhite@yukawa.kyoto-u.ac.jp, E-mail: masato.minamitsuji@ist.utl.pt, E-mail: misao@yukawa.kyoto-u.ac.jp [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2013-09-01

    Using the δN formalism we consider the non-linear curvature perturbation in multi-field models of inflation with non-minimal coupling. In particular, we focus on the relation between the δN formalism as applied in the conformally related Jordan and Einstein frames. Exploiting results already known in the Einstein frame, we give expressions for the power spectrum, spectral tilt and non-gaussianity associated with the Jordan frame curvature perturbation. In the case that an adiabatic limit has not been reached, we find that in general these quantities differ from those associated with the Einstein frame curvature perturbation, and also confirm their equivalence in the absence of isocurvature modes. We then proceed to consider two analytically soluble examples, the first involving a non-minimally coupled 'spectator' field and the second being a non-minimally coupled extension of the multi-brid inflation model. In the first model we find that predictions can easily be brought into agreement with the recent Planck results, as the tensor-to-scalar ratio is generally small, the spectral tilt tuneable and the non-gaussianity suppressed. In the second model we find that predictions for all three parameters can differ substantially from those predicted in the minimally coupled case, and that the recent Planck results for the spectral tilt can be used to constrain the non-minimal coupling parameters.

  15. Optimal experimental design for non-linear models theory and applications

    CERN Document Server

    Kitsos, Christos P

    2013-01-01

    This book tackles the Optimal Non-Linear Experimental Design problem from an applications perspective. At the same time it offers extensive mathematical background material that avoids technicalities, making it accessible to non-mathematicians: Biologists, Medical Statisticians, Sociologists, Engineers, Chemists and Physicists will find new approaches to conducting their experiments. The book is recommended for Graduate Students and Researchers.

  16. Using logical functions for constructing non-linear analytical formulae in combinatorics and number theory

    OpenAIRE

    Chebrakov, Yu. V.

    2014-01-01

    In this paper we discuss techniques suitable for translating the verbal descriptions of computative algorithms into a set of mathematical formulae and demonstrate that logical functions can be used effectively in order to create non-linear analytical formulae, describing a set of combinatorial and number-theoretic computative algorithms.

  17. Asymptotic theory for weakly non-linear wave equations in semi-infinite domains

    Directory of Open Access Journals (Sweden)

    Chirakkal V. Easwaran

    2004-01-01

    Full Text Available We prove the existence and uniqueness of solutions of a class of weakly non-linear wave equations in a semi-infinite region $0le x$, $t< L/sqrt{|epsilon|}$ under arbitrary initial and boundary conditions. We also establish the asymptotic validity of formal perturbation approximations of the solutions in this region.

  18. Non-linear effects in the post-Newtonian approximation of a spherically symmetric field

    Energy Technology Data Exchange (ETDEWEB)

    Gambi, J.M.; Zamorano, P. [Madrid Univ. Carlos 3, Madrid (Spain). Dept. de Matematicas; Romero, P.; Garcia del Pino, M.L. [Madrid Univ. Complutense, Madrid (Spain). Dept. de Astronomia y Geodesia

    2000-02-01

    Conditions for the compatibility of the exterior metric of a spherically symmetric object with the field equations for the empty space and equations of motion and of trajectories for test particles, written in polar Gaussian and Fermi coordinates, are obtained to show that, although their explicit exact solutions cannot be derived in these coordinates, the post-Newtonian limits of these solutions can, nevertheless, be obtained. With these limits, it is next shown that the cited post-Newtonian equations do not fit into the standard post-Newtonian approximation either. It is then shown that these coordinates can, nevertheless, be included in a more general formalism together with the usual post-Newtonian (standard, harmonic, Painleve and isotropic) coordinates so that their respective equations of motion may be compared to each other and, finally, it is demonstrated that the only non-linear term taken in the Christoffel symbols with these usual coordinates in the standard post-Newtonian equations of motion to explain some known perturbations is not needed when polar Gaussian or Fermi coordinates are used to explain also those perturbations. In fact, it is demonstrated that these are the only coordinates for which that term becomes zero.

  19. Thresholds, switches and hysteresis in hydrology from the pedon to the catchment scale: a non-linear systems theory

    Directory of Open Access Journals (Sweden)

    2007-01-01

    Full Text Available Hysteresis is a rate-independent non-linearity that is expressed through thresholds, switches, and branches. Exceedance of a threshold, or the occurrence of a turning point in the input, switches the output onto a particular output branch. Rate-independent branching on a very large set of switches with non-local memory is the central concept in the new definition of hysteresis. Hysteretic loops are a special case. A self-consistent mathematical description of hydrological systems with hysteresis demands a new non-linear systems theory of adequate generality. The goal of this paper is to establish this and to show how this may be done. Two results are presented: a conceptual model for the hysteretic soil-moisture characteristic at the pedon scale and a hysteretic linear reservoir at the catchment scale. Both are based on the Preisach model. A result of particular significance is the demonstration that the independent domain model of the soil moisture characteristic due to Childs, Poulavassilis, Mualem and others, is equivalent to the Preisach hysteresis model of non-linear systems theory, a result reminiscent of the reduction of the theory of the unit hydrograph to linear systems theory in the 1950s. A significant reduction in the number of model parameters is also achieved. The new theory implies a change in modelling paradigm.

  20. Leech Lattice Extension of the Non-linear Schrodinger Equation Theory of Einstein spaces

    CERN Document Server

    Chapline, George

    2015-01-01

    Although the nonlinear Schrodinger equation description of Einstein spaces has provided insights into how quantum mechanics might modify the classical general relativistic description of space-time, an exact quantum description of space-times with matter has remained elusive. In this note we outline how the nonlinear Schrodinger equation theory of Einstein spaces might be generalized to include matter by transplanting the theory to the 25+1 dimensional Lorentzian Leech lattice. Remarkably when a hexagonal section of the Leech lattice is set aside as the stage for the nonlinear Schrodinger equation, the discrete automorphism group of the complex Leech lattice with one complex direction fixed can be lifted to continuous Lie group symmetries. In this setting the wave function becomes an 11x11 complex matrix which represents matter degrees of freedom consisting of a 2-form abelian gauge field and vector nonabelian SU(3)xE6 gauge fields together with their supersymmetric partners. The lagrangian field equations fo...

  1. Classical Field-Theoretical approach to the non-linear q-Klein-Gordon Equation

    CERN Document Server

    Plastino, A

    2016-01-01

    In the wake of efforts made in [EPL {\\bf 97}, 41001 (2012)], we extend them here by developing a classical field theory (FT)to the q-Klein-Gordon equation advanced in [Phys. Rev. Lett. {\\bf 106}, 140601 (2011)]. This makes it possible to generate a hipotetical conjecture regarding black matter. We also develop the classical field theory for a q-Schrodinger equation, different from the one in [EPL {\\bf 97}, 41001 (2012)], that was deduced in [Phys. Lett. A {\\bf 379}, 2690 (2015)] from the hypergeometric differential equation. Our two classical theories reduce to the usual quantum FT for $q\\rightarrow 1$.

  2. Gravitational Field of the Early Universe; 1, Non-linear Scalar Field as the Source

    CERN Document Server

    Chervon, S V

    1997-01-01

    In this review article we consider three most important sources of the gravitational field of the Early Universe: self-interacting scalar field, chiral field and gauge field. The correspondence between all of them are pointed out. More attention is payed to nonlinear scalar field source of gravity. The progress in finding the exact solutions in inflationary universe is reviewed. The basic idea of `fine turning of the potential' method is discussed and computational background is presented in details. A set of new exact solutions for standard inflationary model and conformally-flat space-times are obtained. Special attention payed to relations between `fine turning of the potential' and Barrow's approaches. As the example of a synthesis of both methods new exact solution is obtained.

  3. Model for flow of Casson nanofluid past a non-linearly stretching sheet considering magnetic field effects

    Science.gov (United States)

    Mustafa, M.; Khan, Junaid Ahmad

    2015-07-01

    Present work deals with the magneto-hydro-dynamic flow and heat transfer of Casson nanofluid over a non-linearly stretching sheet. Non-linear temperature distribution across the sheet is considered. More physically acceptable model of passively controlled wall nanoparticle volume fraction is accounted. The arising mathematical problem is governed by interesting parameters which include Casson fluid parameter, magnetic field parameter, power-law index, Brownian motion parameter, thermophoresis parameter, Prandtl number and Schmidt number. Numerical solutions are computed through fourth-fifth-order-Runge-Kutta integration approach combined with the shooting technique. Both temperature and nanoparticle volume fraction are increasing functions of Casson fluid parameter.

  4. Towards a non-linear theory for fluid pressure and osmosis in shales

    Science.gov (United States)

    Droghei, Riccardo; Salusti, Ettore

    2015-04-01

    In exploiting deep hydrocarbon reservoirs, often injections of fluid and/or solute are used. To control and avoid troubles as fluid and gas unexpected diffusions, a reservoir characterization can be obtained also from observations of space and time evolution of micro-earthquake clouds resulting from such injections. This is important since several among the processes caused by fluid injections can modify the deep matrix. Information about the evolution of such micro-seismicity clouds therefore plays a realistic role in the reservoir analyses. To reach a better insight about such processes, and obtain a better system control, we here analyze the initial stress necessary to originate strong non linear transients of combined fluid pressure and solute density (osmosis) in a porous matrix. All this can indeed perturb in a mild (i.e. a linear diffusion) or dramatic non linear way the rock structure, till inducing rock deformations, micro-earthquakes or fractures. I more detail we here assume first a linear Hooke law relating strain, stress, solute density and fluid pressure, and analyze their effect in the porous rock dynamics. Then we analyze its generalization, i.e. the further non linear effect of a stronger external pressure, also in presence of a trend of pressure or solute in the whole region. We moreover characterize the zones where a sudden arrival of such a front can cause micro-earthquakes or fractures. All this allows to reach a novel, more realistic insight about the control of rock evolution in presence of strong pressure fronts. We thus obtain a more efficient reservoir control to avoid large geological perturbations. It is of interest that our results are very similar to those found by Shapiro et al.(2013) with a different approach.

  5. Non-linear Springing Excitation Due to a Bidirectional Wave Field

    DEFF Research Database (Denmark)

    Vidic-Perunovic, Jelena; Jensen, Jørgen Juncher

    2005-01-01

    Significant springing vibrations in ships have recently been measured in a large ocean-going bulk carrier. So far calculations using various linear and non-linear hydrodynamic procedures have not been able to predict the measured responses. In the present paper it is shown that the springing...

  6. On the theory of ternary melt crystallization with a non-linear phase diagram

    Science.gov (United States)

    Toropova, L. V.; Dubovoi, G. Yu; Alexandrov, D. V.

    2017-04-01

    The present study is concerned with a theoretical analysis of unidirectional solidification process of ternary melts in the presence of a phase transition (mushy) layer. A new analytical solution of heat and mass transfer equations describing the steady-state crystallization scenario is found with allowance for a non-linear liquidus equation. The model under consideration takes into account the presence of two phase transition layers, namely, the primary and cotectic mushy regions. We demonstrate that the phase diagram nonlinearity leads to substantial changes of analytical solutions.

  7. O(3) Non-linear $\\sigma$ model with Hopf term and Higher spin theories

    CERN Document Server

    Govindarajan, T R; Shaji, N; Sivakumar, M

    1993-01-01

    Following our earlier work we argue in detail for the equivalence of the nonlinear $\\sigma$ model with Hopf term at~$\\theta=\\pi/2s$ ~and an interacting spin-s theory. We give an ansatz for spin-s operators in the $\\sigma$ model and show the equivalence of the correlation functions.We also show the relation between topological and Noether currents. We obtain the Lorentz and discrete transformation properties of the spin-s operator from the fields of the $\\sigma$ model. We also explore the connection of this model with Quantum Hall Fluids.

  8. Non-linear optical properties of molecules in heterogeneous environments: a quadratic density functional/molecular mechanics response theory.

    Science.gov (United States)

    Rinkevicius, Zilvinas; Li, Xin; Sandberg, Jaime A R; Ågren, Hans

    2014-05-21

    We generalize a density functional theory/molecular mechanics approach for heterogeneous environments with an implementation of quadratic response theory. The updated methodology allows us to address a variety of non-linear optical, magnetic and mixed properties of molecular species in complex environments, such as combined metallic, solvent and confined organic environments. Illustrating calculations of para-nitroaniline on gold surfaces and in solution reveals a number of aspects that come into play when analyzing second harmonic generation of such systems--such as surface charge flow, coupled surface-solvent dynamics and induced geometric and electronic structure effects of the adsorbate. Some ramifications of the methodology for applied studies are discussed.

  9. Non linear field correction effects on the dynamic aperture of the FCC-hh

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00361058; Seryi, Andrei; Maclean, Ewen Hamish; Martin, Roman; Tomas Garcia, Rogelio

    2017-01-01

    The Future Circular Collider (FCC) design study aims to develop the designs of possible circular colliders in the post LHC era. In particular the FCC-hh will aim to produce proton-proton collisions at a center of mass energy of 100 TeV. Given the large beta functions and integrated length of the quadrupoles of the final focus triplet the effect of systematic and random non linear errors in the magnets are expected to have a severe impact on the stability of the beam. Following the experience on the HL-LHC this work explores the implementation of non-linear correctors to minimize the resonance driving terms arising from the errors of the triplet. Dynamic aperture studies are then performed to study the impact of this correction.

  10. Phantom solution in a non-linear Israel-Stewart theory

    Science.gov (United States)

    Cruz, Miguel; Cruz, Norman; Lepe, Samuel

    2017-06-01

    In this paper we present a phantom solution with a big rip singularity in a non-linear regime of the Israel-Stewart formalism. In this framework it is possible to extend this causal formalism in order to describe accelerated expansion, where assumption of near equilibrium is no longer valid. We assume a flat universe filled with a single viscous fluid ruled by a barotropic EoS, p = ωρ, which can represent a late time accelerated phase of the cosmic evolution. The solution allows to cross the phantom divide without evoking an exotic matter fluid and the effective EoS parameter is always lesser than -1 and constant in time.

  11. The calculation of steady non-linear transonic flow over finite wings with linear theory aerodynamics

    Science.gov (United States)

    Cunningham, A. M., Jr.

    1976-01-01

    The feasibility of calculating steady mean flow solutions for nonlinear transonic flow over finite wings with a linear theory aerodynamic computer program is studied. The methodology is based on independent solutions for upper and lower surface pressures that are coupled through the external flow fields. Two approaches for coupling the solutions are investigated which include the diaphragm and the edge singularity method. The final method is a combination of both where a line source along the wing leading edge is used to account for blunt nose airfoil effects; and the upper and lower surface flow fields are coupled through a diaphragm in the plane of the wing. An iterative solution is used to arrive at the nonuniform flow solution for both nonlifting and lifting cases. Final results for a swept tapered wing in subcritical flow show that the method converges in three iterations and gives excellent agreement with experiment at alpha = 0 deg and 2 deg. Recommendations are made for development of a procedure for routine application.

  12. A Stream Function Theory Based Calculation of Wave Kinematics for Very Steep Waves Using a Novel Non-linear Stretching Technique

    DEFF Research Database (Denmark)

    Stroescu, Ionut Emanuel; Sørensen, Lasse; Frigaard, Peter Bak

    2016-01-01

    A non-linear stretching method was implemented for stream function theory to solve wave kinematics for physical conditions close to breaking waves in shallow waters, with wave heights limited by the water depth. The non-linear stretching method proves itself robust, efficient and fast, showing good...

  13. Supersymmetric Yang-Mills fields as an integrable system and connections with other non-linear systems

    Energy Technology Data Exchange (ETDEWEB)

    Chau, L.L.

    1983-01-01

    Integrable properties, i.e., existence of linear systems, infinite number of conservation laws, Reimann-Hilbert transforms, affine Lie algebra of Kac-Moody, and Bianchi-Baecklund transformation, are discussed for the constraint equations of the supersymmetric Yang-Mills fields. For N greater than or equal to 3 these constraint equations give equations of motion of the fields. These equations of motion reduce to the ordinary Yang-Mills equations as the spinor and scalar fields are eliminated. These understandings provide a possible method to solve the full Yang-Mills equations. Connections with other non-linear systems are also discussed. 53 references.

  14. Non-Linear Logging Parameters Inversion

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The non-linear logging parameters inversion is based on the field theory, information optimization and predication theory. It uses seismic charaoters,geological model and logging data as a restriction to inverse 2D, 3D logging parameters data volume. Using this method,

  15. The de Sitter limit of inflation and non-linear perturbation theory

    DEFF Research Database (Denmark)

    Jarnhus, Philip; Sloth, Martin Snoager

    2008-01-01

    We study the fourth order action of the comoving curvature perturbation in an inflationary universe in order to understand more systematically the de Sitter limit in nonlinear cosmological perturbation theory. We derive the action of the curvature perturbation to fourth order in the comoving gaug......, and show that it vanishes sufficiently fast in the de Sitter limit. By studying the de Sitter limit, we then extrapolate to the n'th order action of the comoving curvature perturbation and discuss the slow-roll order of the n-point correlation function....

  16. Application of non-linear control theory to a model of deep brain stimulation.

    Science.gov (United States)

    Davidson, Clare M; Lowery, Madeleine M; de Paor, Annraoi M

    2011-01-01

    Deep brain stimulation (DBS) effectively alleviates the pathological neural activity associated with Parkinson's disease. Its exact mode of action is not entirely understood. This paper explores theoretically the optimum stimulation parameters necessary to quench oscillations in a neural-mass type model with second order dynamics. This model applies well established nonlinear control system theory to DBS. The analysis here determines the minimum criteria in terms of amplitude and pulse duration of stimulation, necessary to quench the unwanted oscillations in a closed loop system, and outlines the relationship between this model and the actual physiological system.

  17. Dual Double Field Theory

    CERN Document Server

    Bergshoeff, Eric A; Penas, Victor A; Riccioni, Fabio

    2016-01-01

    We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O(D,D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O(D,D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for "exotic" dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.

  18. Theoretical prediction of electrocaloric effect based on non-linear behaviors of dielectric permittivity under temperature and electric fields

    Directory of Open Access Journals (Sweden)

    Hongbo Liu

    2015-11-01

    Full Text Available The electrocaloric (EC effect has been paid great attentions recently for applications on cooling or electricity generation. However, the directly commercial measurement equipment for the effect is still unavailable. Here we report a novel method to predict EC effect by non-linear behaviors of dielectric permittivity under temperature and electric fields. According to the method, the analytical equations of EC temperature change ΔT are directly given for normal ferroelectrics and relaxor. The calculations have been performed on several materials and it is shown that the method is suitable for both inorganic and organic ferroelectrics, and relaxor.

  19. The nearly Newtonian regime in non-linear theories of gravity

    Science.gov (United States)

    Sotiriou, Thomas P.

    2006-09-01

    The present paper reconsiders the Newtonian limit of models of modified gravity including higher order terms in the scalar curvature in the gravitational action. This was studied using the Palatini variational principle in Meng and Wang (Gen. Rel. Grav. 36, 1947 (2004)) and Domínguez and Barraco (Phys. Rev. D 70, 043505 (2004)) with contradicting results. Here a different approach is used, and problems in the previous attempts are pointed out. It is shown that models with negative powers of the scalar curvature, like the ones used to explain the present accelerated expansion, as well as their generalization which include positive powers, can give the correct Newtonian limit, as long as the coefficients of these powers are reasonably small. Some consequences of the performed analysis seem to raise doubts for the way the Newtonian limit was derived in the purely metric approach of fourth order gravity [Dick in Gen. Rel. Grav. 36, 217 (2004)]. Finally, we comment on a recent paper [Olmo in Phys. Rev. D 72, 083505 (2005)] in which the problem of the Newtonian limit of both the purely metric and the Palatini formalism is discussed, using the equivalent Brans Dicke theory, and with which our results partly disagree.

  20. Dynamics of glass-forming liquids. XIX. Rise and decay of field induced anisotropy in the non-linear regime.

    Science.gov (United States)

    Young-Gonzales, Amanda R; Samanta, Subarna; Richert, Ranko

    2015-09-14

    For glycerol and three monohydroxy alcohols, we have measured the non-linear dielectric effects resulting from the application and removal of a high dc bias electric field. The field effects are detected by virtue of a small amplitude harmonic field, from which time resolved changes in the dielectric loss are derived. The changes in permittivity are dominated by modifications of the time constants (rather than amplitudes) which display two contributions: a heating-like decrease of relaxation times that originates from the time dependent field when the bias is switched on and off and a slowing down of the dynamics resulting from the field induced reduction of configurational entropy. As observed for the electro-optical Kerr effect, the rise of the entropy change is slower than its decay, a feature that we rationalize on the basis of the quadratic dependence of the entropy change on polarization. For glycerol, the observed steady state level of the field induced shift of the glass transition temperature (+84 mK) matches the expectation based on the entropy change and its impact on dynamics via the Adam-Gibbs relation (+88 mK). For the alcohols, these non-linear effects rise and decay on the time scales of the prominent dielectric Debye process, underscoring the relation of these features to polarization anisotropy, opposed to mechanical or enthalpy relaxation which are orders of magnitude faster in these systems. A model is discussed which captures the observed magnitudes as well as time dependences in a near quantitative fashion. It is demonstrated that the high bias field modifies the response of polarization to the ac field, including a temporary change in the low field susceptibility.

  1. Least-Order Torsion-Gravity for Fermion Fields, and the Non-Linear Potentials in the Standard Models

    CERN Document Server

    Fabbri, Luca

    2014-01-01

    We will consider least-order torsional completion of gravity for a spacetime filled with fermionic Dirac matter fields, and we study the effects of the background-induced non-linear potentials for the matter field themselves, in terms of their effects for both standard models of physics: from the one of cosmology to that of particles, we will discuss the mechanisms of generation of the cosmological constant and particles masses as well as the phenomenology of leptonic weak-like forces and neutrino oscillations, the problem of zero-point energy, how there can be neutral massive fields as candidates for dark matter, and gravitationally-induced singularity formation; we will show the way in which all these different effects can nevertheless be altogether described in terms of just a single model, which will be thoroughly discussed in the end.

  2. A Fluid Dynamics Approach for the Computation of Non-linear Force-Free Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Jing-Qun Li; Jing-Xiu Wang; Feng-Si Wei

    2003-01-01

    Inspired by the analogy between the magnetic field and velocity fieldof incompressible fluid flow, we propose a fluid dynamics approach for comput-ing nonlinear force-free magnetic fields. This method has the advantage that thedivergence-free condition is automatically satisfied, which is a sticky issue for manyother algorithms, and we can take advantage of modern high resolution algorithmsto process the force-free magnetic field. Several tests have been made based on thewell-known analytic solution proposed by Low & Lou. The numerical results arein satisfactory agreement with the analytic ones. It is suggested that the newlyproposed method is promising in extrapolating the active region or the whole sunmagnetic fields in the solar atmosphere based on the observed vector magnetic fieldon the photosphere.

  3. Resonant field enhancement in periodically arranged microslits for non-linear terahertz spectroscopy

    DEFF Research Database (Denmark)

    Pedersen, Pernille Klarskov; Iwaszczuk, Krzysztof; Zalkovskij, Maksim;

    We present a design of periodically arranged microslits in a gold film for nonlinear terahertz phonon spectroscopy.Global optimization of array parameters gives a field enhancement of more than 50, due to plasmonic coupling between individual slits....

  4. Non-linear non-local molecular electrodynamics with nano-optical fields.

    Science.gov (United States)

    Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul

    2015-10-28

    The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields.

  5. Non-linear magnetic behavior around zero field of an assembly of superparamagnetic nanoparticles.

    Science.gov (United States)

    de Montferrand, Caroline; Lalatonne, Yoann; Bonnin, Dominique; Motte, Laurence; Monod, Philippe

    2012-05-21

    The MIAplex® device is a miniaturized detector, devoted to the high sensitive detection of superparamagnetic nanoprobes for multiparametric immunoassays. It measures a signal corresponding to the second derivative of the magnetization around zero field. Like any new technology, the real success of the MIAplex® detector can only be exploited through a deep understanding of the magnetic signature. In this letter, we study the magnetic behavior around zero-field of diluted lab-made and commercial ferrofluids by comparing together conventional SQUID magnetization and MIAplex® signature.

  6. Structural analysis of the SDSS Cosmic Web - I. Non-linear density field reconstructions

    Science.gov (United States)

    Platen, Erwin; van de Weygaert, Rien; Jones, Bernard J. T.; Vegter, Gert; Calvo, Miguel A. Aragón

    2011-10-01

    This study is the first in a series in which we analyse the structure and topology of the Cosmic Web as traced by the Sloan Digital Sky Survey (SDSS). The main issue addressed in the present study is the translation of the irregularly distributed discrete spatial data in the galaxy redshift survey into a representative density field. The density field will form the basis for a statistical, topological and cosmographic study of the cosmic density field in our Local Universe. We investigate the ability of three reconstruction techniques to analyse and investigate web-like features and geometries in a discrete distribution of objects. The three methods are the linear Delaunay Tessellation Field Estimator (DTFE), its higher order equivalent Natural Neighbour Field Estimator (NNFE) and a version of the Kriging interpolation adapted to the specific circumstances encountered in galaxy redshift surveys, the Natural Lognormal Kriging technique. DTFE and NNFE are based on the local geometry defined by the Voronoi and Delaunay tessellations of the galaxy distribution. The three reconstruction methods are analysed and compared using mock magnitude- and volume-limited SDSS redshift surveys, obtained on the basis of the Millennium simulation. We investigate error trends, biases and the topological structure of the resulting fields, concentrating on the void population identified by the Watershed Void Finder. Environmental effects are addressed by evaluating the density fields on a range of Gaussian filter scales. Comparison with the void population in the original simulation yields the fraction of false void mergers and false void splits. In most tests DTFE, NNFE and Kriging have largely similar density and topology error behaviour. Cosmetically, higher order NNFE and Kriging methods produce more visually appealing reconstructions. Quantitatively, however, DTFE performs better, even while being computationally far less demanding. A successful recovery of the void population on

  7. Non-Linear Force-Free Field Modelling of Solar Coronal Jets in Theoretical Configurations

    Science.gov (United States)

    Savcheva, Antonia

    2017-08-01

    Coronal jets occur frequently on the Sun, and may contribute significantly to the solar wind. With the suite of instruments avilable now, e.g. on IRIS, Hinode and SDO, we can observe these phenomena in greater detail than ever before. Modeling and simulations can assist further in understanding the dynamic processes involved, but previous studies tend to consider only one mechanism (e.g. emergence or rotation) for the origin of the jet. In this study we model a series of idealised archetypaljet configurations and follow the evolution of the coronal magnetic field. This is a step towards understanding these idealised situations before considering their observational counterparts. Several simple situations are set up for the evolution of the photospheric magnetic field: a single parasitic polarity rotating or moving in a circular path; as well as opposite polarity pairs involved in flyby (shearing), cancellation or emergence; all in the presence of a uniform, open background magneticfield. The coronal magnetic field is evolved in time using a magnetofrictional relaxation method. While magnetofriction cannot accurately reproduce the dynamics of an eruptive phase, the structure of the coronal magnetic field, as well as the build up of electric currents and free magnetic energy are instructive. Certain configurations and motions produce a flux rope and allow the significant build up of free energy, reminiscent of the progenitors of so-called blowout jets, whereas other, simpler configurations are more comparable to the standard jet model. The next stage is a comparison with observed coronal jet structures and their corresponding photospheric evolution.

  8. Mean Field Limit of Interacting Filaments and Vector Valued Non-linear PDEs

    Science.gov (United States)

    Bessaih, Hakima; Coghi, Michele; Flandoli, Franco

    2017-03-01

    Families of N interacting curves are considered, with long range, mean field type, interaction. They generalize models based on classical interacting point particles to models based on curves. In this new set-up, a mean field result is proven, as N→ ∞. The limit PDE is vector valued and, in the limit, each curve interacts with a mean field solution of the PDE. This target is reached by a careful formulation of curves and weak solutions of the PDE which makes use of 1-currents and their topologies. The main results are based on the analysis of a nonlinear Lagrangian-type flow equation. Most of the results are deterministic; as a by-product, when the initial conditions are given by families of independent random curves, we prove a propagation of chaos result. The results are local in time for general interaction kernel, global in time under some additional restriction. Our main motivation is the approximation of 3D-inviscid flow dynamics by the interacting dynamics of a large number of vortex filaments, as observed in certain turbulent fluids; in this respect, the present paper is restricted to smoothed interaction kernels, instead of the true Biot-Savart kernel.

  9. Transverse beam dynamics in non-linear Fixed Field Alternating Gradient accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Haj, Tahar M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-02

    In this paper, we present some aspects of the transverse beam dynamics in Fixed Field Ring Accelerators (FFRA): we start from the basic principles in order to derive the linearized transverse particle equations of motion for FFRA, essentially FFAGs and cyclotrons are considered here. This is a simple extension of a previous work valid for linear lattices that we generalized by including the bending terms to ensure its correctness for FFAG lattice. The space charge term (contribution of the internal coulombian forces of the beam) is contained as well, although it is not discussed here. The emphasis is on the scaling FFAG type: a collaboration work is undertaken in view of better understanding the properties of the 150 MeV scaling FFAG at KURRI in Japan, and progress towards high intensity operation. Some results of the benchmarking work between different codes are presented. Analysis of certain type of field imperfections revealed some interesting features about this machine that explain some of the experimental results and generalize the concept of a scaling FFAG to a non-scaling one for which the tune variations obey a well-defined law.

  10. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    National Research Council Canada - National Science Library

    de Paor, A. M

    1998-01-01

    Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field...

  11. Bayesian inference of cosmic density fields from non-linear, scale-dependent, and stochastic biased tracers

    CERN Document Server

    Ata, Metin; Müller, Volker

    2014-01-01

    We present a Bayesian reconstruction algorithm to generate unbiased samples of the underlying dark matter field from galaxy redshift data. Our new contribution consists of implementing a non-Poisson likelihood including a deterministic non-linear and scale-dependent bias. In particular we present the Hamiltonian equations of motions for the negative binomial (NB) probability distribution function. This permits us to efficiently sample the posterior distribution function of density fields given a sample of galaxies using the Hamiltonian Monte Carlo technique implemented in the Argo code. We have tested our algorithm with the Bolshoi N-body simulation, inferring the underlying dark matter density field from a subsample of the halo catalogue. Our method shows that we can draw closely unbiased samples (compatible within 1-$\\sigma$) from the posterior distribution up to scales of about k~1 h/Mpc in terms of power-spectra and cell-to-cell correlations. We find that a Poisson likelihood yields reconstructions with p...

  12. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    Science.gov (United States)

    de Paor, A. M.

    Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ɛ has the value 1 is proved via the Popov theorem from feedback system stability theory.

  13. Field theory

    CERN Document Server

    Roman, Steven

    2006-01-01

    Intended for graduate courses or for independent study, this book presents the basic theory of fields. The first part begins with a discussion of polynomials over a ring, the division algorithm, irreducibility, field extensions, and embeddings. The second part is devoted to Galois theory. The third part of the book treats the theory of binomials. The book concludes with a chapter on families of binomials - the Kummer theory. This new edition has been completely rewritten in order to improve the pedagogy and to make the text more accessible to graduate students.  The exercises have also been im

  14. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    Directory of Open Access Journals (Sweden)

    A. M. de Paor

    1998-01-01

    Full Text Available Hide (Nonlinear Processes in Geophysics, 1998 has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ε has the value 1 is proved via the Popov theorem from feedback system stability theory.

  15. Non-linear quenching of current fluctuations in a self-exciting homopolar dynamo, proved by feedback system theory

    OpenAIRE

    A. M. de Paor

    1998-01-01

    International audience; Hide (Nonlinear Processes in Geophysics, 1998) has produced a new mathematical model of a self-exciting homopolar dynamo driving a series- wound motor, as a continuing contribution to the theory of the geomagnetic field. By a process of exact perturbation analysis, followed by combination and partial solution of differential equations, the complete nonlinear quenching of current fluctuations reported by Hide in the case that a parameter ? has the value 1 is proved via ...

  16. Challenges for the Sequential Interaction Between Optimal Design of Field Campaigns and Model Calibration for Non-Linear Systems

    Science.gov (United States)

    Geiges, A.; Nowak, W.; Rubin, Y.

    2013-12-01

    Stochastic models of sub-surface systems generally suffer from parametric and conceptual uncertainty. To reduce the model uncertainty, model parameters are calibrated using additional collected data. These data often come from costly data acquisition campaigns that need to be optimized to collect the data with the highest data utility (DU) or value of information. In model-based approaches, the DU is evaluated based on the uncertain model itself and is therefore uncertain as well. Additionally, for non-linear models, data utility depends on the yet unobserved measurement values and can only be estimated as an expected value over an assumed distribution of possible measurement values. Both factors introduce uncertainty into the optimization of field campaigns. We propose and investigate a sequential interaction scheme between campaign optimization, data collection and model calibration. The field campaign is split in individual segments. Each segment consists of optimization, segment-wise data collection, and successive model calibration or data assimilation. By doing so, (1) the expected data utility for the newly collected data is replaced by their actual one, (2) the calibration restricts both conceptual and parametric model uncertainty, and thus (3) the distribution of possible future data values for the subsequent campaign segments also changes. Hence, the model to describe the real system improves successively with each collected data segment, and so does the estimate of the yet remaining data requirements to achieve the overall investigation goals. We will show that using the sequentially improved model for the optimal design (OD) of the remaining field campaign leads to superior and more targeted designs.However, this traditional sequential OD optimizes small data segments one-by-one. In such a strategy, possible mutual dependencies with the possible data values and the optimization of data values collection in later segments are neglected. This allows a

  17. Effect of -OH functionalization, C2 methylation, and high radiation fields on the non-linear optical response of imidazolium ionic liquids

    Science.gov (United States)

    Namboodiri, Vinu V.; Guleria, Apurav; Singh, Ajay K.

    2017-04-01

    Considering the impending applications of room temperature ionic liquids (RTILs) in various areas involving high optical and radiation fields, it is pertinent to probe the structure-property correlation of these solvents exposed to such conditions. Herein, femtosecond Z-scan technique (at high pulse repetition rate, 80 MHz) was employed to investigate the non-linear optical response of imidazolium RTILs in 3 scenarios: (1) -OH functionalization, (2) C2 methylation, and (3) influence of high radiation fields. Large negative non-linear refractive values ( n 2) were observed in all the RTIL samples and have been attributed predominantly due to the thermal effects. In order to isolate and determine the contribution of electronic Kerr effect, the Z-scan experiments were also carried out at low pulse repetition rate (i.e. 500 Hz) by means of a mechanical chopper. The closed aperture transmittance profile showed the valley-peak pattern, which signifies positive non-linearity. Nonetheless, the variation in the n2 values of the RTILs follows the same trend in low pulse repetition rate as was observed in case of high pulse repetition rate. The trend in the n 2 values clearly showed the decrease in the non-linearity in the first two cases and has been attributed to the weakening of the ion-pair formation, which adversely affects the charge transfer between the ionic moieties via C2 position. However, an increase in the n 2 values was observed in case of ILs irradiated to high radiation doses. This enhancement in the non-linearity has been assigned to the formation of double bond order radiolytic products. These results clearly indicate a strong correlation between the non-linearity and the strength of cation-anion interaction amongst them. Therefore, such information about these solvents may significantly contribute to the fundamental understanding of their structure-property relationships.

  18. Three-dimensional non-linear numerical analysis on the oxygen concentration field in underground coal gasification

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Lanhe [College of Mineral Resources and Geosciences, China University of Mining and Technology, Xuzhou, Jiangsu Province 221008 (China)

    2004-10-15

    The stability of the process of underground coal gasification and its gas compositions depend on, to a large extent, the features of the convection diffusion of the gas and the dynamical conditions of chemical reactions. The dynamic distribution of the gasification agent concentration, in particular, has a great influence on the combustion and gasification reactions. In this paper, the basic features of convection diffusion for the gas produced in underground coal gasification are studied. On the basis of the model experiment, through the analysis of the distribution and patterns of variation for the fluid concentration field in the process of the combustion and gasification of the coal seams within the gasifier, the 3-D non-linear unstable mathematical models on the convection diffusion for oxygen are established. Additionally, the determination method of the major model parameters is explained. In order to curb such pseudo-physical effects as numerical oscillation and surfeit frequently occurred in the solution of the complex mathematical models, the novel finite unit algorithm-the upstream weighted multi-cell balance method is adopted in this paper to solve the numerical models established. The author also analyzed and discussed the simulated calculation results, which show that, except very few points in loosening zone, where the relative calculation error is comparatively high (>20%) resulting from the low oxygen concentration, the relative calculation error of other points falls between 7% and 17%. Therefore, the calculation value and the experiment value take on a good conformity. According to the simulated results, the calculation value of the oxygen concentration is a little bit lower than the experiment one. On top of that, with the prolonging of gasification time, in high temperature zone, the change gradient of oxygen concentration for experiment value is bigger than that of the calculation value. The oxygen concentration is in direct proportion to its

  19. Efficient Non Linear Loudspeakers

    DEFF Research Database (Denmark)

    Petersen, Bo R.; Agerkvist, Finn T.

    2006-01-01

    Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....

  20. Constraining the halo bispectrum in real and redshift space from perturbation theory and non-linear stochastic bias

    CERN Document Server

    Kitaura, Francisco-Shu; Scoccola, Claudia; Chuang, Chia-Hsun; Müller, Volker; Yepes, Gustavo; Prada, Francisco

    2014-01-01

    We present a method to produce mock galaxy catalogues with efficient perturbation theory schemes, which match the number density, power spectra and bispectra in real and in redshift space from N-body simulations. The essential contribution of this work is the way in which we constrain the bias parameters in the PATCHY-code. In addition of aiming at reproducing the two-point statistics, we seek the set of bias parameters, which constrain the univariate halo probability distribution function (PDF) encoding higher-order correlation functions. We demonstrate that halo catalogues based on the same underlying dark matter field with a fix halo number density, and accurately matching the power spectrum (within 2%), can lead to very different bispectra depending on the adopted halo bias model. A model ignoring the shape of the halo PDF can lead to deviations up to factors of 2. The catalogues obtained additionally constraining the shape of the halo PDF can significantly lower the discrepancy in the three-point statist...

  1. Non-linear Ultrasound Imaging

    DEFF Research Database (Denmark)

    Du, Yigang

    without iteration steps. The ASA is implemented in combination with Field II and extended to simulate the pulsed ultrasound fields. The simulated results from a linear array transducer are made by the ASA based on Field II, and by a released non-linear simulation program- Abersim, respectively....... The calculation speed of the ASA is increased approximately by a factor of 140. For the second harmonic point spread function the error of the full width is 1.5% at -6 dB and 6.4% at -12 dB compared to Abersim. To further investigate the linear and non-linear ultrasound fields, hydrophone measurements.......3% relative to the measurement from a 1 inch diameter transducer. A preliminary study for harmonic imaging using synthetic aperture sequential beamforming (SASB) has been demonstrated. A wire phantom underwater measurement is made by an experimental synthetic aperture real-time ultrasound scanner (SARUS...

  2. Efficient Non Linear Loudspeakers

    DEFF Research Database (Denmark)

    Petersen, Bo R.; Agerkvist, Finn T.

    2006-01-01

    Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption.......Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...

  3. Efficient Linear and Non-Linear Finite Element Formulation using a New Local Enhancement of Displacement Fields for Triangular Elements

    DEFF Research Database (Denmark)

    Damkilde, Lars; Pedersen, Ronnie

    2012-01-01

    This paper describes a new triangular plane element which can be considered as a linear strain triangular element (LST) extended with incompatible displacement modes. The extended element will have a full cubic interpolation of strains and stresses. The extended LST-element is connected with other...... elements similar to the LST-element i.e. through three corner nodes and three mid-side nodes. The incompatible modes are associated with two displacement gradients at each mid-side node and displacements in the central node. The element passes the patch test and converges to the exact solution. The element...... has been tested on a standard linear test such as Cook’s panel, and is shown as expected to be somewhat more flexible than the LST-element and the compatible quadratic strain element (QST). The extended element has also been applied to material non-linear geotechnical problems. Geotechnical problems...

  4. Non-linear exciton spin-splitting in single InAs/GaAs self-assembled quantum structures in ultrahigh magnetic fields

    OpenAIRE

    Babinski, A.; Ortner, G.; Raymond, S.; Potemski, M.; Bayer, M.; Hawrylak, P.; Forchel, A.; Wasilewski, Z.; Fafard,S.

    2005-01-01

    We report on the magnetic field dispersion of the exciton spin-splitting and diamagnetic shift in single InAs/GaAs quantum dots (QDs) and dot molecules (QDMs) up to $B$ = 28 T. Only for systems with strong geometric confinement, the dispersions can be well described by simple field dependencies, while for dots with weaker confinement considerable deviations are observed: most importantly, in the high field limit the spin-splitting shows a non-linear dependence on $B$, clearly indicating light...

  5. Characteristic Scales of Baryon Acoustic Oscillations from Perturbation Theory: Non-linearity and Redshift-Space Distortion Effects

    CERN Document Server

    Nishimichi, Takahiro; Nakamichi, Masashi; Taruya, Atsushi; Yahata, Kazuhiro; Shirata, Akihito; Saito, Shun; Nomura, Hidenori; Yamamoto, Kazuhiro; Suto, Yasushi

    2007-01-01

    An acoustic oscillation of the primeval photon-baryon fluid around the decoupling time imprints a characteristic scale in the galaxy distribution today, known as the baryon acoustic oscillation (BAO) scale. Several on-going and/or future galaxy surveys aim at detecting and precisely determining the BAO scale so as to trace the expansion history of the universe. We consider nonlinear and redshift-space distortion effects on the shifts of the BAO scale in $k$-space using perturbation theory. The resulting shifts are indeed sensitive to different choices of the definition of the BAO scale, which needs to be kept in mind in the data analysis. We present a toy model to explain the physical behavior of the shifts. We find that the BAO scale defined as in Percival et al. (2007) indeed shows very small shifts ($\\lesssim$ 1%) relative to the prediction in {\\it linear theory} in real space. The shifts can be predicted accurately for scales where the perturbation theory is reliable.

  6. Non-linear 2-DOF model and centre manifold theory to study limit cycle oscillations caused by drum-brake judder

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ming-gang; HUANG Qi-bai; WANG Yong; XU Zhi-sheng

    2007-01-01

    This paper presents the research on the laws of systematic-parameter dependent variation in the vibration amplitude of drum-brake limit cycle oscillations (LCO). We established a two-degree non-linear dynamic model to describe the low-frequency vibration of the drum brake, applied the centre manifold theory to simplify the system, and obtained the LCO amplitude by calculating the normal form of the simplified system at the Hopf bifurcation point. It is indicated that when the friction coefficient is smaller than the friction coefficient at the bifurcation point, the amplitude decreases; whereas with a friction coefficient larger than the friction coefficient of bifurcation point, LCO occurs. The results suggest that it is applicable to suppress the LCO amplitude by changing systematic parameters, and thus improve the safety and ride comfort when applying brake. These findings can be applied to guiding the design of drum brakes.

  7. Non-linear spin wave theory results for the frustrated [Formula: see text] Heisenberg antiferromagnet on a body-centered cubic lattice.

    Science.gov (United States)

    Majumdar, Kingshuk; Datta, Trinanjan

    2009-10-07

    At zero temperature the sublattice magnetization of the quantum spin- 1/2 Heisenberg antiferromagnet on a body-centered cubic lattice with competing first and second neighbor exchange (J(1) and J(2)) is investigated using the non-linear spin wave theory. The zero temperature phases of the model consist of a two sublattice Néel phase for small J(2) (AF(1)) and a collinear phase at large J(2) (AF(2)). We show that quartic corrections due to spin wave interactions enhance the sublattice magnetization in both the AF(1) and the AF(2) phase. The magnetization corrections are prominent near the classical transition point of the model and in the J(2)>J(1) regime. The ground state energy with quartic interactions is also calculated. It is found that up to quartic corrections the first order phase transition (previously observed in this model) between the AF(1) and the AF(2) phase survives.

  8. Fracture prediction using modified mohr coulomb theory for non-linear strain paths using AA3104-H19

    Science.gov (United States)

    Dick, Robert; Yoon, Jeong Whan

    2016-08-01

    Experiment results from uniaxial tensile tests, bi-axial bulge tests, and disk compression tests for a beverage can AA3104-H19 material are presented. The results from the experimental tests are used to determine material coefficients for both Yld2000 and Yld2004 models. Finite element simulations are developed to study the influence of materials model on the predicted earing profile. It is shown that only the YLD2004 model is capable of accurately predicting the earing profile as the YLD2000 model only predicts 4 ears. Excellent agreement with the experimental data for earing is achieved using the AA3104-H19 material data and the Yld2004 constitutive model. Mechanical tests are also conducted on the AA3104-H19 to generate fracture data under different stress triaxiality conditions. Tensile tests are performed on specimens with a central hole and notched specimens. Torsion of a double bridge specimen is conducted to generate points near pure shear conditions. The Nakajima test is utilized to produce points in bi-axial tension. The data from the experiments is used to develop the fracture locus in the principal strain space. Mapping from principal strain space to stress triaxiality space, principal stress space, and polar effective plastic strain space is accomplished using a generalized mapping technique. Finite element modeling is used to validate the Modified Mohr-Coulomb (MMC) fracture model in the polar space. Models of a hole expansion during cup drawing and a cup draw/reverse redraw/expand forming sequence demonstrate the robustness of the modified PEPS fracture theory for the condition with nonlinear forming paths and accurately predicts the onset of failure. The proposed methods can be widely used for predicting failure for the examples which undergo nonlinear strain path including rigid-packaging and automotive forming.

  9. Field dependent transition to the non-linear regime in magnetic hyperthermia experiments: Comparison between maghemite, copper, zinc, nickel and cobalt ferrite nanoparticles of similar sizes

    Directory of Open Access Journals (Sweden)

    E. L. Verde

    2012-09-01

    Full Text Available Further advances in magnetic hyperthermia might be limited by biological constraints, such as using sufficiently low frequencies and low field amplitudes to inhibit harmful eddy currents inside the patient's body. These incite the need to optimize the heating efficiency of the nanoparticles, referred to as the specific absorption rate (SAR. Among the several properties currently under research, one of particular importance is the transition from the linear to the non-linear regime that takes place as the field amplitude is increased, an aspect where the magnetic anisotropy is expected to play a fundamental role. In this paper we investigate the heating properties of cobalt ferrite and maghemite nanoparticles under the influence of a 500 kHz sinusoidal magnetic field with varying amplitude, up to 134 Oe. The particles were characterized by TEM, XRD, FMR and VSM, from which most relevant morphological, structural and magnetic properties were inferred. Both materials have similar size distributions and saturation magnetization, but strikingly different magnetic anisotropies. From magnetic hyperthermia experiments we found that, while at low fields maghemite is the best nanomaterial for hyperthermia applications, above a critical field, close to the transition from the linear to the non-linear regime, cobalt ferrite becomes more efficient. The results were also analyzed with respect to the energy conversion efficiency and compared with dynamic hysteresis simulations. Additional analysis with nickel, zinc and copper-ferrite nanoparticles of similar sizes confirmed the importance of the magnetic anisotropy and the damping factor. Further, the analysis of the characterization parameters suggested core-shell nanostructures, probably due to a surface passivation process during the nanoparticle synthesis. Finally, we discussed the effect of particle-particle interactions and its consequences, in particular regarding discrepancies between estimated

  10. Non-linear optical response of an impurity in a cylindrical quantum dot under the action of a magnetic field

    Science.gov (United States)

    Portacio, Alfonso A.; Rodríguez, Boris A.; Villamil, Pablo

    2017-04-01

    The linear and nonlinear optical response in a cylindrical quantum dot (CQD) of GaAs / Ga0.6Al0.4 As with a donor impurity in a uniform magnetic field applied in the axial direction of the cylinder is studied theoretically. The calculations were carried out in approximations of effective mass and two-level quantum systems. Using the variational method, the binding energies and the wave functions of the 1s-like y 2pz-like states for different positions of the impurity inside the CQD were found. It was found that the binding energy is greatest in the center of the CQD and diminishes as the impurity moves radially and/or axially. The optical rectification, the change in the refractive index, and the optical absorption were studied as functions of the energy of a photon incident on the CQD and different intensities of the magnetic field, with an impurity located at various positions. It was found that in a CDQ with an impurity inside, the effect of the variation of the intensity of the magnetic field on the optical response is much less than the effect produced by the variation of the position of the impurity. The physical reason for this behavior is that in nanostructures with impurities the Coulomb confinement is stronger than the magnetic confinement. It was also found that when the impurity is in the center of the quantum dot, the optical rectification coefficient is zero, due to the symmetry that the wave function of the impurity exhibits at this geometric point. When the impurity moves in the axial direction, the symmetry is broken and the optical rectification coefficient is different from zero, and its value increases as the impurity moves away from the center of the CQD.

  11. Field reparametrization in effective field theories

    CERN Document Server

    Passarino, Giampiero

    2016-01-01

    Debate topic for Effective Field Theory (EFT) is the choice of a "basis" for $\\mrdim = 6$ operators Clearly all bases are equivalent as long as they are a "basis", containing a minimal set of operators after the use of equations of motion and respecting gauge invariance. From a more formal point of view a basis is characterized by its closure with respect to renormalization. Equivalence of bases should always be understood as a statement for the S-matrix and not for the Lagrangian, as dictated by the equivalence theorem. Any phenomenological approach that misses one of these ingredients is still acceptable for a preliminar analysis, as long as it does not pretend to be an EFT. Here we revisit the equivalence theorem and its consequences for EFT when two sets of higher dimensional operators are connected by a set of non-linear, noninvariant, field reparametrizations.

  12. Non-linear dark matter collapse under diffusion

    CERN Document Server

    Velten, Hermano E S

    2014-01-01

    Diffusion is one of the physical processes allowed for describing the large scale dark matter dynamics. At the same time, it can be seen as a possible mechanism behind the interacting cosmologies. We study the non-linear spherical "top-hat" collapse of dark matter which undergoes velocity diffusion into a solvent dark energy field. We show constraints on the maximum magnitude allowed for the dark matter diffusion. Our results reinforce previous analysis concerning the linear perturbation theory.

  13. Conference on Non-linear Phenomena in Mathematical Physics: Dedicated to Cathleen Synge Morawetz on her 85th Birthday. The Fields Institute, Toronto, Canada September 18-20, 2008. Sponsors: Association for Women in Mathematics, Inc. and The Fields Institute

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Jennifer

    2012-10-15

    This scientific meeting focused on the legacy of Cathleen S. Morawetz and the impact that her scientific work on transonic flow and the non-linear wave equation has had in recent progress on different aspects of analysis for non-linear wave, kinetic and quantum transport problems associated to mathematical physics. These are areas where the elements of continuum, statistical and stochastic mechanics, and their interplay, have counterparts in the theory of existence, uniqueness and stability of the associated systems of equations and geometric constraints. It was a central event for the applied and computational analysis community focusing on Partial Differential Equations. The goal of the proposal was to honor Cathleen Morawetz, a highly successful woman in mathematics, while encouraging beginning researchers. The conference was successful in show casing the work of successful women, enhancing the visibility of women in the profession and providing role models for those just beginning their careers. The two-day conference included seven 45-minute lectures and one day of six 45-minute lectures, and a poster session for junior participants. The conference program included 19 distinguished speakers, 10 poster presentations, about 70 junior and senior participants and, of course, the participation of Cathleen Synge Morawetz. The conference celebrated Morawetz's paramount contributions to the theory of non-linear equations in gas dynamics and their impact in the current trends of nonlinear phenomena in mathematical physics, but also served as an awareness session of current women's contribution to mathematics.

  14. Non linear system become linear system

    Directory of Open Access Journals (Sweden)

    Petre Bucur

    2007-01-01

    Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.

  15. Non-Linear Relativity in Position Space

    CERN Document Server

    Kimberly, D; Medeiros-Neto, J F; Kimberly, Dagny; Magueijo, João; Medeiros, João

    2003-01-01

    We propose two methods for obtaining the dual of non-linear relativity as previously formulated in momentum space. In the first we allow for the (dual) position space to acquire a non-linear representation of the Lorentz group independently of the chosen representation in momentum space. This requires a non-linear definition for the invariant contraction between momentum and position spaces. The second approach, instead, respects the linearity of the invariant contraction. This fully fixes the dual of momentum space and dictates a set of energy-dependent space-time Lorentz transformations. We discuss a variety of physical implications that would distinguish these two strategies. We also show how they point to two rather distinct formulations of theories of gravity with an invariant energy and/or length scale.

  16. Modern Quantum Field Theory

    Science.gov (United States)

    Banks, Tom

    2008-09-01

    1. Introduction; 2. Quantum theory of free scalar fields; 3. Interacting field theory; 4. Particles of spin one, and gauge invariance; 5. Spin 1/2 particles and Fermi statistics; 6. Massive quantum electrodynamics; 7. Symmetries, Ward identities and Nambu Goldstone bosons; 8. Non-abelian gauge theory; 9. Renormalization and effective field theory; 10. Instantons and solitons; 11. Concluding remarks; Appendices; References; Index.

  17. Testing non-linear vacuum electrodynamics with Michelson interferometry

    CERN Document Server

    Schellstede, Gerold O; Lämmerzahl, Claus

    2015-01-01

    We discuss the theoretical foundations for testing non-linear vacuum electrodynamics with Michelson interferometry. Apart from some non-degeneracy conditions to be imposed, our discussion applies to all non-linear electrodynamical theories of the Pleba\\'nski class, i.e., to all Lagrangians that depend only on the two Lorentz-invariant scalars quadratic in the field strength. The main idea of the experiment proposed here is to use the fact that, according to non-linear electrodynamics, the phase velocity of light should depend on the strength and on the direction of an electromagnetic background field. There are two possible experimental set-ups for testing this prediction with Michelson interferometry. The first possibility is to apply a strong electromagnetic field to the beam in one arm of the interferometer and to compare the situation where the field is switched on with the situation where it is switched off. The second possibility is to place the whole interferometer in a strong electromagnetic field and...

  18. Renormalizable Tensor Field Theories

    CERN Document Server

    Geloun, Joseph Ben

    2016-01-01

    Extending tensor models at the field theoretical level, tensor field theories are nonlocal quantum field theories with Feynman graphs identified with simplicial complexes. They become relevant for addressing quantum topology and geometry in any dimension and therefore form an interesting class of models for studying quantum gravity. We review the class of perturbatively renormalizable tensor field theories and some of their features.

  19. Charged relativistic fluids and non-linear electrodynamics

    Science.gov (United States)

    Dereli, T.; Tucker, R. W.

    2010-01-01

    The electromagnetic fields in Maxwell's theory satisfy linear equations in the classical vacuum. This is modified in classical non-linear electrodynamic theories. To date there has been little experimental evidence that any of these modified theories are tenable. However with the advent of high-intensity lasers and powerful laboratory magnetic fields this situation may be changing. We argue that an approach involving the self-consistent relativistic motion of a smooth fluid-like distribution of matter (composed of a large number of charged or neutral particles) in an electromagnetic field offers a viable theoretical framework in which to explore the experimental consequences of non-linear electrodynamics. We construct such a model based on the theory of Born and Infeld and suggest that a simple laboratory experiment involving the propagation of light in a static magnetic field could be used to place bounds on the fundamental coupling in that theory. Such a framework has many applications including a new description of the motion of particles in modern accelerators and plasmas as well as phenomena in astrophysical contexts such as in the environment of magnetars, quasars and gamma-ray bursts.

  20. Advanced classical field theory

    CERN Document Server

    Giachetta, Giovanni; Sardanashvily, Gennadi

    2009-01-01

    Contemporary quantum field theory is mainly developed as quantization of classical fields. Therefore, classical field theory and its BRST extension is the necessary step towards quantum field theory. This book aims to provide a complete mathematical foundation of Lagrangian classical field theory and its BRST extension for the purpose of quantization. Based on the standard geometric formulation of theory of nonlinear differential operators, Lagrangian field theory is treated in a very general setting. Reducible degenerate Lagrangian theories of even and odd fields on an arbitrary smooth manifold are considered. The second Noether theorems generalized to these theories and formulated in the homology terms provide the strict mathematical formulation of BRST extended classical field theory

  1. Size-dependent dynamic pull-in analysis of geometric non-linear micro-plates based on the modified couple stress theory

    Science.gov (United States)

    Askari, Amir R.; Tahani, Masoud

    2017-02-01

    This paper focuses on the size-dependent dynamic pull-in instability in rectangular micro-plates actuated by step-input DC voltage. The present model accounts for the effects of in-plane displacements and their non-classical higher-order boundary conditions, von Kármán geometric non-linearity, non-classical couple stress components and the inherent non-linearity of distributed electrostatic pressure on the micro-plate motion. The governing equations of motion, which are clearly derived using Hamilton's principle, are solved through a novel computationally very efficient Galerkin-based reduced order model (ROM) in which all higher-order non-classical boundary conditions are completely satisfied. The present findings are compared and successfully validated by available results in the literature as well as those obtained by three-dimensional finite element simulations carried out using COMSOL Multyphysics. A detailed parametric study is also conducted to illustrate the effects of in-plane displacements, plate aspect ratio, couple stress components and geometric non-linearity on the dynamic instability threshold of the system.

  2. Oscillatons formed by non linear gravity

    CERN Document Server

    Obregón, O; Schunck, F E; Obregon, Octavio; Schunck, Franz E.

    2004-01-01

    Oscillatons are solutions of the coupled Einstein-Klein-Gordon (EKG) equations that are globally regular and asymptotically flat. By means of a Legendre transformation we are able to visualize the behaviour of the corresponding objects in non-linear gravity where the scalar field has been absorbed by means of the conformal mapping.

  3. NICMOS non-linearity tests

    Science.gov (United States)

    de Jong, Roelof

    2005-07-01

    This program incorporates a number of tests to analyse the count rate dependent non-linearity seen in NICMOS spectro-photometric observations. In visit 1 we will observe a few fields with stars of a range in luminosity in NGC1850 with NICMOS in NIC1 in F090M, F110W and F160W and NIC2 F110W, F160W, and F180W. We will repeat the observations with flatfield lamp on, creating artificially high count-rates, allowing tests of NICMOS linearity as function of count rate. To access the effect of charge trapping and persistence, we first take darks {so there is not too much charge already trapped}, than take exposures with the lamp off, exposures with the lamp on, and repeat at the end with lamp off. Finally, we continue with taking darks during occultation. In visit 2 we will observe spectro-photometric standard P041C using the G096 and G141 grisms in NIC3, and repeat the lamp off/on/off test to artificially create a high background. In visits 3&4 we repeat photometry measurements of faint standard stars SNAP-2 and WD1657+343, on which the NICMOS non-linearity was originally discovered using grism observations. These measurements are repeated, because previous photometry was obtained with too short exposure times, hence substantially affected by charge trapping non-linearity. Measurements will be made with NIC1: Visit 5 forms the persistence test of the program. The bright star GL-390 {used in a previous persistence test} will iluminate the 3 NICMOS detectors in turn for a fixed time, saturating the center many times, after which a series of darks will be taken to measure the persistence {i.e. trapped electrons and the decay time of the traps}. To determine the wavelength dependence of the trap chance, exposures of the bright star in different filters will be taken, as well as one in the G096 grism with NIC3. Most exposures will be 128s long, but two exposures in the 3rd orbit will be 3x longer, to seperate the effects of count rate versus total counts of the trap

  4. Non-linear Q-clouds around Kerr black holes

    Directory of Open Access Journals (Sweden)

    Carlos Herdeiro

    2014-12-01

    Full Text Available Q-balls are regular extended ‘objects’ that exist for some non-gravitating, self-interacting, scalar field theories with a global, continuous, internal symmetry, on Minkowski spacetime. Here, analogous objects are also shown to exist around rotating (Kerr black holes, as non-linear bound states of a test scalar field. We dub such configurations Q-clouds. We focus on a complex massive scalar field with quartic plus hexic self-interactions. Without the self-interactions, linear clouds have been shown to exist, in synchronous rotation with the black hole horizon, along 1-dimensional subspaces – existence lines – of the Kerr 2-dimensional parameter space. They are zero modes of the superradiant instability. Non-linear Q-clouds, on the other hand, are also in synchronous rotation with the black hole horizon; but they exist on a 2-dimensional subspace, delimited by a minimal horizon angular velocity and by an appropriate existence line, wherein the non-linear terms become irrelevant and the Q-cloud reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound states around Kerr black holes which, generically, are not zero modes of the superradiant instability. We describe some physical properties of Q-clouds, whose backreaction leads to a new family of hairy black holes, continuously connected to the Kerr family.

  5. Non-linear elastic deformations

    CERN Document Server

    Ogden, R W

    1997-01-01

    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  6. Towards the mathematics of quantum field theory

    CERN Document Server

    Paugam, Frédéric

    2014-01-01

    The aim of this book is to introduce mathematicians (and, in particular, graduate students) to the mathematical methods of theoretical and experimental quantum field theory, with an emphasis on coordinate-free presentations of the mathematical objects in play. This should in turn promote interaction between mathematicians and physicists by supplying a common and flexible language for the good of both communities, even if the mathematical one is the primary target. This reference work provides a coherent and complete mathematical toolbox for classical and quantum field theory, based on categorical and homotopical methods, representing an original contribution to the literature. The first part of the book introduces the mathematical methods needed to work with the physicists' spaces of fields, including parameterized and functional differential geometry, functorial analysis, and the homotopical geometric theory of non-linear partial differential equations, with applications to general gauge theories. The second...

  7. Balanced Topological Field Theories

    Science.gov (United States)

    Dijkgraaf, R.; Moore, G.

    We describe a class of topological field theories called ``balanced topological field theories''. These theories are associated to moduli problems with vanishing virtual dimension and calculate the Euler character of various moduli spaces. We show that these theories are closely related to the geometry and equivariant cohomology of ``iterated superspaces'' that carry two differentials. We find the most general action for these theories, which turns out to define Morse theory on field space. We illustrate the constructions with numerous examples. Finally, we relate these theories to topological sigma-models twisted using an isometry of the target space.

  8. Balanced Topological Field Theories

    CERN Document Server

    Dijkgraaf, R

    1997-01-01

    We describe a class of topological field theories called ``balanced topological field theories.'' These theories are associated to moduli problems with vanishing virtual dimension and calculate the Euler character of various moduli spaces. We show that these theories are closely related to the geometry and equivariant cohomology of ``iterated superspaces'' that carry two differentials. We find the most general action for these theories, which turns out to define Morse theory on field space. We illustrate the constructions with numerous examples. Finally, we relate these theories to topological sigma-models twisted using an isometry of the target space.

  9. Finite field-dependent BRST symmetry for ABJM theory in N=1 superspace

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir, E-mail: f2mir@uwaterloo.ca [Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1 (Canada); Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Department of Physics, Banaras Hindu University, Varanasi 221005 (India); Mandal, Bhabani Prasad, E-mail: bhabani.mandal@gmail.com [Department of Physics, Banaras Hindu University, Varanasi 221005 (India)

    2014-11-10

    In this paper we analyze the ABJM theory in N=1 superspace. Firstly we study the linear and non-linear BRST transformations for the ABJM theory. Then we derive the finite field dependent version of these BRST (FFBRST) transformations. Further we show that such FFBRST transformations relate the generating functional in linear gauge to the generating functional in the non-linear gauge of ABJM theory.

  10. Noncommutative quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Grosse, H. [Fakultaet fuer Physik, Universitaet Wien, Boltzmanngasse 5, 1090 Wien (Austria); Wulkenhaar, R. [Mathematisches Institut der Westfaelischen Wilhelms-Universitaet, Einsteinstrasse 62, 48149 Muenster (Germany)

    2014-09-11

    We summarize our recent construction of the φ{sup 4}-model on four-dimensional Moyal space. This is achieved by solving the quartic matrix model for a general external matrix in terms of the solution of a non-linear equation for the 2-point function and the eigenvalues of that matrix. The β-function vanishes identically. For the Moyal model, the theory of Carleman type singular integral equations reduces the construction to a fixed point problem. The resulting Schwinger functions in position space are symmetric and invariant under the full Euclidean group. The Schwinger 2-point function is reflection positive iff the diagonal matrix 2-point function is a Stieltjes function. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Weak non-linear surface charging effects in electrolytic films

    OpenAIRE

    Dean, D. S.; Horgan, R. R.

    2002-01-01

    A simple model of soap films with nonionic surfactants stabilized by added electrolyte is studied. The model exhibits charge regularization due to the incorporation of a physical mechanism responsible for the formation of a surface charge. We use a Gaussian field theory in the film but the full non-linear surface terms which are then treated at a one-loop level by calculating the mean-field Poisson-Boltzmann solution and then the fluctuations about this solution. We carefully analyze the reno...

  12. Generalized BRST symmetry for arbitrary spin conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Upadhyay, Sudhaker, E-mail: sudhakerupadhyay@gmail.com [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Mandal, Bhabani Prasad, E-mail: bhabani.mandal@gmail.com [Department of Physics, Banaras Hindu University, Varanasi 221005 (India)

    2015-05-11

    We develop the finite field-dependent BRST (FFBRST) transformation for arbitrary spin-s conformal field theories. We discuss the novel features of the FFBRST transformation in these systems. To illustrate the results we consider the spin-1 and spin-2 conformal field theories in two examples. Within the formalism we found that FFBRST transformation connects the generating functionals of spin-1 and spin-2 conformal field theories in linear and non-linear gauges. Further, the conformal field theories in the framework of FFBRST transformation are also analyzed in Batalin–Vilkovisky (BV) formulation to establish the results.

  13. Classical field theory

    CERN Document Server

    Franklin, Joel

    2017-01-01

    Classical field theory, which concerns the generation and interaction of fields, is a logical precursor to quantum field theory, and can be used to describe phenomena such as gravity and electromagnetism. Written for advanced undergraduates, and appropriate for graduate level classes, this book provides a comprehensive introduction to field theories, with a focus on their relativistic structural elements. Such structural notions enable a deeper understanding of Maxwell's equations, which lie at the heart of electromagnetism, and can also be applied to modern variants such as Chern–Simons and Born–Infeld. The structure of field theories and their physical predictions are illustrated with compelling examples, making this book perfect as a text in a dedicated field theory course, for self-study, or as a reference for those interested in classical field theory, advanced electromagnetism, or general relativity. Demonstrating a modern approach to model building, this text is also ideal for students of theoretic...

  14. The Supersymmetric Effective Field Theory of Inflation

    CERN Document Server

    Delacretaz, Luca V; Senatore, Leonardo

    2016-01-01

    We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable St\\"uckelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplif...

  15. Encoding field theories into gravities

    CERN Document Server

    Aoki, Sinya; Onogi, Tetsuya

    2016-01-01

    We propose a method to give a $d+1$ geometry from a $d$ dimensional quantum field theory in the large N expansion. We first construct a $d+1$ dimensional field from the $d$ dimensional one using the gradient flow equation, whose flow time $t$ represents the energy scale of the system such that $t\\rightarrow 0$ corresponds to the ultra-violet (UV) while $t\\rightarrow\\infty$ to the infra-red (IR). We define the induced metric using $d+1$ dimensional field operators. We show that the metric defined in this way becomes classical in the large N limit: quantum fluctuations of the metric are suppressed as 1/N due to the large $N$ factorization property. As a concrete example, we apply our method to the O(N) non-linear $\\sigma$ model in two dimensions. We calculate the three dimensional induced metric, which describes an AdS space in the massless limit. We finally discuss several open issues for future investigations.

  16. Non-linear canonical correlation

    NARCIS (Netherlands)

    van der Burg, Eeke; de Leeuw, Jan

    1983-01-01

    Non-linear canonical correlation analysis is a method for canonical correlation analysis with optimal scaling features. The method fits many kinds of discrete data. The different parameters are solved for in an alternating least squares way and the corresponding program is called CANALS. An

  17. Non-Linear Mixed Logit

    DEFF Research Database (Denmark)

    Andersen, Steffen; Harrison, Glenn W.; Hole, Arne Risa

    2012-01-01

    We develop an extension of the familiar linear mixed logit model to allow for the direct estimation of parametric non-linear functions defined over structural parameters. Classic applications include the estimation of coefficients of utility functions to characterize risk attitudes and discountin...

  18. Conformal field theory

    CERN Document Server

    Ketov, Sergei V

    1995-01-01

    Conformal field theory is an elegant and powerful theory in the field of high energy physics and statistics. In fact, it can be said to be one of the greatest achievements in the development of this field. Presented in two dimensions, this book is designed for students who already have a basic knowledge of quantum mechanics, field theory and general relativity. The main idea used throughout the book is that conformal symmetry causes both classical and quantum integrability. Instead of concentrating on the numerous applications of the theory, the author puts forward a discussion of the general

  19. Nonlocal continuum field theories

    CERN Document Server

    2002-01-01

    Nonlocal continuum field theories are concerned with material bodies whose behavior at any interior point depends on the state of all other points in the body -- rather than only on an effective field resulting from these points -- in addition to its own state and the state of some calculable external field. Nonlocal field theory extends classical field theory by describing the responses of points within the medium by functionals rather than functions (the "constitutive relations" of classical field theory). Such considerations are already well known in solid-state physics, where the nonlocal interactions between the atoms are prevalent in determining the properties of the material. The tools developed for crystalline materials, however, do not lend themselves to analyzing amorphous materials, or materials in which imperfections are a major part of the structure. Nonlocal continuum theories, by contrast, can describe these materials faithfully at scales down to the lattice parameter. This book presents a unif...

  20. Superspace conformal field theory

    Energy Technology Data Exchange (ETDEWEB)

    Quella, Thomas [Koeln Univ. (Germany). Inst. fuer Theoretische Physik; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-07-15

    Conformal sigma models and WZW models on coset superspaces provide important examples of logarithmic conformal field theories. They possess many applications to problems in string and condensed matter theory. We review recent results and developments, including the general construction of WZW models on type I supergroups, the classification of conformal sigma models and their embedding into string theory.

  1. Boundary Conformal Field Theory

    CERN Document Server

    Cardy, J L

    2004-01-01

    Boundary conformal field theory (BCFT) is simply the study of conformal field theory (CFT) in domains with a boundary. It gains its significance because, in some ways, it is mathematically simpler: the algebraic and geometric structures of CFT appear in a more straightforward manner; and because it has important applications: in string theory in the physics of open strings and D-branes, and in condensed matter physics in boundary critical behavior and quantum impurity models. In this article, however, I describe the basic ideas from the point of view of quantum field theory, without regard to particular applications nor to any deeper mathematical formulations.

  2. Quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sadovskii, Michael V.

    2013-06-01

    This book discusses the main concepts of the Standard Model of elementary particles in a compact and straightforward way. The work illustrates the unity of modern theoretical physics by combining approaches and concepts of the quantum field theory and modern condensed matter theory. The inductive approach allows a deep understanding of ideas and methods used for solving problems in this field.

  3. Engineering field theory

    CERN Document Server

    Baden Fuller, A J

    2014-01-01

    Engineering Field Theory focuses on the applications of field theory in gravitation, electrostatics, magnetism, electric current flow, conductive heat transfer, fluid flow, and seepage.The manuscript first ponders on electric flux, electrical materials, and flux function. Discussions focus on field intensity at the surface of a conductor, force on a charged surface, atomic properties, doublet and uniform field, flux tube and flux line, line charge and line sink, field of a surface charge, field intensity, flux density, permittivity, and Coulomb's law. The text then takes a look at gravitation

  4. Non-Linear Dynamics and Fundamental Interactions

    CERN Document Server

    Khanna, Faqir

    2006-01-01

    The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.

  5. Covariantizing Classical Field Theories

    CERN Document Server

    López, Marco Castrillón

    2010-01-01

    We show how to enlarge the covariance group of any classical field theory in such a way that the resulting "covariantized" theory is 'essentially equivalent' to the original. In particular, our technique will render any classical field theory generally covariant, that is, the covariantized theory will be spacetime diffeomorphism-covariant and free of absolute objects. Our results thus generalize the well-known parametrization technique of Dirac and Kucha\\v{r}. Our constructions apply equally well to internal covariance groups, in which context they produce natural derivations of both the Utiyama minimal coupling and St\\"uckelberg tricks.

  6. Quantum field theory

    CERN Document Server

    Mandl, Franz

    2010-01-01

    Following on from the successful first (1984) and revised (1993) editions, this extended and revised text is designed as a short and simple introduction to quantum field theory for final year physics students and for postgraduate students beginning research in theoretical and experimental particle physics. The three main objectives of the book are to: Explain the basic physics and formalism of quantum field theory To make the reader proficient in theory calculations using Feynman diagrams To introduce the reader to gauge theories, which play a central role in elementary particle physic

  7. Non-linear dynamics of wind turbine wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2006-01-01

    by the rotation of the aerodynamic load and the curvature, as well as inertial induced non-linearities caused by the support point motion. The non-linear partial differential equations of motion in the moving frame of reference have been discretized, using the fixed base eigenmodes as a functional basis......The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced....... Important non-linear couplings between the fundamental blade mode and edgewise modes have been identified based on a resonance excitation of the wing, caused by a harmonically varying support point motion with the circular frequency omega. Assuming that the fundamental blade and edgewise eigenfrequencies...

  8. Employment of CB models for non-linear dynamic analysis

    Science.gov (United States)

    Klein, M. R. M.; Deloo, P.; Fournier-Sicre, A.

    1990-01-01

    The non-linear dynamic analysis of large structures is always very time, effort and CPU consuming. Whenever possible the reduction of the size of the mathematical model involved is of main importance to speed up the computational procedures. Such reduction can be performed for the part of the structure which perform linearly. Most of the time, the classical Guyan reduction process is used. For non-linear dynamic process where the non-linearity is present at interfaces between different structures, Craig-Bampton models can provide a very rich information, and allow easy selection of the relevant modes with respect to the phenomenon driving the non-linearity. The paper presents the employment of Craig-Bampton models combined with Newmark direct integration for solving non-linear friction problems appearing at the interface between the Hubble Space Telescope and its solar arrays during in-orbit maneuvers. Theory, implementation in the FEM code ASKA, and practical results are shown.

  9. Modelling Loudspeaker Non-Linearities

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2007-01-01

    This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...

  10. BRST structure of non-linear superalgebras

    CERN Document Server

    Asorey, M; Radchenko, O V; Sugamoto, A

    2008-01-01

    In this paper we analyse the structure of the BRST structure of nonlinear superalgebras. We consider quadratic non-linear superalgebras where a commutator (in terms of (super) Poisson brackets) of the generators is a quadratic polynomial of the generators. We find the explicit form of the BRST charge up to cubic order in Faddeev-Popov ghost fields for arbitrary quadratic nonlinear superalgebras. We point out the existence of constraints on structure constants of the superalgebra when the nilpotent BRST charge is quadratic in Faddeev-Popov ghost fields. The general results are illustrated by simple examples of superalgebras.

  11. Phase Structure of the Non-Linear σ-MODEL with Oscillator Representation Method

    Science.gov (United States)

    Mishchenko, Yuriy; Ji, Chueng-R.

    2004-03-01

    Non-Linear σ-model plays an important role in many areas of theoretical physics. Been initially uintended as a simple model for chiral symmetry breaking, this model exhibits such nontrivial effects as spontaneous symmetry breaking, asymptotic freedom and sometimes is considered as an effective field theory for QCD. Besides, non-linear σ-model can be related to the strong-coupling limit of O(N) ϕ4-theory, continuous limit of N-dim. system of quantum spins, fermion gas and many others and takes important place in undertanding of how symmetries are realized in quantum field theories. Because of this variety of connections, theoretical study of the critical properties of σ-model is interesting and important. Oscillator representation method is a theoretical tool for studying the phase structure of simple QFT models. It is formulated in the framework of the canonical quantization and is based on the view of the unitary non-equivalent representations as possible phases of a QFT model. Successfull application of the ORM to ϕ4 and ϕ6 theories in 1+1 and 2+1 dimensions motivates its study in more complicated models such as non-linear σ-model. In our talk we introduce ORM, establish its connections with variational approach in QFT. We then present results of ORM in non-linear σ-model and try to interprete them from the variational point of view. Finally, we point out possible directions for further research in this area.

  12. Perturbative Topological Field Theory

    Science.gov (United States)

    Dijkgraaf, Robbert

    We give a review of the application of perturbative techniques to topological quantum field theories, in particular three-dimensional Chern-Simons-Witten theory and its various generalizations. To this end we give an introduction to graph homology and homotopy algebras and the work of Vassiliev and Kontsevich on perturbative knot invariants.

  13. Quantum field theory

    CERN Document Server

    de Wit, Bernard

    1990-01-01

    After a brief and practical introduction to field theory and the use of Feynman diagram, we discuss the main concept in gauge theories and their application in elementary particle physics. We present all the ingredients necessary for the construction of the standard model.

  14. Covariant Hamiltonian field theory

    CERN Document Server

    Giachetta, G; Sardanashvily, G

    1999-01-01

    We study the relationship between the equations of first order Lagrangian field theory on fiber bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian field theory. The main peculiarity of these Hamilton equations lies in the fact that, for degenerate systems, they contain additional gauge fixing conditions. We develop the BRST extension of the covariant Hamiltonian formalism, characterized by a Lie superalgebra of BRST and anti-BRST symmetries.

  15. Magnetic field cycling effect on the non-linear current-voltage characteristics and magnetic field induced negative differential resistance in α-Fe1.64Ga0.36O3 oxide

    Directory of Open Access Journals (Sweden)

    R. N. Bhowmik

    2015-06-01

    Full Text Available We have studied current-voltage (I-V characteristics of α-Fe1.64Ga0.36O3, a typical canted ferromagnetic semiconductor. The sample showed a transformation of the I-V curves from linear to non-linear character with the increase of bias voltage. The I-V curves showed irreversible features with hysteresis loop and bi-stable electronic states for up and down modes of voltage sweep. We report positive magnetoresistance and magnetic field induced negative differential resistance as the first time observed phenomena in metal doped hematite system. The magnitudes of critical voltage at which I-V curve showed peak and corresponding peak current are affected by magnetic field cycling. The shift of the peak voltage with magnetic field showed a step-wise jump between two discrete voltage levels with least gap (ΔVP 0.345(± 0.001 V. The magnetic spin dependent electronic charge transport in this new class of magnetic semiconductor opens a wide scope for tuning large electroresistance (∼500-700%, magnetoresistance (70-135 % and charge-spin dependent conductivity under suitable control of electric and magnetic fields. The electric and magnetic field controlled charge-spin transport is interesting for applications of the magnetic materials in spintronics, e.g., magnetic sensor, memory devices and digital switching.

  16. The anharmonic quartic force field infrared spectra of five non-linear polycyclic aromatic hydrocarbons: Benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene

    Science.gov (United States)

    Mackie, Cameron J.; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L.; Buma, Wybren Jan; Lee, Timothy J.; Tielens, Alexander G. G. M.

    2016-08-01

    The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.

  17. Quantum theory of fields

    CERN Document Server

    Wentzel, Gregor

    2003-01-01

    A prominent figure in twentieth-century physics, Gregor Wentzel made major contributions to the development of quantum field theory, first in Europe and later at the University of Chicago. His Quantum Theory of Fields offers a knowledgeable view of the original literature of elementary quantum mechanics and helps make these works accessible to interested readers.An introductory volume rather than an all-inclusive account, the text opens with an examination of general principles, without specification of the field equations of the Lagrange function. The following chapters deal with particular

  18. The Fock-Kemmer approach to precursor shock waves in relativistic field theory

    CERN Document Server

    Abdullah, Rawand H

    2016-01-01

    We use distribution theory (generalized functions) to extend and justify the Fock-Kemmer approach to the propagation of precursor shock wave discontinuities in classical and quantum field theory. We apply lightcone causality arguments to propose that shock wave singularities in non-linear classical field theories and in Maxwell's equations for responsive media require a form of classical renormalization analogous to Wilson operator product expansions in quantum field theories.

  19. Non-linear absorption for concentrated solar energy transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es

  20. Theory of electromagnetic fields

    CERN Document Server

    Wolski, Andrzej

    2011-01-01

    We discuss the theory of electromagnetic fields, with an emphasis on aspects relevant to radiofrequency systems in particle accelerators. We begin by reviewing Maxwell's equations and their physical significance. We show that in free space, there are solutions to Maxwell's equations representing the propagation of electromagnetic fields as waves. We introduce electromagnetic potentials, and show how they can be used to simplify the calculation of the fields in the presence of sources. We derive Poynting's theorem, which leads to expressions for the energy density and energy flux in an electromagnetic field. We discuss the properties of electromagnetic waves in cavities, waveguides and transmission lines.

  1. Reproducing Kernel Particle Method for Non-Linear Fracture Analysis

    Institute of Scientific and Technical Information of China (English)

    Cao Zhongqing; Zhou Benkuan; Chen Dapeng

    2006-01-01

    To study the non-linear fracture, a non-linear constitutive model for piezoelectric ceramics was proposed, in which the polarization switching and saturation were taken into account. Based on the model, the non-linear fracture analysis was implemented using reproducing kernel particle method (RKPM). Using local J-integral as a fracture criterion, a relation curve of fracture loads against electric fields was obtained. Qualitatively, the curve is in agreement with the experimental observations reported in literature. The reproducing equation, the shape function of RKPM, and the transformation method to impose essential boundary conditions for meshless methods were also introduced. The computation was implemented using object-oriented programming method.

  2. A periodic table of effective field theories

    Science.gov (United States)

    Cheung, Clifford; Kampf, Karol; Novotny, Jiri; Shen, Chia-Hsien; Trnka, Jaroslav

    2017-02-01

    We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTs with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d < 6 and verify that they correspond to known theories in the literature. Our results suggest that the exceptional theories are the natural EFT analogs of gauge theory and gravity because they are one-parameter theories whose interactions are strictly dictated by properties of the S-matrix.

  3. Experimental quantum field theory

    CERN Document Server

    Bell, J S

    1977-01-01

    Presented here, is, in the opinion of the author, the essential minimum of quantum field theory that should be known to cultivated experimental particle physicists. The word experimental describes not only the audience aimed at but also the level of mathematical rigour aspired to. (0 refs).

  4. Quantum Field Theory

    CERN Document Server

    Zeidler, Eberhard

    This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists ranging from advanced undergraduate students to professional scientists. The book tries to bridge the existing gap between the different languages used by mathematicians and physicists. For students of mathematics it is shown that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which is beyond the usual curriculum in physics. It is the author's goal to present the state of the art of realizing Einstein's dream of a unified theory for the four fundamental forces in the universe (gravitational, electromagnetic, strong, and weak interaction). From the reviews: "… Quantum field theory is one of the great intellectual edifices in the history of human thought. … This volume differs from othe...

  5. Microcontinuum field theories

    CERN Document Server

    Eringen, A Cemal

    1999-01-01

    Microcontinuum field theories constitute an extension of classical field theories -- of elastic bodies, deformations, electromagnetism, and the like -- to microscopic spaces and short time scales. Material bodies are here viewed as collections of large numbers of deformable particles, much as each volume element of a fluid in statistical mechanics is viewed as consisting of a large number of small particles for which statistical laws are valid. Classical continuum theories are valid when the characteristic length associated with external forces or stimuli is much larger than any internal scale of the body under consideration. When the characteristic lengths are comparable, however, the response of the individual constituents becomes important, for example, in considering the fluid or elastic properties of blood, porous media, polymers, liquid crystals, slurries, and composite materials. This volume is concerned with the kinematics of microcontinua. It begins with a discussion of strain, stress tensors, balanc...

  6. Tree Quantum Field Theory

    CERN Document Server

    Gurau, R; Rivasseau, V

    2008-01-01

    We propose a new formalism for quantum field theory which is neither based on functional integrals, nor on Feynman graphs, but on marked trees. This formalism is constructive, i.e. it computes correlation functions through convergent rather than divergent expansions. It applies both to Fermionic and Bosonic theories. It is compatible with the renormalization group, and it allows to define non-perturbatively {\\it differential} renormalization group equations. It accommodates any general stable polynomial Lagrangian. It can equally well treat noncommutative models or matrix models such as the Grosse-Wulkenhaar model. Perhaps most importantly it removes the space-time background from its central place in QFT, paving the way for a nonperturbative definition of field theory in noninteger dimension.

  7. Non-linear partially massless symmetry in an SO(1,5) continuation of conformal gravity

    CERN Document Server

    Apolo, Luis

    2016-01-01

    We construct a non-linear theory of interacting spin-2 fields that is invariant under the partially massless (PM) symmetry to all orders. This theory is based on the SO(1,5) group, in analogy with the SO(2,4) formulation of conformal gravity, but has a quadratic spectrum free of ghost instabilities. The action contains a vector field associated to a local SO(2) symmetry which is manifest in the vielbein formulation of the theory. We show that, in a perturbative expansion, the SO(2) symmetry transmutes into the PM transformations of a massive spin-2 field. In this context, the vector field is crucial to circumvent earlier obstructions to an order-by-order construction of PM symmetry. Although the non-linear theory lacks enough first class constraints to remove all helicity-0 modes from the spectrum, the PM transformations survive to all orders. The absence of ghosts and strong coupling effects at the non-linear level are not addressed here.

  8. Invariants from classical field theory

    CERN Document Server

    Diaz, Rafael

    2007-01-01

    We introduce a method that generates invariant functions from classical field theories depending on external parameters. We apply our method to several field theories such as abelian BF, Chern-Simons and 2-dimensional Yang-Mills theory.

  9. Holographic effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Martucci, Luca [Dipartimento di Fisica ed Astronomia “Galileo Galilei' , Università di Padova,and INFN - Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy); Zaffaroni, Alberto [Dipartimento di Fisica, Università di Milano-Bicocca,and INFN - Sezione di Milano-Bicocca, I-20126 Milano (Italy)

    2016-06-28

    We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.

  10. Painleve Field Theory

    CERN Document Server

    Aminov, G; Levin, A; Olshanetsky, M; Zotov, A

    2013-01-01

    We propose multidimensional versions of the Painleve VI equation and its degenerations. These field theories are related to the isomonodromy problems of flat holomorphic infinite rank bundles over elliptic curves and take the form of non-autonomous Hamiltonian equations. The modular parameter of curves plays the role of "time". Reduction of the field equations to the zero modes leads to SL(N,C) monodromy preserving equations. The latter coincide with the Painleve VI equation for N=2. We consider two types of the bundles. In the first one the group of automorphisms is the centrally and cocentrally extended loop group L(SL(N,C)) or some multiloop group. In the case of the Painleve VI field theory in D=1+1 four constants of the Painleve VI equation become dynamical fields. The second type of bundles are defined by the group of automorphisms of the noncommutative torus. They lead to the equations in dimension 2+1. In both cases we consider trigonometric, rational and scaling limits of the theories. Generically (e...

  11. Non-Linear Stability of an Electrified Plane Interface in Porous Media

    Science.gov (United States)

    El-Dib, Yusry O.; Moatimid, Galal M.

    2004-03-01

    The non-linear electrohydrodynamic stability of capillary-gravity waves on the interface between two semi-infinite dielectric fluids is investigated. The system is stressed by a vertical electric field in the presence of surface charges. The work examines a few representative porous media configurations. The analysis includes Rayleigh-Taylor and Kelvin-Helmholtz instabilities. The boundary - value problem leads to a non-linear equation governing the surface evolution. Taylor theory is adopted to expand this equation, in the light of multiple scales, in order to obtain a non-linear Schr¨odinger equation describing the behavior of the perturbed interface. The latter equation, representing the amplitude of the quasi-monochromatic traveling wave, is used to describe the stability criteria. These criteria are discussed both analytically and numerically. In order to identifiy regions of stability and instability, the electric field intensity is plotted versus the wave number. Through a linear stability approach it is found that Darcy's coefficients have a destabilizing influence, while in the non-linear scope these coefficients as well as the electric field intensity play a dual role on the stability.

  12. Introduction to field theory

    CERN Document Server

    CERN. Geneva; CERN. Geneva

    2001-01-01

    Starting from the notion of path integrals as developed by Feynman, we discuss field theory in zero spacetime dimensions. The concepts of perturbation expansions, connected amplitudes, Feynman diagrams, classical solutions, renormalization and the effective action are developed. The model is extended to four spacetime dimensions, and the full Feynman rules for relativisitc scalar theory derived. The S matrix and the concept of unitarity are discussed, leading to the amputation rules for S matrix elements from considerations of unitarity. The rules are extended to include particles with spin-1/2 and spin-1. The high-energy behaviour of the theory is discussed as a method to derive the gauge symmetry of the various models.

  13. Exposures involving perturbations of the EM field have non-linear effects on radiation response and can alter the expression of radiation induced bystander effects

    Science.gov (United States)

    Mothersill, Carmel; Seymour, Colin

    2012-07-01

    Our recent data suggest there is a physical component to the bystander signal induced by radiation exposure and that alternative medicine techniques such as Reiki and acupuncture or exposures to weak EM fields alter the response of cells to direct irradiation and either altered bystander signal production or altered the response of cells receiving bystander signals. Our proposed mechanism to explain these findings is that perturbation of electromagnetic (EM) fields is central to the induction of low radiation dose responses especially non-targeted bystander effects. In this presentation we review the alternative medicine data and other data sets from our laboratory which test our hypothesis that perturbation of bio-fields will modulate radiation response in the low dose region. The other data sets include exposure to MRI, shielding using lead and or Faraday cages, the use of physical barriers to bystander signal transmission and the use of membrane channel blockers. The data taken together strongly suggest that EM field perturbation can modulate low dose response and that in fact the EM field rather than the targeted deposition of ionizing energy in the DNA may be the key determinant of dose response in a cell or organism The results also lead us to suspect that at least when chemical transmission is blocked, bystander signals can be transmitted by other means. Our recent experiments suggest light signals and volatiles are not likely. We conclude that alternative medicine and other techniques involving electromagnetic perturbations can modify the response of cells to low doses of ionizing radiation and can induce bystander effects similar to those seen in medium transfer experiments. In addition to the obvious implications for mechanistic studies of low dose effects, this could perhaps provide a novel target to exploit in space radiation protection and in optimizing therapeutic gain during radiotherapy.

  14. Gauge field theories

    CERN Document Server

    Frampton, Paul H

    2008-01-01

    This third edition on the classic Gauge Field Theories is an ideal reference for researchers starting work with the Large Hadron Collider and the future International Linear Collider. This latest title continues to offer an up to date reference containing revised chapters on electroweak interactions and model building including a completely new chapter on conformality. Within this essential reference logical organization of the material on gauge invariance, quantization, and renormalization is also discussed providing necessary reading for Cosmologists and Particle Astrophysicists

  15. Non-existence of non-topological solitons in some types of gauge field theories in Minkowski space

    CERN Document Server

    Smolyakov, Mikhail N

    2010-01-01

    In this paper the conditions, under which non-topological solitons are absent in Yang-Mills theory coupled to a non-linear scalar field in Minkowski space, are obtained. It is also shown that non-topological solitons are absent in a theory describing massive complex vector field coupled to electromagnetic field in Minkowski space.

  16. Classical non-linear wave dynamics and gluon spin operator in SU(2) QCD

    CERN Document Server

    Kim, Youngman; Tsukioka, Takuya; Zhang, P M

    2016-01-01

    We study various types of classical non-linear wave solutions with mass scale parameters in a pure SU(2) quantum chromodynamics. It has been shown that there are two gauge non-equivalent solutions for non-linear plane waves with a mass parameter. One of them corresponds to embedding \\lambda \\phi^4 theory into the SU(2) Yang-Mills theory, another represents essentially Yang-Mills type solution. We describe a wide class of stationary and non-stationary wave solutions among which kink like solitons and non-linear wave packet solutions have been found. A regular stationary monopole like solution with a finite energy density is proposed. The solution can be treated as a Wu-Yang monopole dressed in off-diagonal gluons. All non-linear wave solutions have common features: presence of a mass scale parameter, non-vanishing projection of the color magnetic field along the propagation direction and a total spin zero. Gauge invariant and Lorentz frame independent definitions of the gluon spin operator are considered.

  17. Foundations of the non-linear mechanics of continua

    CERN Document Server

    Sedov, L I

    1966-01-01

    International Series of Monographs on Interdisciplinary and Advanced Topics in Science and Engineering, Volume 1: Foundations of the Non-Linear Mechanics of Continua deals with the theoretical apparatus, principal concepts, and principles used in the construction of models of material bodies that fill space continuously. This book consists of three chapters. Chapters 1 and 2 are devoted to the theory of tensors and kinematic applications, focusing on the little-known theory of non-linear tensor functions. The laws of dynamics and thermodynamics are covered in Chapter 3.This volume is suitable

  18. Non-linear force-free field modeling of a solar active region around the time of a major flare and coronal mass ejection

    CERN Document Server

    Schrijver, C J; Metcalf, T; Barnes, G; Lites, B; Tarbell, T; McTiernan, J; Valori, G; Wiegelmann, T; Wheatland, M S; Amari, T; Aulanier, G; Demoulin, P; Fuhrmann, M; Kusano, K; Régnier, S; Thalmann, J K

    2007-01-01

    Solar flares and coronal mass ejections are associated with rapid changes in field connectivity and powered by the partial dissipation of electrical currents in the solar atmosphere. A critical unanswered question is whether the currents involved are induced by the motion of pre-existing atmospheric magnetic flux subject to surface plasma flows, or whether these currents are associated with the emergence of flux from within the solar convective zone. We address this problem by applying state-of-the-art nonlinear force-free field (NLFFF) modeling to the highest resolution and quality vector-magnetographic data observed by the recently launched Hinode satellite on NOAA Active Region 10930 around the time of a powerful X3.4 flare. We compute 14 NLFFF models with 4 different codes and a variety of boundary conditions. We find that the model fields differ markedly in geometry, energy content, and force-freeness. We discuss the relative merits of these models in a general critique of present abilities to model the ...

  19. Field theory of unification in nonlinear and linear network (I)——Theoretical grounds of field theory

    Institute of Scientific and Technical Information of China (English)

    陈燊年; 何煜光; 王建成

    1995-01-01

    A field theory has been proposed. The laws of conservation of charge and energy can be obtained from the Maxwell’s equations, which are placed in nonlinear network for simultaneous solution, and therefore the Kirchhoff’s law with its most fundamental integral formulae in nonlinear network can be obtained. Thus, it will strictly push forward the total basic equations from non-linear network to linear network as well as other important new relationships to provide the theoretical grounds for the field theory.

  20. A Periodic Table of Effective Field Theories

    CERN Document Server

    Cheung, Clifford; Novotny, Jiri; Shen, Chia-Hsien; Trnka, Jaroslav

    2016-01-01

    We systematically explore the space of scalar effective field theories (EFTs) consistent with a Lorentz invariant and local S-matrix. To do so we define an EFT classification based on four parameters characterizing 1) the number of derivatives per interaction, 2) the soft properties of amplitudes, 3) the leading valency of the interactions, and 4) the spacetime dimension. Carving out the allowed space of EFTs, we prove that exceptional EFTs like the non-linear sigma model, Dirac-Born-Infeld theory, and the special Galileon lie precisely on the boundary of allowed theory space. Using on-shell momentum shifts and recursion relations, we prove that EFTs with arbitrarily soft behavior are forbidden and EFTs with leading valency much greater than the spacetime dimension cannot have enhanced soft behavior. We then enumerate all single scalar EFTs in d<6 and verify that they correspond to known theories in the literature. Our results suggest that the exceptional theories are the natural EFT analogs of gauge theor...

  1. Dressing the Post-Newtonian two-body problem and Classical Effective Field Theory

    CERN Document Server

    Kol, Barak

    2009-01-01

    We apply a dressed perturbation theory to better organize and economize the computation of high orders of the 2-body effective action of an inspiralling Post-Newtonian gravitating binary. We use the effective field theory approach with the non-relativistic field decomposition (NRG fields). For that purpose we develop quite generally the dressing theory of a non-linear classical field theory coupled to point-like sources. We introduce dressed charges and propagators, but unlike the quantum theory there are no dressed bulk vertices. The dressed quantities are found to obey recursive integral equations which succinctly encode parts of the diagrammatic expansion, and are the classical version of the Schwinger-Dyson equations. Actually, the classical equations are somewhat stronger since they involve only finitely many quantities, unlike the quantum theory. Classical diagrams are shown to factorize exactly when they contain non-linear world-line vertices, and we classify all the possible topologies of irreducible ...

  2. Berry's Phases for Arbitrary Spins Non-Linearly Coupled to External Fields. Application to the Entanglement of N > 2 Non-Correlated One-Half Spins

    CERN Document Server

    Bouchiat, Marie-Anne

    2010-01-01

    We derive the general formula giving the Berry phase for an arbitrary spin, having both magnetic-dipole and electric-quadrupole couplings with external time-dependent fields. We assume that the effective E and B fields remain orthogonal during the quantum cycles. This mild restriction has many advantages. It provides simple symmetries leading to selection rules and the Hamiltonian-parameter and density-matrix spaces coincide for S=1. This implies the identity of the Berry and Aharonov-Anandan phases, which is lost for S>1. We have found that new features of Berry phases emerge for integer spins>2. We provide explicit numerical results of Berry phases for S=2,3,4. We give a precise analysis of the non-adiabatic corrections. The accuracy for satisfying adiabaticity is greatly improved if one chooses for the time derivatives of the parameters a time-dependence having a Blackman pulse shape. This has the effect of taming the non-adiabatic oscillation corrections which could be generated by a linear ramping. For r...

  3. The weakly non-linear density-velocity relation

    Science.gov (United States)

    Chodorowski, Michal J.; Lokas, Ewa L.

    1997-05-01

    We rigorously derive up to third order in perturbation theory the weakly non-linear relation between the cosmic density and velocity fields. The density field is described by the mass density contrast, delta. The velocity field is described by the variable theta proportional to the velocity divergence, theta=-f (Omega)^-1H ^-1_0∇. v, where f (Omega)~=Omega^0.6, Omega is the cosmological density parameter and H_0 is the Hubble constant. Our calculations show that mean delta given theta is a third-order polynomial in theta, --_theta=a _1theta+a_2(theta ^2-sigma^2_theta)+ a_3theta^3. This result constitutes an extension of the formula --_theta=theta+a _2(theta^2-sigma^2 _theta) found by Bernardeau which involved second-order perturbative solutions. Third-order perturbative corrections introduce the cubic term. They also, however, cause the coefficient a_1 to depart from unity, in contrast with the linear theory prediction. We compute the values of the coefficients a_p for scale-free power spectra, as well as for standard cold dark matter (CDM), for Gaussian smoothing. The coefficients obey a hierarchy a_3Ganon et al. The results provide a method for breaking the Omega-bias degeneracy in comparisons of cosmic density and velocity fields such as IRAS-potent.

  4. Gyrokinetic field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, H. [National Inst. for Fusion Science, Toki, Gifu (Japan)

    1999-08-01

    The Lagrangian formulation of the gyrokinetic theory is generalized in order to describe the particles' dynamics as well as the self-consistent behavior of the electromagnetic fields. The gyrokinetic equation for the particle distribution function and the gyrokinetic Maxwell's equations for the electromagnetic fields are both derived from the variational principle for the Lagrangian consisting of the parts of particles, fields, and their interaction. In this generalized Lagrangian formulation, the energy conservation property for the total nonlinear gyrokinetic system of equations is directly shown from the Noether's theorem. This formulation can be utilized in order to derive the nonlinear gyrokinetic system of equations and the rigorously conserved total energy for fluctuations with arbitrary frequency. (author)

  5. Polymer Parametrised Field Theory

    CERN Document Server

    Laddha, Alok

    2008-01-01

    Free scalar field theory on 2 dimensional flat spacetime, cast in diffeomorphism invariant guise by treating the inertial coordinates of the spacetime as dynamical variables, is quantized using LQG type `polymer' representations for the matter field and the inertial variables. The quantum constraints are solved via group averaging techniques and, analogous to the case of spatial geometry in LQG, the smooth (flat) spacetime geometry is replaced by a discrete quantum structure. An overcomplete set of Dirac observables, consisting of (a) (exponentials of) the standard free scalar field creation- annihilation modes and (b) canonical transformations corresponding to conformal isometries, are represented as operators on the physical Hilbert space. None of these constructions suffer from any of the `triangulation' dependent choices which arise in treatments of LQG. In contrast to the standard Fock quantization, the non- Fock nature of the representation ensures that the algebra of conformal isometries as well as tha...

  6. Symmetries in Non-Linear Mechanics

    CERN Document Server

    Aldaya, Victor; López-Ruiz, Francisco F; Cossío, Francisco

    2014-01-01

    In this paper we exploit the use of symmetries of a physical system so as to characterize the corresponding solution manifold by means of Noether invariants. This constitutes a necessary preliminary step towards the correct quantisation in non-linear cases, where the success of Canonical Quantisation is not guaranteed in general. To achieve this task "point symmetries" of the Lagrangian are generally not enough, and the notion of contact transformations is in order. The use of the Poincar\\'e-Cartan form permits finding both the symplectic structure on the solution manifold, through the Hamilton-Jacobi transformation, and the required symmetries, realized as Hamiltonian vector fields, associated with functions on the solution manifold (thus constituting an inverse of the Noether Theorem), lifted back to the evolution space through the inverse of this Hamilton-Jacobi mapping. In this framework, solutions and symmetries are somehow identified and this correspondence is also kept at a perturbative level. We prese...

  7. Geometries from field theories

    Science.gov (United States)

    Aoki, Sinya; Kikuchi, Kengo; Onogi, Tetsuya

    2015-10-01

    We propose a method to define a d+1-dimensional geometry from a d-dimensional quantum field theory in the 1/N expansion. We first construct a d+1-dimensional field theory from the d-dimensional one via the gradient-flow equation, whose flow time t represents the energy scale of the system such that trArr 0 corresponds to the ultraviolet and trArr infty to the infrared. We then define the induced metric from d+1-dimensional field operators. We show that the metric defined in this way becomes classical in the large-N limit, in the sense that quantum fluctuations of the metric are suppressed as 1/N due to the large-N factorization property. As a concrete example, we apply our method to the O(N) nonlinear σ model in two dimensions. We calculate the 3D induced metric, which is shown to describe an anti-de Sitter space in the massless limit. Finally, we discuss several open issues for future studies.

  8. Processing Approach of Non-linear Adjustment Models in the Space of Non-linear Models

    Institute of Scientific and Technical Information of China (English)

    LI Chaokui; ZHU Qing; SONG Chengfang

    2003-01-01

    This paper investigates the mathematic features of non-linear models and discusses the processing way of non-linear factors which contributes to the non-linearity of a nonlinear model. On the basis of the error definition, this paper puts forward a new adjustment criterion, SGPE.Last, this paper investigates the solution of a non-linear regression model in the non-linear model space and makes the comparison between the estimated values in non-linear model space and those in linear model space.

  9. Higgs Effective Field Theories

    CERN Document Server

    2016-01-01

    The main focus of this meeting is to present new theoretical advancements related to effective field theories, evaluate the impact of initial results from the LHC Run2, and discuss proposals for data interpretation/presentation during Run2. A crucial role of the meeting is to bring together theorists from different backgrounds and with different viewpoints and to extend bridges towards the experimental community. To this end, we would like to achieve a good balance between senior and junior speakers, enhancing the visibility of younger scientists while keeping some overview talks.

  10. Unified field theories

    CERN Document Server

    Vizgin, Vladimir P

    2011-01-01

    Despite the rapidly expanding ambit of physical research and the continual appearance of new branches of physics, the main thrust in its development has been the attempt at a theoretical synthesis of the entire body of physical knowledge. Vladimir Vizgin's work presents perhaps the first systematic historico-scientific study of the formation and development of the unified field theories in the general context of 20th century physics. Concentrating on the first three decades of the century and drawing extensively on Russian sources, the author analyses the first successes, failures and paths of

  11. Topics in field theory

    CERN Document Server

    Karpilovsky, G

    1989-01-01

    This monograph gives a systematic account of certain important topics pertaining to field theory, including the central ideas, basic results and fundamental methods.Avoiding excessive technical detail, the book is intended for the student who has completed the equivalent of a standard first-year graduate algebra course. Thus it is assumed that the reader is familiar with basic ring-theoretic and group-theoretic concepts. A chapter on algebraic preliminaries is included, as well as a fairly large bibliography of works which are either directly relevant to the text or offer supplementary material of interest.

  12. Lectures on Matrix Field Theory

    Science.gov (United States)

    Ydri, Badis

    The subject of matrix field theory involves matrix models, noncommutative geometry, fuzzy physics and noncommutative field theory and their interplay. In these lectures, a lot of emphasis is placed on the matrix formulation of noncommutative and fuzzy spaces, and on the non-perturbative treatment of the corresponding field theories. In particular, the phase structure of noncommutative $\\phi^4$ theory is treated in great detail, and an introduction to noncommutative gauge theory is given.

  13. The non-linear coupled spin 2-spin 3 Cotton equation in three dimensions

    Science.gov (United States)

    Linander, Hampus; Nilsson, Bengt E. W.

    2016-07-01

    In the context of three-dimensional conformal higher spin theory we derive, in the frame field formulation, the full non-linear spin 3 Cotton equation coupled to spin 2. This is done by solving the corresponding Chern-Simons gauge theory system of equations, that is, using F = 0 to eliminate all auxiliary fields and thus expressing the Cotton equation in terms of just the spin 3 frame field and spin 2 covariant derivatives and tensors (Schouten). In this derivation we neglect the spin 4 and higher spin sectors and approximate the star product commutator by a Poisson bracket. The resulting spin 3 Cotton equation is complicated but can be related to linearized versions in the metric formulation obtained previously by other authors. The expected symmetry (spin 3 "translation", "Lorentz" and "dilatation") properties are verified for Cotton and other relevant tensors but some perhaps unexpected features emerge in the process, in particular in relation to the non-linear equations. We discuss the structure of this non-linear spin 3 Cotton equation but its explicit form is only presented here, in an exact but not completely refined version, in appended files obtained by computer algebra methods. Both the frame field and metric formulations are provided.

  14. Analyses of non-linear systems and their application to biology: a review.

    Science.gov (United States)

    Sato, S

    1994-01-01

    In this review article, Wiener's analyses of non-linear systems and other topics on non-linear noise and non-stationary signals are introduced. Firstly, application and limitation of linear aspects on a biological system and a background of introduction of the Wiener's theory to non-linear analysis are briefly mentioned. The practical applications, however, were not so successful for several reasons. We shall see how these problems are solved under collaboration between biologists and engineers who have a knowledge of the subject and utilizing computational facility. Several aspects of the methodology involving non-linear systems, non-linear noise and non-stationary signals are also reviewed.

  15. Topological Observables in Semiclassical Field Theories

    CERN Document Server

    Nolasco, M

    1992-01-01

    We give a geometrical set up for the semiclassical approximation to euclidean field theories having families of minima (instantons) parametrized by suitable moduli spaces ${\\cal M}$. The standard examples are of course Yang-Mills theory and non-linear $\\sigma$-models. The relevant space here is a family of measure spaces $\\tilde {\\cal N} \\ra {\\cal M}$, with standard fibre a distribution space, given by a suitable extension of the normal bundle to ${\\cal M}$ in the space of smooth fields. Over $\\tilde {\\cal N}$ there is a probability measure $d\\mu$ given by the twisted product of the (normalized) volume element on ${\\cal M}$ and the family of gaussian measures with covariance given by the tree propagator $C_\\phi$ in the background of an instanton $\\phi \\in {\\cal M}$. The space of ``observables", i.e. measurable functions on ($\\tilde {\\cal N}, \\, d\\mu$), is studied and it is shown to contain a topological sector, corresponding to the intersection theory on ${\\cal M}$. The expectation value of these topological ...

  16. Experimental and theoretical (FT-IR, FT-Raman, UV-vis, NMR) spectroscopic analysis and first order hyperpolarizability studies of non-linear optical material: (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one using density functional theory.

    Science.gov (United States)

    Kumar, Amit; Deval, Vipin; Tandon, Poonam; Gupta, Archana; Deepak D'silva, E

    2014-09-15

    A combined experimental and theoretical investigation on FT-IR, FT-Raman, NMR, UV-vis spectra of a chalcone derivative (2E)-3-[4-(methylsulfanyl) phenyl]-1-(4-nitrophenyl) prop-2-en-1-one (4N4MSP) has been reported. 4N4MSP has two planar rings connected through conjugated double bond and it provides a necessary configuration to show non-linear optical (NLO) response. The molecular structure, fundamental vibrational frequencies and intensity of the vibrational bands are interpreted with the aid of structure optimizations and normal coordinate force field calculations based on density functional theory (DFT) with B3LYP functional and 6-311++G(d,p) basis set combination. The analysis of the fundamental modes was made with the help of potential energy distribution (PED). Molecular electrostatic potential (MEP) surface was plotted over the geometry primarily for predicting sites and relative reactivities towards electrophilic and nucleophilic attack. The delocalization of electron density of various constituents of the molecule has been discussed with the aid of NBO analysis. The electronic properties, such as excitation energies, oscillator strength, wavelengths, HOMO and LUMO energies, were calculated by time-dependent density functional theory (TD-DFT) and the results complement the experimental findings. The recorded and calculated 1H chemical shifts in gas phase and MeOD solution are gathered for reliable calculations of magnetic properties. Thermodynamic properties like heat capacity (C°p,m), entropy (S°m), enthalpy (H°m) have been calculated for the molecule at the different temperatures. Based on the finite-field approach, the non-linear optical (NLO) parameters such as dipole moment, mean polarizability, anisotropy of polarizability and first order hyperpolarizability of 4N4MSP molecule are calculated. The predicted first hyperpolarizability shows that the molecule has a reasonably good nonlinear optical (NLO) behavior.

  17. Non-Linear Approximation of Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2016-06-23

    We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.

  18. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...... on the governing equations and methods of implementing....

  19. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  20. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  1. Synthesis, characterization and calculated non-linear optical properties of two new chalcones

    Science.gov (United States)

    Singh, Ashok Kumar; Saxena, Gunjan; Prasad, Rajendra; Kumar, Abhinav

    2012-06-01

    Two new chalcones viz 3-(4-(benzyloxy)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (1) and 3-(4-chlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (2) have been prepared and characterized by micro analyses, 1H NMR, IR, UV-Vis spectroscopy and single crystal X-ray. The first static hyperpolarizability (β) for both the compounds has been investigated by density functional theory (DFT). Also, the solvent-induced effects on the non-linear optical properties (NLO) were studied by using self-consistent reaction field (SCRF) method. As the solvent polarity increases, the β value increases monotonically. The electronic absorption bands of both 1 and 2 have been assigned by time dependent density functional theory (TD-DFT). Both the compounds displayed better non-linear optical (NLO) responses than the standard p-nitroaniline (pNA).

  2. Quantum corrections to the generalized Proca theory via a matter field

    Science.gov (United States)

    Amado, André; Haghani, Zahra; Mohammadi, Azadeh; Shahidi, Shahab

    2017-09-01

    We study the quantum corrections to the generalized Proca theory via matter loops. We consider two types of interactions, linear and nonlinear in the vector field. Calculating the one-loop correction to the vector field propagator, three- and four-point functions, we show that the non-linear interactions are harmless, although they renormalize the theory. The linear matter-vector field interactions introduce ghost degrees of freedom to the generalized Proca theory. Treating the theory as an effective theory, we calculate the energy scale up to which the theory remains healthy.

  3. Note About Hamiltonian Structure of Non-Linear Massive Gravity

    CERN Document Server

    Kluson, J

    2011-01-01

    We perform the Hamiltonian analysis of non-linear massive gravity action studied recently in arXiv:1106.3344 [hep-th]. We show that the Hamiltonian constraint is the second class constraint. As a result the theory possesses an odd number of the second class constraints and hence all non physical degrees of freedom cannot be eliminated.

  4. Locally supersymmetric D=3 non-linear sigma models

    NARCIS (Netherlands)

    Wit, B. de; Tollsten, A. K.; Nicolai, H.

    1992-01-01

    We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N=1 and 2 the target space of these models is Riemannian or Kahler, respectively. All N>2 theories are associated with Einstein spaces. For N=3 the target space is quaternionic, while for N=4 it general

  5. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...

  6. Logarithmic conformal field theory

    Science.gov (United States)

    Gainutdinov, Azat; Ridout, David; Runkel, Ingo

    2013-12-01

    Conformal field theory (CFT) has proven to be one of the richest and deepest subjects of modern theoretical and mathematical physics research, especially as regards statistical mechanics and string theory. It has also stimulated an enormous amount of activity in mathematics, shaping and building bridges between seemingly disparate fields through the study of vertex operator algebras, a (partial) axiomatisation of a chiral CFT. One can add to this that the successes of CFT, particularly when applied to statistical lattice models, have also served as an inspiration for mathematicians to develop entirely new fields: the Schramm-Loewner evolution and Smirnov's discrete complex analysis being notable examples. When the energy operator fails to be diagonalisable on the quantum state space, the CFT is said to be logarithmic. Consequently, a logarithmic CFT is one whose quantum space of states is constructed from a collection of representations which includes reducible but indecomposable ones. This qualifier arises because of the consequence that certain correlation functions will possess logarithmic singularities, something that contrasts with the familiar case of power law singularities. While such logarithmic singularities and reducible representations were noted by Rozansky and Saleur in their study of the U (1|1) Wess-Zumino-Witten model in 1992, the link between the non-diagonalisability of the energy operator and logarithmic singularities in correlators is usually ascribed to Gurarie's 1993 article (his paper also contains the first usage of the term 'logarithmic conformal field theory'). The class of CFTs that were under control at this time was quite small. In particular, an enormous amount of work from the statistical mechanics and string theory communities had produced a fairly detailed understanding of the (so-called) rational CFTs. However, physicists from both camps were well aware that applications from many diverse fields required significantly more

  7. Theory of interacting quantum fields

    CERN Document Server

    Rebenko, Alexei L

    2012-01-01

    This monograph is devoted to the systematic and encyclopedic presentation of the foundations of quantum field theory. It represents mathematical problems of the quantum field theory with regardto the new methods of the constructive and Euclidean field theory formed for the last thirty years of the 20th century on the basis of rigorous mathematical tools of the functional analysis, the theory of operators, and the theory of generalized functions. The book is useful for young scientists who desire to understand not only the formal structure of the quantum field theory but also its basic concepts and connection with classical mechanics, relativistic classical field theory, quantum mechanics, group theory, and the theory of functional integration.

  8. Controlling ultrafast currents by the non-linear photogalvanic effect

    CERN Document Server

    Wachter, Georg; Lemell, Christoph; Tong, Xiao-Min; Yabana, Kazuhiro; Burgdörfer, Joachim

    2015-01-01

    We theoretically investigate the effect of broken inversion symmetry on the generation and control of ultrafast currents in a transparent dielectric (SiO2) by strong femto-second optical laser pulses. Ab-initio simulations based on time-dependent density functional theory predict ultrafast DC currents that can be viewed as a non-linear photogalvanic effect. Most surprisingly, the direction of the current undergoes a sudden reversal above a critical threshold value of laser intensity I_c ~ 3.8*10^13 W/cm2. We trace this switching to the transition from non-linear polarization currents to the tunneling excitation regime. We demonstrate control of the ultrafast currents by the time delay between two laser pulses. We find the ultrafast current control by the non-linear photogalvanic effect to be remarkably robust and insensitive to laser-pulse shape and carrier-envelope phase.

  9. Axiomatic Quantum Field Theory in Terms of Operator Product Expansions: General Framework, and Perturbation Theory via Hochschild Cohomology

    Directory of Open Access Journals (Sweden)

    Stefan Hollands

    2009-09-01

    Full Text Available In this paper, we propose a new framework for quantum field theory in terms of consistency conditions. The consistency conditions that we consider are ''associativity'' or ''factorization'' conditions on the operator product expansion (OPE of the theory, and are proposed to be the defining property of any quantum field theory. Our framework is presented in the Euclidean setting, and is applicable in principle to any quantum field theory, including non-conformal ones. In our framework, we obtain a characterization of perturbations of a given quantum field theory in terms of a certain cohomology ring of Hochschild-type. We illustrate our framework by the free field, but our constructions are general and apply also to interacting quantum field theories. For such theories, we propose a new scheme to construct the OPE which is based on the use of non-linear quantized field equations.

  10. Chameleon Field Theories

    CERN Document Server

    Khoury, Justin

    2013-01-01

    Chameleons are light scalar fields with remarkable properties. Through the interplay of self-interactions and coupling to matter, chameleon particles have a mass that depends on the ambient matter density. The manifestation of the fifth force mediated by chameleons therefore depends sensitively on their environment, which makes for a rich phenomenology. In this article, we review two recent results on chameleon phenomenology. The first result a pair of no-go theorems limiting the cosmological impact of chameleons and their generalizations: i) the range of the chameleon force at cosmological density today can be at most ~Mpc; ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time. These theorems imply that chameleons have negligible effect on the linear growth of structure, and cannot account for the observed cosmic acceleration except as some form of dark energy. The second result pertains to the quantum stability of chameleon theories. We ...

  11. Non-linear Imaging using an Experimental Synthetic Aperture Real Time Ultrasound Scanner

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    This paper presents the first non-linear B-mode image of a wire phantom using pulse inversion attained via an experimental synthetic aperture real-time ultrasound scanner (SARUS). The purpose of this study is to implement and validate non-linear imaging on SARUS for the further development of new...... non-linear techniques. This study presents non-linear and linear B-mode images attained via SARUS and an existing ultrasound system as well as a Field II simulation. The non-linear image shows an improved spatial resolution and lower full width half max and -20 dB resolution values compared to linear...

  12. Double Field Theory Inspired Cosmology

    CERN Document Server

    Wu, Houwen

    2014-01-01

    Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We find two sets of solutions in double field theory cosmology, respecting or violating the strong (weak) constraint. Both sets of solutions naturally contain the pre- and post-big bang evolutions in one single line element. This novel feature opens a window for possible resolution of the cosmic amnesia. We also demonstrate that the scale factor duality in the standard string cosmology is nothing but the T-duality in double field theory. The scale dual dilatons in the standard string cosmology is simply the usual diffeomorphic scalar dilaton $\\phi$ and dual diffeomorphic scalar dilaton $\\tilde\\phi$ in double field theory. Furthermore, we identify the "sh...

  13. Non-Linear Electrohydrodynamics in Microfluidic Devices

    Directory of Open Access Journals (Sweden)

    Jun Zeng

    2011-03-01

    Full Text Available Since the inception of microfluidics, the electric force has been exploited as one of the leading mechanisms for driving and controlling the movement of the operating fluid and the charged suspensions. Electric force has an intrinsic advantage in miniaturized devices. Because the electrodes are placed over a small distance, from sub-millimeter to a few microns, a very high electric field is easy to obtain. The electric force can be highly localized as its strength rapidly decays away from the peak. This makes the electric force an ideal candidate for precise spatial control. The geometry and placement of the electrodes can be used to design electric fields of varying distributions, which can be readily realized by Micro-Electro-Mechanical Systems (MEMS fabrication methods. In this paper, we examine several electrically driven liquid handling operations. The emphasis is given to non-linear electrohydrodynamic effects. We discuss the theoretical treatment and related numerical methods. Modeling and simulations are used to unveil the associated electrohydrodynamic phenomena. The modeling based investigation is interwoven with examples of microfluidic devices to illustrate the applications.

  14. Quantum field theory of fluids.

    Science.gov (United States)

    Gripaios, Ben; Sutherland, Dave

    2015-02-20

    The quantum theory of fields is largely based on studying perturbations around noninteracting, or free, field theories, which correspond to a collection of quantum-mechanical harmonic oscillators. The quantum theory of an ordinary fluid is "freer", in the sense that the noninteracting theory also contains an infinite collection of quantum-mechanical free particles, corresponding to vortex modes. By computing a variety of correlation functions at tree and loop level, we give evidence that a quantum perfect fluid can be consistently formulated as a low-energy, effective field theory. We speculate that the quantum behavior is radically different from both classical fluids and quantum fields.

  15. Realization of non-linear coherent states by photonic lattices

    Directory of Open Access Journals (Sweden)

    Shahram Dehdashti

    2015-06-01

    Full Text Available In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2 and su(1, 1 coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.

  16. Realization of non-linear coherent states by photonic lattices

    Energy Technology Data Exchange (ETDEWEB)

    Dehdashti, Shahram, E-mail: shdehdashti@zju.edu.cn; Li, Rujiang; Chen, Hongsheng, E-mail: hansomchen@zju.edu.cn [State Key Laboratory of Modern Optical Instrumentations, Zhejiang University, Hangzhou 310027 (China); The Electromagnetics Academy at Zhejiang University, Zhejiang University, Hangzhou 310027 (China); Liu, Jiarui, E-mail: jrliu@zju.edu.cn; Yu, Faxin [School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China)

    2015-06-15

    In this paper, first, by introducing Holstein-Primakoff representation of α-deformed algebra, we achieve the associated non-linear coherent states, including su(2) and su(1, 1) coherent states. Second, by using waveguide lattices with specific coupling coefficients between neighbouring channels, we generate these non-linear coherent states. In the case of positive values of α, we indicate that the Hilbert size space is finite; therefore, we construct this coherent state with finite channels of waveguide lattices. Finally, we study the field distribution behaviours of these coherent states, by using Mandel Q parameter.

  17. Pattern formation due to non-linear vortex diffusion

    Science.gov (United States)

    Wijngaarden, Rinke J.; Surdeanu, R.; Huijbregtse, J. M.; Rector, J. H.; Dam, B.; Einfeld, J.; Wördenweber, R.; Griessen, R.

    Penetration of magnetic flux in YBa 2Cu 3O 7 superconducting thin films in an external magnetic field is visualized using a magneto-optic technique. A variety of flux patterns due to non-linear vortex diffusion is observed: (1) Roughening of the flux front with scaling exponents identical to those observed in burning paper including two distinct regimes where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. (2) Fractal penetration of flux with Hausdorff dimension depending on the critical current anisotropy. (3) Penetration as ‘flux-rivers’. (4) The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori. It is shown that most of the observed behavior is related to the non-linear diffusion of vortices by comparison with simulations of the non-linear diffusion equation appropriate for vortices.

  18. Non-linear magnetorheological behaviour of an inverse ferrofluid

    NARCIS (Netherlands)

    de Gans, B.J.; Hoekstra, Hans; Mellema, J.

    1999-01-01

    The non-linear magnetorheological behaviour is studied of a model system consisting of monodisperse silica particles suspended in a ferrofluid. The stress/strain curve as well as the flow curve was measured as a function of volume fraction silica particles and field strength, using a home-made

  19. Development and Control of a Non Linear Magnetic Levitation System

    Directory of Open Access Journals (Sweden)

    A Sanjeevi Gandhi

    2013-06-01

    Full Text Available Nowadays, studies to develop and control non linear systems is of great significance. Magnetic Levitation System has gained considerable interests due to its great practical importance in different engineering fields In this paper an electromagnetic levitation system was developed and mathematical model for the system was derived. The developed system was controlled manually.

  20. Field redefinition invariance in quantum field theory

    CERN Document Server

    Apfeldorf, K M; Apfeldorf, Karyn M; Ordonez, Carlos

    1994-01-01

    We investigate the consequences of field redefinition invariance in quantum field theory by carefully performing nonlinear transformations in the path integral. We first present a ``paradox'' whereby a 1+1 freemassless scalar theory on a Minkowskian cylinder is reduced to an effectively quantum mechanical theory. We perform field redefinitions both before and after reduction to suggest that one should not ignore operator ordering issues in quantum field theory. We next employ a discretized version of the path integral for a free massless scalar quantum field in d dimensions to show that beyond the usual jacobian term, an infinite series of divergent ``extra'' terms arises in the action whenever a nonlinear field redefinition is made. The explicit forms for the first couple of these terms are derived. We evaluate Feynman diagrams to illustrate the importance of retaining the extra terms, and conjecture that these extra terms are the exact counterterms necessary to render physical quantities invariant under fie...

  1. Non-Linear Sigma Model on Conifolds

    CERN Document Server

    Parthasarathy, R

    2002-01-01

    Explicit solutions to the conifold equations with complex dimension $n=3,4$ in terms of {\\it{complex coordinates (fields)}} are employed to construct the Ricci-flat K\\"{a}hler metrics on these manifolds. The K\\"{a}hler 2-forms are found to be closed. The complex realization of these conifold metrics are used in the construction of 2-dimensional non-linear sigma model with the conifolds as target spaces. The action for the sigma model is shown to be bounded from below. By a suitable choice of the 'integration constants', arising in the solution of Ricci flatness requirement, the metric and the equations of motion are found to be {\\it{non-singular}}. As the target space is Ricci flat, the perturbative 1-loop counter terms being absent, the model becomes topological. The inherent U(1) fibre over the base of the conifolds is shown to correspond to a gauge connection in the sigma model. The same procedure is employed to construct the metric for the resolved conifold, in terms of complex coordinates and the action ...

  2. Non-linear energy conservation theorem in the framework of Special Relativity

    CERN Document Server

    Teruel, Ginés R Pérez

    2015-01-01

    In this work we revisit the study of the gravitational interaction in the context of the Special Theory of Relativity. It is found that, as long as the equivalence principle is respected, a relativistic non-linear energy conservation theorem arises in a natural way. We interpret that this non-linear conservation law stresses the non-linear character of the gravitational interaction.The theorem reproduces the energy conservation theorem of Newtonian mechanics in the corresponding low energy limit, but also allows to derive some standard results of post-Newtonian gravity, such as the formula of the gravitational redshift. Guided by this conservation law, we develop a Lagrangian formalism for a particle in a gravitational field. We realize that the Lagrangian can be written in an explicit covariant fashion, and turns out to be the geodesic Lagrangian of a curved Lorentzian manifold. Therefore, any attempt to describe gravity within the Special Theory, leads outside their own domains towards a curved space-time. ...

  3. Quantum cellular automata and free quantum field theory

    Science.gov (United States)

    D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2017-02-01

    In a series of recent papers [1-4] it has been shown how free quantum field theory can be derived without using mechanical primitives (including space-time, special relativity, quantization rules, etc.), but only considering the easiest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the simple principles of unitarity, homogeneity, locality, and isotropy. This has opened the route to extending the axiomatic information-theoretic derivation of the quantum theory of abstract systems [5, 6] to include quantum field theory. The inherent discrete nature of the informational axiomatization leads to an extension of quantum field theory to a quantum cellular automata theory, where the usual field theory is recovered in a regime where the discrete structure of the automata cannot be probed. A simple heuristic argument sets the scale of discreteness to the Planck scale, and the customary physical regime where discreteness is not visible is the relativistic one of small wavevectors. In this paper we provide a thorough derivation from principles that in the most general case the graph of the quantum cellular automaton is the Cayley graph of a finitely presented group, and showing how for the case corresponding to Euclidean emergent space (where the group resorts to an Abelian one) the automata leads to Weyl, Dirac and Maxwell field dynamics in the relativistic limit. We conclude with some perspectives towards the more general scenario of non-linear automata for interacting quantum field theory.

  4. Topics in Double Field Theory

    Science.gov (United States)

    Kwak, Seung Ki

    The existence of momentum and winding modes of closed string on a torus leads to a natural idea that the field theoretical approach of string theory should involve winding type coordinates as well as the usual space-time coordinates. Recently developed double field theory is motivated from this idea and it implements T-duality manifestly by doubling the coordinates. In this thesis we will mainly focus on the double field theory formulation of different string theories in its low energy limit: bosonic, heterotic, type II and its massive extensions, and N = 1 supergravity theory. In chapter 2 of the thesis we study the equivalence of different formulations of double field theory. There are three different formulations of double field theory: background field E formulation, generalized metric H formulation, and frame field EAM formulation. Starting from the frame field formalism and choosing an appropriate gauge, the equivalence of the three formulations of bosonic theory are explicitly verified. In chapter 3 we construct the double field theory formulation of heterotic strings. The global symmetry enlarges to O( D, D + n) for heterotic strings and the enlarged generalized metric features this symmetry. The structural form of bosonic theory can directly be applied to the heterotic theory with the enlarged generalized metric. In chapter 4 we develop a unified framework of double field theory for type II theories. The Ramond-Ramond potentials fit into spinor representations of the duality group O( D, D) and the theory displays Spin+( D, D) symmetry with its self-duality relation. For a specific form of RR 1-form the theory reduces to the massive deformation of type IIA theory due to Romans. In chapter 5 we formulate the N = 1 supersymmetric extension of double field theory including the coupling to n abelian vector multiplets. This theory features a local O(1, 9 + n) x O(1, 9) tangent space symmetry under which the fermions transform. (Copies available exclusively from

  5. 5d Field Theories and M Theory

    OpenAIRE

    Kol, Barak

    1997-01-01

    5-brane configurations describing 5d field theories are promoted to an M theory description a la Witten in terms of polynomials in two complex variables. The coefficients of the polynomials are the Coulomb branch. This picture resolves apparent singularities at vertices and reveals exponentially small corrections. These corrections ask to be compared to world line instanton corrections. From a different perspective this procedure may be used to define a diagrammatic representation of polynomi...

  6. Properties of double field theory

    NARCIS (Netherlands)

    Penas, Victor Alejandro

    2016-01-01

    In this thesis we study several aspects of Double Field Theory (DFT). In general, Double Field Theory is subject to the so-called strong constraint. By using the Flux Formulation of DFT, we explore to what extent one can deal with the gauge consistency constraints of DFT without imposing the strong

  7. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....

  8. Non-linear (loop) quantum cosmology

    CERN Document Server

    Bojowald, Martin; Dantas, Christine C; Jaffe, Matthew; Simpson, David

    2012-01-01

    Inhomogeneous quantum cosmology is modeled as a dynamical system of discrete patches, whose interacting many-body equations can be mapped to a non-linear minisuperspace equation by methods analogous to Bose-Einstein condensation. Complicated gravitational dynamics can therefore be described by more-manageable equations for finitely many degrees of freedom, for which powerful solution procedures are available, including effective equations. The specific form of non-linear and non-local equations suggests new questions for mathematical and computational investigations, and general properties of non-linear wave equations lead to several new options for physical effects and tests of the consistency of loop quantum gravity. In particular, our quantum cosmological methods show how sizeable quantum corrections in a low-curvature universe can arise from tiny local contributions adding up coherently in large regions.

  9. The coupling of non-linear supersymmetry to supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios [Sorbonne Universites, UPMC Paris 6, LPTHE, UMR CNRS 7589, Paris (France); University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Markou, Chrysoula [Sorbonne Universites, UPMC Paris 6, LPTHE, UMR CNRS 7589, Paris (France)

    2015-12-15

    We study the coupling of non-linear supersymmetry to supergravity. The goldstino nilpotent superfield of global supersymmetry coupled to supergravity is described by a geometric action of the chiral curvature superfield R subject to the constraint (R - λ){sup 2} = 0 with an appropriate constant λ. This constraint can be found as the decoupling limit of the scalar partner of the goldstino in a class of f(R) supergravity theories. (orig.)

  10. The coupling of non-linear supersymmetry to supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios, E-mail: antoniad@lpthe.jussieu.fr [LPTHE, UMR CNRS 7589, Sorbonne Universités, UPMC Paris 6, 75005, Paris (France); Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlestrasse 5, 3012, Bern (Switzerland); Markou, Chrysoula, E-mail: chrysoula@lpthe.jussieu.fr [LPTHE, UMR CNRS 7589, Sorbonne Universités, UPMC Paris 6, 75005, Paris (France)

    2015-12-09

    We study the coupling of non-linear supersymmetry to supergravity. The goldstino nilpotent superfield of global supersymmetry coupled to supergravity is described by a geometric action of the chiral curvature superfield R subject to the constraint (R-λ){sup 2}=0 with an appropriate constant λ. This constraint can be found as the decoupling limit of the scalar partner of the goldstino in a class of f(R) supergravity theories.

  11. Non-linear high-frequency waves in the magnetosphere

    Indian Academy of Sciences (India)

    S Moolla; R Bharuthram; S V Singh; G S Lakhina

    2003-12-01

    Using fluid theory, a set of equations is derived for non-linear high-frequency waves propagating oblique to an external magnetic field in a three-component plasma consisting of hot electrons, cold electrons and cold ions. For parameters typical of the Earth’s magnetosphere, numerical solutions of the governing equations yield sinusoidal, sawtooth or bipolar wave-forms for the electric field.

  12. Control of Non-linear Marine Cooling System

    DEFF Research Database (Denmark)

    Hansen, Michael; Stoustrup, Jakob; Bendtsen, Jan Dimon

    2011-01-01

    We consider the problem of designing control laws for a marine cooling system used for cooling the main engine and auxiliary components aboard several classes of container vessels. We focus on achieving simple set point control for the system and do not consider compensation of the non......-linearities, closed circuit flow dynamics or transport delays that are present in the system. Control laws are therefore designed using classical control theory and the performance of the design is illustrated through two simulation examples....

  13. Resolving Witten's Superstring Field Theory

    CERN Document Server

    Erler, Theodore; Sachs, Ivo

    2014-01-01

    We regulate Witten's open superstring field theory by replacing the picture-changing insertion at the midpoint with a contour integral of picture changing insertions over the half-string overlaps of the cubic vertex. The resulting product between string fields is non-associative, but we provide a solution to the $A_\\infty$ relations defining all higher vertices. The result is an explicit covariant superstring field theory which by construction satisfies the classical BV master equation.

  14. The Nonlinear Field Space Theory

    Science.gov (United States)

    Mielczarek, Jakub; Trześniewski, Tomasz

    2016-08-01

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the "Principle of finiteness" of physical theories, which once motivated the Born-Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  15. The Nonlinear Field Space Theory

    Energy Technology Data Exchange (ETDEWEB)

    Mielczarek, Jakub, E-mail: jakub.mielczarek@uj.edu.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Trześniewski, Tomasz, E-mail: tbwbt@ift.uni.wroc.pl [Institute of Physics, Jagiellonian University, ul. Łojasiewicza 11, 30-348 Kraków (Poland); Institute for Theoretical Physics, University of Wrocław, pl. Borna 9, 50-204 Wrocław (Poland)

    2016-08-10

    In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values) that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum) Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity), as well as in condensed matter physics (e.g. continuous spin chains), and can shed new light on the issue of divergences in quantum field theories.

  16. The Nonlinear Field Space Theory

    Directory of Open Access Journals (Sweden)

    Jakub Mielczarek

    2016-08-01

    Full Text Available In recent years the idea that not only the configuration space of particles, i.e. spacetime, but also the corresponding momentum space may have nontrivial geometry has attracted significant attention, especially in the context of quantum gravity. The aim of this letter is to extend this concept to the domain of field theories, by introducing field spaces (i.e. phase spaces of field values that are not affine spaces. After discussing the motivation and general aspects of our approach we present a detailed analysis of the prototype (quantum Nonlinear Field Space Theory of a scalar field on the Minkowski background. We show that the nonlinear structure of a field space leads to numerous interesting predictions, including: non-locality, generalization of the uncertainty relations, algebra deformations, constraining of the maximal occupation number, shifting of the vacuum energy and renormalization of the charge and speed of propagation of field excitations. Furthermore, a compact field space is a natural way to implement the “Principle of finiteness” of physical theories, which once motivated the Born–Infeld theory. Thus the presented framework has a variety of potential applications in the theories of fundamental interactions (e.g. quantum gravity, as well as in condensed matter physics (e.g. continuous spin chains, and can shed new light on the issue of divergences in quantum field theories.

  17. Lectures on quantum field theory

    CERN Document Server

    Das, Ashok

    2008-01-01

    This book consists of the lectures for a two-semester course on quantum field theory, and as such is presented in a quite informal and personal manner. The course starts with relativistic one-particle systems, and develops the basics of quantum field theory with an analysis of the representations of the Poincaré group. Canonical quantization is carried out for scalar, fermion, Abelian and non-Abelian gauge theories. Covariant quantization of gauge theories is also carried out with a detailed description of the BRST symmetry. The Higgs phenomenon and the standard model of electroweak interactio

  18. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations betwee...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models.......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under...

  19. Controller reconfiguration for non-linear systems

    NARCIS (Netherlands)

    Kanev, S.; Verhaegen, M.

    2000-01-01

    This paper outlines an algorithm for controller reconfiguration for non-linear systems, based on a combination of a multiple model estimator and a generalized predictive controller. A set of models is constructed, each corresponding to a different operating condition of the system. The interacting m

  20. Non-linear dendrites can tune neurons

    Directory of Open Access Journals (Sweden)

    Romain Daniel Cazé

    2014-03-01

    Full Text Available A signature of visual, auditory, and motor cortices is the presence of neurons tuned to distinct features of the environment. While neuronal tuning can be observed in most brain areas, its origin remains enigmatic, and new calcium imaging data complicate this problem. Dendritic calcium signals, in a L2/3 neuron from the mouse visual cortex, display a wide range of tunings that could be different from the neuronal tuning (Jia et al 2010. To elucidate this observation we use multi-compartmental models of increasing complexity, from a binary to a realistic biophysical model of L2/3 neuron. These models possess non-linear dendritic subunits inside which the result of multiple excitatory inputs is smaller than their arithmetic sum. While dendritic non-linear subunits are ad-hoc in the binary model, non-linearities in the realistic model come from the passive saturation of synaptic currents. Because of these non-linearities our neuron models are scatter sensitive: the somatic membrane voltage is higher when presynaptic inputs target different dendrites than when they target a single dendrite. This spatial bias in synaptic integration is, in our models, the origin of neuronal tuning. Indeed, assemblies of presynaptic inputs encode the stimulus property through an increase in correlation or activity, and only the assembly that encodes the preferred stimulus targets different dendrites. Assemblies coding for the non-preferred stimuli target single dendrites, explaining the wide range of observed tunings and the possible difference between dendritic and somatic tuning. We thus propose, in accordance with the latest experimental observations, that non-linear integration in dendrites can generate neuronal tuning independently of the coding regime.

  1. Quantum Field Theory, Revised Edition

    Science.gov (United States)

    Mandl, F.; Shaw, G.

    1994-01-01

    Quantum Field Theory Revised Edition F. Mandl and G. Shaw, Department of Theoretical Physics, The Schuster Laboratory, The University, Manchester, UK When this book first appeared in 1984, only a handful of W± and Z° bosons had been observed and the experimental investigation of high energy electro-weak interactions was in its infancy. Nowadays, W± bosons and especially Z° bosons can be produced by the thousand and the study of their properties is a precise science. We have revised the text of the later chapters to incorporate these developments and discuss their implications. We have also taken this opportunity to update the references throughout and to make some improvements in the treatment of dimen-sional regularization. Finally, we have corrected some minor errors and are grateful to various people for pointing these out. This book is designed as a short and simple introduction to quantum field theory for students beginning research in theoretical and experimental physics. The three main objectives are to explain the basic physics and formalism of quantum field theory, to make the reader fully proficient in theory calculations using Feynman diagrams, and to introduce the reader to gauge theories, which play such a central role in elementary particle physics. The theory is applied to quantum electrodynamics (QED), where quantum field theory had its early triumphs, and to weak interactions where the standard electro-weak theory has had many impressive successes. The treatment is based on the canonical quantization method, because readers will be familiar with this, because it brings out lucidly the connection between invariance and conservation laws, and because it leads directly to the Feynman diagram techniques which are so important in many branches of physics. In order to help inexperienced research students grasp the meaning of the theory and learn to handle it confidently, the mathematical formalism is developed from first principles, its physical

  2. Differential Geometry applied to Acoustics : Non Linear Propagation in Reissner Beams

    CERN Document Server

    Bensoam, Joël

    2013-01-01

    Although acoustics is one of the disciplines of mechanics, its "geometrization" is still limited to a few areas. As shown in the work on nonlinear propagation in Reissner beams, it seems that an interpretation of the theories of acoustics through the concepts of differential geometry can help to address the non-linear phenomena in their intrinsic qualities. This results in a field of research aimed at establishing and solving dynamic models purged of any artificial nonlinearity by taking advantage of symmetry properties underlying the use of Lie groups. The geometric constructions needed for reduction are presented in the context of the "covariant" approach.

  3. Beta-functions of non-linear $\\sigma$-models for disordered and interacting electron systems

    CERN Document Server

    Dell'Anna, Luca

    2016-01-01

    We provide and study complete sets of one-loop renormalization group equations, calculated at all orders in the interaction parameters, of several Finkel'stein non-linear $\\sigma$-models, the effective field theories describing the diffusive quantum fluctuations in correlated disordered systems. We consider different cases according to the presence of certain symmetries induced by the original random Hamiltonians, and we show that, for interacting systems, the Cartan's classification of symmetry classes is not enough to uniquely determine their scaling behaviors.

  4. Lectures on matrix field theory

    CERN Document Server

    Ydri, Badis

    2017-01-01

    These lecture notes provide a systematic introduction to matrix models of quantum field theories with non-commutative and fuzzy geometries. The book initially focuses on the matrix formulation of non-commutative and fuzzy spaces, followed by a description of the non-perturbative treatment of the corresponding field theories. As an example, the phase structure of non-commutative phi-four theory is treated in great detail, with a separate chapter on the multitrace approach. The last chapter offers a general introduction to non-commutative gauge theories, while two appendices round out the text. Primarily written as a self-study guide for postgraduate students – with the aim of pedagogically introducing them to key analytical and numerical tools, as well as useful physical models in applications – these lecture notes will also benefit experienced researchers by providing a reference guide to the fundamentals of non-commutative field theory with an emphasis on matrix models and fuzzy geometries.

  5. Quantum field theory competitive models

    CERN Document Server

    Tolksdorf, Jürgen; Zeidler, Eberhard

    2009-01-01

    For more than 70 years, quantum field theory (QFT) can be seen as a driving force in the development of theoretical physics. Equally fascinating is the fruitful impact which QFT had in rather remote areas of mathematics. The present book features some of the different approaches, different physically viewpoints and techniques used to make the notion of quantum field theory more precise. For example, the present book contains a discussion including general considerations, stochastic methods, deformation theory and the holographic AdS/CFT correspondence. It also contains a discussion of more recent developments like the use of category theory and topos theoretic methods to describe QFT. The present volume emerged from the 3rd 'Blaubeuren Workshop: Recent Developments in Quantum Field Theory', held in July 2007 at the Max Planck Institute of Mathematics in the Sciences in Leipzig/Germany. All of the contributions are committed to the idea of this workshop series: 'To bring together outstanding experts working in...

  6. A Landscape of Field Theories

    CERN Document Server

    Maxfield, Travis; Sethi, Savdeep

    2015-01-01

    Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2,0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.

  7. A landscape of field theories

    Energy Technology Data Exchange (ETDEWEB)

    Maxfield, Travis [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States); Robbins, Daniel [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy,Texas A& M University,College Station, TX 77843-4242 (United States); Sethi, Savdeep [Enrico Fermi Institute, University of Chicago,Chicago, IL 60637 (United States)

    2016-11-28

    Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2,0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.

  8. A landscape of field theories

    Science.gov (United States)

    Maxfield, Travis; Robbins, Daniel; Sethi, Savdeep

    2016-11-01

    Studying a quantum field theory involves a choice of space-time manifold and a choice of background for any global symmetries of the theory. We argue that many more choices are possible when specifying the background. In the context of branes in string theory, the additional data corresponds to a choice of supergravity tensor fluxes. We propose the existence of a landscape of field theory backgrounds, characterized by the space-time metric, global symmetry background and a choice of tensor fluxes. As evidence for this landscape, we study the supersymmetric six-dimensional (2, 0) theory compactified to two dimensions. Different choices of metric and flux give rise to distinct two-dimensional theories, which can preserve differing amounts of supersymmetry.

  9. The adhesion model as a field theory for cosmological clustering

    Energy Technology Data Exchange (ETDEWEB)

    Rigopoulos, Gerasimos, E-mail: rigopoulos@thphys.uni-heidelberg.de [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 12, Heidelberg, 69120 Germany (Germany)

    2015-01-01

    The adhesion model has been proposed in the past as an improvement of the Zel'dovich approximation, providing a good description of the formation of the cosmic web. We recast the model as a field theory for cosmological large scale structure, adding a stochastic force to account for power generated from very short, highly non-linear scales that is uncorrelated with the initial power spectrum. The dynamics of this Stochastic Adhesion Model (SAM) is reminiscent of the well known Kardar-Parisi-Zhang equation with the difference that the viscosity and the noise spectrum are time dependent. Choosing the viscosity proportional to the growth factor D restricts the form of noise spectrum through a 1-loop renormalization argument. For this choice, the SAM field theory is renormalizable to one loop. We comment on the suitability of this model for describing the non-linear regime of the CDM power spectrum and its utility as a relatively simple approach to cosmological clustering.

  10. SSNN toolbox for non-linear system identification

    Science.gov (United States)

    Luzar, Marcel; Czajkowski, Andrzej

    2015-11-01

    The aim of this paper is to develop and design a State Space Neural Network toolbox for a non-linear system identification with an artificial state-space neural networks, which can be used in a model-based robust fault diagnosis and control. Such toolbox is implemented in the MATLAB environment and it uses some of its predefined functions. It is designed in the way that any non-linear multi-input multi-output system is identified and represented in the classical state-space form. The novelty of the proposed approach is that the final result of the identification process is the state, input and output matrices, not only the neural network parameters. Moreover, the toolbox is equipped with the graphical user interface, which makes it useful for the users not familiar with the neural networks theory.

  11. Integration of non-linear cellular mechanisms regulating microvascular perfusion.

    Science.gov (United States)

    Griffith, T M; Edwards, D H

    1999-01-01

    It is becoming increasingly evident that interactions between the different cell types present in the vessel wall and the physical forces that result from blood flow are highly complex. This short article will review evidence that irregular fluctuations in vascular resistance are generated by non-linearity in the control mechanisms intrinsic to the smooth muscle cell and can be classified as chaotic. Non-linear systems theory has provided insights into the mechanisms involved at the cellular level by allowing the identification of dominant control variables and the construction of one-dimensional iterative maps to model vascular dynamics. Experiments with novel peptide inhibitors of gap junctions have shown that the coordination of aggregate responses depends on direct intercellular communication. The sensitivity of chaotic trajectories to perturbation may nevertheless generate a high degree of variability in the response to pharmacological interventions and altered perfusion conditions.

  12. A COMPUTER PROGRAMME FOR THE NON-LINEAR ANALYSIS OF COMPLETE STRUCTURES

    Directory of Open Access Journals (Sweden)

    Turgay ÇOŞGUN

    2003-02-01

    Full Text Available The progress made on the analysis of the structures by using non-linear theory and the significant findings on both theorical and empirical works, enable better understanding of the behaviours of structures under external loads. Determination of the failure load and designing the structures accordingly requires developments of analysis methods, which take both the non-linear behaviour of structural elements and the non-linear effects of geometric changes into consideration. Therefore, in this study, a FORTRAN code, which analyses structures and calculates the failure loads by considering the non-linear behaviour of materials under increasing loads (due to the non-linear relationship of stress-strain and moment-curvature and second-order theory of structural systems is developed.

  13. The Theory of Conceptual Fields

    Science.gov (United States)

    Vergnaud, Gerard

    2009-01-01

    The theory of conceptual fields is a developmental theory. It has two aims: (1) to describe and analyse the progressive complexity, on a long- and medium-term basis, of the mathematical competences that students develop inside and outside school, and (2) to establish better connections between the operational form of knowledge, which consists in…

  14. Stability analysis and non-linear behaviour of structural systems using the complex non-linear modal analysis (CNLMA)

    OpenAIRE

    Sinou, Jean-Jacques; Thouverez, Fabrice; Jezequel, Louis

    2006-01-01

    International audience; Herein, a novel non-linear procedure for producing non-linear behaviour and stable limit cycle amplitudes of non-linear systems subjected to super-critical Hopf bifurcation point is presented. This approach, called Complex Non-Linear Modal Analysis (CNLMA), makes use of the non-linear unstable mode which governs the non-linear dynamic of structural systems in unstable areas. In this study, the computational methodology of CNLMA is presented for the systematic estimatio...

  15. Double field theory inspired cosmology

    Science.gov (United States)

    Wu, Houwen; Yang, Haitang

    2014-07-01

    Double field theory proposes a generalized spacetime action possessing manifest T-duality on the level of component fields. We calculate the cosmological solutions of double field theory with vanishing Kalb-Ramond field. It turns out that double field theory provides a more consistent way to construct cosmological solutions than the standard string cosmology. We construct solutions for vanishing and non-vanishing symmetry preserving dilaton potentials. The solutions assemble the pre- and post-big bang evolutions in one single line element. Our results show a smooth evolution from an anisotropic early stage to an isotropic phase without any special initial conditions in contrast to previous models. In addition, we demonstrate that the contraction of the dual space automatically leads to both an inflation phase and a decelerated expansion of the ordinary space during different evolution stages.

  16. Monte Carlo Computation of Spectral Density Function in Real-Time Scalar Field Theory

    CERN Document Server

    Abbasi, Navid

    2014-01-01

    Non-perturbative study of "real-time" field theories is difficult due to the sign problem. We use Bold Schwinger-Dyson (SD) equations to study the real-time $\\phi^4$ theory in $d=4$ beyond the perturbative regime. Combining SD equations in a particular way, we derive a non-linear integral equation for the two-point function. Then we introduce a new method by which one can analytically perform the momentum part of loop integrals in this equation. The price we must pay for such simplification is to numerically solve a non-linear integral equation for the spectral density function. Using Bold diagrammatic Monte Carlo method we find non-perturbative spectral function of theory and compare it with the one obtained from perturbation theory. At the end we utilize our Monte Carlo result to find the full vertex function as the basis for the computation of real-time scattering amplitudes.

  17. Neural fields theory and applications

    CERN Document Server

    Graben, Peter; Potthast, Roland; Wright, James

    2014-01-01

    With this book, the editors present the first comprehensive collection in neural field studies, authored by leading scientists in the field - among them are two of the founding-fathers of neural field theory. Up to now, research results in the field have been disseminated across a number of distinct journals from mathematics, computational neuroscience, biophysics, cognitive science and others. Starting with a tutorial for novices in neural field studies, the book comprises chapters on emergent patterns, their phase transitions and evolution, on stochastic approaches, cortical development, cognition, robotics and computation, large-scale numerical simulations, the coupling of neural fields to the electroencephalogram and phase transitions in anesthesia. The intended readership are students and scientists in applied mathematics, theoretical physics, theoretical biology, and computational neuroscience. Neural field theory and its applications have a long-standing tradition in the mathematical and computational ...

  18. Non-linear estimation is easy

    OpenAIRE

    Fliess, Michel; Join, Cédric; Sira-Ramirez, Hebertt

    2008-01-01

    International audience; Non-linear state estimation and some related topics, like parametric estimation, fault diagnosis, and perturbation attenuation, are tackled here via a new methodology in numerical differentiation. The corresponding basic system theoretic definitions and properties are presented within the framework of differential algebra, which permits to handle system variables and their derivatives of any order. Several academic examples and their computer simulations, with on-line ...

  19. Non-linear Loudspeaker Unit Modelling

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Agerkvist, Finn T.

    2008-01-01

    Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of three...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....

  20. Non-linear estimation is easy

    CERN Document Server

    Fliess, Michel; Sira-Ramirez, Hebertt

    2007-01-01

    Non-linear state estimation and some related topics, like parametric estimation, fault diagnosis, and perturbation attenuation, are tackled here via a new methodology in numerical differentiation. The corresponding basic system theoretic definitions and properties are presented within the framework of differential algebra, which permits to handle system variables and their derivatives of any order. Several academic examples and their computer simulations, with on-line estimations, are illustrating our viewpoint.

  1. The non-linear coupled spin 2 - spin 3 Cotton equation in three dimensions

    CERN Document Server

    Linander, Hampus

    2016-01-01

    In the context of three-dimensional conformal higher spin theory we derive, in the frame field formulation, the full non-linear spin 3 Cotton equation coupled to spin 2. This is done by solving the corresponding Chern-Simons gauge theory system of equations, that is, using $F=0$ to eliminate all auxiliary fields and thus expressing the Cotton equation in terms of just the spin 3 frame field and spin 2 covariant derivatives and tensors (Schouten). In this derivation we neglect the spin 4 and higher spin sectors and approximate the star product commutator by a Poisson bracket. The resulting spin 3 Cotton equation is complicated but can be related to linearized versions in the metric formulation obtained previously by other authors. The expected symmetry (spin 3 "translation", "Lorentz" and "dilatation") properties are verified for Cotton and other relevant tensors but some perhaps unexpected features emerge in the process, in particular in relation to the non-linear equations. We discuss the structure of this n...

  2. Nonlocal and quasilocal field theories

    Science.gov (United States)

    Tomboulis, E. T.

    2015-12-01

    We investigate nonlocal field theories, a subject that has attracted some renewed interest in connection with nonlocal gravity models. We study, in particular, scalar theories of interacting delocalized fields, the delocalization being specified by nonlocal integral kernels. We distinguish between strictly nonlocal and quasilocal (compact support) kernels and impose conditions on them to insure UV finiteness and unitarity of amplitudes. We study the classical initial value problem for the partial integro-differential equations of motion in detail. We give rigorous proofs of the existence but accompanying loss of uniqueness of solutions due to the presence of future, as well as past, "delays," a manifestation of acausality. In the quantum theory we derive a generalization of the Bogoliubov causality condition equation for amplitudes, which explicitly exhibits the corrections due to nonlocality. One finds that, remarkably, for quasilocal kernels all acausal effects are confined within the compact support regions. We briefly discuss the extension to other types of fields and prospects of such theories.

  3. Lectures on Conformal Field Theory

    CERN Document Server

    Qualls, Joshua D

    2015-01-01

    These lectures notes are based on courses given at National Taiwan University, National Chiao-Tung University, and National Tsing Hua University in the spring term of 2015. Although the course was offered primarily for graduate students, these lecture notes have been prepared for a more general audience. They are intended as an introduction to conformal field theories in various dimensions, with applications related to topics of particular interest: topics include the conformal bootstrap program, boundary conformal field theory, and applications related to the AdS/CFT correspondence. We assume the reader to be familiar with quantum mechanics at the graduate level and to have some basic knowledge of quantum field theory. Familiarity with string theory is not a prerequisite for this lectures, although it can only help.

  4. Background Independent String Field Theory

    CERN Document Server

    Bars, Itzhak

    2014-01-01

    We develop a new background independent Moyal star formalism in bosonic open string field theory. The new star product is formulated in a half-phase-space, and because phase space is independent of any background fields, the interactions are background independent. In this basis there is a large amount of symmetry, including a supersymmetry OSp(d|2) that acts on matter and ghost degrees of freedom, and simplifies computations. The BRST operator that defines the quadratic kinetic term of string field theory may be regarded as the solution of the equation of motion A*A=0 of a purely cubic background independent string field theory. We find an infinite number of non-perturbative solutions to this equation, and are able to associate them to the BRST operator of conformal field theories on the worldsheet. Thus, the background emerges from a spontaneous-type breaking of a purely cubic highly symmetric theory. The form of the BRST field breaks the symmetry in a tractable way such that the symmetry continues to be us...

  5. Systematic treatment of non-linear effects in Baryon Acoustic Oscillations

    CERN Document Server

    Ivanov, Mikhail M

    2016-01-01

    In this contribution we will discuss the non-linear effects in the baryon acoustic oscillations and present a systematic and controllable way to account for them within time-sliced perturbation theory.

  6. Controllability of non-linear systems: generic singularities and their stability

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, Alexey A; Zakalyukin, Vladimir M

    2012-04-30

    This paper presents an overview of the state of the art in applications of singularity theory to the analysis of generic singularities of controllability of non-linear systems on manifolds. Bibliography: 40 titles.

  7. Non-linear Young's double-slit experiment.

    Science.gov (United States)

    San Roman, Julio; Ruiz, Camilo; Perez, Jose Antonio; Delgado, Diego; Mendez, Cruz; Plaja, Luis; Roso, Luis

    2006-04-01

    The Young's double slit experiment is recreated using intense and short laser pulses. Our experiment evidences the role of the non-linear Kerr effect in the formation of interference patterns. In particular, our results evidence a mixed mechanism in which the zeroth diffraction order of each slit are mainly affected by self-focusing and self-phase modulation, while the higher orders propagate linearly. Despite of the complexity of the general problem of non-linear propagation, we demonstrate that this experiment retains its simplicity and allows for a geometrical interpretation in terms of simple optical paths. In consequence, our results may provide key ideas on experiments on the formation of interference patterns with intense laser fields in Kerr media.

  8. Parametric Analysis of Fiber Non-Linearity in Optical systems

    Directory of Open Access Journals (Sweden)

    Abhishek Anand

    2013-06-01

    Full Text Available With the advent of technology Wavelength Division Multiplexing (WDM is always an area of interest in the field of optical communication. When combined with Erbium Doped Fiber Amplifier (EDFA, it provides high data transmission rate and low attenuation. But due to fiber non-linearity such as Self Phase Modulation (SPM and Cross Phase Modulation (XPM the system performance has degraded. This non-linearity depends on different parameters of an optical system such as channel spacing, power of the channel and length of the fiber section. The degradation can be seen in terms of phase deviation and Bit Error Rate (BER performance. Even after dispersion compensation at the fiber end, residual pulse broadening still exists due to cross talk penalty.

  9. Deforming the theory lambda-phi-4 along the parameters and fields gradient flows

    CERN Document Server

    Cartas-Fuentevilla, R

    2014-01-01

    Considering the action for the theory $\\lambda\\phi^{4}$ for a massive scalar bosonic field as an entropy functional on the space of coupling constants and on the space of fields, we determine the gradient flows for the scalar field, the mass, and the self-interaction parameter. When the flow parameter is identified with the energy scale, we show that there exist phase transitions between unbroken exact symmetry scenarios and spontaneous symmetry breaking scenarios at increasingly high energies. Since a non-linear heat equation drives the scalar field through a {\\it reaction-diffusion} process, in general the flows are not reversible, mimicking the renormalization group flows of the $c$-theorem; the deformation of the field at increasingly high energies can be described as non-linear traveling waves, or solitons associated to self-similar solutions

  10. Non-linear HRV indices under autonomic nervous system blockade.

    Science.gov (United States)

    Bolea, Juan; Pueyo, Esther; Laguna, Pablo; Bailón, Raquel

    2014-01-01

    Heart rate variability (HRV) has been studied as a non-invasive technique to characterize the autonomic nervous system (ANS) regulation of the heart. Non-linear methods based on chaos theory have been used during the last decades as markers for risk stratification. However, interpretation of these nonlinear methods in terms of sympathetic and parasympathetic activity is not fully established. In this work we study linear and non-linear HRV indices during ANS blockades in order to assess their relation with sympathetic and parasympathetic activities. Power spectral content in low frequency (0.04-0.15 Hz) and high frequency (0.15-0.4 Hz) bands of HRV, as well as correlation dimension, sample and approximate entropies were computed in a database of subjects during single and dual ANS blockade with atropine and/or propranolol. Parasympathetic blockade caused a significant decrease in the low and high frequency power of HRV, as well as in correlation dimension and sample and approximate entropies. Sympathetic blockade caused a significant increase in approximate entropy. Sympathetic activation due to postural change from supine to standing caused a significant decrease in all the investigated non-linear indices and a significant increase in the normalized power in the low frequency band. The other investigated linear indices did not show significant changes. Results suggest that parasympathetic activity has a direct relation with sample and approximate entropies.

  11. Long-term cavity closure in non-linear rocks

    Science.gov (United States)

    Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel Walter

    2017-08-01

    The time dependent closure of pressurized cavities in viscous rocks due to far-field loads is a problem encountered in many applications like drilling, cavity abandonment and porosity closure. The non-linear nature of the flow of rocks prevents the use of simple solutions for hole closure and calls for the development of appropriate expressions reproducing all the dependencies observed in nature. An approximate solution is presented for the closure velocity of a pressurized cylindrical cavity in a non-linear viscous medium subjected to a combined pressure and shear stress load in the far field. The embedding medium is treated as homogeneous, isotropic, and incompressible and follows a Carreau viscosity model. We derive analytical solutions for the end-member cases of the pressure and shear loads. The exact analytical solution for pressure loads shows that the closure velocity vR is given by the implicit expression {Δ p}/{2{μ _0D_{II}^*}} = - 1/2B( {{v_R^2}/{RD_{II^* + v_R^2}};1/2, - 1/{2n}} ), where Δp is the pressure load, R is the hole radius, B is the incomplete beta function, and μ0, D_{II}^*, n are, respectively, the threshold viscosity, transition rate and stress exponent of the Carreau model. The closure velocity is dominated by the linear mechanism under pressure loads smaller than 1.8{μ _0}D_{II}^* and by the non-linear one under large pressure loads. In the non-linear regime, pressure variations support an increasing part of the load with increasing degree of non-linearity. The decay of the stress perturbation in the non-linear zone varies as r- 2/n where r is the radial distance to the hole. A solution for the maximum closure velocity at the cavity rim vRmax under far-field shear is given: v_{R\\max} = ( 1 + {\\overline {M_s}} ^{-1/2})R\\overline D_{II}, where \\overline {M_s} = (1 + {\\overline {D_{II}} }^2 \\big/ {nD{_{II}^*}^2}) \\big/ ( 1 + {\\overline {D_{II}}^2} \\big/ D{_{II}^*}^2) and \\overline {D_{II}} is the second invariant of the far-field

  12. Water environmental planning considering the influence of non-linear characteristics

    Institute of Scientific and Technical Information of China (English)

    ZENG Guang-ming; QIN Xiao-sheng; WANG Wei; HUANG Guo-he; LI Jian-bing; B. Statzner

    2003-01-01

    In practical water environmental planning, the influence of the non-linear characteristics on the benefit of environmental investment was seldom taken into consideration. This paper demonstrates that there exist a lot of non-linear behaviors in water environment by emphatically analyzing the influence of the non-linear characteristics of the economic scale, the meandering river and the model on water environmental planning, which will make a certain impact on the water environmental planning that sometimes cannot be neglected. This paper also preliminarily explores how to integrate the non-linear characteristics into water environmental planning. The results showed that compared with traditional methods, water environmental planning considering non-linear characteristics has its prevalence and it is necessary to develop the relevant planning theories and methods.

  13. Electromagnetic field theories for engineering

    CERN Document Server

    Salam, Md Abdus

    2014-01-01

    A four year Electrical and Electronic engineering curriculum normally contains two modules of electromagnetic field theories during the first two years. However, some curricula do not have enough slots to accommodate the two modules. This book, Electromagnetic Field Theories, is designed for Electrical and Electronic engineering undergraduate students to provide fundamental knowledge of electromagnetic fields and waves in a structured manner. A comprehensive fundamental knowledge of electric and magnetic fields is required to understand the working principles of generators, motors and transformers. This knowledge is also necessary to analyze transmission lines, substations, insulator flashover mechanism, transient phenomena, etc. Recently, academics and researches are working for sending electrical power to a remote area by designing a suitable antenna. In this case, the knowledge of electromagnetic fields is considered as important tool.

  14. Non-Linear Integral Equations for complex Affine Toda associated to simply laced Lie algebras

    CERN Document Server

    Zinn-Justin, P

    1998-01-01

    A set of coupled non-linear integral equations is derived for a class of models connected with the quantum group $U_q(\\hat g)$ ($q=e^{i\\gamma}$ and $g$ simply laced Lie algebra), which are solvable using the Bethe Ansatz; these equations describe arbitrary excited states of a system with finite spatial length $L$. They generalize the Destri-De Vega equation for the Sine-Gordon/massive Thirring model to affine Toda field theory with imaginary coupling constant. As an application, the central charge and all the conformal weights of the UV conformal field theory are extracted in a straightforward manner. The quantum group truncation for rational values of $\\gamma/\\pi$ is discussed in detail; in the UV limit we recover through this procedure the RCFTs with extended $W(g)$ conformal symmetry.

  15. Currents in supersymmetric field theories

    CERN Document Server

    Derendinger, Jean-Pierre

    2016-01-01

    A general formalism to construct and improve supercurrents and source or anomaly superfields in two-derivative N=1 supersymmetric theories is presented. It includes arbitrary gauge and chiral superfields and a linear superfield coupled to gauge fields. These families of supercurrent structures are characterized by their energy-momentum tensors and R currents and they display a specific relation to the dilatation current of the theory. The linear superfield is introduced in order to describe the gauge coupling as a background (or propagating) field. Supersymmetry does not constrain the dependence on this gauge coupling field of gauge kinetic terms and holomorphicity restrictions are absent. Applying these results to an effective (Wilson) description of super-Yang-Mills theory, matching or cancellation of anomalies leads to an algebraic derivation of the all-order NSVZ beta function.

  16. An effective description of dark matter and dark energy in the mildly non-linear regime

    CERN Document Server

    Lewandowski, Matthew; Senatore, Leonardo

    2016-01-01

    In the next few years, we are going to probe the low-redshift universe with unprecedented accuracy. Among the various fruits that this will bear, it will greatly improve our knowledge of the dynamics of dark energy, though for this there is a strong theoretical preference for a cosmological constant. We assume that dark energy is described by the so-called Effective Field Theory of Dark Energy, which assumes that dark energy is the Goldstone boson of time translations. Such a formalism makes it easy to ensure that our signatures are consistent with well-established principles of physics. Since most of the information resides at high wavenumbers, it is important to be able to make predictions at the highest wavenumber that is possible. The Effective Field Theory of Large-Scale Structure (EFTofLSS) is a theoretical framework that has allowed us to make accurate predictions in the mildly non-linear regime. In this paper, we derive the non-linear equations that extend the EFTofLSS to include the effect of dark en...

  17. Phenomenology of Noncommutative Field Theories

    CERN Document Server

    Carone, C D

    2006-01-01

    Experimental limits on the violation of four-dimensional Lorentz invariance imply that noncommutativity among ordinary spacetime dimensions must be small. In this talk, I review the most stringent bounds on noncommutative field theories and suggest a possible means of evading them: noncommutativity may be restricted to extra, compactified spatial dimensions. Such theories have a number of interesting features, including Abelian gauge fields whose Kaluza-Klein excitations have self couplings. We consider six-dimensional QED in a noncommutative bulk, and discuss the collider signatures of the model.

  18. Fitting and forecasting non-linear coupled dark energy

    CERN Document Server

    Casas, Santiago; Baldi, Marco; Pettorino, Valeria; Vollmer, Adrian

    2015-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range $z=0-1.6$ and wave modes below $k=10 \\text{h/Mpc}$. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and w...

  19. Non Linear Behaviour in Learning Processes

    OpenAIRE

    Manfredi, Paolo; Manfredi, Vicenzo Rosario

    2003-01-01

    This article is mainly based on R. E. Kahn's contribution to the book Non Linear Dynamics in Human Behavior. As stressed by Bronowski, both in art and in science, a person becomes creative by finding "a new unity" that is a link between things which were not thought alike before. Indeed the creative mind is a mind that looks for unexpected likeness finding a more profound unity, a pattern behind chaotic phenomena. In the context of scientific discovery, it can also be argued that creativi...

  20. Limits on Non-Linear Electrodynamics

    CERN Document Server

    Fouché, M; Rizzo, C

    2016-01-01

    In this paper we set a framework in which experiments whose goal is to test QED predictions can be used in a more general way to test non-linear electrodynamics (NLED) which contains low-energy QED as a special case. We review some of these experiments and we establish limits on the different free parameters by generalizing QED predictions in the framework of NLED. We finally discuss the implications of these limits on bound systems and isolated charged particles for which QED has been widely and successfully tested.

  1. Non-linear dynamics in pulse combustor: A review

    Indian Academy of Sciences (India)

    Sirshendu Mondal; Achintya Kukhopadhyay; Swarnendu Sen

    2015-03-01

    The state of the art of non-linear dynamics applied to pulse combustor theoretically and experimentally is reviewed. Pulse combustors are a class of air-breathing engines in which pulsations in combustion are utilized to improve the performance. As no analytical solution can be obtained for most of the nonlinear systems, the whole set of solutions can be investigated with the help of dynamical system theory. Many studies have been carried out on pulse combustors whose dynamics include limit cycle behaviour, Hopf bifurcation and period-doubling bifurcation. The dynamic signature has also been used for early prediction of extinction.

  2. Stochastic multi-configurational self-consistent field theory

    CERN Document Server

    Thomas, Robert E; Alavi, Ali; Booth, George H

    2015-01-01

    The multi-configurational self-consistent field theory is considered the standard starting point for almost all multireference approaches required for strongly-correlated molecular problems. The limitation of the approach is generally given by the number of strongly-correlated orbitals in the molecule, as its cost will grow exponentially with this number. We present a new multi-configurational self-consistent field approach, wherein linear determinant coefficients of a multi-configurational wavefunction are optimized via the stochastic full configuration interaction quantum Monte Carlo technique at greatly reduced computational cost, with non-linear orbital rotation parameters updated variationally based on this sampled wavefunction. This extends this approach to strongly-correlated systems with far larger active spaces than it is possible to treat by conventional means. By comparison with this traditional approach, we demonstrate that the introduction of stochastic noise in both the determinant amplitudes an...

  3. Bosonic colored group field theory

    Energy Technology Data Exchange (ETDEWEB)

    Ben Geloun, Joseph [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France); University of Abomey-Calavi, Cotonou (BJ). International Chair in Mathematical Physics and Applications (ICMPA-UNESCO Chair); Universite Cheikh Anta Diop, Departement de Mathematiques et Informatique, Faculte des Sciences et Techniques, Dakar (Senegal); Magnen, Jacques [Ecole Polytechnique, Centre de Physique Theorique, Palaiseau Cedex (France); Rivasseau, Vincent [Universite Paris XI, Laboratoire de Physique Theorique, Orsay Cedex (France)

    2010-12-15

    Bosonic colored group field theory is considered. Focusing first on dimension four, namely the colored Ooguri group field model, the main properties of Feynman graphs are studied. This leads to a theorem on optimal perturbative bounds of Feynman amplitudes in the ''ultraspin'' (large spin) limit. The results are generalized in any dimension. Finally, integrating out two colors we write a new representation, which could be useful for the constructive analysis of this type of models. (orig.)

  4. Unitarity of superstring field theory

    Science.gov (United States)

    Sen, Ashoke

    2016-12-01

    We complete the proof of unitarity of (compactified) heterotic and type II string field theories by showing that in the cut diagrams only physical states appear in the sum over intermediate states. This analysis takes into account the effect of mass and wave-function renormalization, and the possibility that the true vacuum may be related to the perturbative vacuum by small shifts in the string fields.

  5. Unitarity of Superstring Field Theory

    CERN Document Server

    Sen, Ashoke

    2016-01-01

    We complete the proof of unitarity of (compactified) heterotic and type II string field theories by showing that in the cut diagrams only physical states appear in the sum over intermediate states. This analysis takes into account the effect of mass and wave-function renormalization, and the possibility that the true vacuum may be related to the perturbative vacuum by small shifts in the string fields.

  6. Topological Field Theory and Rational Curves

    CERN Document Server

    Aspinwall, Paul S; Aspinwall, Paul S.; Morrison, David R.

    1993-01-01

    We analyze the superstring propagating on a Calabi-Yau threefold. This theory naturally leads to the consideration of Witten's topological non-linear sigma-model and the structure of rational curves on the Calabi-Yau manifold. We study in detail the case of the world-sheet of the string being mapped to a multiple cover of an isolated rational curve and we show that a natural compactification of the moduli space of such a multiple cover leads to a formula in agreement with a conjecture by Candelas, de la Ossa, Green and Parkes.

  7. Non-Gaussianity vs. non-linearity of cosmological perturbations

    CERN Document Server

    Verde, L

    2001-01-01

    Following the discovery of the CMB, the hot big-bang model has become the standard cosmological model. In this theory, small primordial fluctuations are subsequently amplified by gravity to form the large-scale structure seen today. Different theories for unified models of particle physics, lead to different predictions for the statistical properties of the primordial fluctuations, that can be divided in two classes: gaussian and non-gaussian. Convincing evidence against or for gaussian initial conditions would rule out many scenarios and point us towards a physical theory for the origin of structures. The statistical distribution of cosmological perturbations, as we observe them, can deviate from the gaussian distribution in several different ways. Even if perturbations start off gaussian, non-linear gravitational evolution can introduce non-gaussian features. Additionally, our knowledge of the Universe comes principally from the study of luminous material such as galaxies, but these might not be faithful tr...

  8. Numerical Simulation of Seabed Response and Liquefaction due to Non-linear Waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jin-feng; ZHANG Qing-he; HAN Tao; QIN Chong-ren

    2005-01-01

    Based on Biot's consolidation theory, a two-dimensional model for computation of the seabed response to waves is presented with the finite element method. Numerical results for different wave conditions are obtained, and the effects of wave non-linearity on the wave-induced seabed response are examined. Moreover, the wave-induced momentary liquefaction in uniform and inhomogeneous seabeds is investigated. It is shown that the wave non-linearity affects the distribution of the wave-induced pore pressure and effective stresses, while the influence of wave non-linearity on the seabed liquefaction potential is not so significant.

  9. Variational iteration method for solving non-linear partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, A.A. [Department of Mathematics, Faculty of Science, University of Tanta, Tanta (Egypt)], E-mail: aahemeda@yahoo.com

    2009-02-15

    In this paper, we shall use the variational iteration method to solve some problems of non-linear partial differential equations (PDEs) such as the combined KdV-MKdV equation and Camassa-Holm equation. The variational iteration method is superior than the other non-linear methods, such as the perturbation methods where this method does not depend on small parameters, such that it can fined wide application in non-linear problems without linearization or small perturbation. In this method, the problems are initially approximated with possible unknowns, then a correction functional is constructed by a general Lagrange multiplier, which can be identified optimally via the variational theory.

  10. Bohmian mechanics and quantum field theory.

    Science.gov (United States)

    Dürr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghì, Nino

    2004-08-27

    We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which, in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end.

  11. Loops in exceptional field theory

    Energy Technology Data Exchange (ETDEWEB)

    Bossard, Guillaume [Centre de Physique Théorique, Ecole Polytechnique, CNRS, Université Paris-Saclay,91128 Palaiseau cedex (France); Kleinschmidt, Axel [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Am Mühlenberg 1, DE-14476 Potsdam (Germany); International Solvay Institutes,ULB-Campus Plaine CP231, BE-1050 Brussels (Belgium)

    2016-01-27

    We study certain four-graviton amplitudes in exceptional field theory in dimensions D≥4 up to two loops. As the formulation is manifestly invariant under the U-duality group E{sub 11−D}(ℤ), our resulting expressions can be expressed in terms of automorphic forms. In the low energy expansion, we find terms in the M-theory effective action of type R{sup 4}, ∇{sup 4}R{sup 4} and ∇{sup 6}R{sup 4} with automorphic coefficient functions in agreement with independent derivations from string theory. This provides in particular an explicit integral formula for the exact string theory ∇{sup 6}R{sup 4} threshold function. We exhibit moreover that the usual supergravity logarithmic divergences cancel out in the full exceptional field theory amplitude, within an appropriately defined dimensional regularisation scheme. We also comment on terms of higher derivative order and the role of the section constraint for possible counterterms.

  12. Non-Linear Dynamics of Saturn's Rings

    Science.gov (United States)

    Esposito, L. W.

    2015-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average: 2-10x is possible. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like 'straw' that can explain the halo structure and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; Surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km); We propose 'straw', as observed ny Cassini cameras. Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing. Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn's rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. This confirms the triple architecture of ring particles: a broad size distribution of particles; these aggregate into temporary rubble piles; coated by a regolith of dust. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from

  13. A course in field theory

    CERN Document Server

    Baal, Pierre Van

    2014-01-01

    ""… a pleasant novelty that manages the impossible: a full course in field theory from a derivation of the Dirac equation to the standard electroweak theory in less than 200 pages. Moreover, the final chapter consists of a careful selection of assorted problems, which are original and either anticipate or detail some of the topics discussed in the bulk of the chapters. Instead of building a treatise out of a collection of lecture notes, the author took the complementary approach and constructed a course out of a number of well-known and classic treatises. The result is fresh and useful. … the

  14. Field Analysis and Potential Theory

    Science.gov (United States)

    1985-06-01

    T T T 430 FIELD ANALYSIS AND POTENTIAL THEORY [Sec.5.7 But V2f [ dT - Z j V2 Jxdr T T hence V c2at 7- dT _- J2 (J2 dT T TT whence dalf [13 dT " 0 (5.7...8) at exterior points or dal pot [2] - O (5.7-8(a)) Similarly, dalf r dS - 0 (5.7-9) dal [y] ds - 0 (5.7-10) r Sec.5.7] RETARDED POTENTIAL THEORY 431

  15. Introduction to quantum field theory

    CERN Document Server

    Chang, Shau-Jin

    1990-01-01

    This book presents in a short volume the basics of quantum field theory and many body physics. The first part introduces the perturbative techniques without sophisticated apparatus and applies them to numerous problems including quantum electrodynamics (renormalization), Fermi and Bose gases, the Brueckner theory of nuclear system, liquid Helium and classical systems with noise. The material is clear, illustrative and the important points are stressed to help the reader get the understanding of what is crucial without overwhelming him with unnecessary detours or comments. The material in the s

  16. Einstein's theory of unified fields

    CERN Document Server

    Tonnelat, Marie Antoinette

    2014-01-01

    First published in1966, here is presented a comprehensive overview of one of the most elusive scientific speculations by the pre-eminent genius of the 20th century. The theory is viewed by some scientists with deep suspicion, by others with optimism, but all agree that it represents an extreme challenge. As the author herself affirms, this work is not intended to be a complete treatise or 'didactic exposition' of the theory of unified fields, but rather a tool for further study, both by students and professional physicists. Dealing with all the major areas of research whic

  17. Primordial black holes in linear and non-linear regimes

    CERN Document Server

    Allahyari, Alireza; Abolhasani, Ali Akbar

    2016-01-01

    Using the concept of apparent horizon for dynamical black holes, we revisit the formation of primordial black holes (PBH) in the early universe for both linear and non-linear regimes. First, we develop the perturbation theory for spherically symmetric spacetimes to study the formation of spherical PBHs in linear regime and we fix two gauges. We also introduce a well defined gauge invariant quantity for the expansion. Using this quantity, we argue that PBHs do not form in the linear regime. Finally, we study the non-linear regime. We adopt the spherical collapse picture by taking a closed FRW model in the radiation dominated era to investigate PBH formation. Taking the initial condition of the spherical collapse from the linear theory of perturbations, we allow for both density and velocity perturbations. Our model gives a constraint on the velocity perturbation. This model also predicts that the apparent horizon of PBHs forms when $\\delta > 3$. Applying the sound horizon constraint, we have shown the threshol...

  18. Optimal non-linear health insurance.

    Science.gov (United States)

    Blomqvist, A

    1997-06-01

    Most theoretical and empirical work on efficient health insurance has been based on models with linear insurance schedules (a constant co-insurance parameter). In this paper, dynamic optimization techniques are used to analyse the properties of optimal non-linear insurance schedules in a model similar to one originally considered by Spence and Zeckhauser (American Economic Review, 1971, 61, 380-387) and reminiscent of those that have been used in the literature on optimal income taxation. The results of a preliminary numerical example suggest that the welfare losses from the implicit subsidy to employer-financed health insurance under US tax law may be a good deal smaller than previously estimated using linear models.

  19. Chaotic Discrimination and Non-Linear Dynamics

    Directory of Open Access Journals (Sweden)

    Partha Gangopadhyay

    2005-01-01

    Full Text Available This study examines a particular form of price discrimination, known as chaotic discrimination, which has the following features: sellers quote a common price but, in reality, they engage in secret and apparently unsystematic price discounts. It is widely held that such forms of price discrimination are seriously inconsistent with profit maximization by sellers.. However, there is no theoretical salience to support this kind of price discrimination. By straining the logic of non-linear dynamics this study explains why such secret discounts are chaotic in the sense that sellers fail to adopt profit-maximising price discounts. A model is developed to argue that such forms of discrimination may derive from the regions of instability of a dynamic model of price discounts.

  20. Linear and non-linear perturbations in dark energy models

    CERN Document Server

    Escamilla-Rivera, Celia; Fabris, Julio C; Alcaniz, Jailson S

    2016-01-01

    In this work we discuss observational aspects of three time-dependent parameterisations of the dark energy equation of state $w(z)$. In order to determine the dynamics associated with these models, we calculate their background evolution and perturbations in a scalar field representation. After performing a complete treatment of linear perturbations, we also show that the non-linear contribution of the selected $w(z)$ parameterisations to the matter power spectra is almost the same for all scales, with no significant difference from the predictions of the standard $\\Lambda$CDM model.

  1. Risks of non-linear climate change

    Energy Technology Data Exchange (ETDEWEB)

    Van Ham, J.; Van Beers, R.J.; Builtjes, P.J.H.; Koennen, G.P.; Oerlemans, J.; Roemer, M.G.M. [TNO-SCMO, Delft (Netherlands)

    1995-12-31

    Climate forcing as a result of increased concentrations of greenhouse gases has been primarily addressed as a problem of a possibly warmer climate. So far, such change has been obscured in observations, possibly as a result of natural climate variability and masking by aerosols. Consequently, projections of the effect of climate forcing have to be based on modelling, more specifically by applying Global Circulation Models GCMs. These GCMs do not cover all possible feedbacks; neither do they address all specific possible effects of climate forcing. The investigation reviews possible non-linear climate change which does not fall within the coverage of present GCMs. The review includes the potential relevance of changes in biogeochemical cycles, aerosol and cloud feedback, albedo instability, ice-flow instability, changes in the thermohaline circulation and changes resulting from stratospheric cooling. It is noted that these changes may have different time horizons. Three from the investigated issues provide indications for a possible non-linear change. On the decadal scale stratospheric cooling, which is the result of the enhanced greenhouse effect, in combination with a depleted ozone layer, could provide a positive feedback to further ozone depletion, in particular in the Arctic. Decreasing albedo on the Greenland ice sheet may enhance the runoff from this ice sheet significantly in case of warming on a timescale of a few centuries. Changes in ocean circulation in the North Atlantic could seasonally more than compensate a global warming of 3C in North-West Europe on a timescale of centuries to a millennium. 263 refs.

  2. Variational methods for field theories

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Menahem, S.

    1986-09-01

    Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.

  3. Kinetic mean-field theories

    Science.gov (United States)

    Karkheck, John; Stell, George

    1981-08-01

    A kinetic mean-field theory for the evolution of the one-particle distribution function is derived from maximizing the entropy. For a potential with a hard-sphere core plus tail, the resulting theory treats the hard-core part as in the revised Enskog theory. The tail, weighted by the hard-sphere pair distribution function, appears linearly in a mean-field term. The kinetic equation is accompanied by an entropy functional for which an H theorem was proven earlier. The revised Enskog theory is obtained by setting the potential tail to zero, the Vlasov equation is obtained by setting the hard-sphere diameter to zero, and an equation of the Enskog-Vlasov type is obtained by effecting the Kac limit on the potential tail. At equilibrium, the theory yields a radial distribution function that is given by the hard-sphere reference system and thus furnishes through the internal energy a thermodynamic description which is exact to first order in inverse temperature. A second natural route to thermodynamics (from the momentum flux which yields an approximate equation of state) gives somewhat different results; both routes coincide and become exact in the Kac limit. Our theory furnishes a conceptual basis for the association in the heuristically based modified Enskog theory (MET) of the contact value of the radial distribution function with the ''thermal pressure'' since this association follows from our theory (using either route to thermodynamics) and moreover becomes exact in the Kac limit. Our transport theory is readily extended to the general case of a soft repulsive core, e.g., as exhibited by the Lennard-Jones potential, via by-now-standard statistical-mechanical methods involving an effective hard-core potential, thus providing a self-contained statistical-mechanical basis for application to such potentials that is lacking in the standard versions of the MET. We obtain very good agreement with experiment for the thermal conductivity and shear viscosity of several

  4. Optimal Relay Power Allocation for Amplify-and-Forward Relay Networks with Non-linear Power Amplifiers

    OpenAIRE

    Zhang, Chao; Ren, Pinyi; Peng, Jingbo; Wei, Guo; Du, Qinghe; Wang, Yichen

    2011-01-01

    In this paper, we propose an optimal relay power allocation of an Amplify-and-Forward relay networks with non-linear power amplifiers. Based on Bussgang Linearization Theory, we depict the non-linear amplifying process into a linear system, which lets analyzing system performance easier. To obtain spatial diversity, we design a complete practical framework of a non-linear distortion aware receiver. Consider a total relay power constraint, we propose an optimal power allocation scheme to maxim...

  5. Cosmic neutrinos: dispersive and non-linear

    CERN Document Server

    Inman, Derek

    2016-01-01

    We present a description of cosmic neutrinos as a dispersive fluid. In this approach, the neutrino phase space is reduced to density and velocity fields alongside a scale-dependent sound speed. This sound speed depends on redshift, the initial neutrino phase space density and the cold dark matter gravitational potential. The latter is a new coupling between neutrinos and large scale structure not described by previous fluid approaches. We compute the sound speed in linear theory and find that it asymptotes to constants at small and large scales regardless of the gravitational potential. By comparing with neutrino N-body simulations, we measure the small scale sound speed and find it to be lower than linear theory predictions. This allows for an explanation of the discrepency between N-body and linear response predictions for the neutrino power spectrum: neutrinos are still driven predominantly by the cold dark matter, but the sound speed on small scales is not stable to perturbations and decreases. Finally, w...

  6. Stress theory for classical fields

    OpenAIRE

    Kupferman, Raz; Olami, Elihu; Segev, Reuven

    2017-01-01

    Classical field theories together with the Lagrangian and Eulerian approaches to continuum mechanics are embraced under a geometric setting of a fiber bundle. The base manifold can be either the body manifold of continuum mechanics, space manifold, or space-time. Differentiable sections of the fiber bundle represent configurations of the system and the configuration space containing them is given the structure of an infinite dimensional manifold. Elements of the cotangent bundle of the config...

  7. Symmetries in Lagrangian Field Theory

    Science.gov (United States)

    Búa, Lucia; Bucataru, Ioan; León, Manuel de; Salgado, Modesto; Vilariño, Silvia

    2015-06-01

    By generalising the cosymplectic setting for time-dependent Lagrangian mechanics, we propose a geometric framework for the Lagrangian formulation of classical field theories with a Lagrangian depending on the independent variables. For that purpose we consider the first-order jet bundles J1π of a fiber bundle π : E → ℝk where ℝk is the space of independent variables. Generalized symmetries of the Lagrangian are introduced and the corresponding Noether theorem is proved.

  8. Dynamical Mean-Field Theory

    OpenAIRE

    Vollhardt, D.; Byczuk, K.; Kollar, M.

    2011-01-01

    The dynamical mean-field theory (DMFT) is a widely applicable approximation scheme for the investigation of correlated quantum many-particle systems on a lattice, e.g., electrons in solids and cold atoms in optical lattices. In particular, the combination of the DMFT with conventional methods for the calculation of electronic band structures has led to a powerful numerical approach which allows one to explore the properties of correlated materials. In this introductory article we discuss the ...

  9. Why does the effective field theory of inflation work?

    CERN Document Server

    Agarwal, Nishant; Holman, R

    2014-01-01

    The effective field theory (EFT) of inflation has become the preferred method for computing cosmological correlation functions of the curvature fluctuation, $\\zeta$. It makes explicit use of the soft breaking of time diffeomorphisms by the inflationary background to organize the operators expansion in the action of the Goldstone mode $\\pi$ associated with this breaking. Despite its ascendancy, there is another method for calculating $\\zeta$ correlators, involving the direct calculation of the so-called Horndeski action order by order in powers of $\\zeta$ and its derivatives. The question we address in this work is whether or not the $\\zeta$ correlators calculated in these seemingly different ways are in fact the same. The answer is that the actions to cubic order in either set of variables do indeed give rise to the same $\\zeta$ bispectra, but that to make this equivalence manifest requires a careful understanding of the non-linear transformations relating $\\pi$ to $\\zeta$ and how boundary terms in the action...

  10. Optimization of Passive and Active Non-Linear Vibration Mounting Systems Based on Vibratory Power Transmission

    Science.gov (United States)

    Royston, T. J.; Singh, R.

    1996-07-01

    While significant non-linear behavior has been observed in many vibration mounting applications, most design studies are typically based on the concept of linear system theory in terms of force or motion transmissibility. In this paper, an improved analytical strategy is presented for the design optimization of complex, active of passive, non-linear mounting systems. This strategy is built upon the computational Galerkin method of weighted residuals, and incorporates order reduction and numerical continuation in an iterative optimization scheme. The overall dynamic characteristics of the mounting system are considered and vibratory power transmission is minimized via adjustment of mount parameters by using both passive and active means. The method is first applied through a computational example case to the optimization of basic passive and active, non-linear isolation configurations. It is found that either active control or intentionally introduced non-linearity can improve the mount's performance; but a combination of both produces the greatest benefit. Next, a novel experimental, active, non-linear isolation system is studied. The effect of non-linearity on vibratory power transmission and active control are assessed via experimental measurements and the enhanced Galerkin method. Results show how harmonic excitation can result in multiharmonic vibratory power transmission. The proposed optimization strategy offers designers some flexibility in utilizing both passive and active means in combination with linear and non-linear components for improved vibration mounts.

  11. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    Science.gov (United States)

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  12. Non-linear Dynamics in ETG Mode Saturation and Beam-Plasma Instabilities

    Science.gov (United States)

    Tokluoglu, Erinc K.

    Non-linear mechanisms arise frequently in plasmas and beam-plasma systems resulting in dynamics not predicted by linear theory. The non-linear mechanisms can influence the time evolution of plasma instabilities and can be used to describe their saturation. Furthermore time and space averaged non-linear fields generated by instabilities can lead to collisionless transport and plasma heating. In the case of beam-plasma systems counter-intuitive beam defocusing and scaling behavior which are interesting areas of study for both Low-Temperature and High Energy Density physics. The non-linear mode interactions in form of phase coupling can describe energy transfer to other modes and can be used to describe the saturation of plasma instabilities. In the first part of this thesis, a theoretical model was formulated to explain the saturation mechanism of Slab Electron Temperature Gradient (ETG) mode observed in the Columbia Linear Machine (CLM), based on experimental time-series data collected through probe diagnostics [1]. ETG modes are considered to be a major player in the unexplained high levels of electron transport observed in tokamak fusion experiments and the saturation mechanism of these modes is still an active area of investigation. The data in the frequency space indicated phase coupling between 3 modes, through a higher order spectral correlation coefficient known as bicoherence. The resulting model is similar to [2], which was a treatment for ITG modes observed in the CLM and correctly predicts the observed saturation level of the ETG turbulence. The scenario is further supported by the fact that the observed mode frequencies are in close alignment with those predicted theoretical dispersion relations. Non-linear effects arise frequently in beam-plasma systems and can be important for both low temperature plasma devices commonly used for material processing as well as High Energy Density applications relevant to inertial fusion. The non-linear time averaged

  13. A geometrical approach to two-dimensional Conformal Field Theory

    Science.gov (United States)

    Dijkgraaf, Robertus Henricus

    1989-09-01

    This thesis is organized in the following way. In Chapter 2 we will give a brief introduction to conformal field theory along the lines of standard quantum field theory, without any claims to originality. We introduce the important concepts of the stress-energy tensor, the Virasoro algebra, and primary fields. The general principles are demonstrated by fermionic and bosonic free field theories. This also allows us to discuss some general aspects of moduli spaces of CFT's. In particular, we describe in some detail the space of iiiequivalent toroidal comi)actificalions, giving examples of the quantum equivalences that we already mentioned. In Chapter 3 we will reconsider general quantum field theory from a more geometrical point of view, along the lines of the so-called operator formalism. Crucial to this approach will be the consideration of topology changing amplitudes. After a simple application to 2d topological theories, we proceed to give our second introduction to CFT, stressing the geometry behind it. In Chapter 4 the so-called rational conformal field theories are our object of study. These special CFT's have extended symmetries with only a finite number of representations. If an interpretation as non-linear sigma model exists, this extra symmetry can be seen as a kind of resonance effect due to the commensurability of the size of the string and the target space-time. The structure of rational CFT's is extremely rigid, and one of our results will be that the operator content of these models is—up to some discrete choices—completely determined by the symmetry algebra. The study of rational models is in its rigidity very analogous to finite group theory. In Chapter 5 this analogy is further pursued and substantiated. We will show how one can construct from general grounds rational conformal field theories from finite groups. These models are abstract versions of non-linear o-models describing string propagation on 'orbifoids.' An orbifold is a singular

  14. Non-linear Plasma Wake Growth of Electron Holes

    CERN Document Server

    Hutchinson, I H; Zhou, C

    2015-01-01

    An object's wake in a plasma with small Debye length that drifts \\emph{across} the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind wake and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable...

  15. Non-linear plasma wake growth of electron holes

    Science.gov (United States)

    Hutchinson, I. H.; Haakonsen, C. B.; Zhou, C.

    2015-03-01

    An object's wake in a plasma with small Debye length that drifts across the magnetic field is subject to electrostatic electron instabilities. Such situations include, for example, the moon in the solar wind and probes in magnetized laboratory plasmas. The instability drive mechanism can equivalently be considered drift down the potential-energy gradient or drift up the density-gradient. The gradients arise because the plasma wake has a region of depressed density and electrostatic potential into which ions are attracted along the field. The non-linear consequences of the instability are analysed in this paper. At physical ratios of electron to ion mass, neither linear nor quasilinear treatment can explain the observation of large-amplitude perturbations that disrupt the ion streams well before they become ion-ion unstable. We show here, however, that electron holes, once formed, continue to grow, driven by the drift mechanism, and if they remain in the wake may reach a maximum non-linearly stable size, beyond which their uncontrolled growth disrupts the ions. The hole growth calculations provide a quantitative prediction of hole profile and size evolution. Hole growth appears to explain the observations of recent particle-in-cell simulations.

  16. Non-linear time series analysis: methods and applications to atrial fibrillation.

    Science.gov (United States)

    Hoekstra, B P; Diks, C G; Allessie, M A; Degoede, J

    2001-01-01

    We apply methods from non-linear statistical time series analysis to characterize electrograms of atrial fibrillation. These are based on concepts originating from the theory of non-linear dynamical systems and use the empirical reconstruction density in reconstructed phase space. Application of these methods is not restricted to deterministic chaos but is valid in a general time series context. We illustrate this by applying three recently proposed non-linear time series methods to fibrillation electrograms: 1) a test for time reversibility in atrial electrograms during paroxysmal atrial fibrillation in patients; 2) a test to detect differences in the dynamical behaviour during the pharmacological conversion of sustained atrial fibrillation in instrumented conscious goats; 3) a test for general Granger causality to identify couplings and information transport in the atria during fibrillation. We conclude that a characterization of the dynamics via the reconstruction density offers a useful framework for the non-linear analysis of electrograms of atrial fibrillation.

  17. Klebsiella pneumonia, a Microorganism that Approves the Non-linear Responses to Antibiotics and Window Theory after Exposure to Wi-Fi 2.4 GHz Electromagnetic Radiofrequency Radiation

    Directory of Open Access Journals (Sweden)

    Taheri M.

    2015-09-01

    Full Text Available Background: Drug resistance is widely believed to be an increasingly serious threat to global public health. We have previously reported that short term exposure of microorganisms to diagnostic ultrasound waves could significantly alter their sensitivity to antibiotics. In our previous studies, Klebsiella pneumoniae showed major differences in the sensitivity to antibiotics in exposed and non-exposed samples. This study was aimed at investigating the alteration of antibiotic resistance of Klebsiella pneumonia, after exposure to Wi-Fi 2.4 GHz electromagnetic radiofrequency radiation. Materials and Methods: In this in vitro study, three replicate agar plates were used for each test. The antibiotic susceptibility test was carried out using disc diffusion method on Mueller Hinton agar plates and the inhibition zones in both control and exposed groups were measured. A common Wi-Fi router was used in this study as the radiofrequency exposure source. Irradiated samples were exposed to Wi-Fi radiofrequency radiation for 3, 4.5 and 8 hours. Results: Statistically significant variations of sensitivity to antibiotics were found for all studied antibiotics after 4.5 hours of RF exposure, compared to non-exposed bacteria. Interestingly, the mean diameters of the inhibition zones after 3 hours of exposure were less than those exposed for 4.5 hours. Following this rise in the sensitivity to antibiotics, a fall was observed in the bacteria exposed for 8 hours for all studied antibiotics. Conclusion: The findings of this study show a statistically significant rise in the sensitivity of Klebsiella pneumoniae to different antibiotics after 4.5 hours of exposure to 2.4 GHz Wi-Fi radiation, followed by a fall after 8 hours of exposure. These observations can be interpreted by the concept of non-linearity in the responses of Klebsiella pneumoniae to different antibiotics after exposure to electromagnetic radiofrequency radiation. As in this study a minimum level of

  18. Linear and non-linear amplification of high-mode perturbations at the ablation front in HiPER targets

    Energy Technology Data Exchange (ETDEWEB)

    Olazabal-Loume, M; Breil, J; Hallo, L; Ribeyre, X [CELIA, UMR 5107 Universite Bordeaux 1-CNRS-CEA, 351 cours de la Liberation, 33405 Talence (France); Sanz, J, E-mail: olazabal@celia.u-bordeaux1.f [ETSI Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain)

    2011-01-15

    The linear and non-linear sensitivity of the 180 kJ baseline HiPER target to high-mode perturbations, i.e. surface roughness, is addressed using two-dimensional simulations and a complementary analysis by linear and non-linear ablative Rayleigh-Taylor models. Simulations provide an assessment of an early non-linear stage leading to a significant deformation of the ablation surface for modes of maximum linear growth factor. A design using a picket prepulse evidences an improvement in the target stability inducing a delay of the non-linear behavior. Perturbation evolution and shape, evidenced by simulations of the non-linear stage, are analyzed with existing self-consistent non-linear theory.

  19. A magnetic betelgeuse? Numerical simulations of non-linear dynamo action

    DEFF Research Database (Denmark)

    Dorch, S. B. F.

    2004-01-01

    question regarding the nature of Betelgeuse and supergiants in general is whether these stars may be magnetically active. If so, that may in turn also contribute to their variability. By performing detailed numerical simulations, I find that both linear kinematic and non-linear dynamo action are possible...... and that the non-linear magnetic field saturates at a value somewhat below equipartition: in the linear regime there are two modes of dynamo action....

  20. Zitterbewegung in quantum field theory

    Institute of Scientific and Technical Information of China (English)

    Wang Zhi-Yong; Xiong Cai-Dong

    2008-01-01

    Traditionally,the zitterbewegung (ZB) of the Dirac electron has just been studied at the level of quantum mechanics.Seeing the fact that an old interest in ZB has recently been rekindled by the investigations on spintronic,graphene,and superconducting systems,etc.,this paper presents a quantum-field-theory investigation on ZB and obtains the con clusion that,the ZB of an electron arises from the influence of virtual electron-positron pairs (or vacuum fluctuations)on the electron.

  1. Number theory arising from finite fields analytic and probabilistic theory

    CERN Document Server

    Knopfmacher, John

    2001-01-01

    ""Number Theory Arising from Finite Fields: Analytic and Probabilistic Theory"" offers a discussion of the advances and developments in the field of number theory arising from finite fields. It emphasizes mean-value theorems of multiplicative functions, the theory of additive formulations, and the normal distribution of values from additive functions. The work explores calculations from classical stages to emerging discoveries in alternative abstract prime number theorems.

  2. Left-Right Non-Linear Dynamical Higgs

    Science.gov (United States)

    Shu, Jing; Yepes, Juan

    2016-12-01

    All the possible CP-conserving non-linear operators up to the p4-order in the Lagrangian expansion are analysed here for the left-right symmetric model in the non-linear electroweak chiral context coupled to a light dynamical Higgs. The low energy effects will be triggered by an emerging new physics field content in the nature, more specifically, from spin-1 resonances sourced by the straightforward extension of the SM local gauge symmetry to the larger local group SU(2)L × SU(2)R × U(1)B-L. Low energy phenomenology will be altered by integrating out the resonances from the physical spectrum, being manifested through induced corrections onto the left handed operators. Such modifications are weighted by powers of the scales ratio implied by the symmetries of the model and will determine the size of the effective operator basis to be used. The recently observed diboson excess around the invariant mass 1.8 TeV-2 TeV entails a scale suppression that suggests to encode the low energy effects via a much smaller set of effective operators. J. Y. also acknowledges KITPC financial support during the completion of this work

  3. A Naturally Renormalized Quantum Field Theory

    OpenAIRE

    2006-01-01

    It was shown that quantum metric fluctuations smear out the singularities of Green's functions on the light cone [1], but it does not remove other ultraviolet divergences of quantum field theory. We have proved that the quantum field theory in Krein space, {\\it i.e.} indefinite metric quantization, removes all divergences of quantum field theory with exception of the light cone singularity [2,3]. In this paper, it is discussed that the combination of quantum field theory in Krein space togeth...

  4. Experimental characterization and modeling of non-linear coupling of the LHCD power on Tore Supra

    Science.gov (United States)

    Preynas, M.; Goniche, M.; Hillairet, J.; Litaudon, X.; Ekedahl, A.

    2014-02-01

    To achieve steady state operation on future tokamaks, in particular on ITER, the unique capability of a LHCD system to efficiently drive off-axis non-inductive current is needed. In this context, it is of prime importance to study and master the coupling of LH wave to the core plasma at high power density (tens of MW/m2). In some specific conditions, deleterious effects on the LHCD coupling are sometimes observed on Tore Supra. At high power the waves may modify the edge parameters that change the wave coupling properties in a non-linear manner. In this way, dedicated LHCD experiments have been performed using the LHCD system of Tore Supra, composed of two different conceptual designs of launcher: the Fully Active Multijunction (FAM) and the new Passive Active Multijunction (PAM) antennas. A nonlinear interaction between the electron density and the electric field has been characterized in a thin plasma layer in front of the two LHCD antennas. The resulting dependence of the power reflection coefficient with the LHCD power, leading occasionally to trips in the output power, is not predicted by the standard linear theory of the LH wave coupling. Therefore, it is important to investigate and understand the possible origin of such non-linear effects in order to avoid their possible deleterious consequences. The PICCOLO-2D code, which self-consistently treats the wave propagation in the antenna vicinity and its interaction with the local edge plasma density, is used to simulate Tore Supra discharges. The simulation reproduces very well the occurrence of a non-linear behavior in the coupling observed in the LHCD experiments. The important differences and trends between the FAM and the PAM antennas, especially a larger increase in RC for the FAM, are also reproduced by the PICCOLO-2D simulation. The working hypothesis of the contribution of the ponderomotive effect in the non-linear observations of LHCD coupling is therefore validated through this comprehensive modeling

  5. Non-Linear Evolution of Steady and Migrating Alternate Bars in a Straight Channel (abstract)

    NARCIS (Netherlands)

    Southgate, H.N.; Crosato, A.

    2013-01-01

    This paper contains an analysis of a long-duration experiment that shows the evolution of alternate bars in a straight channel. The theoretical predictions are based on a weakly non-linear theory of the morphological development. Both the experiment and theory have several innovative features.

  6. Non-Linear Evolution of Steady and Migrating Alternate Bars in a Straight Channel (abstract)

    NARCIS (Netherlands)

    Southgate, H.N.; Crosato, A.

    2013-01-01

    This paper contains an analysis of a long-duration experiment that shows the evolution of alternate bars in a straight channel. The theoretical predictions are based on a weakly non-linear theory of the morphological development. Both the experiment and theory have several innovative features.

  7. Inflation from string field theory

    CERN Document Server

    Koshelev, Alexey S; Moniz, Paulo Vargas

    2016-01-01

    In the framework of string field theory (SFT) a setting where the closed string dilaton is coupled to the open string tachyon at the final stage of an unstable brane or brane-anti-brane pair decay is considered. We show that this configuration can lead to viable inflation by means of the dilaton becoming a non-local (infinite-derivative) inflaton. The structure of non-locality leads to interesting inflationary scenarios. We obtain (i) a class of single field inflation with universal attractor predictions at $n_{s}\\sim0.967$ with any value of $r<0.1$, where the tensor to scalar ratio $r$ can be solely regulated by parameters of the SFT; (ii) a new class of two field conformally invariant models with a peculiar quadratic cross-product of scalar fields. We analyze a specific case where a spontaneously broken conformal invariance leads to Starobinsky like inflation plus creating an uplifted potential minimum which accounts to vacuum energy after inflation.

  8. New holographic dark energy model with non-linear interaction

    CERN Document Server

    Oliveros, A

    2014-01-01

    In this paper the cosmological evolution of a holographic dark energy model with a non-linear interaction between the dark energy and dark matter components in a FRW type flat universe is analysed. In this context, the deceleration parameter $q$ and the equation state $w_{\\Lambda}$ are obtained. We found that, as the square of the speed of sound remains positive, the model is stable under perturbations since early times; it also shows that the evolution of the matter and dark energy densities are of the same order for a long period of time, avoiding the so--called coincidence problem. We have also made the correspondence of the model with the dark energy densities and pressures for the quintessence and tachyon fields. From this correspondence we have reconstructed the potential of scalar fields and their dynamics.

  9. Hitting probabilities for non-linear systems of stochastic waves

    CERN Document Server

    Dalang, Robert C

    2012-01-01

    We consider a $d$-dimensional random field $u = \\{u(t,x)\\}$ that solves a non-linear system of stochastic wave equations in spatial dimensions $k \\in \\{1,2,3\\}$, driven by a spatially homogeneous Gaussian noise that is white in time. We mainly consider the case where the spatial covariance is given by a Riesz kernel with exponent $\\beta$. Using Malliavin calculus, we establish upper and lower bounds on the probabilities that the random field visits a deterministic subset of $\\IR^d$, in terms, respectively, of Hausdorff measure and Newtonian capacity of this set. The dimension that appears in the Hausdorff measure is close to optimal, and shows that when $d(2-\\beta) > 2(k+1)$, points are polar for $u$. Conversely, in low dimensions $d$, points are not polar. There is however an interval in which the question of polarity of points remains open.

  10. Effective Field Theories and Inflation

    CERN Document Server

    Burgess, C P; Holman, R

    2003-01-01

    We investigate the possible influence of very-high-energy physics on inflationary predictions focussing on whether effective field theories can allow effects which are parametrically larger than order H^2/M^2, where M is the scale of heavy physics and H is the Hubble scale at horizon exit. By investigating supersymmetric hybrid inflation models, we show that decoupling does not preclude heavy-physics having effects for the CMB with observable size even if H^2/M^2 << O(1%), although their presence can only be inferred from observations given some a priori assumptions about the inflationary mechanism. Our analysis differs from the results of hep-th/0210233, in which other kinds of heavy-physics effects were found which could alter inflationary predictions for CMB fluctuations, inasmuch as the heavy-physics can be integrated out here to produce an effective field theory description of low-energy physics. We argue, as in hep-th/0210233, that the potential presence of heavy-physics effects in the CMB does no...

  11. Field Theory of Fundamental Interactions

    Science.gov (United States)

    Wang, Shouhong; Ma, Tian

    2017-01-01

    First, we present two basic principles, the principle of interaction dynamics (PID) and the principle of representation invariance (PRI). Intuitively, PID takes the variation of the action under energy-momentum conservation constraint. We show that the PID is the requirement of the presence of dark matter and dark energy, the Higgs field and the quark confinement. PRI requires that the SU(N) gauge theory be independent of representations of SU(N). It is clear that PRI is the logic requirement of any gauge theory. With PRI, we demonstrate that the coupling constants for the strong and the weak interactions are the main sources of these two interactions, reminiscent of the electric charge. Second, we emphasize that symmetry principles-the principle of general relativity and the principle of Lorentz invariance and gauge invariance-together with the simplicity of laws of nature, dictate the actions for the four fundamental interactions. Finally, we show that the PID and the PRI, together with the symmetry principles give rise to a unified field model for the fundamental interactions, which is consistent with current experimental observations and offers some new physical predictions. The research is supported in part by the National Science Foundation (NSF) grant DMS-1515024, and by the Office of Naval Research (ONR) grant N00014-15-1-2662.

  12. Overall mass-transfer coefficients in non-linear chromatography

    DEFF Research Database (Denmark)

    Mollerup, Jørgen; Hansen, Ernst

    1998-01-01

    In case of mass transfer where concentration differences in both phases must be taken into account, one may define an over-all mass-transfer coefficient basd on the apparent over-all concentration difference. If the equilibrium relationship is linear, i.e. in cases where a Henry´s law relationship...... can be applied, the over-all mass-transfer coefficient will be concentration independent. However, in mass-transfer operations, a linear equilibrium relationship is in most cases not a valid approximation wherefore the over-all mass-transfer coefficient becomes strongly concentration dependent...... as shown in this paper. In this case one has to discard the use of over-all mass-transfer coefficients and calculate the rate of mass transfer from the two film theory using the appropriate non-linear relationship to calculate the equilibrium ratio at the interface between the two films....

  13. Non-linear Oscillations of Compact Stars and Gravitational Waves

    CERN Document Server

    Passamonti, A

    2006-01-01

    This thesis investigates in the time domain a particular class of second order perturbations of a perfect fluid non-rotating compact star: those arising from the coupling between first order radial and non-radial perturbations. This problem has been treated by developing a gauge invariant formalism based on the 2-parameter perturbation theory (Sopuerta, Bruni and Gualtieri, 2004) where the radial and non-radial perturbations have been separately parameterized. The non-linear perturbations obey inhomogeneous partial differential equations, where the structure of the differential operator is given by the previous perturbative orders and the source terms are quadratic in the first order perturbations. In the exterior spacetime the sources vanish, thus the gravitational wave properties are completely described by the second order Zerilli and Regge-Wheeler functions. As main initial configuration we have considered a first order differentially rotating and radially pulsating star. Although at first perturbative or...

  14. Non Linear Lorentz Transformation and Doubly Special Relativity

    CERN Document Server

    Atehortua, A N; Mira, J M; Vanegas, N

    2012-01-01

    We generate non-linear representations of the Lorentz Group by unitary transformation over the Lorentz generators. To do that we use deformed scale transformations by introducing momentum-depending parameters. The momentum operator transformation is found to be equivalent to a particle momentum transformation. The configuration space transformation is found to depend on the old momentum operator and we show that this transformation generates models with two scales, one for the velocity ($c$) and another one for the energy. A Lagrangian formalism is proposed for these models and an effective metric for the deformed Minkowski space is found. We show that the Smolin model is one in a family of doubly special relativity. Finally we construct an ansatz for the quantization of such theories.

  15. Non-linear scalable TFETI domain decomposition based contact algorithm

    Science.gov (United States)

    Dobiáš, J.; Pták, S.; Dostál, Z.; Vondrák, V.; Kozubek, T.

    2010-06-01

    The paper is concerned with the application of our original variant of the Finite Element Tearing and Interconnecting (FETI) domain decomposition method, called the Total FETI (TFETI), to solve solid mechanics problems exhibiting geometric, material, and contact non-linearities. The TFETI enforces the prescribed displacements by the Lagrange multipliers, so that all the subdomains are 'floating', the kernels of their stiffness matrices are known a priori, and the projector to the natural coarse grid is more effective. The basic theory and relationships of both FETI and TFETI are briefly reviewed and a new version of solution algorithm is presented. It is shown that application of TFETI methodology to the contact problems converts the original problem to the strictly convex quadratic programming problem with bound and equality constraints, so that the effective, in a sense optimal algorithms is to be applied. Numerical experiments show that the method exhibits both numerical and parallel scalabilities.

  16. Quantum Field Theory in (0 + 1) Dimensions

    Science.gov (United States)

    Boozer, A. D.

    2007-01-01

    We show that many of the key ideas of quantum field theory can be illustrated simply and straightforwardly by using toy models in (0 + 1) dimensions. Because quantum field theory in (0 + 1) dimensions is equivalent to quantum mechanics, these models allow us to use techniques from quantum mechanics to gain insight into quantum field theory. In…

  17. Noncommutative Dipole Field Theories And Unitarity

    CERN Document Server

    Chiou, D W; Chiou, Dah-Wei; Ganor, Ori J.

    2004-01-01

    We extend the argument of Gomis and Mehen for violation of unitarity in field theories with space-time noncommutativity to dipole field theories. In dipole field theories with a timelike dipole vector, we present 1-loop amplitudes that violate the optical theorem. A quantum mechanical system with nonlocal potential of finite extent in time also shows violation of unitarity.

  18. New motives in modern field theory

    CERN Document Server

    Isaev, A P

    2001-01-01

    A review of the basic tendencies in the modern development of field theory is given. Main approaches to the investigation of the nonperturbative quantum field theories are discussed. The ideas of duality conception, superstring and p-brane models, AdS/CFT correspondence, noncommutative field theories, etc. are briefly outlined

  19. Multidimensional Plasma Wake Excitation in the Non-linear Blowout Regime

    CERN Document Server

    Vieira, J; Silva, L O

    2016-01-01

    Plasma accelerators can sustain very high acceleration gradients. They are promising candidates for future generations of particle accelerators for sev- eral scientific, medical and technological applications. Current plasma based acceleration experiments operate in the relativistic regime, where the plasma response is strongly non-linear. We outline some of the key properties of wake- field excitation in these regimes. We outline a multidimensional theory for the excitation of plasma wakefields in connection with current experiments. We then use these results and provide design guidelines for the choice of laser and plasma parameters ensuring a stable laser wakefield accelerator that maximizes the quality of the accelerated electrons. We also mention some of the future challenges associated with this technology.

  20. Conformal field theory, boundary conditions and applications to string theory

    OpenAIRE

    Schweigert, C.; Fuchs, J.; Walcher, J.

    2000-01-01

    This is an introduction to two-dimensional conformal field theory and its applications in string theory. Modern concepts of conformal field theory are explained, and it is outlined how they are used in recent studies of D-branes in the strong curvature regime by means of CFT on surfaces with boundary.

  1. Neutrix Calculus and Finite Quantum Field Theory

    CERN Document Server

    Ng, Y J

    2004-01-01

    In general, quantum field theories require regularizations and infinite renormalizations due to ultraviolet divergences in their loop calculations. Furthermore, perturbation series in theories like QED are not convergent series, but are asymptotic series in their interaction couplings. We propose to apply neutrix calculus, developed by van der Corput and Hadamard in connection with asymptotic series, to tackle divergent integrals, yielding finite renormalizations for the parameters in quantum field theories. We observe that quantum gravity theories are rendered more manageable, and that both renormalizable field theories and effective field theories can be accommodated in the framework of neutrix calculus.

  2. Black holes from generalized gauge field theories

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Alonso, J; Rubiera-Garcia, D, E-mail: joaquin.diaz@obspm.fr, E-mail: diego.rubiera-garcia@obspm.fr [LUTH, Observatoire de Paris, CNRS, Universite Paris Diderot. 5 Place Jules Janssen, 92190 Meudon (France); Departamento de Fisica, Universidad de Oviedo. Avda. Calvo Sotelo 18, E-33007 Oviedo, Asturias (Spain)

    2011-02-01

    We summarize the main results of a broad analysis on electrostatic, spherically symmetric (ESS) solutions of a class of non-linear electrodynamics models minimally coupled to gravitation. Such models are defined as arbitrary functions of the two quadratic field invariants, constrained by several physical admissibility requirements, and split into different families according to the behaviour of these lagrangian density functions in vacuum and on the boundary of their domains of definition. Depending on these behaviours the flat-space energy of the ESS field can be finite or divergent. For each model we qualitatively study the structure of its associated gravitational configurations, which can be asymptotically Schwarzschild-like or with an anomalous non Schwarzschild-like behaviour at r {yields} {infinity} (but being asymptotically flat and well behaved anyhow). The extension of these results to the non-abelian case is also briefly considered.

  3. Quantum Field Theory A Modern Perspective

    CERN Document Server

    Parameswaran Nair, V

    2005-01-01

    Quantum field theory, which started with Paul Dirac’s work shortly after the discovery of quantum mechanics, has produced an impressive and important array of results. Quantum electrodynamics, with its extremely accurate and well-tested predictions, and the standard model of electroweak and chromodynamic (nuclear) forces are examples of successful theories. Field theory has also been applied to a variety of phenomena in condensed matter physics, including superconductivity, superfluidity and the quantum Hall effect. The concept of the renormalization group has given us a new perspective on field theory in general and on critical phenomena in particular. At this stage, a strong case can be made that quantum field theory is the mathematical and intellectual framework for describing and understanding all physical phenomena, except possibly for a quantum theory of gravity. Quantum Field Theory: A Modern Perspective presents Professor Nair’s view of certain topics in field theory loosely knit together as it gr...

  4. Quantum Mechanics and Quantum Field Theory

    Science.gov (United States)

    Dimock, Jonathan

    2011-02-01

    Introduction; Part I. Non-relativistic: 1. Mathematical prelude; 2. Classical mechanics; 3. Quantum mechanics; 4. Single particle; 5. Many particles; 6. Statistical mechanics; Part II. Relativistic: 7. Relativity; 8. Scalar particles and fields; 9. Electrons and photons; 10. Field theory on a manifold; Part III. Probabilistic Methods: 11. Path integrals; 12. Fields as random variables; 13. A nonlinear field theory; Appendices; References; Index.

  5. Instantons in Lifshitz field theories

    Energy Technology Data Exchange (ETDEWEB)

    Fujimori, Toshiaki; Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan)

    2015-10-05

    BPS instantons are discussed in Lifshitz-type anisotropic field theories. We consider generalizations of the sigma model/Yang-Mills instantons in renormalizable higher dimensional models with the classical Lifshitz scaling invariance. In each model, BPS instanton equation takes the form of the gradient flow equations for “the superpotential” defining “the detailed balance condition”. The anisotropic Weyl rescaling and the coset space dimensional reduction are used to map rotationally symmetric instantons to vortices in two-dimensional anisotropic systems on the hyperbolic plane. As examples, we study anisotropic BPS baby Skyrmion 1+1 dimensions and BPS Skyrmion in 2+1 dimensions, for which we take Kähler 1-form and the Wess-Zumiono-Witten term as the superpotentials, respectively, and an anisotropic generalized Yang-Mills instanton in 4+1 dimensions, for which we take the Chern-Simons term as the superpotential.

  6. Families and degenerations of conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Roggenkamp, D.

    2004-09-01

    In this work, moduli spaces of conformal field theories are investigated. In the first part, moduli spaces corresponding to current-current deformation of conformal field theories are constructed explicitly. For WZW models, they are described in detail, and sigma model realizations of the deformed WZW models are presented. The second part is devoted to the study of boundaries of moduli spaces of conformal field theories. For this purpose a notion of convergence of families of conformal field theories is introduced, which admits certain degenerated conformal field theories to occur as limits. To such a degeneration of conformal field theories, a degeneration of metric spaces together with additional geometric structures can be associated, which give rise to a geometric interpretation. Boundaries of moduli spaces of toroidal conformal field theories, orbifolds thereof and WZW models are analyzed. Furthermore, also the limit of the discrete family of Virasoro minimal models is investigated. (orig.)

  7. Non-Linear Unit Root Properties of Crude Oil Production

    OpenAIRE

    Svetlana Maslyuk; Russell Smyth

    2007-01-01

    While there is good reason to expect crude oil production to be non-linear, previous studies that have examined the stochastic properties of crude oil production have assumed that crude oil production follows a linear process. If crude oil production is a non-linear process, conventional unit root tests, which assume linear and systematic adjustment, could interpret departure from linearity as permanent stochastic disturbances. The objective of this paper is to test for non-linearities and un...

  8. The Gaussian streaming model and Lagrangian effective field theory

    CERN Document Server

    Vlah, Zvonimir; White, Martin

    2016-01-01

    We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM to a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of int...

  9. The Gaussian streaming model and convolution Lagrangian effective field theory

    Science.gov (United States)

    Vlah, Zvonimir; Castorina, Emanuele; White, Martin

    2016-12-01

    We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM to a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of interest to us.

  10. Non-linear finite element analysis in structural mechanics

    CERN Document Server

    Rust, Wilhelm

    2015-01-01

    This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.

  11. Non-linear rheology in a model biological tissue

    CERN Document Server

    Matoz-Fernandez, D A; Barrat, Jean-Louis; Bertin, Eric; Martens, Kirsten

    2016-01-01

    Mechanical signaling plays a key role in biological processes like embryo development and cancer growth. One prominent way to probe mechanical properties of tissues is to study their response to externally applied forces. Using a particle-based model featuring random apoptosis and environment-dependent division rates, we evidence a crossover from linear flow to a shear-thinning regime with increasing shear rate. To rationalize this non-linear flow we derive a theoretical mean-field scenario that accounts for the interplay of mechanical and active noise in local stresses. These noises are respectively generated by the elastic response of the cell matrix to cell rearrangements and by the internal activity.

  12. Linear and non-linear bias: predictions vs. measurements

    CERN Document Server

    Hoffmann, Kai; Gaztanaga, Enrique

    2016-01-01

    We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Accociating galaxies with dark matter haloes in the MICE Grand Challenge N-body simulation we directly measure the bias parameters by comparing the smoothed density fluctuations of halos and matter in the same region at different positions as a function of smoothing scale. Alternatively we measure the bias parameters by matching the probablility distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous articles using the same data. We find an overall variation of the linear bias measurements and predictions of $\\sim 5 \\%$ with respect to results from two-point corr...

  13. Predicting the nonlinear optical response in the resonant region from the linear characterization: a self-consistent theory for the first-, second-, and third-order (non)linear optical response

    Science.gov (United States)

    Pérez-Moreno, Javier; Clays, Koen; Kuzyk, Mark G.

    2010-08-01

    We introduce a self-consistent theory for the description of the optical linear and nonlinear response of molecules that is based strictly on the results of the experimental characterization. We show how the Thomas-Kuhn sum-rules can be used to eliminate the dependence of the nonlinear response on parameters that are not directly measurable. Our approach leads to the successful modeling of the dispersion of the nonlinear response of complex molecular structures with different geometries (dipolar and octupolar), and can be used as a guide towards the modeling in terms of fundamental physical parameters.

  14. A quantum field theory of the extended electron

    Energy Technology Data Exchange (ETDEWEB)

    Salesi, Giovanni [Universita Statale di Catania (Italy). Dipt. di Fisica; Recami, Erasmo [Universita Statale di Bergamo, Dalmine, BG (Italy). Facolta di Ingegneria]|[Universidade Estadual de Campinas, SP (Brazil). Dept. de Matematica Aplicada

    1993-12-01

    In a recent paper, the classical model of Barut and Zanghi (BZ) for the electron spin which interpreted the Zitterbewegung (zbw) motion along helical paths and its quantum version have been investigated by using the language of Clifford algebras. In also doing, a new non-linear Dirac-like equation (NDE) was derived. We want to readdress the whole subject, and complete it, by adopting - for the sake of physical clarity - the ordinary tensorial language. In particular, we re-derive here the NDE for the electron quantum field, show it to be associated with a new conserved probability current, and stress its importance for a quantum field theory of spin 1/2 fermions. Actually, we propose this equation in substitution for the Dirac equation, which comes from the former by averaging over a zbw cycle. We then derive a new equation of motion for the quantum field velocity, which will allow us to regard the electron as an extended object, with a classically intelligible internal structure (thus overcoming some known, long-standing problems). We carefully the solutions of the NDE; with special attention to those implying (at the classical limit) light-like helical motions, since these appear to be the most adequate equations for the electron description, from the kinematical and physical points of view, and do cope with the electron electromagnetic properties (such as Coulomb field and intrinsic magnetic moment). (author). 18 refs.

  15. D-branes in T-fold conformal field theory

    CERN Document Server

    Kawai, Shinsuke

    2008-01-01

    We investigate boundary dynamics of orbifold conformal field theory involving T-duality twists. Such models typically appear in contexts of non-geometric string compactifications that are called monodrofolds or T-folds in recent literature. We use the framework of boundary conformal field theory to analyse the models from a microscopic world-sheet perspective. In these backgrounds there are two kinds of D-branes that are analogous to bulk and fractional branes in standard orbifold models. The bulk D-branes in T-folds allow intuitive geometrical interpretations and are consistent with the classical analysis based on the doubled torus formalism. The fractional branes, on the other hand, are `non-geometric' at any point in the moduli space and their geometric counterparts seem to be missing in the doubled torus analysis. We compute cylinder amplitudes between the bulk and fractional branes, and find that the lightest modes of the open string spectra show intriguing non-linear dependence on the moduli (location o...

  16. Localisation in Quantum Field Theory

    CERN Document Server

    Balachandran, A P

    2016-01-01

    In nonrelativistic quantum mechanics , Born's principle of localisation is as follows: For a single particle, if a wave function $\\psi_K$ vanishes outside a spatial region $K$, it is said to be localised in $K$. In particular if a spatial region $K'$ is disjoint from $K$, a wave function $\\psi_{K'}$ localised in $K'$ is orthogonal to $\\psi_K$. Such a principle of localisation does not exist compatibly with relativity and causality in quantum field theory (Newton and Wigner) or interacting point particles (Currie,Jordan and Sudarshan).It is replaced by symplectic localisation of observables as shown by Brunetti, Guido and Longo, Schroer and others. This localisation gives a simple derivation of the spin-statistics theorem and the Unruh effect, and shows how to construct quantum fields for anyons and for massless particles with `continuous' spin. This review outlines the basic principles underlying symplectic localisation and shows or mentions its deep implications. In particular, it has the potential to affect...

  17. Resonances in W_L W_L, Z_L Z_L and hh scattering from dispersive analysis of the non-linear Electroweak+Higgs Effective Theory

    CERN Document Server

    Dobado, Antonio; Llanes-Estrada, Felipe J

    2015-01-01

    If new resonances of the electroweak symmetry breaking sector (longitudinal-gauge and Higgs) bosons are found in the 1-3 TeV region, the right tool to assess their properties and confront experimental data in a largely model-independent yet simple manner is Unitarized Effective Theory. Its ingredients are: 1) custodial symmetry and the Equivalence Theorem, that allow to approximate W_L and Z_L by an isospin-triplet of Goldstone bosons omega^a in the 1-TeV region. 2) The effective coupling of a generic, approximately massless scalar-isoscalar h to those Goldstone bosons, and the chiral Lagrangian describing them, valid up to about 3 TeV. 3) The Inverse Amplitude or other unitarization techniques that allow to extend the reach of perturbation theory to the first resonance in each partial wave. We highlight some of the parameter space that can give rise to 2-TeV resonances, for example a simultaneous scalar-isoscalar and a vector-isovector ones (motivated by the ATLAS excess) and also the potential importance of...

  18. Quantum Local Symmetry of the D-Dimensional Non-Linear Sigma Model: A Functional Approach

    Directory of Open Access Journals (Sweden)

    Andrea Quadri

    2014-04-01

    Full Text Available We summarize recent progress on the symmetric subtraction of the Non-Linear Sigma Model in D dimensions, based on the validity of a certain Local Functional Equation (LFE encoding the invariance of the SU(2 Haar measure under local left transformations. The deformation of the classical non-linearly realized symmetry at the quantum level is analyzed by cohomological tools. It is shown that all the divergences of the one-particle irreducible (1-PI amplitudes (both on-shell and off-shell can be classified according to the solutions of the LFE. Applications to the non-linearly realized Yang-Mills theory and to the electroweak theory, which is directly relevant to the model-independent analysis of LHC data, are briefly addressed.

  19. Unusual signs in quantum field theory

    Science.gov (United States)

    O'Connell, Donal

    Quantum field theory is by now a mature field. Nevertheless, certain physical phenomena remain difficult to understand. This occurs in some cases because well-established quantum field theories are strongly coupled and therefore difficult to solve; in other cases, our current understanding of quantum field theory seems to be inadequate. In this thesis, we will discuss various modifications of quantum field theory which can help to alleviate certain of these problems, either in their own right or as a component of a greater computational scheme. The modified theories we will consider all include unusual signs in some aspect of the theory. We will also discuss limitations on what we might expect to see in experiments, imposed by sign constraints in the customary formulation of quantum field theory.

  20. Nuclear Dynamics with Effective Field Theories

    CERN Document Server

    Epelbaum, Evgeny

    2013-01-01

    These are the proceedings of the international workshop on "Nuclear Dynamics with Effective Field Theories" held at Ruhr-Universitaet Bochum, Germany from July 1 to 3, 2013. The workshop focused on effective field theories of low-energy QCD, chiral perturbation theory for nuclear forces as well as few- and many-body physics. Included are a short contribution per talk.

  1. Distributed adaptive output consensus control of second-order systems containing unknown non-linear control gains

    Science.gov (United States)

    Wang, Gang; Wang, Chaoli; Du, Qinghui; Cai, Xuan

    2016-10-01

    In this paper, we address the output consensus problem of tracking a desired trajectory for a group of second-order agents on a directed graph with a fixed topology. Each agent is modelled by a second-order non-linear system with unknown non-linear dynamics and unknown non-linear control gains. Only a subset of the agents is given access to the desired trajectory information directly. A distributed adaptive consensus protocol driving all agents to track the desired trajectory is presented using the backstepping technique and approximation technique of Fourier series (FSs). The FS structure is taken not only for tracking the non-linear dynamics but also the unknown portion in the controller design procedure, which can avoid virtual controllers containing the uncertain terms. Stability analysis and parameter convergence of the proposed algorithm are conducted based on the Lyapunov theory and the algebraic graph theory. It is also demonstrated that arbitrary small tracking errors can be achieved by appropriately choosing design parameters. Though the proposed work is applicable for second-order non-linear systems containing unknown non-linear control gains, the proposed controller design can be easily extended to higher-order non-linear systems containing unknown non-linear control gains. Simulation results show the effectiveness of the proposed schemes.

  2. A statistical rain attenuation prediction model with application to the advanced communication technology satellite project. 3: A stochastic rain fade control algorithm for satellite link power via non linear Markow filtering theory

    Science.gov (United States)

    Manning, Robert M.

    1991-01-01

    The dynamic and composite nature of propagation impairments that are incurred on Earth-space communications links at frequencies in and above 30/20 GHz Ka band, i.e., rain attenuation, cloud and/or clear air scintillation, etc., combined with the need to counter such degradations after the small link margins have been exceeded, necessitate the use of dynamic statistical identification and prediction processing of the fading signal in order to optimally estimate and predict the levels of each of the deleterious attenuation components. Such requirements are being met in NASA's Advanced Communications Technology Satellite (ACTS) Project by the implementation of optimal processing schemes derived through the use of the Rain Attenuation Prediction Model and nonlinear Markov filtering theory.

  3. Dynamics and causality constraints in field theory

    CERN Document Server

    De Souza, M M

    1997-01-01

    We discuss the physical meaning and the geometric interpretation of causality implementation in classical field theories. Causality is normally implemented through kinematical constraints on fields but we show that in a zero-distance limit they also carry a dynamical information, which calls for a revision of our standard concepts of interacting fields. The origin of infinities and other inconsistencies in field theories is traced to fields defined with support on the lightcone; a finite and consistent field theory requires a lightcone generator as the field support.

  4. On magnetohydrodynamic gauge field theory

    Science.gov (United States)

    Webb, G. M.; Anco, S. C.

    2017-06-01

    Clebsch potential gauge field theory for magnetohydrodynamics is developed based in part on the theory of Calkin (1963 Can. J. Phys. 41 2241-51). It is shown how the polarization vector {P} in Calkin’s approach naturally arises from the Lagrange multiplier constraint equation for Faraday’s equation for the magnetic induction {B} , or alternatively from the magnetic vector potential form of Faraday’s equation. Gauss’s equation, (divergence of {B} is zero) is incorporated in the variational principle by means of a Lagrange multiplier constraint. Noether’s theorem coupled with the gauge symmetries is used to derive the conservation laws for (a) magnetic helicity, (b) cross helicity, (c) fluid helicity for non-magnetized fluids, and (d) a class of conservation laws associated with curl and divergence equations which applies to Faraday’s equation and Gauss’s equation. The magnetic helicity conservation law is due to a gauge symmetry in MHD and not due to a fluid relabelling symmetry. The analysis is carried out for the general case of a non-barotropic gas in which the gas pressure and internal energy density depend on both the entropy S and the gas density ρ. The cross helicity and fluid helicity conservation laws in the non-barotropic case are nonlocal conservation laws that reduce to local conservation laws for the case of a barotropic gas. The connections between gauge symmetries, Clebsch potentials and Casimirs are developed. It is shown that the gauge symmetry functionals in the work of Henyey (1982 Phys. Rev. A 26 480-3) satisfy the Casimir determining equations.

  5. Introductory Lectures on Quantum Field Theory

    CERN Document Server

    Alvarez-Gaumé, Luís

    2014-01-01

    In these lectures we present a few topics in Quantum Field Theory in detail. Some of them are conceptual and some more practical. They have been selected because they appear frequently in current applications to Particle Physics and String Theory.

  6. Toward a gauge field theory of gravity.

    Science.gov (United States)

    Yilmaz, H.

    Joint use of two differential identities (Bianchi and Freud) permits a gauge field theory of gravity in which the gravitational energy is localizable. The theory is compatible with quantum mechanics and is experimentally viable.

  7. Magnetic Backgrounds and Noncommutative Field Theory

    OpenAIRE

    Szabo, Richard J.

    2004-01-01

    This paper is a rudimentary introduction, geared at non-specialists, to how noncommutative field theories arise in physics and their applications to string theory, particle physics and condensed matter systems.

  8. Towards weakly constrained double field theory

    Directory of Open Access Journals (Sweden)

    Kanghoon Lee

    2016-08-01

    Full Text Available We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  9. Towards weakly constrained double field theory

    Science.gov (United States)

    Lee, Kanghoon

    2016-08-01

    We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon) transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X-ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  10. Towards Weakly Constrained Double Field Theory

    CERN Document Server

    Lee, Kanghoon

    2015-01-01

    We show that it is possible to construct a well-defined effective field theory incorporating string winding modes without using strong constraint in double field theory. We show that X-ray (Radon) transform on a torus is well-suited for describing weakly constrained double fields, and any weakly constrained fields are represented as a sum of strongly constrained fields. Using inverse X- ray transform we define a novel binary operation which is compatible with the level matching constraint. Based on this formalism, we construct a consistent gauge transform and gauge invariant action without using strong constraint. We then discuss the relation of our result to the closed string field theory. Our construction suggests that there exists an effective field theory description for massless sector of closed string field theory on a torus in an associative truncation.

  11. Graphical and Analytical Analysis of the Non-Linear PLL

    NARCIS (Netherlands)

    de Boer, Bjorn; Radovanovic, S.; Annema, Anne J.; Nauta, Bram

    The fixed width control pulses from the Bang-Bang Phase Detector in non-linear PLLs allow for operation at higher data rates than the linear PLL. The high non-linearity of the Bang- Bang Phase Detector gives rise to unwanted effects, such as limit-cycles, not yet fully described. This paper

  12. Non-linear stochastic response of a shallow cable

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2004-01-01

    The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two-degrees-of-freedom...

  13. Non-linear Frequency Scaling Algorithm for FMCW SAR Data

    NARCIS (Netherlands)

    Meta, A.; Hoogeboom, P.; Ligthart, L.P.

    2006-01-01

    This paper presents a novel approach for processing data acquired with Frequency Modulated Continuous Wave (FMCW) dechirp-on-receive systems by using a non-linear frequency scaling algorithm. The range frequency non-linearity correction, the Doppler shift induced by the continuous motion and the ran

  14. Non Linear Gauge Fixing for FeynArts

    CERN Document Server

    Gajdosik, Thomas

    2007-01-01

    We review the non-linear gauge-fixing for the Standard Model, proposed by F. Boudjema and E. Chopin, and present our implementation of this non-linear gauge-fixing to the Standard Model and to the minimal supersymmetric Standard Model in FeynArts.

  15. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  16. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  17. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  18. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    J Banerji

    2001-02-01

    We have compared the non-linear wave packet dynamics of coherent states of various symmetry groups and found that certain generic features of non-linear evolution are present in each case. Thus the initial coherent structures are quickly destroyed but are followed by Schrödinger cat formation and revival. We also report important differences in their evolution.

  19. Gauge field theories: various mathematical approaches

    CERN Document Server

    Jordan, François; Thierry, Masson

    2014-01-01

    This paper presents relevant modern mathematical formulations for (classical) gauge field theories, namely, ordinary differential geometry, noncommutative geometry, and transitive Lie algebroids. They provide rigorous frameworks to describe Yang-Mills-Higgs theories or gravitation theories, and each of them improves the paradigm of gauge field theories. A brief comparison between them is carried out, essentially due to the various notions of connection. However they reveal a compelling common mathematical pattern on which the paper concludes.

  20. A Non-Hermitian Approach to Non-Linear Switching Dynamics in Coupled Cavity-Waveguide Systems

    DEFF Research Database (Denmark)

    Heuck, Mikkel; Kristensen, Philip Trøst; Mørk, Jesper

    2012-01-01

    We present a non-Hermitian perturbation theory employing quasi-normal modes to investigate non-linear all-optical switching dynamics in a photonic crystal coupled cavity-waveguide system and compare with finite-difference-time-domain simulations.......We present a non-Hermitian perturbation theory employing quasi-normal modes to investigate non-linear all-optical switching dynamics in a photonic crystal coupled cavity-waveguide system and compare with finite-difference-time-domain simulations....

  1. Non-linear dielectric monitoring of biological suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Treo, E F; Felice, C J [Departamento de BioingenierIa, Universidad Nacional de Tucuman and Consejo Nacional de Investigaciones Cientificas y Tecnicas. CC327, CP4000, San Miguel de Tucuman (Argentina)

    2007-11-15

    Non-linear dielectric spectroscopy as a tool for in situ monitoring of enzyme assumes a non-linear behavior of the sample when a sinusoidal voltage is applied to it. Even many attempts have been made to improve the original experiments, all of them had limited success. In this paper we present upgrades made to a non-linear dielectric spectrometer developed and the results obtained when using different cells. We emphasized on the electrode surface, characterizing the grinding and polishing procedure. We found that the biological medium does not behave as expected, and the non-linear response is generated in the electrode-electrolyte interface. The electrochemistry of this interface can bias unpredictably the measured non-linear response.

  2. 基于贝叶斯理论的逐次迭代非线性 AVA 反演方法%Non-Linear Pre-Stack Seismic AVA Inversion Based on Bayesian Theory Using Successive Iteration Method

    Institute of Scientific and Technical Information of China (English)

    代荣获; 张繁昌; 刘汉卿; 李灿灿

    2014-01-01

    Conventional three-term AVA inversion methods are based on the assumption thatγ (the ratio of S-wave velocity to P-wave velocity)is a constant value usually considered to be 0.5,whileγ is horizontally and vertically varied gradually in many cases.The estimated parameters of the inversion is bound to deviate from its true values with γ invariably being 0.5.and the selection γ needs to be reasonably.Based on Bayesian theory,we presents a nonlinear pre-stack seismic AVA inversion using successive iterative method,which considered the ratio’s initial background varying horizontally and vertically and being calculated by the-given initial model,and the nonlinear inversion problem was solved by successive iteration.The proposed method gived a reasonable solution for the selection of γ and solved the nonlinear problem caused by variable ratioγ.And the accuracy and stability of the three-term AVA inversion were improved.%常规 AVA 三参数反演方法均基于横波速度与纵波速度之比γ为常数这一假设条件,且常被近似地取为0.5。然而在许多情况下γ并不为常数,而是在横向与纵向都渐变。若一概假定γ等于0.5,反演出的岩性参数势必要偏离真实值,因此有必要合理地选择γ。笔者基于贝叶斯理论,提出逐次迭代非线性AVA 的反演方法。该方法把γ看成横向与纵向都渐变的反演初始背景,通过给定初始模型计算初始背景γ,并采用逐次迭代的策略求解该反演问题,解决了关于γ的选取问题以及由于引入变γ值而带来的非线性问题,提高了 AVA 三参数反演结果的精确度。

  3. Conformal field theory on the plane

    CERN Document Server

    Ribault, Sylvain

    2014-01-01

    We provide an introduction to conformal field theory on the plane in the conformal bootstrap approach. We introduce the main ideas of the bootstrap approach to quantum field theory, and how they apply to two-dimensional theories with local conformal symmetry. We describe the mathematical structures which appear in such theories, from the Virasoro algebra and its representations, to the BPZ equations and their solutions. As examples, we study a number of models: Liouville theory, (generalized) minimal models, free bosonic theories, the $H_3^+$ model, and the $SU_2$ and $\\widetilde{SL}_2(\\mathbb{R})$ WZW models.

  4. Parameterized quantum field theory without Haag's theorem

    CERN Document Server

    Seidewitz, Ed

    2015-01-01

    Under the normal assumptions of quantum field theory, Haag's theorem states that any field unitarily equivalent to a free field must itself be a free field. Unfortunately, the derivation of the Dyson series perturbation expansion relies on the use of the interaction picture, in which the interacting field is unitarily equivalent to the free field but must still account for interactions. Thus, the traditional perturbative derivation of the scattering matrix in quantum field theory is mathematically ill defined. Nevertheless, perturbative quantum field theory is currently the only practical approach for addressing scattering for realistic interactions, and it has been spectacularly successful in making empirical predictions. This paper explains this success by showing that quantum field theory can be formulated, using an invariant, fifth path parameter in addition to the usual four position parameters, in such a way that Haag's theorem no longer applies, but such that the Dyson perturbation expansion for the sc...

  5. A new active absorption system and its performance to linear and non-linear waves

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Clavero, M.; Frigaard, Peter Bak;

    2016-01-01

    Highlights •An active absorption system for wavemakers has been developed. •The theory for flush mounted gauges has been extended to cover also small gaps. •The new system has been validated in a wave flume with wavemakers in both ends. •A generation and absorption procedure for highly non-linear...

  6. Some examples of non-linear systems and characteristics of their solutions

    CSIR Research Space (South Africa)

    Greben, JM

    2006-07-01

    Full Text Available . In contrast to certain other applications in complexity theory, these non-linear solutions are characterized by great stability. To go beyond the dominant non-perturbative solution one has to consider the source term as well. The parameter freedom...

  7. Wind farm non-linear control for damping electromechanical oscillations of power systems

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, R.D. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina); Laboratorio de Electronica. Facultad de Ingenieria, Universidad Nacional de la Patagonia San Juan Bosco, Ciudad Universitaria, Km. 4, 9000 Comodoro Rivadavia (Argentina); Battaiotto, P.E. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina); Mantz, R.J. [Laboratorio de Electronica Industrial, Control e Instrumentacion (LEICI), Facultad de Ingenieria, CICpba, Universidad Nacional de La Plata, CC 91, 1900 La Plata (Argentina)

    2008-10-15

    This paper deals with the non-linear control of wind farms equipped with doubly fed induction generators (DFIGs). Both active and reactive wind farm powers are employed in two non-linear control laws in order to increase the damping of the oscillation modes of a power system. The proposed strategy is derived from the Lyapunov Theory and is independent of the network topology. In this way, the strategy can be added to the central controller as another added control function. Finally, some simulations, showing the oscillation modes of a power system, are presented in order to support the theoretical considerations demonstrating the potential contributions of both control laws. (author)

  8. Non-linear conductivity in Coulomb glasses

    Energy Technology Data Exchange (ETDEWEB)

    Voje, A.; Bergli, J. [Department of Physics, University of Oslo, P. O. Box 1048 Blindern, 0316 Oslo (Norway); Ortuno, M.; Somoza, A.M. [Departamento de Fisica - CIOyN, Universidad de Murcia, Murcia 30.071 (Spain); Caravaca, M.

    2009-12-15

    We have studied the nonlinear conductivity of two-dimensional Coulomb glasses. We have used a Monte Carlo algorithm to simulate the dynamic of the system under an applied electric field E. We have compared results for two different models: a regular square lattice with only diagonal disorder and a random array of sites with diagonal and off-diagonal disorder. We have found that for moderate fields the logarithm of the conductivity is proportional to {radical}(E)/T{sup 2}, reproducing experimental results. We have also found that in the nonlinear regime the site occupancy in the Coulomb gap follows a Fermi-Dirac distribution with an effective temperature T{sub eff} higher than the phonon bath temperature T. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  9. Non-linear cosmological collapse of quintessence

    CERN Document Server

    Rekier, Jeremy; Cordero-Carrion, Isabel

    2015-01-01

    We present a study of the fully relativistic spherical collapse in presence of quintessence using on Numerical Relativity, following the method proposed by the authors in a previous article [arXiv:1409.3476]. We ascertain the validity of the method by studying the evolution of a spherically symmetric quintessence inhomogeneity on a de Sitter background and we find that it has an impact on the local expansion around the centre of coordinates. We then proceed to compare the results of our method to those of the more largely adopted top-hat model. We find that quintessence inhomogeneities do build up under the effect that matter inhomogeneities have on the local space-time yet remain very small due to the presence of momentum transfer from the over-dense to the background regions. We expect that these might have an even more important role in modified theories of gravitation.

  10. Non-linear Evolution of Rayleigh-Taylor Instability in a Radiation Supported Atmosphere

    CERN Document Server

    Jiang, Yan-Fei; Stone, James

    2012-01-01

    The non-linear regime of Rayleigh-Taylor instability (RTI) in a radiation supported atmosphere, consisting of two uniform fluids with different densities, is studied numerically. We perform simulations using our recently developed numerical algorithm for multi-dimensional radiation hydrodynamics based on a variable Eddington tensor as implemented in Athena, focusing on the regime where scattering opacity greatly exceeds absorption opacity. We find that the radiation field can reduce the growth and mixing rate of RTI, but this reduction is only significant when radiation pressure significantly exceeds gas pressure. Small scale structures are also suppressed in this case. In the non-linear regime, dense fingers sink faster than rarefied bubbles can rise, leading to asymmetric structures about the interface. By comparing the calculations that use a variable Eddington tensor (VET) versus the Eddington approximation, we demonstrate that anisotropy in the radiation field can affect the non-linear development of RTI...

  11. Killing Vector Fields and Superharmonic Field Theories

    CERN Document Server

    Groeger, Josua

    2013-01-01

    The harmonic action functional allows a natural generalisation to semi-Riemannian supergeometry, referred to as superharmonic action, which resembles the supersymmetric sigma models studied in high energy physics. We show that Killing vector fields are infinitesimal supersymmetries of the superharmonic action and prove three different Noether theorems in this context. En passant, we provide a homogeneous treatment of five characterisations of Killing vector fields on semi-Riemannian supermanifolds, thus filling a gap in the literature.

  12. Duality Covariant Solutions in Extended Field Theories

    CERN Document Server

    Rudolph, Felix J

    2016-01-01

    Double field theory and exceptional field theory are formulations of supergravity that make certain dualities manifest symmetries of the action. To achieve this, the geometry is extended by including dual coordinates corresponding to winding modes of the fundamental objects. This geometrically unifies the spacetime metric and the gauge fields (and their local symmetries) in a generalized geometry. Solutions to these extended field theories take the simple form of waves and monopoles in the extended space. From a supergravity point of view they appear as 1/2 BPS objects such as the string, the membrane and the fivebrane in ordinary spacetime. In this thesis double field theory and exceptional field theory are introduced, solutions to their equations of motion are constructed and their properties are analyzed. Further it is established how isometries in the extended space give rise to duality relations between the supergravity solutions. Extensions to these core ideas include studying Goldstone modes, probing s...

  13. Mathematical aspects of quantum field theories

    CERN Document Server

    Strobl, Thomas

    2015-01-01

    Despite its long history and stunning experimental successes, the mathematical foundation of perturbative quantum field theory is still a subject of ongoing research. This book aims at presenting some of the most recent advances in the field, and at reflecting the diversity of approaches and tools invented and currently employed. Both leading experts and comparative newcomers to the field present their latest findings, helping readers to gain a better understanding of not only quantum but also classical field theories. Though the book offers a valuable resource for mathematicians and physicists alike, the focus is more on mathematical developments. This volume consists of four parts: The first Part covers local aspects of perturbative quantum field theory, with an emphasis on the axiomatization of the algebra behind the operator product expansion. The second Part highlights Chern-Simons gauge theories, while the third examines (semi-)classical field theories. In closing, Part 4 addresses factorization homolo...

  14. Large-N Solution of the Heterotic Weighted Non-Linear Sigma-Model

    CERN Document Server

    Koroteev, Peter; Vinci, Walter

    2010-01-01

    We study a heterotic two-dimensional N=(0,2) gauged non-linear sigma-model whose target space is a weighted complex projective space. We consider the case with N positively and \\tilde{N}=N_F - N negatively charged fields. This model is believed to give a description of the low-energy physics of a non-Abelian semi-local vortex in a four-dimensional N=2 supersymmetric U(N) gauge theory with N_F > N matter hypermultiplets. The supersymmetry in the latter theory is broken down to N=1 by a mass term for the adjoint fields. We solve the model in the large-N approximation and explore a two-dimensional subset of the mass parameter space for which a discrete Z_{N-\\tilde{N}} symmetry is preserved. Supersymmetry is generically broken, but it is preserved for special values of the masses where a new branch opens up and the model becomes super-conformal.

  15. No-Go Theorems for Generalized Chameleon Field Theories

    CERN Document Server

    Wang, Junpu; Khoury, Justin

    2012-01-01

    The chameleon, or generalizations thereof, is a light scalar that couple to matter with gravitational strength, but whose manifestation depends on the ambient matter density. A key feature is that the screening mechanism suppressing its effects in high-density environments is determined by the local scalar field value. Under very general conditions, we prove two theorems limiting its cosmological impact: i) the Compton wavelength of such a scalar can be at most Mpc at present cosmic density, which restricts its impact to non-linear scales; ii) the conformal factor relating Einstein- and Jordan-frame scale factors is essentially constant over the last Hubble time, which precludes the possibility of self-acceleration. These results imply that chameleon-like scalar fields have a negligible effect on the linear-scale growth history; theories that invoke a chameleon-like scalar to explain cosmic acceleration rely on a form of dark energy rather than a genuine modified gravity effect. Our analysis applies to a broa...

  16. $\\mathcal{N}=2$ supersymmetric field theories on 3-manifolds with A-type boundaries

    CERN Document Server

    Aprile, Francesco

    2016-01-01

    General half-BPS A-type boundary conditions are formulated for N=2 supersymmetric field theories on compact 3-manifolds with boundary. We observe that under suitable conditions manifolds of the real A-type admitting two complex supersymmetries (related by charge conjugation) possess, besides a contact structure, a natural integrable toric foliation. A boundary, or a general co-dimension-1 defect, can be inserted along any leaf of this preferred foliation to produce manifolds with boundary that have the topology of a solid torus. We show that supersymmetric field theories on such manifolds can be endowed with half-BPS A-type boundary conditions. We specify the natural curved space generalization of the A-type projection of bulk supersymmetries and analyze the resulting A-type boundary conditions in generic 3d non-linear sigma models and YM/CS-matter theories.

  17. Haag's theorem in renormalised quantum field theories

    CERN Document Server

    Klaczynski, Lutz

    2016-01-01

    We review a package of no-go results in axiomatic quantum field theory with Haag's theorem at its centre. Since the concept of operator-valued distributions in this framework comes very close to what we believe canonical quantum fields are about, these results are of consequence to quantum field theory: they suggest the seeming absurdity that this highly victorious theory is incapable of describing interactions. We single out unitarity of the interaction picture's intertwiner as the most salient provision of Haag's theorem and critique canonical perturbation theory to argue that renormalisation bypasses Haag's theorem by violating this very assumption.

  18. Wavelet-Based Quantum Field Theory

    Directory of Open Access Journals (Sweden)

    Mikhail V. Altaisky

    2007-11-01

    Full Text Available The Euclidean quantum field theory for the fields $phi_{Delta x}(x$, which depend on both the position $x$ and the resolution $Delta x$, constructed in SIGMA 2 (2006, 046, on the base of the continuous wavelet transform, is considered. The Feynman diagrams in such a theory become finite under the assumption there should be no scales in internal lines smaller than the minimal of scales of external lines. This regularisation agrees with the existing calculations of radiative corrections to the electron magnetic moment. The transition from the newly constructed theory to a standard Euclidean field theory is achieved by integration over the scale arguments.

  19. Worked examples in engineering field theory

    CERN Document Server

    Fuller, A J Baden

    1976-01-01

    Worked Examples in Engineering Field Theory is a product of a lecture course given by the author to first-year students in the Department of Engineering in the University of Leicester. The book presents a summary of field theory together with a large number of worked examples and solutions to all problems given in the author's other book, Engineering Field Theory. The 14 chapters of this book are organized into two parts. Part I focuses on the concept of flux including electric flux. This part also tackles the application of the theory in gravitation, ideal fluid flow, and magnetism. Part II d

  20. Lattice methods and effective field theory

    CERN Document Server

    Nicholson, Amy N

    2016-01-01

    Lattice field theory is a non-perturbative tool for studying properties of strongly interacting field theories, which is particularly amenable to numerical calculations and has quantifiable systematic errors. In these lectures we apply these techniques to nuclear Effective Field Theory (EFT), a non-relativistic theory for nuclei involving the nucleons as the basic degrees of freedom. The lattice formulation of [1,2] for so-called pionless EFT is discussed in detail, with portions of code included to aid the reader in code development. Systematic and statistical uncertainties of these methods are discussed at length, and extensions beyond pionless EFT are introduced in the final Section.

  1. Backgrounds in Boundary String Field Theory

    CERN Document Server

    Baumgartl, M

    2009-01-01

    We study the role of closed string backgrounds in boundary string field theory. Background independence requires the introduction of dual boundary fields, which are reminiscent of the doubled field formalism. We find a correspondence between closed string backgrounds and collective excitations of open strings described by vertex operators involving dual fields. Renormalization group flow, solutions and stability are discussed in an example.

  2. Noncommutative field theory and Lorentz violation.

    Science.gov (United States)

    Carroll, S M; Harvey, J A; Kostelecký, V A; Lane, C D; Okamoto, T

    2001-10-01

    The role of Lorentz symmetry in noncommutative field theory is considered. Any realistic noncommutative theory is found to be physically equivalent to a subset of a general Lorentz-violating standard-model extension involving ordinary fields. Some theoretical consequences are discussed. Existing experiments bound the scale of the noncommutativity parameter to (10 TeV)(-2).

  3. Quantum field theory for the gifted amateur

    CERN Document Server

    Lancaster, Tom

    2014-01-01

    Quantum field theory is arguably the most far-reaching and beautiful physical theory ever constructed, with aspects more stringently tested and verified to greater precision than any other theory in physics. Unfortunately, the subject has gained a notorious reputation for difficulty, with forbidding looking mathematics and a peculiar diagrammatic language described in an array of unforgiving, weighty textbooks aimed firmly at aspiring professionals. However, quantum field theory is too important, too beautiful, and too engaging to be restricted to the professionals. This book on quantum field theory is designed to be different. It is written by experimental physicists and aims to provide the interested amateur with a bridge from undergraduate physics to quantum field theory. The imagined reader is a gifted amateur, possessing a curious and adaptable mind, looking to be told an entertaining and intellectually stimulating story, but who will not feel patronised if a few mathematical niceties are spelled out in ...

  4. Ostrogradsky in Theories with Multiple Fields

    CERN Document Server

    de Rham, Claudia

    2016-01-01

    We review how the (absence of) Ostrogradsky instability manifests itself in theories with multiple fields. It has recently been appreciated that when multiple fields are present, the existence of higher derivatives may not automatically imply the existence of ghosts. We discuss the connection with gravitational theories like massive gravity and beyond Horndeski which manifest higher derivatives in some formulations and yet are free of Ostrogradsky ghost. We also examine an interesting new class of Extended Scalar--Tensor Theories of gravity which has been recently proposed. We show that for a subclass of these theories, the tensor modes are either not dynamical or are infinitely strongly coupled. Among the remaining theories for which the tensor modes are well-defined one counts one new model that is not field-redefinable to Horndeski via a conformal and disformal transformation but that does require the vacuum to break Lorentz invariance. We discuss the implications for the effective field theory of dark ene...

  5. Uncovering Discrete Non-Linear Dependence with Information Theory

    Directory of Open Access Journals (Sweden)

    Anton Golub

    2015-04-01

    Full Text Available In this paper, we model discrete time series as discrete Markov processes of arbitrary order and derive the approximate distribution of the Kullback-Leibler divergence between a known transition probability matrix and its sample estimate. We introduce two new information-theoretic measurements: information memory loss and information codependence structure. The former measures the memory content within a Markov process and determines its optimal order. The latter assesses the codependence among Markov processes. Both measurements are evaluated on toy examples and applied on high frequency foreign exchange data, focusing on 2008 financial crisis and 2010/2011 Euro crisis.

  6. Non-Linear Trans-Planckian Corrections of Spectra due to the Non-trivial Initial States

    CERN Document Server

    Yusofi, E

    2014-01-01

    Recent Planck results motivated us to use non-Bunch-Davies vacuum. In this paper, we use the excited-de Sitter mode as non-linear initial states during inflation to calculate the corrected spectra of the initial fluctuations of the scalar field. First, we consider the field in de Sitter space-time as background field and for the non-Bunch-Davies mode, we use the perturbation theory to the second order approximation. Also, unlike conventional renormalization method, we offer de Sitter space-time as the background instead Minkowski space-time. This approach preserve the symmetry of curved space-time and stimulate us to use excited mode. By taking into account this alternative mode and the effects of trans-Planckian physics, we calculate the power spectrum in standard approach and Danielsson argument. The calculated power spectrum with this method is finite, corrections of it is non-linear, and in de Sitter limit corrections reduce to linear form that obtained from several previous conventional methods.

  7. The Effective Field Theory of Large Scale Structures at two loops

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco, John Joseph M.; Foreman, Simon; Green, Daniel; Senatore, Leonardo, E-mail: jjmc@stanford.edu, E-mail: sfore@stanford.edu, E-mail: drgreen@stanford.edu, E-mail: senatore@stanford.edu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94306 (United States)

    2014-07-01

    Large scale structure surveys promise to be the next leading probe of cosmological information. It is therefore crucial to reliably predict their observables. The Effective Field Theory of Large Scale Structures (EFTofLSS) provides a manifestly convergent perturbation theory for the weakly non-linear regime of dark matter, where correlation functions are computed in an expansion of the wavenumber k of a mode over the wavenumber associated with the non-linear scale k{sub NL}. Since most of the information is contained at high wavenumbers, it is necessary to compute higher order corrections to correlation functions. After the one-loop correction to the matter power spectrum, we estimate that the next leading one is the two-loop contribution, which we compute here. At this order in k/k{sub NL}, there is only one counterterm in the EFTofLSS that must be included, though this term contributes both at tree-level and in several one-loop diagrams. We also discuss correlation functions involving the velocity and momentum fields. We find that the EFTofLSS prediction at two loops matches to percent accuracy the non-linear matter power spectrum at redshift zero up to k∼ 0.6 h Mpc{sup −1}, requiring just one unknown coefficient that needs to be fit to observations. Given that Standard Perturbation Theory stops converging at redshift zero at k∼ 0.1 h Mpc{sup −1}, our results demonstrate the possibility of accessing a factor of order 200 more dark matter quasi-linear modes than naively expected. If the remaining observational challenges to accessing these modes can be addressed with similar success, our results show that there is tremendous potential for large scale structure surveys to explore the primordial universe.

  8. Quantum Field Theory in a Semiotic Perspective

    CERN Document Server

    Günter Dosch, Hans; Sieroka, Norman

    2005-01-01

    Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincaré, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly ac...

  9. Organic non-linear optics and opto-electronics

    Science.gov (United States)

    Maldonado, J. L.; Ramos-Ortíz, G.; Rodríguez, M.; Meneses-Nava, M. A.; Barbosa-García, O.; Santillán, R.; Farfán, N.

    2010-12-01

    π-conjugated organic molecules and polymers are of great importance in physics, chemistry, material science and engineering. It is expected that, in the near future, organic materials will find widespread use in many technological applications. In the case of organic opto-electronic systems, the list of devices includes light emitting diodes (OLEDs), photovoltaic cells (OPVs), field-effect transistors (OFET), photorefractive materials for light manipulation, among others. These materials are also used for photonic applications: all-optical switching, modulators, optical correlators, plastic waveguides, all polymeric integrated circuits, solid-state lasers, and for biophotonic applications as in the case of the development of organic labels for multiphoton microscopy and photodynamic therapy. The advances in the developing of organic compounds with better mechanical, electrical, and optical (linear and non-linear) characteristics are of a great importance for this field. Here, we present the research on this area carried out at the Centro de Investigaciones en Óp-tica (CIO), in collaboration with Chemistry Departments of different institutions. This work focuses on the optical characterization of materials through several techniques such as TOF, FWM, TBC, THG Maker Fringes, HRS, Z-scan, and TPEF. Additionally, some applications, such as dynamic holography by using photorefractive polymers, and OPVs cells will be discussed.

  10. Non linear inversion of gravity gradients and the GGI gradiometer

    Science.gov (United States)

    Talwani, Manik

    2011-12-01

    All gradiometers currently operating for exploration in the field are based on Lockheed Martin's GGI gradiometer. The working of this gradiometer is described and a method for robust non linear inversion of gravity gradients is presented. The inversion method involves obtaining the gradient response of a trial body consisting of vertical rectangular prisms. The inversion adjusts the depth to the tops or bases of the prisms. In the trial model all the prisms are not required to have the same area of cross section or the same density (which can also be allowed to vary with depth). The depth to the tops and bottoms of each prism can also be different. This response is compared with the observed values of gradient and through an iterative procedure, the difference is minimized in a least square sense to arrive at a best fitting model by varying the position of the tops or bottoms of the prisms. Each gradient can be individually inverted or one or more gradients can be jointly inverted. The method is extended to invert gravity values individually or jointly with gradient values. The use of Differential Curvature, a quantity which is directly obtained by current gradiometers in use and which is an invariant under a rotation in the horizontal plane, is emphasized. Synthetic examples as well as a field example of inversion are given.

  11. Pilot-wave theory and quantum fields

    Science.gov (United States)

    Struyve, Ward

    2010-10-01

    Pilot-wave theories provide possible solutions to the measurement problem. In such theories, quantum systems are not only described by the state vector but also by some additional variables. These additional variables, also called beables, can be particle positions, field configurations, strings, etc. In this paper we focus our attention on pilot-wave theories in which the additional variables are field configurations. The first such theory was proposed by Bohm for the free electromagnetic field. Since Bohm, similar pilot-wave theories have been proposed for other quantum fields. The purpose of this paper is to present an overview and further development of these proposals. We discuss various bosonic quantum field theories such as the Schrödinger field, the free electromagnetic field, scalar quantum electrodynamics and the Abelian Higgs model. In particular, we compare the pilot-wave theories proposed by Bohm and by Valentini for the electromagnetic field, finding that they are equivalent. We further discuss the proposals for fermionic fields by Holland and Valentini. In the case of Holland's model we indicate that further work is required in order to show that the model is capable of reproducing the standard quantum predictions. We also consider a similar model, which does not seem to reproduce the standard quantum predictions. In the case of Valentini's model we point out a problem that seems hard to overcome.

  12. Non-linear and signal energy optimal asymptotic filter design

    Directory of Open Access Journals (Sweden)

    Josef Hrusak

    2003-10-01

    Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.

  13. Non-linear image scanning microscopy (Conference Presentation)

    Science.gov (United States)

    Gregor, Ingo; Ros, Robert; Enderlein, Jörg

    2017-02-01

    Nowadays, multiphoton microscopy can be considered as a routine method for the observation of living cells, organs, up to whole organisms. Second-harmonics generation (SHG) imaging has evolved to a powerful qualitative and label-free method for studying fibrillar structures, like collagen networks. However, examples of super-resolution non-linear microscopy are rare. So far, such approaches require complex setups and advanced synchronization of scanning elements limiting the image acquisition rates. We describe theory and realization of a super-resolution image scanning microscope [1, 2] using two-photon excited fluorescence as well as second-harmonic generation. It requires only minor modifications compared to a classical two-photon laser-scanning microscope and allows image acquisition at the high frame rates of a resonant galvo-scanner. We achieve excellent sensitivity and high frame-rate in combination with two-times improved lateral resolution. We applied this method to fixed cells, collagen hydrogels, as well as living fly embryos. Further, we proofed the excellent image quality of our setup for deep tissue imaging. 1. Müller C.B. and Enderlein J. (2010) Image scanning microscopy. Phys. Rev. Lett. 104(19), 198101. 2. Sheppard C.J.R. (1988) Super-resolution in confocal imaging. Optik (Stuttg) 80 53-54.

  14. Non-linear controls on the persistence of La Nina

    Science.gov (United States)

    Di Nezio, P. N.; Deser, C.

    2013-12-01

    Non-linear controls on the persistence of La Nina Pedro DiNezio and Clara Deser Up to half of the observed La Nina events last for two years or more. Most El Nino events, in contrast, last no longer than one year. The physical processes causing this asymmetry in the duration of warm and cold ENSO events is unknown. The persistence of La Nina, not only exacerbates the climate impacts, especially in regions prone to drought, but also is highly unpredictable. In this talk we will explore the nonlinear processes that generate the persistence of La Nina in observations and in CCSM4 - a coupled climate model that simulates this feature realistically. First, we develop a non-linear delayed-oscillator model (nonlinDO) based on CCSM4's heat budget. All positive and negative feedbacks of nonlinDO capture the nonlinear and seasonal dependence exhibited by CCSM4. The nonlinear behavior is due to: 1) weaker atmospheric damping of cold events with respect to warm events, 2) stronger wind response for large warm events, and 3) weaker coupling between thermocline and sea-surface temperature anomalies when the thermocline deepens. We force the simple model with white Gaussian noise resulting in seasonal modulation of variance and skewness, and a spectral peak, that are in agreement with CCSM4. Sensitivity experiments with nonlinDO show that the thermocline nonlinearity (3) is the sole process controlling the duration of La Nina events. Linear ENSO theory indicates that La Nina events drive a delayed thermocline deepening that leads to their demise. However, the thermocline nonlinearity (3) renders this response ineffective as La Nina events become stronger. This diminishing of the delayed-thermocline feedback prevents the equatorial Pacific from returning to neutral or warm conditions and cold conditions persist for a second year. Observations show evidence for this thermocline nonlinearity suggesting that this process could be at work in the real world. Last, we show evidence that

  15. Strings, Conformal Field Theory And Noncommutative Geometry

    CERN Document Server

    Matsubara, K

    2004-01-01

    This thesis describes some aspects of noncommutative geometry and conformal field theory. The motivation for the investigations made comes to a large extent from string theory. This theory is today considered to be the most promising way to find a solution to the problem of unifying the four fundamental interactions in one single theory. The thesis gives a short background presentation of string theory and points out how noncommutative geometry and conformal field theory are of relevance within the string theoretical framework. There is also given some further information on noncommutative geometry and conformal field theory. The results from the three papers on which the thesis is based are presented in the text. It is shown in Paper 1 that, for a gauge theory in a flat noncommutative background only the gauge groups U(N) can be used in a straightforward way. These theories can arise as low energy limits of string theory. Paper 2 concerns boundary conformal field theory, which can be used to describe open s...

  16. Noncommutative Field Theory on Homogeneous Gravitational Waves

    CERN Document Server

    Halliday, S; Halliday, Sam; Szabo, Richard J.

    2006-01-01

    We describe an algebraic approach to the time-dependent noncommutative geometry of a six-dimensional Cahen-Wallach pp-wave string background supported by a constant Neveu-Schwarz flux, and develop a general formalism to construct and analyse quantum field theories defined thereon. Various star-products are derived in closed explicit form and the Hopf algebra of twisted isometries of the plane wave is constructed. Scalar field theories are defined using explicit forms of derivative operators, traces and noncommutative frame fields for the geometry, and various physical features are described. Noncommutative worldvolume field theories of D-branes in the pp-wave background are also constructed.

  17. Conformal Field Theory Correlators from Classical Scalar Field Theory on $AdS_{d+1}$

    CERN Document Server

    Mück, W; Mueck, Wolfgang

    1998-01-01

    We use the correspondence between scalar field theory on $AdS_{d+1}$ and a conformal field theory on $R^d$ to calculate the 3- and 4-point functions of the latter. The classical scalar field theory action is evaluated at tree level.

  18. Matrix string theory, contact terms, and superstring field theory

    CERN Document Server

    Dijkgraaf, R; Dijkgraaf, Robbert; Motl, Lubos

    2003-01-01

    In this note, we first explain the equivalence between the interaction Hamiltonian of Green-Schwarz light-cone gauge superstring field theory and the twist field formalism known from matrix string theory. We analyze the role of the large N limit in matrix string theory, in particular in relation with conformal perturbation theory around the orbifold SCFT that reproduces light-cone string perturbation theory. We show how the scaling with N is directly related to measures on the moduli space of Riemann surfaces. The scaling dimension 3 of the Mandelstam vertex as reproduced by the twist field interaction is in this way related to the dimension 3(h-1) of the moduli space. We analyze the structure and scaling of the higher order twist fields that represent the contact terms. We find one relevant twist field at each order. More generally, the structure of string field theory seems more transparent in the twist field formalism. Finally we also investigate the modifications necessary to describe the pp-wave backgrou...

  19. Asymptotic Stability of Interconnected Passive Non-Linear Systems

    Science.gov (United States)

    Isidori, A.; Joshi, S. M.; Kelkar, A. G.

    1999-01-01

    This paper addresses the problem of stabilization of a class of internally passive non-linear time-invariant dynamic systems. A class of non-linear marginally strictly passive (MSP) systems is defined, which is less restrictive than input-strictly passive systems. It is shown that the interconnection of a non-linear passive system and a non-linear MSP system is globally asymptotically stable. The result generalizes and weakens the conditions of the passivity theorem, which requires one of the systems to be input-strictly passive. In the case of linear time-invariant systems, it is shown that the MSP property is equivalent to the marginally strictly positive real (MSPR) property, which is much simpler to check.

  20. NON-LINEAR FORCED VIBRATION OF AXIALLY MOVING VISCOELASTIC BEAMS

    Institute of Scientific and Technical Information of China (English)

    Yang Xiaodong; Chen Li-Qun

    2006-01-01

    The non-linear forced vibration of axially moving viscoelastic beams excited by the vibration of the supporting foundation is investigated. A non-linear partial-differential equation governing the transverse motion is derived from the dynamical, constitutive equations and geometrical relations. By referring to the quasi-static stretch assumption, the partial-differential non-linearity is reduced to an integro-partial-differential one. The method of multiple scales is directly applied to the governing equations with the two types of non-linearity, respectively. The amplitude of near- and exact-resonant steady state is analyzed by use of the solvability condition of eliminating secular terms. Numerical results are presented to show the contributions of foundation vibration amplitude, viscoelastic damping, and nonlinearity to the response amplitude for the first and the second mode.

  1. Role of anharmonicities and non-linearities in heavy ion collisions a microscopic approach

    CERN Document Server

    Lanza, E G; Catara, F; Chomaz, P; Volpe, C; Chomaz, Ph.

    1996-01-01

    Using a microscopic approach beyond RPA to treat anharmonicities, we mix two-phonon states among themselves and with one-phonon states. We also introduce non-linear terms in the external field. These non-linear terms and the anharmonicities are not taken into account in the "standard" multiphonon picture. Within this framework we calculate Coulomb excitation of 208Pb and 40Ca by a 208Pb nucleus at 641 and 1000MeV/A. We show with different examples the importance of the non-linearities and anharmonicities for the excitation cross section. We find an increase of 10 % for 208Pb and 20 % for 40Ca of the excitation cross section corresponding to the energy region of the double giant dipole resonance with respect to the "standard" calculation. We also find important effects in the low energy region. The predicted cross section in the DGDR region is found to be rather close to the experimental observation.

  2. Non-Linear Transmission Line (NLTL) Microwave Source Lecture Notes the United States Particle Accelerator School

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Steven J. [Los Alamos National Laboratory; Carlsten, Bruce E. [Los Alamos National Laboratory

    2012-06-26

    We will quickly go through the history of the non-linear transmission lines (NLTLs). We will describe how they work, how they are modeled and how they are designed. Note that the field of high power, NLTL microwave sources is still under development, so this is just a snap shot of their current state. Topics discussed are: (1) Introduction to solitons and the KdV equation; (2) The lumped element non-linear transmission line; (3) Solution of the KdV equation; (4) Non-linear transmission lines at microwave frequencies; (5) Numerical methods for NLTL analysis; (6) Unipolar versus bipolar input; (7) High power NLTL pioneers; (8) Resistive versus reactive load; (9) Non-lineaer dielectrics; and (10) Effect of losses.

  3. Resolving Witten’s superstring field theory

    Energy Technology Data Exchange (ETDEWEB)

    Erler, Theodore; Konopka, Sebastian; Sachs, Ivo [Arnold Sommerfeld Center, Ludwig-Maximilians University, Theresienstrasse 37, D-80333, Munich (Germany)

    2014-04-24

    We regulate Witten’s open superstring field theory by replacing the picture-changing insertion at the midpoint with a contour integral of picture changing insertions over the half-string overlaps of the cubic vertex. The resulting product between string fields is non-associative, but we provide a solution to the A{sub ∞} relations defining all higher vertices. The result is an explicit covariant superstring field theory which by construction satisfies the classical BV master equation.

  4. Adaptive Kronrod-Patterson integration of non-linear finite-element matrices

    DEFF Research Database (Denmark)

    Janssen, Hans

    2010-01-01

    Efficient simulation of unsaturated moisture flow in porous media is of great importance in many engineering fields. The highly non-linear character of unsaturated flow typically gives sharp moving moisture fronts during wetting and drying of materials with strong local moisture permeability and ...

  5. A non-linear representation of the d=2 so (4)-extended superconformal algebra

    NARCIS (Netherlands)

    Schoutens, K.

    1987-01-01

    We present a non-linear representation of the so(4)-extended d=2 superconformal algebra in terms of one boson and four Majorana fermions. The matter fields and the currents can be grouped into a single N=4 superfield. Breaking the supersymmetry to N=3 or N=2 leads to new representations of the N=3,2

  6. Experimental evidence of non-linear behaviour in YBCO superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Palenque, E.R.; Appleyard, N.J.; Jackson, T.J.; Palmer, S.B. [Dept. of Phys., Warwick Univ., Coventry (United Kingdom)

    1995-05-01

    Preliminary measurements of the non-linear dynamics of a thin (two dimensional) YBa{sub 2}Cu{sub 3}O{sub 7} superconducting film in a small AC magnetic field are presented, a peak in third harmonic generation which may provide evidence of the Kosterlitz-Thouless transition is found just below the superconducting transition temperature. (author)

  7. Supergeometry in locally covariant quantum field theory

    CERN Document Server

    Hack, Thomas-Paul; Schenkel, Alexander

    2015-01-01

    In this paper we analyze supergeometric locally covariant quantum field theories. We develop suitable categories SLoc of super-Cartan supermanifolds, which generalize Lorentz manifolds in ordinary quantum field theory, and show that, starting from a few representation theoretic and geometric data, one can construct a functor A : SLoc --> S*Alg to the category of super-*-algebras which can be interpreted as a non-interacting super-quantum field theory. This construction turns out to disregard supersymmetry transformations as the morphism sets in the above categories are too small. We then solve this problem by using techniques from enriched category theory, which allows us to replace the morphism sets by suitable morphism supersets that contain supersymmetry transformations as their higher superpoints. We construct super-quantum field theories in terms of enriched functors eA : eSLoc --> eS*Alg between the enriched categories and show that supersymmetry transformations are appropriately described within the en...

  8. A Field Theory with Curvature and Anticurvature

    Directory of Open Access Journals (Sweden)

    M. I. Wanas

    2014-01-01

    Full Text Available The present work is an attempt to construct a unified field theory in a space with curvature and anticurvature, the PAP-space. The theory is derived from an action principle and a Lagrangian density using a symmetric linear parameterized connection. Three different methods are used to explore physical contents of the theory obtained. Poisson’s equations for both material and charge distributions are obtained, as special cases, from the field equations of the theory. The theory is a pure geometric one in the sense that material distribution, charge distribution, gravitational and electromagnetic potentials, and other physical quantities are defined in terms of pure geometric objects of the structure used. In the case of pure gravity in free space, the spherical symmetric solution of the field equations gives the Schwarzschild exterior field. The weak equivalence principle is respected only in the case of pure gravity in free space; otherwise it is violated.

  9. Non-Linear Dynamics and Stability of Circular Cylindrical Shells Containing Flowing Fluid. Part i: Stability

    Science.gov (United States)

    AMABILI, M.; PELLICANO, F.; PAÏDOUSSIS, M. P.

    1999-08-01

    The study presented is an investigation of the non-linear dynamics and stability of simply supported, circular cylindrical shells containing inviscid incompressible fluid flow. Non-linearities due to large-amplitude shell motion are considered by using the non-linear Donnell's shallow shell theory, with account taken of the effect of viscous structural damping. Linear potential flow theory is applied to describe the fluid-structure interaction. The system is discretiszd by Galerkin's method, and is investigated by using a model involving seven degrees of freedom, allowing for travelling wave response of the shell and shell axisymmetric contraction. Two different boundary conditions are applied to the fluid flow beyond the shell, corresponding to: (i) infinite baffles (rigid extensions of the shell), and (ii) connection with a flexible wall of infinite extent in the longitudinal direction, permitting solution by separation of variables; they give two different kinds of dynamical behaviour of the system, as a consequence of the fact that axisymmetric contraction, responsible for the softening non-linear dynamical behaviour of shells, is not allowed if the fluid flow beyond the shell is constrained by rigid baffles. Results show that the system loses stability by divergence.

  10. Light-Front quantization of field theory

    CERN Document Server

    Srivastava, P P

    1996-01-01

    Some basic topics in Light-Front (LF) quantized field theory are reviewed. Poincarè algebra and the LF Spin operator are discussed. The local scalar field theory of the conventional framework is shown to correspond to a non-local Hamiltonian theory on the LF in view of the constraint equations on the phase space, which relate the bosonic condensates to the non-zero modes. This new ingredient is useful to describe the spontaneous symmetry breaking on the LF. The instability of the symmetric phase in two dimensional scalar theory when the coupling constant grows is shown in the LF theory renormalized to one loop order. Chern-Simons gauge theory regarded to describe excitations with fractional statistics, is quantized in the light-cone gauge and a simple LF Hamiltonian obtained which may allow us to construct renormalized theory of anyons.

  11. Non-linear dynamics of a geared rotor-bearing system with multiple clearances

    Science.gov (United States)

    Kahraman, A.; Singh, R.

    1991-02-01

    Non-linear frequency response characteristics of a geared rotor-bearing system are examined in this paper. A three-degree-of-freedom dynamic model is developed which includes non-linearities associated with radial clearances in the radial rolling element bearings and backlash between a spur gear pair; linear time-invariant gear meshing stiffness is assumed. The corresponding linear system problem is also solved, and predicted natural frequencies and modes match with finite element method results. The bearing non-linear stiffness function is approximated for the sake of convenience by a simple model which is identical to that used for the gear mesh. This approximate bearing model has been verified by comparing steady state frequency spectra. Applicability of both analytical and numerical solution techniques to the multi-degree-of-freedom non-linear problem is investigated. Satisfactory agreement has been found between our theory and available experimental data. Several key issues such as non-linear modal interactions and differences between internal static transmission error excitation and external torque excitation are discussed. Additionally, parametric studies are performed to understand the effect of system parameters such as bearing stiffness to gear mesh stiffness ratio, alternating to mean force ratio and radial bearing preload to mean force ratio on the non-linear dynamic behavior. A criterion used to classify the steady state solutions is presented, and the conditions for chaotic, quasi-periodic and subharmonic steady state solutions are determined. Two typical routes to chaos observed in this geared system are also identified.

  12. Non-linear evolution of the cosmic neutrino background

    Energy Technology Data Exchange (ETDEWEB)

    Villaescusa-Navarro, Francisco; Viel, Matteo [INAF/Osservatorio Astronomico di Trieste, Via Tiepolo 11, 34143, Trieste (Italy); Bird, Simeon [Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ, 08540 (United States); Peña-Garay, Carlos, E-mail: villaescusa@oats.inaf.it, E-mail: spb@ias.edu, E-mail: penya@ific.uv.es, E-mail: viel@oats.inaf.it [Instituto de Física Corpuscular, CSIC-UVEG, E-46071, Paterna, Valencia (Spain)

    2013-03-01

    We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations which incorporate cold dark matter (CDM) and neutrinos as independent particle species. Our set of simulations explore the properties of neutrinos in a reference ΛCDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass 10{sup 11}−10{sup 15} h{sup −1}M{sub s}un, over a redshift range z = 0−2. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula, once the neutrino contribution to the total matter is removed. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified and mass and redshift dependent deviations from the expected Fermi-Dirac distribution are in place both in the cosmological volume and inside haloes. The neutrino density profiles around virialized haloes have been carefully investigated and a simple fitting formula is provided. The neutrino profile, unlike the cold dark matter one, is found to be cored with core size and central density that depend on the neutrino mass, redshift and mass of the halo, for halos of masses larger than ∼ 10{sup 13.5}h{sup −1}M{sub s}un. For lower masses the neutrino profile is best fitted by a simple power-law relation in the range probed by the simulations. The results we obtain are numerically converged in terms of neutrino profiles at the 10% level for scales above ∼ 200 h{sup −1}kpc at z = 0, and are stable with

  13. Playing with QCD I: effective field theories

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Fisica

    2009-07-01

    The building blocks of hadrons are quarks and gluons, although color is confined into singlet states. QCD is believed to be the fundamental theory of strong interactions. Its asymptotically free nature puts the vacuum out of reach for perturbation theory. The Lagrangian of QCD and the Feynman rules associated were built by using the Gauge Principle, starting from the quark matter fields and obtaining gluons as connections. A simpler, and sometimes necessary or complementary, approach is provided by effective field theories or effective models, especially when one has to deal with the nonperturbative sector of the theory. (author)

  14. Why does the effective field theory of inflation work?

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Nishant [McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213 (United States); Ribeiro, Raquel H. [Department of Physics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, 44106 (United States); Holman, R., E-mail: nishanta@andrew.cmu.edu, E-mail: raquelhribeiro@case.edu, E-mail: rh4a@andrew.cmu.edu [Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213 (United States)

    2014-06-01

    The effective field theory (EFT) of inflation has become the preferred method for computing cosmological correlation functions of the curvature fluctuation, ζ. It makes explicit use of the soft breaking of time diffeomorphisms by the inflationary background to organize the operators expansion in the action of the Goldstone mode π associated with this breaking. Despite its ascendancy, there is another method for calculating ζ correlators, involving the direct calculation of the so-called Horndeski action order by order in powers of ζ and its derivatives. The question we address in this work is whether or not the ζ correlators calculated in these seemingly different ways are in fact the same. The answer is that the actions to cubic order in either set of variables do indeed give rise to the same ζ bispectra, but that to make this equivalence manifest requires a careful understanding of the non-linear transformations relating π to ζ and how boundary terms in the actions are affected by imposing this relation. As a by product of our study we find that the calculations in the π language can be simplified considerably in a way that allows us to use only the linear part of the π−ζ relation simply by changing the coefficients of some of the operators in the EFT. We also note that a proper accounting of the boundary terms will be of the greatest importance when computing the bispectrum for more general initial states than the Bunch-Davies one.

  15. Inference with minimal Gibbs free energy in information field theory.

    Science.gov (United States)

    Ensslin, Torsten A; Weig, Cornelius

    2010-11-01

    Non-linear and non-gaussian signal inference problems are difficult to tackle. Renormalization techniques permit us to construct good estimators for the posterior signal mean within information field theory (IFT), but the approximations and assumptions made are not very obvious. Here we introduce the simple concept of minimal Gibbs free energy to IFT, and show that previous renormalization results emerge naturally. They can be understood as being the gaussian approximation to the full posterior probability, which has maximal cross information with it. We derive optimized estimators for three applications, to illustrate the usage of the framework: (i) reconstruction of a log-normal signal from poissonian data with background counts and point spread function, as it is needed for gamma ray astronomy and for cosmography using photometric galaxy redshifts, (ii) inference of a gaussian signal with unknown spectrum, and (iii) inference of a poissonian log-normal signal with unknown spectrum, the combination of (i) and (ii). Finally we explain how gaussian knowledge states constructed by the minimal Gibbs free energy principle at different temperatures can be combined into a more accurate surrogate of the non-gaussian posterior.

  16. Non-linear BFKL dynamics: color screening vs. gluon fusion

    CERN Document Server

    Fiore, R; Zoller, V R

    2012-01-01

    A feasible mechanism of unitarization of amplitudes of deep inelastic scattering at small values of Bjorken $x$ is the gluon fusion. However, its efficiency depends crucially on the vacuum color screening effect which accompanies the multiplication and the diffusion of BFKL gluons from small to large distances. From the fits to lattice data on field strength correlators the propagation length of perturbative gluons is $R_c\\simeq 0.2-0.3$ fermi. The probability to find a perturbative gluon with short propagation length at large distances is suppressed exponentially. It changes the pattern of (dif)fusion dramatically. The magnitude of the fusion effect appears to be controlled by the new dimensionless parameter $\\sim R_c^2/8B$, with the diffraction cone slope $B$ standing for the characteristic size of the interaction region. It should slowly $\\propto 1/\\ln Q^2$ decrease at large $Q^2$. Smallness of the ratio $R_c^2/8B$ makes the non-linear effects rather weak even at lowest Bjorken $x$ available at HERA. We re...

  17. Non-linear evolution of the cosmic neutrino background

    CERN Document Server

    Villaescusa-Navarro, Francisco; Peña-Garay, Carlos; Viel, Matteo

    2012-01-01

    We investigate the non-linear evolution of the relic cosmic neutrino background by running large box-size, high resolution N-body simulations. Our set of simulations explore the properties of neutrinos in a reference $\\Lambda$CDM model with total neutrino masses between 0.05-0.60 eV in cold dark matter haloes of mass $10^{11}-10^{15}$ $h^{-1}$M$_{\\odot}$, over a redshift range $z=0-2$. We compute the halo mass function and show that it is reasonably well fitted by the Sheth-Tormen formula. More importantly, we focus on the CDM and neutrino properties of the density and peculiar velocity fields in the cosmological volume, inside and in the outskirts of virialized haloes. The dynamical state of the neutrino particles depends strongly on their momentum: whereas neutrinos in the low velocity tail behave similarly to CDM particles, neutrinos in the high velocity tail are not affected by the clustering of the underlying CDM component. We find that the neutrino (linear) unperturbed momentum distribution is modified ...

  18. Chaotic instantons in scalar field theory

    CERN Document Server

    Addazi, Andrea

    2016-01-01

    We consider a new class of instantons in context of quantum field theory of a scalar field coupled with a chaotic background source field. We show how the instanton associated to the quantum tunneling from a metastable false to the true vacuum will be corrected by an exponential enhancement factor. Possible implications are discussed.

  19. N=2 gauge theories and degenerate fields of Toda theory

    CERN Document Server

    Kanno, Shoichi; Shiba, Shotaro; Tachikawa, Yuji

    2009-01-01

    We discuss the correspondence between degenerate fields of the W_N algebra and punctures of Gaiotto's description of the Seiberg-Witten curve of N=2 superconformal gauge theories. Namely, we find that the type of degenerate fields of the W_N algebra, with null states at level one, is classified by Young diagrams with N boxes, and that the singular behavior of the Seiberg-Witten curve near the puncture agrees with that of W_N generators. We also find how to translate mass parameters of the gauge theory to the momenta of the Toda theory.

  20. On 2-dimensional topological field theories

    CERN Document Server

    Dumitrescu, Florin

    2010-01-01

    In this paper we give a characterization of 2-dimensional topological field theories over a space $X$ as Frobenius bundles with connections over $LX$, the free loop space of $X$. This is a generalization of the folk theorem stating that 2-dimensional topological field theories (over a point) are described by finite-dimensional commutative Frobenius algebras. In another direction, this result extends the description of 1-dimensional topological field theories over a space $X$ as vector bundles with connections over $X$, cf. \\cite{DST}.

  1. Problem Book in Quantum Field Theory

    CERN Document Server

    Radovanovič, Voja

    2008-01-01

    The Problem Book in Quantum Field Theory contains about 200 problems with solutions or hints that help students to improve their understanding and develop skills necessary for pursuing the subject. It deals with the Klein-Gordon and Dirac equations, classical field theory, canonical quantization of scalar, Dirac and electromagnetic fields, the processes in the lowest order of perturbation theory, renormalization and regularization. The solutions are presented in a systematic and complete manner. The material covered and the level of exposition make the book appropriate for graduate and undergraduate students in physics, as well as for teachers and researchers. The new edition is a corrected paperback edition for students.

  2. A Method on Non-Linear Correction of Broadband LFMCW Signal Utilizing Its Relative Sweep Non-Linear Error

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper presents a method on non-linear correction of broadband LFMCW signal utilizing its relativenonlinear error. The deriving procedure and the results simulated by a computer and tested by a practical system arealso introduced. The method has two obvious advantages compared with the previous methods: (1) Correction has norelation with delay time td and sweep bandwidth B; (2) The inherent non-linear error of VCO has no influence on thecorrection and its last results.

  3. Quantum Field Theory on Noncommutative Spaces

    CERN Document Server

    Szabó, R J

    2003-01-01

    A pedagogical and self-contained introduction to noncommutative quantum field theory is presented, with emphasis on those properties that are intimately tied to string theory and gravity. Topics covered include the Weyl-Wigner correspondence, noncommutative Feynman diagrams, UV/IR mixing, noncommutative Yang-Mills theory on infinite space and on the torus, Morita equivalences of noncommutative gauge theories, twisted reduced models, and an in-depth study of the gauge group of noncommutative Yang-Mills theory. Some of the more mathematical ideas and techniques of noncommutative geometry are also briefly explained.

  4. Ostrogradsky in theories with multiple fields

    Energy Technology Data Exchange (ETDEWEB)

    Rham, Claudia de; Matas, Andrew [CERCA, Department of Physics, Case Western Reserve University,10900 Euclid Ave, Cleveland, OH 44106 (United States)

    2016-06-23

    We review how the (absence of) Ostrogradsky instability manifests itself in theories with multiple fields. It has recently been appreciated that when multiple fields are present, the existence of higher derivatives may not automatically imply the existence of ghosts. We discuss the connection with gravitational theories like massive gravity and beyond Horndeski which manifest higher derivatives in some formulations and yet are free of Ostrogradsky ghost. We also examine an interesting new class of Extended Scalar-Tensor Theories of gravity which has been recently proposed. We show that for a subclass of these theories, the tensor modes are either not dynamical or are infinitely strongly coupled. Among the remaining theories for which the tensor modes are well-defined one counts one new model that is not field-redefinable to Horndeski via a conformal and disformal transformation but that does require the vacuum to break Lorentz invariance. We discuss the implications for the effective field theory of dark energy and the stability of the theory. In particular we find that if we restrict ourselves to the Extended Scalar-Tensor class of theories for which the tensors are well-behaved and the scalar is free from gradient or ghost instabilities on FLRW then we recover Horndeski up to field redefinitions.

  5. Bi-local Fields in Noncommutative Field Theory

    CERN Document Server

    Iso, S; Kitazawa, Y; Iso, Satoshi; Kawai, Hikaru; Kitazawa, Yoshihisa

    2000-01-01

    We propose a bi-local representation in noncommutative field theory. It provides a simple description for high momentum degrees of freedom. It also shows that the low momentum modes can be well approximated by ordinary local fields. Long range interactions are generated in the effective action for the lower momentum modes after integrating out the high momentum bi-local fields. The low momentum modes can be represented by diagonal blocks in the matrix model picture and the high momentum bi-local fields correspond to off-diagonal blocks. This block-block interaction picture simply reproduces the infrared singular behaviors of nonplanar diagrams in noncommutative field theory.

  6. Static compressive strength prediction of open-hole structure based on non-linear shear behavior and micro-mechanics

    Science.gov (United States)

    Li, Wangnan; Cai, Hongneng; Li, Chao

    2014-11-01

    This paper deals with the characterization of the strength of the constituents of carbon fiber reinforced plastic laminate (CFRP), and a prediction of the static compressive strength of open-hole structure of polymer composites. The approach combined with non-linear analysis in macro-level and a linear elastic micromechanical failure analysis in microlevel (non-linear MMF) is proposed to improve the prediction accuracy. A face-centered cubic micromechanics model is constructed to analyze the stresses in fiber and matrix in microlevel. Non-interactive failure criteria are proposed to characterize the strength of fiber and matrix. The non-linear shear behavior of the laminate is studied experimentally, and a novel approach of cubic spline interpolation is used to capture significant non-linear shear behavior of laminate. The user-defined material subroutine UMAT for the non-linear share behavior is developed and combined in the mechanics analysis in the macro-level using the Abaqus Python codes. The failure mechanism and static strength of open-hole compressive (OHC) structure of polymer composites is studied based on non-linear MMF. The UTS50/E51 CFRP is used to demonstrate the application of theory of non-linear MMF.

  7. Non-linear hydrodynamics of axion dark matter: relative velocity effects and "quantum forces"

    CERN Document Server

    Marsh, David J E

    2015-01-01

    The non-linear hydrodynamic equations for axion/scalar field dark matter (DM) in the non-relativistic Madelung-Shcr\\"{o}dinger form are derived in a simple manner, including the effects of universal expansion and Hubble drag. The hydrodynamic equations are used to investigate the relative velocity between axion DM and baryons, and the moving-background perturbation theory (MBPT) derived. Axions massive enough to be all of the DM do not affect the coherence length of the relative velocity, but the MBPT equations are modified by the inclusion of the axion effective sound speed. These MBPT equations are necessary for accurately modelling the effects of axion DM on the formation of the first cosmic structures, and suggest that the 21cm power spectrum could improve constraints on axion mass by up to four orders of magnitude with respect to the current best constraints. A further application of these results uses the "quantum force" analogy to model scalar field gradient energy in a smoothed-particle hydrodynamics ...

  8. Topology Dependence in Lattice Simulations of Non-Linear Pdes on a Mimd Computer

    Science.gov (United States)

    Valin, P.; Goulard, B.; Sanielevici, M.

    We tested the parallelization of explicit schemes for the solution of non-linear classical field theories of complex scalar fields which are capable of simulating hadronic collisions. Our attention focused on collisions in a fractional model with a particularly rich inelastic spectrum of final states. Relativistic collisions of all types were performed by computer on large lattices (64 to 256 sites per dimension). The stability and accuracy of the objects were tested by the use of two other methods of solutions: Pseudo-spectral and semi-implicit. Parallelization of the Fortran code on a 64-transputer MIMD Volvox machine revealed, for certain topologies, communication deadlock and less-than-optimum routing strategies when the number of transputers used was less than the maximum. The observed speedup, for N transputers in an appropriate topology, is shown to scale approximately as N, but the overall gain in execution speed, for physically interesting problems, is a modest 2-3 when compared to state-of-the-art workstations.

  9. The conceptual framework of quantum field theory

    CERN Document Server

    Duncan, Anthony

    2012-01-01

    The book attempts to provide an introduction to quantum field theory emphasizing conceptual issues frequently neglected in more "utilitarian" treatments of the subject. The book is divided into four parts, entitled respectively "Origins", "Dynamics", "Symmetries", and "Scales". The emphasis is conceptual - the aim is to build the theory up systematically from some clearly stated foundational concepts - and therefore to a large extent anti-historical, but two historical Chapters ("Origins") are included to situate quantum field theory in the larger context of modern physical theories. The three remaining sections of the book follow a step by step reconstruction of this framework beginning with just a few basic assumptions: relativistic invariance, the basic principles of quantum mechanics, and the prohibition of physical action at a distance embodied in the clustering principle. The "Dynamics" section of the book lays out the basic structure of quantum field theory arising from the sequential insertion of quan...

  10. Cutkosky Rules for Superstring Field Theory

    CERN Document Server

    Pius, Roji

    2016-01-01

    Superstring field theory expresses the perturbative S-matrix of superstring theory as a sum of Feynman diagrams each of which is manifestly free from ultraviolet divergences. The interaction vertices fall off exponentially for large space-like external momenta making the ultraviolet finiteness property manifest, but blow up exponentially for large time-like external momenta making it impossible to take the integration contours for loop energies to lie along the real axis. This forces us to carry out the integrals over the loop energies by choosing appropriate contours in the complex plane whose ends go to infinity along the imaginary axis but which take complicated form in the interior navigating around the various poles of the propagators. We consider the general class of quantum field theories with this property and prove Cutkosky rules for the amplitudes to all orders in perturbation theory. Besides having applications to string field theory, these results also give an alternative derivation of Cutkosky ru...

  11. Factorization algebras in quantum field theory

    CERN Document Server

    Costello, Kevin

    2017-01-01

    Factorization algebras are local-to-global objects that play a role in classical and quantum field theory which is similar to the role of sheaves in geometry: they conveniently organize complicated information. Their local structure encompasses examples like associative and vertex algebras; in these examples, their global structure encompasses Hochschild homology and conformal blocks. In this first volume, the authors develop the theory of factorization algebras in depth, but with a focus upon examples exhibiting their use in field theory, such as the recovery of a vertex algebra from a chiral conformal field theory and a quantum group from Abelian Chern-Simons theory. Expositions of the relevant background in homological algebra, sheaves and functional analysis are also included, thus making this book ideal for researchers and graduates working at the interface between mathematics and physics.

  12. Quasi-integrability in the modified defocusing non-linear Schr\\"odinger model and dark solitons

    CERN Document Server

    Blas, H

    2015-01-01

    The concept of quasi-integrability has been examined in the context of deformations of the defocusing non-linear Schr\\"odinger model (NLS). Our results show that the quasi-integrability concept, recently discussed in the context of deformations of the sine-Gordon, Bullough-Dodd and focusing NLS models, holds for the modified defocusing NLS model with dark soliton solutions and it exhibits the new feature of an infinite sequence of alternating conserved and asymptotically conserved charges. For the special case of two dark soliton solutions, where the field components are eigenstates of a space-reflection symmetry, the first four and the sequence of even order charges are exactly conserved in the scattering process of the solitons. Such results are obtained through analytical and numerical methods, and employ adaptations of algebraic techniques used in integrable field theories. We perform extensive numerical simulations and consider the scattering of dark solitons for the cubic-quintic NLS model with potentia...

  13. Magnetic fields, special relativity and potential theory elementary electromagnetic theory

    CERN Document Server

    Chirgwin, B H; Kilmister, C W

    1972-01-01

    Magnetic Fields, Special Relativity and Potential Theory is an introduction to electromagnetism, special relativity, and potential theory, with emphasis on the magnetic field of steady currents (magnetostatics). Topics covered range from the origin of the magnetic field and the magnetostatic scalar potential to magnetization, electromagnetic induction and magnetic energy, and the displacement current and Maxwell's equations. This volume is comprised of five chapters and begins with an overview of magnetostatics, followed by a chapter on the methods of solving potential problems drawn from elec

  14. A New Theory of the Electromagnetic Field

    Science.gov (United States)

    Kriske, Richard

    2017-01-01

    This author has previously introduced a new theory of the Electromagnetic Field and its interaction with matter. There was from the start a problem with Einstein's formulation of Invariants and its use in describing The EM field. The photon produced by first varying a stationary Electric field in one observer's reference frame is not the same as a photon produced from varying the a stationary Magnetic Field. The Magnetic field photon is thought of as being ``off the mass shell''. The Quantum information seems to carry with it an ordering of these events. You see this ordering in Wick's theory and in Feynman diagrams. This author is proposing that other fields can vary first in another Observers reference frame, not just the ``Scalar Field'' or the ``Fermion Field'', but many other forms of Energy. If the ``Nuclear Field'' varies first, it results in Quantum information that produces a photon that has the Nuclear Field in it and also the Magnetic Field, this is the strange effect seen in Nuclear Magnetic Resonance. This author proposed that there is a large number of photons with different properties, because of this ordering of events that occurs in Quantum Information. One of these photons is the Neutrino which appears to be a three field photon. This is Kriske's Field Theory.

  15. Austerity and Geometric Structure of Field Theories

    Science.gov (United States)

    Kheyfets, Arkady

    The relation between the austerity idea and the geometric structure of the three basic field theories- -electrodynamics, Yang-Mills theory, and general relativity --is studied. The idea of austerity was originally suggested by J. A. Wheeler in an attempt to formulate the laws of physics in such a way that they would come into being only within "the gates of time" extending from big bang to big crunch, rather than exist from everlasting to everlasting. One of the most significant manifestations of the austerity idea in field theories is thought to be expressed by the boundary of a boundary principle (BBP). The BBP says that almost all content of the field theories can be deduced from the topological identity (PAR-DIFF)(CCIRC)(PAR -DIFF) = 0 used twice, at the 1-2-3-dimensional level (providing the homgeneous field equations), and at the 2-3-4-dimensional level (providing the conservation laws for the source currents). There are some difficulties in this line of thought due to the apparent lack of universality in application of the BBP to the three basic modern field theories--electrodynamics, Yang-Mills theory, and general relativity. This dissertation: (a) analyses the difficulties by means of algebraic topology, integration theory and modern differential geometry based on the concepts of principal bundles and Ehresmann connections; (b) extends the BBP to the unified Kaluza-Klein theory; (c) reformulates the inhomogeneous field equations and the BBP in terms of E. Cartan moment of rotation, in the way universal for all the three theories and compatible with the original austerity idea; (d) underlines the important role of the soldering structure on spacetime, and indicates that the future development of the austerity idea would involve the generalized theories, including the soldering form as a dynamical variable rather than as a background structure.

  16. Electromagnetic Field Theory A Collection of Problems

    CERN Document Server

    Mrozynski, Gerd

    2013-01-01

    After a brief introduction into the theory of electromagnetic fields and the definition of the field quantities the book teaches the analytical solution methods of Maxwell’s equations by means of several characteristic examples. The focus is on static and stationary electric and magnetic fields, quasi stationary fields, and electromagnetic waves. For a deeper understanding, the many depicted field patterns are very helpful. The book offers a collection of problems and solutions which enable the reader to understand and to apply Maxwell’s theory for a broad class of problems including classical static problems right up to waveguide eigenvalue problems. Content Maxwell’s Equations - Electrostatic Fields - Stationary Current Distributions – Magnetic Field of Stationary Currents – Quasi Stationary Fields: Eddy Currents - Electromagnetic Waves Target Groups Advanced Graduate Students in Electrical Engineering, Physics, and related Courses Engineers and Physicists Authors Professor Dr.-Ing. Gerd Mrozynski...

  17. From exceptional field theory to heterotic double field theory via K3

    Science.gov (United States)

    Malek, Emanuel

    2017-03-01

    In this paper we show how to obtain heterotic double field theory from exceptional field theory by breaking half of the supersymmetry. We focus on the SL(5) exceptional field theory and show that when the extended space contains a generalised SU(2)-structure manifold one can define a reduction to obtain the heterotic SO(3 , n) double field theory. In this picture, the reduction on the SU(2)-structure breaks half of the supersymmetry of the exceptional field theory and the gauge group of the heterotic double field theory is given by the embedding tensor of the reduction used. Finally, we study the example of a consistent truncation of M-theory on K3 and recover the duality with the heterotic string on T 3. This suggests that the extended space can be made sense of even in the case of non-toroidal compactifications.

  18. Dynamical symmetry breaking in quantum field theories

    CERN Document Server

    Miransky, Vladimir A

    1993-01-01

    The phenomenon of dynamical symmetry breaking (DSB) in quantum field theory is discussed in a detailed and comprehensive way. The deep connection between this phenomenon in condensed matter physics and particle physics is emphasized. The realizations of DSB in such realistic theories as quantum chromodynamics and electroweak theory are considered. Issues intimately connected with DSB such as critical phenomenona and effective lagrangian approach are also discussed.

  19. Future global non-linear stability of surface symmetric solutions of the Einstein-Vlasov system with a cosmological constant

    CERN Document Server

    Nungesser, Ernesto

    2014-01-01

    We show future global non-linear stability of surface symmetric solutions of the Einstein-Vlasov system with a positive cosmological constant. Estimates of higher derivatives of the metric and the matter terms are obtained using an inductive argument. In a recent research monograph Ringstr\\"{o}m shows future non-linear stability of (not necessarily symmetric) solutions of the Einstein-Vlasov system with a non-linear scalar field if certain local estimates on the geometry and the matter terms are fulfilled. We show that these assumptions are satisfied at late times for the case under consideration here which together with Cauchy stability leads to our main conclusion.

  20. Non-linear states of a positive or negative refraction index material in a cavity with feedback

    Science.gov (United States)

    Mártin, D. A.; Hoyuelos, M.

    2010-06-01

    We study a system composed by a cavity with plane mirrors containing a positive or negative refraction index material with third order effective electric and magnetic non-linearities. The aim of the work is to present a general picture of possible non-linear states in terms of the relevant parameters of the system. The parameters are the ones that appear in a reduced description that has the form of the Lugiato-Lefever equation. This equation is obtained from two coupled non-linear Schrödinger equations for the electric and magnetic field amplitudes.

  1. Butterfly Tachyons in Vacuum String Field Theory

    CERN Document Server

    Matlock, P

    2003-01-01

    We use geometrical conformal field theory methods to investigate tachyon fluctuations about the butterfly projector state in Vacuum String Field Theory. We find that the on-shell condition for the tachyon field is equivalent to the requirement that the quadratic term in the string-field action vanish on shell. This further motivates the interpretation of the butterfly state as a D-brane. We begin a calculation of the tension of the butterfly, and conjecture that this will match the case of the sliver and further strengthen this interpretation.

  2. Field theory for trapped atomic gases

    NARCIS (Netherlands)

    Stoof, H.T.C.

    2001-01-01

    In this course we give a selfcontained introduction to the quantum field theory for trapped atomic gases, using functional methods throughout. We consider both equilibrium and nonequilibrium phenomena. In the equilibrium case, we first derive the appropriate Hartree—Fock theory for the properties of

  3. N = 8 supersingleton quantum field theory

    NARCIS (Netherlands)

    Bergshoeff, Eric; Salam, Abdus; Sezgin, Ergin; Tanii, Yoshiaki

    1988-01-01

    We quantize the N = 8 supersymmetric singleton field theory which is formulated on the boundary of the four-dimensional anti-de Sitter spacetime (ADS4). The theory has rigid OSp(8, 4) symmetry which acts as a superconformal group on the boundary of AdS4. We show that the generators of this symmetry

  4. Computer animations of quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, E. (Centre d' Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique)

    1992-07-01

    A visualization mehtod for quantum field theories based on the transfer matrix formalism is presented. It generates computer animations simulating the time evolution of complex physical systems subject to local Hamiltonians. The method may be used as a means of gaining insight to theories such as QCD, and as an educational tool in explaining high-energy physics. (orig.).

  5. Klein Topological Field Theories from Group Representations

    Directory of Open Access Journals (Sweden)

    Sergey A. Loktev

    2011-07-01

    Full Text Available We show that any complex (respectively real representation of finite group naturally generates a open-closed (respectively Klein topological field theory over complex numbers. We relate the 1-point correlator for the projective plane in this theory with the Frobenius-Schur indicator on the representation. We relate any complex simple Klein TFT to a real division ring.

  6. Field theory for trapped atomic gases

    NARCIS (Netherlands)

    Stoof, H.T.C.

    2001-01-01

    In this course we give a selfcontained introduction to the quantum field theory for trapped atomic gases, using functional methods throughout. We consider both equilibrium and nonequilibrium phenomena. In the equilibrium case, we first derive the appropriate Hartree-Fock theory for the properties of

  7. The conceptual basis of Quantum Field Theory

    NARCIS (Netherlands)

    Hooft, G. 't

    2007-01-01

    Relativistic Quantum Field Theory is a mathematical scheme to describe the sub-atomic particles and forces. The basic starting point is that the axioms of Special Relativity on the one hand and those of Quantum Mechanics on the other, should be combined into one theory. The fundamental ingredients f

  8. Medley in finite temperature field theory

    CERN Document Server

    Pisarski, R D

    1993-01-01

    I discuss three subjects in thermal field theory: why in \\sun gauge theories the \\zn symmetry is broken at high (instead of low) temperature, the possible singularity structure of gauge variant propagators, and the problem of how to compute the viscosity from the Kubo formula.

  9. Renormalizability of effective scalar field theory

    CERN Document Server

    Ball, R D

    1994-01-01

    We present a comprehensive discussion of the consistency of the effective quantum field theory of a single $Z_2$ symmetric scalar field. The theory is constructed from a bare Euclidean action which at a scale much greater than the particle's mass is constrained only by the most basic requirements; stability, finiteness, analyticity, naturalness, and global symmetry. We prove to all orders in perturbation theory the boundedness, convergence, and universality of the theory at low energy scales, and thus that the theory is perturbatively renormalizable in the sense that to a certain precision over a range of such scales it depends only on a finite number of parameters. We then demonstrate that the effective theory has a well defined unitary and causal analytic S--matrix at all energy scales. We also show that redundant terms in the Lagrangian may be systematically eliminated by field redefinitions without changing the S--matrix, and discuss the extent to which effective field theory and analytic S--matrix theory...

  10. Path integral quantization of parametrised field theory

    CERN Document Server

    Varadarajan, M

    2004-01-01

    Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrised field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrised field theory in order to analyse issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is non-trivial and is the analog of the Fradkin- Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrised field theory using key ideas of Schleich and show that our constructions imply the existence of non-standard `Wick rotations' of the standard free scalar field 2 point function. We develop a framework to study the problem of time through computations of scalar field 2 point functions. We illustra...

  11. Gravitation Field Dynamics in Jeans Theory

    Indian Academy of Sciences (India)

    A. A. Stupka

    2008-09-01

    Closed system of time equations for nonrelativistic gravitation field and hydrodynamic medium was obtained by taking into account binary correlations of the field, which is the generalization of Jeans theory. Distribution function of the systemwas built on the basis of the Bogolyubov reduced description method. Calculations were carried out up to the first order of a perturbation theory in interaction. Adiabatic and enthropic types of perturbations were corrected and two new types of perturbations were found.

  12. de Sitter entropy from conformal field theory

    CERN Document Server

    Kabat, D; Kabat, Daniel; Lifschytz, Gilad

    2002-01-01

    We propose that the entropy of de Sitter space can be identified with the mutual entropy of a dual conformal field theory. We argue that unitary time evolution in de Sitter space restricts the total number of excited degrees of freedom to be bounded by the de Sitter entropy, and we give a CFT interpretation of this restriction. We also clarify issues arising from the fact that both de Sitter and anti de Sitter have dual descriptions in terms of conformal field theory.

  13. Classical theory of electric and magnetic fields

    CERN Document Server

    Good, Roland H

    1971-01-01

    Classical Theory of Electric and Magnetic Fields is a textbook on the principles of electricity and magnetism. This book discusses mathematical techniques, calculations, with examples of physical reasoning, that are generally applied in theoretical physics. This text reviews the classical theory of electric and magnetic fields, Maxwell's Equations, Lorentz Force, and Faraday's Law of Induction. The book also focuses on electrostatics and the general methods for solving electrostatic problems concerning images, inversion, complex variable, or separation of variables. The text also explains ma

  14. Continuous point symmetries in Group Field Theories

    CERN Document Server

    Kegeles, Alexander

    2016-01-01

    We discuss the notion of symmetries in non-local field theories characterized by integro-differential equation of motion, from a geometric perspective. We then focus on Group Field Theory (GFT) models of quantum gravity. We provide a general analysis of their continuous point symmetry transformations, including the generalized conservation laws following from them, and apply it to several GFT models of interest to current research.

  15. Covariant Hamilton equations for field theory

    Energy Technology Data Exchange (ETDEWEB)

    Giachetta, Giovanni [Department of Mathematics and Physics, University of Camerino, Camerino (Italy); Mangiarotti, Luigi [Department of Mathematics and Physics, University of Camerino, Camerino (Italy)]. E-mail: mangiaro@camserv.unicam.it; Sardanashvily, Gennadi [Department of Theoretical Physics, Physics Faculty, Moscow State University, Moscow (Russian Federation)]. E-mail: sard@grav.phys.msu.su

    1999-09-24

    We study the relations between the equations of first-order Lagrangian field theory on fibre bundles and the covariant Hamilton equations on the finite-dimensional polysymplectic phase space of covariant Hamiltonian field theory. If a Lagrangian is hyperregular, these equations are equivalent. A degenerate Lagrangian requires a set of associated Hamiltonian forms in order to exhaust all solutions of the Euler-Lagrange equations. The case of quadratic degenerate Lagrangians is studied in detail. (author)

  16. Gravitation Field Dynamics in Jeans Theory

    CERN Document Server

    Stupka, A A

    2016-01-01

    Closed system of time equations for nonrelativistic gravitation field and hydrodynamic medium was obtained by taking into account binary correlations of the field, which is the generalization of Jeans theory. Distribution function of the systemwas built on the basis of the Bogolyubov reduced description method. Calculations were carried out up to the first order of a perturbation theory in interaction. Adiabatic and enthropic types of perturbations were corrected and two new types of perturbations were found.

  17. Massive Neutrinos and the Non-linear Matter Power Spectrum

    CERN Document Server

    Bird, Simeon; Haehnelt, Martin G

    2011-01-01

    We perform an extensive suite of N-body simulations of the matter power spectrum, incorporating massive neutrinos in the range M = 0.15-0.6 eV, probing the non-linear regime at scales k < 10 hMpc-1 at z < 3. We extend the widely used HALOFIT approximation (Smith et al. 2003) to account for the effect of massive neutrinos on the power spectrum. In the strongly non-linear regime HALOFIT systematically over-predicts the suppression due to the free-streaming of the neutrinos. The maximal discrepancy occurs at k \\sim 1hMpc-1, and is at the level of 10% of the total suppression. Most published constraints on neutrino masses based on HALOFIT are not affected, as they rely on data probing the matter power spectrum in the linear or mildly non-linear regime. However, predictions for future galaxy, Lyman-alpha forest and weak lensing surveys extending to more non-linear scales will benefit from the improved approximation to the non-linear matter power spectrum we provide. Our approximation reproduces the induced n...

  18. Analytical exact solution of the non-linear Schroedinger equation

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da [Universidade de Brasilia (UnB), DF (Brazil). Inst. de Fisica. Grupo de Fisica e Matematica

    2011-07-01

    Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)

  19. The Importance of Non-Linearity on Turbulent Fluxes

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2007-01-01

    Two new non-linear models for the turbulent heat fluxes are derived and developed from the transport equation of the scalar passive flux. These models are called as non-linear eddy diffusivity and non-linear scalar flux. The structure of these models is compared with the exact solution which...... is derived from the Cayley-Hamilton theorem and contains a three term-basis plus a non-linear term due to scalar fluxes. In order to study the performance of the model itself, all other turbulent quantities are taken from a DNS channel flow data-base and thus the error source has been minimized. The results...... are compared with the DNS channel flow and good agreement is achieved. It has been shown that the non-linearity parts of the models are important to capture the true path of the streamwise scalar fluxes. It has also been shown that one of model constant should have negative sign rather than positive, which had...

  20. N=3 four dimensional field theories

    CERN Document Server

    García-Etxebarria, Iñaki

    2015-01-01

    We introduce a class of four dimensional field theories constructed by quotienting ordinary $\\mathcal{N}=4$ $U(N)$ SYM by particular combinations of R-symmetry and $SL(2,\\mathbb{Z})$ automorphisms. These theories appear naturally on the worldvolume of D3 branes probing terminal singularities in F-theory, where they can be thought of as non-perturbative generalizations of the O3 plane. We focus on cases preserving only 12 supercharges, where the quotient gives rise to theories with coupling fixed at a value of order one. These constructions posses an unconventional large $N$ limit described by a non-trivial F-theory fibration with base $AdS_5\\times (S^5/\\mathbb{Z}_k)$. Upon reduction on a circle the $\\mathcal{N}=3$ theories flow to well-known $\\mathcal{N}=6$ ABJM theories.

  1. Effective Field Theories and Lattice QCD

    CERN Document Server

    Bernard, C

    2015-01-01

    I describe some of the many connections between lattice QCD and effective field theories, focusing in particular on chiral effective theory, and, to a lesser extent, Symanzik effective theory. I first discuss the ways in which effective theories have enabled and supported lattice QCD calculations. Particular attention is paid to the inclusion of discretization errors, for a variety of lattice QCD actions, into chiral effective theory. Several other examples of the usefulness of chiral perturbation theory, including the encoding of partial quenching and of twisted boundary conditions, are also described. In the second part of the talk, I turn to results from lattice QCD for the low energy constants of the two- and three-flavor chiral theories. I concentrate here on mesonic quantities, but the dependence of the nucleon mass on the pion mass is also discussed. Finally I describe some recent preliminary lattice QCD calculations by the MILC Collaboration relating to the three-flavor chiral limit.

  2. Quantum field theory in a semiotic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Dosch, H.G. [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Mueller, V.F. [Technische Univ. Kaiserslautern (Germany). Fachbereich Physik; Sieroka, N. [Zurich Univ. (Switzerland)

    2005-07-01

    Viewing physical theories as symbolic constructions came to the fore in the middle of the nineteenth century with the emancipation of the classical theory of the electromagnetic field from mechanics; most notably this happened through the work of Helmholtz, Hertz, Poincare, and later Weyl. The epistemological problems that nourished this development are today highlighted within quantum field theory. The present essay starts off with a concise and non-technical outline of the firmly based aspects of relativistic quantum field theory, i.e. the very successful description of subnuclear phenomena. The particular methods, by which these different aspects have to be accessed, then get described as distinct facets of quantum field theory. The authors show how these different facets vary with respect to the relation between quantum fields and associated particles. Thus, by emphasising the respective role of various basic concepts involved, the authors claim that only a very general epistemic approach can properly account for this diversity - an account they trace back to the philosophical writings of the aforementioned physicists and mathematicians. Finally, what they call their semiotic perspective on quantum field theory gets related to recent discussions within the philosophy of science and turns out to act as a counterbalance to, for instance, structural realism. (orig.)

  3. Metal-organic frameworks as competitive materials for non-linear optics.

    Science.gov (United States)

    Mingabudinova, L R; Vinogradov, V V; Milichko, V A; Hey-Hawkins, E; Vinogradov, A V

    2016-09-26

    The last five years have witnessed a huge breakthrough in the creation and the study of the properties of a new class of compounds - metamaterials. The next stage of this technological revolution will be the development of active, controllable, and non-linear metamaterials, surpassing natural media as platforms for optical data processing and quantum information applications. However, scientists are constantly faced with the need to find new methods that can ensure the formation of quantum and non-linear metamaterials with higher resolution. One such method of producing metamaterials in the future, which will provide scalability and availability, is chemical synthesis. Meanwhile, the chemical synthesis of organized 3D structures with a period of a few nanometers and a size of up to a few millimeters is not an easy task and is yet to be resolved. The most promising avenue seems to be the use of highly porous structures based on metal-organic frameworks that have demonstrated their unique properties in the field of non-linear optics (NLO) over the past three years. Thus, the aim of this review is to examine current progress and the possibilities of using metal-organic frameworks in the field of non-linear optics as chemically obtained metamaterials of the future. The review begins by presenting the theoretical principles of physical phenomena represented by mathematical descriptions for clarity. Major attention is paid to the second harmonic generation (SHG) effect. In this section we compare inorganic single crystals, which are most commonly used to study the effect in question, to organic materials, which also possess the required properties. Based on these data, we present a rationale for the possibility of studying the non-linear optical properties of metal-organic structures as well as describing the use of synthetic approaches and the difficulties associated with them. The second part of the review explicitly acquaints the reader with a new class of materials

  4. Space-Time Noncommutative Field Theories And Unitarity

    OpenAIRE

    Gomis, Jaume; Mehen, Thomas

    2000-01-01

    We study the perturbative unitarity of noncommutative scalar field theories. Field theories with space-time noncommutativity do not have a unitary S-matrix. Field theories with only space noncommutativity are perturbatively unitary. This can be understood from string theory, since space noncommutative field theories describe a low energy limit of string theory in a background magnetic field. On the other hand, there is no regime in which space-time noncommutative field theory is an appropriat...

  5. The Non-Linear Power Spectrum of the Lyman Alpha Forest

    CERN Document Server

    Arinyo-i-Prats, Andreu; Viel, Matteo; Cen, Renyue

    2015-01-01

    The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at $z\\sim 2.3$, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyman Alpha transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate the comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyman Alpha forest and provide a better physical interpretation of ...

  6. Discrete Scalar Quantum Field Theory

    CERN Document Server

    Gudder, Stan

    2016-01-01

    We begin with a description of spacetime by a 4-dimensional cubic lattice $\\sscript$. It follows from this framework that the the speed of light is the only nonzero instantaneous speed for a particle. The dual space $\\sscripthat$ corresponds to a cubic lattice of energy-momentum. This description implies that there is a discrete set of possible particle masses. We then define discrete scalar quantum fields on $\\sscript$. These fields are employed to define interaction Hamiltonians and scattering operators. Although the scattering operator $S$ cannot be computed exactly, approximations are possible. Whether $S$ is unitary is an unsolved problem. Besides the definitions of these operators, our main assumption is conservation of energy-momentum for a scattering process. This article concludes with various examples of perturbation approximations. These include simplified versions of electron-electron and electron-proton scattering as well as simple decay processes. We also define scattering cross-sections, decay ...

  7. Quantum algorithms for quantum field theories.

    Science.gov (United States)

    Jordan, Stephen P; Lee, Keith S M; Preskill, John

    2012-06-01

    Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.

  8. Nilpotent weights in conformal field theory

    Directory of Open Access Journals (Sweden)

    S. Rouhani

    2001-12-01

    Full Text Available   Logarithmic conformal field theory can be obtained using nilpotent weights. Using such scale transformations various properties of the theory were derived. The derivation of four point function needs a knowledge of singular vectors which is derived by including nilpotent variables into the Kac determinant. This leads to inhomogeneous hypergeometric functions. Finally we consider the theory near a boundary and also introduce the concept of superfields where a multiplet of conformal fields are dealt with together. This leads to the OPE of superfields and a logarithmic partner for the energy momentum tensor.

  9. Noncommutative Time in Quantum Field Theory

    CERN Document Server

    Salminen, Tapio

    2011-01-01

    We analyze, starting from first principles, the quantization of field theories, in order to find out to which problems a noncommutative time would possibly lead. We examine the problem in the interaction picture (Tomonaga-Schwinger equation), the Heisenberg picture (Yang-Feldman-K\\"all\\'{e}n equation) and the path integral approach. They all indicate inconsistency when time is taken as a noncommutative coordinate. The causality issue appears as the key aspect, while the unitarity problem is subsidiary. These results are consistent with string theory, which does not admit a time-space noncommutative quantum field theory as its low-energy limit, with the exception of light-like noncommutativity.

  10. On level crossing in conformal field theories

    CERN Document Server

    Korchemsky, G P

    2015-01-01

    We study the properties of operators in a unitary conformal field theory whose scaling dimensions approach each other for some values of the parameters and satisfy von Neumann-Wigner non-crossing rule. We argue that the scaling dimensions of such operators and their OPE coefficients have a universal scaling behavior in the vicinity of the crossing point. We demonstrate that the obtained relations are in a good agreement with the known examples of the level-crossing phenomenon in maximally supersymmetric $\\mathcal N=4$ Yang-Mills theory, three-dimensional conformal field theories and QCD.

  11. Simulation of non-linear rf losses derived from characteristic Nb topography

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Charles E. [JLAB; Xu, Chen; Kelley, Michael [W& M. JLAB

    2013-09-01

    A simplified model has been developed to simulate non-linear RF losses on Nb surfaces exclusively due to topographical enhancement of surface magnetic fields. If local sharp edges are small enough, at locations where local surface fields exceed Hc, small volumes of material may become normal conducting without thermal leading to quench. These small volumes of normal material yield increases in the effective surface resistance of the Nb. Using topographic data from typical BCP?d and EP?d fine grain niobium surfaces, we have simulated field-dependent losses and found that when extrapolated to resulting cavity performance, these losses correspond well to characteristic BCP/EP high field Q0 performance differences for fine grain Nb. We describe the structure of the model, its limitations, and the effects of this type of non-linear loss contribution on SRF cavities.

  12. Semi-Analytical Solution for Stresses and Displacements in a Tunnel Excavated in Transversely Isotropic Formation with Non-Linear Behavior

    Science.gov (United States)

    Vu, The Manh; Sulem, Jean; Subrin, Didier; Monin, Nathalie

    2013-03-01

    A semi-analytical solution based on the transfer matrix technique is proposed to analyze the stresses and displacements in a two-dimensional circular opening excavated in transversely isotropic formation with non-linear behavior. A non-isotropic far field can be accounted for and the process of excavation is simulated by progressive reduction of the internal radial stress. A hyperbolic stress-strain law is proposed to take into account the non-linear behavior of the rock. The model contains seven independent parameters corresponding to the five elastic constants of an elastic material with transverse isotropy and to the friction coefficient and cohesion along the parallel joints (weakness planes). This approach is based on the discretization of the space into concentric rings. It requires the establishment of elementary solutions corresponding to the stress and displacement fields inside each ring for given conditions at its boundaries. These solutions, based on complex variable theory, are obtained in the form of infinite series. The appropriate number of terms to be kept for acceptable approximation is discussed. This non-linear model is applied to back analyze the convergence measurements of Saint-Martin-la-Porte access gallery. Short-term and long-term ground parameters are evaluated.

  13. Two-parameter non-linear spacetime perturbations gauge transformations and gauge invariance

    CERN Document Server

    Bruni, M; Sopuerta, C F; Bruni, Marco; Gualtieri, Leonardo; Sopuerta, Carlos F.

    2003-01-01

    An implicit fundamental assumption in relativistic perturbation theory is that there exists a parametric family of spacetimes that can be Taylor expanded around a background. The choice of the latter is crucial to obtain a manageable theory, so that it is sometime convenient to construct a perturbative formalism based on two (or more) parameters. The study of perturbations of rotating stars is a good example: in this case one can treat the stationary axisymmetric star using a slow rotation approximation (expansion in the angular velocity Omega), so that the background is spherical. Generic perturbations of the rotating star (say parametrized by lambda) are then built on top of the axisymmetric perturbations in Omega. Clearly, any interesting physics requires non-linear perturbations, as at least terms lambda Omega need to be considered. In this paper we analyse the gauge dependence of non-linear perturbations depending on two parameters, derive explicit higher order gauge transformation rules, and define gaug...

  14. Anticipation and the Non-linear Dynamics of Meaning-Processing in Social Systems

    CERN Document Server

    Leydesdorff, Loet

    2009-01-01

    Social order does not exist as a stable phenomenon, but can be considered as "an order of reproduced expectations." When anticipations operate upon one another, they can generate a non-linear dynamics which processes meaning. Although specific meanings can be stabilized, for example in social institutions, all meaning arises from a global horizon of possible meanings. Using Luhmann's (1984) social systems theory and Rosen's (1985) theory of anticipatory systems, I submit algorithms for modeling the non-linear dynamics of meaning in social systems. First, a self-referential system can use a model of itself for the anticipation. Under the condition of functional differentiation, the social system can be expected to entertain a set of models; each model can also contain a model of the other models. Two anticipatory mechanisms are then possible: a transversal one between the models, and a longitudinal one providing the system with a variety of meanings. A system containing two anticipatory mechanisms can become h...

  15. An algorithm for earthwork allocation considering non-linear factors

    Institute of Scientific and Technical Information of China (English)

    WANG Ren-chao; LIU Jin-fei

    2008-01-01

    For solving the optimization model of earthwork allocation considering non-linear factors, a hybrid al-gorithm combined with the ant algorithm (AA) and particle swarm optimization (PSO) is proposed in this pa-per. Then the proposed method and the LP method are used respectively in solving a linear allocation model of a high rockfill dam project. Results obtained by these two methods are compared each other. It can be conclu-ded that the solution got by the proposed method is extremely approximate to the analytic solution of LP method. The superiority of the proposed method over the LP method in solving a non-linear allocation model is illustrated by a non-linear case. Moreover, further researches on improvement of the algorithm and the allocation model are addressed.

  16. Non-linear behaviour of large-area avalanche photodiodes

    CERN Document Server

    Fernandes, L M P; Monteiro, C M B; Santos, J M; Morgado, R E

    2002-01-01

    The characterisation of photodiodes used as photosensors requires a determination of the number of electron-hole pairs produced by scintillation light. One method involves comparing signals produced by X-ray absorptions occurring directly in the avalanche photodiode with the light signals. When the light is derived from light-emitting diodes in the 400-600 nm range, significant non-linear behaviour is reported. In the present work, we extend the study of the linear behaviour to large-area avalanche photodiodes, of Advanced Photonix, used as photosensors of the vacuum ultraviolet (VUV) scintillation light produced by argon (128 nm) and xenon (173 nm). We observed greater non-linearities in the avalanche photodiodes for the VUV scintillation light than reported previously for visible light, but considerably less than the non-linearities observed in other commercially available avalanche photodiodes.

  17. Non-linear system identification in flow-induced vibration

    Energy Technology Data Exchange (ETDEWEB)

    Spanos, P.D.; Zeldin, B.A. [Rice Univ., Houston, TX (United States); Lu, R. [Hudson Engineering Corp., Houston, TX (United States)

    1996-12-31

    The paper introduces a method of identification of non-linear systems encountered in marine engineering applications. The non-linearity is accounted for by a combination of linear subsystems and known zero-memory non-linear transformations; an equivalent linear multi-input-single-output (MISO) system is developed for the identification problem. The unknown transfer functions of the MISO system are identified by assembling a system of linear equations in the frequency domain. This system is solved by performing the Cholesky decomposition of a related matrix. It is shown that the proposed identification method can be interpreted as a {open_quotes}Gram-Schmidt{close_quotes} type of orthogonal decomposition of the input-output quantities of the equivalent MISO system. A numerical example involving the identification of unknown parameters of flow (ocean wave) induced forces on offshore structures elucidates the applicability of the proposed method.

  18. Non-linear Growth Models in Mplus and SAS.

    Science.gov (United States)

    Grimm, Kevin J; Ram, Nilam

    2009-10-01

    Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included.

  19. Change-Of-Bases Abstractions for Non-Linear Systems

    CERN Document Server

    Sankaranarayanan, Sriram

    2012-01-01

    We present abstraction techniques that transform a given non-linear dynamical system into a linear system or an algebraic system described by polynomials of bounded degree, such that, invariant properties of the resulting abstraction can be used to infer invariants for the original system. The abstraction techniques rely on a change-of-basis transformation that associates each state variable of the abstract system with a function involving the state variables of the original system. We present conditions under which a given change of basis transformation for a non-linear system can define an abstraction. Furthermore, the techniques developed here apply to continuous systems defined by Ordinary Differential Equations (ODEs), discrete systems defined by transition systems and hybrid systems that combine continuous as well as discrete subsystems. The techniques presented here allow us to discover, given a non-linear system, if a change of bases transformation involving degree-bounded polynomials yielding an alge...

  20. Intersection Theory, Integrable Hierarchies and Topological Field Theory

    OpenAIRE

    Dijkgraaf, Robbert

    1992-01-01

    In these lecture notes we review the various relations between intersection theory on the moduli space of Riemann surfaces, integrable hierarchies of KdV type, matrix models, and topological quantum field theories. We explain in particular why matrix integrals of the type considered by Kontsevich naturally appear as tau-functions associated to minimal models. Our starting point is the extremely simple form of the string equation for the topological (p,1) models, where the so-called Baker-Akhi...