WorldWideScience

Sample records for non-linear curve fitting

  1. A non-iterative method for fitting decay curves with background

    International Nuclear Information System (INIS)

    Mukoyama, T.

    1982-01-01

    A non-iterative method for fitting a decay curve with background is presented. The sum of an exponential function and a constant term is linearized by the use of the difference equation and parameters are determined by the standard linear least-squares fitting. The validity of the present method has been tested against pseudo-experimental data. (orig.)

  2. A versatile curve-fit model for linear to deeply concave rank abundance curves

    NARCIS (Netherlands)

    Neuteboom, J.H.; Struik, P.C.

    2005-01-01

    A new, flexible curve-fit model for linear to concave rank abundance curves was conceptualized and validated using observational data. The model links the geometric-series model and log-series model and can also fit deeply concave rank abundance curves. The model is based ¿ in an unconventional way

  3. From Curve Fitting to Machine Learning

    CERN Document Server

    Zielesny, Achim

    2011-01-01

    The analysis of experimental data is at heart of science from its beginnings. But it was the advent of digital computers that allowed the execution of highly non-linear and increasingly complex data analysis procedures - methods that were completely unfeasible before. Non-linear curve fitting, clustering and machine learning belong to these modern techniques which are a further step towards computational intelligence. The goal of this book is to provide an interactive and illustrative guide to these topics. It concentrates on the road from two dimensional curve fitting to multidimensional clus

  4. Non-linear least squares curve fitting of a simple theoretical model to radioimmunoassay dose-response data using a mini-computer

    International Nuclear Information System (INIS)

    Wilkins, T.A.; Chadney, D.C.; Bryant, J.; Palmstroem, S.H.; Winder, R.L.

    1977-01-01

    Using the simple univalent antigen univalent-antibody equilibrium model the dose-response curve of a radioimmunoassay (RIA) may be expressed as a function of Y, X and the four physical parameters of the idealised system. A compact but powerful mini-computer program has been written in BASIC for rapid iterative non-linear least squares curve fitting and dose interpolation with this function. In its simplest form the program can be operated in an 8K byte mini-computer. The program has been extensively tested with data from 10 different assay systems (RIA and CPBA) for measurement of drugs and hormones ranging in molecular size from thyroxine to insulin. For each assay system the results have been analysed in terms of (a) curve fitting biases and (b) direct comparison with manual fitting. In all cases the quality of fitting was remarkably good in spite of the fact that the chemistry of each system departed significantly from one or more of the assumptions implicit in the model used. A mathematical analysis of departures from the model's principal assumption has provided an explanation for this somewhat unexpected observation. The essential features of this analysis are presented in this paper together with the statistical analyses of the performance of the program. From these and the results obtained to date in the routine quality control of these 10 assays, it is concluded that the method of curve fitting and dose interpolation presented in this paper is likely to be of general applicability. (orig.) [de

  5. Non-linear modelling to describe lactation curve in Gir crossbred cows

    Directory of Open Access Journals (Sweden)

    Yogesh C. Bangar

    2017-02-01

    Full Text Available Abstract Background The modelling of lactation curve provides guidelines in formulating farm managerial practices in dairy cows. The aim of the present study was to determine the suitable non-linear model which most accurately fitted to lactation curves of five lactations in 134 Gir crossbred cows reared in Research-Cum-Development Project (RCDP on Cattle farm, MPKV (Maharashtra. Four models viz. gamma-type function, quadratic model, mixed log function and Wilmink model were fitted to each lactation separately and then compared on the basis of goodness of fit measures viz. adjusted R2, root mean square error (RMSE, Akaike’s Informaion Criteria (AIC and Bayesian Information Criteria (BIC. Results In general, highest milk yield was observed in fourth lactation whereas it was lowest in first lactation. Among the models investigated, mixed log function and gamma-type function provided best fit of the lactation curve of first and remaining lactations, respectively. Quadratic model gave least fit to lactation curve in almost all lactations. Peak yield was observed as highest and lowest in fourth and first lactation, respectively. Further, first lactation showed highest persistency but relatively higher time to achieve peak yield than other lactations. Conclusion Lactation curve modelling using gamma-type function may be helpful to setting the management strategies at farm level, however, modelling must be optimized regularly before implementing them to enhance productivity in Gir crossbred cows.

  6. Non-linear actions of physiological agents: Finite disarrangements elicit fitness benefits.

    Science.gov (United States)

    Sedlic, Filip; Kovac, Zdenko

    2017-10-01

    Finite disarrangements of important (vital) physiological agents and nutrients can induce plethora of beneficial effects, exceeding mere attenuation of the specific stress. Such response to disrupted homeostasis appears to be universally conserved among species. The underlying mechanism of improved fitness and longevity, when physiological agents act outside their normal range is similar to hormesis, a phenomenon whereby toxins elicit beneficial effects at low doses. Due to similarity with such non-linear response to toxins described with J-shaped curve, we have coined a new term "mirror J-shaped curves" for non-linear response to finite disarrangement of physiological agents. Examples from the clinical trials and basic research are provided, along with the unifying mechanisms that tie classical non-linear response to toxins with the non-linear response to physiological agents (glucose, oxygen, osmolarity, thermal energy, calcium, body mass, calorie intake and exercise). Reactive oxygen species and cytosolic calcium seem to be common triggers of signaling pathways that result in these beneficial effects. Awareness of such phenomena and exploring underlying mechanisms can help physicians in their everyday practice. It can also benefit researchers when designing studies and interpreting growing number of scientific data showing non-linear responses to physiological agents. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Non-linear Behavior of Curved Sandwich Panels

    DEFF Research Database (Denmark)

    Berggreen, Carl Christian; Jolma, P.; Karjalainen, J. P.

    2003-01-01

    In this paper the non-linear behavior of curved sandwich panels is investigated both numerically and experimentally. Focus is on various aspects of finite element modeling and calculation procedures. A simply supported, singly curved, CFRP/PVC sandwich panel is analyzed under uniform pressure loa...

  8. Non-linear Growth Models in Mplus and SAS

    Science.gov (United States)

    Grimm, Kevin J.; Ram, Nilam

    2013-01-01

    Non-linear growth curves or growth curves that follow a specified non-linear function in time enable researchers to model complex developmental patterns with parameters that are easily interpretable. In this paper we describe how a variety of sigmoid curves can be fit using the Mplus structural modeling program and the non-linear mixed-effects modeling procedure NLMIXED in SAS. Using longitudinal achievement data collected as part of a study examining the effects of preschool instruction on academic gain we illustrate the procedures for fitting growth models of logistic, Gompertz, and Richards functions. Brief notes regarding the practical benefits, limitations, and choices faced in the fitting and estimation of such models are included. PMID:23882134

  9. Modelling lactation curve for milk fat to protein ratio in Iranian buffaloes (Bubalus bubalis) using non-linear mixed models.

    Science.gov (United States)

    Hossein-Zadeh, Navid Ghavi

    2016-08-01

    The aim of this study was to compare seven non-linear mathematical models (Brody, Wood, Dhanoa, Sikka, Nelder, Rook and Dijkstra) to examine their efficiency in describing the lactation curves for milk fat to protein ratio (FPR) in Iranian buffaloes. Data were 43 818 test-day records for FPR from the first three lactations of Iranian buffaloes which were collected on 523 dairy herds in the period from 1996 to 2012 by the Animal Breeding Center of Iran. Each model was fitted to monthly FPR records of buffaloes using the non-linear mixed model procedure (PROC NLMIXED) in SAS and the parameters were estimated. The models were tested for goodness of fit using Akaike's information criterion (AIC), Bayesian information criterion (BIC) and log maximum likelihood (-2 Log L). The Nelder and Sikka mixed models provided the best fit of lactation curve for FPR in the first and second lactations of Iranian buffaloes, respectively. However, Wood, Dhanoa and Sikka mixed models provided the best fit of lactation curve for FPR in the third parity buffaloes. Evaluation of first, second and third lactation features showed that all models, except for Dijkstra model in the third lactation, under-predicted test time at which daily FPR was minimum. On the other hand, minimum FPR was over-predicted by all equations. Evaluation of the different models used in this study indicated that non-linear mixed models were sufficient for fitting test-day FPR records of Iranian buffaloes.

  10. Non-linear actions of physiological agents: Finite disarrangements elicit fitness benefits

    Directory of Open Access Journals (Sweden)

    Filip Sedlic

    2017-10-01

    Full Text Available Finite disarrangements of important (vital physiological agents and nutrients can induce plethora of beneficial effects, exceeding mere attenuation of the specific stress. Such response to disrupted homeostasis appears to be universally conserved among species. The underlying mechanism of improved fitness and longevity, when physiological agents act outside their normal range is similar to hormesis, a phenomenon whereby toxins elicit beneficial effects at low doses. Due to similarity with such non-linear response to toxins described with J-shaped curve, we have coined a new term “mirror J-shaped curves” for non-linear response to finite disarrangement of physiological agents. Examples from the clinical trials and basic research are provided, along with the unifying mechanisms that tie classical non-linear response to toxins with the non-linear response to physiological agents (glucose, oxygen, osmolarity, thermal energy, calcium, body mass, calorie intake and exercise. Reactive oxygen species and cytosolic calcium seem to be common triggers of signaling pathways that result in these beneficial effects. Awareness of such phenomena and exploring underlying mechanisms can help physicians in their everyday practice. It can also benefit researchers when designing studies and interpreting growing number of scientific data showing non-linear responses to physiological agents.

  11. Predicting Madura cattle growth curve using non-linear model

    Science.gov (United States)

    Widyas, N.; Prastowo, S.; Widi, T. S. M.; Baliarti, E.

    2018-03-01

    Madura cattle is Indonesian native. It is a composite breed that has undergone hundreds of years of selection and domestication to reach nowadays remarkable uniformity. Crossbreeding has reached the isle of Madura and the Madrasin, a cross between Madura cows and Limousine semen emerged. This paper aimed to compare the growth curve between Madrasin and one type of pure Madura cows, the common Madura cattle (Madura) using non-linear models. Madura cattles are kept traditionally thus reliable records are hardly available. Data were collected from small holder farmers in Madura. Cows from different age classes (5years) were observed, and body measurements (chest girth, body length and wither height) were taken. In total 63 Madura and 120 Madrasin records obtained. Linear model was built with cattle sub-populations and age as explanatory variables. Body weights were estimated based on the chest girth. Growth curves were built using logistic regression. Results showed that within the same age, Madrasin has significantly larger body compared to Madura (plogistic models fit better for Madura and Madrasin cattle data; with the estimated MSE for these models were 39.09 and 759.28 with prediction accuracy of 99 and 92% for Madura and Madrasin, respectively. Prediction of growth curve using logistic regression model performed well in both types of Madura cattle. However, attempts to administer accurate data on Madura cattle are necessary to better characterize and study these cattle.

  12. Fitting sediment rating curves using regression analysis: a case study of Russian Arctic rivers

    Directory of Open Access Journals (Sweden)

    N. I. Tananaev

    2015-03-01

    Full Text Available Published suspended sediment data for Arctic rivers is scarce. Suspended sediment rating curves for three medium to large rivers of the Russian Arctic were obtained using various curve-fitting techniques. Due to the biased sampling strategy, the raw datasets do not exhibit log-normal distribution, which restricts the applicability of a log-transformed linear fit. Non-linear (power model coefficients were estimated using the Levenberg-Marquardt, Nelder-Mead and Hooke-Jeeves algorithms, all of which generally showed close agreement. A non-linear power model employing the Levenberg-Marquardt parameter evaluation algorithm was identified as an optimal statistical solution of the problem. Long-term annual suspended sediment loads estimated using the non-linear power model are, in general, consistent with previously published results.

  13. Fitting sediment rating curves using regression analysis: a case study of Russian Arctic rivers

    Science.gov (United States)

    Tananaev, N. I.

    2015-03-01

    Published suspended sediment data for Arctic rivers is scarce. Suspended sediment rating curves for three medium to large rivers of the Russian Arctic were obtained using various curve-fitting techniques. Due to the biased sampling strategy, the raw datasets do not exhibit log-normal distribution, which restricts the applicability of a log-transformed linear fit. Non-linear (power) model coefficients were estimated using the Levenberg-Marquardt, Nelder-Mead and Hooke-Jeeves algorithms, all of which generally showed close agreement. A non-linear power model employing the Levenberg-Marquardt parameter evaluation algorithm was identified as an optimal statistical solution of the problem. Long-term annual suspended sediment loads estimated using the non-linear power model are, in general, consistent with previously published results.

  14. Application of numerical methods in spectroscopy : fitting of the curve of thermoluminescence

    International Nuclear Information System (INIS)

    RANDRIAMANALINA, S.

    1999-01-01

    The method of non linear least squares is one of the mathematical tools widely employed in spectroscopy, it is used for the determination of parameters of a model. In other hand, the spline function is among fitting functions that introduce the smallest error. It is used for the calculation of the area under the curve. We present an application of these methods, with the details of the corresponding algorithms, to the fitting of the thermoluminescence curve. [fr

  15. A direct method to solve optimal knots of B-spline curves: An application for non-uniform B-spline curves fitting.

    Directory of Open Access Journals (Sweden)

    Van Than Dung

    Full Text Available B-spline functions are widely used in many industrial applications such as computer graphic representations, computer aided design, computer aided manufacturing, computer numerical control, etc. Recently, there exist some demands, e.g. in reverse engineering (RE area, to employ B-spline curves for non-trivial cases that include curves with discontinuous points, cusps or turning points from the sampled data. The most challenging task in these cases is in the identification of the number of knots and their respective locations in non-uniform space in the most efficient computational cost. This paper presents a new strategy for fitting any forms of curve by B-spline functions via local algorithm. A new two-step method for fast knot calculation is proposed. In the first step, the data is split using a bisecting method with predetermined allowable error to obtain coarse knots. Secondly, the knots are optimized, for both locations and continuity levels, by employing a non-linear least squares technique. The B-spline function is, therefore, obtained by solving the ordinary least squares problem. The performance of the proposed method is validated by using various numerical experimental data, with and without simulated noise, which were generated by a B-spline function and deterministic parametric functions. This paper also discusses the benchmarking of the proposed method to the existing methods in literature. The proposed method is shown to be able to reconstruct B-spline functions from sampled data within acceptable tolerance. It is also shown that, the proposed method can be applied for fitting any types of curves ranging from smooth ones to discontinuous ones. In addition, the method does not require excessive computational cost, which allows it to be used in automatic reverse engineering applications.

  16. Quantifying and Reducing Curve-Fitting Uncertainty in Isc

    Energy Technology Data Exchange (ETDEWEB)

    Campanelli, Mark; Duck, Benjamin; Emery, Keith

    2015-06-14

    Current-voltage (I-V) curve measurements of photovoltaic (PV) devices are used to determine performance parameters and to establish traceable calibration chains. Measurement standards specify localized curve fitting methods, e.g., straight-line interpolation/extrapolation of the I-V curve points near short-circuit current, Isc. By considering such fits as statistical linear regressions, uncertainties in the performance parameters are readily quantified. However, the legitimacy of such a computed uncertainty requires that the model be a valid (local) representation of the I-V curve and that the noise be sufficiently well characterized. Using more data points often has the advantage of lowering the uncertainty. However, more data points can make the uncertainty in the fit arbitrarily small, and this fit uncertainty misses the dominant residual uncertainty due to so-called model discrepancy. Using objective Bayesian linear regression for straight-line fits for Isc, we investigate an evidence-based method to automatically choose data windows of I-V points with reduced model discrepancy. We also investigate noise effects. Uncertainties, aligned with the Guide to the Expression of Uncertainty in Measurement (GUM), are quantified throughout.

  17. Fitting and forecasting coupled dark energy in the non-linear regime

    Energy Technology Data Exchange (ETDEWEB)

    Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian [Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, Heidelberg, 69120 Germany (Germany); Baldi, Marco, E-mail: casas@thphys.uni-heidelberg.de, E-mail: l.amendola@thphys.uni-heidelberg.de, E-mail: mail@marcobaldi.it, E-mail: v.pettorino@thphys.uni-heidelberg.de, E-mail: vollmer@thphys.uni-heidelberg.de [Dipartimento di Fisica e Astronomia, Alma Mater Studiorum Università di Bologna, viale Berti Pichat, 6/2, Bologna, I-40127 Italy (Italy)

    2016-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β{sup 2}, with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications.

  18. Fitting and forecasting coupled dark energy in the non-linear regime

    International Nuclear Information System (INIS)

    Casas, Santiago; Amendola, Luca; Pettorino, Valeria; Vollmer, Adrian; Baldi, Marco

    2016-01-01

    We consider cosmological models in which dark matter feels a fifth force mediated by the dark energy scalar field, also known as coupled dark energy. Our interest resides in estimating forecasts for future surveys like Euclid when we take into account non-linear effects, relying on new fitting functions that reproduce the non-linear matter power spectrum obtained from N-body simulations. We obtain fitting functions for models in which the dark matter-dark energy coupling is constant. Their validity is demonstrated for all available simulations in the redshift range 0z=–1.6 and wave modes below 0k=1 h/Mpc. These fitting formulas can be used to test the predictions of the model in the non-linear regime without the need for additional computing-intensive N-body simulations. We then use these fitting functions to perform forecasts on the constraining power that future galaxy-redshift surveys like Euclid will have on the coupling parameter, using the Fisher matrix method for galaxy clustering (GC) and weak lensing (WL). We find that by using information in the non-linear power spectrum, and combining the GC and WL probes, we can constrain the dark matter-dark energy coupling constant squared, β 2 , with precision smaller than 4% and all other cosmological parameters better than 1%, which is a considerable improvement of more than an order of magnitude compared to corresponding linear power spectrum forecasts with the same survey specifications

  19. Quantifying and Reducing Curve-Fitting Uncertainty in Isc: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Campanelli, Mark; Duck, Benjamin; Emery, Keith

    2015-09-28

    Current-voltage (I-V) curve measurements of photovoltaic (PV) devices are used to determine performance parameters and to establish traceable calibration chains. Measurement standards specify localized curve fitting methods, e.g., straight-line interpolation/extrapolation of the I-V curve points near short-circuit current, Isc. By considering such fits as statistical linear regressions, uncertainties in the performance parameters are readily quantified. However, the legitimacy of such a computed uncertainty requires that the model be a valid (local) representation of the I-V curve and that the noise be sufficiently well characterized. Using more data points often has the advantage of lowering the uncertainty. However, more data points can make the uncertainty in the fit arbitrarily small, and this fit uncertainty misses the dominant residual uncertainty due to so-called model discrepancy. Using objective Bayesian linear regression for straight-line fits for Isc, we investigate an evidence-based method to automatically choose data windows of I-V points with reduced model discrepancy. We also investigate noise effects. Uncertainties, aligned with the Guide to the Expression of Uncertainty in Measurement (GUM), are quantified throughout.

  20. CURVE LSFIT, Gamma Spectrometer Calibration by Interactive Fitting Method

    International Nuclear Information System (INIS)

    Olson, D.G.

    1992-01-01

    1 - Description of program or function: CURVE and LSFIT are interactive programs designed to obtain the best data fit to an arbitrary curve. CURVE finds the type of fitting routine which produces the best curve. The types of fitting routines available are linear regression, exponential, logarithmic, power, least squares polynomial, and spline. LSFIT produces a reliable calibration curve for gamma ray spectrometry by using the uncertainty value associated with each data point. LSFIT is intended for use where an entire efficiency curve is to be made starting at 30 KeV and continuing to 1836 KeV. It creates calibration curves using up to three least squares polynomial fits to produce the best curve for photon energies above 120 KeV and a spline function to combine these fitted points with a best fit for points below 120 KeV. 2 - Method of solution: The quality of fit is tested by comparing the measured y-value to the y-value calculated from the fitted curve. The fractional difference between these two values is printed for the evaluation of the quality of the fit. 3 - Restrictions on the complexity of the problem - Maxima of: 2000 data points calibration curve output (LSFIT) 30 input data points 3 least squares polynomial fits (LSFIT) The least squares polynomial fit requires that the number of data points used exceed the degree of fit by at least two

  1. Real-Time Exponential Curve Fits Using Discrete Calculus

    Science.gov (United States)

    Rowe, Geoffrey

    2010-01-01

    An improved solution for curve fitting data to an exponential equation (y = Ae(exp Bt) + C) has been developed. This improvement is in four areas -- speed, stability, determinant processing time, and the removal of limits. The solution presented avoids iterative techniques and their stability errors by using three mathematical ideas: discrete calculus, a special relationship (be tween exponential curves and the Mean Value Theorem for Derivatives), and a simple linear curve fit algorithm. This method can also be applied to fitting data to the general power law equation y = Ax(exp B) + C and the general geometric growth equation y = Ak(exp Bt) + C.

  2. Repair models of cell survival and corresponding computer program for survival curve fitting

    International Nuclear Information System (INIS)

    Shen Xun; Hu Yiwei

    1992-01-01

    Some basic concepts and formulations of two repair models of survival, the incomplete repair (IR) model and the lethal-potentially lethal (LPL) model, are introduced. An IBM-PC computer program for survival curve fitting with these models was developed and applied to fit the survivals of human melanoma cells HX118 irradiated at different dose rates. Comparison was made between the repair models and two non-repair models, the multitar get-single hit model and the linear-quadratic model, in the fitting and analysis of the survival-dose curves. It was shown that either IR model or LPL model can fit a set of survival curves of different dose rates with same parameters and provide information on the repair capacity of cells. These two mathematical models could be very useful in quantitative study on the radiosensitivity and repair capacity of cells

  3. The thermoluminescence glow-curve analysis using GlowFit - the new powerful tool for deconvolution

    International Nuclear Information System (INIS)

    Puchalska, M.; Bilski, P.

    2005-10-01

    A new computer program, GlowFit, for deconvoluting first-order kinetics thermoluminescence (TL) glow-curves has been developed. A non-linear function describing a single glow-peak is fitted to experimental points using the least squares Levenberg-Marquardt method. The main advantage of GlowFit is in its ability to resolve complex TL glow-curves consisting of strongly overlapping peaks, such as those observed in heavily doped LiF:Mg,Ti (MTT) detectors. This resolution is achieved mainly by setting constraints or by fixing selected parameters. The initial values of the fitted parameters are placed in the so-called pattern files. GlowFit is a Microsoft Windows-operated user-friendly program. Its graphic interface enables easy intuitive manipulation of glow-peaks, at the initial stage (parameter initialization) and at the final stage (manual adjustment) of fitting peak parameters to the glow-curves. The program is freely downloadable from the web site www.ifj.edu.pl/NPP/deconvolution.htm (author)

  4. Methods for fitting of efficiency curves obtained by means of HPGe gamma rays spectrometers

    International Nuclear Information System (INIS)

    Cardoso, Vanderlei

    2002-01-01

    The present work describes a few methodologies developed for fitting efficiency curves obtained by means of a HPGe gamma-ray spectrometer. The interpolated values were determined by simple polynomial fitting and polynomial fitting between the ratio of experimental peak efficiency and total efficiency, calculated by Monte Carlo technique, as a function of gamma-ray energy. Moreover, non-linear fitting has been performed using a segmented polynomial function and applying the Gauss-Marquardt method. For the peak area obtainment different methodologies were developed in order to estimate the background area under the peak. This information was obtained by numerical integration or by using analytical functions associated to the background. One non-calibrated radioactive source has been included in the curve efficiency in order to provide additional calibration points. As a by-product, it was possible to determine the activity of this non-calibrated source. For all fittings developed in the present work the covariance matrix methodology was used, which is an essential procedure in order to give a complete description of the partial uncertainties involved. (author)

  5. Study and program implementation of transient curves' piecewise linearization

    International Nuclear Information System (INIS)

    Shi Yang; Zu Hongbiao

    2014-01-01

    Background: Transient curves are essential for the stress analysis of related equipment in nuclear power plant (NPP). The actually operating data or the design transient data of a NPP usually consist of a large number of data points with very short time intervals. To simplify the analysis, transient curves are generally piecewise linearized in advance. Up to now, the piecewise linearization of transient curves is accomplished manually, Purpose: The aim is to develop a method for the piecewise linearization of transient curves, and to implement it by programming. Methods: First of all, the fitting line of a number of data points was obtained by the least square method. The segment of the fitting line is set while the accumulation error of linearization exceeds the preset limit with the increasing number of points. Then the linearization of subsequent data points was begun from the last point of the preceding curve segment to get the next segment in the same way, and continue until the final data point involved. Finally, averaging of junction points is taken for the segment connection. Results: A computer program named PLTC (Piecewise Linearization for Transient Curves) was implemented and verified by the linearization of the standard sine curve and typical transient curves of a NPP. Conclusion: The method and the PLTC program can be well used to the piecewise linearization of transient curves, with improving efficiency and precision. (authors)

  6. Two Aspects of the Simplex Model: Goodness of Fit to Linear Growth Curve Structures and the Analysis of Mean Trends.

    Science.gov (United States)

    Mandys, Frantisek; Dolan, Conor V.; Molenaar, Peter C. M.

    1994-01-01

    Studied the conditions under which the quasi-Markov simplex model fits a linear growth curve covariance structure and determined when the model is rejected. Presents a quasi-Markov simplex model with structured means and gives an example. (SLD)

  7. Radioligand assays - methods and applications. IV. Uniform regression of hyperbolic and linear radioimmunoassay calibration curves

    Energy Technology Data Exchange (ETDEWEB)

    Keilacker, H; Becker, G; Ziegler, M; Gottschling, H D [Zentralinstitut fuer Diabetes, Karlsburg (German Democratic Republic)

    1980-10-01

    In order to handle all types of radioimmunoassay (RIA) calibration curves obtained in the authors' laboratory in the same way, they tried to find a non-linear expression for their regression which allows calibration curves with different degrees of curvature to be fitted. Considering the two boundary cases of the incubation protocol they derived a hyperbolic inverse regression function: x = a/sub 1/y + a/sub 0/ + asub(-1)y/sup -1/, where x is the total concentration of antigen, asub(i) are constants, and y is the specifically bound radioactivity. An RIA evaluation procedure based on this function is described providing a fitted inverse RIA calibration curve and some statistical quality parameters. The latter are of an order which is normal for RIA systems. There is an excellent agreement between fitted and experimentally obtained calibration curves having a different degree of curvature.

  8. Weighted curve-fitting program for the HP 67/97 calculator

    International Nuclear Information System (INIS)

    Stockli, M.P.

    1983-01-01

    The HP 67/97 calculator provides in its standard equipment a curve-fit program for linear, logarithmic, exponential and power functions that is quite useful and popular. However, in more sophisticated applications, proper weights for data are often essential. For this purpose a program package was created which is very similar to the standard curve-fit program but which includes the weights of the data for proper statistical analysis. This allows accurate calculation of the uncertainties of the fitted curve parameters as well as the uncertainties of interpolations or extrapolations, or optionally the uncertainties can be normalized with chi-square. The program is very versatile and allows one to perform quite difficult data analysis in a convenient way with the pocket calculator HP 67/97

  9. VRF ("Visual RobFit") — nuclear spectral analysis with non-linear full-spectrum nuclide shape fitting

    Science.gov (United States)

    Lasche, George; Coldwell, Robert; Metzger, Robert

    2017-09-01

    A new application (known as "VRF", or "Visual RobFit") for analysis of high-resolution gamma-ray spectra has been developed using non-linear fitting techniques to fit full-spectrum nuclide shapes. In contrast to conventional methods based on the results of an initial peak-search, the VRF analysis method forms, at each of many automated iterations, a spectrum-wide shape for each nuclide and, also at each iteration, it adjusts the activities of each nuclide, as well as user-enabled parameters of energy calibration, attenuation by up to three intervening or self-absorbing materials, peak width as a function of energy, full-energy peak efficiency, and coincidence summing until no better fit to the data can be obtained. This approach, which employs a new and significantly advanced underlying fitting engine especially adapted to nuclear spectra, allows identification of minor peaks that are masked by larger, overlapping peaks that would not otherwise be possible. The application and method are briefly described and two examples are presented.

  10. Potential errors when fitting experience curves by means of spreadsheet software

    International Nuclear Information System (INIS)

    Sark, W.G.J.H.M. van; Alsema, E.A.

    2010-01-01

    Progress ratios (PRs) are widely used in forecasting development of many technologies; they are derived from historical data represented in experience curves. Fitting the double logarithmic graphs is easily done with spreadsheet software like Microsoft Excel, by adding a trend line to the graph. However, it is unknown to many that these data are transformed to linear data before a fit is performed. This leads to erroneous results or a transformation bias in the PR, as we demonstrate using the experience curve for photovoltaic technology: logarithmic transformation leads to overestimates of progress ratios and underestimates of goodness of fit. Therefore, other graphing and analysis software is recommended.

  11. An axisymmetrical non-linear finite element model for induction heating in injection molding tools

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Nielsen, Kaspar Kirstein; Menotti, Stefano

    2016-01-01

    To analyze the heating and cooling phase of an induction heated injection molding tool accurately, the temperature dependent magnetic properties, namely the non-linear B-H curves, need to be accounted for in an induction heating simulation. Hence, a finite element model has been developed......, including the non-linear temperature dependent magnetic data described by a three-parameter modified Frohlich equation fitted to the magnetic saturation curve, and solved with an iterative procedure. The numerical calculations are compared with experiments conducted with two types of induction coils, built...... in to the injection molding tool. The model shows very good agreement with the experimental temperature measurements. It is also shown that the non-linearity can be used without the temperature dependency in some cases, and a proposed method is presented of how to estimate an effective linear permeability to use...

  12. Data fitting by G1 rational cubic Bézier curves using harmony search

    Directory of Open Access Journals (Sweden)

    Najihah Mohamed

    2015-07-01

    Full Text Available A metaheuristic algorithm, called Harmony Search (HS is implemented for data fitting by rational cubic Bézier curves. HS is a derivative-free real parameter optimization algorithm, and draws an inspiration from the musical improvisation process of searching for a perfect state of harmony. HS is suitable for multivariate non-linear optimization problem. It is mainly achieved by data fitting using rational cubic Bézier curves with G1 continuity for every joint of segments of the whole data sets. This approach has significant contributions in making the technique automated. HS is used to optimize positions of middle points and values of the shape parameters. Test outline images and comparative experimental analysis are presented to show effectiveness and robustness of the proposed method. Statistical testing between HS and two other different metaheuristic algorithms is used in the analysis on several outline images. All of the algorithms improvised a near optimal solution but the result that is obtained by the HS is better than the results of the other two algorithms.

  13. PLOTNFIT.4TH, Data Plotting and Curve Fitting by Polynomials

    International Nuclear Information System (INIS)

    Schiffgens, J.O.

    1990-01-01

    1 - Description of program or function: PLOTnFIT is used for plotting and analyzing data by fitting nth degree polynomials of basis functions to the data interactively and printing graphs of the data and the polynomial functions. It can be used to generate linear, semi-log, and log-log graphs and can automatically scale the coordinate axes to suit the data. Multiple data sets may be plotted on a single graph. An auxiliary program, READ1ST, is included which produces an on-line summary of the information contained in the PLOTnFIT reference report. 2 - Method of solution: PLOTnFIT uses the least squares method to calculate the coefficients of nth-degree (up to 10. degree) polynomials of 11 selected basis functions such that each polynomial fits the data in a least squares sense. The procedure incorporated in the code uses a linear combination of orthogonal polynomials to avoid 'i11-conditioning' and to perform the curve fitting task with single-precision arithmetic. 3 - Restrictions on the complexity of the problem - Maxima of: 225 data points per job (or graph) including all data sets 8 data sets (or tasks) per job (or graph)

  14. Using Linear and Non-Linear Temporal Adjustments to Align Multiple Phenology Curves, Making Vegetation Status and Health Directly Comparable

    Science.gov (United States)

    Hargrove, W. W.; Norman, S. P.; Kumar, J.; Hoffman, F. M.

    2017-12-01

    National-scale polar analysis of MODIS NDVI allows quantification of degree of seasonality expressed by local vegetation, and also selects the most optimum start/end of a local "phenological year" that is empirically customized for the vegetation that is growing at each location. Interannual differences in timing of phenology make direct comparisons of vegetation health and performance between years difficult, whether at the same or different locations. By "sliding" the two phenologies in time using a Procrustean linear time shift, any particular phenological event or "completion milestone" can be synchronized, allowing direct comparison of differences in timing of other remaining milestones. Going beyond a simple linear translation, time can be "rubber-sheeted," compressed or dilated. Considering one phenology curve to be a reference, the second phenology can be "rubber-sheeted" to fit that baseline as well as possible by stretching or shrinking time to match multiple control points, which can be any recognizable phenological events. Similar to "rubber sheeting" to georectify a map inside a GIS, rubber sheeting a phenology curve also yields a warping signature that shows at every time and every location how many days the adjusted phenology is ahead or behind the phenological development of the reference vegetation. Using such temporal methods to "adjust" phenologies may help to quantify vegetation impacts from frost, drought, wildfire, insects and diseases by permitting the most commensurate quantitative comparisons with unaffected vegetation.

  15. PLOTnFIT: A BASIC program for data plotting and curve fitting

    Energy Technology Data Exchange (ETDEWEB)

    Schiffgens, J O

    1989-10-01

    PLOTnFIT is a BASIC program to be used with an IBM or IBM-compatible personal computer (PC) for plotting and fitting curves to measured or observed data for both extrapolation and interpolation. It uses the Least Squares method to calculate the coefficients of nth degree polynomials (e.g., up to 10th degree) of Basis Functions so that each polynomial fits the data in a Least Squares sense, then plots the data and the polynomial that a user decides best represents them. PLOTnFIT is very versatile. It can be used to generate linear, semilog, and log-log graphs and can automatically scale the coordinate axes to suit the data. It can plot more than one data set on a graph (e.g., up to 8 data sets) and more data points than a user is likely to put on one graph (e.g., up to 225 points). A PC diskette containing (1) READIST.PNF (a summary of this NUREG), (2) INI06891.SIS and FOL06891.SIS (two data files), and 3) PLOTNFIT.4TH (the latest version of the program) may be obtained from the National Energy Software Center, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439. (author)

  16. GLOBAL AND STRICT CURVE FITTING METHOD

    NARCIS (Netherlands)

    Nakajima, Y.; Mori, S.

    2004-01-01

    To find a global and smooth curve fitting, cubic B­Spline method and gathering­ line methods are investigated. When segmenting and recognizing a contour curve of character shape, some global method is required. If we want to connect contour curves around a singular point like crossing points,

  17. Four points function fitted and first derivative procedure for determining the end points in potentiometric titration curves: statistical analysis and method comparison.

    Science.gov (United States)

    Kholeif, S A

    2001-06-01

    A new method that belongs to the differential category for determining the end points from potentiometric titration curves is presented. It uses a preprocess to find first derivative values by fitting four data points in and around the region of inflection to a non-linear function, and then locate the end point, usually as a maximum or minimum, using an inverse parabolic interpolation procedure that has an analytical solution. The behavior and accuracy of the sigmoid and cumulative non-linear functions used are investigated against three factors. A statistical evaluation of the new method using linear least-squares method validation and multifactor data analysis are covered. The new method is generally applied to symmetrical and unsymmetrical potentiometric titration curves, and the end point is calculated using numerical procedures only. It outperforms the "parent" regular differential method in almost all factors levels and gives accurate results comparable to the true or estimated true end points. Calculated end points from selected experimental titration curves compatible with the equivalence point category of methods, such as Gran or Fortuin, are also compared with the new method.

  18. Uranium, radium and thorium in soils with high-resolution gamma spectroscopy, MCNP-generated efficiencies, and VRF non-linear full-spectrum nuclide shape fitting

    Science.gov (United States)

    Metzger, Robert; Riper, Kenneth Van; Lasche, George

    2017-09-01

    A new method for analysis of uranium and radium in soils by gamma spectroscopy has been developed using VRF ("Visual RobFit") which, unlike traditional peak-search techniques, fits full-spectrum nuclide shapes with non-linear least-squares minimization of the chi-squared statistic. Gamma efficiency curves were developed for a 500 mL Marinelli beaker geometry as a function of soil density using MCNP. Collected spectra were then analyzed using the MCNP-generated efficiency curves and VRF to deconvolute the 90 keV peak complex of uranium and obtain 238U and 235U activities. 226Ra activity was determined either from the radon daughters if the equilibrium status is known, or directly from the deconvoluted 186 keV line. 228Ra values were determined from the 228Ac daughter activity. The method was validated by analysis of radium, thorium and uranium soil standards and by inter-comparison with other methods for radium in soils. The method allows for a rapid determination of whether a sample has been impacted by a man-made activity by comparison of the uranium and radium concentrations to those that would be expected from a natural equilibrium state.

  19. The non-linear fitting method to analyze the measured M-S plots of bipolar passive films

    International Nuclear Information System (INIS)

    Jiang Ruijing; Chen Changfeng; Zheng Shuqi

    2010-01-01

    Mott-Schottky (M-S) analysis is an effective approach to investigate the electronic property of passive films of metals, and it is well suitable for the passive film with single space charge capacitance. But there is no proper method to analyze the C sc -2 vs. V m plots of passive films with several space charge capacitances in series connection, such as bipolar passive films. In this paper, the relationship between the space charge capacitance of the bipolar passive film and the applied potential was deduced and the features of corresponding plots were given out simultaneously. Accordingly, a non-linear fitting method was presented to analyze the C sc -2 vs. V m plots of bipolar passive films. Then the method was used to study the semiconductor characteristics of bipolar passive films formed on the surface of Nickel base alloy after being corroded in the environments with high temperatures and high partial pressures of H 2 S/CO 2 . The fitting results indicate that the non-linear fitting of M-S plots can well help to understand the anti-corrosion mechanism of bipolar passive films.

  20. Use of a non-linear method for including the mass uncertainty of gravimetric standards and system measurement errors in the fitting of calibration curves for XRFA freeze-dried UNO3 standards

    International Nuclear Information System (INIS)

    Pickles, W.L.; McClure, J.W.; Howell, R.H.

    1978-05-01

    A sophisticated nonlinear multiparameter fitting program was used to produce a best fit calibration curve for the response of an x-ray fluorescence analyzer to uranium nitrate, freeze dried, 0.2% accurate, gravimetric standards. The program is based on unconstrained minimization subroutine, VA02A. The program considers the mass values of the gravimetric standards as parameters to be fit along with the normal calibration curve parameters. The fitting procedure weights with the system errors and the mass errors in a consistent way. The resulting best fit calibration curve parameters reflect the fact that the masses of the standard samples are measured quantities with a known error. Error estimates for the calibration curve parameters can be obtained from the curvature of the ''Chi-Squared Matrix'' or from error relaxation techniques. It was shown that nondispersive XRFA of 0.1 to 1 mg freeze-dried UNO 3 can have an accuracy of 0.2% in 1000 s

  1. Genetic algorithm using independent component analysis in x-ray reflectivity curve fitting of periodic layer structures

    International Nuclear Information System (INIS)

    Tiilikainen, J; Bosund, V; Tilli, J-M; Sormunen, J; Mattila, M; Hakkarainen, T; Lipsanen, H

    2007-01-01

    A novel genetic algorithm (GA) utilizing independent component analysis (ICA) was developed for x-ray reflectivity (XRR) curve fitting. EFICA was used to reduce mutual information, or interparameter dependences, during the combinatorial phase. The performance of the new algorithm was studied by fitting trial XRR curves to target curves which were computed using realistic multilayer models. The median convergence properties of conventional GA, GA using principal component analysis and the novel GA were compared. GA using ICA was found to outperform the other methods with problems having 41 parameters or more to be fitted without additional XRR curve calculations. The computational complexity of the conventional methods was linear but the novel method had a quadratic computational complexity due to the applied ICA method which sets a practical limit for the dimensionality of the problem to be solved. However, the novel algorithm had the best capability to extend the fitting analysis based on Parratt's formalism to multiperiodic layer structures

  2. Testing the validity of stock-recruitment curve fits

    International Nuclear Information System (INIS)

    Christensen, S.W.; Goodyear, C.P.

    1988-01-01

    The utilities relied heavily on the Ricker stock-recruitment model as the basis for quantifying biological compensation in the Hudson River power case. They presented many fits of the Ricker model to data derived from striped bass catch and effort records compiled by the National Marine Fisheries Service. Based on this curve-fitting exercise, a value of 4 was chosen for the parameter alpha in the Ricker model, and this value was used to derive the utilities' estimates of the long-term impact of power plants on striped bass populations. A technique was developed and applied to address a single fundamental question: if the Ricker model were applicable to the Hudson River striped bass population, could the estimates of alpha from the curve-fitting exercise be considered reliable. The technique involved constructing a simulation model that incorporated the essential biological features of the population and simulated the characteristics of the available actual catch-per-unit-effort data through time. The ability or failure to retrieve the known parameter values underlying the simulation model via the curve-fitting exercise was a direct test of the reliability of the results of fitting stock-recruitment curves to the real data. The results demonstrated that estimates of alpha from the curve-fitting exercise were not reliable. The simulation-modeling technique provides an effective way to identify whether or not particular data are appropriate for use in fitting such models. 39 refs., 2 figs., 3 tabs

  3. Curve fitting methods for solar radiation data modeling

    Energy Technology Data Exchange (ETDEWEB)

    Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my [Department of Fundamental and Applied Sciences, Faculty of Sciences and Information Technology, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak Darul Ridzuan (Malaysia)

    2014-10-24

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  4. Curve fitting methods for solar radiation data modeling

    Science.gov (United States)

    Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder

    2014-10-01

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R2. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.

  5. Curve fitting methods for solar radiation data modeling

    International Nuclear Information System (INIS)

    Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder

    2014-01-01

    This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R 2 . The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods

  6. Decomposition and correction overlapping peaks of LIBS using an error compensation method combined with curve fitting.

    Science.gov (United States)

    Tan, Bing; Huang, Min; Zhu, Qibing; Guo, Ya; Qin, Jianwei

    2017-09-01

    The laser induced breakdown spectroscopy (LIBS) technique is an effective method to detect material composition by obtaining the plasma emission spectrum. The overlapping peaks in the spectrum are a fundamental problem in the qualitative and quantitative analysis of LIBS. Based on a curve fitting method, this paper studies an error compensation method to achieve the decomposition and correction of overlapping peaks. The vital step is that the fitting residual is fed back to the overlapping peaks and performs multiple curve fitting processes to obtain a lower residual result. For the quantitative experiments of Cu, the Cu-Fe overlapping peaks in the range of 321-327 nm obtained from the LIBS spectrum of five different concentrations of CuSO 4 ·5H 2 O solution were decomposed and corrected using curve fitting and error compensation methods. Compared with the curve fitting method, the error compensation reduced the fitting residual about 18.12-32.64% and improved the correlation about 0.86-1.82%. Then, the calibration curve between the intensity and concentration of the Cu was established. It can be seen that the error compensation method exhibits a higher linear correlation between the intensity and concentration of Cu, which can be applied to the decomposition and correction of overlapping peaks in the LIBS spectrum.

  7. The effect of breed and parity on curves of body condition during lactation estimated using a non-linear function.

    Science.gov (United States)

    Friggens, N C; Badsberg, J H

    2007-05-01

    The objectives of this study were to see if the body condition score curve during lactation could be described using a model amenable to biological interpretation, a non-linear function assuming exponential rates of change in body condition with time, and to quantify the effect of breed and parity on curves of body condition during lactation. Three breeds were represented: Danish Holstein (n = 112), Danish Red (n = 97) and Jerseys (n = 8). Cows entered the experiment at the start of first lactation and were studied during consecutive lactations (average number of lactations 2, minimum 1, maximum 3). They remained on the same dietary treatment throughout. Body condition was scored to the nearest half unit on the Danish scale (see Kristensen (1986); derived from the Lowman et al. (1976) system) from 1 to 5 on days: 2, 14, 28, 42, 56, 84, 112, 168, 224 after calving. Additionally, condition score was recorded on the day of drying off the cow, 35, 21, and 7 days before expected calving and finally on the day of calving. All condition scores were made by the trained personal on the research farm, where the same person made 92% of the scores. The temporal patterns in condition score were modelled as consisting of two underlying processes, one related to days from calving, referred to as lactation only, the other to days from (subsequent) conception, referred to as pregnancy. Both processes were assumed to be exponential functions of time. Each process was modelled separately using exponential functions, i.e. one model for lactation only and one for pregnancy, and then a combined model for both lactation only and pregnancy was fitted. The data set contained 467 lactation periods and 378 pregnancy periods. The temporal patterns in condition score of cows kept under stable and sufficient nutritional conditions were successfully described using a two component non-linear function. First lactation cows had shallower curves, they had greater condition scores at the nadir

  8. A non-linear kinematic hardening function

    International Nuclear Information System (INIS)

    Ottosen, N.S.

    1977-05-01

    Based on the classical theory of plasticity, and accepting the von Mises criterion as the initial yield criterion, a non-linear kinematic hardening function applicable both to Melan-Prager's and to Ziegler's hardening rule is proposed. This non-linear hardening function is determined by means of the uniaxial stress-strain curve, and any such curve is applicable. The proposed hardening function considers the problem of general reversed loading, and a smooth change in the behaviour from one plastic state to another nearlying plastic state is obtained. A review of both the kinematic hardening theory and the corresponding non-linear hardening assumptions is given, and it is shown that material behaviour is identical whether Melan-Prager's or Ziegler's hardening rule is applied, provided that the von Mises yield criterion is adopted. (author)

  9. Methods for fitting of efficiency curves obtained by means of HPGe gamma rays spectrometers; Metodos de ajuste de curvas de eficiencia obtidas por meio de espectrometros de HPGe

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Vanderlei

    2002-07-01

    The present work describes a few methodologies developed for fitting efficiency curves obtained by means of a HPGe gamma-ray spectrometer. The interpolated values were determined by simple polynomial fitting and polynomial fitting between the ratio of experimental peak efficiency and total efficiency, calculated by Monte Carlo technique, as a function of gamma-ray energy. Moreover, non-linear fitting has been performed using a segmented polynomial function and applying the Gauss-Marquardt method. For the peak area obtainment different methodologies were developed in order to estimate the background area under the peak. This information was obtained by numerical integration or by using analytical functions associated to the background. One non-calibrated radioactive source has been included in the curve efficiency in order to provide additional calibration points. As a by-product, it was possible to determine the activity of this non-calibrated source. For all fittings developed in the present work the covariance matrix methodology was used, which is an essential procedure in order to give a complete description of the partial uncertainties involved. (author)

  10. Non-Linear Structural Dynamics Characterization using a Scanning Laser Vibrometer

    Science.gov (United States)

    Pai, P. F.; Lee, S.-Y.

    2003-01-01

    This paper presents the use of a scanning laser vibrometer and a signal decomposition method to characterize non-linear dynamics of highly flexible structures. A Polytec PI PSV-200 scanning laser vibrometer is used to measure transverse velocities of points on a structure subjected to a harmonic excitation. Velocity profiles at different times are constructed using the measured velocities, and then each velocity profile is decomposed using the first four linear mode shapes and a least-squares curve-fitting method. From the variations of the obtained modal \\ielocities with time we search for possible non-linear phenomena. A cantilevered titanium alloy beam subjected to harmonic base-excitations around the second. third, and fourth natural frequencies are examined in detail. Influences of the fixture mass. gravity. mass centers of mode shapes. and non-linearities are evaluated. Geometrically exact equations governing the planar, harmonic large-amplitude vibrations of beams are solved for operational deflection shapes using the multiple shooting method. Experimental results show the existence of 1:3 and 1:2:3 external and internal resonances. energy transfer from high-frequency modes to the first mode. and amplitude- and phase- modulation among several modes. Moreover, the existence of non-linear normal modes is found to be questionable.

  11. Fitting a defect non-linear model with or without prior, distinguishing nuclear reaction products as an example

    Science.gov (United States)

    Helgesson, P.; Sjöstrand, H.

    2017-11-01

    Fitting a parametrized function to data is important for many researchers and scientists. If the model is non-linear and/or defect, it is not trivial to do correctly and to include an adequate uncertainty analysis. This work presents how the Levenberg-Marquardt algorithm for non-linear generalized least squares fitting can be used with a prior distribution for the parameters and how it can be combined with Gaussian processes to treat model defects. An example, where three peaks in a histogram are to be distinguished, is carefully studied. In particular, the probability r1 for a nuclear reaction to end up in one out of two overlapping peaks is studied. Synthetic data are used to investigate effects of linearizations and other assumptions. For perfect Gaussian peaks, it is seen that the estimated parameters are distributed close to the truth with good covariance estimates. This assumes that the method is applied correctly; for example, prior knowledge should be implemented using a prior distribution and not by assuming that some parameters are perfectly known (if they are not). It is also important to update the data covariance matrix using the fit if the uncertainties depend on the expected value of the data (e.g., for Poisson counting statistics or relative uncertainties). If a model defect is added to the peaks, such that their shape is unknown, a fit which assumes perfect Gaussian peaks becomes unable to reproduce the data, and the results for r1 become biased. It is, however, seen that it is possible to treat the model defect with a Gaussian process with a covariance function tailored for the situation, with hyper-parameters determined by leave-one-out cross validation. The resulting estimates for r1 are virtually unbiased, and the uncertainty estimates agree very well with the underlying uncertainty.

  12. Fitting a defect non-linear model with or without prior, distinguishing nuclear reaction products as an example.

    Science.gov (United States)

    Helgesson, P; Sjöstrand, H

    2017-11-01

    Fitting a parametrized function to data is important for many researchers and scientists. If the model is non-linear and/or defect, it is not trivial to do correctly and to include an adequate uncertainty analysis. This work presents how the Levenberg-Marquardt algorithm for non-linear generalized least squares fitting can be used with a prior distribution for the parameters and how it can be combined with Gaussian processes to treat model defects. An example, where three peaks in a histogram are to be distinguished, is carefully studied. In particular, the probability r 1 for a nuclear reaction to end up in one out of two overlapping peaks is studied. Synthetic data are used to investigate effects of linearizations and other assumptions. For perfect Gaussian peaks, it is seen that the estimated parameters are distributed close to the truth with good covariance estimates. This assumes that the method is applied correctly; for example, prior knowledge should be implemented using a prior distribution and not by assuming that some parameters are perfectly known (if they are not). It is also important to update the data covariance matrix using the fit if the uncertainties depend on the expected value of the data (e.g., for Poisson counting statistics or relative uncertainties). If a model defect is added to the peaks, such that their shape is unknown, a fit which assumes perfect Gaussian peaks becomes unable to reproduce the data, and the results for r 1 become biased. It is, however, seen that it is possible to treat the model defect with a Gaussian process with a covariance function tailored for the situation, with hyper-parameters determined by leave-one-out cross validation. The resulting estimates for r 1 are virtually unbiased, and the uncertainty estimates agree very well with the underlying uncertainty.

  13. Comparison of ductile-to-brittle transition curve fitting approaches

    International Nuclear Information System (INIS)

    Cao, L.W.; Wu, S.J.; Flewitt, P.E.J.

    2012-01-01

    Ductile-to-brittle transition (DBT) curve fitting approaches are compared over the transition temperature range for reactor pressure vessel steels with different kinds of data, including Charpy-V notch impact energy data and fracture toughness data. Three DBT curve fitting methods have been frequently used in the past, including the Burr S-Weibull and tanh distributions. In general there is greater scatter associated with test data obtained within the transition region. Therefore these methods give results with different accuracies, especially when fitting to small quantities of data. The comparison shows that the Burr distribution and tanh distribution can almost equally fit well distributed and large data sets extending across the test temperature range to include the upper and lower shelves. The S-Weibull distribution fit is poor for the lower shelf of the DBT curve. Overall for both large and small quantities of measured data the Burr distribution provides the best description. - Highlights: ► Burr distribution offers a better fit than that of a S-Weibull and tanh fit. ► Burr and tanh methods show similar fitting ability for a large data set. ► Burr method can fit sparse data well distributed across the test temperature. ► S-Weibull method cannot fit the lower shelf well and show poor fitting quality.

  14. CABAS: A freely available PC program for fitting calibration curves in chromosome aberration dosimetry

    International Nuclear Information System (INIS)

    Deperas, J.; Szluiska, M.; Deperas-Kaminska, M.; Edwards, A.; Lloyd, D.; Lindholm, C.; Romm, H.; Roy, L.; Moss, R.; Morand, J.; Wojcik, A.

    2007-01-01

    The aim of biological dosimetry is to estimate the dose and the associated uncertainty to which an accident victim was exposed. This process requires the use of the maximum-likelihood method for fitting a calibration curve, a procedure that is not implemented in most statistical computer programs. Several laboratories have produced their own programs, but these are frequently not user-friendly and not available to outside users. We developed a software for fitting a linear-quadratic dose-response relationship by the method of maximum-likelihood and for estimating a dose from the number of aberrations observed. The program called as CABAS consists of the main curve-fitting and dose estimating module and modules for calculating the dose in cases of partial body exposure, for estimating the minimum number of cells necessary to detect a given dose of radiation and for calculating the dose in the case of a protracted exposure. (authors)

  15. Estimating reaction rate constants: comparison between traditional curve fitting and curve resolution

    NARCIS (Netherlands)

    Bijlsma, S.; Boelens, H. F. M.; Hoefsloot, H. C. J.; Smilde, A. K.

    2000-01-01

    A traditional curve fitting (TCF) algorithm is compared with a classical curve resolution (CCR) approach for estimating reaction rate constants from spectral data obtained in time of a chemical reaction. In the TCF algorithm, reaction rate constants an estimated from the absorbance versus time data

  16. Fitting the curve in Excel® : Systematic curve fitting of laboratory and remotely sensed planetary spectra

    NARCIS (Netherlands)

    McCraig, M.A.; Osinski, G.R.; Cloutis, E.A.; Flemming, R.L.; Izawa, M.R.M.; Reddy, V.; Fieber-Beyer, S.K.; Pompilio, L.; van der Meer, F.D.; Berger, J.A.; Bramble, M.S.; Applin, D.M.

    2017-01-01

    Spectroscopy in planetary science often provides the only information regarding the compositional and mineralogical make up of planetary surfaces. The methods employed when curve fitting and modelling spectra can be confusing and difficult to visualize and comprehend. Researchers who are new to

  17. Linearization of Positional Response Curve of a Fiber-optic Displacement Sensor

    Science.gov (United States)

    Babaev, O. G.; Matyunin, S. A.; Paranin, V. D.

    2018-01-01

    Currently, the creation of optical measuring instruments and sensors for measuring linear displacement is one of the most relevant problems in the area of instrumentation. Fiber-optic contactless sensors based on the magneto-optical effect are of special interest. They are essentially contactless, non-electrical and have a closed optical channel not subject to contamination. The main problem of this type of sensors is the non-linearity of their positional response curve due to the hyperbolic nature of the magnetic field intensity variation induced by moving the magnetic source mounted on the controlled object relative to the sensing element. This paper discusses an algorithmic method of linearizing the positional response curve of fiber-optic displacement sensors in any selected range of the displacements to be measured. The method is divided into two stages: 1 - definition of the calibration function, 2 - measurement and linearization of the positional response curve (including its temperature stabilization). The algorithm under consideration significantly reduces the number of points of the calibration function, which is essential for the calibration of temperature dependence, due to the use of the points that randomly deviate from the grid points with uniform spacing. Subsequent interpolation of the deviating points and piecewise linear-plane approximation of the calibration function reduces the microcontroller storage capacity for storing the calibration function and the time required to process the measurement results. The paper also presents experimental results of testing real samples of fiber-optic displacement sensors.

  18. Non-linear realization of α0 -extended supersymmetry

    International Nuclear Information System (INIS)

    Nishino, Hitoshi

    2000-01-01

    As generalizations of the original Volkov-Akulov action in four-dimensions, actions are found for all space-time dimensions D invariant under N non-linear realized global supersymmetries. We also give other such actions invariant under the global non-linear supersymmetry. As an interesting consequence, we find a non-linear supersymmetric Born-Infeld action for a non-Abelian gauge group for arbitrary D and N , which coincides with the linearly supersymmetric Born-Infeld action in D=10 at the lowest order. For the gauge group U(N) for M(atrix)-theory, this model has N 2 -extended non-linear supersymmetries, so that its large N limit corresponds to the infinitely many (α 0 ) supersymmetries. We also perform a duality transformation from F μν into its Hodge dual N μ 1 ctdot μD-2 . We next point out that any Chern-Simons action for any (super)groups has the non-linear supersymmetry as a hidden symmetry. Subsequently, we present a superspace formulation for the component results. We further find that as long as superspace supergravity is consistent, this generalized Volkov-Akulov action can further accommodate such curved superspace backgrounds with local supersymmetry, as a super p -brane action with fermionic kappa-symmetry. We further elaborate these results to what we call 'simplified' (Supersymmetry) 2 -models, with both linear and non-linear representations of supersymmetries in superspace at the same time. Our result gives a proof that there is no restriction on D or N for global non-linear supersymmetry. We also see that the non-linear realization of supersymmetry in 'curved' space-time can be interpreted as 'non-perturbative' effect starting with the 'flat' space-time

  19. FC LSEI WNNLS, Least-Square Fitting Algorithms Using B Splines

    International Nuclear Information System (INIS)

    Hanson, R.J.; Haskell, K.H.

    1989-01-01

    1 - Description of problem or function: FC allows a user to fit dis- crete data, in a weighted least-squares sense, using piece-wise polynomial functions represented by B-Splines on a given set of knots. In addition to the least-squares fitting of the data, equality, inequality, and periodic constraints at a discrete, user-specified set of points can be imposed on the fitted curve or its derivatives. The subprograms LSEI and WNNLS solve the linearly-constrained least-squares problem. LSEI solves the class of problem with general inequality constraints, and, if requested, obtains a covariance matrix of the solution parameters. WNNLS solves the class of problem with non-negativity constraints. It is anticipated that most users will find LSEI suitable for their needs; however, users with inequalities that are single bounds on variables may wish to use WNNLS. 2 - Method of solution: The discrete data are fit by a linear combination of piece-wise polynomial curves which leads to a linear least-squares system of algebraic equations. Additional information is expressed as a discrete set of linear inequality and equality constraints on the fitted curve which leads to a linearly-constrained least-squares system of algebraic equations. The solution of this system is the main computational problem solved

  20. Analysis of Surface Plasmon Resonance Curves with a Novel Sigmoid-Asymmetric Fitting Algorithm

    Directory of Open Access Journals (Sweden)

    Daeho Jang

    2015-09-01

    Full Text Available The present study introduces a novel curve-fitting algorithm for surface plasmon resonance (SPR curves using a self-constructed, wedge-shaped beam type angular interrogation SPR spectroscopy technique. Previous fitting approaches such as asymmetric and polynomial equations are still unsatisfactory for analyzing full SPR curves and their use is limited to determining the resonance angle. In the present study, we developed a sigmoid-asymmetric equation that provides excellent curve-fitting for the whole SPR curve over a range of incident angles, including regions of the critical angle and resonance angle. Regardless of the bulk fluid type (i.e., water and air, the present sigmoid-asymmetric fitting exhibited nearly perfect matching with a full SPR curve, whereas the asymmetric and polynomial curve fitting methods did not. Because the present curve-fitting sigmoid-asymmetric equation can determine the critical angle as well as the resonance angle, the undesired effect caused by the bulk fluid refractive index was excluded by subtracting the critical angle from the resonance angle in real time. In conclusion, the proposed sigmoid-asymmetric curve-fitting algorithm for SPR curves is widely applicable to various SPR measurements, while excluding the effect of bulk fluids on the sensing layer.

  1. Uranium, radium and thorium in soils with high-resolution gamma spectroscopy, MCNP-generated efficiencies, and VRF non-linear full-spectrum nuclide shape fitting

    Directory of Open Access Journals (Sweden)

    Metzger Robert

    2017-01-01

    Full Text Available A new method for analysis of uranium and radium in soils by gamma spectroscopy has been developed using VRF (“Visual RobFit” which, unlike traditional peak-search techniques, fits full-spectrum nuclide shapes with non-linear least-squares minimization of the chi-squared statistic. Gamma efficiency curves were developed for a 500 mL Marinelli beaker geometry as a function of soil density using MCNP. Collected spectra were then analyzed using the MCNP-generated efficiency curves and VRF to deconvolute the 90 keV peak complex of uranium and obtain 238U and 235U activities. 226Ra activity was determined either from the radon daughters if the equilibrium status is known, or directly from the deconvoluted 186 keV line. 228Ra values were determined from the 228Ac daughter activity. The method was validated by analysis of radium, thorium and uranium soil standards and by inter-comparison with other methods for radium in soils. The method allows for a rapid determination of whether a sample has been impacted by a man-made activity by comparison of the uranium and radium concentrations to those that would be expected from a natural equilibrium state.

  2. Curve fitting for RHB Islamic Bank annual net profit

    Science.gov (United States)

    Nadarajan, Dineswary; Noor, Noor Fadiya Mohd

    2015-05-01

    The RHB Islamic Bank net profit data are obtained from 2004 to 2012. Curve fitting is done by assuming the data are exact or experimental due to smoothing process. Higher order Lagrange polynomial and cubic spline with curve fitting procedure are constructed using Maple software. Normality test is performed to check the data adequacy. Regression analysis with curve estimation is conducted in SPSS environment. All the eleven models are found to be acceptable at 10% significant level of ANOVA. Residual error and absolute relative true error are calculated and compared. The optimal model based on the minimum average error is proposed.

  3. Prediction of Pressing Quality for Press-Fit Assembly Based on Press-Fit Curve and Maximum Press-Mounting Force

    Directory of Open Access Journals (Sweden)

    Bo You

    2015-01-01

    Full Text Available In order to predict pressing quality of precision press-fit assembly, press-fit curves and maximum press-mounting force of press-fit assemblies were investigated by finite element analysis (FEA. The analysis was based on a 3D Solidworks model using the real dimensions of the microparts and the subsequent FEA model that was built using ANSYS Workbench. The press-fit process could thus be simulated on the basis of static structure analysis. To verify the FEA results, experiments were carried out using a press-mounting apparatus. The results show that the press-fit curves obtained by FEA agree closely with the curves obtained using the experimental method. In addition, the maximum press-mounting force calculated by FEA agrees with that obtained by the experimental method, with the maximum deviation being 4.6%, a value that can be tolerated. The comparison shows that the press-fit curve and max press-mounting force calculated by FEA can be used for predicting the pressing quality during precision press-fit assembly.

  4. Modeling of non-linear CHP efficiency curves in distributed energy systems

    DEFF Research Database (Denmark)

    Milan, Christian; Stadler, Michael; Cardoso, Gonçalo

    2015-01-01

    Distributed energy resources gain an increased importance in commercial and industrial building design. Combined heat and power (CHP) units are considered as one of the key technologies for cost and emission reduction in buildings. In order to make optimal decisions on investment and operation...... for these technologies, detailed system models are needed. These models are often formulated as linear programming problems to keep computational costs and complexity in a reasonable range. However, CHP systems involve variations of the efficiency for large nameplate capacity ranges and in case of part load operation......, which can be even of non-linear nature. Since considering these characteristics would turn the models into non-linear problems, in most cases only constant efficiencies are assumed. This paper proposes possible solutions to address this issue. For a mixed integer linear programming problem two...

  5. Non-Linear Rheological Properties and Neutron Scattering Investigation on Dilute Ring-Linear Blends

    DEFF Research Database (Denmark)

    Pyckhout-Hintzen, W.; Bras, A.R.; Wischnewski, A.

    in a filament stretching rheometer, followed by quenching, strong anisotropic scattering patterns were obtained which were described by affinely deformed rings which function as giant, polymeric chemical crosslinks or sliplinks and more or less isotropic topological contributions from the entangling...... with interpenetrating linear chains. At the same time the non-linear rheological and mechanical data fit to a non-affine slip-tube model as for moderately crosslinked networks and to interchain pressure models or a modified non-linear Doi-Edwards description for the observed strain hardening during the extensional...

  6. Uncertainty of pesticide residue concentration determined from ordinary and weighted linear regression curve.

    Science.gov (United States)

    Yolci Omeroglu, Perihan; Ambrus, Árpad; Boyacioglu, Dilek

    2018-03-28

    Determination of pesticide residues is based on calibration curves constructed for each batch of analysis. Calibration standard solutions are prepared from a known amount of reference material at different concentration levels covering the concentration range of the analyte in the analysed samples. In the scope of this study, the applicability of both ordinary linear and weighted linear regression (OLR and WLR) for pesticide residue analysis was investigated. We used 782 multipoint calibration curves obtained for 72 different analytical batches with high-pressure liquid chromatography equipped with an ultraviolet detector, and gas chromatography with electron capture, nitrogen phosphorus or mass spectrophotometer detectors. Quality criteria of the linear curves including regression coefficient, standard deviation of relative residuals and deviation of back calculated concentrations were calculated both for WLR and OLR methods. Moreover, the relative uncertainty of the predicted analyte concentration was estimated for both methods. It was concluded that calibration curve based on WLR complies with all the quality criteria set by international guidelines compared to those calculated with OLR. It means that all the data fit well with WLR for pesticide residue analysis. It was estimated that, regardless of the actual concentration range of the calibration, relative uncertainty at the lowest calibrated level ranged between 0.3% and 113.7% for OLR and between 0.2% and 22.1% for WLR. At or above 1/3 of the calibrated range, uncertainty of calibration curve ranged between 0.1% and 16.3% for OLR and 0% and 12.2% for WLR, and therefore, the two methods gave comparable results.

  7. Linear vs non-linear QCD evolution: from HERA data to LHC phenomenology

    CERN Document Server

    Albacete, J L; Quiroga-Arias, P; Rojo, J

    2012-01-01

    The very precise combined HERA data provides a testing ground in which the relevance of novel QCD regimes, other than the successful linear DGLAP evolution, in small-x inclusive DIS data can be ascertained. We present a study of the dependence of the AAMQS fits, based on the running coupling BK non-linear evolution equations (rcBK), on the fitted dataset. This allows for the identification of the kinematical region where rcBK accurately describes the data, and thus for the determination of its applicability boundary. We compare the rcBK results with NNLO DGLAP fits, obtained with the NNPDF methodology with analogous kinematical cuts. Further, we explore the impact on LHC phenomenology of applying stringent kinematical cuts to the low-x HERA data in a DGLAP fit.

  8. Quantitative analysis of Fe and Co in Co-substituted magnetite using XPS: The application of non-linear least squares fitting (NLLSF)

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hongmei, E-mail: hmliu@gig.ac.cn [CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640 (China); Wei, Gaoling [Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, 510650 (China); Xu, Zhen [School of Materials Science and Engineering, Central South University, Changsha, 410012 (China); Liu, Peng; Li, Ying [CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640 (China); University of Chinese Academy of Sciences, Beijing, 100049 (China)

    2016-12-15

    Highlights: • XPS and Auger peak overlapping complicates Co-substituted magnetite quantification. • Disrurbance of Auger peaks was eliminated by non-linear least squares fitting. • Fitting greatly improved the accuracy of quantification for Co and Fe. • Catalytic activity of magnetite was enhanced with the increase of Co substitution. - Abstract: Quantitative analysis of Co and Fe using X-ray photoelectron spectroscopy (XPS) is of important for the evaluation of the catalytic ability of Co-substituted magnetite. However, the overlap of XPS peaks and Auger peaks for Co and Fe complicate quantification. In this study, non-linear least squares fitting (NLLSF) was used to calculate the relative Co and Fe contents of a series of synthesized Co-substituted magnetite samples with different Co doping levels. NLLSF separated the XPS peaks of Co 2p and Fe 2p from the Auger peaks of Fe and Co, respectively. Compared with a control group without fitting, the accuracy of quantification of Co and Fe was greatly improved after elimination by NLLSF of the disturbance of Auger peaks. A catalysis study confirmed that the catalytic activity of magnetite was enhanced with the increase of Co substitution. This study confirms the effectiveness and accuracy of the NLLSF method in XPS quantitative calculation of Fe and Co coexisting in a material.

  9. Maximum likelihood fitting of FROC curves under an initial-detection-and-candidate-analysis model

    International Nuclear Information System (INIS)

    Edwards, Darrin C.; Kupinski, Matthew A.; Metz, Charles E.; Nishikawa, Robert M.

    2002-01-01

    We have developed a model for FROC curve fitting that relates the observer's FROC performance not to the ROC performance that would be obtained if the observer's responses were scored on a per image basis, but rather to a hypothesized ROC performance that the observer would obtain in the task of classifying a set of 'candidate detections' as positive or negative. We adopt the assumptions of the Bunch FROC model, namely that the observer's detections are all mutually independent, as well as assumptions qualitatively similar to, but different in nature from, those made by Chakraborty in his AFROC scoring methodology. Under the assumptions of our model, we show that the observer's FROC performance is a linearly scaled version of the candidate analysis ROC curve, where the scaling factors are just given by the FROC operating point coordinates for detecting initial candidates. Further, we show that the likelihood function of the model parameters given observational data takes on a simple form, and we develop a maximum likelihood method for fitting a FROC curve to this data. FROC and AFROC curves are produced for computer vision observer datasets and compared with the results of the AFROC scoring method. Although developed primarily with computer vision schemes in mind, we hope that the methodology presented here will prove worthy of further study in other applications as well

  10. A Design of Mechanical Frequency Converter Linear and Non-linear Spring Combination for Energy Harvesting

    International Nuclear Information System (INIS)

    Yamamoto, K; Fujita, T; Kanda, K; Maenaka, K; Badel, A; Formosa, F

    2014-01-01

    In this study, the improvement of energy harvesting from wideband vibration with random change by using a combination of linear and nonlinear spring system is investigated. The system consists of curved beam spring for non-linear buckling, which supports the linear mass-spring resonator. Applying shock acceleration generates a snap through action to the buckling spring. From the FEM analysis, we showed that the snap through acceleration from the buckling action has no relationship with the applied shock amplitude and duration. We use this uniform acceleration as an impulse shock source for the linear resonator. It is easy to obtain the maximum shock response from the uniform snap through acceleration by using a shock response spectrum (SRS) analysis method. At first we investigated the relationship between the snap-through behaviour and an initial curved deflection. Then a time response result for non-linear springs with snap through and minimum force that makes a buckling behaviour were obtained by FEM analysis. By obtaining the optimum SRS frequency for linear resonator, we decided its resonant frequency with the MATLAB simulator

  11. Dark matter as a non-linear effect of gravitation

    International Nuclear Information System (INIS)

    Maia, M.D.; Capistrano, A.J.S.

    2006-01-01

    The rotation curves of stars in disk galaxies are calculated with the Newtonian law of motion applied to a scalar potential derived from the geodesic equation, only, under the slow motion condition, the so-called Nearly Newtonian Gravity (NNG). A nearly Newtonian gravitational potential, Φ NN = -1/2 c 2 (1+g 44 ), is obtained, characterized by an exact solution of Einsteins equations, with the non-linear effects present in the component g 44 . This gravitational field lies somewhere between General Relativity and Newtonian Gravity. Therefore, Einsteins equations and the equivalence principle are preserved, but the general covariance is broken. The resulting curves are remarkably close to the observed rotation curves in spiral galaxies, suggesting that a substantial component of dark matter may be explained by the non-linearity of Einsteins equations. (author)

  12. Automatic Curve Fitting Based on Radial Basis Functions and a Hierarchical Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    G. Trejo-Caballero

    2015-01-01

    Full Text Available Curve fitting is a very challenging problem that arises in a wide variety of scientific and engineering applications. Given a set of data points, possibly noisy, the goal is to build a compact representation of the curve that corresponds to the best estimate of the unknown underlying relationship between two variables. Despite the large number of methods available to tackle this problem, it remains challenging and elusive. In this paper, a new method to tackle such problem using strictly a linear combination of radial basis functions (RBFs is proposed. To be more specific, we divide the parameter search space into linear and nonlinear parameter subspaces. We use a hierarchical genetic algorithm (HGA to minimize a model selection criterion, which allows us to automatically and simultaneously determine the nonlinear parameters and then, by the least-squares method through Singular Value Decomposition method, to compute the linear parameters. The method is fully automatic and does not require subjective parameters, for example, smooth factor or centre locations, to perform the solution. In order to validate the efficacy of our approach, we perform an experimental study with several tests on benchmarks smooth functions. A comparative analysis with two successful methods based on RBF networks has been included.

  13. Box-Cox transformation for resolving the Peelle's Pertinent Puzzle in a curve fitting

    International Nuclear Information System (INIS)

    Oh, S. Y.; Seo, C. G.

    2004-01-01

    Incorporating the Box-Cox transformation into a curve fitting is presented as one of methods for resolving an anomaly known as the Peelle's Pertinent Puzzle in the nuclear data community. The Box-Cox transformation is a strategy to make non-normal distribution data resemble normal distribution data. The proposed method consists of the following steps: transform the raw data to be fitted with the optimized Box-Cox transformation parameter, fit the transformed data using a conventional curve fitting tool, the least-squares method in this study, then inverse-transform the fitted results to the final estimates. Covariance matrices are correspondingly transformed and inverse-transformed with the aid of the law of error propagation. In addition to a sensible answer to the Puzzle, the proposed method resulted in reasonable estimates for a test evaluation with pseudo-experimental 6 Li(n, t) cross sections in several to 800 keV energy region, while the GMA code resulted in systematic underestimates that characterize the Puzzle. Meanwhile, it is observed that the present method and the Chiba-Smith method yield almost the same estimates for the test evaluation on 6 Li(n, t). Conceptually, however, two methods are very different from each other and further discussions are needed for a consensus on the issue of how to resolve the Puzzle. (authors)

  14. Box-Cox transformation for resolving Peelle's Pertinent Puzzle in curve fitting

    International Nuclear Information System (INIS)

    Oh, Soo-Youl

    2003-01-01

    Incorporating the Box-Cox transformation into a least-squares method is presented as one of resolutions of an anomaly known as Peelle's Pertinent Puzzle. The transformation is a strategy to make non-normal distribution data resemble normal data. A procedure is proposed: transform the measured raw data with an optimized Box-Cox transformation parameter, fit the transformed data using a usual curve fitting method, then inverse-transform the fitted results to final estimates. The generalized least-squares method utilized in GMA is adopted as the curve fitting tool for the test of proposed procedure. In the procedure, covariance matrices are correspondingly transformed and inverse-transformed with the aid of error propagation law. In addition to a sensible answer to the Peelle's problem itself, the procedure resulted in reasonable estimates of 6 Li(n,t) cross sections in several to 800 keV energy region. Meanwhile, comparisons of the present procedure with that of Chiba and Smith show that both procedures yield estimates so close each other for the sample evaluation on 6 Li(n,t) above as well as for the Peelle's problem. Two procedures, however, are conceptually very different and further discussions would be needed for a consensus on this issue of resolving the Puzzle. It is also pointed out that the transformation is applicable not only to a least-squares method but also to other parameter estimation method such as a usual Bayesian approach formulated with an assumption of normality of the probability density function. (author)

  15. Non-linear osmosis

    Science.gov (United States)

    Diamond, Jared M.

    1966-01-01

    1. The relation between osmotic gradient and rate of osmotic water flow has been measured in rabbit gall-bladder by a gravimetric procedure and by a rapid method based on streaming potentials. Streaming potentials were directly proportional to gravimetrically measured water fluxes. 2. As in many other tissues, water flow was found to vary with gradient in a markedly non-linear fashion. There was no consistent relation between the water permeability and either the direction or the rate of water flow. 3. Water flow in response to a given gradient decreased at higher osmolarities. The resistance to water flow increased linearly with osmolarity over the range 186-825 m-osM. 4. The resistance to water flow was the same when the gall-bladder separated any two bathing solutions with the same average osmolarity, regardless of the magnitude of the gradient. In other words, the rate of water flow is given by the expression (Om — Os)/[Ro′ + ½k′ (Om + Os)], where Ro′ and k′ are constants and Om and Os are the bathing solution osmolarities. 5. Of the theories advanced to explain non-linear osmosis in other tissues, flow-induced membrane deformations, unstirred layers, asymmetrical series-membrane effects, and non-osmotic effects of solutes could not explain the results. However, experimental measurements of water permeability as a function of osmolarity permitted quantitative reconstruction of the observed water flow—osmotic gradient curves. Hence non-linear osmosis in rabbit gall-bladder is due to a decrease in water permeability with increasing osmolarity. 6. The results suggest that aqueous channels in the cell membrane behave as osmometers, shrinking in concentrated solutions of impermeant molecules and thereby increasing membrane resistance to water flow. A mathematical formulation of such a membrane structure is offered. PMID:5945254

  16. SYSTEMATIC SAMPLING FOR NON - LINEAR TREND IN MILK YIELD DATA

    OpenAIRE

    Tanuj Kumar Pandey; Vinod Kumar

    2014-01-01

    The present paper utilizes systematic sampling procedures for milk yield data exhibiting some non-linear trends. The best fitted mathematical forms of non-linear trend present in the milk yield data are obtained and the expressions of average variances of the estimators of population mean under simple random, usual systematic and modified systematic sampling procedures have been derived for populations showing non-linear trend. A comparative study is made among the three sampli...

  17. Non linear-least-squares fitting for pixe spectra

    International Nuclear Information System (INIS)

    Benamar, M.A.; Tchantchane, A.; Benouali, N.; Azbouche, A.; Tobbeche, S.

    1992-10-01

    An interactive computer program for the analysis of Pixe spectra is described. The fitting procedure consists of computing a function which approximates the experimental data. A nonlinear least-squares fitting is used to determine the parameters of the fit. The program takes into account the low energy tail and the escape peaks

  18. Sensitivity of Fit Indices to Misspecification in Growth Curve Models

    Science.gov (United States)

    Wu, Wei; West, Stephen G.

    2010-01-01

    This study investigated the sensitivity of fit indices to model misspecification in within-individual covariance structure, between-individual covariance structure, and marginal mean structure in growth curve models. Five commonly used fit indices were examined, including the likelihood ratio test statistic, root mean square error of…

  19. Non-linear education gradient across the nutrition transition: mothers’ overweight and the population education transition

    Science.gov (United States)

    Salinas, Daniel; Baker, David P

    2015-01-01

    Objective Previous studies found that developed and developing countries present opposite education-overweight gradients but have not considered the dynamics at different levels of national development. A U-inverted curve is hypothesized to best describe the education-overweight association. It is also hypothesized that as the nutrition transition unfolds within nations the shape of education-overweight curve change. Design Multi-level logistic regression estimates the moderating effect of the nutrition transition at the population level on education-overweight gradient. At the individual level, a non-linear estimate of the education association assesses the optimal functional form of the association across the nutrition transition. Setting Twenty-two administrations of the Demographic and Health Survey, collected at different time points across the nutrition transition in nine Latin American/Caribbean countries. Subjects Mothers of reproductive age (15–49) in each administration (n 143,258). Results In the pooled sample, a non-linear education gradient on mothers‘ overweight is found; each additional year of schooling increases the probability of being overweight up to the end of primary schooling, after which each additional year of schooling decreases the probability of overweight. Also, as access to diets of high animal fats and sweeteners increases over time, the curve‘s critical point moves to lower education levels, the detrimental positive effect of education diminishes, and both occur as the overall risk of overweight increases with greater access to harmful diets. Conclusions Both hypotheses are supported. As the nutrition transition progresses, the education-overweight curve steadily shifts to a negative linear association with higher average risk of overweight; and education, at increasingly lower levels, acts as a “social vaccine” against increasing risk of overweight. These empirical patterns fit the general “population education

  20. Multimodal determination of Rayleigh dispersion and attenuation curves using the circle fit method

    Science.gov (United States)

    Verachtert, R.; Lombaert, G.; Degrande, G.

    2018-03-01

    This paper introduces the circle fit method for the determination of multi-modal Rayleigh dispersion and attenuation curves as part of a Multichannel Analysis of Surface Waves (MASW) experiment. The wave field is transformed to the frequency-wavenumber (fk) domain using a discretized Hankel transform. In a Nyquist plot of the fk-spectrum, displaying the imaginary part against the real part, the Rayleigh wave modes correspond to circles. The experimental Rayleigh dispersion and attenuation curves are derived from the angular sweep of the central angle of these circles. The method can also be applied to the analytical fk-spectrum of the Green's function of a layered half-space in order to compute dispersion and attenuation curves, as an alternative to solving an eigenvalue problem. A MASW experiment is subsequently simulated for a site with a regular velocity profile and a site with a soft layer trapped between two stiffer layers. The performance of the circle fit method to determine the dispersion and attenuation curves is compared with the peak picking method and the half-power bandwidth method. The circle fit method is found to be the most accurate and robust method for the determination of the dispersion curves. When determining attenuation curves, the circle fit method and half-power bandwidth method are accurate if the mode exhibits a sharp peak in the fk-spectrum. Furthermore, simulated and theoretical attenuation curves determined with the circle fit method agree very well. A similar correspondence is not obtained when using the half-power bandwidth method. Finally, the circle fit method is applied to measurement data obtained for a MASW experiment at a site in Heverlee, Belgium. In order to validate the soil profile obtained from the inversion procedure, force-velocity transfer functions were computed and found in good correspondence with the experimental transfer functions, especially in the frequency range between 5 and 80 Hz.

  1. Background does not significantly affect power-exponential fitting of gastric emptying curves

    International Nuclear Information System (INIS)

    Jonderko, K.

    1987-01-01

    Using a procedure enabling the assessment of background radiation, research was done to elucidate the course of changes in background activity during gastric emptying measurements. Attention was focused on the changes in the shape of power-exponential fitted gastric emptying curves after correction for background was performed. The observed pattern of background counts allowed to explain the shifts of the parameters characterizing power-exponential curves connected with background correction. It was concluded that background had a negligible effect on the power-exponential fitting of gastric emptying curves. (author)

  2. A graph-based method for fitting planar B-spline curves with intersections

    Directory of Open Access Journals (Sweden)

    Pengbo Bo

    2016-01-01

    Full Text Available The problem of fitting B-spline curves to planar point clouds is studied in this paper. A novel method is proposed to deal with the most challenging case where multiple intersecting curves or curves with self-intersection are necessary for shape representation. A method based on Delauney Triangulation of data points is developed to identify connected components which is also capable of removing outliers. A skeleton representation is utilized to represent the topological structure which is further used to create a weighted graph for deciding the merging of curve segments. Different to existing approaches which utilize local shape information near intersections, our method considers shape characteristics of curve segments in a larger scope and is thus capable of giving more satisfactory results. By fitting each group of data points with a B-spline curve, we solve the problems of curve structure reconstruction from point clouds, as well as the vectorization of simple line drawing images by drawing lines reconstruction.

  3. Modelling Loudspeaker Non-Linearities

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2007-01-01

    This paper investigates different techniques for modelling the non-linear parameters of the electrodynamic loudspeaker. The methods are tested not only for their accuracy within the range of original data, but also for the ability to work reasonable outside that range, and it is demonstrated...... that polynomial expansions are rather poor at this, whereas an inverse polynomial expansion or localized fitting functions such as the gaussian are better suited for modelling the Bl-factor and compliance. For the inductance the sigmoid function is shown to give very good results. Finally the time varying...

  4. The non-linear power spectrum of the Lyman alpha forest

    International Nuclear Information System (INIS)

    Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo; Cen, Renyue

    2015-01-01

    The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z∼ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate the comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula

  5. Application of tan h curve fitting to toughness data

    International Nuclear Information System (INIS)

    Sakai, Yuzuru; Ogura, Nobukazu

    1985-01-01

    Curve-fitting regression procedures for toughness data have been examined. The objectives of fitting curve in the context of the study of nuclear pressure vessel steels are (1) convenient summarization of test data to permit comparison of materials and testing methods; (2) development of statistical base concerning the data; (3) the surveying of the relationships between charpy data and fracture toughness data; (4) estimation of fracture toughness level from charpy absorbed energy data. The computational procedures using the tanh function have been applied to the toughness data (charpy absorbed energy, static fracture toughness, dynamic fracture toughness, crack arrest toughness) of A533B cl.1 and A508 cl.3 steels. The results of the analysis shows the statistical features of the material toughness and gives the method for estimating fracture toughness level from charpy absorbed energy data. (author)

  6. Cuckoo search with Lévy flights for weighted Bayesian energy functional optimization in global-support curve data fitting.

    Science.gov (United States)

    Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis

    2014-01-01

    The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way.

  7. The role of different linear and non-linear channels of relaxation in scintillator non-proportionality

    Energy Technology Data Exchange (ETDEWEB)

    Bizarri, G.; Moses, W.W. [Lawrence Berkeley Laboratory, Berkeley, CA 94720-8119 (United States); Singh, J. [Faculty of EHS, B-41, Charles Darwin University, Darwin NT 0909 (Australia); Vasil' ev, A.N., E-mail: anvasiliev@rambler.r [Institute of Nuclear Physics, Moscow State University, Moscow 119991 (Russian Federation); Williams, R.T. [Department of Physics, Wake Forest University, Winston-Salem, NC 27109 (United States)

    2009-12-15

    The non-proportional dependence of a scintillator's light yield on primary particle energy is believed to be influenced crucially by the interplay of non-linear kinetic terms in the radiative and non-radiative decay of excitations versus locally deposited excitation density. A calculation of energy deposition, -dE/dx, along the electron track for NaI is presented for an energy range from several electron-volt to 1 MeV. Such results can be used to specify an initial excitation distribution, if diffusion is neglected. An exactly solvable two-channel (exciton and hole(electron)) model containing 1st and 2nd order kinetic terms is constructed and used to illustrate important features seen in non-proportional light-yield curves, including a dependence on pulse shaping (detection gate width).

  8. The role of different linear and non-linear channels of relaxation in scintillator non-proportionality

    International Nuclear Information System (INIS)

    Bizarri, G.; Moses, W.W.; Singh, J.; Vasil'ev, A.N.; Williams, R.T.

    2009-01-01

    The non-proportional dependence of a scintillator's light yield on primary particle energy is believed to be influenced crucially by the interplay of non-linear kinetic terms in the radiative and non-radiative decay of excitations versus locally deposited excitation density. A calculation of energy deposition, -dE/dx, along the electron track for NaI is presented for an energy range from several electron-volt to 1 MeV. Such results can be used to specify an initial excitation distribution, if diffusion is neglected. An exactly solvable two-channel (exciton and hole(electron)) model containing 1st and 2nd order kinetic terms is constructed and used to illustrate important features seen in non-proportional light-yield curves, including a dependence on pulse shaping (detection gate width).

  9. Memristance controlling approach based on modification of linear M—q curve

    International Nuclear Information System (INIS)

    Liu Hai-Jun; Li Zhi-Wei; Yu Hong-Qi; Sun Zhao-Lin; Nie Hong-Shan

    2014-01-01

    The memristor has broad application prospects in many fields, while in many cases, those fields require accurate impedance control. The nonlinear model is of great importance for realizing memristance control accurately, but the implementing complexity caused by iteration has limited the actual application of this model. Considering the approximate linear characteristics at the middle region of the memristance-charge (M—q) curve of the nonlinear model, this paper proposes a memristance controlling approach, which is achieved by linearizing the middle region of the M—q curve of the nonlinear memristor, and establishes the linear relationship between memristances M and input excitations so that it can realize impedance control precisely by only adjusting input signals briefly. First, it analyzes the feasibility for linearizing the middle part of the M—q curve of the memristor with a nonlinear model from the qualitative perspective. Then, the linearization equations of the middle region of the M—q curve is constructed by using the shift method, and under a sinusoidal excitation case, the analytical relation between the memristance M and the charge time t is derived through the Taylor series expansions. At last, the performance of the proposed approach is demonstrated, including the linearizing capability for the middle part of the M—q curve of the nonlinear model memristor, the controlling ability for memristance M, and the influence of input excitation on linearization errors. (interdisciplinary physics and related areas of science and technology)

  10. Fitness Effects of Network Non-Linearity Induced by Gene Expression Noise

    Science.gov (United States)

    Ray, Christian; Cooper, Tim; Balazsi, Gabor

    2012-02-01

    In the non-equilibrium dynamics of growing microbial cells, metabolic enzymes can create non-linearities in metabolite concentration because of non-linear degradation (utilization): an enzyme can saturate in the process of metabolite utilization. Increasing metabolite production past the saturation point then results in an ultrasensitive metabolite response. If the production rate of a metabolite depends on a second enzyme or other protein-mediated process, uncorrelated gene expression noise can thus cause transient metabolite concentration bursts. Such bursts are physiologically unnecessary and may represent a source of selection against the ultrasensitive switch, especially if the fluctuating metabolic intermediate is toxic. Selection may therefore favor correlated gene expression fluctuations for enzymes in the same pathway, such as by same-operon membership in bacteria. Using a modified experimental lac operon system, we are undertaking a combined theoretical-experimental approach to demonstrate that (i) the lac operon has an implicit ultrasensitive switch that we predict is avoided by gene expression correlations induced by same-operon membership; (ii) bacterial growth rates are sensitive to crossing the ultrasensitive threshold. Our results suggest that correlations in intrinsic gene expression noise are exploited by evolution to ameliorate the detrimental effects of nonlinearities in metabolite concentrations.

  11. Studying the method of linearization of exponential calibration curves

    International Nuclear Information System (INIS)

    Bunzh, Z.A.

    1989-01-01

    The results of study of the method for linearization of exponential calibration curves are given. The calibration technique and comparison of the proposed method with piecewise-linear approximation and power series expansion, are given

  12. Constrained non-linear waves for offshore wind turbine design

    International Nuclear Information System (INIS)

    Rainey, P J; Camp, T R

    2007-01-01

    Advancements have been made in the modelling of extreme wave loading in the offshore environment. We give an overview of wave models used at present, and their relative merits. We describe a method for embedding existing non-linear solutions for large, regular wave kinematics into linear, irregular seas. Although similar methods have been used before, the new technique is shown to offer advances in computational practicality, repeatability, and accuracy. NewWave theory has been used to constrain the linear simulation, allowing best possible fit with the large non-linear wave. GH Bladed was used to compare the effect of these models on a generic 5 MW turbine mounted on a tripod support structure

  13. Fitness function and nonunique solutions in x-ray reflectivity curve fitting: crosserror between surface roughness and mass density

    International Nuclear Information System (INIS)

    Tiilikainen, J; Bosund, V; Mattila, M; Hakkarainen, T; Sormunen, J; Lipsanen, H

    2007-01-01

    Nonunique solutions of the x-ray reflectivity (XRR) curve fitting problem were studied by modelling layer structures with neural networks and designing a fitness function to handle the nonidealities of measurements. Modelled atomic-layer-deposited aluminium oxide film structures were used in the simulations to calculate XRR curves based on Parratt's formalism. This approach reduced the dimensionality of the parameter space and allowed the use of fitness landscapes in the study of nonunique solutions. Fitness landscapes, where the height in a map represents the fitness value as a function of the process parameters, revealed tracks where the local fitness optima lie. The tracks were projected on the physical parameter space thus allowing the construction of the crosserror equation between weakly determined parameters, i.e. between the mass density and the surface roughness of a layer. The equation gives the minimum error for the other parameters which is a consequence of the nonuniqueness of the solution if noise is present. Furthermore, the existence of a possible unique solution in a certain parameter range was found to be dependent on the layer thickness and the signal-to-noise ratio

  14. A fitting algorithm based on simulated annealing techniques for efficiency calibration of HPGe detectors using different mathematical functions

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, S. [Servicio de Radioisotopos, Centro de Investigacion, Tecnologia e Innovacion (CITIUS), Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla (Spain)], E-mail: shurtado@us.es; Garcia-Leon, M. [Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Fisica, Universidad de Sevilla, Aptd. 1065, 41080 Sevilla (Spain); Garcia-Tenorio, R. [Departamento de Fisica Aplicada II, E.T.S.A. Universidad de Sevilla, Avda, Reina Mercedes 2, 41012 Sevilla (Spain)

    2008-09-11

    In this work several mathematical functions are compared in order to perform the full-energy peak efficiency calibration of HPGe detectors using a 126cm{sup 3} HPGe coaxial detector and gamma-ray energies ranging from 36 to 1460 keV. Statistical tests and Monte Carlo simulations were used to study the performance of the fitting curve equations. Furthermore the fitting procedure of these complex functional forms to experimental data is a non-linear multi-parameter minimization problem. In gamma-ray spectrometry usually non-linear least-squares fitting algorithms (Levenberg-Marquardt method) provide a fast convergence while minimizing {chi}{sub R}{sup 2}, however, sometimes reaching only local minima. In order to overcome that shortcoming a hybrid algorithm based on simulated annealing (HSA) techniques is proposed. Additionally a new function is suggested that models the efficiency curve of germanium detectors in gamma-ray spectrometry.

  15. Multi-binding site model-based curve-fitting program for the computation of RIA data

    International Nuclear Information System (INIS)

    Malan, P.G.; Ekins, R.P.; Cox, M.G.; Long, E.M.R.

    1977-01-01

    In this paper, a comparison will be made of model-based and empirical curve-fitting procedures. The implementation of a multiple binding-site curve-fitting model which will successfully fit a wide range of assay data, and which can be run on a mini-computer is described. The latter sophisticated model also provides estimates of binding site concentrations and the values of the respective equilibrium constants present: the latter have been used for refining assay conditions using computer optimisation techniques. (orig./AJ) [de

  16. Non-linear flow law of rockglacier creep determined from geomorphological observations: A case study from the Murtèl rockglacier (Engadin, SE Switzerland)

    Science.gov (United States)

    Frehner, Marcel; Amschwand, Dominik; Gärtner-Roer, Isabelle

    2016-04-01

    Rockglaciers consist of unconsolidated rock fragments (silt/sand-rock boulders) with interstitial ice; hence their creep behavior (i.e., rheology) may deviate from the simple and well-known flow-laws for pure ice. Here we constrain the non-linear viscous flow law that governs rockglacier creep based on geomorphological observations. We use the Murtèl rockglacier (upper Engadin valley, SE Switzerland) as a case study, for which high-resolution digital elevation models (DEM), time-lapse borehole deformation data, and geophysical soundings exist that reveal the exterior and interior architecture and dynamics of the landform. Rockglaciers often feature a prominent furrow-and-ridge topography. For the Murtèl rockglacier, Frehner et al. (2015) reproduced the wavelength, amplitude, and distribution of the furrow-and-ridge morphology using a linear viscous (Newtonian) flow model. Arenson et al. (2002) presented borehole deformation data, which highlight the basal shear zone at about 30 m depth and a curved deformation profile above the shear zone. Similarly, the furrow-and-ridge morphology also exhibits a curved geometry in map view. Hence, the surface morphology and the borehole deformation data together describe a curved 3D geometry, which is close to, but not quite parabolic. We use a high-resolution DEM to quantify the curved geometry of the Murtèl furrow-and-ridge morphology. We then calculate theoretical 3D flow geometries using different non-linear viscous flow laws. By comparing them to the measured curved 3D geometry (i.e., both surface morphology and borehole deformation data), we can determine the most adequate flow-law that fits the natural data best. Linear viscous models result in perfectly parabolic flow geometries; non-linear creep leads to localized deformation at the sides and bottom of the rockglacier while the deformation in the interior and top are less intense. In other words, non-linear creep results in non-parabolic flow geometries. Both the

  17. A sigmoidal fit for pressure-volume curves of idiopathic pulmonary fibrosis patients on mechanical ventilation: clinical implications

    Directory of Open Access Journals (Sweden)

    Juliana C. Ferreira

    2011-01-01

    Full Text Available OBJECTIVE: Respiratory pressure-volume curves fitted to exponential equations have been used to assess disease severity and prognosis in spontaneously breathing patients with idiopathic pulmonary fibrosis. Sigmoidal equations have been used to fit pressure-volume curves for mechanically ventilated patients but not for idiopathic pulmonary fibrosis patients. We compared a sigmoidal model and an exponential model to fit pressure-volume curves from mechanically ventilated patients with idiopathic pulmonary fibrosis. METHODS: Six idiopathic pulmonary fibrosis patients and five controls underwent inflation pressure-volume curves using the constant-flow technique during general anesthesia prior to open lung biopsy or thymectomy. We identified the lower and upper inflection points and fit the curves with an exponential equation, V = A-B.e-k.P, and a sigmoid equation, V = a+b/(1+e-(P-c/d. RESULTS: The mean lower inflection point for idiopathic pulmonary fibrosis patients was significantly higher (10.5 ± 5.7 cm H2O than that of controls (3.6 ± 2.4 cm H2O. The sigmoidal equation fit the pressure-volume curves of the fibrotic and control patients well, but the exponential equation fit the data well only when points below 50% of the inspiratory capacity were excluded. CONCLUSION: The elevated lower inflection point and the sigmoidal shape of the pressure-volume curves suggest that respiratory system compliance is decreased close to end-expiratory lung volume in idiopathic pulmonary fibrosis patients under general anesthesia and mechanical ventilation. The sigmoidal fit was superior to the exponential fit for inflation pressure-volume curves of anesthetized patients with idiopathic pulmonary fibrosis and could be useful for guiding mechanical ventilation during general anesthesia in this condition.

  18. On non-linear dynamics of a coupled electro-mechanical system

    DEFF Research Database (Denmark)

    Darula, Radoslav; Sorokin, Sergey

    2012-01-01

    Electro-mechanical devices are an example of coupled multi-disciplinary weakly non-linear systems. Dynamics of such systems is described in this paper by means of two mutually coupled differential equations. The first one, describing an electrical system, is of the first order and the second one...... excitation. The results are verified using a numerical model created in MATLAB Simulink environment. Effect of non-linear terms on dynamical response of the coupled system is investigated; the backbone and envelope curves are analyzed. The two phenomena, which exist in the electro-mechanical system: (a......, for mechanical system, is of the second order. The governing equations are coupled via linear and weakly non-linear terms. A classical perturbation method, a method of multiple scales, is used to find a steadystate response of the electro-mechanical system exposed to a harmonic close-resonance mechanical...

  19. Fitting program for linear regressions according to Mahon (1996)

    Energy Technology Data Exchange (ETDEWEB)

    2018-01-09

    This program takes the users' Input data and fits a linear regression to it using the prescription presented by Mahon (1996). Compared to the commonly used York fit, this method has the correct prescription for measurement error propagation. This software should facilitate the proper fitting of measurements with a simple Interface.

  20. THE CPA QUALIFICATION METHOD BASED ON THE GAUSSIAN CURVE FITTING

    Directory of Open Access Journals (Sweden)

    M.T. Adithia

    2015-01-01

    Full Text Available The Correlation Power Analysis (CPA attack is an attack on cryptographic devices, especially smart cards. The results of the attack are correlation traces. Based on the correlation traces, an evaluation is done to observe whether significant peaks appear in the traces or not. The evaluation is done manually, by experts. If significant peaks appear then the smart card is not considered secure since it is assumed that the secret key is revealed. We develop a method that objectively detects peaks and decides which peak is significant. We conclude that using the Gaussian curve fitting method, the subjective qualification of the peak significance can be objectified. Thus, better decisions can be taken by security experts. We also conclude that the Gaussian curve fitting method is able to show the influence of peak sizes, especially the width and height, to a significance of a particular peak.

  1. New non-linear modified massless Klein-Gordon equation

    Energy Technology Data Exchange (ETDEWEB)

    Asenjo, Felipe A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Facultad de Ingenieria y Ciencias, Santiago (Chile); Hojman, Sergio A. [Universidad Adolfo Ibanez, UAI Physics Center, Santiago (Chile); Universidad Adolfo Ibanez, Departamento de Ciencias, Facultad de Artes Liberales, Santiago (Chile); Universidad de Chile, Departamento de Fisica, Facultad de Ciencias, Santiago (Chile); Centro de Recursos Educativos Avanzados, CREA, Santiago (Chile)

    2017-11-15

    The massless Klein-Gordon equation on arbitrary curved backgrounds allows for solutions which develop ''tails'' inside the light cone and, therefore, do not strictly follow null geodesics as discovered by DeWitt and Brehme almost 60 years ago. A modification of the massless Klein-Gordon equation is presented, which always exhibits null geodesic propagation of waves on arbitrary curved spacetimes. This new equation is derived from a Lagrangian which exhibits current-current interaction. Its non-linearity is due to a self-coupling term which is related to the quantum mechanical Bohm potential. (orig.)

  2. Curve Fitting via the Criterion of Least Squares. Applications of Algebra and Elementary Calculus to Curve Fitting. [and] Linear Programming in Two Dimensions: I. Applications of High School Algebra to Operations Research. Modules and Monographs in Undergraduate Mathematics and Its Applications Project. UMAP Units 321, 453.

    Science.gov (United States)

    Alexander, John W., Jr.; Rosenberg, Nancy S.

    This document consists of two modules. The first of these views applications of algebra and elementary calculus to curve fitting. The user is provided with information on how to: 1) construct scatter diagrams; 2) choose an appropriate function to fit specific data; 3) understand the underlying theory of least squares; 4) use a computer program to…

  3. Reference Curves for Field Tests of Musculoskeletal Fitness in U.S. Children and Adolescents: The 2012 NHANES National Youth Fitness Survey.

    Science.gov (United States)

    Laurson, Kelly R; Saint-Maurice, Pedro F; Welk, Gregory J; Eisenmann, Joey C

    2017-08-01

    Laurson, KR, Saint-Maurice, PF, Welk, GJ, and Eisenmann, JC. Reference curves for field tests of musculoskeletal fitness in U.S. children and adolescents: The 2012 NHANES National Youth Fitness Survey. J Strength Cond Res 31(8): 2075-2082, 2017-The purpose of the study was to describe current levels of musculoskeletal fitness (MSF) in U.S. youth by creating nationally representative age-specific and sex-specific growth curves for handgrip strength (including relative and allometrically scaled handgrip), modified pull-ups, and the plank test. Participants in the National Youth Fitness Survey (n = 1,453) were tested on MSF, aerobic capacity (via submaximal treadmill test), and body composition (body mass index [BMI], waist circumference, and skinfolds). Using LMS regression, age-specific and sex-specific smoothed percentile curves of MSF were created and existing percentiles were used to assign age-specific and sex-specific z-scores for aerobic capacity and body composition. Correlation matrices were created to assess the relationships between z-scores on MSF, aerobic capacity, and body composition. At younger ages (3-10 years), boys scored higher than girls for handgrip strength and modified pull-ups, but not for the plank. By ages 13-15, differences between the boys and girls curves were more pronounced, with boys scoring higher on all tests. Correlations between tests of MSF and aerobic capacity were positive and low-to-moderate in strength. Correlations between tests of MSF and body composition were negative, excluding absolute handgrip strength, which was inversely related to other MSF tests and aerobic capacity but positively associated with body composition. The growth curves herein can be used as normative reference values or a starting point for creating health-related criterion reference standards for these tests. Comparisons with prior national surveys of physical fitness indicate that some components of MSF have likely decreased in the United States over

  4. Universal Linear Fit Identification: A Method Independent of Data, Outliers and Noise Distribution Model and Free of Missing or Removed Data Imputation.

    Science.gov (United States)

    Adikaram, K K L B; Hussein, M A; Effenberger, M; Becker, T

    2015-01-01

    Data processing requires a robust linear fit identification method. In this paper, we introduce a non-parametric robust linear fit identification method for time series. The method uses an indicator 2/n to identify linear fit, where n is number of terms in a series. The ratio Rmax of amax - amin and Sn - amin*n and that of Rmin of amax - amin and amax*n - Sn are always equal to 2/n, where amax is the maximum element, amin is the minimum element and Sn is the sum of all elements. If any series expected to follow y = c consists of data that do not agree with y = c form, Rmax > 2/n and Rmin > 2/n imply that the maximum and minimum elements, respectively, do not agree with linear fit. We define threshold values for outliers and noise detection as 2/n * (1 + k1) and 2/n * (1 + k2), respectively, where k1 > k2 and 0 ≤ k1 ≤ n/2 - 1. Given this relation and transformation technique, which transforms data into the form y = c, we show that removing all data that do not agree with linear fit is possible. Furthermore, the method is independent of the number of data points, missing data, removed data points and nature of distribution (Gaussian or non-Gaussian) of outliers, noise and clean data. These are major advantages over the existing linear fit methods. Since having a perfect linear relation between two variables in the real world is impossible, we used artificial data sets with extreme conditions to verify the method. The method detects the correct linear fit when the percentage of data agreeing with linear fit is less than 50%, and the deviation of data that do not agree with linear fit is very small, of the order of ±10-4%. The method results in incorrect detections only when numerical accuracy is insufficient in the calculation process.

  5. Universal Linear Fit Identification: A Method Independent of Data, Outliers and Noise Distribution Model and Free of Missing or Removed Data Imputation.

    Directory of Open Access Journals (Sweden)

    K K L B Adikaram

    Full Text Available Data processing requires a robust linear fit identification method. In this paper, we introduce a non-parametric robust linear fit identification method for time series. The method uses an indicator 2/n to identify linear fit, where n is number of terms in a series. The ratio Rmax of amax - amin and Sn - amin*n and that of Rmin of amax - amin and amax*n - Sn are always equal to 2/n, where amax is the maximum element, amin is the minimum element and Sn is the sum of all elements. If any series expected to follow y = c consists of data that do not agree with y = c form, Rmax > 2/n and Rmin > 2/n imply that the maximum and minimum elements, respectively, do not agree with linear fit. We define threshold values for outliers and noise detection as 2/n * (1 + k1 and 2/n * (1 + k2, respectively, where k1 > k2 and 0 ≤ k1 ≤ n/2 - 1. Given this relation and transformation technique, which transforms data into the form y = c, we show that removing all data that do not agree with linear fit is possible. Furthermore, the method is independent of the number of data points, missing data, removed data points and nature of distribution (Gaussian or non-Gaussian of outliers, noise and clean data. These are major advantages over the existing linear fit methods. Since having a perfect linear relation between two variables in the real world is impossible, we used artificial data sets with extreme conditions to verify the method. The method detects the correct linear fit when the percentage of data agreeing with linear fit is less than 50%, and the deviation of data that do not agree with linear fit is very small, of the order of ±10-4%. The method results in incorrect detections only when numerical accuracy is insufficient in the calculation process.

  6. The development and validation of a numerical integration method for non-linear viscoelastic modeling

    Science.gov (United States)

    Ramo, Nicole L.; Puttlitz, Christian M.

    2018-01-01

    Compelling evidence that many biological soft tissues display both strain- and time-dependent behavior has led to the development of fully non-linear viscoelastic modeling techniques to represent the tissue’s mechanical response under dynamic conditions. Since the current stress state of a viscoelastic material is dependent on all previous loading events, numerical analyses are complicated by the requirement of computing and storing the stress at each step throughout the load history. This requirement quickly becomes computationally expensive, and in some cases intractable, for finite element models. Therefore, we have developed a strain-dependent numerical integration approach for capturing non-linear viscoelasticity that enables calculation of the current stress from a strain-dependent history state variable stored from the preceding time step only, which improves both fitting efficiency and computational tractability. This methodology was validated based on its ability to recover non-linear viscoelastic coefficients from simulated stress-relaxation (six strain levels) and dynamic cyclic (three frequencies) experimental stress-strain data. The model successfully fit each data set with average errors in recovered coefficients of 0.3% for stress-relaxation fits and 0.1% for cyclic. The results support the use of the presented methodology to develop linear or non-linear viscoelastic models from stress-relaxation or cyclic experimental data of biological soft tissues. PMID:29293558

  7. Fitting the Fractional Polynomial Model to Non-Gaussian Longitudinal Data

    Directory of Open Access Journals (Sweden)

    Ji Hoon Ryoo

    2017-08-01

    Full Text Available As in cross sectional studies, longitudinal studies involve non-Gaussian data such as binomial, Poisson, gamma, and inverse-Gaussian distributions, and multivariate exponential families. A number of statistical tools have thus been developed to deal with non-Gaussian longitudinal data, including analytic techniques to estimate parameters in both fixed and random effects models. However, as yet growth modeling with non-Gaussian data is somewhat limited when considering the transformed expectation of the response via a linear predictor as a functional form of explanatory variables. In this study, we introduce a fractional polynomial model (FPM that can be applied to model non-linear growth with non-Gaussian longitudinal data and demonstrate its use by fitting two empirical binary and count data models. The results clearly show the efficiency and flexibility of the FPM for such applications.

  8. Microprocessor-controlled system for automatic acquisition of potentiometric data and their non-linear least-squares fit in equilibrium studies.

    Science.gov (United States)

    Gampp, H; Maeder, M; Zuberbühler, A D; Kaden, T A

    1980-06-01

    A microprocessor-controlled potentiometric titration apparatus for equilibrium studies is described. The microprocessor controls the stepwise addition of reagent, monitors the pH until it becomes constant and stores the constant value. The data are recorded on magnetic tape by a cassette recorder with an RS232 input-output interface. A non-linear least-squares program based on Marquardt's modification of the Newton-Gauss method is discussed and its performance in the calculation of equilibrium constants is exemplified. An HP 9821 desk-top computer accepts the data from the magnetic tape recorder. In addition to a fully automatic fitting procedure, the program allows manual adjustment of the parameters. Three examples are discussed with regard to performance and reproducibility.

  9. Lysis solution composition and non-linear dose-response to ionizing radiation in the non-denaturing DNA filter elution technique

    International Nuclear Information System (INIS)

    Radford, I.R.

    1990-01-01

    The suggestion by Okayasu and Iliakis (1989) that the non-linear dose-response curve, obtained with the non-denaturing filter elution technique for mammalian cells exposed to low-LET radiation, is the result of a technical artefact, was not confirmed. (author)

  10. Cuckoo Search with Lévy Flights for Weighted Bayesian Energy Functional Optimization in Global-Support Curve Data Fitting

    Directory of Open Access Journals (Sweden)

    Akemi Gálvez

    2014-01-01

    for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way.

  11. Semi-analog Monte Carlo (SMC) method for time-dependent non-linear three-dimensional heterogeneous radiative transfer problems

    International Nuclear Information System (INIS)

    Yun, Sung Hwan

    2004-02-01

    Radiative transfer is a complex phenomenon in which radiation field interacts with material. This thermal radiative transfer phenomenon is composed of two equations which are the balance equation of photons and the material energy balance equation. The two equations involve non-linearity due to the temperature and that makes the radiative transfer equation more difficult to solve. During the last several years, there have been many efforts to solve the non-linear radiative transfer problems by Monte Carlo method. Among them, it is known that Semi-Analog Monte Carlo (SMC) method developed by Ahrens and Larsen is accurate regard-less of the time step size in low temperature region. But their works are limited to one-dimensional, low temperature problems. In this thesis, we suggest some method to remove their limitations in the SMC method and apply to the more realistic problems. An initially cold problem was solved over entire temperature region by using piecewise linear interpolation of the heat capacity, while heat capacity is still fitted as a cubic curve within the lowest temperature region. If we assume the heat capacity to be linear in each temperature region, the non-linearity still remains in the radiative transfer equations. We then introduce the first-order Taylor expansion to linearize the non-linear radiative transfer equations. During the linearization procedure, absorption-reemission phenomena may be described by a conventional reemission time sampling scheme which is similar to the repetitive sampling scheme in particle transport Monte Carlo method. But this scheme causes significant stochastic errors, which necessitates many histories. Thus, we present a new reemission time sampling scheme which reduces stochastic errors by storing the information of absorption times. The results of the comparison of the two schemes show that the new scheme has less stochastic errors. Therefore, the improved SMC method is able to solve more realistic problems with

  12. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Lemos-Pinto, M.M.P.; Cadena, M.; Santos, N.; Fernandes, T.S.; Borges, E.; Amaral, A., E-mail: marcelazoo@yahoo.com.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Departamento de Energia Nuclear

    2015-10-15

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates. (author)

  13. A dose-response curve for biodosimetry from a 6 MV electron linear accelerator.

    Science.gov (United States)

    Lemos-Pinto, M M P; Cadena, M; Santos, N; Fernandes, T S; Borges, E; Amaral, A

    2015-10-01

    Biological dosimetry (biodosimetry) is based on the investigation of radiation-induced biological effects (biomarkers), mainly dicentric chromosomes, in order to correlate them with radiation dose. To interpret the dicentric score in terms of absorbed dose, a calibration curve is needed. Each curve should be constructed with respect to basic physical parameters, such as the type of ionizing radiation characterized by low or high linear energy transfer (LET) and dose rate. This study was designed to obtain dose calibration curves by scoring of dicentric chromosomes in peripheral blood lymphocytes irradiated in vitro with a 6 MV electron linear accelerator (Mevatron M, Siemens, USA). Two software programs, CABAS (Chromosomal Aberration Calculation Software) and Dose Estimate, were used to generate the curve. The two software programs are discussed; the results obtained were compared with each other and with other published low LET radiation curves. Both software programs resulted in identical linear and quadratic terms for the curve presented here, which was in good agreement with published curves for similar radiation quality and dose rates.

  14. Linear transform of the multi-target survival curve

    Energy Technology Data Exchange (ETDEWEB)

    Watson, J V [Cambridge Univ. (UK). Dept. of Clinical Oncology and Radiotherapeutics

    1978-07-01

    A completely linear transform of the multi-target survival curve is presented. This enables all data, including those on the shoulder region of the curve, to be analysed. The necessity to make a subjective assessment about which data points to exclude for conventional methods of analysis is, therefore, removed. The analysis has also been adapted to include a 'Pike-Alper' method of assessing dose modification factors. For the data cited this predicts compatibility with the hypothesis of a true oxygen 'dose-modification' whereas the conventional Pike-Alper analysis does not.

  15. Non-Linear Behaviour Of Gelatin Networks Reveals A Hierarchical Structure

    KAUST Repository

    Yang, Zhi; Hemar, Yacine; Hilliou, loic; Gilbert, Elliot P.; McGillivray, Duncan James; Williams, Martin A. K.; Chaieb, Saharoui

    2015-01-01

    We investigate the strain hardening behaviour of various gelatin networks - namely physically-crosslinked gelatin gel, chemically-crosslinked gelatin gels, and a hybrid gels made of a combination of the former two - under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillation shear protocols. Further, the internal structures of physically-crosslinked gelatin gel and chemically-crosslinked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically-crosslinked network, whereas in the physically-crosslinked gels a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as correlation length (ξ), cross-sectional polymer chain radius (Rc), and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physically-crosslinked and chemically crosslinked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized non-linear elastic theory we used to fit our stress-strain curves. The chemical crosslinking that generates coils and aggregates hinders the free stretching of the triple helices bundles in the physically-crosslinked gels.

  16. Non-Linear Behaviour Of Gelatin Networks Reveals A Hierarchical Structure

    KAUST Repository

    Yang, Zhi

    2015-12-14

    We investigate the strain hardening behaviour of various gelatin networks - namely physically-crosslinked gelatin gel, chemically-crosslinked gelatin gels, and a hybrid gels made of a combination of the former two - under large shear deformations using the pre-stress, strain ramp, and large amplitude oscillation shear protocols. Further, the internal structures of physically-crosslinked gelatin gel and chemically-crosslinked gelatin gels were characterized by small angle neutron scattering (SANS) to enable their internal structures to be correlated with their nonlinear rheology. The Kratky plots of SANS data demonstrate the presence of small cross-linked aggregates within the chemically-crosslinked network, whereas in the physically-crosslinked gels a relatively homogeneous structure is observed. Through model fitting to the scattering data, we were able to obtain structural parameters, such as correlation length (ξ), cross-sectional polymer chain radius (Rc), and the fractal dimension (df) of the gel networks. The fractal dimension df obtained from the SANS data of the physically-crosslinked and chemically crosslinked gels is 1.31 and 1.53, respectively. These values are in excellent agreement with the ones obtained from a generalized non-linear elastic theory we used to fit our stress-strain curves. The chemical crosslinking that generates coils and aggregates hinders the free stretching of the triple helices bundles in the physically-crosslinked gels.

  17. Physical fitness reference standards in fibromyalgia: The al-Ándalus project.

    Science.gov (United States)

    Álvarez-Gallardo, I C; Carbonell-Baeza, A; Segura-Jiménez, V; Soriano-Maldonado, A; Intemann, T; Aparicio, V A; Estévez-López, F; Camiletti-Moirón, D; Herrador-Colmenero, M; Ruiz, J R; Delgado-Fernández, M; Ortega, F B

    2017-11-01

    We aimed (1) to report age-specific physical fitness levels in people with fibromyalgia of a representative sample from Andalusia; and (2) to compare the fitness levels of people with fibromyalgia with non-fibromyalgia controls. This cross-sectional study included 468 (21 men) patients with fibromyalgia and 360 (55 men) controls. The fibromyalgia sample was geographically representative from southern Spain. Physical fitness was assessed with the Senior Fitness Test battery plus the handgrip test. We applied the Generalized Additive Model for Location, Scale and Shape to calculate percentile curves for women and fitted mean curves using a linear regression for men. Our results show that people with fibromyalgia reached worse performance in all fitness tests than controls (P fitness levels among patients with fibromyalgia and controls in a large sample of patients with fibromyalgia from southern of Spain. Physical fitness levels of people with fibromyalgia from Andalusia are very low in comparison with age-matched healthy controls. This information could be useful to correctly interpret physical fitness assessments and helping health care providers to identify individuals at risk for losing physical independence. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Universal Linear Fit Identification: A Method Independent of Data, Outliers and Noise Distribution Model and Free of Missing or Removed Data Imputation

    Science.gov (United States)

    Adikaram, K. K. L. B.; Becker, T.

    2015-01-01

    Data processing requires a robust linear fit identification method. In this paper, we introduce a non-parametric robust linear fit identification method for time series. The method uses an indicator 2/n to identify linear fit, where n is number of terms in a series. The ratio R max of a max − a min and S n − a min *n and that of R min of a max − a min and a max *n − S n are always equal to 2/n, where a max is the maximum element, a min is the minimum element and S n is the sum of all elements. If any series expected to follow y = c consists of data that do not agree with y = c form, R max > 2/n and R min > 2/n imply that the maximum and minimum elements, respectively, do not agree with linear fit. We define threshold values for outliers and noise detection as 2/n * (1 + k 1 ) and 2/n * (1 + k 2 ), respectively, where k 1 > k 2 and 0 ≤ k 1 ≤ n/2 − 1. Given this relation and transformation technique, which transforms data into the form y = c, we show that removing all data that do not agree with linear fit is possible. Furthermore, the method is independent of the number of data points, missing data, removed data points and nature of distribution (Gaussian or non-Gaussian) of outliers, noise and clean data. These are major advantages over the existing linear fit methods. Since having a perfect linear relation between two variables in the real world is impossible, we used artificial data sets with extreme conditions to verify the method. The method detects the correct linear fit when the percentage of data agreeing with linear fit is less than 50%, and the deviation of data that do not agree with linear fit is very small, of the order of ±10−4%. The method results in incorrect detections only when numerical accuracy is insufficient in the calculation process. PMID:26571035

  19. Non-linear calibration models for near infrared spectroscopy

    DEFF Research Database (Denmark)

    Ni, Wangdong; Nørgaard, Lars; Mørup, Morten

    2014-01-01

    by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non-linear...... models on linear problems, robustness to small or medium sample sets, and robustness to pre-processing, are discussed. The results suggest that GPR and BANN are powerful and promising methods for handling linear as well as nonlinear systems, even when the data sets are moderately small. The LS......-SVM), relevance vector machines (RVM), Gaussian process regression (GPR), artificial neural network (ANN), and Bayesian ANN (BANN). In this comparison, partial least squares (PLS) regression is used as a linear benchmark, while the relationship of the methods is considered in terms of traditional calibration...

  20. Comparison of linear and non-linear models for the adsorption of fluoride onto geo-material: limonite.

    Science.gov (United States)

    Sahin, Rubina; Tapadia, Kavita

    2015-01-01

    The three widely used isotherms Langmuir, Freundlich and Temkin were examined in an experiment using fluoride (F⁻) ion adsorption on a geo-material (limonite) at four different temperatures by linear and non-linear models. Comparison of linear and non-linear regression models were given in selecting the optimum isotherm for the experimental results. The coefficient of determination, r², was used to select the best theoretical isotherm. The four Langmuir linear equations (1, 2, 3, and 4) are discussed. Langmuir isotherm parameters obtained from the four Langmuir linear equations using the linear model differed but they were the same when using the nonlinear model. Langmuir-2 isotherm is one of the linear forms, and it had the highest coefficient of determination (r² = 0.99) compared to the other Langmuir linear equations (1, 3 and 4) in linear form, whereas, for non-linear, Langmuir-4 fitted best among all the isotherms because it had the highest coefficient of determination (r² = 0.99). The results showed that the non-linear model may be a better way to obtain the parameters. In the present work, the thermodynamic parameters show that the absorption of fluoride onto limonite is both spontaneous (ΔG 0). Scanning electron microscope and X-ray diffraction images also confirm the adsorption of F⁻ ion onto limonite. The isotherm and kinetic study reveals that limonite can be used as an adsorbent for fluoride removal. In future we can develop new technology for fluoride removal in large scale by using limonite which is cost-effective, eco-friendly and is easily available in the study area.

  1. Potential errors when fitting experience curves by means of spreadsheet software

    NARCIS (Netherlands)

    van Sark, W.G.J.H.M.|info:eu-repo/dai/nl/074628526; Alsema, E.A.|info:eu-repo/dai/nl/073416258

    2010-01-01

    Progress ratios (PRs) are widely used in forecasting development of many technologies; they are derived from historical data represented in experience curves. Fitting the double logarithmic graphs is easily done with spreadsheet software like Microsoft Excel, by adding a trend line to the graph.

  2. Non-linear assessment and deficiency of linear relationship for healthcare industry

    Science.gov (United States)

    Nordin, N.; Abdullah, M. M. A. B.; Razak, R. C.

    2017-09-01

    This paper presents the development of the non-linear service satisfaction model that assumes patients are not necessarily satisfied or dissatisfied with good or poor service delivery. With that, compliment and compliant assessment is considered, simultaneously. Non-linear service satisfaction instrument called Kano-Q and Kano-SS is developed based on Kano model and Theory of Quality Attributes (TQA) to define the unexpected, hidden and unspoken patient satisfaction and dissatisfaction into service quality attribute. A new Kano-Q and Kano-SS algorithm for quality attribute assessment is developed based satisfaction impact theories and found instrumentally fit the reliability and validity test. The results were also validated based on standard Kano model procedure before Kano model and Quality Function Deployment (QFD) is integrated for patient attribute and service attribute prioritization. An algorithm of Kano-QFD matrix operation is developed to compose the prioritized complaint and compliment indexes. Finally, the results of prioritized service attributes are mapped to service delivery category to determine the most prioritized service delivery that need to be improved at the first place by healthcare service provider.

  3. Reconciling the Log-Linear and Non-Log-Linear Nature of the TSH-Free T4 Relationship: Intra-Individual Analysis of a Large Population.

    Science.gov (United States)

    Rothacker, Karen M; Brown, Suzanne J; Hadlow, Narelle C; Wardrop, Robert; Walsh, John P

    2016-03-01

    The TSH-T4 relationship was thought to be inverse log-linear, but recent cross-sectional studies report a complex, nonlinear relationship; large, intra-individual studies are lacking. Our objective was to analyze the TSH-free T4 relationship within individuals. We analyzed data from 13 379 patients, each with six or more TSH/free T4 measurements and at least a 5-fold difference between individual median TSH and minimum or maximum TSH. Linear and nonlinear regression models of log TSH on free T4 were fitted to data from individuals and goodness of fit compared by likelihood ratio testing. Comparing all models, the linear model achieved best fit in 31% of individuals, followed by quartic (27%), cubic (15%), null (12%), and quadratic (11%) models. After eliminating least favored models (with individuals reassigned to best fitting, available models), the linear model fit best in 42% of participants, quartic in 43%, and null model in 15%. As the number of observations per individual increased, so did the proportion of individuals in whom the linear model achieved best fit, to 66% in those with more than 20 observations. When linear models were applied to all individuals and averaged according to individual median free T4 values, variations in slope and intercept indicated a nonlinear log TSH-free T4 relationship across the population. The log TSH-free T4 relationship appears linear in some individuals and nonlinear in others, but is predominantly linear in those with the largest number of observations. A log-linear relationship within individuals can be reconciled with a non-log-linear relationship in a population.

  4. RF EXCITATION OF LINEAR AND CURVED SECTIONS OF THE CRFQ PROJECT

    International Nuclear Information System (INIS)

    DAVINO, D.; CAMPAJOLA, L.; MASULLO, M.R.; RUGGIERO, A.

    2004-01-01

    The design criteria of the linear and first curved sectors of the Circular Radiofrequency Quadrupole (CRFQ) proof of principle are presented in this paper. Radiofrequency measurements on a cold model of the linear sector and comparisons with numerical simulations are presented too

  5. Efficient Constrained Local Model Fitting for Non-Rigid Face Alignment.

    Science.gov (United States)

    Lucey, Simon; Wang, Yang; Cox, Mark; Sridharan, Sridha; Cohn, Jeffery F

    2009-11-01

    Active appearance models (AAMs) have demonstrated great utility when being employed for non-rigid face alignment/tracking. The "simultaneous" algorithm for fitting an AAM achieves good non-rigid face registration performance, but has poor real time performance (2-3 fps). The "project-out" algorithm for fitting an AAM achieves faster than real time performance (> 200 fps) but suffers from poor generic alignment performance. In this paper we introduce an extension to a discriminative method for non-rigid face registration/tracking referred to as a constrained local model (CLM). Our proposed method is able to achieve superior performance to the "simultaneous" AAM algorithm along with real time fitting speeds (35 fps). We improve upon the canonical CLM formulation, to gain this performance, in a number of ways by employing: (i) linear SVMs as patch-experts, (ii) a simplified optimization criteria, and (iii) a composite rather than additive warp update step. Most notably, our simplified optimization criteria for fitting the CLM divides the problem of finding a single complex registration/warp displacement into that of finding N simple warp displacements. From these N simple warp displacements, a single complex warp displacement is estimated using a weighted least-squares constraint. Another major advantage of this simplified optimization lends from its ability to be parallelized, a step which we also theoretically explore in this paper. We refer to our approach for fitting the CLM as the "exhaustive local search" (ELS) algorithm. Experiments were conducted on the CMU Multi-PIE database.

  6. The linear sizes tolerances and fits system modernization

    Science.gov (United States)

    Glukhov, V. I.; Grinevich, V. A.; Shalay, V. V.

    2018-04-01

    The study is carried out on the urgent topic for technical products quality providing in the tolerancing process of the component parts. The aim of the paper is to develop alternatives for improving the system linear sizes tolerances and dimensional fits in the international standard ISO 286-1. The tasks of the work are, firstly, to classify as linear sizes the elements additionally linear coordinating sizes that determine the detail elements location and, secondly, to justify the basic deviation of the tolerance interval for the element's linear size. The geometrical modeling method of real details elements, the analytical and experimental methods are used in the research. It is shown that the linear coordinates are the dimensional basis of the elements linear sizes. To standardize the accuracy of linear coordinating sizes in all accuracy classes, it is sufficient to select in the standardized tolerance system only one tolerance interval with symmetrical deviations: Js for internal dimensional elements (holes) and js for external elements (shafts). The main deviation of this coordinating tolerance is the average zero deviation, which coincides with the nominal value of the coordinating size. Other intervals of the tolerance system are remained for normalizing the accuracy of the elements linear sizes with a fundamental change in the basic deviation of all tolerance intervals is the maximum deviation corresponding to the limit of the element material: EI is the lower tolerance for the of the internal elements (holes) sizes and es is the upper tolerance deviation for the outer elements (shafts) sizes. It is the sizes of the material maximum that are involved in the of the dimensional elements mating of the shafts and holes and determine the fits type.

  7. Three-point phase correlations: A new measure of non-linear large-scale structure

    CERN Document Server

    Wolstenhulme, Richard; Obreschkow, Danail

    2015-01-01

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the non-linear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F_2, which governs the non-linear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a very good agreement for separations r>20 Mpc/h. Fitting formulae for the power spectrum and the non-linear coupling kernel at small scales allow us to extend our prediction into the strongly non-linear regime. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the linear bias. Furtherm...

  8. Quantitative analysis of Ni2+/Ni3+ in Li[NixMnyCoz]O2 cathode materials: Non-linear least-squares fitting of XPS spectra

    Science.gov (United States)

    Fu, Zewei; Hu, Juntao; Hu, Wenlong; Yang, Shiyu; Luo, Yunfeng

    2018-05-01

    Quantitative analysis of Ni2+/Ni3+ using X-ray photoelectron spectroscopy (XPS) is important for evaluating the crystal structure and electrochemical performance of Lithium-nickel-cobalt-manganese oxide (Li[NixMnyCoz]O2, NMC). However, quantitative analysis based on Gaussian/Lorentzian (G/L) peak fitting suffers from the challenges of reproducibility and effectiveness. In this study, the Ni2+ and Ni3+ standard samples and a series of NMC samples with different Ni doping levels were synthesized. The Ni2+/Ni3+ ratios in NMC were quantitatively analyzed by non-linear least-squares fitting (NLLSF). Two Ni 2p overall spectra of synthesized Li [Ni0.33Mn0.33Co0.33]O2(NMC111) and bulk LiNiO2 were used as the Ni2+ and Ni3+ reference standards. Compared to G/L peak fitting, the fitting parameters required no adjustment, meaning that the spectral fitting process was free from operator dependence and the reproducibility was improved. Comparison of residual standard deviation (STD) showed that the fitting quality of NLLSF was superior to that of G/L peaks fitting. Overall, these findings confirmed the reproducibility and effectiveness of the NLLSF method in XPS quantitative analysis of Ni2+/Ni3+ ratio in Li[NixMnyCoz]O2 cathode materials.

  9. Linear and non-linear optics of condensed matter

    International Nuclear Information System (INIS)

    McLean, T.P.

    1977-01-01

    Part I - Linear optics: 1. General introduction. 2. Frequency dependence of epsilon(ω, k vector). 3. Wave-vector dependence of epsilon(ω, k vector). 4. Tensor character of epsilon(ω, k vector). Part II - Non-linear optics: 5. Introduction. 6. A classical theory of non-linear response in one dimension. 7. The generalization to three dimensions. 8. General properties of the polarizability tensors. 9. The phase-matching condition. 10. Propagation in a non-linear dielectric. 11. Second harmonic generation. 12. Coupling of three waves. 13. Materials and their non-linearities. 14. Processes involving energy exchange with the medium. 15. Two-photon absorption. 16. Stimulated Raman effect. 17. Electro-optic effects. 18. Limitations of the approach presented here. (author)

  10. An Empirical Fitting Method for Type Ia Supernova Light Curves: A Case Study of SN 2011fe

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, WeiKang; Filippenko, Alexei V., E-mail: zwk@astro.berkeley.edu [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States)

    2017-03-20

    We present a new empirical fitting method for the optical light curves of Type Ia supernovae (SNe Ia). We find that a variant broken-power-law function provides a good fit, with the simple assumption that the optical emission is approximately the blackbody emission of the expanding fireball. This function is mathematically analytic and is derived directly from the photospheric velocity evolution. When deriving the function, we assume that both the blackbody temperature and photospheric velocity are constant, but the final function is able to accommodate these changes during the fitting procedure. Applying it to the case study of SN 2011fe gives a surprisingly good fit that can describe the light curves from the first-light time to a few weeks after peak brightness, as well as over a large range of fluxes (∼5 mag, and even ∼7 mag in the g band). Since SNe Ia share similar light-curve shapes, this fitting method has the potential to fit most other SNe Ia and characterize their properties in large statistical samples such as those already gathered and in the near future as new facilities become available.

  11. Piecewise linear regression splines with hyperbolic covariates

    International Nuclear Information System (INIS)

    Cologne, John B.; Sposto, Richard

    1992-09-01

    Consider the problem of fitting a curve to data that exhibit a multiphase linear response with smooth transitions between phases. We propose substituting hyperbolas as covariates in piecewise linear regression splines to obtain curves that are smoothly joined. The method provides an intuitive and easy way to extend the two-phase linear hyperbolic response model of Griffiths and Miller and Watts and Bacon to accommodate more than two linear segments. The resulting regression spline with hyperbolic covariates may be fit by nonlinear regression methods to estimate the degree of curvature between adjoining linear segments. The added complexity of fitting nonlinear, as opposed to linear, regression models is not great. The extra effort is particularly worthwhile when investigators are unwilling to assume that the slope of the response changes abruptly at the join points. We can also estimate the join points (the values of the abscissas where the linear segments would intersect if extrapolated) if their number and approximate locations may be presumed known. An example using data on changing age at menarche in a cohort of Japanese women illustrates the use of the method for exploratory data analysis. (author)

  12. Comparison of Linear and Non-linear Regression Analysis to Determine Pulmonary Pressure in Hyperthyroidism.

    Science.gov (United States)

    Scarneciu, Camelia C; Sangeorzan, Livia; Rus, Horatiu; Scarneciu, Vlad D; Varciu, Mihai S; Andreescu, Oana; Scarneciu, Ioan

    2017-01-01

    This study aimed at assessing the incidence of pulmonary hypertension (PH) at newly diagnosed hyperthyroid patients and at finding a simple model showing the complex functional relation between pulmonary hypertension in hyperthyroidism and the factors causing it. The 53 hyperthyroid patients (H-group) were evaluated mainly by using an echocardiographical method and compared with 35 euthyroid (E-group) and 25 healthy people (C-group). In order to identify the factors causing pulmonary hypertension the statistical method of comparing the values of arithmetical means is used. The functional relation between the two random variables (PAPs and each of the factors determining it within our research study) can be expressed by linear or non-linear function. By applying the linear regression method described by a first-degree equation the line of regression (linear model) has been determined; by applying the non-linear regression method described by a second degree equation, a parabola-type curve of regression (non-linear or polynomial model) has been determined. We made the comparison and the validation of these two models by calculating the determination coefficient (criterion 1), the comparison of residuals (criterion 2), application of AIC criterion (criterion 3) and use of F-test (criterion 4). From the H-group, 47% have pulmonary hypertension completely reversible when obtaining euthyroidism. The factors causing pulmonary hypertension were identified: previously known- level of free thyroxin, pulmonary vascular resistance, cardiac output; new factors identified in this study- pretreatment period, age, systolic blood pressure. According to the four criteria and to the clinical judgment, we consider that the polynomial model (graphically parabola- type) is better than the linear one. The better model showing the functional relation between the pulmonary hypertension in hyperthyroidism and the factors identified in this study is given by a polynomial equation of second

  13. Fitness analysis method for magnesium in drinking water with atomic absorption using quadratic curve calibration

    Directory of Open Access Journals (Sweden)

    Esteban Pérez-López

    2014-11-01

    Full Text Available Because of the importance of quantitative chemical analysis in research, quality control, sales of services and other areas of interest , and the limiting of some instrumental analysis methods for quantification with linear calibration curve, sometimes because the short linear dynamic ranges of the analyte, and sometimes by limiting the technique itself, is that there is a need to investigate a little more about the convenience of using quadratic curves for analytical quantification, which seeks demonstrate that it is a valid calculation model for chemical analysis instruments. To this was taken as an analysis method based on the technique and atomic absorption spectroscopy in particular a determination of magnesium in a sample of drinking water Tacares sector Northern Grecia, employing a nonlinear calibration curve and a curve specific quadratic behavior, which was compared with the test results obtained for the same analysis with a linear calibration curve. The results show that the methodology is valid for the determination referred to, with all confidence, since the concentrations are very similar, and as used hypothesis testing can be considered equal.

  14. Linearly resummed hydrodynamics in a weakly curved spacetime

    Science.gov (United States)

    Bu, Yanyan; Lublinsky, Michael

    2015-04-01

    We extend our study of all-order linearly resummed hydrodynamics in a flat space [1, 2] to fluids in weakly curved spaces. The underlying microscopic theory is a finite temperature super-Yang-Mills theory at strong coupling. The AdS/CFT correspondence relates black brane solutions of the Einstein gravity in asymptotically locally AdS5 geometry to relativistic conformal fluids in a weakly curved 4D background. To linear order in the amplitude of hydrodynamic variables and metric perturbations, the fluid's energy-momentum tensor is computed with derivatives of both the fluid velocity and background metric resummed to all orders. We extensively discuss the meaning of all order hydrodynamics by expressing it in terms of the memory function formalism, which is also suitable for practical simulations. In addition to two viscosity functions discussed at length in refs. [1, 2], we find four curvature induced structures coupled to the fluid via new transport coefficient functions. In ref. [3], the latter were referred to as gravitational susceptibilities of the fluid. We analytically compute these coefficients in the hydrodynamic limit, and then numerically up to large values of momenta.

  15. Feasibility study on the least square method for fitting non-Gaussian noise data

    Science.gov (United States)

    Xu, Wei; Chen, Wen; Liang, Yingjie

    2018-02-01

    This study is to investigate the feasibility of least square method in fitting non-Gaussian noise data. We add different levels of the two typical non-Gaussian noises, Lévy and stretched Gaussian noises, to exact value of the selected functions including linear equations, polynomial and exponential equations, and the maximum absolute and the mean square errors are calculated for the different cases. Lévy and stretched Gaussian distributions have many applications in fractional and fractal calculus. It is observed that the non-Gaussian noises are less accurately fitted than the Gaussian noise, but the stretched Gaussian cases appear to perform better than the Lévy noise cases. It is stressed that the least-squares method is inapplicable to the non-Gaussian noise cases when the noise level is larger than 5%.

  16. Linear dose response curves in fungi and tradescantia

    International Nuclear Information System (INIS)

    Unrau, P.

    1999-07-01

    Tradescantia Clone 02 data suggests that linear non-threshold dose responses are expected to the lowest doses and dose rates of low linear energy transfer (LET) radiation. This is likely to be true for other living organisms even though Clone 02 is radiation sensitive. It is concluded that Clone 02 is partially defective in the RAD 6 pathway for the repair of DNA interstrand cross-links (ISCL) and other loss of coding damage (LCD), based on its cross sensitivities to EMS and ionizing radiation. Tradescantia Clone 02 data showing linear non-threshold induction of somatic genetic events in part reflects the repair deficiency of this Clone. More DNA damage is repaired by recombinational mechanisms in Clone 02 than would occur in a wild-type strain. Two important classes of DNA lesions are induced by ionizing radiation in DNA - double strand breaks (DSB) which are repaired by recombination mechanisms, and loss of coding information damage (LCD), which is repaired by error prone mechanisms but may also be a substrate for recombinational repair. Based on data from yeast, there are two different repair pathways which deal with these differing lesions with different somatic genetic consequences. From yeast, yield cross sections can be derived and applied to DNA damage and repair in Tradescantia. For Clone 02, per lesion, more visible genetic events are scored than in wild-type strains. In a radiation-derived sub-clone, Clone 0106, which is more variable than Clone 02, even more events occur per lesion. This derivative clone, plus breeding experiments, indicate that Clone 02 is heterozygous, or a 'carrier' for a mutant version of a gene in the Tradescantia RAD 6 repair pathway. Clone 02 is, therefore, much like a Fanconi's anemia carrier in a human population, while the Clone 0106 derivative is much like a homozygous Fanconi's anemia patient, with respect to its response to ionizing radiation damage. Two anomalies in its dose response curves for 'pink' loss of

  17. Linear dose response curves in fungi and tradescantia

    Energy Technology Data Exchange (ETDEWEB)

    Unrau, P. [Atomic Energy of Canada Ltd., Chalk River, Ontario (Canada)

    1999-07-15

    Tradescantia Clone 02 data suggests that linear non-threshold dose responses are expected to the lowest doses and dose rates of low linear energy transfer (LET) radiation. This is likely to be true for other living organisms even though Clone 02 is radiation sensitive. It is concluded that Clone 02 is partially defective in the RAD 6 pathway for the repair of DNA interstrand cross-links (ISCL) and other loss of coding damage (LCD), based on its cross sensitivities to EMS and ionizing radiation. Tradescantia Clone 02 data showing linear non-threshold induction of somatic genetic events in part reflects the repair deficiency of this Clone. More DNA damage is repaired by recombinational mechanisms in Clone 02 than would occur in a wild-type strain. Two important classes of DNA lesions are induced by ionizing radiation in DNA - double strand breaks (DSB) which are repaired by recombination mechanisms, and loss of coding information damage (LCD), which is repaired by error prone mechanisms but may also be a substrate for recombinational repair. Based on data from yeast, there are two different repair pathways which deal with these differing lesions with different somatic genetic consequences. From yeast, yield cross sections can be derived and applied to DNA damage and repair in Tradescantia. For Clone 02, per lesion, more visible genetic events are scored than in wild-type strains. In a radiation-derived sub-clone, Clone 0106, which is more variable than Clone 02, even more events occur per lesion. This derivative clone, plus breeding experiments, indicate that Clone 02 is heterozygous, or a 'carrier' for a mutant version of a gene in the Tradescantia RAD 6 repair pathway. Clone 02 is, therefore, much like a Fanconi's anemia carrier in a human population, while the Clone 0106 derivative is much like a homozygous Fanconi's anemia patient, with respect to its response to ionizing radiation damage. Two anomalies in its dose response curves for &apos

  18. Non-linear models for the detection of impaired cerebral blood flow autoregulation.

    Science.gov (United States)

    Chacón, Max; Jara, José Luis; Miranda, Rodrigo; Katsogridakis, Emmanuel; Panerai, Ronney B

    2018-01-01

    The ability to discriminate between normal and impaired dynamic cerebral autoregulation (CA), based on measurements of spontaneous fluctuations in arterial blood pressure (BP) and cerebral blood flow (CBF), has considerable clinical relevance. We studied 45 normal subjects at rest and under hypercapnia induced by breathing a mixture of carbon dioxide and air. Non-linear models with BP as input and CBF velocity (CBFV) as output, were implemented with support vector machines (SVM) using separate recordings for learning and validation. Dynamic SVM implementations used either moving average or autoregressive structures. The efficiency of dynamic CA was estimated from the model's derived CBFV response to a step change in BP as an autoregulation index for both linear and non-linear models. Non-linear models with recurrences (autoregressive) showed the best results, with CA indexes of 5.9 ± 1.5 in normocapnia, and 2.5 ± 1.2 for hypercapnia with an area under the receiver-operator curve of 0.955. The high performance achieved by non-linear SVM models to detect deterioration of dynamic CA should encourage further assessment of its applicability to clinical conditions where CA might be impaired.

  19. Statistical study of clone survival curves after irradiation in one or two stages. Comparison and generalization of different models

    International Nuclear Information System (INIS)

    Lachet, Bernard.

    1975-01-01

    A statistical study was carried out on 208 survival curves for chlorella subjected to γ or particle radiations. The computing programmes used were written in Fortran. The different experimental causes contributing to the variance of a survival rate are analyzed and consequently the experiments can be planned. Each curve was fitted to four models by the weighted least squares method applied to non-linear functions. The validity of the fits obtained can be checked by the F test. It was possible to define the confidence and prediction zones around an adjusted curve by weighting of the residual variance, in spite of error on the doses delivered; the confidence limits can them be fixed for a dose estimated from an exact or measured survival. The four models adopted were compared for the precision of their fit (by a non-parametric simultaneous comparison test) and the scattering of their adjusted parameters: Wideroe's model gives a very good fit with the experimental points in return for a scattering of its parameters, which robs them of their presumed meaning. The principal component analysis showed the statistical equivalence of the 1 and 2 hit target models. Division of the irradiation into two doses, the first fixed by the investigator, leads to families of curves for which the equation was established from that of any basic model expressing the dose survival relationship in one-stage irradiation [fr

  20. The environmental Kuznets curve. Does one size fit all?

    International Nuclear Information System (INIS)

    List, J.A.; Gallet, C.A.

    1999-01-01

    This paper uses a new panel data set on state-level sulfur dioxide and nitrogen oxide emissions from 1929-1994 to test the appropriateness of the 'one size fits all' reduced-form regression approach commonly used in the environmental Kuznets curve literature. Empirical results provide initial evidence that an inverted-U shape characterizes the relationship between per capita emissions and per capita incomes at the state level. Parameter estimates suggest, however, that previous studies, which restrict cross-sections to undergo identical experiences over time, may be presenting statistically biased results. 25 refs

  1. Nonlinear method for including the mass uncertainty of standards and the system measurement errors in the fitting of calibration curves

    International Nuclear Information System (INIS)

    Pickles, W.L.; McClure, J.W.; Howell, R.H.

    1978-01-01

    A sophisticated nonlinear multiparameter fitting program was used to produce a best fit calibration curve for the response of an x-ray fluorescence analyzer to uranium nitrate, freeze dried, 0.2% accurate, gravimetric standards. The program is based on unconstrained minimization subroutine, VA02A. The program considers the mass values of the gravimetric standards as parameters to be fit along with the normal calibration curve parameters. The fitting procedure weights with the system errors and the mass errors in a consistent way. The resulting best fit calibration curve parameters reflect the fact that the masses of the standard samples are measured quantities with a known error. Error estimates for the calibration curve parameters can be obtained from the curvature of the ''Chi-Squared Matrix'' or from error relaxation techniques. It was shown that nondispersive XRFA of 0.1 to 1 mg freeze-dried UNO 3 can have an accuracy of 0.2% in 1000 s. 5 figures

  2. EDITORIAL: Non-linear and non-Gaussian cosmological perturbations Non-linear and non-Gaussian cosmological perturbations

    Science.gov (United States)

    Sasaki, Misao; Wands, David

    2010-06-01

    In recent years there has been a resurgence of interest in the study of non-linear perturbations of cosmological models. This has been the result of both theoretical developments and observational advances. New theoretical challenges arise at second and higher order due to mode coupling and the need to develop new gauge-invariant variables beyond first order. In particular, non-linear interactions lead to deviations from a Gaussian distribution of primordial perturbations even if initial vacuum fluctuations are exactly Gaussian. These non-Gaussianities provide an important probe of models for the origin of structure in the very early universe. We now have a detailed picture of the primordial distribution of matter from surveys of the cosmic microwave background, notably NASA's WMAP satellite. The situation will continue to improve with future data from the ESA Planck satellite launched in 2009. To fully exploit these data cosmologists need to extend non-linear cosmological perturbation theory beyond the linear theory that has previously been sufficient on cosmological scales. Another recent development has been the realization that large-scale structure, revealed in high-redshift galaxy surveys, could also be sensitive to non-linearities in the primordial curvature perturbation. This focus section brings together a collection of invited papers which explore several topical issues in this subject. We hope it will be of interest to theoretical physicists and astrophysicists alike interested in understanding and interpreting recent developments in cosmological perturbation theory and models of the early universe. Of course it is only an incomplete snapshot of a rapidly developing field and we hope the reader will be inspired to read further work on the subject and, perhaps, fill in some of the missing pieces. This focus section is dedicated to the memory of Lev Kofman (1957-2009), an enthusiastic pioneer of inflationary cosmology and non-Gaussian perturbations.

  3. A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet.

    Science.gov (United States)

    Brown, A M

    2001-06-01

    The objective of this present study was to introduce a simple, easily understood method for carrying out non-linear regression analysis based on user input functions. While it is relatively straightforward to fit data with simple functions such as linear or logarithmic functions, fitting data with more complicated non-linear functions is more difficult. Commercial specialist programmes are available that will carry out this analysis, but these programmes are expensive and are not intuitive to learn. An alternative method described here is to use the SOLVER function of the ubiquitous spreadsheet programme Microsoft Excel, which employs an iterative least squares fitting routine to produce the optimal goodness of fit between data and function. The intent of this paper is to lead the reader through an easily understood step-by-step guide to implementing this method, which can be applied to any function in the form y=f(x), and is well suited to fast, reliable analysis of data in all fields of biology.

  4. EXPLORING THE VARIABLE SKY WITH LINEAR. III. CLASSIFICATION OF PERIODIC LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Palaversa, Lovro; Eyer, Laurent; Rimoldini, Lorenzo [Observatoire Astronomique de l' Université de Genève, 51 chemin des Maillettes, CH-1290 Sauverny (Switzerland); Ivezić, Željko; Loebman, Sarah; Hunt-Walker, Nicholas; VanderPlas, Jacob; Westman, David; Becker, Andrew C. [Department of Astronomy, University of Washington, P.O. Box 351580, Seattle, WA 98195-1580 (United States); Ruždjak, Domagoj; Sudar, Davor; Božić, Hrvoje [Hvar Observatory, Faculty of Geodesy, Kačićeva 26, 10000 Zagreb (Croatia); Galin, Mario [Faculty of Geodesy, Kačićeva 26, 10000 Zagreb (Croatia); Kroflin, Andrea; Mesarić, Martina; Munk, Petra; Vrbanec, Dijana [Department of Physics, Faculty of Science, University of Zagreb, Bijenička cesta 32, 10000 Zagreb (Croatia); Sesar, Branimir [Division of Physics, Mathematics, and Astronomy, Caltech, Pasadena, CA 91125 (United States); Stuart, J. Scott [Lincoln Laboratory, Massachusetts Institute of Technology, 244 Wood Street, Lexington, MA 02420-9108 (United States); Srdoč, Gregor, E-mail: lovro.palaversa@unige.ch [Saršoni 90, 51216 Viškovo (Croatia); and others

    2013-10-01

    We describe the construction of a highly reliable sample of ∼7000 optically faint periodic variable stars with light curves obtained by the asteroid survey LINEAR across 10,000 deg{sup 2} of the northern sky. The majority of these variables have not been cataloged yet. The sample flux limit is several magnitudes fainter than most other wide-angle surveys; the photometric errors range from ∼0.03 mag at r = 15 to ∼0.20 mag at r = 18. Light curves include on average 250 data points, collected over about a decade. Using Sloan Digital Sky Survey (SDSS) based photometric recalibration of the LINEAR data for about 25 million objects, we selected ∼200,000 most probable candidate variables with r < 17 and visually confirmed and classified ∼7000 periodic variables using phased light curves. The reliability and uniformity of visual classification across eight human classifiers was calibrated and tested using a catalog of variable stars from the SDSS Stripe 82 region and verified using an unsupervised machine learning approach. The resulting sample of periodic LINEAR variables is dominated by 3900 RR Lyrae stars and 2700 eclipsing binary stars of all subtypes and includes small fractions of relatively rare populations such as asymptotic giant branch stars and SX Phoenicis stars. We discuss the distribution of these mostly uncataloged variables in various diagrams constructed with optical-to-infrared SDSS, Two Micron All Sky Survey, and Wide-field Infrared Survey Explorer photometry, and with LINEAR light-curve features. We find that the combination of light-curve features and colors enables classification schemes much more powerful than when colors or light curves are each used separately. An interesting side result is a robust and precise quantitative description of a strong correlation between the light-curve period and color/spectral type for close and contact eclipsing binary stars (β Lyrae and W UMa): as the color-based spectral type varies from K4 to F5, the

  5. Statistically generated weighted curve fit of residual functions for modal analysis of structures

    Science.gov (United States)

    Bookout, P. S.

    1995-01-01

    A statistically generated weighting function for a second-order polynomial curve fit of residual functions has been developed. The residual flexibility test method, from which a residual function is generated, is a procedure for modal testing large structures in an external constraint-free environment to measure the effects of higher order modes and interface stiffness. This test method is applicable to structures with distinct degree-of-freedom interfaces to other system components. A theoretical residual function in the displacement/force domain has the characteristics of a relatively flat line in the lower frequencies and a slight upward curvature in the higher frequency range. In the test residual function, the above-mentioned characteristics can be seen in the data, but due to the present limitations in the modal parameter evaluation (natural frequencies and mode shapes) of test data, the residual function has regions of ragged data. A second order polynomial curve fit is required to obtain the residual flexibility term. A weighting function of the data is generated by examining the variances between neighboring data points. From a weighted second-order polynomial curve fit, an accurate residual flexibility value can be obtained. The residual flexibility value and free-free modes from testing are used to improve a mathematical model of the structure. The residual flexibility modal test method is applied to a straight beam with a trunnion appendage and a space shuttle payload pallet simulator.

  6. Non-linear optical materials

    CERN Document Server

    Saravanan, R

    2018-01-01

    Non-linear optical materials have widespread and promising applications, but the efforts to understand the local structure, electron density distribution and bonding is still lacking. The present work explores the structural details, the electron density distribution and the local bond length distribution of some non-linear optical materials. It also gives estimation of the optical band gap, the particle size, crystallite size, and the elemental composition from UV-Visible analysis, SEM, XRD and EDS of some non-linear optical materials respectively.

  7. Gamma-ray Burst X-ray Flares Light Curve Fitting

    Science.gov (United States)

    Aubain, Jonisha

    2018-01-01

    Gamma Ray Bursts (GRBs) are the most luminous explosions in the Universe. These electromagnetic explosions produce jets demonstrated by a short burst of prompt gamma-ray emission followed by a broadband afterglow. There are sharp increases of flux in the X-ray light curves known as flares that occurs in about 50% of the afterglows. In this study, we characterized all of the X-ray afterglows that were detected by the Swift X-ray Telescope (XRT), whether with flares or without. We fit flares to the Norris function (Norris et al. 2005) and power laws with breaks where necessary (Racusin et al. 2009). After fitting the Norris function and power laws, we search for the residual pattern detected in prompt GRB pulses (Hakkila et al. 2014, 2015, 2017), that may indicate a common signature of shock physics. If we find the same signature in flares and prompt pulses, it provides insight into what causes them, as well as, how these flares are produced.

  8. Linearity and Non-linearity of Photorefractive effect in Materials ...

    African Journals Online (AJOL)

    In this paper we have studied the Linearity and Non-linearity of Photorefractive effect in materials using the band transport model. For low light beam intensities the change in the refractive index is proportional to the electric field for linear optics while for non- linear optics the change in refractive index is directly proportional ...

  9. BRGLM, Interactive Linear Regression Analysis by Least Square Fit

    International Nuclear Information System (INIS)

    Ringland, J.T.; Bohrer, R.E.; Sherman, M.E.

    1985-01-01

    1 - Description of program or function: BRGLM is an interactive program written to fit general linear regression models by least squares and to provide a variety of statistical diagnostic information about the fit. Stepwise and all-subsets regression can be carried out also. There are facilities for interactive data management (e.g. setting missing value flags, data transformations) and tools for constructing design matrices for the more commonly-used models such as factorials, cubic Splines, and auto-regressions. 2 - Method of solution: The least squares computations are based on the orthogonal (QR) decomposition of the design matrix obtained using the modified Gram-Schmidt algorithm. 3 - Restrictions on the complexity of the problem: The current release of BRGLM allows maxima of 1000 observations, 99 variables, and 3000 words of main memory workspace. For a problem with N observations and P variables, the number of words of main memory storage required is MAX(N*(P+6), N*P+P*P+3*N, and 3*P*P+6*N). Any linear model may be fit although the in-memory workspace will have to be increased for larger problems

  10. Useful tools for non-linear systems: Several non-linear integral inequalities

    Czech Academy of Sciences Publication Activity Database

    Agahi, H.; Mohammadpour, A.; Mesiar, Radko; Vaezpour, M. S.

    2013-01-01

    Roč. 49, č. 1 (2013), s. 73-80 ISSN 0950-7051 R&D Projects: GA ČR GAP402/11/0378 Institutional support: RVO:67985556 Keywords : Monotone measure * Comonotone functions * Integral inequalities * Universal integral Subject RIV: BA - General Mathematics Impact factor: 3.058, year: 2013 http://library.utia.cas.cz/separaty/2013/E/mesiar-useful tools for non-linear systems several non-linear integral inequalities.pdf

  11. Laterally Loaded Single Pile Response Considering the Influence of Suction and Non-Linear Behaviour of Reinforced Concrete Sections

    Directory of Open Access Journals (Sweden)

    Stefano Stacul

    2017-12-01

    Full Text Available A hybrid BEM-p-y curves approach was developed for the single pile analysis with free/fixed head restraint conditions. The method considers the soil non-linear behaviour by means of p-y curves in series to a multi-layered elastic half-space. The non-linearity of reinforced concrete pile sections, also considering the influence of tension-stiffening, has been considered. The model reproduces the influence of suction by increasing the stress state and hence the stiffness of shallow soil-layers. Suction is modeled using the Modified-Kovacs model. The hybrid BEM-py curves method was validated by comparing results from data of 22 load tests on single piles. In addition, a detailed comparison is presented between measured and computed data on a large-diameter reinforced concrete bored single pile.

  12. Non-Linear Numerical Modeling and Experimental Testing of a Point Absorber Wave Energy Converter

    DEFF Research Database (Denmark)

    Zurkinden, Andrew Stephen; Ferri, Francesco; Beatty, S.

    2014-01-01

    the calculation of the non-linear hydrostatic restoring moment by a cubic polynomial function fit to laboratory test results. Moreover, moments due to viscous drag are evaluated on the oscillating hemisphere considering the horizontal and vertical drag force components. The influence on the motions of this non.......e. H/λ≤0.02. For steep waves, H/λ≥0.04 however, the relative velocities between the body and the waves increase thus requiring inclusion of the non-linear hydrostatic restoring moment to effectively predict the dynamics of the wave energy converter. For operation of the device with a passively damping...

  13. Genetic design of interpolated non-linear controllers for linear plants

    International Nuclear Information System (INIS)

    Ajlouni, N.

    2000-01-01

    The techniques of genetic algorithms are proposed as a means of designing non-linear PID control systems. It is shown that the use of genetic algorithms for this purpose results in highly effective non-linear PID control systems. These results are illustrated by using genetic algorithms to design a non-linear PID control system and contrasting the results with an optimally tuned linear PID controller. (author)

  14. Polynomial curve fitting for control rod worth using least square numerical analysis

    International Nuclear Information System (INIS)

    Muhammad Husamuddin Abdul Khalil; Mark Dennis Usang; Julia Abdul Karim; Mohd Amin Sharifuldin Salleh

    2012-01-01

    RTP must have sufficient excess reactivity to compensate the negative reactivity feedback effects such as those caused by the fuel temperature and power defects of reactivity, fuel burn-up and to allow full power operation for predetermined period of time. To compensate this excess reactivity, it is necessary to introduce an amount of negative reactivity by adjusting or controlling the control rods at will. Control rod worth depends largely upon the value of the neutron flux at the location of the rod and reflected by a polynomial curve. Purpose of this paper is to rule out the polynomial curve fitting using least square numerical techniques via MATLAB compatible language. (author)

  15. A novel knot selection method for the error-bounded B-spline curve fitting of sampling points in the measuring process

    International Nuclear Information System (INIS)

    Liang, Fusheng; Zhao, Ji; Ji, Shijun; Zhang, Bing; Fan, Cheng

    2017-01-01

    The B-spline curve has been widely used in the reconstruction of measurement data. The error-bounded sampling points reconstruction can be achieved by the knot addition method (KAM) based B-spline curve fitting. In KAM, the selection pattern of initial knot vector has been associated with the ultimate necessary number of knots. This paper provides a novel initial knots selection method to condense the knot vector required for the error-bounded B-spline curve fitting. The initial knots are determined by the distribution of features which include the chord length (arc length) and bending degree (curvature) contained in the discrete sampling points. Firstly, the sampling points are fitted into an approximate B-spline curve Gs with intensively uniform knot vector to substitute the description of the feature of the sampling points. The feature integral of Gs is built as a monotone increasing function in an analytic form. Then, the initial knots are selected according to the constant increment of the feature integral. After that, an iterative knot insertion (IKI) process starting from the initial knots is introduced to improve the fitting precision, and the ultimate knot vector for the error-bounded B-spline curve fitting is achieved. Lastly, two simulations and the measurement experiment are provided, and the results indicate that the proposed knot selection method can reduce the number of ultimate knots available. (paper)

  16. Linear and non-linear simulation of joints contact surface using ...

    African Journals Online (AJOL)

    The joint modelling including non-linear effects needs accurate and precise study of their behaviors. When joints are under the dynamic loading, micro, macro- slip happens in contact surface which is non-linear reason of the joint contact surface. The non-linear effects of joint contact surface on total behavior of structure are ...

  17. Sediment Curve Uncertainty Estimation Using GLUE and Bootstrap Methods

    Directory of Open Access Journals (Sweden)

    aboalhasan fathabadi

    2017-02-01

    Full Text Available Introduction: In order to implement watershed practices to decrease soil erosion effects it needs to estimate output sediment of watershed. Sediment rating curve is used as the most conventional tool to estimate sediment. Regarding to sampling errors and short data, there are some uncertainties in estimating sediment using sediment curve. In this research, bootstrap and the Generalized Likelihood Uncertainty Estimation (GLUE resampling techniques were used to calculate suspended sediment loads by using sediment rating curves. Materials and Methods: The total drainage area of the Sefidrood watershed is about 560000 km2. In this study uncertainty in suspended sediment rating curves was estimated in four stations including Motorkhane, Miyane Tonel Shomare 7, Stor and Glinak constructed on Ayghdamosh, Ghrangho, GHezelOzan and Shahrod rivers, respectively. Data were randomly divided into a training data set (80 percent and a test set (20 percent by Latin hypercube random sampling.Different suspended sediment rating curves equations were fitted to log-transformed values of sediment concentration and discharge and the best fit models were selected based on the lowest root mean square error (RMSE and the highest correlation of coefficient (R2. In the GLUE methodology, different parameter sets were sampled randomly from priori probability distribution. For each station using sampled parameter sets and selected suspended sediment rating curves equation suspended sediment concentration values were estimated several times (100000 to 400000 times. With respect to likelihood function and certain subjective threshold, parameter sets were divided into behavioral and non-behavioral parameter sets. Finally using behavioral parameter sets the 95% confidence intervals for suspended sediment concentration due to parameter uncertainty were estimated. In bootstrap methodology observed suspended sediment and discharge vectors were resampled with replacement B (set to

  18. Efficient Non Linear Loudspeakers

    DEFF Research Database (Denmark)

    Petersen, Bo R.; Agerkvist, Finn T.

    2006-01-01

    Loudspeakers have traditionally been designed to be as linear as possible. However, as techniques for compensating non linearities are emerging, it becomes possible to use other design criteria. This paper present and examines a new idea for improving the efficiency of loudspeakers at high levels...... by changing the voice coil layout. This deliberate non-linear design has the benefit that a smaller amplifier can be used, which has the benefit of reducing system cost as well as reducing power consumption....

  19. Validation of curve-fitting method for blood retention of 99mTc-GSA. Comparison with blood sampling method

    International Nuclear Information System (INIS)

    Ha-Kawa, Sang Kil; Suga, Yutaka; Kouda, Katsuyasu; Ikeda, Koshi; Tanaka, Yoshimasa

    1997-01-01

    We investigated a curve-fitting method for the rate of blood retention of 99m Tc-galactosyl serum albumin (GSA) as a substitute for the blood sampling method. Seven healthy volunteers and 27 patients with liver disease underwent 99m Tc-GSA scanning. After normalization of the y-intercept as 100 percent, a biexponential regression curve for the precordial time-activity curve provided the percent injected dose (%ID) of 99m Tc-GSA in the blood without blood sampling. The discrepancy between %ID obtained by the curve-fitting method and that by the multiple blood samples was minimal in normal volunteers 3.1±2.1% (mean±standard deviation, n=77 sampling). Slightly greater discrepancy was observed in patients with liver disease (7.5±6.1%, n=135 sampling). The %ID at 15 min after injection obtained from the fitted curve was significantly greater in patients with liver cirrhosis than in the controls (53.2±11.6%, n=13; vs. 31.9±2.8%, n=7, p 99m Tc-GSA and the plasma retention rate for indocyanine green (r=-0.869, p 99m Tc-GSA and could be a substitute for the blood sampling method. (author)

  20. Treatment of non-Gaussian tails of multiple Coulomb scattering in track fitting with a Gaussian-sum filter

    International Nuclear Information System (INIS)

    Strandlie, A.; Wroldsen, J.

    2006-01-01

    If any of the probability densities involved in track fitting deviate from the Gaussian assumption, it is plausible that a non-linear estimator which better takes the actual shape of the distribution into account can do better. One such non-linear estimator is the Gaussian-sum filter, which is adequate if the distributions under consideration can be approximated by Gaussian mixtures. The main purpose of this paper is to present a Gaussian-sum filter for track fitting, based on a two-component approximation of the distribution of angular deflections due to multiple scattering. In a simulation study within a linear track model the Gaussian-sum filter is shown to be a competitive alternative to the Kalman filter. Scenarios at various momenta and with various maximum number of components in the Gaussian-sum filter are considered. Particularly at low momenta the Gaussian-sum filter yields a better estimate of the uncertainties than the Kalman filter, and it is also slightly more precise than the latter

  1. Evaluation of different calibration curves QA of IMRT plans with radiochromic films; Evaluacion de diversas curvas de calibracion QA de planes de IMRT con peliculas radiocromicas

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez Rodriguez, J.; Martin Rincon, C.; Garcia Repiso, S.; Ramos Paheo, J. A.; Verde Velasco, J. M.; Sena Espinel, E. de

    2013-07-01

    The non-linear relationship between dose and the optical density, characteristic plates radiochromic Gafchromic EBT and EBT2, has been studied by various authors, whose publications are proposed different functional forms that fit the specific values measured curves that allow the full range of useful dose calibration. The objective of the work focuses on evaluating the influence of the use of different calibration curves in the dose measurement for quality control of IMRT treatments. (Author)

  2. A Hierarchical Modeling for Reactive Power Optimization With Joint Transmission and Distribution Networks by Curve Fitting

    DEFF Research Database (Denmark)

    Ding, Tao; Li, Cheng; Huang, Can

    2018-01-01

    –slave structure and improves traditional centralized modeling methods by alleviating the big data problem in a control center. Specifically, the transmission-distribution-network coordination issue of the hierarchical modeling method is investigated. First, a curve-fitting approach is developed to provide a cost......In order to solve the reactive power optimization with joint transmission and distribution networks, a hierarchical modeling method is proposed in this paper. It allows the reactive power optimization of transmission and distribution networks to be performed separately, leading to a master...... optimality. Numerical results on two test systems verify the effectiveness of the proposed hierarchical modeling and curve-fitting methods....

  3. Resimulation of noise: a precision estimator for least square error curve-fitting tested for axial strain time constant imaging

    Science.gov (United States)

    Nair, S. P.; Righetti, R.

    2015-05-01

    Recent elastography techniques focus on imaging information on properties of materials which can be modeled as viscoelastic or poroelastic. These techniques often require the fitting of temporal strain data, acquired from either a creep or stress-relaxation experiment to a mathematical model using least square error (LSE) parameter estimation. It is known that the strain versus time relationships for tissues undergoing creep compression have a non-linear relationship. In non-linear cases, devising a measure of estimate reliability can be challenging. In this article, we have developed and tested a method to provide non linear LSE parameter estimate reliability: which we called Resimulation of Noise (RoN). RoN provides a measure of reliability by estimating the spread of parameter estimates from a single experiment realization. We have tested RoN specifically for the case of axial strain time constant parameter estimation in poroelastic media. Our tests show that the RoN estimated precision has a linear relationship to the actual precision of the LSE estimator. We have also compared results from the RoN derived measure of reliability against a commonly used reliability measure: the correlation coefficient (CorrCoeff). Our results show that CorrCoeff is a poor measure of estimate reliability for non-linear LSE parameter estimation. While the RoN is specifically tested only for axial strain time constant imaging, a general algorithm is provided for use in all LSE parameter estimation.

  4. Polarization Curve of a Non-Uniformly Aged PEM Fuel Cell

    Directory of Open Access Journals (Sweden)

    Andrei Kulikovsky

    2014-01-01

    Full Text Available We develop a semi-analytical model for polarization curve of a polymer electrolyte membrane (PEM fuel cell with distributed (aged along the oxygen channel MEA transport and kinetic parameters of the membrane–electrode assembly (MEA. We show that the curve corresponding to varying along the channel parameter, in general, does not reduce to the curve for a certain constant value of this parameter. A possibility to determine the shape of the deteriorated MEA parameter along the oxygen channel by fitting the model equation to the cell polarization data is demonstrated.

  5. Linearly resummed hydrodynamics in a weakly curved spacetime

    International Nuclear Information System (INIS)

    Bu, Yanyan; Lublinsky, Michael

    2015-01-01

    We extend our study of all-order linearly resummed hydrodynamics in a flat space (http://dx.doi.org/10.1103/PhysRevD.90.086003, http://dx.doi.org/10.1007/JHEP11(2014)064) to fluids in weakly curved spaces. The underlying microscopic theory is a finite temperature N=4 super-Yang-Mills theory at strong coupling. The AdS/CFT correspondence relates black brane solutions of the Einstein gravity in asymptotically locally AdS 5 geometry to relativistic conformal fluids in a weakly curved 4D background. To linear order in the amplitude of hydrodynamic variables and metric perturbations, the fluid’s energy-momentum tensor is computed with derivatives of both the fluid velocity and background metric resummed to all orders. We extensively discuss the meaning of all order hydrodynamics by expressing it in terms of the memory function formalism, which is also suitable for practical simulations. In addition to two viscosity functions discussed at length in refs. (http://dx.doi.org/10.1103/PhysRevD.90.086003, http://dx.doi.org/10.1007/JHEP11(2014)064), we find four curvature induced structures coupled to the fluid via new transport coefficient functions. In ref. (http://dx.doi.org/10.1103/PhysRevD.80.065026), the latter were referred to as gravitational susceptibilities of the fluid. We analytically compute these coefficients in the hydrodynamic limit, and then numerically up to large values of momenta.

  6. Linearly resummed hydrodynamics in a weakly curved spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Bu, Yanyan; Lublinsky, Michael [Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva 84105 (Israel)

    2015-04-24

    We extend our study of all-order linearly resummed hydrodynamics in a flat space (http://dx.doi.org/10.1103/PhysRevD.90.086003, http://dx.doi.org/10.1007/JHEP11(2014)064) to fluids in weakly curved spaces. The underlying microscopic theory is a finite temperature N=4 super-Yang-Mills theory at strong coupling. The AdS/CFT correspondence relates black brane solutions of the Einstein gravity in asymptotically locally AdS{sub 5} geometry to relativistic conformal fluids in a weakly curved 4D background. To linear order in the amplitude of hydrodynamic variables and metric perturbations, the fluid’s energy-momentum tensor is computed with derivatives of both the fluid velocity and background metric resummed to all orders. We extensively discuss the meaning of all order hydrodynamics by expressing it in terms of the memory function formalism, which is also suitable for practical simulations. In addition to two viscosity functions discussed at length in refs. (http://dx.doi.org/10.1103/PhysRevD.90.086003, http://dx.doi.org/10.1007/JHEP11(2014)064), we find four curvature induced structures coupled to the fluid via new transport coefficient functions. In ref. (http://dx.doi.org/10.1103/PhysRevD.80.065026), the latter were referred to as gravitational susceptibilities of the fluid. We analytically compute these coefficients in the hydrodynamic limit, and then numerically up to large values of momenta.

  7. Describing Growth Pattern of Bali Cows Using Non-linear Regression Models

    Directory of Open Access Journals (Sweden)

    Mohd. Hafiz A.W

    2016-12-01

    Full Text Available The objective of this study was to evaluate the best fit non-linear regression model to describe the growth pattern of Bali cows. Estimates of asymptotic mature weight, rate of maturing and constant of integration were derived from Brody, von Bertalanffy, Gompertz and Logistic models which were fitted to cross-sectional data of body weight taken from 74 Bali cows raised in MARDI Research Station Muadzam Shah Pahang. Coefficient of determination (R2 and residual mean squares (MSE were used to determine the best fit model in describing the growth pattern of Bali cows. Von Bertalanffy model was the best model among the four growth functions evaluated to determine the mature weight of Bali cattle as shown by the highest R2 and lowest MSE values (0.973 and 601.9, respectively, followed by Gompertz (0.972 and 621.2, respectively, Logistic (0.971 and 648.4, respectively and Brody (0.932 and 660.5, respectively models. The correlation between rate of maturing and mature weight was found to be negative in the range of -0.170 to -0.929 for all models, indicating that animals of heavier mature weight had lower rate of maturing. The use of non-linear model could summarize the weight-age relationship into several biologically interpreted parameters compared to the entire lifespan weight-age data points that are difficult and time consuming to interpret.

  8. The Lie-Poisson structure of integrable classical non-linear sigma models

    International Nuclear Information System (INIS)

    Bordemann, M.; Forger, M.; Schaeper, U.; Laartz, J.

    1993-01-01

    The canonical structure of classical non-linear sigma models on Riemannian symmetric spaces, which constitute the most general class of classical non-linear sigma models known to be integrable, is shown to be governed by a fundamental Poisson bracket relation that fits into the r-s-matrix formalism for non-ultralocal integrable models first discussed by Maillet. The matrices r and s are computed explicitly and, being field dependent, satisfy fundamental Poisson bracket relations of their own, which can be expressed in terms of a new numerical matrix c. It is proposed that all these Poisson brackets taken together are representation conditions for a new kind of algebra which, for this class of models, replaces the classical Yang-Baxter algebra governing the canonical structure of ultralocal models. The Poisson brackets for the transition matrices are also computed, and the notorious regularization problem associated with the definition of the Poisson brackets for the monodromy matrices is discussed. (orig.)

  9. A non-linear regression analysis program for describing electrophysiological data with multiple functions using Microsoft Excel.

    Science.gov (United States)

    Brown, Angus M

    2006-04-01

    The objective of this present study was to demonstrate a method for fitting complex electrophysiological data with multiple functions using the SOLVER add-in of the ubiquitous spreadsheet Microsoft Excel. SOLVER minimizes the difference between the sum of the squares of the data to be fit and the function(s) describing the data using an iterative generalized reduced gradient method. While it is a straightforward procedure to fit data with linear functions, and we have previously demonstrated a method of non-linear regression analysis of experimental data based upon a single function, it is more complex to fit data with multiple functions, usually requiring specialized expensive computer software. In this paper we describe an easily understood program for fitting experimentally acquired data, in this case the stimulus-evoked compound action potential from the mouse optic nerve, with multiple Gaussian functions. The program is flexible and can be applied to describe data with a wide variety of user-input functions.

  10. Linear versus non-linear supersymmetry, in general

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy, UniversityC.L.A.,Los Angeles, CA 90095-1547 (United States); Kallosh, Renata [SITP and Department of Physics, Stanford University,Stanford, California 94305 (United States); Proeyen, Antoine Van [Institute for Theoretical Physics, Katholieke Universiteit Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium); Wrase, Timm [Institute for Theoretical Physics, Technische Universität Wien,Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)

    2016-04-12

    We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.

  11. Linear versus non-linear supersymmetry, in general

    International Nuclear Information System (INIS)

    Ferrara, Sergio; Kallosh, Renata; Proeyen, Antoine Van; Wrase, Timm

    2016-01-01

    We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.

  12. Research on Standard and Automatic Judgment of Press-fit Curve of Locomotive Wheel-set Based on AAR Standard

    Science.gov (United States)

    Lu, Jun; Xiao, Jun; Gao, Dong Jun; Zong, Shu Yu; Li, Zhu

    2018-03-01

    In the production of the Association of American Railroads (AAR) locomotive wheel-set, the press-fit curve is the most important basis for the reliability of wheel-set assembly. In the past, Most of production enterprises mainly use artificial detection methods to determine the quality of assembly. There are cases of miscarriage of justice appear. For this reason, the research on the standard is carried out. And the automatic judgment of press-fit curve is analysed and designed, so as to provide guidance for the locomotive wheel-set production based on AAR standard.

  13. Non-linear finite element modeling

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard

    The note is written for courses in "Non-linear finite element method". The note has been used by the author teaching non-linear finite element modeling at Civil Engineering at Aalborg University, Computational Mechanics at Aalborg University Esbjerg, Structural Engineering at the University...

  14. Linear time algorithms to construct populations fitting multiple constraint distributions at genomic scales.

    Science.gov (United States)

    Siragusa, Enrico; Haiminen, Niina; Utro, Filippo; Parida, Laxmi

    2017-10-09

    Computer simulations can be used to study population genetic methods, models and parameters, as well as to predict potential outcomes. For example, in plant populations, predicting the outcome of breeding operations can be studied using simulations. In-silico construction of populations with pre-specified characteristics is an important task in breeding optimization and other population genetic studies. We present two linear time Simulation using Best-fit Algorithms (SimBA) for two classes of problems where each co-fits two distributions: SimBA-LD fits linkage disequilibrium and minimum allele frequency distributions, while SimBA-hap fits founder-haplotype and polyploid allele dosage distributions. An incremental gap-filling version of previously introduced SimBA-LD is here demonstrated to accurately fit the target distributions, allowing efficient large scale simulations. SimBA-hap accuracy and efficiency is demonstrated by simulating tetraploid populations with varying numbers of founder haplotypes, we evaluate both a linear time greedy algoritm and an optimal solution based on mixed-integer programming. SimBA is available on http://researcher.watson.ibm.com/project/5669.

  15. Dose-effect Curve for X-radiation in Lymphocytes in Goats

    International Nuclear Information System (INIS)

    Hasanbasic, D.; Saracevic, L.; Sacirbegovic, A.

    1998-01-01

    Dose-effect curve for X-radiation was made based on the analysis of chromosome aberrations in lympocytes of goats. Blood samples from seven goats were irradiated using MOORHEAD method, slightly modified and adapted to our conditions. Linear-square model was used, and the dose-effect curves were fitted by the smallest squares method. Dose-effect curve (collective) for goats is displayed as the following expression: y(D)= 8,6639·10 -3 D + 2,9748·10 -2 D 2 +2,9475·10 -3 . Comparison with some domestic animals such as sheep and pigs showed differences not only with respect to linear-square model, but to other mathematical presentations as well. (author)

  16. A New Theory of Non-Linear Thermo-Elastic Constitutive Equation of Isotropic Hyperelastic Materials

    Science.gov (United States)

    Li, Chen; Liao, Yufei

    2018-03-01

    Considering the influence of temperature and strain variables on materials. According to the relationship of conjugate stress-strain, a complete and irreducible non-linear constitutive equation of isotropic hyperelastic materials is derived and the constitutive equations of 16 types of isotropic hyperelastic materials are given we study the transformation methods and routes of 16 kinds of constitutive equations and the study proves that transformation of two forms of constitutive equation. As an example of application, the non-linear thermo-elastic constitutive equation of isotropic hyperelastic materials is combined with the natural vulcanized rubber experimental data in the existing literature base on MATLAB, The results show that the fitting accuracy is satisfactory.

  17. A new method for curve fitting to the data with low statistics not using the chi2-method

    International Nuclear Information System (INIS)

    Awaya, T.

    1979-01-01

    A new method which does not use the chi 2 -fitting method is investigated in order to fit the theoretical curve to data with low statistics. The method is compared with the usual and modified chi 2 -fitting ones. The analyses are done for data which are generated by computers. It is concluded that the new method gives good results in all the cases. (Auth.)

  18. Numerical generation of boundary-fitted curvilinear coordinate systems for arbitrarily curved surfaces

    International Nuclear Information System (INIS)

    Takagi, T.; Miki, K.; Chen, B.C.J.; Sha, W.T.

    1985-01-01

    A new method is presented for numerically generating boundary-fitted coordinate systems for arbitrarily curved surfaces. The three-dimensional surface has been expressed by functions of two parameters using the geometrical modeling techniques in computer graphics. This leads to new quasi-one- and two-dimensional elliptic partial differential equations for coordinate transformation. Since the equations involve the derivatives of the surface expressions, the grids geneated by the equations distribute on the surface depending on its slope and curvature. A computer program GRID-CS based on the method was developed and applied to a surface of the second order, a torus and a surface of a primary containment vessel for a nuclear reactor. These applications confirm that GRID-CS is a convenient and efficient tool for grid generation on arbitrarily curved surfaces

  19. Dealing with Non-stationarity in Intensity-Frequency-Duration Curve

    Science.gov (United States)

    Rengaraju, S.; Rajendran, V.; C T, D.

    2017-12-01

    Extremes like flood and drought are becoming frequent and more vulnerable in recent times, generally attributed to the recent revelation of climate change. One of the main concerns is that whether the present infrastructures like dams, storm water drainage networks, etc., which were designed following the so called `stationary' assumption, are capable of withstanding the expected severe extremes. Stationary assumption considers that extremes are not changing with respect to time. However, recent studies proved that climate change has altered the climate extremes both temporally and spatially. Traditionally, the observed non-stationary in the extreme precipitation is incorporated in the extreme value distributions in terms of changing parameters. Nevertheless, this raises a question which parameter needs to be changed, i.e. location or scale or shape, since either one or more of these parameters vary at a given location. Hence, this study aims to detect the changing parameters to reduce the complexity involved in the development of non-stationary IDF curve and to provide the uncertainty bound of estimated return level using Bayesian Differential Evolutionary Monte Carlo (DE-MC) algorithm. Firstly, the extreme precipitation series is extracted using Peak Over Threshold. Then, the time varying parameter(s) is(are) detected for the extracted series using Generalized Additive Models for Location Scale and Shape (GAMLSS). Then, the IDF curve is constructed using Generalized Pareto Distribution incorporating non-stationarity only if the parameter(s) is(are) changing with respect to time, otherwise IDF curve will follow stationary assumption. Finally, the posterior probability intervals of estimated return revel are computed through Bayesian DE-MC approach and the non-stationary based IDF curve is compared with the stationary based IDF curve. The results of this study emphasize that the time varying parameters also change spatially and the IDF curves should incorporate non

  20. Solving non-linear Horn clauses using a linear Horn clause solver

    DEFF Research Database (Denmark)

    Kafle, Bishoksan; Gallagher, John Patrick; Ganty, Pierre

    2016-01-01

    In this paper we show that checking satisfiability of a set of non-linear Horn clauses (also called a non-linear Horn clause program) can be achieved using a solver for linear Horn clauses. We achieve this by interleaving a program transformation with a satisfiability checker for linear Horn...... clauses (also called a solver for linear Horn clauses). The program transformation is based on the notion of tree dimension, which we apply to a set of non-linear clauses, yielding a set whose derivation trees have bounded dimension. Such a set of clauses can be linearised. The main algorithm...... dimension. We constructed a prototype implementation of this approach and performed some experiments on a set of verification problems, which shows some promise....

  1. Gamma-variate modeling of indicator dilution curves in electrical impedance tomography.

    Science.gov (United States)

    Hentze, Benjamin; Muders, Thomas; Luepschen, Henning; Leonhardt, Steffen; Putensen, Christian; Walter, Marian

    2017-07-01

    Electrical impedance tomography (EIT) is a non-invasive imaging technique, that can be used to monitor regional lung ventilation (V̇) in intensive care units (ICU) at bedside. This work introduces a method to extract regional lung perfusion (Q̇) from EIT image streams in order to quantify regional gas exchange in the lungs. EIT data from a single porcine animal trial, recorded during injection of a contrast agent (NaCl 10%) into a central venous catheter (CVC), are used for evaluation. Using semi-negative matrix factorization (Semi-NMF) a set of source signals is extracted from the data. A subsequent non-linear fit of a gamma-variate model to the source signals results in model signals, describing contrast agent flow through the cardio-pulmonary system. A linear fit of the model signals to the EIT image stream then yields functional images ofQ̇. Additionally, a pulmonary transit function (PTF) and parameters, such as mean transit time (MTT), time to peak (TTP) and area under curve (AUC) are derived. In result, EIT was used to track changes of regional lung ventilation to perfusion ratio (V̇/Q̇) during changes of positive end-expiratory pressure (PEEP). Furthermore, correlations of MTT and AUC with cardiac output (CO) indicate that CO measurement by EIT might be possible.

  2. Linear bosonic and fermionic quantum gauge theories on curved spacetimes

    International Nuclear Information System (INIS)

    Hack, Thomas-Paul; Schenkel, Alexander

    2012-05-01

    We develop a general setting for the quantization of linear bosonic and fermionic field theories subject to local gauge invariance and show how standard examples such as linearized Yang-Mills theory and linearized general relativity fit into this framework. Our construction always leads to a well-defined and gauge-invariant quantum field algebra, the centre and representations of this algebra, however, have to be analysed on a case-by-case basis. We discuss an example of a fermionic gauge field theory where the necessary conditions for the existence of Hilbert space representations are not met on any spacetime. On the other hand, we prove that these conditions are met for the Rarita-Schwinger gauge field in linearized pure N=1 supergravity on certain spacetimes, including asymptotically flat spacetimes and classes of spacetimes with compact Cauchy surfaces. We also present an explicit example of a supergravity background on which the Rarita-Schwinger gauge field can not be consistently quantized.

  3. Linear bosonic and fermionic quantum gauge theories on curved spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Hack, Thomas-Paul [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Schenkel, Alexander [Bergische Univ., Wuppertal (Germany). Fachgruppe Physik

    2012-05-15

    We develop a general setting for the quantization of linear bosonic and fermionic field theories subject to local gauge invariance and show how standard examples such as linearized Yang-Mills theory and linearized general relativity fit into this framework. Our construction always leads to a well-defined and gauge-invariant quantum field algebra, the centre and representations of this algebra, however, have to be analysed on a case-by-case basis. We discuss an example of a fermionic gauge field theory where the necessary conditions for the existence of Hilbert space representations are not met on any spacetime. On the other hand, we prove that these conditions are met for the Rarita-Schwinger gauge field in linearized pure N=1 supergravity on certain spacetimes, including asymptotically flat spacetimes and classes of spacetimes with compact Cauchy surfaces. We also present an explicit example of a supergravity background on which the Rarita-Schwinger gauge field can not be consistently quantized.

  4. Linear Algebraic Method for Non-Linear Map Analysis

    International Nuclear Information System (INIS)

    Yu, L.; Nash, B.

    2009-01-01

    We present a newly developed method to analyze some non-linear dynamics problems such as the Henon map using a matrix analysis method from linear algebra. Choosing the Henon map as an example, we analyze the spectral structure, the tune-amplitude dependence, the variation of tune and amplitude during the particle motion, etc., using the method of Jordan decomposition which is widely used in conventional linear algebra.

  5. Method for linearizing the potentiometric curves of precipitation titration in nonaqueous and aqueous-organic solutions

    International Nuclear Information System (INIS)

    Bykova, L.N.; Chesnokova, O.Ya.; Orlova, M.V.

    1995-01-01

    The method for linearizing the potentiometric curves of precipitation titration is studied for its application in the determination of halide ions (Cl - , Br - , I - ) in dimethylacetamide, dimethylformamide, in which titration is complicated by additional equilibrium processes. It is found that the method of linearization permits the determination of the titrant volume at the end point of titration to high accuracy in the case of titration curves without a potential jump in the proximity of the equivalent point (5 x 10 -5 M). 3 refs., 2 figs., 3 tabs

  6. Modeling of alpha mass-efficiency curve

    International Nuclear Information System (INIS)

    Semkow, T.M.; Jeter, H.W.; Parsa, B.; Parekh, P.P.; Haines, D.K.; Bari, A.

    2005-01-01

    We present a model for efficiency of a detector counting gross α radioactivity from both thin and thick samples, corresponding to low and high sample masses in the counting planchette. The model includes self-absorption of α particles in the sample, energy loss in the absorber, range straggling, as well as detector edge effects. The surface roughness of the sample is treated in terms of fractal geometry. The model reveals a linear dependence of the detector efficiency on the sample mass, for low masses, as well as a power-law dependence for high masses. It is, therefore, named the linear-power-law (LPL) model. In addition, we consider an empirical power-law (EPL) curve, and an exponential (EXP) curve. A comparison is made of the LPL, EPL, and EXP fits to the experimental α mass-efficiency data from gas-proportional detectors for selected radionuclides: 238 U, 230 Th, 239 Pu, 241 Am, and 244 Cm. Based on this comparison, we recommend working equations for fitting mass-efficiency data. Measurement of α radioactivity from a thick sample can determine the fractal dimension of its surface

  7. A bivariate contaminated binormal model for robust fitting of proper ROC curves to a pair of correlated, possibly degenerate, ROC datasets.

    Science.gov (United States)

    Zhai, Xuetong; Chakraborty, Dev P

    2017-06-01

    The objective was to design and implement a bivariate extension to the contaminated binormal model (CBM) to fit paired receiver operating characteristic (ROC) datasets-possibly degenerate-with proper ROC curves. Paired datasets yield two correlated ratings per case. Degenerate datasets have no interior operating points and proper ROC curves do not inappropriately cross the chance diagonal. The existing method, developed more than three decades ago utilizes a bivariate extension to the binormal model, implemented in CORROC2 software, which yields improper ROC curves and cannot fit degenerate datasets. CBM can fit proper ROC curves to unpaired (i.e., yielding one rating per case) and degenerate datasets, and there is a clear scientific need to extend it to handle paired datasets. In CBM, nondiseased cases are modeled by a probability density function (pdf) consisting of a unit variance peak centered at zero. Diseased cases are modeled with a mixture distribution whose pdf consists of two unit variance peaks, one centered at positive μ with integrated probability α, the mixing fraction parameter, corresponding to the fraction of diseased cases where the disease was visible to the radiologist, and one centered at zero, with integrated probability (1-α), corresponding to disease that was not visible. It is shown that: (a) for nondiseased cases the bivariate extension is a unit variances bivariate normal distribution centered at (0,0) with a specified correlation ρ 1 ; (b) for diseased cases the bivariate extension is a mixture distribution with four peaks, corresponding to disease not visible in either condition, disease visible in only one condition, contributing two peaks, and disease visible in both conditions. An expression for the likelihood function is derived. A maximum likelihood estimation (MLE) algorithm, CORCBM, was implemented in the R programming language that yields parameter estimates and the covariance matrix of the parameters, and other statistics

  8. Macroscopic and non-linear quantum games

    International Nuclear Information System (INIS)

    Aerts, D.; D'Hooghe, A.; Posiewnik, A.; Pykacz, J.

    2005-01-01

    Full text: We consider two models of quantum games. The first one is Marinatto and Weber's 'restricted' quantum game in which only the identity and the spin-flip operators are used. We show that this quantum game allows macroscopic mechanistic realization with the use of a version of the 'macroscopic quantum machine' described by Aerts already in 1980s. In the second model we use non-linear quantum state transformations which operate on points of spin-1/2 on the Bloch sphere and which can be used to distinguish optimally between two non-orthogonal states. We show that efficiency of these non-linear strategies out-perform any linear ones. Some hints on the possible theory of non-linear quantum games are given. (author)

  9. Non-linear dielectric monitoring of biological suspensions

    International Nuclear Information System (INIS)

    Treo, E F; Felice, C J

    2007-01-01

    Non-linear dielectric spectroscopy as a tool for in situ monitoring of enzyme assumes a non-linear behavior of the sample when a sinusoidal voltage is applied to it. Even many attempts have been made to improve the original experiments, all of them had limited success. In this paper we present upgrades made to a non-linear dielectric spectrometer developed and the results obtained when using different cells. We emphasized on the electrode surface, characterizing the grinding and polishing procedure. We found that the biological medium does not behave as expected, and the non-linear response is generated in the electrode-electrolyte interface. The electrochemistry of this interface can bias unpredictably the measured non-linear response

  10. Log-normal frailty models fitted as Poisson generalized linear mixed models.

    Science.gov (United States)

    Hirsch, Katharina; Wienke, Andreas; Kuss, Oliver

    2016-12-01

    The equivalence of a survival model with a piecewise constant baseline hazard function and a Poisson regression model has been known since decades. As shown in recent studies, this equivalence carries over to clustered survival data: A frailty model with a log-normal frailty term can be interpreted and estimated as a generalized linear mixed model with a binary response, a Poisson likelihood, and a specific offset. Proceeding this way, statistical theory and software for generalized linear mixed models are readily available for fitting frailty models. This gain in flexibility comes at the small price of (1) having to fix the number of pieces for the baseline hazard in advance and (2) having to "explode" the data set by the number of pieces. In this paper we extend the simulations of former studies by using a more realistic baseline hazard (Gompertz) and by comparing the model under consideration with competing models. Furthermore, the SAS macro %PCFrailty is introduced to apply the Poisson generalized linear mixed approach to frailty models. The simulations show good results for the shared frailty model. Our new %PCFrailty macro provides proper estimates, especially in case of 4 events per piece. The suggested Poisson generalized linear mixed approach for log-normal frailty models based on the %PCFrailty macro provides several advantages in the analysis of clustered survival data with respect to more flexible modelling of fixed and random effects, exact (in the sense of non-approximate) maximum likelihood estimation, and standard errors and different types of confidence intervals for all variance parameters. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Least median of squares and iteratively re-weighted least squares as robust linear regression methods for fluorimetric determination of α-lipoic acid in capsules in ideal and non-ideal cases of linearity.

    Science.gov (United States)

    Korany, Mohamed A; Gazy, Azza A; Khamis, Essam F; Ragab, Marwa A A; Kamal, Miranda F

    2018-03-26

    This study outlines two robust regression approaches, namely least median of squares (LMS) and iteratively re-weighted least squares (IRLS) to investigate their application in instrument analysis of nutraceuticals (that is, fluorescence quenching of merbromin reagent upon lipoic acid addition). These robust regression methods were used to calculate calibration data from the fluorescence quenching reaction (∆F and F-ratio) under ideal or non-ideal linearity conditions. For each condition, data were treated using three regression fittings: Ordinary Least Squares (OLS), LMS and IRLS. Assessment of linearity, limits of detection (LOD) and quantitation (LOQ), accuracy and precision were carefully studied for each condition. LMS and IRLS regression line fittings showed significant improvement in correlation coefficients and all regression parameters for both methods and both conditions. In the ideal linearity condition, the intercept and slope changed insignificantly, but a dramatic change was observed for the non-ideal condition and linearity intercept. Under both linearity conditions, LOD and LOQ values after the robust regression line fitting of data were lower than those obtained before data treatment. The results obtained after statistical treatment indicated that the linearity ranges for drug determination could be expanded to lower limits of quantitation by enhancing the regression equation parameters after data treatment. Analysis results for lipoic acid in capsules, using both fluorimetric methods, treated by parametric OLS and after treatment by robust LMS and IRLS were compared for both linearity conditions. Copyright © 2018 John Wiley & Sons, Ltd.

  12. Linear and non-linear energy barriers in systems of interacting single-domain ferromagnetic particles

    International Nuclear Information System (INIS)

    Petrila, Iulian; Bodale, Ilie; Rotarescu, Cristian; Stancu, Alexandru

    2011-01-01

    A comparative analysis between linear and non-linear energy barriers used for modeling statistical thermally-excited ferromagnetic systems is presented. The linear energy barrier is obtained by new symmetry considerations about the anisotropy energy and the link with the non-linear energy barrier is also presented. For a relevant analysis we compare the effects of linear and non-linear energy barriers implemented in two different models: Preisach-Neel and Ising-Metropolis. The differences between energy barriers which are reflected in different coercive field dependence of the temperature are also presented. -- Highlights: → The linear energy barrier is obtained from symmetry considerations. → The linear and non-linear energy barriers are calibrated and implemented in Preisach-Neel and Ising-Metropolis models. → The temperature and time effects of the linear and non-linear energy barriers are analyzed.

  13. Non linear system become linear system

    Directory of Open Access Journals (Sweden)

    Petre Bucur

    2007-01-01

    Full Text Available The present paper refers to the theory and the practice of the systems regarding non-linear systems and their applications. We aimed the integration of these systems to elaborate their response as well as to highlight some outstanding features.

  14. Dose-response calibration curves of {sup 137}Cs gamma rays for dicentric chromosome aberrations in human lymphocytes

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Wol Soon; Oh, Su Jung; Jeong, Soo Kyun; Yang, Kwang Mo [Dept. of Research center, Dong Nam Institute of Radiological and Medical Sciences, Busan (Korea, Republic of); Jeong, Min Ho [Dept. of Microbiology, Dong A University College of Medicine, Busan (Korea, Republic of)

    2012-11-15

    Recently, the increased threat of radiologically industrial accident such as radiation nondestructive inspection or destruction of nuclear accident by natural disaster such as Fukushima accident requires a greater capacity for cytogenetic biodosimetry, which is critical for clinical triage of potentially thousands of radiation-exposed individuals. Dicentric chromosome aberration analysis is the conventional means of assessing radiation exposure. Dose–response calibration curves for {sup 13}'7Cs gamma rays have been established for unstable chromosome aberrations in human peripheral blood lymphocytes in many laboratories of international biodosimetry network. In this study, therefore, we established dose– response calibration curves of our laboratory for {sup 137}Cs gamma raysaccording to the IAEA protocols for conducting the dicentric chromosome assay We established in vitro dose–response calibration curves for dicentric chromosome aberrations in human lymphocytes for{sup 13}'7Cs gamma rays in the 0 to 5 Gy range, using the maximum likelihood linear-quadratic model, Y = c+αD+βD2. The estimated coefficients of the fitted curves were within the 95% confidence intervals (CIs) and the curve fitting of dose–effect relationship data indicated a good fit to the linear-quadratic model. Hence, meaningful dose estimation from unknown sample can be determined accurately by using our laboratory’s calibration curve according to standard protocol.

  15. Families of bitangent planes of space curves and minimal non-fibration families

    KAUST Repository

    Lubbes, Niels

    2014-01-01

    A cone curve is a reduced sextic space curve which lies on a quadric cone and does not pass through the vertex. We classify families of bitangent planes of cone curves. The methods we apply can be used for any space curve with ADE singularities, though in this paper we concentrate on cone curves. An embedded complex projective surface which is adjoint to a degree one weak Del Pezzo surface contains families of minimal degree rational curves, which cannot be defined by the fibers of a map. Such families are called minimal non-fibration families. Families of bitangent planes of cone curves correspond to minimal non-fibration families. The main motivation of this paper is to classify minimal non-fibration families. We present algorithms which compute all bitangent families of a given cone curve and their geometric genus. We consider cone curves to be equivalent if they have the same singularity configuration. For each equivalence class of cone curves we determine the possible number of bitangent families and the number of rational bitangent families. Finally we compute an example of a minimal non-fibration family on an embedded weak degree one Del Pezzo surface.

  16. On the Liouvillian solution of second-order linear differential equations and algebraic invariant curves

    International Nuclear Information System (INIS)

    Man, Yiu-Kwong

    2010-01-01

    In this communication, we present a method for computing the Liouvillian solution of second-order linear differential equations via algebraic invariant curves. The main idea is to integrate Kovacic's results on second-order linear differential equations with the Prelle-Singer method for computing first integrals of differential equations. Some examples on using this approach are provided. (fast track communication)

  17. Estimating stock parameters from trawl cpue-at-age series using year-class curves

    NARCIS (Netherlands)

    Cotter, A.J.R.; Mesnil, B.; Piet, G.J.

    2007-01-01

    A year-class curve is a plot of log cpue (catch per unit effort) over age for a single year class of a species (in contrast to the better known catch curve, fitted to multiple year classes at one time). When linear, the intercept and slope estimate the log cpue at age 0 and the average rate of total

  18. Survival curves study of platelet labelling with 51Cr

    International Nuclear Information System (INIS)

    Penas, M.E.

    1981-01-01

    Platelet kinetics and idiopathic thrombocytopenic purpura were researched in the literature. An 'in vitro' platelet labelling with 51 Cr procedure in implementation has been evaluated in human beings. Functions used for fitting considered the cases whether the curve was linear or exponential as well as the presence of hematies. (author)

  19. Glycation and secondary conformational changes of human serum albumin: study of the FTIR spectroscopic curve-fitting technique

    Directory of Open Access Journals (Sweden)

    Yu-Ting Huang

    2016-05-01

    Full Text Available The aim of this study was attempted to investigate both the glycation kinetics and protein secondary conformational changes of human serum albumin (HSA after the reaction with ribose. The browning and fluorescence determinations as well as Fourier transform infrared (FTIR microspectroscopy with a curve-fitting technique were applied. Various concentrations of ribose were incubated over a 12-week period at 37 ± 0.5 oC under dark conditions. The results clearly shows that the glycation occurred in HSA-ribose reaction mixtures was markedly increased with the amount of ribose used and incubation time, leading to marked alterations of protein conformation of HSA after FTIR determination. In addition, the browning intensity of reaction solutions were colored from light to deep brown, as determined by optical observation. The increase in fluorescence intensity from HSA–ribose mixtures seemed to occur more quickly than browning, suggesting that the fluorescence products were produced earlier on in the process than compounds causing browning. Moreover, the predominant α-helical composition of HSA decreased with an increase in ribose concentration and incubation time, whereas total β-structure and random coil composition increased, as determined by curve-fitted FTIR microspectroscopy analysis. We also found that the peak intensity ratios at 1044 cm−1/1542 cm−1 markedly decreased prior to 4 weeks of incubation, then almost plateaued, implying that the consumption of ribose in the glycation reaction might have been accelerated over the first 4 weeks of incubation, and gradually decreased. This study first evidences that two unique IR peaks at 1710 cm−1 [carbonyl groups of irreversible products produced by the reaction and deposition of advanced glycation end products (AGEs] and 1621 cm−1 (aggregated HSA molecules were clearly observed from the curve-fitted FTIR spectra of HSA-ribose mixtures over the course of incubation time. This study

  20. Computational Tools for Probing Interactions in Multiple Linear Regression, Multilevel Modeling, and Latent Curve Analysis

    Science.gov (United States)

    Preacher, Kristopher J.; Curran, Patrick J.; Bauer, Daniel J.

    2006-01-01

    Simple slopes, regions of significance, and confidence bands are commonly used to evaluate interactions in multiple linear regression (MLR) models, and the use of these techniques has recently been extended to multilevel or hierarchical linear modeling (HLM) and latent curve analysis (LCA). However, conducting these tests and plotting the…

  1. Linearity and Non-linearity of Photorefractive effect in Materials ...

    African Journals Online (AJOL)

    Linearity and Non-linearity of Photorefractive effect in Materials using the Band transport ... For low light beam intensities the change in the refractive index is ... field is spatially phase shifted by /2 relative to the interference fringe pattern, which ...

  2. Ionization constants by curve fitting: determination of partition and distribution coefficients of acids and bases and their ions.

    Science.gov (United States)

    Clarke, F H; Cahoon, N M

    1987-08-01

    A convenient procedure has been developed for the determination of partition and distribution coefficients. The method involves the potentiometric titration of the compound, first in water and then in a rapidly stirred mixture of water and octanol. An automatic titrator is used, and the data is collected and analyzed by curve fitting on a microcomputer with 64 K of memory. The method is rapid and accurate for compounds with pKa values between 4 and 10. Partition coefficients can be measured for monoprotic and diprotic acids and bases. The partition coefficients of the neutral compound and its ion(s) can be determined by varying the ratio of octanol to water. Distribution coefficients calculated over a wide range of pH values are presented graphically as "distribution profiles". It is shown that subtraction of the titration curve of solvent alone from that of the compound in the solvent offers advantages for pKa determination by curve fitting for compounds of low aqueous solubility.

  3. Pulse height non-linearity in LaBr3:Ce crystal for gamma ray spectrometry and imaging

    International Nuclear Information System (INIS)

    Pani, R.; Cinti, M.N.; Pellegrini, R.; Bennati, P.; Ridolfi, S.; Scafe, R.; Orsolini Cencelli, V.; De Notaristefani, F.; Fabbri, A.; Navarria, F.L.; Lanconelli, N.; Moschini, G.; Boccaccio, P.

    2011-01-01

    In this paper the response in term of pulse height linearity of two Hamamatsu photomultipliers is investigated, when coupled to a LaBr 3 :Ce scintillation crystal. The two photodetectors have high quantum efficiency and in particular 30% for R6231-01 and 42% for R7600-200 tube. The substantial difference is in the dynode structure, linear focused and metal channel for R6231 and R7600 respectively. In this work in order to verify the non-linearity effects on the pulse height distribution, due principally to the high and fast light production of LaBr 3 :Ce scintillator, we propose a 'peak by peak' procedure to calibrate the pulse height distribution. Utilizing a specific fragmentation of the calibration curve in subsets, the calculated energy values are very similar for both PMTs. This result confirmed the potentiality of the procedure to highlight the non-linearity effects on pulse height distribution.

  4. Correlations and Non-Linear Probability Models

    DEFF Research Database (Denmark)

    Breen, Richard; Holm, Anders; Karlson, Kristian Bernt

    2014-01-01

    the dependent variable of the latent variable model and its predictor variables. We show how this correlation can be derived from the parameters of non-linear probability models, develop tests for the statistical significance of the derived correlation, and illustrate its usefulness in two applications. Under......Although the parameters of logit and probit and other non-linear probability models are often explained and interpreted in relation to the regression coefficients of an underlying linear latent variable model, we argue that they may also be usefully interpreted in terms of the correlations between...... certain circumstances, which we explain, the derived correlation provides a way of overcoming the problems inherent in cross-sample comparisons of the parameters of non-linear probability models....

  5. A curve-fitting approach to estimate the arterial plasma input function for the assessment of glucose metabolic rate and response to treatment.

    Science.gov (United States)

    Vriens, Dennis; de Geus-Oei, Lioe-Fee; Oyen, Wim J G; Visser, Eric P

    2009-12-01

    For the quantification of dynamic (18)F-FDG PET studies, the arterial plasma time-activity concentration curve (APTAC) needs to be available. This can be obtained using serial sampling of arterial blood or an image-derived input function (IDIF). Arterial sampling is invasive and often not feasible in practice; IDIFs are biased because of partial-volume effects and cannot be used when no large arterial blood pool is in the field of view. We propose a mathematic function, consisting of an initial linear rising activity concentration followed by a triexponential decay, to describe the APTAC. This function was fitted to 80 oncologic patients and verified for 40 different oncologic patients by area-under-the-curve (AUC) comparison, Patlak glucose metabolic rate (MR(glc)) estimation, and therapy response monitoring (Delta MR(glc)). The proposed function was compared with the gold standard (serial arterial sampling) and the IDIF. To determine the free parameters of the function, plasma time-activity curves based on arterial samples in 80 patients were fitted after normalization for administered activity (AA) and initial distribution volume (iDV) of (18)F-FDG. The medians of these free parameters were used for the model. In 40 other patients (20 baseline and 20 follow-up dynamic (18)F-FDG PET scans), this model was validated. The population-based curve, individually calibrated by AA and iDV (APTAC(AA/iDV)), by 1 late arterial sample (APTAC(1 sample)), and by the individual IDIF (APTAC(IDIF)), was compared with the gold standard of serial arterial sampling (APTAC(sampled)) using the AUC. Additionally, these 3 methods of APTAC determination were evaluated with Patlak MR(glc) estimation and with Delta MR(glc) for therapy effects using serial sampling as the gold standard. Excellent individual fits to the function were derived with significantly different decay constants (P AUC from APTAC(AA/iDV), APTAC(1 sample), and APTAC(IDIF) with the gold standard (APTAC(sampled)) were 0

  6. Trait-fitness relationships determine how trade-off shapes affect species coexistence.

    Science.gov (United States)

    Ehrlich, Elias; Becks, Lutz; Gaedke, Ursula

    2017-12-01

    Trade-offs between functional traits are ubiquitous in nature and can promote species coexistence depending on their shape. Classic theory predicts that convex trade-offs facilitate coexistence of specialized species with extreme trait values (extreme species) while concave trade-offs promote species with intermediate trait values (intermediate species). We show here that this prediction becomes insufficient when the traits translate non-linearly into fitness which frequently occurs in nature, e.g., an increasing length of spines reduces grazing losses only up to a certain threshold resulting in a saturating or sigmoid trait-fitness function. We present a novel, general approach to evaluate the effect of different trade-off shapes on species coexistence. We compare the trade-off curve to the invasion boundary of an intermediate species invading the two extreme species. At this boundary, the invasion fitness is zero. Thus, it separates trait combinations where invasion is or is not possible. The invasion boundary is calculated based on measurable trait-fitness relationships. If at least one of these relationships is not linear, the invasion boundary becomes non-linear, implying that convex and concave trade-offs not necessarily lead to different coexistence patterns. Therefore, we suggest a new ecological classification of trade-offs into extreme-favoring and intermediate-favoring which differs from a purely mathematical description of their shape. We apply our approach to a well-established model of an empirical predator-prey system with competing prey types facing a trade-off between edibility and half-saturation constant for nutrient uptake. We show that the survival of the intermediate prey depends on the convexity of the trade-off. Overall, our approach provides a general tool to make a priori predictions on the outcome of competition among species facing a common trade-off in dependence of the shape of the trade-off and the shape of the trait-fitness

  7. Fitness of the analysis method of magnesium in drinking water using atomic absorption with quadratic calibration curve

    International Nuclear Information System (INIS)

    Perez-Lopez, Esteban

    2014-01-01

    The quantitative chemical analysis has been importance in research. Also, aspects like: quality control, sales of services and other areas of interest. Some instrumental analysis methods for quantification with linear calibration curve have presented limitations, because the short liner dynamic ranges of the analyte, or sometimes, by limiting the technique itself. The need has been to investigate a little more about the convenience of using quadratic calibration curves for analytical quantification, with which it has seeked demonstrate that has been a valid calculation model for chemical analysis instruments. An analysis base method is used on the technique of atomic absorption spectroscopy and in particular a determination of magnesium in a drinking water sample of the Tacares sector North of Grecia. A nonlinear calibration curve was used and specifically a curve with quadratic behavior. The same was compared with the test results obtained for the equal analysis with a linear calibration curve. The results have showed that the methodology has been valid for the determination referred with all confidence, since the concentrations have been very similar and, according to the used hypothesis testing, can be considered equal. (author) [es

  8. Parametric resonance in the early Universe—a fitting analysis

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Daniel G. [Theoretical Physics Department, CERN, Geneva (Switzerland); Torrentí, Francisco, E-mail: daniel.figueroa@cern.ch, E-mail: f.torrenti@csic.es [Instituto de Física Teórica IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid (Spain)

    2017-02-01

    Particle production via parametric resonance in the early Universe, is a non-perturbative, non-linear and out-of-equilibrium phenomenon. Although it is a well studied topic, whenever a new scenario exhibits parametric resonance, a full re-analysis is normally required. To avoid this tedious task, many works present often only a simplified linear treatment of the problem. In order to surpass this circumstance in the future, we provide a fitting analysis of parametric resonance through all its relevant stages: initial linear growth, non-linear evolution, and relaxation towards equilibrium. Using lattice simulations in an expanding grid in 3+1 dimensions, we parametrize the dynamics' outcome scanning over the relevant ingredients: role of the oscillatory field, particle coupling strength, initial conditions, and background expansion rate. We emphasize the inaccuracy of the linear calculation of the decay time of the oscillatory field, and propose a more appropriate definition of this scale based on the subsequent non-linear dynamics. We provide simple fits to the relevant time scales and particle energy fractions at each stage. Our fits can be applied to post-inflationary preheating scenarios, where the oscillatory field is the inflaton, or to spectator-field scenarios, where the oscillatory field can be e.g. a curvaton, or the Standard Model Higgs.

  9. Parametric resonance in the early Universe—a fitting analysis

    International Nuclear Information System (INIS)

    Figueroa, Daniel G.; Torrentí, Francisco

    2017-01-01

    Particle production via parametric resonance in the early Universe, is a non-perturbative, non-linear and out-of-equilibrium phenomenon. Although it is a well studied topic, whenever a new scenario exhibits parametric resonance, a full re-analysis is normally required. To avoid this tedious task, many works present often only a simplified linear treatment of the problem. In order to surpass this circumstance in the future, we provide a fitting analysis of parametric resonance through all its relevant stages: initial linear growth, non-linear evolution, and relaxation towards equilibrium. Using lattice simulations in an expanding grid in 3+1 dimensions, we parametrize the dynamics' outcome scanning over the relevant ingredients: role of the oscillatory field, particle coupling strength, initial conditions, and background expansion rate. We emphasize the inaccuracy of the linear calculation of the decay time of the oscillatory field, and propose a more appropriate definition of this scale based on the subsequent non-linear dynamics. We provide simple fits to the relevant time scales and particle energy fractions at each stage. Our fits can be applied to post-inflationary preheating scenarios, where the oscillatory field is the inflaton, or to spectator-field scenarios, where the oscillatory field can be e.g. a curvaton, or the Standard Model Higgs.

  10. Fourier imaging of non-linear structure formation

    Energy Technology Data Exchange (ETDEWEB)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C (Denmark)

    2017-04-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  11. Fourier imaging of non-linear structure formation

    International Nuclear Information System (INIS)

    Brandbyge, Jacob; Hannestad, Steen

    2017-01-01

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important, and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.

  12. Algorithms for non-linear M-estimation

    DEFF Research Database (Denmark)

    Madsen, Kaj; Edlund, O; Ekblom, H

    1997-01-01

    In non-linear regression, the least squares method is most often used. Since this estimator is highly sensitive to outliers in the data, alternatives have became increasingly popular during the last decades. We present algorithms for non-linear M-estimation. A trust region approach is used, where...

  13. DEM4-26, Least Square Fit for IBM PC by Deming Method

    International Nuclear Information System (INIS)

    Rinard, P.M.; Bosler, G.E.

    1989-01-01

    1 - Description of program or function: DEM4-26 is a generalized least square fitting program based on Deming's method. Functions built into the program for fitting include linear, quadratic, cubic, power, Howard's, exponential, and Gaussian; others can easily be added. The program has the following capabilities: (1) entry, editing, and saving of data; (2) fitting of any of the built-in functions or of a user-supplied function; (3) plotting the data and fitted function on the display screen, with error limits if requested, and with the option of copying the plot to the printer; (4) interpolation of x or y values from the fitted curve with error estimates based on error limits selected by the user; and (5) plotting the residuals between the y data values and the fitted curve, with the option copying the plot to the printer. 2 - Method of solution: Deming's method

  14. Neural Networks for Non-linear Control

    DEFF Research Database (Denmark)

    Sørensen, O.

    1994-01-01

    This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process.......This paper describes how a neural network, structured as a Multi Layer Perceptron, is trained to predict, simulate and control a non-linear process....

  15. Non-Linear Approximation of Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2016-01-01

    We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.

  16. Non-Linear Approximation of Bayesian Update

    KAUST Repository

    Litvinenko, Alexander

    2016-06-23

    We develop a non-linear approximation of expensive Bayesian formula. This non-linear approximation is applied directly to Polynomial Chaos Coefficients. In this way, we avoid Monte Carlo sampling and sampling error. We can show that the famous Kalman Update formula is a particular case of this update.

  17. The linear-non-linear frontier for the Goldstone Higgs

    International Nuclear Information System (INIS)

    Gavela, M.B.; Saa, S.; Kanshin, K.; Machado, P.A.N.

    2016-01-01

    The minimal SO(5)/SO(4) σ-model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone-boson ancestry. Varying the σ mass allows one to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry-breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy-fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators. (orig.)

  18. The linear-non-linear frontier for the Goldstone Higgs

    Energy Technology Data Exchange (ETDEWEB)

    Gavela, M.B.; Saa, S. [IFT-UAM/CSIC, Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, Madrid (Spain); Kanshin, K. [Universita di Padova, Dipartimento di Fisica e Astronomia ' G. Galilei' , Padua (Italy); INFN, Padova (Italy); Machado, P.A.N. [IFT-UAM/CSIC, Universidad Autonoma de Madrid, Departamento de Fisica Teorica y Instituto de Fisica Teorica, Madrid (Spain); Fermi National Accelerator Laboratory, Theoretical Physics Department, Batavia, IL (United States)

    2016-12-15

    The minimal SO(5)/SO(4) σ-model is used as a template for the ultraviolet completion of scenarios in which the Higgs particle is a low-energy remnant of some high-energy dynamics, enjoying a (pseudo) Nambu-Goldstone-boson ancestry. Varying the σ mass allows one to sweep from the perturbative regime to the customary non-linear implementations. The low-energy benchmark effective non-linear Lagrangian for bosons and fermions is obtained, determining as well the operator coefficients including linear corrections. At first order in the latter, three effective bosonic operators emerge which are independent of the explicit soft breaking assumed. The Higgs couplings to vector bosons and fermions turn out to be quite universal: the linear corrections are proportional to the explicit symmetry-breaking parameters. Furthermore, we define an effective Yukawa operator which allows a simple parametrization and comparison of different heavy-fermion ultraviolet completions. In addition, one particular fermionic completion is explored in detail, obtaining the corresponding leading low-energy fermionic operators. (orig.)

  19. EP-based wavelet coefficient quantization for linear distortion ECG data compression.

    Science.gov (United States)

    Hung, King-Chu; Wu, Tsung-Ching; Lee, Hsieh-Wei; Liu, Tung-Kuan

    2014-07-01

    Reconstruction quality maintenance is of the essence for ECG data compression due to the desire for diagnosis use. Quantization schemes with non-linear distortion characteristics usually result in time-consuming quality control that blocks real-time application. In this paper, a new wavelet coefficient quantization scheme based on an evolution program (EP) is proposed for wavelet-based ECG data compression. The EP search can create a stationary relationship among the quantization scales of multi-resolution levels. The stationary property implies that multi-level quantization scales can be controlled with a single variable. This hypothesis can lead to a simple design of linear distortion control with 3-D curve fitting technology. In addition, a competitive strategy is applied for alleviating data dependency effect. By using the ECG signals saved in MIT and PTB databases, many experiments were undertaken for the evaluation of compression performance, quality control efficiency, data dependency influence. The experimental results show that the new EP-based quantization scheme can obtain high compression performance and keep linear distortion behavior efficiency. This characteristic guarantees fast quality control even for the prediction model mismatching practical distortion curve. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.

  20. Linear versus non-linear structural information limit in high-resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Van Aert, S.; Chen, J.H.; Van Dyck, D.

    2010-01-01

    A widely used performance criterion in high-resolution transmission electron microscopy (HRTEM) is the information limit. It corresponds to the inverse of the maximum spatial object frequency that is linearly transmitted with sufficient intensity from the exit plane of the object to the image plane and is limited due to partial temporal coherence. In practice, the information limit is often measured from a diffractogram or from Young's fringes assuming a weak phase object scattering beyond the inverse of the information limit. However, for an aberration corrected electron microscope, with an information limit in the sub-angstrom range, weak phase objects are no longer applicable since they do not scatter sufficiently in this range. Therefore, one relies on more strongly scattering objects such as crystals of heavy atoms observed along a low index zone axis. In that case, dynamical scattering becomes important such that the non-linear and linear interaction may be equally important. The non-linear interaction may then set the experimental cut-off frequency observed in a diffractogram. The goal of this paper is to quantify both the linear and the non-linear information transfer in terms of closed form analytical expressions. Whereas the cut-off frequency set by the linear transfer can be directly related with the attainable resolution, information from the non-linear transfer can only be extracted using quantitative, model-based methods. In contrast to the historic definition of the information limit depending on microscope parameters only, the expressions derived in this paper explicitly incorporate their dependence on the structure parameters as well. In order to emphasize this dependence and to distinguish from the usual information limit, the expressions derived for the inverse cut-off frequencies will be referred to as the linear and non-linear structural information limit. The present findings confirm the well-known result that partial temporal coherence has

  1. Non-linear soil-structure interaction

    International Nuclear Information System (INIS)

    Wolf, J.P.

    1984-01-01

    The basic equation of motion to analyse the interaction of a non-linear structure and an irregular soil with the linear unbounded soil is formulated in the time domain. The contribution of the unbounded soil involves convolution integrals of the dynamic-stiffness coefficients in the time domain and the corresponding motions. As another possibility, a flexibility formulation fot the contribution of the unbounded soil using the dynamic-flexibility coefficients in the time domain, together with the direct-stiffness method for the structure and the irregular soil can be applied. As an example of a non-linear soil-structure-interaction analysis, the partial uplift of the basemat of a structure is examined. (Author) [pt

  2. Nonlinear models for fitting growth curves of Nellore cows reared in the Amazon Biome

    Directory of Open Access Journals (Sweden)

    Kedma Nayra da Silva Marinho

    2013-09-01

    Full Text Available Growth curves of Nellore cows were estimated by comparing six nonlinear models: Brody, Logistic, two alternatives by Gompertz, Richards and Von Bertalanffy. The models were fitted to weight-age data, from birth to 750 days of age of 29,221 cows, born between 1976 and 2006 in the Brazilian states of Acre, Amapá, Amazonas, Pará, Rondônia, Roraima and Tocantins. The models were fitted by the Gauss-Newton method. The goodness of fit of the models was evaluated by using mean square error, adjusted coefficient of determination, prediction error and mean absolute error. Biological interpretation of parameters was accomplished by plotting estimated weights versus the observed weight means, instantaneous growth rate, absolute maturity rate, relative instantaneous growth rate, inflection point and magnitude of the parameters A (asymptotic weight and K (maturing rate. The Brody and Von Bertalanffy models fitted the weight-age data but the other models did not. The average weight (A and growth rate (K were: 384.6±1.63 kg and 0.0022±0.00002 (Brody and 313.40±0.70 kg and 0.0045±0.00002 (Von Bertalanffy. The Brody model provides better goodness of fit than the Von Bertalanffy model.

  3. The Predicting Model of E-commerce Site Based on the Ideas of Curve Fitting

    Science.gov (United States)

    Tao, Zhang; Li, Zhang; Dingjun, Chen

    On the basis of the idea of the second multiplication curve fitting, the number and scale of Chinese E-commerce site is analyzed. A preventing increase model is introduced in this paper, and the model parameters are solved by the software of Matlab. The validity of the preventing increase model is confirmed though the numerical experiment. The experimental results show that the precision of preventing increase model is ideal.

  4. The non-minimal heterotic pure spinor string in a curved background

    Energy Technology Data Exchange (ETDEWEB)

    Chandia, Osvaldo [Facultad de Artes Liberales and Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile)

    2014-03-21

    We study the non-minimal pure spinor string in a curved background. We find that the minimal BRST invariance implies the existence of a non-trivial stress-energy tensor for the minimal and non-minimal variables in the heterotic curved background. We find constraint equations for the b ghost. We construct the b ghost as a solution of these constraints.

  5. Quad-copter UAV BLDC Motor Control: Linear v/s non-linear control maps

    Directory of Open Access Journals (Sweden)

    Deep Parikh

    2015-08-01

    Full Text Available This paper presents some investigations and comparison of using linear versus non-linear static motor-control maps for the speed control of a BLDC (Brush Less Direct Current motors used in quad-copter UAV (Unmanned Aerial Vehicles. The motor-control map considered here is the inverse of the static map relating motor-speed output to motor-voltage input for a typical out-runner type Brushless DC Motors (BLDCM.  Traditionally, quad-copter BLDC motor speed control uses simple linear motor-control map defined by the motor-constant specification. However, practical BLDC motors show non-linear characteristic, particularly when operated across wide operating speed-range as is commonly required in quad-copter UAV flight operations. In this paper, our investigations to compare performance of linear versus non-linear motor-control maps are presented. The investigations cover simulation-based and experimental study of BLDC motor speed control systems for  quad-copter vehicle available. First the non-linear map relating rotor RPM to motor voltage for quad-copter BLDC motor is obtained experimentally using an optical speed encoder. The performance of the linear versus non-linear motor-control-maps for the speed control are studied. The investigations also cover study of time-responses for various standard test input-signals e.g. step, ramp and pulse inputs, applied as the reference speed-commands. Also, simple 2-degree of freedom test-bed is developed in our laboratory to help test the open-loop and closed-loop experimental investigations. The non-linear motor-control map is found to perform better in BLDC motor speed tracking control performance and thereby helping achieve better quad-copter roll-angle attitude control.

  6. Relationships between each part of the spinal curves and upright posture using Multiple stepwise linear regression analysis.

    Science.gov (United States)

    Boulet, Sebastien; Boudot, Elsa; Houel, Nicolas

    2016-05-03

    Back pain is a common reason for consultation in primary healthcare clinical practice, and has effects on daily activities and posture. Relationships between the whole spine and upright posture, however, remain unknown. The aim of this study was to identify the relationship between each spinal curve and centre of pressure position as well as velocity for healthy subjects. Twenty-one male subjects performed quiet stance in natural position. Each upright posture was then recorded using an optoelectronics system (Vicon Nexus) synchronized with two force plates. At each moment, polynomial interpolations of markers attached on the spine segment were used to compute cervical lordosis, thoracic kyphosis and lumbar lordosis angle curves. Mean of centre of pressure position and velocity was then computed. Multiple stepwise linear regression analysis showed that the position and velocity of centre of pressure associated with each part of the spinal curves were defined as best predictors of the lumbar lordosis angle (R(2)=0.45; p=1.65*10-10) and the thoracic kyphosis angle (R(2)=0.54; p=4.89*10-13) of healthy subjects in quiet stance. This study showed the relationships between each of cervical, thoracic, lumbar curvatures, and centre of pressure's fluctuation during free quiet standing using non-invasive full spinal curve exploration. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. A non-linear piezoelectric actuator calibration using N-dimensional Lissajous figure

    Science.gov (United States)

    Albertazzi, A.; Viotti, M. R.; Veiga, C. L. N.; Fantin, A. V.

    2016-08-01

    Piezoelectric translators (PZTs) are very often used as phase shifters in interferometry. However, they typically present a non-linear behavior and strong hysteresis. The use of an additional resistive or capacitive sensor make possible to linearize the response of the PZT by feedback control. This approach works well, but makes the device more complex and expensive. A less expensive approach uses a non-linear calibration. In this paper, the authors used data from at least five interferograms to form N-dimensional Lissajous figures to establish the actual relationship between the applied voltages and the resulting phase shifts [1]. N-dimensional Lissajous figures are formed when N sinusoidal signals are combined in an N-dimensional space, where one signal is assigned to each axis. It can be verified that the resulting Ndimensional ellipsis lays in a 2D plane. By fitting an ellipsis equation to the resulting 2D ellipsis it is possible to accurately compute the resulting phase value for each interferogram. In this paper, the relationship between the resulting phase shift and the applied voltage is simultaneously established for a set of 12 increments by a fourth degree polynomial. The results in speckle interferometry show that, after two or three interactions, the calibration error is usually smaller than 1°.

  8. Comparison of parametric, orthogonal, and spline functions to model individual lactation curves for milk yield in Canadian Holsteins

    Directory of Open Access Journals (Sweden)

    Corrado Dimauro

    2010-11-01

    Full Text Available Test day records for milk yield of 57,390 first lactation Canadian Holsteins were analyzed with a linear model that included the fixed effects of herd-test date and days in milk (DIM interval nested within age and calving season. Residuals from this model were analyzed as a new variable and fitted with a five parameter model, fourth-order Legendre polynomials, with linear, quadratic and cubic spline models with three knots. The fit of the models was rather poor, with about 30-40% of the curves showing an adjusted R-square lower than 0.20 across all models. Results underline a great difficulty in modelling individual deviations around the mean curve for milk yield. However, the Ali and Schaeffer (5 parameter model and the fourth-order Legendre polynomials were able to detect two basic shapes of individual deviations among the mean curve. Quadratic and, especially, cubic spline functions had better fitting performances but a poor predictive ability due to their great flexibility that results in an abrupt change of the estimated curve when data are missing. Parametric and orthogonal polynomials seem to be robust and affordable under this standpoint.

  9. A linear evolution for non-linear dynamics and correlations in realistic nuclei

    International Nuclear Information System (INIS)

    Levin, E.; Lublinsky, M.

    2004-01-01

    A new approach to high energy evolution based on a linear equation for QCD generating functional is developed. This approach opens a possibility for systematic study of correlations inside targets, and, in particular, inside realistic nuclei. Our results are presented as three new equations. The first one is a linear equation for QCD generating functional (and for scattering amplitude) that sums the 'fan' diagrams. For the amplitude this equation is equivalent to the non-linear Balitsky-Kovchegov equation. The second equation is a generalization of the Balitsky-Kovchegov non-linear equation to interactions with realistic nuclei. It includes a new correlation parameter which incorporates, in a model-dependent way, correlations inside the nuclei. The third equation is a non-linear equation for QCD generating functional (and for scattering amplitude) that in addition to the 'fan' diagrams sums the Glauber-Mueller multiple rescatterings

  10. Flexible competing risks regression modeling and goodness-of-fit

    DEFF Research Database (Denmark)

    Scheike, Thomas; Zhang, Mei-Jie

    2008-01-01

    In this paper we consider different approaches for estimation and assessment of covariate effects for the cumulative incidence curve in the competing risks model. The classic approach is to model all cause-specific hazards and then estimate the cumulative incidence curve based on these cause...... models that is easy to fit and contains the Fine-Gray model as a special case. One advantage of this approach is that our regression modeling allows for non-proportional hazards. This leads to a new simple goodness-of-fit procedure for the proportional subdistribution hazards assumption that is very easy...... of the flexible regression models to analyze competing risks data when non-proportionality is present in the data....

  11. Non-linear realizations and bosonic branes

    International Nuclear Information System (INIS)

    West, P.

    2001-01-01

    In this very short note, following hep-th/0001216, we express the well known bosonic brane as a non-linear realization. The reader may also consult hep-th/9912226, 0001216 and 0005270 where the branes of M theory are constructed as a non-linear realisation. The automorphisms of the supersymmetry algebra play an essential role. (author)

  12. Ajuste de modelos estocásticos lineares e não-lineares para a descrição do perfil longitudinal de árvores Fitting linear and nonlinear stochastic models to describe longitudinal tree profile

    Directory of Open Access Journals (Sweden)

    Leonardo Machado Pires

    2007-10-01

    Full Text Available Os modelos polinomiais são mais difundidos no meio florestal brasileiro na descrição do perfil de árvores devido à sua facilidade de ajuste e precisão. O mesmo não ocorre com os modelos não-lineares, os quais possuem maior dificuldade de ajuste. Dentre os modelos não-lineares clássicos, na descrição do perfil, podem-se citar o de Gompertz, o Logístico e o de Weibull. Portanto, este estudo visou comparar os modelos lineares e não lineares para a descrição do perfil de árvores. As medidas de comparação foram o coeficiente de determinação (R², o erro-padrão residual (s yx, o coeficiente de determinação corrigido (R²ajustado, o gráfico dos resíduos e a facilidade de ajuste. Os resultados ressaltaram que, dentre os modelos não-lineares, o que obteve melhor desempenho, de forma geral, foi o modelo Logístico, apesar de o modelo de Gompertz ser melhor em termos de erro-padrão residual. Nos modelos lineares, o polinômio proposto por Pires & Calegario foi superior aos demais. Ao comparar os modelos não-lineares com os lineares, o modelo Logístico foi melhor em razão, principalmente, do fato de o comportamento dos dados ser não-linear, à baixa correlação entre os parâmetros e à fácil interpretação deles, facilitando a convergência e o ajuste.Polynomial models are most commonly used in Brazilian forestry for taper modeling due to its straightforwardly fitting and precision. The use of nonlinear regression classic models, like Gompertz, Logistic and Weibull, is not very common in Brazil. Therefore, this study aimed to verify the best nonlinear and linear models, and among these the best model to describe the longitudinal tree profile. The comparison measures were: R², syx, R²adjusted, residual graphics and fitting convergence. The results pointed out that among the non-linear models the best behavior, in general, was given by the Logistic model, although the Gompertz model was superior compared with the Weibull

  13. Modelling female fertility traits in beef cattle using linear and non-linear models.

    Science.gov (United States)

    Naya, H; Peñagaricano, F; Urioste, J I

    2017-06-01

    Female fertility traits are key components of the profitability of beef cattle production. However, these traits are difficult and expensive to measure, particularly under extensive pastoral conditions, and consequently, fertility records are in general scarce and somehow incomplete. Moreover, fertility traits are usually dominated by the effects of herd-year environment, and it is generally assumed that relatively small margins are kept for genetic improvement. New ways of modelling genetic variation in these traits are needed. Inspired in the methodological developments made by Prof. Daniel Gianola and co-workers, we assayed linear (Gaussian), Poisson, probit (threshold), censored Poisson and censored Gaussian models to three different kinds of endpoints, namely calving success (CS), number of days from first calving (CD) and number of failed oestrus (FE). For models involving FE and CS, non-linear models overperformed their linear counterparts. For models derived from CD, linear versions displayed better adjustment than the non-linear counterparts. Non-linear models showed consistently higher estimates of heritability and repeatability in all cases (h 2  linear models; h 2  > 0.23 and r > 0.24, for non-linear models). While additive and permanent environment effects showed highly favourable correlations between all models (>0.789), consistency in selecting the 10% best sires showed important differences, mainly amongst the considered endpoints (FE, CS and CD). In consequence, endpoints should be considered as modelling different underlying genetic effects, with linear models more appropriate to describe CD and non-linear models better for FE and CS. © 2017 Blackwell Verlag GmbH.

  14. Dynamics of unsymmetric piecewise-linear/non-linear systems using finite elements in time

    Science.gov (United States)

    Wang, Yu

    1995-08-01

    The dynamic response and stability of a single-degree-of-freedom system with unsymmetric piecewise-linear/non-linear stiffness are analyzed using the finite element method in the time domain. Based on a Hamilton's weak principle, this method provides a simple and efficient approach for predicting all possible fundamental and sub-periodic responses. The stability of the steady state response is determined by using Floquet's theory without any special effort for calculating transition matrices. This method is applied to a number of examples, demonstrating its effectiveness even for a strongly non-linear problem involving both clearance and continuous stiffness non-linearities. Close agreement is found between available published findings and the predictions of the finite element in time approach, which appears to be an efficient and reliable alternative technique for non-linear dynamic response and stability analysis of periodic systems.

  15. On the analysis of clonogenic survival data: Statistical alternatives to the linear-quadratic model

    International Nuclear Information System (INIS)

    Unkel, Steffen; Belka, Claus; Lauber, Kirsten

    2016-01-01

    The most frequently used method to quantitatively describe the response to ionizing irradiation in terms of clonogenic survival is the linear-quadratic (LQ) model. In the LQ model, the logarithm of the surviving fraction is regressed linearly on the radiation dose by means of a second-degree polynomial. The ratio of the estimated parameters for the linear and quadratic term, respectively, represents the dose at which both terms have the same weight in the abrogation of clonogenic survival. This ratio is known as the α/β ratio. However, there are plausible scenarios in which the α/β ratio fails to sufficiently reflect differences between dose-response curves, for example when curves with similar α/β ratio but different overall steepness are being compared. In such situations, the interpretation of the LQ model is severely limited. Colony formation assays were performed in order to measure the clonogenic survival of nine human pancreatic cancer cell lines and immortalized human pancreatic ductal epithelial cells upon irradiation at 0-10 Gy. The resulting dataset was subjected to LQ regression and non-linear log-logistic regression. Dimensionality reduction of the data was performed by cluster analysis and principal component analysis. Both the LQ model and the non-linear log-logistic regression model resulted in accurate approximations of the observed dose-response relationships in the dataset of clonogenic survival. However, in contrast to the LQ model the non-linear regression model allowed the discrimination of curves with different overall steepness but similar α/β ratio and revealed an improved goodness-of-fit. Additionally, the estimated parameters in the non-linear model exhibit a more direct interpretation than the α/β ratio. Dimensionality reduction of clonogenic survival data by means of cluster analysis was shown to be a useful tool for classifying radioresistant and sensitive cell lines. More quantitatively, principal component analysis allowed

  16. Dose - Response Curves for Dicentrics and PCC Rings: Preparedness for Radiological Emergency in Thailand

    International Nuclear Information System (INIS)

    Rungsimaphorn, B.; Rerkamnuaychoke, B.; Sudprasert, W.

    2014-01-01

    Establishing in-vitro dose calibration curves is important for reconstruction of radiation dose in the exposed individuals. The aim of this pioneering work in Thailand was to generate dose-response curves using conventional biological dosimetry: dicentric chromosome assay (DCA) and premature chromosome condensation (PCC) assay. The peripheral blood lymphocytes were irradiated with 137 Cs at a dose rate of 0.652 Gy/min to doses of 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4 and 5 Gy for DCA technique, and 5, 10, 15, 20 and 25 Gy for PCC technique. The blood samples were cultured and processed following the standard procedure given by the IAEA with slight modifications. At least 500-1,000 metaphases or 100 dicentrics/ PCC rings were analyzed using an automated metaphase finder system. The yield of dicentrics with dose was fitted to a linear quadratic model using Chromosome Aberration Calculation Software (CABAS, version 2.0), whereas the dose-response curve of PCC rings was fitted to a linear relationship. These curves will be useful for in-vitro dose reconstruction and can support the preparedness for radiological emergency in the country.

  17. Tip-tilt disturbance model identification based on non-linear least squares fitting for Linear Quadratic Gaussian control

    Science.gov (United States)

    Yang, Kangjian; Yang, Ping; Wang, Shuai; Dong, Lizhi; Xu, Bing

    2018-05-01

    We propose a method to identify tip-tilt disturbance model for Linear Quadratic Gaussian control. This identification method based on Levenberg-Marquardt method conducts with a little prior information and no auxiliary system and it is convenient to identify the tip-tilt disturbance model on-line for real-time control. This identification method makes it easy that Linear Quadratic Gaussian control runs efficiently in different adaptive optics systems for vibration mitigation. The validity of the Linear Quadratic Gaussian control associated with this tip-tilt disturbance model identification method is verified by experimental data, which is conducted in replay mode by simulation.

  18. Linear and non-linear amplification of high-mode perturbations at the ablation front in HiPER targets

    Energy Technology Data Exchange (ETDEWEB)

    Olazabal-Loume, M; Breil, J; Hallo, L; Ribeyre, X [CELIA, UMR 5107 Universite Bordeaux 1-CNRS-CEA, 351 cours de la Liberation, 33405 Talence (France); Sanz, J, E-mail: olazabal@celia.u-bordeaux1.f [ETSI Aeronauticos, Universidad Politecnica de Madrid, Madrid 28040 (Spain)

    2011-01-15

    The linear and non-linear sensitivity of the 180 kJ baseline HiPER target to high-mode perturbations, i.e. surface roughness, is addressed using two-dimensional simulations and a complementary analysis by linear and non-linear ablative Rayleigh-Taylor models. Simulations provide an assessment of an early non-linear stage leading to a significant deformation of the ablation surface for modes of maximum linear growth factor. A design using a picket prepulse evidences an improvement in the target stability inducing a delay of the non-linear behavior. Perturbation evolution and shape, evidenced by simulations of the non-linear stage, are analyzed with existing self-consistent non-linear theory.

  19. Non-linear statistical downscaling of present and LGM precipitation and temperatures over Europe

    Directory of Open Access Journals (Sweden)

    M. Vrac

    2007-12-01

    Full Text Available Local-scale climate information is increasingly needed for the study of past, present and future climate changes. In this study we develop a non-linear statistical downscaling method to generate local temperatures and precipitation values from large-scale variables of a Earth System Model of Intermediate Complexity (here CLIMBER. Our statistical downscaling scheme is based on the concept of Generalized Additive Models (GAMs, capturing non-linearities via non-parametric techniques. Our GAMs are calibrated on the present Western Europe climate. For this region, annual GAMs (i.e. models based on 12 monthly values per location are fitted by combining two types of large-scale explanatory variables: geographical (e.g. topographical information and physical (i.e. entirely simulated by the CLIMBER model.

    To evaluate the adequacy of the non-linear transfer functions fitted on the present Western European climate, they are applied to different spatial and temporal large-scale conditions. Local projections for present North America and Northern Europe climates are obtained and compared to local observations. This partially addresses the issue of spatial robustness of our transfer functions by answering the question "does our statistical model remain valid when applied to large-scale climate conditions from a region different from the one used for calibration?". To asses their temporal performances, local projections for the Last Glacial Maximum period are derived and compared to local reconstructions and General Circulation Model outputs.

    Our downscaling methodology performs adequately for the Western Europe climate. Concerning the spatial and temporal evaluations, it does not behave as well for Northern America and Northern Europe climates because the calibration domain may be too different from the targeted regions. The physical explanatory variables alone are not capable of downscaling realistic values. However, the inclusion of

  20. Non-linear aeroelastic prediction for aircraft applications

    Science.gov (United States)

    de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.

    2007-05-01

    Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research

  1. A Bayesian hierarchical model for demand curve analysis.

    Science.gov (United States)

    Ho, Yen-Yi; Nhu Vo, Tien; Chu, Haitao; Luo, Xianghua; Le, Chap T

    2018-07-01

    Drug self-administration experiments are a frequently used approach to assessing the abuse liability and reinforcing property of a compound. It has been used to assess the abuse liabilities of various substances such as psychomotor stimulants and hallucinogens, food, nicotine, and alcohol. The demand curve generated from a self-administration study describes how demand of a drug or non-drug reinforcer varies as a function of price. With the approval of the 2009 Family Smoking Prevention and Tobacco Control Act, demand curve analysis provides crucial evidence to inform the US Food and Drug Administration's policy on tobacco regulation, because it produces several important quantitative measurements to assess the reinforcing strength of nicotine. The conventional approach popularly used to analyze the demand curve data is individual-specific non-linear least square regression. The non-linear least square approach sets out to minimize the residual sum of squares for each subject in the dataset; however, this one-subject-at-a-time approach does not allow for the estimation of between- and within-subject variability in a unified model framework. In this paper, we review the existing approaches to analyze the demand curve data, non-linear least square regression, and the mixed effects regression and propose a new Bayesian hierarchical model. We conduct simulation analyses to compare the performance of these three approaches and illustrate the proposed approaches in a case study of nicotine self-administration in rats. We present simulation results and discuss the benefits of using the proposed approaches.

  2. Hot Spots Detection of Operating PV Arrays through IR Thermal Image Using Method Based on Curve Fitting of Gray Histogram

    Directory of Open Access Journals (Sweden)

    Jiang Lin

    2016-01-01

    Full Text Available The overall efficiency of PV arrays is affected by hot spots which should be detected and diagnosed by applying responsible monitoring techniques. The method using the IR thermal image to detect hot spots has been studied as a direct, noncontact, nondestructive technique. However, IR thermal images suffer from relatively high stochastic noise and non-uniformity clutter, so the conventional methods of image processing are not effective. The paper proposes a method to detect hotspots based on curve fitting of gray histogram. The result of MATLAB simulation proves the method proposed in the paper is effective to detect the hot spots suppressing the noise generated during the process of image acquisition.

  3. ROBUST DECLINE CURVE ANALYSIS

    Directory of Open Access Journals (Sweden)

    Sutawanir Darwis

    2012-05-01

    Full Text Available Empirical decline curve analysis of oil production data gives reasonable answer in hyperbolic type curves situations; however the methodology has limitations in fitting real historical production data in present of unusual observations due to the effect of the treatment to the well in order to increase production capacity. The development ofrobust least squares offers new possibilities in better fitting production data using declinecurve analysis by down weighting the unusual observations. This paper proposes a robustleast squares fitting lmRobMM approach to estimate the decline rate of daily production data and compares the results with reservoir simulation results. For case study, we usethe oil production data at TBA Field West Java. The results demonstrated that theapproach is suitable for decline curve fitting and offers a new insight in decline curve analysis in the present of unusual observations.

  4. Latest astronomical constraints on some non-linear parametric dark energy models

    Science.gov (United States)

    Yang, Weiqiang; Pan, Supriya; Paliathanasis, Andronikos

    2018-04-01

    We consider non-linear redshift-dependent equation of state parameters as dark energy models in a spatially flat Friedmann-Lemaître-Robertson-Walker universe. To depict the expansion history of the universe in such cosmological scenarios, we take into account the large-scale behaviour of such parametric models and fit them using a set of latest observational data with distinct origin that includes cosmic microwave background radiation, Supernove Type Ia, baryon acoustic oscillations, redshift space distortion, weak gravitational lensing, Hubble parameter measurements from cosmic chronometers, and finally the local Hubble constant from Hubble space telescope. The fitting technique avails the publicly available code Cosmological Monte Carlo (COSMOMC), to extract the cosmological information out of these parametric dark energy models. From our analysis, it follows that those models could describe the late time accelerating phase of the universe, while they are distinguished from the Λ-cosmology.

  5. Geon-type solutions of the non-linear Heisenberg-Klein-Gordon equation

    International Nuclear Information System (INIS)

    Mielke, E.W.; Scherzer, R.

    1980-10-01

    As a model for a ''unitary'' field theory of extended particles we consider the non-linear Klein-Gordon equation - associated with a ''squared'' Heisenberg-Pauli-Weyl non-linear spinor equation - coupled to strong gravity. Using a stationary spherical ansatz for the complex scalar field as well as for the background metric generated via Einstein's field equation, we are able to study the effects of the scalar self-interaction as well as of the classical tensor forces. By numerical integration we obtain a continuous spectrum of localized, gravitational solitons resembling the geons previously constructed for the Einstein-Maxwell system by Wheeler. A self-generated curvature potential originating from the curved background partially confines the Schroedinger type wave functions within the ''scalar geon''. For zero angular momentum states and normalized scalar charge the spectrum for the total gravitational energy of these solitons exhibits a branching with respect to the number of nodes appearing in the radial part of the scalar field. Preliminary studies for higher values of the corresponding ''principal quantum number'' reveal that a kind of fine splitting of the energy levels occurs, which may indicate a rich, particle-like structure of these ''quantized geons''. (author)

  6. Non-linear finite element analysis in structural mechanics

    CERN Document Server

    Rust, Wilhelm

    2015-01-01

    This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.

  7. Fast and local non-linear evolution of steep wave-groups on deep water: A comparison of approximate models to fully non-linear simulations

    International Nuclear Information System (INIS)

    Adcock, T. A. A.; Taylor, P. H.

    2016-01-01

    The non-linear Schrödinger equation and its higher order extensions are routinely used for analysis of extreme ocean waves. This paper compares the evolution of individual wave-packets modelled using non-linear Schrödinger type equations with packets modelled using fully non-linear potential flow models. The modified non-linear Schrödinger Equation accurately models the relatively large scale non-linear changes to the shape of wave-groups, with a dramatic contraction of the group along the mean propagation direction and a corresponding extension of the width of the wave-crests. In addition, as extreme wave form, there is a local non-linear contraction of the wave-group around the crest which leads to a localised broadening of the wave spectrum which the bandwidth limited non-linear Schrödinger Equations struggle to capture. This limitation occurs for waves of moderate steepness and a narrow underlying spectrum

  8. A new procedure for automatic fitting of the basilar-membrane input-output function to individual behavioral data

    DEFF Research Database (Denmark)

    Kowalewski, Borys; Fereczkowski, Michal; MacDonald, Ewen

    2016-01-01

    system and, potentially, for clinical diagnostics. Computational algorithms are available that mimic the functioning of the nonlinear cochlear processing. One such algorithm is the dual resonance non-linear (DRNL) filterbank [6]. Its parameters can be modified to account for individual hearing loss, e.......g., based on behavioral, temporal masking curves (TMC) data. This approach was used within the framework of the computational auditory signal-processing and perception (CASP) model to account for various aspects of SNHL [4]. However, due to the computational complexity, on-line fitting of the DRNL...

  9. Non-linear radial spinwave modes in thin magnetic disks

    International Nuclear Information System (INIS)

    Helsen, M.; De Clercq, J.; Vansteenkiste, A.; Van Waeyenberge, B.; Gangwar, A.; Back, C. H.; Weigand, M.

    2015-01-01

    We present an experimental investigation of radial spin-wave modes in magnetic nano-disks with a vortex ground state. The spin-wave amplitude was measured using a frequency-resolved magneto-optical spectrum analyzer, allowing for high-resolution resonance curves to be recorded. It was found that with increasing excitation amplitude up to about 10 mT, the lowest-order mode behaves strongly non-linearly as the mode frequency redshifts and the resonance peak strongly deforms. This behavior was quantitatively reproduced by micromagnetic simulations. Micromagnetic simulations showed that at higher excitation amplitudes, the spinwaves are transformed into a soliton by self-focusing, and collapse onto the vortex core, dispersing the energy in short-wavelength spinwaves. Additionally, this process can lead to switching of the vortex polarization through the injection of a Bloch point

  10. Hamiltonian structures of some non-linear evolution equations

    International Nuclear Information System (INIS)

    Tu, G.Z.

    1983-06-01

    The Hamiltonian structure of the O(2,1) non-linear sigma model, generalized AKNS equations, are discussed. By reducing the O(2,1) non-linear sigma model to its Hamiltonian form some new conservation laws are derived. A new hierarchy of non-linear evolution equations is proposed and shown to be generalized Hamiltonian equations with an infinite number of conservation laws. (author)

  11. The non-linear ion trap. Part 5. Nature of non-linear resonances and resonant ion ejection

    Science.gov (United States)

    Franzen, J.

    1994-01-01

    The superposition of higher order multipole fields on the basic quadrupole field in ion traps generates a non-harmonic oscillator system for the ions. Fourier analyses of simulated secular oscillations in non-linear ion traps, therefore, not only reveal the sideband frequencies, well-known from the Mathieu theory, but additionally a commonwealth of multipole-specific overtones (or higher harmonics), and corresponding sidebands of overtones. Non-linear resonances occur when the overtone frequencies match sideband frequencies. It can be shown that in each of the resonance conditions, not just one overtone matches one sideband, instead, groups of overtones match groups of sidebands. The generation of overtones is studied by Fourier analysis of computed ion oscillations in the direction of thez axis. Even multipoles (octopole, dodecapole, etc.) generate only odd orders of higher harmonics (3, 5, etc.) of the secular frequency, explainable by the symmetry with regard to the planez = 0. In contrast, odd multipoles (hexapole, decapole, etc.) generate all orders of higher harmonics. For all multipoles, the lowest higher harmonics are found to be strongest. With multipoles of higher orders, the strength of the overtones decreases weaker with the order of the harmonics. Forz direction resonances in stationary trapping fields, the function governing the amplitude growth is investigated by computer simulations. The ejection in thez direction, as a function of timet, follows, at least in good approximation, the equation wheren is the order of multipole, andC is a constant. This equation is strictly valid for the electrically applied dipole field (n = 1), matching the secular frequency or one of its sidebands, resulting in a linear increase of the amplitude. It is valid also for the basic quadrupole field (n = 2) outside the stability area, giving an exponential increase. It is at least approximately valid for the non-linear resonances by weak superpositions of all higher odd

  12. Non-linear dynamics of wind turbine wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2006-01-01

    The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced...

  13. Non-linear seismic analysis of structures coupled with fluid

    International Nuclear Information System (INIS)

    Descleve, P.; Derom, P.; Dubois, J.

    1983-01-01

    This paper presents a method to calculate non-linear structure behaviour under horizontal and vertical seismic excitation, making possible the full non-linear seismic analysis of a reactor vessel. A pseudo forces method is used to introduce non linear effects and the problem is solved by superposition. Two steps are used in the method: - Linear calculation of the complete model. - Non linear analysis of thin shell elements and calculation of seismic induced pressure originating from linear and non linear effects, including permanent loads and thermal stresses. Basic aspects of the mathematical formulation are developed. It has been applied to axi-symmetric shell element using a Fourier series solution. For the fluid interaction effect, a comparison is made with a dynamic test. In an example of application, the displacement and pressure time history are given. (orig./GL)

  14. The Cauchy problem for non-linear Klein-Gordon equations

    International Nuclear Information System (INIS)

    Simon, J.C.H.; Taflin, E.

    1993-01-01

    We consider in R n+1 , n≥2, the non-linear Klein-Gordon equation. We prove for such an equation that there is neighbourhood of zero in a Hilbert space of initial conditions for which the Cauchy problem has global solutions and on which there is asymptotic completeness. The inverse of the wave operator linearizes the non-linear equation. If, moreover, the equation is manifestly Poincare covariant then the non-linear representation of the Poincare-Lie algebra, associated with the non-linear Klein-Gordon equation is integrated to a non-linear representation of the Poincare group on an invariant neighbourhood of zero in the Hilbert space. This representation is linearized by the inverse of the wave operator. The Hilbert space is, in both cases, the closure of the space of the differentiable vectors for the linear representation of the Poincare group, associated with the Klein-Gordon equation, with respect to a norm defined by the representation of the enveloping algebra. (orig.)

  15. The Importance of Non-Linearity on Turbulent Fluxes

    DEFF Research Database (Denmark)

    Rokni, Masoud

    2007-01-01

    Two new non-linear models for the turbulent heat fluxes are derived and developed from the transport equation of the scalar passive flux. These models are called as non-linear eddy diffusivity and non-linear scalar flux. The structure of these models is compared with the exact solution which...... is derived from the Cayley-Hamilton theorem and contains a three term-basis plus a non-linear term due to scalar fluxes. In order to study the performance of the model itself, all other turbulent quantities are taken from a DNS channel flow data-base and thus the error source has been minimized. The results...... are compared with the DNS channel flow and good agreement is achieved. It has been shown that the non-linearity parts of the models are important to capture the true path of the streamwise scalar fluxes. It has also been shown that one of model constant should have negative sign rather than positive, which had...

  16. Boundary curves of individual items in the distribution of total depressive symptom scores approximate an exponential pattern in a general population.

    Science.gov (United States)

    Tomitaka, Shinichiro; Kawasaki, Yohei; Ide, Kazuki; Akutagawa, Maiko; Yamada, Hiroshi; Furukawa, Toshiaki A; Ono, Yutaka

    2016-01-01

    Previously, we proposed a model for ordinal scale scoring in which individual thresholds for each item constitute a distribution by each item. This lead us to hypothesize that the boundary curves of each depressive symptom score in the distribution of total depressive symptom scores follow a common mathematical model, which is expressed as the product of the frequency of the total depressive symptom scores and the probability of the cumulative distribution function of each item threshold. To verify this hypothesis, we investigated the boundary curves of the distribution of total depressive symptom scores in a general population. Data collected from 21,040 subjects who had completed the Center for Epidemiologic Studies Depression Scale (CES-D) questionnaire as part of a national Japanese survey were analyzed. The CES-D consists of 20 items (16 negative items and four positive items). The boundary curves of adjacent item scores in the distribution of total depressive symptom scores for the 16 negative items were analyzed using log-normal scales and curve fitting. The boundary curves of adjacent item scores for a given symptom approximated a common linear pattern on a log normal scale. Curve fitting showed that an exponential fit had a markedly higher coefficient of determination than either linear or quadratic fits. With negative affect items, the gap between the total score curve and boundary curve continuously increased with increasing total depressive symptom scores on a log-normal scale, whereas the boundary curves of positive affect items, which are not considered manifest variables of the latent trait, did not exhibit such increases in this gap. The results of the present study support the hypothesis that the boundary curves of each depressive symptom score in the distribution of total depressive symptom scores commonly follow the predicted mathematical model, which was verified to approximate an exponential mathematical pattern.

  17. Boundary curves of individual items in the distribution of total depressive symptom scores approximate an exponential pattern in a general population

    Directory of Open Access Journals (Sweden)

    Shinichiro Tomitaka

    2016-10-01

    Full Text Available Background Previously, we proposed a model for ordinal scale scoring in which individual thresholds for each item constitute a distribution by each item. This lead us to hypothesize that the boundary curves of each depressive symptom score in the distribution of total depressive symptom scores follow a common mathematical model, which is expressed as the product of the frequency of the total depressive symptom scores and the probability of the cumulative distribution function of each item threshold. To verify this hypothesis, we investigated the boundary curves of the distribution of total depressive symptom scores in a general population. Methods Data collected from 21,040 subjects who had completed the Center for Epidemiologic Studies Depression Scale (CES-D questionnaire as part of a national Japanese survey were analyzed. The CES-D consists of 20 items (16 negative items and four positive items. The boundary curves of adjacent item scores in the distribution of total depressive symptom scores for the 16 negative items were analyzed using log-normal scales and curve fitting. Results The boundary curves of adjacent item scores for a given symptom approximated a common linear pattern on a log normal scale. Curve fitting showed that an exponential fit had a markedly higher coefficient of determination than either linear or quadratic fits. With negative affect items, the gap between the total score curve and boundary curve continuously increased with increasing total depressive symptom scores on a log-normal scale, whereas the boundary curves of positive affect items, which are not considered manifest variables of the latent trait, did not exhibit such increases in this gap. Discussion The results of the present study support the hypothesis that the boundary curves of each depressive symptom score in the distribution of total depressive symptom scores commonly follow the predicted mathematical model, which was verified to approximate an

  18. Effects of combined linear and nonlinear periodic training on physical fitness and competition times in finswimmers.

    Science.gov (United States)

    Yu, Kyung-Hun; Suk, Min-Hwa; Kang, Shin-Woo; Shin, Yun-A

    2014-10-01

    The purpose of this study was to investigate the effect of combined linear and nonlinear periodic training on physical fitness and competition times in finswimmers. The linear resistance training model (6 days/week) and nonlinear underwater training (4 days/week) were applied to 12 finswimmers (age, 16.08± 1.44 yr; career, 3.78± 1.90 yr) for 12 weeks. Body composition measures included weight, body mass index (BMI), percent fat, and fat-free mass. Physical fitness measures included trunk flexion forward, trunk extension backward, sargent jump, 1-repetition-maximum (1 RM) squat, 1 RM dead lift, knee extension, knee flexion, trunk extension, trunk flexion, and competition times. Body composition and physical fitness were improved after the 12-week periodic training program. Weight, BMI, and percent fat were significantly decreased, and trunk flexion forward, trunk extension backward, sargent jump, 1 RM squat, 1 RM dead lift, and knee extension (right) were significantly increased. The 50- and 100-m times significantly decreased in all 12 athletes. After 12 weeks of training, all finswimmers who participated in this study improved their times in a public competition. These data indicate that combined linear and nonlinear periodic training enhanced the physical fitness and competition times in finswimmers.

  19. Absolute Distances to Nearby Type Ia Supernovae via Light Curve Fitting Methods

    Science.gov (United States)

    Vinkó, J.; Ordasi, A.; Szalai, T.; Sárneczky, K.; Bányai, E.; Bíró, I. B.; Borkovits, T.; Hegedüs, T.; Hodosán, G.; Kelemen, J.; Klagyivik, P.; Kriskovics, L.; Kun, E.; Marion, G. H.; Marschalkó, G.; Molnár, L.; Nagy, A. P.; Pál, A.; Silverman, J. M.; Szakáts, R.; Szegedi-Elek, E.; Székely, P.; Szing, A.; Vida, K.; Wheeler, J. C.

    2018-06-01

    We present a comparative study of absolute distances to a sample of very nearby, bright Type Ia supernovae (SNe) derived from high cadence, high signal-to-noise, multi-band photometric data. Our sample consists of four SNe: 2012cg, 2012ht, 2013dy and 2014J. We present new homogeneous, high-cadence photometric data in Johnson–Cousins BVRI and Sloan g‧r‧i‧z‧ bands taken from two sites (Piszkesteto and Baja, Hungary), and the light curves are analyzed with publicly available light curve fitters (MLCS2k2, SNooPy2 and SALT2.4). When comparing the best-fit parameters provided by the different codes, it is found that the distance moduli of moderately reddened SNe Ia agree within ≲0.2 mag, and the agreement is even better (≲0.1 mag) for the highest signal-to-noise BVRI data. For the highly reddened SN 2014J the dispersion of the inferred distance moduli is slightly higher. These SN-based distances are in good agreement with the Cepheid distances to their host galaxies. We conclude that the current state-of-the-art light curve fitters for Type Ia SNe can provide consistent absolute distance moduli having less than ∼0.1–0.2 mag uncertainty for nearby SNe. Still, there is room for future improvements to reach the desired ∼0.05 mag accuracy in the absolute distance modulus.

  20. Timescale stretch parameterization of Type Ia supernova B-band light curves

    International Nuclear Information System (INIS)

    Goldhaber, G.; Groom, D.E.; Kim, A.; Aldering, G.; Astier, P.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fruchter, A.S.; Goobar, A.; Hook, I.; Irwin, M.; Kim, M.; Knop, R.A.; Lidman, C.; McMahon, R.; Nugent, P.E.; Pain, R.; Panagia, N.; Pennypacker, C.R.; Perlmutter, S.; Ruiz-Lapuente, P.; Schaefer, B.; Walton, N.A.; York, T.

    2001-01-01

    R-band intensity measurements along the light curve of Type Ia supernovae discovered by the Cosmology Project (SCP) are fitted in brightness to templates allowing a free parameter the time-axis width factor w identically equal to s times (1+z). The data points are then individually aligned in the time-axis, normalized and K-corrected back to the rest frame, after which the nearly 1300 normalized intensity measurements are found to lie on a well-determined common rest-frame B-band curve which we call the ''composite curve.'' The same procedure is applied to 18 low-redshift Calan/Tololo SNe with Z < 0.11; these nearly 300 B-band photometry points are found to lie on the composite curve equally well. The SCP search technique produces several measurements before maximum light for each supernova. We demonstrate that the linear stretch factor, s, which parameterizes the light-curve timescale appears independent of z, and applies equally well to the declining and rising parts of the light curve. In fact, the B band template that best fits this composite curve fits the individual supernova photometry data when stretched by a factor s with chi 2/DoF ∼ 1, thus as well as any parameterization can, given the current data sets. The measurement of the data of explosion, however, is model dependent and not tightly constrained by the current data. We also demonstrate the 1 + z light-cure time-axis broadening expected from cosmological expansion. This argues strongly against alternative explanations, such as tired light, for the redshift of distant objects

  1. Common SAR Derived from Linear and Non-linear QSAR Studies on AChE Inhibitors used in the Treatment of Alzheimer's Disease.

    Science.gov (United States)

    Pulikkal, Babitha Pallikkara; Marunnan, Sahila Mohammed; Bandaru, Srinivas; Yadav, Mukesh; Nayarisseri, Anuraj; Sureshkumar, Sivanpillai

    2017-11-14

    Deficits in cholinergic neurotransmission due to the degeneration of cholinergic neurons in the brain are believed to be one of the major causes of the memory impairments associated with AD. Targeting acetyl cholinesterase (AChE) surfaced as a potential therapeutic target in the treatment of Alzheimer's disease. The present study is pursued to develop quantitative structure activity relationship (QSAR) models to determine chemical descriptors responsible for AChE activity. Two different sets of AChE inhibitors, dataset-I (30 compounds) and dataset-II (20 compounds) were investigated through MLR aided linear and SVM aided non-linear QSAR models. The obtained QSAR models were found statistically fit, stable and predictive on validation scales. These QSAR models were further investigated for their common structure-activity relationship in terms of overlapping molecular descriptors selection. Atomic mass weighted 3D Morse descriptors (MATS5m) and Radial Distribution Function (RDF045m) descriptors were found in common SAR for both the datasets. Electronegativity weighted (MATS5e, HATSe, and Mor17e) descriptors have also been identified in regulative roles towards endpoint values of dataset-I and dataset-II. The common SAR identified in these linear and non-linear QSAR models could be utilized to design novel inhibitors of AChE with improved biological activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Optically stimulated luminescence from quartz measured using the linear modulation technique

    International Nuclear Information System (INIS)

    Bulur, E.; Boetter-Jensen, L.; Murray, A.S.

    2000-01-01

    The optically stimulated luminescence (OSL) from heated natural quartz has been investigated using the linear modulation technique (LMT), in which the excitation light intensity is increased linearly during stimulation. In contrast to conventional stimulation, which usually produces a monotonically decreasing signal, linearly increasing the stimulation power gives peaks in the signal as a function of time. In cases where the OSL signal contains more than one component, the linear increase in power of the stimulation light may result in a curve containing overlapping peaks, where the most easily stimulated component occurs at a shorter time. This allows the separation of the overlapping OSL components, which are assumed to originate from different traps. The LM-OSL curve from quartz shows an initial peak followed by a broad one. Deconvolution using curve fitting has shown that the composite OSL curve from quartz can be approximated well by using a linear combination of first-order peaks. In addition to the three known components, i.e. fast, medium and slow components from continuous-wave-OSL studies, an additional slow component is also identified for the first time. The dose responses and thermal stabilities of the various components are also studied

  3. Applicability of linear and non-linear potential flow models on a Wavestar float

    DEFF Research Database (Denmark)

    Bozonnet, Pauline; Dupin, Victor; Tona, Paolino

    2017-01-01

    as a model based on non-linear potential flow theory and weakscatterer hypothesis are successively considered. Simple tests, such as dip tests, decay tests and captive tests enable to highlight the improvements obtained with the introduction of nonlinearities. Float motion under wave actions and without...... control action, limited to small amplitude motion with a single float, is well predicted by the numerical models, including the linear one. Still, float velocity is better predicted by accounting for non-linear hydrostatic and Froude-Krylov forces.......Numerical models based on potential flow theory, including different types of nonlinearities are compared and validated against experimental data for the Wavestar wave energy converter technology. Exact resolution of the rotational motion, non-linear hydrostatic and Froude-Krylov forces as well...

  4. Histograms of Arecibo World Days Measurements and Linear-H Fits Between 1985 and 1995

    National Research Council Canada - National Science Library

    Melendez-Alvira, D

    1998-01-01

    This document presents histograms of linear-H model fits to electron density profiles measured with the incoherent scatter radar of the Arecibo Observatory in Puerto Rico during the World Days between 1985 and 1995...

  5. Dose response curve of induction of MN in lymphocytes for energies Cs-137; Curva dosis respuesta de induccion de micronucleos en linfocitos para las energias Cs-137

    Energy Technology Data Exchange (ETDEWEB)

    Serna Berna, A.; Alcaraz, M.; Acevedo, C.; Vicente, V.; Fuente, I. de la; Canteras, M.

    2006-07-01

    The determination of the dose-response curve is a crucial step to use the Micronucleus assay in Lymphocytes as a biological dosimeters. The most widely used fitting function is the linear-quadratic function. The coefficients are fitted by calibration data provided by irradiations of blood from healthy donors. In our case we performed the calibration curve corresponding to gamma radiation from Cesium-137 (660 keV). Doses ranged from 0 to 16 Gy. The fitting procedure used was the iteratively re weighted least square algorithm implemented in a Matlab routine. The results of the analysis of our data show that the dose-effect curve does not follow a linear-quadratic curve at high radiation doses, diminishing the quadratic parameters as dose increases. This can be interpreted as a micronucleus saturation effect beyond a certain dose level. We conclude that the MN assay with lymphocytes can be well characterized as a biological dosimeters up to a maximum dose of 4.5 Gy. (Author)

  6. Non linear structures seismic analysis by modal synthesis

    International Nuclear Information System (INIS)

    Aita, S.; Brochard, D.; Guilbaud, D.; Gibert, R.J.

    1987-01-01

    The structures submitted to a seismic excitation, may present a great amplitude response which induces a non linear behaviour. These non linearities have an important influence on the response of the structure. Even in this case (local shocks) the modal synthesis method remains attractive. In this paper we will present the way of taking into account, a local non linearity (shock between structures) in the seismic response of structures, by using the modal synthesis method [fr

  7. Generalized non-linear Schroedinger hierarchy

    International Nuclear Information System (INIS)

    Aratyn, H.; Gomes, J.F.; Zimerman, A.H.

    1994-01-01

    The importance in studying the completely integrable models have became evident in the last years due to the fact that those models present an algebraic structure extremely rich, providing the natural scenery for solitons description. Those models can be described through non-linear differential equations, pseudo-linear operators (Lax formulation), or a matrix formulation. The integrability implies in the existence of a conservation law associated to each of degree of freedom. Each conserved charge Q i can be associated to a Hamiltonian, defining a time evolution related to to a time t i through the Hamilton equation ∂A/∂t i =[A,Q i ]. Particularly, for a two-dimensions field theory, infinite degree of freedom exist, and consequently infinite conservation laws describing the time evolution in space of infinite times. The Hamilton equation defines a hierarchy of models which present a infinite set of conservation laws. This paper studies the generalized non-linear Schroedinger hierarchy

  8. Closed Timelike Curves in Type II Non-Vacuum Spacetime

    International Nuclear Information System (INIS)

    Ahmed, Faizuddin

    2017-01-01

    Here we present a cyclicly symmetric non-vacuum spacetime, admitting closed timelike curves (CTCs) which appear after a certain instant of time, i.e., a time-machine spacetime. The spacetime is asymptotically flat, free-from curvature singularities and a four-dimensional extension of the Misner space in curved spacetime. The spacetime is of type II in the Petrov classification scheme and the matter field pure radiation satisfy the energy condition. (paper)

  9. Convergence of hybrid methods for solving non-linear partial ...

    African Journals Online (AJOL)

    This paper is concerned with the numerical solution and convergence analysis of non-linear partial differential equations using a hybrid method. The solution technique involves discretizing the non-linear system of PDE to obtain a corresponding non-linear system of algebraic difference equations to be solved at each time ...

  10. A three-parameter langmuir-type model for fitting standard curves of sandwich enzyme immunoassays with special attention to the α-fetoprotein assay

    NARCIS (Netherlands)

    Kortlandt, W.; Endeman, H.J.; Hoeke, J.O.O.

    In a simplified approach to the reaction kinetics of enzyme-linked immunoassays, a Langmuir-type equation y = [ax/(b + x)] + c was derived. This model proved to be superior to logit-log and semilog models in the curve-fitting of standard curves. An assay for α-fetoprotein developed in our laboratory

  11. Construction of local and non-local conservation laws for non-linear field equations

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Volovich, I.V.

    1984-08-01

    A method of constructing conserved currents for non-linear field equations is presented. More explicitly for non-linear equations, which can be derived from compatibility conditions of some linear system with a parameter, a procedure of obtaining explicit expressions for local and non-local currents is developed. Some examples such as the classical Heisenberg spin chain and supersymmetric Yang-Mills theory are considered. (author)

  12. Characterization of acid functional groups of carbon dots by nonlinear regression data fitting of potentiometric titration curves

    Science.gov (United States)

    Alves, Larissa A.; de Castro, Arthur H.; de Mendonça, Fernanda G.; de Mesquita, João P.

    2016-05-01

    The oxygenated functional groups present on the surface of carbon dots with an average size of 2.7 ± 0.5 nm were characterized by a variety of techniques. In particular, we discussed the fit data of potentiometric titration curves using a nonlinear regression method based on the Levenberg-Marquardt algorithm. The results obtained by statistical treatment of the titration curve data showed that the best fit was obtained considering the presence of five Brønsted-Lowry acids on the surface of the carbon dots with constant ionization characteristics of carboxylic acids, cyclic ester, phenolic and pyrone-like groups. The total number of oxygenated acid groups obtained was 5 mmol g-1, with approximately 65% (∼2.9 mmol g-1) originating from groups with pKa titrated and initial concentration of HCl solution. Finally, we believe that the methodology used here, together with other characterization techniques, is a simple, fast and powerful tool to characterize the complex acid-base properties of these so interesting and intriguing nanoparticles.

  13. Linear and non-linear autoregressive models for short-term wind speed forecasting

    International Nuclear Information System (INIS)

    Lydia, M.; Suresh Kumar, S.; Immanuel Selvakumar, A.; Edwin Prem Kumar, G.

    2016-01-01

    Highlights: • Models for wind speed prediction at 10-min intervals up to 1 h built on time-series wind speed data. • Four different multivariate models for wind speed built based on exogenous variables. • Non-linear models built using three data mining algorithms outperform the linear models. • Autoregressive models based on wind direction perform better than other models. - Abstract: Wind speed forecasting aids in estimating the energy produced from wind farms. The soaring energy demands of the world and minimal availability of conventional energy sources have significantly increased the role of non-conventional sources of energy like solar, wind, etc. Development of models for wind speed forecasting with higher reliability and greater accuracy is the need of the hour. In this paper, models for predicting wind speed at 10-min intervals up to 1 h have been built based on linear and non-linear autoregressive moving average models with and without external variables. The autoregressive moving average models based on wind direction and annual trends have been built using data obtained from Sotavento Galicia Plc. and autoregressive moving average models based on wind direction, wind shear and temperature have been built on data obtained from Centre for Wind Energy Technology, Chennai, India. While the parameters of the linear models are obtained using the Gauss–Newton algorithm, the non-linear autoregressive models are developed using three different data mining algorithms. The accuracy of the models has been measured using three performance metrics namely, the Mean Absolute Error, Root Mean Squared Error and Mean Absolute Percentage Error.

  14. An interactive graphics program to retrieve, display, compare, manipulate, curve fit, difference and cross plot wind tunnel data

    Science.gov (United States)

    Elliott, R. D.; Werner, N. M.; Baker, W. M.

    1975-01-01

    The Aerodynamic Data Analysis and Integration System (ADAIS), developed as a highly interactive computer graphics program capable of manipulating large quantities of data such that addressable elements of a data base can be called up for graphic display, compared, curve fit, stored, retrieved, differenced, etc., was described. The general nature of the system is evidenced by the fact that limited usage has already occurred with data bases consisting of thermodynamic, basic loads, and flight dynamics data. Productivity using ADAIS of five times that for conventional manual methods of wind tunnel data analysis is routinely achieved. In wind tunnel data analysis, data from one or more runs of a particular test may be called up and displayed along with data from one or more runs of a different test. Curves may be faired through the data points by any of four methods, including cubic spline and least squares polynomial fit up to seventh order.

  15. Noise and non-linearities in high-throughput data

    International Nuclear Information System (INIS)

    Nguyen, Viet-Anh; Lió, Pietro; Koukolíková-Nicola, Zdena; Bagnoli, Franco

    2009-01-01

    High-throughput data analyses are becoming common in biology, communications, economics and sociology. The vast amounts of data are usually represented in the form of matrices and can be considered as knowledge networks. Spectra-based approaches have proved useful in extracting hidden information within such networks and for estimating missing data, but these methods are based essentially on linear assumptions. The physical models of matching, when applicable, often suggest non-linear mechanisms, that may sometimes be identified as noise. The use of non-linear models in data analysis, however, may require the introduction of many parameters, which lowers the statistical weight of the model. According to the quality of data, a simpler linear analysis may be more convenient than more complex approaches. In this paper, we show how a simple non-parametric Bayesian model may be used to explore the role of non-linearities and noise in synthetic and experimental data sets

  16. SiFTO: An Empirical Method for Fitting SN Ia Light Curves

    Science.gov (United States)

    Conley, A.; Sullivan, M.; Hsiao, E. Y.; Guy, J.; Astier, P.; Balam, D.; Balland, C.; Basa, S.; Carlberg, R. G.; Fouchez, D.; Hardin, D.; Howell, D. A.; Hook, I. M.; Pain, R.; Perrett, K.; Pritchet, C. J.; Regnault, N.

    2008-07-01

    We present SiFTO, a new empirical method for modeling Type Ia supernova (SN Ia) light curves by manipulating a spectral template. We make use of high-redshift SN data when training the model, allowing us to extend it bluer than rest-frame U. This increases the utility of our high-redshift SN observations by allowing us to use more of the available data. We find that when the shape of the light curve is described using a stretch prescription, applying the same stretch at all wavelengths is not an adequate description. SiFTO therefore uses a generalization of stretch which applies different stretch factors as a function of both the wavelength of the observed filter and the stretch in the rest-frame B band. We compare SiFTO to other published light-curve models by applying them to the same set of SN photometry, and demonstrate that SiFTO and SALT2 perform better than the alternatives when judged by the scatter around the best-fit luminosity distance relationship. We further demonstrate that when SiFTO and SALT2 are trained on the same data set the cosmological results agree. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS.

  17. Return-Volatility Relationship: Insights from Linear and Non-Linear Quantile Regression

    NARCIS (Netherlands)

    D.E. Allen (David); A.K. Singh (Abhay); R.J. Powell (Robert); M.J. McAleer (Michael); J. Taylor (James); L. Thomas (Lyn)

    2013-01-01

    textabstractThe purpose of this paper is to examine the asymmetric relationship between price and implied volatility and the associated extreme quantile dependence using linear and non linear quantile regression approach. Our goal in this paper is to demonstrate that the relationship between the

  18. Seismic analysis of equipment system with non-linearities such as gap and friction using equivalent linearization method

    International Nuclear Information System (INIS)

    Murakami, H.; Hirai, T.; Nakata, M.; Kobori, T.; Mizukoshi, K.; Takenaka, Y.; Miyagawa, N.

    1989-01-01

    Many of the equipment systems of nuclear power plants contain a number of non-linearities, such as gap and friction, due to their mechanical functions. It is desirable to take such non-linearities into account appropriately for the evaluation of the aseismic soundness. However, in usual design works, linear analysis method with rough assumptions is applied from engineering point of view. An equivalent linearization method is considered to be one of the effective analytical techniques to evaluate non-linear responses, provided that errors to a certain extent are tolerated, because it has greater simplicity in analysis and economization in computing time than non-linear analysis. The objective of this paper is to investigate the applicability of the equivalent linearization method to evaluate the maximum earthquake response of equipment systems such as the CANDU Fuelling Machine which has multiple non- linearities

  19. Non-linear dynamics in Parkinsonism

    Directory of Open Access Journals (Sweden)

    Olivier eDarbin

    2013-12-01

    Full Text Available Over the last 30 years, the functions (and dysfunctions of the sensory-motor circuitry have been mostly conceptualized using linear modelizations which have resulted in two main models: the "rate hypothesis" and the "oscillatory hypothesis". In these two models, the basal ganglia data stream is envisaged as a random temporal combination of independent simple patterns issued from its probability distribution of interval interspikes or its spectrum of frequencies respectively.More recently, non-linear analyses have been introduced in the modelization of motor circuitry activities, and they have provided evidences that complex temporal organizations exist in basal ganglia neuronal activities. Regarding movement disorders, these complex temporal organizations in the basal ganglia data stream differ between conditions (i.e. parkinsonism, dyskinesia, healthy control and are responsive to treatments (i.e. L-DOPA,DBS. A body of evidence has reported that basal ganglia neuronal entropy (a marker for complexity/irregularity in time series is higher in hypokinetic state. In line with these findings, an entropy-based model has been recently formulated to introduce basal ganglia entropy as a marker for the alteration of motor processing and a factor of motor inhibition. Importantly, non-linear features have also been identified as a marker of condition and/or treatment effects in brain global signals (EEG, muscular activities (EMG or kinetic of motor symptoms (tremor, gait of patients with movement disorders. It is therefore warranted that the non-linear dynamics of motor circuitry will contribute to a better understanding of the neuronal dysfunctions underlying the spectrum of parkinsonian motor symptoms including tremor, rigidity and hypokinesia.

  20. Possible factors determining the non-linearity in the VO2-power output relationship in humans: theoretical studies.

    Science.gov (United States)

    Korzeniewski, Bernard; Zoladz, Jerzy A

    2003-08-01

    At low power output exercise (below lactate threshold), the oxygen uptake increases linearly with power output, but at high power output exercise (above lactate threshold) some additional oxygen consumption causes a non-linearity in the overall VO(2) (oxygen uptake rate)-power output relationship. The functional significance of this phenomenon for human exercise tolerance is very important, but the mechanisms underlying it remain unknown. In the present work, a computer model of oxidative phosphorylation in intact skeletal muscle developed previously is used to examine the background of this relationship in different modes of exercise. Our simulations demonstrate that the non-linearity in the VO(2)-power output relationship and the difference in the magnitude of this non-linearity between incremental exercise mode and square-wave exercise mode (constant power output exercise) can be generated by introducing into the model some hypothetical factor F (group of associated factors) that accumulate(s) in time during exercise. The performed computer simulations, based on this assumption, give proper time courses of changes in VO(2) and [PCr] after an onset of work of different intensities, including the slow component in VO(2), well matching the experimental results. Moreover, if it is assumed that the exercise terminates because of fatigue when the amount/intensity of F exceed some threshold value, the model allows the generation of a proper shape of the well-known power-duration curve. This fact suggests that the phenomenon of the non-linearity of the VO(2)-power output relationship and the magnitude of this non-linearity in different modes of exercise is determined by some factor(s) responsible for muscle fatigue.

  1. TBA-like integral equations from quantized mirror curves

    Energy Technology Data Exchange (ETDEWEB)

    Okuyama, Kazumi [Department of Physics, Shinshu University,Matsumoto 390-8621 (Japan); Zakany, Szabolcs [Département de Physique Théorique, Université de Genève,Genève, CH-1211 (Switzerland)

    2016-03-15

    Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local ℙ{sup 2}. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.

  2. TBA-like integral equations from quantized mirror curves

    Science.gov (United States)

    Okuyama, Kazumi; Zakany, Szabolcs

    2016-03-01

    Quantizing the mirror curve of certain toric Calabi-Yau (CY) three-folds leads to a family of trace class operators. The resolvent function of these operators is known to encode topological data of the CY. In this paper, we show that in certain cases, this resolvent function satisfies a system of non-linear integral equations whose structure is very similar to the Thermodynamic Bethe Ansatz (TBA) systems. This can be used to compute spectral traces, both exactly and as a semiclassical expansion. As a main example, we consider the system related to the quantized mirror curve of local P2. According to a recent proposal, the traces of this operator are determined by the refined BPS indices of the underlying CY. We use our non-linear integral equations to test that proposal.

  3. Light and velocity curve bumps for BW Vulpeculae

    International Nuclear Information System (INIS)

    Pesnell, W.D.; Cox, A.N.

    1980-01-01

    Bumps in the light and radial velocity curves of the Beta Cephei star BW Vulpeculae were modeled. Two mechanisms, a resonance phenomena and non-linear pulsations, were investigated. The resonance condition was clearly not fulfilled, the calculated period ratio being approximately 0.60, where a value of 0.50 L +- 0.03 is required for resonance. In the non-linear calculation, the bump appears, with the correct phase, but was found at an amplitude that is too large. Further, the light curve does not show any bump-like feature. The cause of the bump is the large spurious boost given the star's velocity field by the solution methods. The calculated periods of the stellar models are shorter than those of previous calculations, enhancing the possibility that these stars pulsate in a radial fundamental mode

  4. The importance of non-linearities in modern proton synchrotrons

    International Nuclear Information System (INIS)

    Wilson, E.J.N.

    1977-01-01

    The paper outlines the physics and mathematics of non-linear field errors in the quide fields of accelerators, with particular reference to large accelerators such as the SPS. These non-linearities give rise to closed orbital distortions and non-linear resonances or stopbands. Both of these effects are briefly discussed and the use of resonances for slow beam extraction is also described. Another problem considered is that of chromaticity of the particle beam. The use of sextupoles to correct chromaticity and the Landau damping of beam instabilities using octupoles are also discussed. In the final section the application of Hamiltonian mechanics to non-linearities is demonstrated. The author concludes that the effect of non-linearities on particle dynamics may place a more severe limit on intensity and storage time in large rings than any other effect in transverse phase space. (B.D.)

  5. Principal Curves on Riemannian Manifolds.

    Science.gov (United States)

    Hauberg, Soren

    2016-09-01

    Euclidean statistics are often generalized to Riemannian manifolds by replacing straight-line interpolations with geodesic ones. While these Riemannian models are familiar-looking, they are restricted by the inflexibility of geodesics, and they rely on constructions which are optimal only in Euclidean domains. We consider extensions of Principal Component Analysis (PCA) to Riemannian manifolds. Classic Riemannian approaches seek a geodesic curve passing through the mean that optimizes a criteria of interest. The requirements that the solution both is geodesic and must pass through the mean tend to imply that the methods only work well when the manifold is mostly flat within the support of the generating distribution. We argue that instead of generalizing linear Euclidean models, it is more fruitful to generalize non-linear Euclidean models. Specifically, we extend the classic Principal Curves from Hastie & Stuetzle to data residing on a complete Riemannian manifold. We show that for elliptical distributions in the tangent of spaces of constant curvature, the standard principal geodesic is a principal curve. The proposed model is simple to compute and avoids many of the pitfalls of traditional geodesic approaches. We empirically demonstrate the effectiveness of the Riemannian principal curves on several manifolds and datasets.

  6. Realising traceable electrostatic forces despite non-linear balance motion

    International Nuclear Information System (INIS)

    Stirling, Julian; Shaw, Gordon A

    2017-01-01

    Direct realisation of force, traceable to fundamental constants via electromagnetic balances, is a key goal of the proposed redefinition of the international system of units (SI). This will allow small force metrology to be performed using an electrostatic force balance (EFB) rather than subdivision of larger forces. Such a balance uses the electrostatic force across a capacitor to balance an external force. In this paper we model the capacitance of a concentric cylinder EFB design as a function of the displacement of its free electrode, accounting for the arcuate motion produced by parallelogram linkages commonly used in EFB mechanisms. From this model we suggest new fitting procedures to reduce uncertainties arising from non-linear motion as well as methods to identify misalignment of the mechanism. Experimental studies on both a test capacitor and the NIST EFB validate the model. (paper)

  7. Non-linear wave packet dynamics of coherent states

    Indian Academy of Sciences (India)

    In recent years, the non-linear quantum dynamics of these states have revealed some striking features. It was found that under the action of a Hamil- tonian which is a non-linear function of the photon operator(s) only, an initial coherent state loses its coherent structure quickly due to quantum dephasing induced by the non-.

  8. Non-linear feedback control of the p53 protein-mdm2 inhibitor system using the derivative-free non-linear Kalman filter.

    Science.gov (United States)

    Rigatos, Gerasimos G

    2016-06-01

    It is proven that the model of the p53-mdm2 protein synthesis loop is a differentially flat one and using a diffeomorphism (change of state variables) that is proposed by differential flatness theory it is shown that the protein synthesis model can be transformed into the canonical (Brunovsky) form. This enables the design of a feedback control law that maintains the concentration of the p53 protein at the desirable levels. To estimate the non-measurable elements of the state vector describing the p53-mdm2 system dynamics, the derivative-free non-linear Kalman filter is used. Moreover, to compensate for modelling uncertainties and external disturbances that affect the p53-mdm2 system, the derivative-free non-linear Kalman filter is re-designed as a disturbance observer. The derivative-free non-linear Kalman filter consists of the Kalman filter recursion applied on the linearised equivalent of the protein synthesis model together with an inverse transformation based on differential flatness theory that enables to retrieve estimates for the state variables of the initial non-linear model. The proposed non-linear feedback control and perturbations compensation method for the p53-mdm2 system can result in more efficient chemotherapy schemes where the infusion of medication will be better administered.

  9. A non-linear steady state characteristic performance curve for medium temperature solar energy collectors

    Science.gov (United States)

    Eames, P. C.; Norton, B.

    A numerical simulation model was employed to investigate the effects of ambient temperature and insolation on the efficiency of compound parabolic concentrating solar energy collectors. The limitations of presently-used collector performance characterization curves were investigated and a new approach proposed.

  10. Non-Linear Dynamics and Fundamental Interactions

    CERN Document Server

    Khanna, Faqir

    2006-01-01

    The book is directed to researchers and graduate students pursuing an advanced degree. It provides details of techniques directed towards solving problems in non-linear dynamics and chos that are, in general, not amenable to a perturbative treatment. The consideration of fundamental interactions is a prime example where non-perturbative techniques are needed. Extension of these techniques to finite temperature problems is considered. At present these ideas are primarily used in a perturbative context. However, non-perturbative techniques have been considered in some specific cases. Experts in the field on non-linear dynamics and chaos and fundamental interactions elaborate the techniques and provide a critical look at the present status and explore future directions that may be fruitful. The text of the main talks will be very useful to young graduate students who are starting their studies in these areas.

  11. Establishment and validation of a dose-effect curve for γ-rays by cytogenetic analysis

    International Nuclear Information System (INIS)

    Barquinero, Joan F.; Caballin, Maria Rosa; Barrios, Leonardo; Ribas, Montserrat; Miro, Rosa; Egozcue, Josep

    1995-01-01

    A dose-effect curve obtained by analysis of dicentric chromosomes after irradiation of peripheral blood samples, from one donor, at 11 different doses of γ-rays is presented. For the elaboration of this curve, more than 18,000 first division metaphases have been analyzed. The results fit very well to the linear-quadratic model. To validate the curve, samples from six individuals (three controls and three occupationally exposed persons) were irradiated at 2 Gy. The results obtained, when compared with the curve, showed that in all cases the 95% confidence interval included the 2 Gy dose, with estimated dose ranges from 1.82 to 2.19 Gy

  12. Heterotic sigma models and non-linear strings

    International Nuclear Information System (INIS)

    Hull, C.M.

    1986-01-01

    The two-dimensional supersymmetric non-linear sigma models are examined with respect to the heterotic string. The paper was presented at the workshop on :Supersymmetry and its applications', Cambridge, United Kingdom, 1985. The non-linear sigma model with Wess-Zumino-type term, the coupling of the fermionic superfields to the sigma model, super-conformal invariance, and the supersymmetric string, are all discussed. (U.K.)

  13. GURU v2.0: An interactive Graphical User interface to fit rheometer curves in Han’s model for rubber vulcanization

    OpenAIRE

    Milani, G.; Milani, F.

    2016-01-01

    A GUI software (GURU) for experimental data fitting of rheometer curves in Natural Rubber (NR) vulcanized with sulphur at different curing temperatures is presented. Experimental data are automatically loaded in GURU from an Excel spreadsheet coming from the output of the experimental machine (moving die rheometer). To fit the experimental data, the general reaction scheme proposed by Han and co-workers for NR vulcanized with sulphur is considered. From the simplified kinetic scheme adopted, ...

  14. A Practical Anodic and Cathodic Curve Intersection Model to Understand Multiple Corrosion Potentials of Fe-Based Glassy Alloys in OH- Contained Solutions.

    Science.gov (United States)

    Li, Y J; Wang, Y G; An, B; Xu, H; Liu, Y; Zhang, L C; Ma, H Y; Wang, W M

    2016-01-01

    A practical anodic and cathodic curve intersection model, which consisted of an apparent anodic curve and an imaginary cathodic line, was proposed to explain multiple corrosion potentials occurred in potentiodynamic polarization curves of Fe-based glassy alloys in alkaline solution. The apparent anodic curve was selected from the measured anodic curves. The imaginary cathodic line was obtained by linearly fitting the differences of anodic curves and can be moved evenly or rotated to predict the number and value of corrosion potentials.

  15. [Customized and non-customized French intrauterine growth curves. II - Comparison with existing curves and benefits of customization].

    Science.gov (United States)

    Ego, A; Prunet, C; Blondel, B; Kaminski, M; Goffinet, F; Zeitlin, J

    2016-02-01

    Our aim is to compare the new French EPOPé intrauterine growth curves, developed to address the guidelines 2013 of the French College of Obstetricians and Gynecologists, with reference curves currently used in France, and to evaluate the consequences of their adjustment for fetal sex and maternal characteristics. Eight intrauterine and birthweight curves, used in France were compared to the EPOPé curves using data from the French Perinatal Survey 2010. The influence of adjustment on the rate of SGA births and the characteristics of these births was analysed. Due to their birthweight values and distribution, the selected intrauterine curves are less suitable for births in France than the new curves. Birthweight curves led to low rates of SGA births from 4.3 to 8.5% compared to 10.0% with the EPOPé curves. The adjustment for maternal and fetal characteristics avoids the over-representation of girls among SGA births, and reclassifies 4% of births. Among births reclassified as SGA, the frequency of medical and obstetrical risk factors for growth restriction, smoking (≥10 cigarettes/day), and neonatal transfer is higher than among non-SGA births (P<0.01). The EPOPé curves are more suitable for French births than currently used curves, and their adjustment improves the identification of mothers and babies at risk of growth restriction and poor perinatal outcomes. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. Isotherms and thermodynamics by linear and non-linear regression analysis for the sorption of methylene blue onto activated carbon: Comparison of various error functions

    International Nuclear Information System (INIS)

    Kumar, K. Vasanth; Porkodi, K.; Rocha, F.

    2008-01-01

    A comparison of linear and non-linear regression method in selecting the optimum isotherm was made to the experimental equilibrium data of methylene blue sorption by activated carbon. The r 2 was used to select the best fit linear theoretical isotherm. In the case of non-linear regression method, six error functions, namely coefficient of determination (r 2 ), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), average relative error (ARE), sum of the errors squared (ERRSQ) and sum of the absolute errors (EABS) were used to predict the parameters involved in the two and three parameter isotherms and also to predict the optimum isotherm. For two parameter isotherm, MPSD was found to be the best error function in minimizing the error distribution between the experimental equilibrium data and predicted isotherms. In the case of three parameter isotherm, r 2 was found to be the best error function to minimize the error distribution structure between experimental equilibrium data and theoretical isotherms. The present study showed that the size of the error function alone is not a deciding factor to choose the optimum isotherm. In addition to the size of error function, the theory behind the predicted isotherm should be verified with the help of experimental data while selecting the optimum isotherm. A coefficient of non-determination, K 2 was explained and was found to be very useful in identifying the best error function while selecting the optimum isotherm

  17. Model-fitting approach to kinetic analysis of non-isothermal oxidation of molybdenite

    International Nuclear Information System (INIS)

    Ebrahimi Kahrizsangi, R.; Abbasi, M. H.; Saidi, A.

    2007-01-01

    The kinetics of molybdenite oxidation was studied by non-isothermal TGA-DTA with heating rate 5 d eg C .min -1 . The model-fitting kinetic approach applied to TGA data. The Coats-Redfern method used of model fitting. The popular model-fitting gives excellent fit non-isothermal data in chemically controlled regime. The apparent activation energy was determined to be about 34.2 kcalmol -1 With pre-exponential factor about 10 8 sec -1 for extent of reaction less than 0.5

  18. Linear and non-linear Modified Gravity forecasts with future surveys

    Science.gov (United States)

    Casas, Santiago; Kunz, Martin; Martinelli, Matteo; Pettorino, Valeria

    2017-12-01

    Modified Gravity theories generally affect the Poisson equation and the gravitational slip in an observable way, that can be parameterized by two generic functions (η and μ) of time and space. We bin their time dependence in redshift and present forecasts on each bin for future surveys like Euclid. We consider both Galaxy Clustering and Weak Lensing surveys, showing the impact of the non-linear regime, with two different semi-analytical approximations. In addition to these future observables, we use a prior covariance matrix derived from the Planck observations of the Cosmic Microwave Background. In this work we neglect the information from the cross correlation of these observables, and treat them as independent. Our results show that η and μ in different redshift bins are significantly correlated, but including non-linear scales reduces or even eliminates the correlation, breaking the degeneracy between Modified Gravity parameters and the overall amplitude of the matter power spectrum. We further apply a Zero-phase Component Analysis and identify which combinations of the Modified Gravity parameter amplitudes, in different redshift bins, are best constrained by future surveys. We extend the analysis to two particular parameterizations of μ and η and consider, in addition to Euclid, also SKA1, SKA2, DESI: we find in this case that future surveys will be able to constrain the current values of η and μ at the 2-5% level when using only linear scales (wavevector k < 0 . 15 h/Mpc), depending on the specific time parameterization; sensitivity improves to about 1% when non-linearities are included.

  19. Improved liver R2* mapping by pixel-wise curve fitting with adaptive neighborhood regularization.

    Science.gov (United States)

    Wang, Changqing; Zhang, Xinyuan; Liu, Xiaoyun; He, Taigang; Chen, Wufan; Feng, Qianjin; Feng, Yanqiu

    2018-08-01

    To improve liver R2* mapping by incorporating adaptive neighborhood regularization into pixel-wise curve fitting. Magnetic resonance imaging R2* mapping remains challenging because of the serial images with low signal-to-noise ratio. In this study, we proposed to exploit the neighboring pixels as regularization terms and adaptively determine the regularization parameters according to the interpixel signal similarity. The proposed algorithm, called the pixel-wise curve fitting with adaptive neighborhood regularization (PCANR), was compared with the conventional nonlinear least squares (NLS) and nonlocal means filter-based NLS algorithms on simulated, phantom, and in vivo data. Visually, the PCANR algorithm generates R2* maps with significantly reduced noise and well-preserved tiny structures. Quantitatively, the PCANR algorithm produces R2* maps with lower root mean square errors at varying R2* values and signal-to-noise-ratio levels compared with the NLS and nonlocal means filter-based NLS algorithms. For the high R2* values under low signal-to-noise-ratio levels, the PCANR algorithm outperforms the NLS and nonlocal means filter-based NLS algorithms in the accuracy and precision, in terms of mean and standard deviation of R2* measurements in selected region of interests, respectively. The PCANR algorithm can reduce the effect of noise on liver R2* mapping, and the improved measurement precision will benefit the assessment of hepatic iron in clinical practice. Magn Reson Med 80:792-801, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  20. Validity of purchasing power parity for selected Latin American countries: Linear and non-linear unit root tests

    Directory of Open Access Journals (Sweden)

    Claudio Roberto Fóffano Vasconcelos

    2016-01-01

    Full Text Available The aim of this study is to examine empirically the validity of PPP in the context of unit root tests based on linear and non-linear models of the real effective exchange rate of Argentina, Brazil, Chile, Colombia, Mexico, Peru and Venezuela. For this purpose, we apply the Harvey et al. (2008 linearity test and the non-linear unit root test (Kruse, 2011. The results show that the series with linear characteristics are Argentina, Brazil, Chile, Colombia and Peru and those with non-linear characteristics are Mexico and Venezuela. The linear unit root tests indicate that the real effective exchange rate is stationary for Chile and Peru, and the non-linear unit root tests evidence that Mexico is stationary. In the period analyzed, the results show support for the validity of PPP in only three of the seven countries.

  1. Evaluation of non-linear blending in dual-energy computed tomography

    International Nuclear Information System (INIS)

    Holmes, David R.; Fletcher, Joel G.; Apel, Anja; Huprich, James E.; Siddiki, Hassan; Hough, David M.; Schmidt, Bernhard; Flohr, Thomas G.; Robb, Richard; McCollough, Cynthia; Wittmer, Michael; Eusemann, Christian

    2008-01-01

    Dual-energy CT scanning has significant potential for disease identification and classification. However, it dramatically increases the amount of data collected and therefore impacts the clinical workflow. One way to simplify image review is to fuse CT datasets of different tube energies into a unique blended dataset with desirable properties. A non-linear blending method based on a modified sigmoid function was compared to a standard 0.3 linear blending method. The methods were evaluated in both a liver phantom and patient study. The liver phantom contained six syringes of known CT contrast which were placed in a bovine liver. After scanning at multiple tube currents (45, 55, 65, 75, 85, 95, 105, and 115 mAs for the 140-kV tube), the datasets were blended using both methods. A contrast-to-noise (CNR) measure was calculated for each syringe. In addition, all eight scans were normalized using the effective dose and statistically compared. In the patient study, 45 dual-energy CT scans were retrospectively mixed using the 0.3 linear blending and modified sigmoid blending functions. The scans were compared visually by two radiologists. For the 15, 45, and 64 HU syringes, the non-linear blended images exhibited similar CNR to the linear blended images; however, for the 79, 116, and 145 HU syringes, the non-linear blended images consistently had a higher CNR across dose settings. The radiologists qualitatively preferred the non-linear blended images of the phantom. In the patient study, the radiologists preferred non-linear blending in 31 of 45 cases with a strong preference in bowel and liver cases. Non-linear blending of dual energy data can provide an improvement in CNR over linear blending and is accompanied by a visual preference for non-linear blended images. Further study on selection of blending parameters and lesion conspicuity in non-linear blended images is being pursued

  2. Non-linear stochastic response of a shallow cable

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2004-01-01

    The paper considers the stochastic response of geometrical non-linear shallow cables. Large rain-wind induced cable oscillations with non-linear interactions have been observed in many large cable stayed bridges during the last decades. The response of the cable is investigated for a reduced two...

  3. Linear and Non-Linear Piezoresistance Coefficients in Cubic Semiconductors. I. Theoretical Formulations

    Science.gov (United States)

    Durand, S.; Tellier, C. R.

    1996-02-01

    This paper constitutes the first part of a work devoted to applications of piezoresistance effects in germanium and silicon semiconductors. In this part, emphasis is placed on a formal explanation of non-linear effects. We propose a brief phenomenological description based on the multi-valleys model of semiconductors before to adopt a macroscopic tensorial model from which general analytical expressions for primed non-linear piezoresistance coefficients are derived. Graphical representations of linear and non-linear piezoresistance coefficients allows us to characterize the influence of the two angles of cut and of directions of alignment. The second part will primarily deal with specific applications for piezoresistive sensors. Cette publication constitue la première partie d'un travail consacré aux applications des effets piézorésistifs dans les semiconducteurs germanium et silicium. Cette partie traite essentiellement de la modélisation des effets non-linéaires. Après une description phénoménologique à partir du modèle de bande des semiconducteurs nous développons un modèle tensoriel macroscopique et nous proposons des équations générales analytiques exprimant les coefficients piézorésistifs non-linéaires dans des repères tournés. Des représentations graphiques des variations des coefficients piézorésistifs linéaires et non-linéaires permettent une pré-caractérisation de l'influence des angles de coupes et des directions d'alignement avant l'étude d'applications spécifiques qui feront l'objet de la deuxième partie.

  4. A non-linear state space approach to model groundwater fluctuations

    NARCIS (Netherlands)

    Berendrecht, W.L.; Heemink, A.W.; Geer, F.C. van; Gehrels, J.C.

    2006-01-01

    A non-linear state space model is developed for describing groundwater fluctuations. Non-linearity is introduced by modeling the (unobserved) degree of water saturation of the root zone. The non-linear relations are based on physical concepts describing the dependence of both the actual

  5. PWR control system design using advanced linear and non-linear methodologies

    International Nuclear Information System (INIS)

    Rabindran, N.; Whitmarsh-Everiss, M.J.

    2004-01-01

    Consideration is here given to the methodology deployed for non-linear heuristic analysis in the time domain supported by multi-variable linear control system design methods for the purposes of operational dynamics and control system analysis. This methodology is illustrated by the application of structural singular value μ analysis to Pressurised Water Reactor control system design. (author)

  6. Optimal non-linear health insurance.

    Science.gov (United States)

    Blomqvist, A

    1997-06-01

    Most theoretical and empirical work on efficient health insurance has been based on models with linear insurance schedules (a constant co-insurance parameter). In this paper, dynamic optimization techniques are used to analyse the properties of optimal non-linear insurance schedules in a model similar to one originally considered by Spence and Zeckhauser (American Economic Review, 1971, 61, 380-387) and reminiscent of those that have been used in the literature on optimal income taxation. The results of a preliminary numerical example suggest that the welfare losses from the implicit subsidy to employer-financed health insurance under US tax law may be a good deal smaller than previously estimated using linear models.

  7. Non-linear second-order periodic systems with non-smooth potential

    Indian Academy of Sciences (India)

    In this paper we study second order non-linear periodic systems driven by the ordinary vector -Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth conditions on ...

  8. Non-linear second-order periodic systems with non-smooth potential

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. In this paper we study second order non-linear periodic systems driven by the ordinary vector p-Laplacian with a non-smooth, locally Lipschitz potential function. Our approach is variational and it is based on the non-smooth critical point theory. We prove existence and multiplicity results under general growth ...

  9. Robust non-gradient C subroutines for non-linear optimization

    DEFF Research Database (Denmark)

    Brock, Pernille; Madsen, Kaj; Nielsen, Hans Bruun

    2004-01-01

    This report presents a package of robust and easy-to-use C subroutines for solving unconstrained and constrained non-linear optimization problems, where gradient information is not required. The intention is that the routines should use the currently best algorithms available. All routines have...... subroutines are obtained by changing 0 to 1. The present report is a new and updated version of a previous report NI-91-04 with the title Non-gradient c Subroutines for Non- Linear Optimization, [16]. Both the previous and the present report describe a collection of subroutines, which have been translated...... from Fortran to C. The reason for writing the present report is that some of the C subroutines have been replaced by more e ective and robust versions translated from the original Fortran subroutines to C by the Bandler Group, see [1]. Also the test examples have been modified to some extent...

  10. Implementation of neural network based non-linear predictive

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems including open loop unstable and non-minimum phase systems, but has also been proposed extended for the control of non......-linear systems. GPC is model-based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis on an efficient Quasi......-Newton optimization algorithm. The performance is demonstrated on a pneumatic servo system....

  11. Optimization of piezoelectric cantilever energy harvesters including non-linear effects

    International Nuclear Information System (INIS)

    Patel, R; McWilliam, S; Popov, A A

    2014-01-01

    This paper proposes a versatile non-linear model for predicting piezoelectric energy harvester performance. The presented model includes (i) material non-linearity, for both substrate and piezoelectric layers, and (ii) geometric non-linearity incorporated by assuming inextensibility and accurately representing beam curvature. The addition of a sub-model, which utilizes the transfer matrix method to predict eigenfrequencies and eigenvectors for segmented beams, allows for accurate optimization of piezoelectric layer coverage. A validation of the overall theoretical model is performed through experimental testing on both uniform and non-uniform samples manufactured in-house. For the harvester composition used in this work, the magnitude of material non-linearity exhibited by the piezoelectric layer is 35 times greater than that of the substrate layer. It is also observed that material non-linearity, responsible for reductions in resonant frequency with increases in base acceleration, is dominant over geometric non-linearity for standard piezoelectric harvesting devices. Finally, over the tested range, energy loss due to damping is found to increase in a quasi-linear fashion with base acceleration. During an optimization study on piezoelectric layer coverage, results from the developed model were compared with those from a linear model. Unbiased comparisons between harvesters were realized by using devices with identical natural frequencies—created by adjusting the device substrate thickness. Results from three studies, each with a different assumption on mechanical damping variations, are presented. Findings showed that, depending on damping variation, a non-linear model is essential for such optimization studies with each model predicting vastly differing optimum configurations. (paper)

  12. Primordial black holes in linear and non-linear regimes

    Energy Technology Data Exchange (ETDEWEB)

    Allahyari, Alireza; Abolhasani, Ali Akbar [Department of Physics, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Firouzjaee, Javad T., E-mail: allahyari@physics.sharif.edu, E-mail: j.taghizadeh.f@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2017-06-01

    We revisit the formation of primordial black holes (PBHs) in the radiation-dominated era for both linear and non-linear regimes, elaborating on the concept of an apparent horizon. Contrary to the expectation from vacuum models, we argue that in a cosmological setting a density fluctuation with a high density does not always collapse to a black hole. To this end, we first elaborate on the perturbation theory for spherically symmetric space times in the linear regime. Thereby, we introduce two gauges. This allows to introduce a well defined gauge-invariant quantity for the expansion of null geodesics. Using this quantity, we argue that PBHs do not form in the linear regime irrespective of the density of the background. Finally, we consider the formation of PBHs in non-linear regimes, adopting the spherical collapse picture. In this picture, over-densities are modeled by closed FRW models in the radiation-dominated era. The difference of our approach is that we start by finding an exact solution for a closed radiation-dominated universe. This yields exact results for turn-around time and radius. It is important that we take the initial conditions from the linear perturbation theory. Additionally, instead of using uniform Hubble gauge condition, both density and velocity perturbations are admitted in this approach. Thereby, the matching condition will impose an important constraint on the initial velocity perturbations δ {sup h} {sub 0} = −δ{sub 0}/2. This can be extended to higher orders. Using this constraint, we find that the apparent horizon of a PBH forms when δ > 3 at turn-around time. The corrections also appear from the third order. Moreover, a PBH forms when its apparent horizon is outside the sound horizon at the re-entry time. Applying this condition, we infer that the threshold value of the density perturbations at horizon re-entry should be larger than δ {sub th} > 0.7.

  13. Accurate Solution of Multi-Region Continuum Biomolecule Electrostatic Problems Using the Linearized Poisson-Boltzmann Equation with Curved Boundary Elements

    Science.gov (United States)

    Altman, Michael D.; Bardhan, Jaydeep P.; White, Jacob K.; Tidor, Bruce

    2009-01-01

    We present a boundary-element method (BEM) implementation for accurately solving problems in biomolecular electrostatics using the linearized Poisson–Boltzmann equation. Motivating this implementation is the desire to create a solver capable of precisely describing the geometries and topologies prevalent in continuum models of biological molecules. This implementation is enabled by the synthesis of four technologies developed or implemented specifically for this work. First, molecular and accessible surfaces used to describe dielectric and ion-exclusion boundaries were discretized with curved boundary elements that faithfully reproduce molecular geometries. Second, we avoided explicitly forming the dense BEM matrices and instead solved the linear systems with a preconditioned iterative method (GMRES), using a matrix compression algorithm (FFTSVD) to accelerate matrix-vector multiplication. Third, robust numerical integration methods were employed to accurately evaluate singular and near-singular integrals over the curved boundary elements. Finally, we present a general boundary-integral approach capable of modeling an arbitrary number of embedded homogeneous dielectric regions with differing dielectric constants, possible salt treatment, and point charges. A comparison of the presented BEM implementation and standard finite-difference techniques demonstrates that for certain classes of electrostatic calculations, such as determining absolute electrostatic solvation and rigid-binding free energies, the improved convergence properties of the BEM approach can have a significant impact on computed energetics. We also demonstrate that the improved accuracy offered by the curved-element BEM is important when more sophisticated techniques, such as non-rigid-binding models, are used to compute the relative electrostatic effects of molecular modifications. In addition, we show that electrostatic calculations requiring multiple solves using the same molecular geometry

  14. Excited-state lifetime measurements: Linearization of the Foerster equation by the phase-plane method

    International Nuclear Information System (INIS)

    Love, J.C.; Demas, J.N.

    1983-01-01

    The Foerster equation describes excited-state decay curves involving resonance intermolecular energy transfer. A linearized solution based on the phase-plane method has been developed. The new method is quick, insensitive to the fitting region, accurate, and precise

  15. Effect of temperature and pressure on non-linear conduction in GeTeSe chalcogenide glass

    International Nuclear Information System (INIS)

    El-Mansy, M.K.

    1998-01-01

    The I-V characteristic curves were studied in the temperature range 301-359 K and pressure range up to 7.15 x 10 9 Pa which illustrate a non-linear behaviour below (high-resistance region) and beyond (negative-resistance region) a breakdown point characterising Ge 27 Te 62 Se 11 chalcogenide glasses. The general behaviour is shifted towards lower voltage and higher current when the ambient temperature and/or the applied pressure were increased. The non-linear behaviour in the pre breakdown region is discussed according to the Poole-Frenkel field emission of electrons from deep traps located at a depth equal to 0.372eV. The analysis of the effect of field on the non-linear conduction in Ge 27 Te 62 Se 11 chalcogenide glass suggests a modification of the energy difference between filled and empty sites, where the effect of pressure suggests a reduction of the energy gap width. The analysis based on simple thermal effects in the region closer to the breakdown point implies the electrothermal process initiating the negative resistance region. The results of post breakdown region (negative-resistance region) imply the electron hopping between filled and empty localised states at Fermi level. The density of localised states is estimated which lies in the range 5.7 x 10 16 -1.84 x 10 18 cm -3 /eV

  16. Non-linear macro evolution of a dc driven micro atmospheric glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Xu, S. F.; Zhong, X. X., E-mail: xxzhong@sjtu.edu.cn [The State Key Laboratory on Fiber Optic Local Area, Communication Networks and Advanced Optical Communication Systems, Key Laboratory for Laser Plasmas and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-10-15

    We studied the macro evolution of the micro atmospheric glow discharge generated between a micro argon jet into ambient air and static water. The micro discharge behaves similarly to a complex ecosystem. Non-linear behaviors are found for the micro discharge when the water acts as a cathode, different from the discharge when water behaves as an anode. Groups of snapshots of the micro discharge formed at different discharge currents are captured by an intensified charge-coupled device with controlled exposure time, and each group consisted of 256 images taken in succession. Edge detection methods are used to identify the water surface and then the total brightness is defined by adding up the signal counts over the area of the micro discharge. Motions of the water surface at different discharge currents show that the water surface lowers increasingly rapidly when the water acts as a cathode. In contrast, the water surface lowers at a constant speed when the water behaves as an anode. The light curves are similar to logistic growth curves, suggesting that a self-inhibition process occurs in the micro discharge. Meanwhile, the total brightness increases linearly during the same time when the water acts as an anode. Discharge-water interactions cause the micro discharge to evolve. The charged particle bomb process is probably responsible for the different behaviors of the micro discharges when the water acts as cathode and anode.

  17. Reactivity-induced time-dependencies of EBR-II linear and non-linear feedbacks

    International Nuclear Information System (INIS)

    Grimm, K.N.; Meneghetti, D.

    1988-01-01

    Time-dependent linear feedback reactivities are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a kinetic code analysis of an experiment in which the change in power resulted from the dropping of a control rod. Shown with these linear reactivities are the reactivity associated with the control-rod shaft contraction and also time-dependent non-linear (mainly bowing) component deduced from the inverse kinetics of the experimentally measured fission power and the calculated linear reactivities. (author)

  18. Non-linear absorption for concentrated solar energy transport

    Energy Technology Data Exchange (ETDEWEB)

    Jaramillo, O. A; Del Rio, J.A; Huelsz, G [Centro de Investigacion de Energia, UNAM, Temixco, Morelos (Mexico)

    2000-07-01

    In order to determine the maximum solar energy that can be transported using SiO{sub 2} optical fibers, analysis of non-linear absorption is required. In this work, we model the interaction between solar radiation and the SiO{sub 2} optical fiber core to determine the dependence of the absorption of the radioactive intensity. Using Maxwell's equations we obtain the relation between the refractive index and the electric susceptibility up to second order in terms of the electric field intensity. This is not enough to obtain an explicit expression for the non-linear absorption. Thus, to obtain the non-linear optical response, we develop a microscopic model of an harmonic driven oscillators with damp ing, based on the Drude-Lorentz theory. We solve this model using experimental information for the SiO{sub 2} optical fiber, and we determine the frequency-dependence of the non-linear absorption and the non-linear extinction of SiO{sub 2} optical fibers. Our results estimate that the average value over the solar spectrum for the non-linear extinction coefficient for SiO{sub 2} is k{sub 2}=10{sup -}29m{sup 2}V{sup -}2. With this result we conclude that the non-linear part of the absorption coefficient of SiO{sub 2} optical fibers during the transport of concentrated solar energy achieved by a circular concentrator is negligible, and therefore the use of optical fibers for solar applications is an actual option. [Spanish] Con el objeto de determinar la maxima energia solar que puede transportarse usando fibras opticas de SiO{sub 2} se requiere el analisis de absorcion no linear. En este trabajo modelamos la interaccion entre la radiacion solar y el nucleo de la fibra optica de SiO{sub 2} para determinar la dependencia de la absorcion de la intensidad radioactiva. Mediante el uso de las ecuaciones de Maxwell obtenemos la relacion entre el indice de refraccion y la susceptibilidad electrica hasta el segundo orden en terminos de intensidad del campo electrico. Esto no es

  19. Analytical exact solution of the non-linear Schroedinger equation

    International Nuclear Information System (INIS)

    Martins, Alisson Xavier; Rocha Filho, Tarcisio Marciano da

    2011-01-01

    Full text: In this work we present how to classify and obtain analytical solutions of the Schroedinger equation with a generic non-linearity in 1+1 dimensions. Our approach is based on the determination of Lie symmetry transformation mapping solutions into solutions, and non-classical symmetry transformations, mapping a given solution into itself. From these symmetries it is then possible to reduce the equation to a system of ordinary differential equations which can then be solved using standard methods. The generic non-linearity is handled by considering it as an additional unknown in the determining equations for the symmetry transformations. This results in an over-determined system of non-linear partial differential equations. Its solution can then be determined in some cases by reducing it to the so called involutive (triangular) form, and then solved. This reduction is very tedious and can only performed using a computer algebra system. Once the determining system is solved, we obtain the explicit form for the non-linearity admitting a Lie or non-classical symmetry. The analytical solutions are then derived by solving the reduced ordinary differential equations. The non-linear determining system for the non-classical symmetry transformations and Lie symmetry generators are obtaining using the computer algebra package SADE (symmetry analysis of differential equations), developed at our group. (author)

  20. On the use of the covariance matrix to fit correlated data

    Science.gov (United States)

    D'Agostini, G.

    1994-07-01

    Best fits to data which are affected by systematic uncertainties on the normalization factor have the tendency to produce curves lower than expected if the covariance matrix of the data points is used in the definition of the χ2. This paper shows that the effect is a direct consequence of the hypothesis used to estimate the empirical covariance matrix, namely the linearization on which the usual error propagation relies. The bias can become unacceptable if the normalization error is large, or a large number of data points are fitted.

  1. Analysis of RIA standard curve by log-logistic and cubic log-logit models

    International Nuclear Information System (INIS)

    Yamada, Hideo; Kuroda, Akira; Yatabe, Tami; Inaba, Taeko; Chiba, Kazuo

    1981-01-01

    In order to improve goodness-of-fit in RIA standard analysis, programs for computing log-logistic and cubic log-logit were written in BASIC using personal computer P-6060 (Olivetti). Iterative least square method of Taylor series was applied for non-linear estimation of logistic and log-logistic. Hear ''log-logistic'' represents Y = (a - d)/(1 + (log(X)/c)sup(b)) + d As weights either 1, 1/var(Y) or 1/σ 2 were used in logistic or log-logistic and either Y 2 (1 - Y) 2 , Y 2 (1 - Y) 2 /var(Y), or Y 2 (1 - Y) 2 /σ 2 were used in quadratic or cubic log-logit. The term var(Y) represents squares of pure error and σ 2 represents estimated variance calculated using a following equation log(σ 2 + 1) = log(A) + J log(y). As indicators for goodness-of-fit, MSL/S sub(e)sup(2), CMD% and WRV (see text) were used. Better regression was obtained in case of alpha-fetoprotein by log-logistic than by logistic. Cortisol standard curve was much better fitted with cubic log-logit than quadratic log-logit. Predicted precision of AFP standard curve was below 5% in log-logistic in stead of 8% in logistic analysis. Predicted precision obtained using cubic log-logit was about five times lower than that with quadratic log-logit. Importance of selecting good models in RIA data processing was stressed in conjunction with intrinsic precision of radioimmunoassay system indicated by predicted precision. (author)

  2. Radial artery pulse waveform analysis based on curve fitting using discrete Fourier series.

    Science.gov (United States)

    Jiang, Zhixing; Zhang, David; Lu, Guangming

    2018-04-19

    Radial artery pulse diagnosis has been playing an important role in traditional Chinese medicine (TCM). For its non-invasion and convenience, the pulse diagnosis has great significance in diseases analysis of modern medicine. The practitioners sense the pulse waveforms in patients' wrist to make diagnoses based on their non-objective personal experience. With the researches of pulse acquisition platforms and computerized analysis methods, the objective study on pulse diagnosis can help the TCM to keep up with the development of modern medicine. In this paper, we propose a new method to extract feature from pulse waveform based on discrete Fourier series (DFS). It regards the waveform as one kind of signal that consists of a series of sub-components represented by sine and cosine (SC) signals with different frequencies and amplitudes. After the pulse signals are collected and preprocessed, we fit the average waveform for each sample using discrete Fourier series by least squares. The feature vector is comprised by the coefficients of discrete Fourier series function. Compared with the fitting method using Gaussian mixture function, the fitting errors of proposed method are smaller, which indicate that our method can represent the original signal better. The classification performance of proposed feature is superior to the other features extracted from waveform, liking auto-regression model and Gaussian mixture model. The coefficients of optimized DFS function, who is used to fit the arterial pressure waveforms, can obtain better performance in modeling the waveforms and holds more potential information for distinguishing different psychological states. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Quarkonium level fitting with two-power potentials

    International Nuclear Information System (INIS)

    Joshi, G.C.; Wignall, J.W.G.

    1981-01-01

    An attempt has been made to fit psi and UPSILON energy levels and leptonic decay width ratios with a non-relativistic potential model using a potential of the form V(r) = Arsup(p) + Brsup(q) + C. It is found that reasonable fits to states below hadronic decay threshold can be obtained for values of the powers p and q anywhere along a family of curves in the (p,q) plane that smoothly join the Martin potential (p = 0, q = 0.1) to the potential forms with p approximately -1 suggested by QCD; for the latter case the best fit is obtained with q approximately 0.4 - 0.5

  4. Fitting the two-compartment model in DCE-MRI by linear inversion.

    Science.gov (United States)

    Flouri, Dimitra; Lesnic, Daniel; Sourbron, Steven P

    2016-09-01

    Model fitting of dynamic contrast-enhanced-magnetic resonance imaging-MRI data with nonlinear least squares (NLLS) methods is slow and may be biased by the choice of initial values. The aim of this study was to develop and evaluate a linear least squares (LLS) method to fit the two-compartment exchange and -filtration models. A second-order linear differential equation for the measured concentrations was derived where model parameters act as coefficients. Simulations of normal and pathological data were performed to determine calculation time, accuracy and precision under different noise levels and temporal resolutions. Performance of the LLS was evaluated by comparison against the NLLS. The LLS method is about 200 times faster, which reduces the calculation times for a 256 × 256 MR slice from 9 min to 3 s. For ideal data with low noise and high temporal resolution the LLS and NLLS were equally accurate and precise. The LLS was more accurate and precise than the NLLS at low temporal resolution, but less accurate at high noise levels. The data show that the LLS leads to a significant reduction in calculation times, and more reliable results at low noise levels. At higher noise levels the LLS becomes exceedingly inaccurate compared to the NLLS, but this may be improved using a suitable weighting strategy. Magn Reson Med 76:998-1006, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. Evaluation of fiber Bragg grating sensor interrogation using InGaAs linear detector arrays and Gaussian approximation on embedded hardware

    Science.gov (United States)

    Kumar, Saurabh; Amrutur, Bharadwaj; Asokan, Sundarrajan

    2018-02-01

    Fiber Bragg Grating (FBG) sensors have become popular for applications related to structural health monitoring, biomedical engineering, and robotics. However, for successful large scale adoption, FBG interrogation systems are as important as sensor characteristics. Apart from accuracy, the required number of FBG sensors per fiber and the distance between the device in which the sensors are used and the interrogation system also influence the selection of the interrogation technique. For several measurement devices developed for applications in biomedical engineering and robotics, only a few sensors per fiber are required and the device is close to the interrogation system. For these applications, interrogation systems based on InGaAs linear detector arrays provide a good choice. However, their resolution is dependent on the algorithms used for curve fitting. In this work, a detailed analysis of the choice of algorithm using the Gaussian approximation for the FBG spectrum and the number of pixels used for curve fitting on the errors is provided. The points where the maximum errors occur have been identified. All comparisons for wavelength shift detection have been made against another interrogation system based on the tunable swept laser. It has been shown that maximum errors occur when the wavelength shift is such that one new pixel is included for curve fitting. It has also been shown that an algorithm with lower computation cost compared to the more popular methods using iterative non-linear least squares estimation can be used without leading to the loss of accuracy. The algorithm has been implemented on embedded hardware, and a speed-up of approximately six times has been observed.

  6. Non-linear dynamic response of reactor containment

    International Nuclear Information System (INIS)

    Takemori, T.; Sotomura, K.; Yamada, M.

    1975-01-01

    A computer program was developed to investigate the elasto-plastic behavior of structures. This program is outlined and the problems of non-linear response of structures are discussed. Since the mode superposition method is only valid in an elastic analysis, the direct integration method was adopted here. As the sample model, an actual reactor containment (reactor building) of PWR plant was adopted. This building consists of three components, that is, a concrete internal structure, a steel containment vessel and a concrete outer shield wall. These components are resting on a rigid foundation mat. Therefore they were modeled with a lumped mass model respectively and coupled on the foundation. The following assumptions were employed to establish the properties of dynamic model: rocking and swaying springs of soil can be obtained from an elastic half-space solution, and the hysteretic characteristic of springs is bi-linear; springs connecting each mass are dealt with shear beams so that both bending and shear deflections can be included (Hysteretic characteristics of springs are linear, bi-linear and tri-linear for the internal structure, the containment vessel and the outer shield wall, respectively); generally, each damping coefficient is given for each mode in modal superposition (However, a damping matrix must be made directly in a non-linear response). Therefore the damping matrix of the model was made by combining the damping matrices [C] of each component obtained by Caughy's method and a damping value of the rocking and swaying by the half-space solution. On the basis of above conditions, the non-linear response of the structure was obtained and the difference between elastic and elasto-plastic analysis is presented

  7. Application of non-linear discretetime feedback regulators with assignable closed-loop dynamics

    Directory of Open Access Journals (Sweden)

    Dubljević Stevan

    2003-01-01

    Full Text Available In the present work the application of a new approach is demonstrated to a discrete-time state feedback regulator synthesis with feedback linearization and pole-placement for non-linear discrete-time systems. Under the simultaneous implementation of a non-linear coordinate transformation and a non-linear state feedback law computed through the solution of a system of non-linear functional equations, both the feedback linearization and pole-placement design objectives were accomplished. The non-linear state feedback regulator synthesis method was applied to a continuous stirred tank reactor (CSTR under non-isothermal operating conditions that exhibits steady-state multiplicity. The control objective was to regulate the reactor at the middle unstable steady state by manipulating the rate of input heat in the reactor. Simulation studies were performed to evaluate the performance of the proposed non-linear state feedback regulator, as it was shown a non-linear state feedback regulator clearly outperformed a standard linear one, especially in the presence of adverse disturbance under which linear regulation at the unstable steady state was not feasible.

  8. Modeling Non-Linear Material Properties in Composite Materials

    Science.gov (United States)

    2016-06-28

    Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions

  9. Non-linear realizations of supersymmetry with off-shell central charges

    International Nuclear Information System (INIS)

    Santos Filho, P.B.; Oliveira Rivelles, V. de.

    1985-01-01

    A new class of non-linear realizations of the extended supersymmetry algebra with central charges is presented. They were obtained by applying the technique of dimensional reduction by Legendre transformation to a non-linear realization without central charges in one higher dimension. As a result an off-shell central charge is obtained. The non-linear lagrangian is the same as is the case of vanishing central charge. On-shell the central charge vanishes so this non-linear realization differs from that without central charges only off-shell. It is worked in two dimensions and its extension to higher dimensions is discussed. (Author) [pt

  10. The algebra of non-local charges in non-linear sigma models

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.; Brunelli, J.C.; Zadra, A.

    1993-07-01

    We obtain the exact Dirac algebra obeyed by the conserved non-local charges in bosonic non-linear sigma models. Part of the computation is specialized for a symmetry group O(N). As it turns out the algebra corresponds to a cubic deformation of the Kac-Moody algebra. The non-linear terms are computed in closed form. In each Dirac bracket we only find highest order terms (as explained in the paper), defining a saturated algebra. We generalize the results for the presence of a Wess-Zumino term. The algebra is very similar to the previous one, containing now a calculable correction of order one unit lower. (author). 22 refs, 5 figs

  11. Sensitivity theory for general non-linear algebraic equations with constraints

    International Nuclear Information System (INIS)

    Oblow, E.M.

    1977-04-01

    Sensitivity theory has been developed to a high state of sophistication for applications involving solutions of the linear Boltzmann equation or approximations to it. The success of this theory in the field of radiation transport has prompted study of possible extensions of the method to more general systems of non-linear equations. Initial work in the U.S. and in Europe on the reactor fuel cycle shows that the sensitivity methodology works equally well for those non-linear problems studied to date. The general non-linear theory for algebraic equations is summarized and applied to a class of problems whose solutions are characterized by constrained extrema. Such equations form the basis of much work on energy systems modelling and the econometrics of power production and distribution. It is valuable to have a sensitivity theory available for these problem areas since it is difficult to repeatedly solve complex non-linear equations to find out the effects of alternative input assumptions or the uncertainties associated with predictions of system behavior. The sensitivity theory for a linear system of algebraic equations with constraints which can be solved using linear programming techniques is discussed. The role of the constraints in simplifying the problem so that sensitivity methodology can be applied is highlighted. The general non-linear method is summarized and applied to a non-linear programming problem in particular. Conclusions are drawn in about the applicability of the method for practical problems

  12. Unique solvability of a non-linear non-local boundary-value problem for systems of non-linear functional differential equations

    Czech Academy of Sciences Publication Activity Database

    Dilna, N.; Rontó, András

    2010-01-01

    Roč. 60, č. 3 (2010), s. 327-338 ISSN 0139-9918 R&D Projects: GA ČR(CZ) GA201/06/0254 Institutional research plan: CEZ:AV0Z10190503 Keywords : non-linear boundary value-problem * functional differential equation * non-local condition * unique solvability * differential inequality Subject RIV: BA - General Mathematics Impact factor: 0.316, year: 2010 http://link.springer.com/article/10.2478%2Fs12175-010-0015-9

  13. Neural Generalized Predictive Control of a non-linear Process

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1998-01-01

    The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability qu...... detail and discuss the implementation difficulties. The neural generalized predictive controller is tested on a pneumatic servo sys-tem.......The use of neural network in non-linear control is made difficult by the fact the stability and robustness is not guaranteed and that the implementation in real time is non-trivial. In this paper we introduce a predictive controller based on a neural network model which has promising stability...... qualities. The controller is a non-linear version of the well-known generalized predictive controller developed in linear control theory. It involves minimization of a cost function which in the present case has to be done numerically. Therefore, we develop the numerical algorithms necessary in substantial...

  14. Determination of the secondary energy from the electron beam with a flattening foil by computer. Percentage depth dose curve fitting using the specific higher order polynomial

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, H [Kyushu Univ., Beppu, Oita (Japan). Inst. of Balneotherapeutics

    1980-09-01

    A computer program written in FORTRAN is described for determining the secondary energy of the electron beam which passed through a flattening foil, using a time-sharing computer service. The procedure of this program is first to fit the specific higher order polynomial to the measured percentage depth dose curve. Next, the practical range is evaluated by the point of intersection R of the line tangent to the fitted curve at the inflection point P and the given dose E, as shown in Fig. 2. Finally, the secondary energy corresponded to the determined practical range can be obtained by the experimental equation (2.1) between the practial range R (g/cm/sup 2/) and the electron energy T (MeV). A graph for the fitted polynomial with the inflection points and the practical range can be plotted on a teletype machine by request of user. In order to estimate the shapes of percentage depth dose curves correspond to the electron beams of different energies, we tried to find some specific functional relationships between each coefficient of the fitted seventh-degree equation and the incident electron energies. However, exact relationships could not be obtained for irreguarity among these coefficients.

  15. Recursive and non-linear logistic regression: moving on from the original EuroSCORE and EuroSCORE II methodologies.

    Science.gov (United States)

    Poullis, Michael

    2014-11-01

    EuroSCORE II, despite improving on the original EuroSCORE system, has not solved all the calibration and predictability issues. Recursive, non-linear and mixed recursive and non-linear regression analysis were assessed with regard to sensitivity, specificity and predictability of the original EuroSCORE and EuroSCORE II systems. The original logistic EuroSCORE, EuroSCORE II and recursive, non-linear and mixed recursive and non-linear regression analyses of these risk models were assessed via receiver operator characteristic curves (ROC) and Hosmer-Lemeshow statistic analysis with regard to the accuracy of predicting in-hospital mortality. Analysis was performed for isolated coronary artery bypass grafts (CABGs) (n = 2913), aortic valve replacement (AVR) (n = 814), mitral valve surgery (n = 340), combined AVR and CABG (n = 517), aortic (n = 350), miscellaneous cases (n = 642), and combinations of the above cases (n = 5576). The original EuroSCORE had an ROC below 0.7 for isolated AVR and combined AVR and CABG. None of the methods described increased the ROC above 0.7. The EuroSCORE II risk model had an ROC below 0.7 for isolated AVR only. Recursive regression, non-linear regression, and mixed recursive and non-linear regression all increased the ROC above 0.7 for isolated AVR. The original EuroSCORE had a Hosmer-Lemeshow statistic that was above 0.05 for all patients and the subgroups analysed. All of the techniques markedly increased the Hosmer-Lemeshow statistic. The EuroSCORE II risk model had a Hosmer-Lemeshow statistic that was significant for all patients (P linear regression failed to improve on the original Hosmer-Lemeshow statistic. The mixed recursive and non-linear regression using the EuroSCORE II risk model was the only model that produced an ROC of 0.7 or above for all patients and procedures and had a Hosmer-Lemeshow statistic that was highly non-significant. The original EuroSCORE and the EuroSCORE II risk models do not have adequate ROC and Hosmer

  16. Families of bitangent planes of space curves and minimal non-fibration families

    KAUST Repository

    Lubbes, Niels

    2014-01-01

    . Such families are called minimal non-fibration families. Families of bitangent planes of cone curves correspond to minimal non-fibration families. The main motivation of this paper is to classify minimal non-fibration families. We present algorithms which

  17. Stochastic development regression on non-linear manifolds

    DEFF Research Database (Denmark)

    Kühnel, Line; Sommer, Stefan Horst

    2017-01-01

    We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion...... processes to the manifold. Defining the data distribution as the transition distribution of the mapped stochastic process, parameters of the model, the non-linear analogue of design matrix and intercept, are found via maximum likelihood. The model is intrinsically related to the geometry encoded...

  18. Non linear identification applied to PWR steam generators

    International Nuclear Information System (INIS)

    Poncet, B.

    1982-11-01

    For the precise industrial purpose of PWR nuclear power plant steam generator water level control, a natural method is developed where classical techniques seem not to be efficient enough. From this essentially non-linear practical problem, an input-output identification of dynamic systems is proposed. Through Homodynamic Systems, characterized by a regularity property which can be found in most industrial processes with balance set, state form realizations are built, which resolve the exact joining of local dynamic behaviors, in both discrete and continuous time cases, avoiding any load parameter. Specifically non-linear modelling analytical means, which have no influence on local joined behaviors, are also pointed out. Non-linear autoregressive realizations allow us to perform indirect adaptive control under constraint of an admissible given dynamic family [fr

  19. Distribution functions for the linear region of the S-N curve

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Christian; Waechter, Michael; Masendorf, Rainer; Esderts, Alfons [TU Clausthal, Clausthal-Zellerfeld (Germany). Inst. for Plant Engineering and Fatigue Analysis

    2017-08-01

    This study establishes a database containing the results of fatigue tests from the linear region of the S-N curve using sources from the literature. Each set of test results originates from testing metallic components on a single load level. Eighty-nine test series with sample sizes of 14 ≤ n ≤ 500 are included in the database, resulting in a sum of 6,086 individual test results. The test series are tested in terms of the type of distribution function (log-normal or 2-parameter Weibull) using the Shapiro-Wilk test, the Anderson-Darling test and probability plots. The majority of the tested individual test results follows a log-normal distribution.

  20. Non-linear Imaging using an Experimental Synthetic Aperture Real Time Ultrasound Scanner

    DEFF Research Database (Denmark)

    Rasmussen, Joachim; Du, Yigang; Jensen, Jørgen Arendt

    2011-01-01

    This paper presents the first non-linear B-mode image of a wire phantom using pulse inversion attained via an experimental synthetic aperture real-time ultrasound scanner (SARUS). The purpose of this study is to implement and validate non-linear imaging on SARUS for the further development of new...... non-linear techniques. This study presents non-linear and linear B-mode images attained via SARUS and an existing ultrasound system as well as a Field II simulation. The non-linear image shows an improved spatial resolution and lower full width half max and -20 dB resolution values compared to linear...

  1. Aeroelastic Limit-Cycle Oscillations resulting from Aerodynamic Non-Linearities

    NARCIS (Netherlands)

    van Rooij, A.C.L.M.

    2017-01-01

    Aerodynamic non-linearities, such as shock waves, boundary layer separation or boundary layer transition, may cause an amplitude limitation of the oscillations induced by the fluid flow around a structure. These aeroelastic limit-cycle oscillations (LCOs) resulting from aerodynamic non-linearities

  2. Statistical and biophysical aspects of survival curve

    International Nuclear Information System (INIS)

    Kellerer, A.M.

    1980-01-01

    Statistic fluctuation in a series of consequently taken survival curves of asynchronous cells of a hamster of the V79 line during X-ray irradiation, are considered. In each of the experiments fluctuations are close to those expected on the basis of the Poisson distribution. The fluctuation of cell sensitivity in different experiments of one series can reach 10%. The normalization of each experiment in mean values permits to obtain the ''idealized'' survival curve. The survival logarithm in this curve is proportional to the absorbed dose and its square only at low radiation doses. Such proportionality in V lab 79 cells in the late S-phase is observed at all doses. Using the microdosimetric approach, the distance where the interaction of radiolysis products or subinjury takes place to make the dependence of injury on the dose non-linear, is determined. In the case of interaction distances of 10-100 nm, the linear component is shown to become comparable in value with the linear injury component at doses of the order of several hundred rad only in the case, when the interaction distance is close to micrometre [ru

  3. Frequency-domain full-waveform inversion with non-linear descent directions

    Science.gov (United States)

    Geng, Yu; Pan, Wenyong; Innanen, Kristopher A.

    2018-05-01

    Full-waveform inversion (FWI) is a highly non-linear inverse problem, normally solved iteratively, with each iteration involving an update constructed through linear operations on the residuals. Incorporating a flexible degree of non-linearity within each update may have important consequences for convergence rates, determination of low model wavenumbers and discrimination of parameters. We examine one approach for doing so, wherein higher order scattering terms are included within the sensitivity kernel during the construction of the descent direction, adjusting it away from that of the standard Gauss-Newton approach. These scattering terms are naturally admitted when we construct the sensitivity kernel by varying not the current but the to-be-updated model at each iteration. Linear and/or non-linear inverse scattering methodologies allow these additional sensitivity contributions to be computed from the current data residuals within any given update. We show that in the presence of pre-critical reflection data, the error in a second-order non-linear update to a background of s0 is, in our scheme, proportional to at most (Δs/s0)3 in the actual parameter jump Δs causing the reflection. In contrast, the error in a standard Gauss-Newton FWI update is proportional to (Δs/s0)2. For numerical implementation of more complex cases, we introduce a non-linear frequency-domain scheme, with an inner and an outer loop. A perturbation is determined from the data residuals within the inner loop, and a descent direction based on the resulting non-linear sensitivity kernel is computed in the outer loop. We examine the response of this non-linear FWI using acoustic single-parameter synthetics derived from the Marmousi model. The inverted results vary depending on data frequency ranges and initial models, but we conclude that the non-linear FWI has the capability to generate high-resolution model estimates in both shallow and deep regions, and to converge rapidly, relative to a

  4. Non-linear optics of nano-scale pentacene thin film

    Science.gov (United States)

    Yahia, I. S.; Alfaify, S.; Jilani, Asim; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; Abutalib, M. M.; Al-Bassam, A.; El-Naggar, A. M.

    2016-07-01

    We have found the new ways to investigate the linear/non-linear optical properties of nanostructure pentacene thin film deposited by thermal evaporation technique. Pentacene is the key material in organic semiconductor technology. The existence of nano-structured thin film was confirmed by atomic force microscopy and X-ray diffraction. The wavelength-dependent transmittance and reflectance were calculated to observe the optical behavior of the pentacene thin film. It has been observed the anomalous dispersion at wavelength λ 800. The non-linear refractive index of the deposited films was investigated. The linear optical susceptibility of pentacene thin film was calculated, and we observed the non-linear optical susceptibility of pentacene thin film at about 6 × 10-13 esu. The advantage of this work is to use of spectroscopic method to calculate the liner and non-liner optical response of pentacene thin films rather than expensive Z-scan. The calculated optical behavior of the pentacene thin films could be used in the organic thin films base advanced optoelectronic devices such as telecommunications devices.

  5. Stress Induced in Periodontal Ligament under Orthodontic Loading (Part II): A Comparison of Linear Versus Non-Linear Fem Study.

    Science.gov (United States)

    Hemanth, M; Deoli, Shilpi; Raghuveer, H P; Rani, M S; Hegde, Chatura; Vedavathi, B

    2015-09-01

    Simulation of periodontal ligament (PDL) using non-linear finite element method (FEM) analysis gives better insight into understanding of the biology of tooth movement. The stresses in the PDL were evaluated for intrusion and lingual root torque using non-linear properties. A three-dimensional (3D) FEM model of the maxillary incisors was generated using Solidworks modeling software. Stresses in the PDL were evaluated for intrusive and lingual root torque movements by 3D FEM using ANSYS software. These stresses were compared with linear and non-linear analyses. For intrusive and lingual root torque movements, distribution of stress over the PDL was within the range of optimal stress value as proposed by Lee, but was exceeding the force system given by Proffit as optimum forces for orthodontic tooth movement with linear properties. When same force load was applied in non-linear analysis, stresses were more compared to linear analysis and were beyond the optimal stress range as proposed by Lee for both intrusive and lingual root torque. To get the same stress as linear analysis, iterations were done using non-linear properties and the force level was reduced. This shows that the force level required for non-linear analysis is lesser than that of linear analysis.

  6. GURU v2.0: An interactive Graphical User interface to fit rheometer curves in Han's model for rubber vulcanization

    Science.gov (United States)

    Milani, G.; Milani, F.

    A GUI software (GURU) for experimental data fitting of rheometer curves in Natural Rubber (NR) vulcanized with sulphur at different curing temperatures is presented. Experimental data are automatically loaded in GURU from an Excel spreadsheet coming from the output of the experimental machine (moving die rheometer). To fit the experimental data, the general reaction scheme proposed by Han and co-workers for NR vulcanized with sulphur is considered. From the simplified kinetic scheme adopted, a closed form solution can be found for the crosslink density, with the only limitation that the induction period is excluded from computations. Three kinetic constants must be determined in such a way to minimize the absolute error between normalized experimental data and numerical prediction. Usually, this result is achieved by means of standard least-squares data fitting. On the contrary, GURU works interactively by means of a Graphical User Interface (GUI) to minimize the error and allows an interactive calibration of the kinetic constants by means of sliders. A simple mouse click on the sliders allows the assignment of a value for each kinetic constant and a visual comparison between numerical and experimental curves. Users will thus find optimal values of the constants by means of a classic trial and error strategy. An experimental case of technical relevance is shown as benchmark.

  7. Non-linear Q-clouds around Kerr black holes

    International Nuclear Information System (INIS)

    Herdeiro, Carlos; Radu, Eugen; Rúnarsson, Helgi

    2014-01-01

    Q-balls are regular extended ‘objects’ that exist for some non-gravitating, self-interacting, scalar field theories with a global, continuous, internal symmetry, on Minkowski spacetime. Here, analogous objects are also shown to exist around rotating (Kerr) black holes, as non-linear bound states of a test scalar field. We dub such configurations Q-clouds. We focus on a complex massive scalar field with quartic plus hexic self-interactions. Without the self-interactions, linear clouds have been shown to exist, in synchronous rotation with the black hole horizon, along 1-dimensional subspaces – existence lines – of the Kerr 2-dimensional parameter space. They are zero modes of the superradiant instability. Non-linear Q-clouds, on the other hand, are also in synchronous rotation with the black hole horizon; but they exist on a 2-dimensional subspace, delimited by a minimal horizon angular velocity and by an appropriate existence line, wherein the non-linear terms become irrelevant and the Q-cloud reduces to a linear cloud. Thus, Q-clouds provide an example of scalar bound states around Kerr black holes which, generically, are not zero modes of the superradiant instability. We describe some physical properties of Q-clouds, whose backreaction leads to a new family of hairy black holes, continuously connected to the Kerr family

  8. Large-time asymptotic behaviour of solutions of non-linear Sobolev-type equations

    International Nuclear Information System (INIS)

    Kaikina, Elena I; Naumkin, Pavel I; Shishmarev, Il'ya A

    2009-01-01

    The large-time asymptotic behaviour of solutions of the Cauchy problem is investigated for a non-linear Sobolev-type equation with dissipation. For small initial data the approach taken is based on a detailed analysis of the Green's function of the linear problem and the use of the contraction mapping method. The case of large initial data is also closely considered. In the supercritical case the asymptotic formulae are quasi-linear. The asymptotic behaviour of solutions of a non-linear Sobolev-type equation with a critical non-linearity of the non-convective kind differs by a logarithmic correction term from the behaviour of solutions of the corresponding linear equation. For a critical convective non-linearity, as well as for a subcritical non-convective non-linearity it is proved that the leading term of the asymptotic expression for large times is a self-similar solution. For Sobolev equations with convective non-linearity the asymptotic behaviour of solutions in the subcritical case is the product of a rarefaction wave and a shock wave. Bibliography: 84 titles.

  9. Non-linearity aspects in the design of submarine pipelines

    NARCIS (Netherlands)

    Fernández, M.L.

    1981-01-01

    An arbitrary attempt has been made to classify and discuss some non-linearity aspects related to design, construction and operation of submarine pipelines. Non-linearities usually interrelate and take part of a comprehensive design, making difficult to quantify their individual influence or

  10. Non-Linear Dynamics of Saturn's Rings

    Science.gov (United States)

    Esposito, L. W.

    2016-12-01

    Non-linear processes can explain why Saturn's rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. Stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, that push the system across thresholds that lead to persistent states. Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit, with relative velocity ranging from nearly zero to a multiple of the orbit average. Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like `straw' that can explain the halo morphology and spectroscopy: Cyclic velocity changes cause perturbed regions to reach higher collision speeds at some orbital phases, which preferentially removes small regolith particles; surrounding particles diffuse back too slowly to erase the effect: this gives the halo morphology; this requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping explains both small and large particles at resonances. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating it as an asymmetric random walk with reflecting boundaries

  11. Inverse Boundary Value Problem for Non-linear Hyperbolic Partial Differential Equations

    OpenAIRE

    Nakamura, Gen; Vashisth, Manmohan

    2017-01-01

    In this article we are concerned with an inverse boundary value problem for a non-linear wave equation of divergence form with space dimension $n\\geq 3$. This non-linear wave equation has a trivial solution, i.e. zero solution. By linearizing this equation at the trivial solution, we have the usual linear isotropic wave equation with the speed $\\sqrt{\\gamma(x)}$ at each point $x$ in a given spacial domain. For any small solution $u=u(t,x)$ of this non-linear equation, we have the linear isotr...

  12. Mathematical problems in non-linear Physics: some results

    International Nuclear Information System (INIS)

    1979-01-01

    The basic results presented in this report are the following: 1) Characterization of the range and Kernel of the variational derivative. 2) Determination of general conservation laws in linear evolution equations, as well as bounds for the number of polynomial conserved densities in non-linear evolution equations in two independent variables of even order. 3) Construction of the most general evolution equation which has a given family of conserved densities. 4) Regularity conditions for the validity of the Lie invariance method. 5) A simple class of perturbations in non-linear wave equations. 6) Soliton solutions in generalized KdV equations. (author)

  13. Experimental investigation of gravity wave turbulence and of non-linear four wave interactions..

    Science.gov (United States)

    Berhanu, Michael

    2017-04-01

    Using the large basins of the Ecole Centrale de Nantes (France), non-linear interactions of gravity surface waves are experimentally investigated. In a first part we study statistical properties of a random wave field regarding the insights from the Wave Turbulence Theory. In particular freely decaying gravity wave turbulence is generated in a closed basin. No self-similar decay of the spectrum is observed, whereas its Fourier modes decay first as a time power law due to nonl-inear mechanisms, and then exponentially due to linear viscous damping. We estimate the linear, non-linear and dissipative time scales to test the time scale separation. By estimation of the mean energy flux from the initial decay of wave energy, the Kolmogorov-Zakharov constant of the weak turbulence theory is evaluated. In a second part, resonant interactions of oblique surface gravity waves in a large basin are studied. We generate two oblique waves crossing at an acute angle. These mother waves mutually interact and give birth to a resonant wave whose properties (growth rate, resonant response curve and phase locking) are fully characterized. All our experimental results are found in good quantitative agreement with four-wave interaction theory. L. Deike, B. Miquel, P. Gutiérrez, T. Jamin, B. Semin, M. Berhanu, E. Falcon and F. Bonnefoy, Role of the basin boundary conditions in gravity wave turbulence, Journal of Fluid Mechanics 781, 196 (2015) F. Bonnefoy, F. Haudin, G. Michel, B. Semin, T. Humbert, S. Aumaître, M. Berhanu and E. Falcon, Observation of resonant interactions among surface gravity waves, Journal of Fluid Mechanics (Rapids) 805, R3 (2016)

  14. KEPLER ECLIPSING BINARY STARS. III. CLASSIFICATION OF KEPLER ECLIPSING BINARY LIGHT CURVES WITH LOCALLY LINEAR EMBEDDING

    International Nuclear Information System (INIS)

    Matijevič, Gal; Prša, Andrej; Orosz, Jerome A.; Welsh, William F.; Bloemen, Steven; Barclay, Thomas

    2012-01-01

    We present an automated classification of 2165 Kepler eclipsing binary (EB) light curves that accompanied the second Kepler data release. The light curves are classified using locally linear embedding, a general nonlinear dimensionality reduction tool, into morphology types (detached, semi-detached, overcontact, ellipsoidal). The method, related to a more widely used principal component analysis, produces a lower-dimensional representation of the input data while preserving local geometry and, consequently, the similarity between neighboring data points. We use this property to reduce the dimensionality in a series of steps to a one-dimensional manifold and classify light curves with a single parameter that is a measure of 'detachedness' of the system. This fully automated classification correlates well with the manual determination of morphology from the data release, and also efficiently highlights any misclassified objects. Once a lower-dimensional projection space is defined, the classification of additional light curves runs in a negligible time and the method can therefore be used as a fully automated classifier in pipeline structures. The classifier forms a tier of the Kepler EB pipeline that pre-processes light curves for the artificial intelligence based parameter estimator.

  15. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  16. Identification of Non-Linear Structures using Recurrent Neural Networks

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning; Nielsen, Søren R. K.; Hansen, H. I.

    1995-01-01

    Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure.......Two different partially recurrent neural networks structured as Multi Layer Perceptrons (MLP) are investigated for time domain identification of a non-linear structure....

  17. The non-linear Perron-Frobenius theorem : Perturbations and aggregation

    NARCIS (Netherlands)

    Dietzenbacher, E

    The dominant eigenvalue and the corresponding eigenvector (or Perron vector) of a non-linear eigensystem are considered. We discuss the effects upon these, of perturbations and of aggregation of the underlying mapping. The results are applied to study the sensivity of the outputs in a non-linear

  18. Effect of chamber enclosure time on soil respiration flux: A comparison of linear and non-linear flux calculation methods

    DEFF Research Database (Denmark)

    Kandel, Tanka P; Lærke, Poul Erik; Elsgaard, Lars

    2016-01-01

    One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre-deployment flu......One of the shortcomings of closed chamber methods for soil respiration (SR) measurements is the decreased CO2 diffusion rate from soil to chamber headspace that may occur due to increased chamber CO2 concentrations. This feedback on diffusion rate may lead to underestimation of pre...... was placed on fixed collars, and CO2 concentration in the chamber headspace were recorded at 1-s intervals for 45 min. Fluxes were measured in different soil types (sandy, sandy loam and organic soils), and for various manipulations (tillage, rain and drought) and soil conditions (temperature and moisture......) to obtain a range of fluxes with different shapes of flux curves. The linear method provided more stable flux results during short enclosure times (few min) but underestimated initial fluxes by 15–300% after 45 min deployment time. Non-linear models reduced the underestimation as average underestimation...

  19. Non-linear effects in transition edge sensors for X-ray detection

    International Nuclear Information System (INIS)

    Bandler, S.R.; Figueroa-Feliciano, E.; Iyomoto, N.; Kelley, R.L.; Kilbourne, C.A.; Murphy, K.D.; Porter, F.S.; Saab, T.; Sadleir, J.

    2006-01-01

    In a microcalorimeter that uses a transition-edge sensor to detect energy depositions, the small signal energy resolution improves with decreasing heat capacity. This improvement remains true up to the point where non-linear and saturation effects become significant. This happens when the energy deposition causes a significant change in the sensor resistance. Not only does the signal size become a non-linear function of the energy deposited, but also the noise becomes non-stationary over the duration of the pulse. Algorithms have been developed that can calculate the optimal performance given this non-linear behavior that typically requires significant processing and calibration work-both of which are impractical for space missions. We have investigated the relative importance of the various non-linear effects, with the hope that a computationally simple transformation can overcome the largest of the non-linear and non-stationary effects, producing a highly linear 'gain' for pulse-height versus energy, and close to the best energy resolution at all energies when using a Wiener filter

  20. The regression-calibration method for fitting generalized linear models with additive measurement error

    OpenAIRE

    James W. Hardin; Henrik Schmeidiche; Raymond J. Carroll

    2003-01-01

    This paper discusses and illustrates the method of regression calibration. This is a straightforward technique for fitting models with additive measurement error. We present this discussion in terms of generalized linear models (GLMs) following the notation defined in Hardin and Carroll (2003). Discussion will include specified measurement error, measurement error estimated by replicate error-prone proxies, and measurement error estimated by instrumental variables. The discussion focuses on s...

  1. Social inequality, lifestyles and health - a non-linear canonical correlation analysis based on the approach of Pierre Bourdieu.

    Science.gov (United States)

    Grosse Frie, Kirstin; Janssen, Christian

    2009-01-01

    Based on the theoretical and empirical approach of Pierre Bourdieu, a multivariate non-linear method is introduced as an alternative way to analyse the complex relationships between social determinants and health. The analysis is based on face-to-face interviews with 695 randomly selected respondents aged 30 to 59. Variables regarding socio-economic status, life circumstances, lifestyles, health-related behaviour and health were chosen for the analysis. In order to determine whether the respondents can be differentiated and described based on these variables, a non-linear canonical correlation analysis (OVERALS) was performed. The results can be described on three dimensions; Eigenvalues add up to the fit of 1.444, which can be interpreted as approximately 50 % of explained variance. The three-dimensional space illustrates correspondences between variables and provides a framework for interpretation based on latent dimensions, which can be described by age, education, income and gender. Using non-linear canonical correlation analysis, health characteristics can be analysed in conjunction with socio-economic conditions and lifestyles. Based on Bourdieus theoretical approach, the complex correlations between these variables can be more substantially interpreted and presented.

  2. Preisach hysteresis model for non-linear 2D heat diffusion

    International Nuclear Information System (INIS)

    Jancskar, Ildiko; Ivanyi, Amalia

    2006-01-01

    This paper analyzes a non-linear heat diffusion process when the thermal diffusivity behaviour is a hysteretic function of the temperature. Modelling this temperature dependence, the discrete Preisach algorithm as general hysteresis model has been integrated into a non-linear multigrid solver. The hysteretic diffusion shows a heating-cooling asymmetry in character. The presented type of hysteresis speeds up the thermal processes in the modelled systems by a very interesting non-linear way

  3. Development of non-linear vibration analysis code for CANDU fuelling machine

    International Nuclear Information System (INIS)

    Murakami, Hajime; Hirai, Takeshi; Horikoshi, Kiyomi; Mizukoshi, Kaoru; Takenaka, Yasuo; Suzuki, Norio.

    1988-01-01

    This paper describes the development of a non-linear, dynamic analysis code for the CANDU 600 fuelling machine (F-M), which includes a number of non-linearities such as gap with or without Coulomb friction, special multi-linear spring connections, etc. The capabilities and features of the code and the mathematical treatment for the non-linearities are explained. The modeling and numerical methodology for the non-linearities employed in the code are verified experimentally. Finally, the simulation analyses for the full-scale F-M vibration testing are carried out, and the applicability of the code to such multi-degree of freedom systems as F-M is demonstrated. (author)

  4. Avaliação de modelos não-lineares e da relação do consumo voluntário de vacas primíparas e de bezerros com a curva de lactação de vacas Nelore Evaluation of non-linear models and the effects of primiparous cows and calves intake on the lactation curve of Nelore cows

    Directory of Open Access Journals (Sweden)

    Lara Toledo Henriques

    2011-06-01

    Full Text Available Procurou-se avaliar a precisão de cinco modelos não-lineares em descrever a forma da curva de produção de leite de vacas Nelore e o efeito do consumo voluntário (CV da vaca e do bezerro sobre a produção de leite (PL. Foram testados os modelos de Sikka, Nelder, Wood, Jenkins & Ferrell, e Jenkins & Ferrell com um parâmetro de ajustamento. Foram utilizadas 12 vacas primíparas com peso corporal médio de 359 kg (± 8 e seus respectivos bezerros. A produção de leite foi estimada pela pesagem do bezerro antes e após a mamada, do nascimento aos 180 dias de idade. As pesagens foram efetuadas duas vezes ao dia, semanalmente, após 6 horas de jejum de líquido e sólidos. Os modelos não-lineares de Sikka, Jenkins & Ferrell, Nelder e Wood não descreveram a curva de lactação apropriada devido ao excesso ou subestimação d o pico da produção de leite. O melhor ajustamento foi encontrado para o modelo de Jenkins & Ferrell com um parâmetro de ajustamento. O efeito do consumo voluntário da vaca e do bezerro, avaliado separadamente, não se correlacionou com a produção de leite. Entretanto, ao avaliar o consumo da vaca e do bezerro conjuntamente, foi encontrada uma correlação positiva e negativa com a produção de leite, respectivamente. A produção de leite está intimamente correlacionada com o consumo da vaca e do bezerro, e a capacidade de ingerir sólidos não lácteos reulta na redução da necessidade de leite da mãe.This research was carried out to evaluate five non-linear mathematical models to describe lactation curves of Nelore cows and effect of the cow and calf intake on milk yield. In this study we compared the models of Sikka (1950, Nelder (1966, Wood (1967, Jenkins & Ferrell (1984 and Jenkins & Ferrell (1984 with a fit parameter. Data of production were collected from 12 primiparous cows with a mean live weight of 359 kg (± 8 and its offspring. The milk production was estimated weighing the calf before and after

  5. Linear and non-linear stability analysis for finite difference discretizations of high-order Boussinesq equations

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Bingham, Harry B.; Madsen, Per A.

    2004-01-01

    of rotational and irrotational formulations in two horizontal dimensions provides evidence that the irrotational formulation has significantly better stability properties when the deep-water non-linearity is high, particularly on refined grids. Computation of matrix pseudospectra shows that the system is only...... insight into the numerical behaviour of this rather complicated system of non-linear PDEs....

  6. Theoretical derivation of anodizing current and comparison between fitted curves and measured curves under different conditions

    Science.gov (United States)

    Chong, Bin; Yu, Dongliang; Jin, Rong; Wang, Yang; Li, Dongdong; Song, Ye; Gao, Mingqi; Zhu, Xufei

    2015-04-01

    Anodic TiO2 nanotubes have been studied extensively for many years. However, the growth kinetics still remains unclear. The systematic study of the current transient under constant anodizing voltage has not been mentioned in the original literature. Here, a derivation and its corresponding theoretical formula are proposed to overcome this challenge. In this paper, the theoretical expressions for the time dependent ionic current and electronic current are derived to explore the anodizing process of Ti. The anodizing current-time curves under different anodizing voltages and different temperatures are experimentally investigated in the anodization of Ti. Furthermore, the quantitative relationship between the thickness of the barrier layer and anodizing time, and the relationships between the ionic/electronic current and temperatures are proposed in this paper. All of the current-transient plots can be fitted consistently by the proposed theoretical expressions. Additionally, it is the first time that the coefficient A of the exponential relationship (ionic current jion = A exp(BE)) has been determined under various temperatures and voltages. And the results indicate that as temperature and voltage increase, ionic current and electronic current both increase. The temperature has a larger effect on electronic current than ionic current. These results can promote the research of kinetics from a qualitative to quantitative level.

  7. Theoretical derivation of anodizing current and comparison between fitted curves and measured curves under different conditions.

    Science.gov (United States)

    Chong, Bin; Yu, Dongliang; Jin, Rong; Wang, Yang; Li, Dongdong; Song, Ye; Gao, Mingqi; Zhu, Xufei

    2015-04-10

    Anodic TiO2 nanotubes have been studied extensively for many years. However, the growth kinetics still remains unclear. The systematic study of the current transient under constant anodizing voltage has not been mentioned in the original literature. Here, a derivation and its corresponding theoretical formula are proposed to overcome this challenge. In this paper, the theoretical expressions for the time dependent ionic current and electronic current are derived to explore the anodizing process of Ti. The anodizing current-time curves under different anodizing voltages and different temperatures are experimentally investigated in the anodization of Ti. Furthermore, the quantitative relationship between the thickness of the barrier layer and anodizing time, and the relationships between the ionic/electronic current and temperatures are proposed in this paper. All of the current-transient plots can be fitted consistently by the proposed theoretical expressions. Additionally, it is the first time that the coefficient A of the exponential relationship (ionic current j(ion) = A exp(BE)) has been determined under various temperatures and voltages. And the results indicate that as temperature and voltage increase, ionic current and electronic current both increase. The temperature has a larger effect on electronic current than ionic current. These results can promote the research of kinetics from a qualitative to quantitative level.

  8. Linear non-threshold (LNT) radiation hazards model and its evaluation

    International Nuclear Information System (INIS)

    Min Rui

    2011-01-01

    In order to introduce linear non-threshold (LNT) model used in study on the dose effect of radiation hazards and to evaluate its application, the analysis of comprehensive literatures was made. The results show that LNT model is more suitable to describe the biological effects in accuracy for high dose than that for low dose. Repairable-conditionally repairable model of cell radiation effects can be well taken into account on cell survival curve in the all conditions of high, medium and low absorbed dose range. There are still many uncertainties in assessment model of effective dose of internal radiation based on the LNT assumptions and individual mean organ equivalent, and it is necessary to establish gender-specific voxel human model, taking gender differences into account. From above, the advantages and disadvantages of various models coexist. Before the setting of the new theory and new model, LNT model is still the most scientific attitude. (author)

  9. The role of dendritic non-linearities in single neuron computation

    Directory of Open Access Journals (Sweden)

    Boris Gutkin

    2014-05-01

    Full Text Available Experiment has demonstrated that summation of excitatory post-synaptic protientials (EPSPs in dendrites is non-linear. The sum of multiple EPSPs can be larger than their arithmetic sum, a superlinear summation due to the opening of voltage-gated channels and similar to somatic spiking. The so-called dendritic spike. The sum of multiple of EPSPs can also be smaller than their arithmetic sum, because the synaptic current necessarily saturates at some point. While these observations are well-explained by biophysical models the impact of dendritic spikes on computation remains a matter of debate. One reason is that dendritic spikes may fail to make the neuron spike; similarly, dendritic saturations are sometime presented as a glitch which should be corrected by dendritic spikes. We will provide solid arguments against this claim and show that dendritic saturations as well as dendritic spikes enhance single neuron computation, even when they cannot directly make the neuron fire. To explore the computational impact of dendritic spikes and saturations, we are using a binary neuron model in conjunction with Boolean algebra. We demonstrate using these tools that a single dendritic non-linearity, either spiking or saturating, combined with somatic non-linearity, enables a neuron to compute linearly non-separable Boolean functions (lnBfs. These functions are impossible to compute when summation is linear and the exclusive OR is a famous example of lnBfs. Importantly, the implementation of these functions does not require the dendritic non-linearity to make the neuron spike. Next, We show that reduced and realistic biophysical models of the neuron are capable of computing lnBfs. Within these models and contrary to the binary model, the dendritic and somatic non-linearity are tightly coupled. Yet we show that these neuron models are capable of linearly non-separable computations.

  10. Implementation of neural network based non-linear predictive control

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Nørgård, Peter Magnus; Ravn, Ole

    1999-01-01

    This paper describes a control method for non-linear systems based on generalized predictive control. Generalized predictive control (GPC) was developed to control linear systems, including open-loop unstable and non-minimum phase systems, but has also been proposed to be extended for the control...... of non-linear systems. GPC is model based and in this paper we propose the use of a neural network for the modeling of the system. Based on the neural network model, a controller with extended control horizon is developed and the implementation issues are discussed, with particular emphasis...... on an efficient quasi-Newton algorithm. The performance is demonstrated on a pneumatic servo system....

  11. Linear combination of forecasts with numerical adjustment via MINIMAX non-linear programming

    Directory of Open Access Journals (Sweden)

    Jairo Marlon Corrêa

    2016-03-01

    Full Text Available This paper proposes a linear combination of forecasts obtained from three forecasting methods (namely, ARIMA, Exponential Smoothing and Artificial Neural Networks whose adaptive weights are determined via a multi-objective non-linear programming problem, which seeks to minimize, simultaneously, the statistics: MAE, MAPE and MSE. The results achieved by the proposed combination are compared with the traditional approach of linear combinations of forecasts, where the optimum adaptive weights are determined only by minimizing the MSE; with the combination method by arithmetic mean; and with individual methods

  12. Non-minimal fields of the pure spinor string in general curved backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Chandia, Osvaldo [Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile); Vallilo, Brenno Carlini [Departamento de Ciencias Físicas, Facultad de Ciencias Exactas, Universidad Andrés Bello,República 220, Santiago (Chile)

    2015-02-16

    We study the coupling of the non-minimal ghost fields of the pure spinor superstring in general curved backgrounds. The coupling is found solving the consistency relations from the nilpotency of the non-minimal BRST charge.

  13. Non linear characterisation of optical components of a high power laser chain

    International Nuclear Information System (INIS)

    Santran, Stephane

    2000-01-01

    This work concerns the realisation of non linear properties measurement prototypes in glasses in the near infrared and in the visible range. The various devices are time resolved colinear pump probe experiments in which the non linear susceptibility is deduced by the probe beam intensity variations induced by the pump probe coupled in the material. The sensitivity of these experiments allows us to observe unexpected variations, greater than 30%, of several fused silica non linear indexes. As well, this allow us to analyse the origin of the promising oxide glasses non linearity for all optical applications and to understand an d measure non linear processes in the two photons photodiodes. Finally, an original structure for the non linear index measurement in non degenerated configuration by a probe pulse phase measurement approach with a Sagnac interferometer is demonstrated and analysed. (author) [fr

  14. Modeling of Volatility with Non-linear Time Series Model

    OpenAIRE

    Kim Song Yon; Kim Mun Chol

    2013-01-01

    In this paper, non-linear time series models are used to describe volatility in financial time series data. To describe volatility, two of the non-linear time series are combined into form TAR (Threshold Auto-Regressive Model) with AARCH (Asymmetric Auto-Regressive Conditional Heteroskedasticity) error term and its parameter estimation is studied.

  15. GERMINATOR: a software package for high-throughput scoring and curve fitting of Arabidopsis seed germination.

    Science.gov (United States)

    Joosen, Ronny V L; Kodde, Jan; Willems, Leo A J; Ligterink, Wilco; van der Plas, Linus H W; Hilhorst, Henk W M

    2010-04-01

    Over the past few decades seed physiology research has contributed to many important scientific discoveries and has provided valuable tools for the production of high quality seeds. An important instrument for this type of research is the accurate quantification of germination; however gathering cumulative germination data is a very laborious task that is often prohibitive to the execution of large experiments. In this paper we present the germinator package: a simple, highly cost-efficient and flexible procedure for high-throughput automatic scoring and evaluation of germination that can be implemented without the use of complex robotics. The germinator package contains three modules: (i) design of experimental setup with various options to replicate and randomize samples; (ii) automatic scoring of germination based on the color contrast between the protruding radicle and seed coat on a single image; and (iii) curve fitting of cumulative germination data and the extraction, recap and visualization of the various germination parameters. The curve-fitting module enables analysis of general cumulative germination data and can be used for all plant species. We show that the automatic scoring system works for Arabidopsis thaliana and Brassica spp. seeds, but is likely to be applicable to other species, as well. In this paper we show the accuracy, reproducibility and flexibility of the germinator package. We have successfully applied it to evaluate natural variation for salt tolerance in a large population of recombinant inbred lines and were able to identify several quantitative trait loci for salt tolerance. Germinator is a low-cost package that allows the monitoring of several thousands of germination tests, several times a day by a single person.

  16. Non-linear imaging condition to image fractures as non-welded interfaces

    NARCIS (Netherlands)

    Minato, S.; Ghose, R.

    2014-01-01

    Hydraulic properties of a fractured reservoir are often controlled by large fractures. In order to seismically detect and characterize them, a high-resolution imaging method is necessary. We apply a non-linear imaging condition to image fractures, considered as non-welded interfaces. We derive the

  17. Using a Non-Fit Message Helps to De-Intensify Negative Reactions to Tough Advice

    Science.gov (United States)

    Fridman, Ilona; Scherr, Karen; Glare, Paul; Higgins, E. Tory

    2017-01-01

    Sometimes physicians need to provide patients with potentially upsetting advice. For example, physicians may recommend hospice for a terminally ill patient because it best meets their needs, but the patient and their family dislike this advised option. We explore whether regulatory non-fit could be used to improve these types of situations. Across five studies in which participants imagined receiving upsetting advice from a physician, we demonstrate that regulatory non-fit between the form of the physician’s advice (emphasizing gains vs. avoiding losses) and the participants’ motivational orientation (promotion vs. prevention) improves participants’ evaluation of an initially disliked option. Regulatory non-fit de-intensifies participants’ initial attitudes by making them less confident in their initial judgments and motivating them to think more thoroughly about the arguments presented. Furthermore, consistent with previous research on regulatory fit, we showed that the mechanism of regulatory non-fit differs as a function of participants’ cognitive involvement in the evaluation of the option. PMID:27341845

  18. MHD convective flow of magnetite-Fe3O4 nanoparticles by curved stretching sheet

    Directory of Open Access Journals (Sweden)

    Tasawar Hayat

    Full Text Available Present work is devoted to convective flow of ferrofluid due to non linear stretching curved sheet. Electrically conducting fluid is considered in the presence of uniform magnetic field. Nanofluid comprises water and magnetite-Fe3O4 as nanoparticles. Thermal radiation and heat generation/absorption are explained. Homotopy concept is utilized for the development of solutions. Highly nonlinear partial differential systems are reduced into the nonlinear ordinary differential system. Impact of non-dimensional radius of curvature and power law index on the physical quantities like fluid pressure, velocity and temperature field are examined. Computations for surface shear stress and heat transfer rate also analyzed. Keywords: MHD nanofluid, Thermal radiation, Porous medium, Convective boundary conditions, Non-linear curved stretching sheet

  19. Material component to non-linear relation between sediment yield and drainage network development: an flume experimental study

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper examines the experimental study on influence ofmaterial component to non linear relation between sediment yield and drainage network development completed in the Lab. The area of flume drainage system is 81.2 m2, the longitudinal gradient and cross section slope are from 0.0348 to 0.0775 and from 0.0115 to 0.038, respectively. Different model materials with a medium diameter of 0.021 mm, 0.076 mm and 0.066 mm cover three experiments each. An artificial rainfall equipment is a sprinkler-system composed of 7 downward nozzles, distributed by hexagon type and a given rainfall intensity is 35.56 mm/hr.cm2. Three experiments are designed by process-response principle at the beginning the ψ shaped small network is dug in the flume. Running time spans are 720 m, 1440 minutes and 540 minutes for Runs Ⅰ, Ⅳ and Ⅵ, respectively. Three experiments show that the sediment yield processes are characterized by delaying with a vibration. During network development the energy of a drainage system is dissipated by two ways, of which one is increasing the number of channels (rill and gully), and the other one is enlarging the channel length. The fractal dimension of a drainage network is exactly an index of energy dissipation of a drainage morphological system. Change of this index with time is an unsymmetrical concave curve. Comparison of three experiments explains that the vibration and the delaying ratio of sediment yield processes increase with material coarsening, while the number of channel decreases. The length of channel enlarges with material fining. There exists non-linear relationship between fractal dimension and sediment yield with an unsymmetrical hyperbolic curve. The bsolute value of delaying ratio of the curve reduces with time unning and material fining. It is characterized by substitution of situation to time.

  20. Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods.

    Science.gov (United States)

    Ho, Yuh-Shan

    2006-01-01

    A comparison was made of the linear least-squares method and a trial-and-error non-linear method of the widely used pseudo-second-order kinetic model for the sorption of cadmium onto ground-up tree fern. Four pseudo-second-order kinetic linear equations are discussed. Kinetic parameters obtained from the four kinetic linear equations using the linear method differed but they were the same when using the non-linear method. A type 1 pseudo-second-order linear kinetic model has the highest coefficient of determination. Results show that the non-linear method may be a better way to obtain the desired parameters.

  1. Linear and non-linear calculations of the hose instability in the ion-focused regime

    International Nuclear Information System (INIS)

    Buchanan, H.L.

    1982-01-01

    A simple model is adopted to study the hose instability of an intense relativistic electron beam in a partially neutralized, low density ion channel (ion focused regime). Equations of motion for the beam and the channel are derived and linearized to obtain an approximate dispersion relation. The non-linear equations of motion are then solved numerically and the results compared to linearized data

  2. Electron non-linearities in Langmuir waves with application to beat-wave experiments

    International Nuclear Information System (INIS)

    Bell, A.R.; Gibbon, P.

    1988-01-01

    Non-linear Langmuir waves are examined in the context of the beat-wave accelerator. With a background of immobile ions the waves in one dimension are subject to the relativistic non-linearity of Rosenbluth, M.N. and Liu, C.S., Phys. Rev. Lett., 1972, 29, 701. In two or three dimensions, other electron non-linearities occur which involve electric and magnetic fields. The quasi-linear equations for these non-linearities are developed and solved numerically in a geometry representative of laser-driven beat waves. (author)

  3. Pattern formation due to non-linear vortex diffusion

    Science.gov (United States)

    Wijngaarden, Rinke J.; Surdeanu, R.; Huijbregtse, J. M.; Rector, J. H.; Dam, B.; Einfeld, J.; Wördenweber, R.; Griessen, R.

    Penetration of magnetic flux in YBa 2Cu 3O 7 superconducting thin films in an external magnetic field is visualized using a magneto-optic technique. A variety of flux patterns due to non-linear vortex diffusion is observed: (1) Roughening of the flux front with scaling exponents identical to those observed in burning paper including two distinct regimes where respectively spatial disorder and temporal disorder dominate. In the latter regime Kardar-Parisi-Zhang behavior is found. (2) Fractal penetration of flux with Hausdorff dimension depending on the critical current anisotropy. (3) Penetration as ‘flux-rivers’. (4) The occurrence of commensurate and incommensurate channels in films with anti-dots as predicted in numerical simulations by Reichhardt, Olson and Nori. It is shown that most of the observed behavior is related to the non-linear diffusion of vortices by comparison with simulations of the non-linear diffusion equation appropriate for vortices.

  4. A Monte Carlo Study of the Effect of Item Characteristic Curve Estimation on the Accuracy of Three Person-Fit Statistics

    Science.gov (United States)

    St-Onge, Christina; Valois, Pierre; Abdous, Belkacem; Germain, Stephane

    2009-01-01

    To date, there have been no studies comparing parametric and nonparametric Item Characteristic Curve (ICC) estimation methods on the effectiveness of Person-Fit Statistics (PFS). The primary aim of this study was to determine if the use of ICCs estimated by nonparametric methods would increase the accuracy of item response theory-based PFS for…

  5. THERMODYNAMIC STUDY OF CHARGE-TRANSFER COMPLEX ...

    African Journals Online (AJOL)

    a

    The formation constant of the resulting complex was evaluated from the absorbance-mole ratio data by using a non-linear least square curve-fitting program (curve-fitting toolbox in. MATLAB). The program is based on the iteration adjustment of calculated absorbances to the observed values. The observed absorbance of ...

  6. GURU v2.0: An interactive Graphical User interface to fit rheometer curves in Han’s model for rubber vulcanization

    Directory of Open Access Journals (Sweden)

    G. Milani

    2016-01-01

    Full Text Available A GUI software (GURU for experimental data fitting of rheometer curves in Natural Rubber (NR vulcanized with sulphur at different curing temperatures is presented. Experimental data are automatically loaded in GURU from an Excel spreadsheet coming from the output of the experimental machine (moving die rheometer. To fit the experimental data, the general reaction scheme proposed by Han and co-workers for NR vulcanized with sulphur is considered. From the simplified kinetic scheme adopted, a closed form solution can be found for the crosslink density, with the only limitation that the induction period is excluded from computations. Three kinetic constants must be determined in such a way to minimize the absolute error between normalized experimental data and numerical prediction. Usually, this result is achieved by means of standard least-squares data fitting. On the contrary, GURU works interactively by means of a Graphical User Interface (GUI to minimize the error and allows an interactive calibration of the kinetic constants by means of sliders. A simple mouse click on the sliders allows the assignment of a value for each kinetic constant and a visual comparison between numerical and experimental curves. Users will thus find optimal values of the constants by means of a classic trial and error strategy. An experimental case of technical relevance is shown as benchmark.

  7. Linear Titration Curves of Acids and Bases.

    Science.gov (United States)

    Joseph, N R

    1959-05-29

    The Henderson-Hasselbalch equation, by a simple transformation, becomes pH - pK = pA - pB, where pA and pB are the negative logarithms of acid and base concentrations. Sigmoid titration curves then reduce to straight lines; titration curves of polyelectrolytes, to families of straight lines. The method is applied to the titration of the dipeptide glycyl aminotricarballylic acid, with four titrable groups. Results are expressed as Cartesian and d'Ocagne nomograms. The latter is of a general form applicable to polyelectrolytes of any degree of complexity.

  8. On the nucleon-nucleon potential obtained from non-linear coupling

    International Nuclear Information System (INIS)

    El Ghabaty, S.S.

    1975-07-01

    The static limit of a pseudoscalar symmetric meson theory of nuclear forces is examined. The Born-Oppenheimer potential is determined for the case of two very heavy nucleons exchanging pseudoscalar isovector pions with non-linear coupling. It is found that the non-linear terms induced by the γ 5 coupling are cancelled by the additional pion-nucleon coupling of the non-linear sigma model. The nucleon-nucleon potential thus obtained is the same as the Yukava potential except for strength at different separations between the two nucleons

  9. A chord error conforming tool path B-spline fitting method for NC machining based on energy minimization and LSPIA

    OpenAIRE

    He, Shanshan; Ou, Daojiang; Yan, Changya; Lee, Chen-Han

    2015-01-01

    Piecewise linear (G01-based) tool paths generated by CAM systems lack G1 and G2 continuity. The discontinuity causes vibration and unnecessary hesitation during machining. To ensure efficient high-speed machining, a method to improve the continuity of the tool paths is required, such as B-spline fitting that approximates G01 paths with B-spline curves. Conventional B-spline fitting approaches cannot be directly used for tool path B-spline fitting, because they have shortages such as numerical...

  10. Analysis of fractional non-linear diffusion behaviors based on Adomian polynomials

    Directory of Open Access Journals (Sweden)

    Wu Guo-Cheng

    2017-01-01

    Full Text Available A time-fractional non-linear diffusion equation of two orders is considered to investigate strong non-linearity through porous media. An equivalent integral equation is established and Adomian polynomials are adopted to linearize non-linear terms. With the Taylor expansion of fractional order, recurrence formulae are proposed and novel numerical solutions are obtained to depict the diffusion behaviors more accurately. The result shows that the method is suitable for numerical simulation of the fractional diffusion equations of multi-orders.

  11. On the stability of non-linear systems

    International Nuclear Information System (INIS)

    Guelman, M.

    1968-09-01

    A study is made of the absolute stability of nonlinear systems, using Liapounov's second method and taking into account the results obtained from V.M. Popov's work. The results already established are first presented, in particular concerning the frequency domain criterions for absolute stability of automatic control systems containing one single non linearity. The results have been extended to show the existence of a limiting parabola. New use is then made of the methods studied for deriving absolute stability criterions for a system containing a different type of non linearity. Finally, the results obtained are considered from the point of view of Aizerman's conjecture. (author) [fr

  12. Some aspects of non-linear semi-groups

    International Nuclear Information System (INIS)

    Plant, A.T.

    1976-01-01

    Some simpler theorems in the theory of non-linear semi-groups of non-reflexive Banach spaces are proved, with the intention to introduce the reader to this active field of research. Flow invariance, in particular for Lipschitz generators, and contraction semi-groups are discussed in some detail. (author)

  13. Non-linear simulations of ELMs in ASDEX upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Lessig, Alexander; Hoelzl, Matthias; Orain, Francois; Guenter, Sibylle [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstrasse 2, 85748 Garching (Germany); Becoulet, Marina; Huysmans, Guido [CEA-IRFM, Cadarache, 13108 Saint-Paul-Lez-Durance (France); Collaboration: the ASDEX Upgrade Team

    2016-07-01

    Large edge localized modes (ELMs) are a severe concern for the operation of future tokamak devices like ITER or DEMO due to the high transient heat loads induced on divertor targets and wall structures. It is therefore important to study ELMs both theoretically and experimentally in order to obtain a comprehensive understanding of the underlying mechanisms which is necessary for the prediction of ELM properties and the design of ELM mitigation systems. Using the non-linear MHD code JOREK, we have performed first simulations of full ELM crashes in ASDEX Upgrade, taking into account a large number of toroidal Fourier harmonics. The evolution of the toroidal mode spectrum has been investigated. In particular, we confirm the previously observed non-linear drive of linearly sub-dominant low-n components in the early non-linear phase of the ELM crash. Preliminary comparisons of the simulations with experimental observations regarding heat and particle losses, pedestal evolution and heat deposition patterns are shown. On the long run we aim at code validation as well as an improved understanding of the ELM dynamics and possibly a better characterization of different ELM types.

  14. Non-local quasi-linear parabolic equations

    International Nuclear Information System (INIS)

    Amann, H

    2005-01-01

    This is a survey of the most common approaches to quasi-linear parabolic evolution equations, a discussion of their advantages and drawbacks, and a presentation of an entirely new approach based on maximal L p regularity. The general results here apply, above all, to parabolic initial-boundary value problems that are non-local in time. This is illustrated by indicating their relevance for quasi-linear parabolic equations with memory and, in particular, for time-regularized versions of the Perona-Malik equation of image processing

  15. Extrinsic contribution to the non-linearity in a PZT disc

    Energy Technology Data Exchange (ETDEWEB)

    Perez, Rafel [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Albareda, Alfons [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Garcia, Jose E [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Tiana, Jordi [Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Jordi Girona 1-3, Campus Nord, 08034 Barcelona (Spain); Ringgaard, Erling [Ferroperm Piezoceramics A/S, Hejreskovvej 18, DK-3490 Kvistgaard (Denmark); Wolny, Wanda W [Ferroperm Piezoceramics A/S, Hejreskovvej 18, DK-3490 Kvistgaard (Denmark)

    2004-10-07

    Non-linear increases in elastic, piezoelectric (direct and reverse) and dielectric coefficients have been measured under a high electrical field or under high mechanical stress. The permittivity and reverse piezoelectric coefficient can be measured by applying a high voltage at a low frequency, while the elastic compliance and direct piezoelectric coefficient can be measured at the first radial resonance frequency in order to apply a high stress. The non-linear behaviour has been analysed at the radial resonance of a disc. In all the materials tested, the results show that there is a close relation between the non-linear increments of the different coefficients. An empirical model has been proposed in order to describe and understand these relations. It is assumed that either the strain or the electrical displacement is produced by intrinsic and extrinsic processes, but only the latter, which consist mainly in the motion of domain walls, contribute to the non-linearity. The model enables us to find the domain wall contribution to elastic, piezoelectric and dielectric non-linearities, and allows us to compare the amplitudes of the fields and stresses that produce the same displacement of domain walls.

  16. Non-linear effects in the Snoek relaxation of Nb-O

    International Nuclear Information System (INIS)

    Hermida, E.B.; Povolo, F.

    1996-01-01

    Internal friction peaks measured as a function of temperature or frequency have been associated to non-linear processes only after studying how the amplitude of the applied stress affects the relaxation process. Here it is demonstrated that the partial derivative of the internal friction with respect to the frequency at constant temperature is a useful tool to determine that non-linear effects are involved. This analysis applied to actual data of the Snoek relaxation in Nb-O, reveals that at high interstitial contents non-linear effects appear. (orig.)

  17. Non-linear character of dose dependences of chromosome aberration frequency in radiation-damaged root

    International Nuclear Information System (INIS)

    Kravets, E.A.; Berezhnaya, V.V.; Sakada, V.I.; Rashidov, N.M.; Grodzinskij, D.M.; Kravets, E.A.; Berezhnaya, V.V.; Sakada, V.I.; Rashidov, N.M.; Grodzinskij, D.M.

    2012-01-01

    The dose dependences of the aberrant anaphases in the root meristem in 48 hours after the irradiation have non-linear character and a plateau in the region about 6-8 Gy. The plateau indicates the activation of recovery processes. In the plateau range, the level of damages for this genotype is 33% for aberrant anaphases (FAA), 2.3 aberrations per aberrant anaphase (A/AC), and 0.74 aberrations for the total number of anaphases. At 10 Gy, the dose curve forms the exponential region caused by the involvement of the large number of new cells with unrepaired damages in the mutation process. The increase of A/AC to 1.1 indicate the ''criticality'' of the meristem radiation damage.

  18. Structure Learning in Stochastic Non-linear Dynamical Systems

    Science.gov (United States)

    Morris, R. D.; Smelyanskiy, V. N.; Luchinsky, D. G.

    2005-12-01

    A great many systems can be modeled in the non-linear dynamical systems framework, as x˙ = f(x) + ξ(t), where f(x) is the potential function for the system, and ξ(t) is the driving noise. Modeling the potential using a set of basis functions, we derive the posterior for the basis coefficients. A more challenging problem is to determine the set of basis functions that are required to model a particular system. We show that using the Bayesian Information Criteria (BIC) to rank models, and the beam search technique, that we can accurately determine the structure of simple non-linear dynamical system models, and the structure of the coupling between non-linear dynamical systems where the individual systems are known. This last case has important ecological applications, for example in predator-prey systems, where the very structure of the coupling between predator-prey pairs can have great ecological significance.

  19. A simple transformation for converting CW-OSL curves to LM-OSL curves

    DEFF Research Database (Denmark)

    Bulur, E.

    2000-01-01

    A simple mathematical transformation is introduced to convert from OSL decay curves obtained in the conventional way to those obtained using a linear modulation technique based on a linear increase of the stimulation light intensity during OSL measurement. The validity of the transformation...... was tested by the IR-stimulated luminescence curves from feldspars, recorded using both the conventional and the linear modulation techniques. The transformation was further applied to green-light-stimulated OSL from K and Na feldspars. (C) 2000 Elsevier Science Ltd. All rights reserved....

  20. Structural Dynamic Analyses And Test Predictions For Spacecraft Structures With Non-Linearities

    Science.gov (United States)

    Vergniaud, Jean-Baptiste; Soula, Laurent; Newerla, Alfred

    2012-07-01

    The overall objective of the mechanical development and verification process is to ensure that the spacecraft structure is able to sustain the mechanical environments encountered during launch. In general the spacecraft structures are a-priori assumed to behave linear, i.e. the responses to a static load or dynamic excitation, respectively, will increase or decrease proportionally to the amplitude of the load or excitation induced. However, past experiences have shown that various non-linearities might exist in spacecraft structures and the consequences of their dynamic effects can significantly affect the development and verification process. Current processes are mainly adapted to linear spacecraft structure behaviour. No clear rules exist for dealing with major structure non-linearities. They are handled outside the process by individual analysis and margin policy, and analyses after tests to justify the CLA coverage. Non-linearities can primarily affect the current spacecraft development and verification process on two aspects. Prediction of flights loads by launcher/satellite coupled loads analyses (CLA): only linear satellite models are delivered for performing CLA and no well-established rules exist how to properly linearize a model when non- linearities are present. The potential impact of the linearization on the results of the CLA has not yet been properly analyzed. There are thus difficulties to assess that CLA results will cover actual flight levels. Management of satellite verification tests: the CLA results generated with a linear satellite FEM are assumed flight representative. If the internal non- linearities are present in the tested satellite then there might be difficulties to determine which input level must be passed to cover satellite internal loads. The non-linear behaviour can also disturb the shaker control, putting the satellite at risk by potentially imposing too high levels. This paper presents the results of a test campaign performed in

  1. Tools to identify linear combination of prognostic factors which maximizes area under receiver operator curve.

    Science.gov (United States)

    Todor, Nicolae; Todor, Irina; Săplăcan, Gavril

    2014-01-01

    The linear combination of variables is an attractive method in many medical analyses targeting a score to classify patients. In the case of ROC curves the most popular problem is to identify the linear combination which maximizes area under curve (AUC). This problem is complete closed when normality assumptions are met. With no assumption of normality search algorithm are avoided because it is accepted that we have to evaluate AUC n(d) times where n is the number of distinct observation and d is the number of variables. For d = 2, using particularities of AUC formula, we described an algorithm which lowered the number of evaluations of AUC from n(2) to n(n-1) + 1. For d > 2 our proposed solution is an approximate method by considering equidistant points on the unit sphere in R(d) where we evaluate AUC. The algorithms were applied to data from our lab to predict response of treatment by a set of molecular markers in cervical cancers patients. In order to evaluate the strength of our algorithms a simulation was added. In the case of no normality presented algorithms are feasible. For many variables computation time could be increased but acceptable.

  2. Non-linearities in Holocene floodplain sediment storage

    Science.gov (United States)

    Notebaert, Bastiaan; Nils, Broothaerts; Jean-François, Berger; Gert, Verstraeten

    2013-04-01

    Floodplain sediment storage is an important part of the sediment cascade model, buffering sediment delivery between hillslopes and oceans, which is hitherto not fully quantified in contrast to other global sediment budget components. Quantification and dating of floodplain sediment storage is data and financially demanding, limiting contemporary estimates for larger spatial units to simple linear extrapolations from a number of smaller catchments. In this paper we will present non-linearities in both space and time for floodplain sediment budgets in three different catchments. Holocene floodplain sediments of the Dijle catchment in the Belgian loess region, show a clear distinction between morphological stages: early Holocene peat accumulation, followed by mineral floodplain aggradation from the start of the agricultural period on. Contrary to previous assumptions, detailed dating of this morphological change at different shows an important non-linearity in geomorphologic changes of the floodplain, both between and within cross sections. A second example comes from the Pre-Alpine French Valdaine region, where non-linearities and complex system behavior exists between (temporal) patterns of soil erosion and floodplain sediment deposition. In this region Holocene floodplain deposition is characterized by different cut-and-fill phases. The quantification of these different phases shows a complicated image of increasing and decreasing floodplain sediment storage, which hampers the image of increasing sediment accumulation over time. Although fill stages may correspond with large quantities of deposited sediment and traditionally calculated sedimentation rates for such stages are high, they do not necessary correspond with a long-term net increase in floodplain deposition. A third example is based on the floodplain sediment storage in the Amblève catchment, located in the Belgian Ardennes uplands. Detailed floodplain sediment quantification for this catchments shows

  3. Stability of non-linear constitutive formulations for viscoelastic fluids

    CERN Document Server

    Siginer, Dennis A

    2014-01-01

    Stability of Non-linear Constitutive Formulations for Viscoelastic Fluids provides a complete and up-to-date view of the field of constitutive equations for flowing viscoelastic fluids, in particular on their non-linear behavior, the stability of these constitutive equations that is their predictive power, and the impact of these constitutive equations on the dynamics of viscoelastic fluid flow in tubes. This book gives an overall view of the theories and attendant methodologies developed independently of thermodynamic considerations as well as those set within a thermodynamic framework to derive non-linear rheological constitutive equations for viscoelastic fluids. Developments in formulating Maxwell-like constitutive differential equations as well as single integral constitutive formulations are discussed in the light of Hadamard and dissipative type of instabilities.

  4. Equations of motion for a (non-linear) scalar field model as derived from the field equations

    International Nuclear Information System (INIS)

    Kaniel, S.; Itin, Y.

    2006-01-01

    The problem of derivation of the equations of motion from the field equations is considered. Einstein's field equations have a specific analytical form: They are linear in the second order derivatives and quadratic in the first order derivatives of the field variables. We utilize this particular form and propose a novel algorithm for the derivation of the equations of motion from the field equations. It is based on the condition of the balance between the singular terms of the field equation. We apply the algorithm to a non-linear Lorentz invariant scalar field model. We show that it results in the Newton law of attraction between the singularities of the field moved on approximately geodesic curves. The algorithm is applicable to the N-body problem of the Lorentz invariant field equations. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  5. Evidence of non-Darcy flow and non-Fickian transport in fractured media at laboratory scale

    Directory of Open Access Journals (Sweden)

    C. Cherubini

    2013-07-01

    Full Text Available During a risk assessment procedure as well as when dealing with cleanup and monitoring strategies, accurate predictions of solute propagation in fractured rocks are of particular importance when assessing exposure pathways through which contaminants reach receptors. Experimental data obtained under controlled conditions such as in a laboratory allow to increase the understanding of the fundamental physics of fluid flow and solute transport in fractures. In this study, laboratory hydraulic and tracer tests have been carried out on an artificially created fractured rock sample. The tests regard the analysis of the hydraulic loss and the measurement of breakthrough curves for saline tracer pulse inside a rock sample of parallelepiped shape (0.60 × 0.40 × 0.08 m. The convolution theory has been applied in order to remove the effect of the acquisition apparatus on tracer experiments. The experimental results have shown evidence of a non-Darcy relationship between flow rate and hydraulic loss that is best described by Forchheimer's law. Furthermore, in the flow experiments both inertial and viscous flow terms are not negligible. The observed experimental breakthrough curves of solute transport have been modeled by the classical one-dimensional analytical solution for the advection–dispersion equation (ADE and the single rate mobile–immobile model (MIM. The former model does not properly fit the first arrival and the tail while the latter, which recognizes the existence of mobile and immobile domains for transport, provides a very decent fit. The carried out experiments show that there exists a pronounced mobile–immobile zone interaction that cannot be neglected and that leads to a non-equilibrium behavior of solute transport. The existence of a non-Darcian flow regime has showed to influence the velocity field in that it gives rise to a delay in solute migration with respect to the predicted value assuming linear flow. Furthermore, the

  6. Linear and Non-Linear Control Techniques Applied to Actively Lubricated Journal Bearings

    DEFF Research Database (Denmark)

    Nicoletti, Rodrigo; Santos, Ilmar

    2003-01-01

    The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can count with the conventional hydrodynamic lubrication. For furt......The main objectives of actively lubricated bearings are the simultaneous reduction of wear and vibration between rotating and stationary machinery parts. For reducing wear and dissipating vibration energy until certain limits, one can count with the conventional hydrodynamic lubrication....... For further reduction of shaft vibrations one can count with the active lubrication action, which is based on injecting pressurised oil into the bearing gap through orifices machined in the bearing sliding surface. The design and efficiency of some linear (PD, PI and PID) and non-linear controllers, applied...... vibration reduction of unbalance response of a rigid rotor, where the PD and the non-linear P controllers show better performance for the frequency range of study (0 to 80 Hz). The feasibility of eliminating rotor-bearing instabilities (phenomena of whirl) by using active lubrication is also investigated...

  7. Common-User Land Transportation Management in the Layered, Non-Linear, Non-Contiguous Battlefield

    National Research Council Canada - National Science Library

    Strobel, Lawrence E

    2005-01-01

    .... Current multinational counterinsurgency warfare occurs in a layered, non-linear, non-contiguous battle space, making management of ground transportation assets even more critical than in conventional warfare...

  8. Comparison of linear and non-linear monotonicity-based shape reconstruction using exact matrix characterizations

    DEFF Research Database (Denmark)

    Garde, Henrik

    2018-01-01

    . For a fair comparison, exact matrix characterizations are used when probing the monotonicity relations to avoid errors from numerical solution to PDEs and numerical integration. Using a special factorization of the Neumann-to-Dirichlet map also makes the non-linear method as fast as the linear method...

  9. Fitting boxes to Manhattan scenes using linear integer programming

    KAUST Repository

    Li, Minglei

    2016-02-19

    We propose an approach for automatic generation of building models by assembling a set of boxes using a Manhattan-world assumption. The method first aligns the point cloud with a per-building local coordinate system, and then fits axis-aligned planes to the point cloud through an iterative regularization process. The refined planes partition the space of the data into a series of compact cubic cells (candidate boxes) spanning the entire 3D space of the input data. We then choose to approximate the target building by the assembly of a subset of these candidate boxes using a binary linear programming formulation. The objective function is designed to maximize the point cloud coverage and the compactness of the final model. Finally, all selected boxes are merged into a lightweight polygonal mesh model, which is suitable for interactive visualization of large scale urban scenes. Experimental results and a comparison with state-of-the-art methods demonstrate the effectiveness of the proposed framework.

  10. From Experiment to Theory: What Can We Learn from Growth Curves?

    Science.gov (United States)

    Kareva, Irina; Karev, Georgy

    2018-01-01

    Finding an appropriate functional form to describe population growth based on key properties of a described system allows making justified predictions about future population development. This information can be of vital importance in all areas of research, ranging from cell growth to global demography. Here, we use this connection between theory and observation to pose the following question: what can we infer about intrinsic properties of a population (i.e., degree of heterogeneity, or dependence on external resources) based on which growth function best fits its growth dynamics? We investigate several nonstandard classes of multi-phase growth curves that capture different stages of population growth; these models include hyperbolic-exponential, exponential-linear, exponential-linear-saturation growth patterns. The constructed models account explicitly for the process of natural selection within inhomogeneous populations. Based on the underlying hypotheses for each of the models, we identify whether the population that it best fits by a particular curve is more likely to be homogeneous or heterogeneous, grow in a density-dependent or frequency-dependent manner, and whether it depends on external resources during any or all stages of its development. We apply these predictions to cancer cell growth and demographic data obtained from the literature. Our theory, if confirmed, can provide an additional biomarker and a predictive tool to complement experimental research.

  11. Modelling long term rockslide displacements with non-linear time-dependent relationships

    Science.gov (United States)

    De Caro, Mattia; Volpi, Giorgio; Castellanza, Riccardo; Crosta, Giovanni; Agliardi, Federico

    2015-04-01

    Rockslides undergoing rapid changes in behaviour pose major risks in alpine areas, and require careful characterization and monitoring both for civil protection and mitigation activities. In particular, these instabilities can undergo very slow movement with occasional and intermittent acceleration/deceleration stages of motion potentially leading to collapse. Therefore, the analysis of such instabilities remains a challenging issue. Rockslide displacements are strongly conditioned by hydrologic factors as suggested by correlations with groundwater fluctuations, snowmelt, with a frequently observed delay between perturbation and system reaction. The aim of this work is the simulation of the complex time-dependent behaviour of two case studies for which also a 2D transient hydrogeological simulation has been performed: Vajont rockslide (1960 to 1963) and the recent Mt. de La Saxe rockslide (2009 to 2012). Non-linear time-dependent constitutive relationships have been used to describe long-term creep deformation. Analyses have been performed using a "rheological-mechanical" approach that fits idealized models (e.g. viscoelastic, viscoplastic, elasto-viscoplastic, Burgers, nonlinear visco-plastic) to the experimental behaviour of specific materials by means of numerical constants. Bidimensional simulations were carried out using the finite difference code FLAC. Displacements time-series, available for the two landslides, show two superimposed deformation mechanisms: a creep process, leading to movements under "steady state" conditions (e.g. constant groundwater level), and a "dynamic" process, leading to an increase in displacement rate due to changes of external loads (e.g. groundwater level). For both cases sliding mass is considered as an elasto-plastic body subject to its self-weight, inertial and seepage forces varying with time according to water table fluctuation (due to snowmelt or changing in reservoir level) and derived from the previous hydrogeological

  12. Non-linear wave equations:Mathematical techniques

    International Nuclear Information System (INIS)

    1978-01-01

    An account of certain well-established mathematical methods, which prove useful to deal with non-linear partial differential equations is presented. Within the strict framework of Functional Analysis, it describes Semigroup Techniques in Banach Spaces as well as variational approaches towards critical points. Detailed proofs are given of the existence of local and global solutions of the Cauchy problem and of the stability of stationary solutions. The formal approach based upon invariance under Lie transformations deserves attention due to its wide range of applicability, even if the explicit solutions thus obtained do not allow for a deep analysis of the equations. A compre ensive introduction to the inverse scattering approach and to the solution concept for certain non-linear equations of physical interest are also presented. A detailed discussion is made about certain convergence and stability problems which arise in importance need not be emphasized. (author) [es

  13. Non-linearity consideration when analyzing reactor noise statistical characteristics. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Kebadze, B V; Adamovski, L A

    1975-06-01

    Statistical characteristics of boiling water reactor noise in the vicinity of stability threshold are studied. The reactor is considered as a non-linear system affected by random perturbations. To solve a non-linear problem the principle of statistical linearization is used. It is shown that the halfwidth of resonance peak in neutron power noise spectrum density as well as the reciprocal of noise dispersion, which are used in predicting a stable operation theshold, are different from zero both within and beyond the stability boundary the determination of which was based on linear criteria.

  14. The form and interpretation of clearance curves for injected radioisotopes based on negative power laws, especially for 47Ca and estimated bone accretion rate

    International Nuclear Information System (INIS)

    Wise, M.E.

    1978-01-01

    Many hundreds of clearance curves for plasma and urine after a single injection of tracer are well fitted by y=Σsub(i=1)sup(r)Asub(i)exp(-Bsub(i)t),r=2 or 3, based on models with homogeneous compartments. Reanalyzing such sums as in a plot of log y versus log t shows that many of the original curves would fit y=Atsup(-α) or Atsup(-α)exp(-βt) over wide ranges of time and specific activity. Results of such reanalyses for a complete published series for serum albumin 131 I are given, and an outline of those for various compounds in the human body labeled by 3 H. For radiocalcium two such power laws can be fitted in one curve, with a transition between about 1 and 3 days, so that much of the log y versus log t plot consists of two straight lines. These lines are used for starting a numerical analysis that splits the curve into 2 non-linear components, plus a third one that is negligible after 5 min from injection. An outline of the iteration method is given. The components are interpreted physiologically and used to predict total bone activities by (de)convolution, and these are compared with observed ankle activities and with excretion rates. The bone accretion rate is obtained mainly from the middle component and comes to 2 to 3 g Ca/day, while return of 47 Ca from bone to plasma begins at about 1/2 day. These results seem incompatible while any based on compartments. The concept of biological half-life then needs to be reconsidered. (Auth.)

  15. An algorithm for robust non-linear analysis of radioimmunoassays and other bioassays

    International Nuclear Information System (INIS)

    Normolle, D.P.

    1993-01-01

    The four-parameter logistic function is an appropriate model for many types of bioassays that have continuous response variables, such as radioimmunoassays. By modelling the variance of replicates in an assay, one can modify the usual parameter estimation techniques (for example, Gauss-Newton or Marquardt-Levenberg) to produce parameter estimates for the standard curve that are robust against outlying observations. This article describes the computation of robust (M-) estimates for the parameters of the four-parameter logistic function. It describes techniques for modelling the variance structure of the replicates, modifications to the usual iterative algorithms for parameter estimation in non-linear models, and a formula for inverse confidence intervals. To demonstrate the algorithm, the article presents examples where the robustly estimated four-parameter logistic model is compared with the logit-log and four-parameter logistic models with least-squares estimates. (author)

  16. Non-linear effects in the Boltzmann equation

    International Nuclear Information System (INIS)

    Barrachina, R.O.

    1985-01-01

    The Boltzmann equation is studied by defining an integral transformation of the energy distribution function for an isotropic and homogeneous gas. This transformation may be interpreted as a linear superposition of equilibrium states with variable temperatures. It is shown that the temporal evolution features of the distribution function are determined by the singularities of said transformation. This method is applied to Maxwell and Very Hard Particle interaction models. For the latter, the solution of the Boltzmann equation with the solution of its linearized version is compared, finding out many basic discrepancies and non-linear effects. This gives a hint to propose a new rational approximation method with a clear physical meaning. Applying this technique, the relaxation features of the BKW (Bobylev, Krook anf Wu) mode is analyzed, finding a conclusive counter-example for the Krook and Wu conjecture. The anisotropic Boltzmann equation for Maxwell models is solved as an expansion in terms of the eigenfunctions of the corresponding linearized collision operator, finding interesting transient overpopulation and underpopulation effects at thermal energies as well as a new preferential spreading effect. By analyzing the initial collision, a criterion is established to deduce the general features of the final approach to equilibrium. Finally, it is shown how to improve the convergence of the eigenfunction expansion for high energy underpopulated distribution functions. As an application of this theory, the linear cascade model for sputtering is analyzed, thus finding out that many differences experimentally observed are due to non-linear effects. (M.E.L.) [es

  17. A new non-iterative method for fitting Lorentzian to Moessbauer spectra

    International Nuclear Information System (INIS)

    Mukoyama, T.; Vegh, J.

    1980-01-01

    A new method for fitting a Lorentzian function without an iterative procedure is presented. The method is quicker and simpler than the previously proposed method of non-iterative fitting. Comparison with the previous method and with the conventional iterative method has been made. It is shown that the present method gives satisfactory results. (orig.)

  18. Foundations of the non-linear mechanics of continua

    CERN Document Server

    Sedov, L I

    1966-01-01

    International Series of Monographs on Interdisciplinary and Advanced Topics in Science and Engineering, Volume 1: Foundations of the Non-Linear Mechanics of Continua deals with the theoretical apparatus, principal concepts, and principles used in the construction of models of material bodies that fill space continuously. This book consists of three chapters. Chapters 1 and 2 are devoted to the theory of tensors and kinematic applications, focusing on the little-known theory of non-linear tensor functions. The laws of dynamics and thermodynamics are covered in Chapter 3.This volume is suitable

  19. The effect of sub-lethal damage repair and exchange on the final slope of cell survival curves

    International Nuclear Information System (INIS)

    Carlone, M.C.; Wilkins, D.E.; Raaphorst, G.P.

    2003-01-01

    Full text: The Lea-Catcheside dose rate protraction factor, G, is the most widely used model to describe the effects of dose rate on cell survival. In the linear quadratic formalism, this factor modifies the beta component of cell killing; G is greatest for acute irradiations while vanishing at low dose rates. We have found a simple compartmental model that can derive the Lea-Catcheside function. This compartmental model clearly shows that the G function can only be derived using a little known assumption: the diminution of sub-lethal damage due to exchange of repairable lesions is negligible compared to that due to repair. This assumption was explicitly stated by Lea, but it does not appear to have been restated or verified since very early work on cell survival. The implication of this assumption is that sub-lethal damage can be modeled without considering exchange, which is evidenced by the fact that the G function does not contain parameters relating to exchange. By using a new model that fully accounts for repair and exchange of sublethal lesions, a cell survival expression that has a modified G function, but that retains the linear quadratic formalism, can be obtained. At low doses, this new model predicts linear-quadratic behavior, but the behavior gradually changes to mono-exponential at high doses, which is consistent with experimental observations. Modeling cell survival of well-known survival curves using the modified linear quadratic model shows statistically significant improvement in the fits to the cell survival data as compared to best fits obtained with the linear quadratic model. It is shown that these improvements in fits are due to a superior representation of the high dose region of the survival curve

  20. The non-linear evolution of edge localized modes

    International Nuclear Information System (INIS)

    Wenninger, Ronald

    2013-01-01

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  1. The non-linear evolution of edge localized modes

    Energy Technology Data Exchange (ETDEWEB)

    Wenninger, Ronald

    2013-01-09

    Edge localized modes (ELMs) are instabilities in the edge of tokamak plasmas in the high confinement regime (H-mode). Without them the edge transport in ordinary H-mode plasmas is too low to establish a stationary situation. However in a future device large unmitigated ELMs are believed to cause divertor power flux densities far in excess of tolerable material limits. Hence the size of energy loss per ELM and the resulting ELM frequency must be controlled. To proceed in understanding how the ELM size is determined and how ELM mitigation methods work it is necessary to characterize the non-linear evolution of pedestal erosion. In order to achieve this experimental data is compared to the results of ELM simulations with the code JOREK (reduced MHD, non-linear) applying a specially developed synthetic magnetic diagnostic. The experimental data are acquired by several fast sampling diagnostics at the experiments ASDEX Upgrade and TCV at a large number of toroidal/poloidal positions. A central element of the presented work is the detailed characterization of dominant magnetic perturbations during ELMs. These footprints of the instability can be observed most intensely in close temporal vicinity to the onset of pedestal erosion. Dominant magnetic perturbations are caused by current perturbations located at or inside the last closed flux surface. In ASDEX Upgrade under certain conditions dominant magnetic perturbations like other H-mode edge instabilities display a similarity to solitons. Furthermore - as expected - they are often observed to be correlated to a perturbation of electron temperature. In TCV it is possible to characterize the evolution of the toroidal structure of dominant magnetic perturbations. Between growing above the level of background fluctuations and the maximum perturbation level for all time instance a similar toroidal structure is observed. This rigid mode-structure is an indication for non-linear coupling. Most frequently the dominant toroidal

  2. An efficient formulation for linear and geometric non-linear membrane elements

    Directory of Open Access Journals (Sweden)

    Mohammad Rezaiee-Pajand

    Full Text Available Utilizing the straingradient notation process and the free formulation, an efficient way of constructing membrane elements will be proposed. This strategy can be utilized for linear and geometric non-linear problems. In the suggested formulation, the optimization constraints of insensitivity to distortion, rotational invariance and not having parasitic shear error are employed. In addition, the equilibrium equations will be established based on some constraints among the strain states. The authors' technique can easily separate the rigid body motions, and those belong to deformational motions. In this article, a novel triangular element, named SST10, is formulated. This element will be used in several plane problems having irregular mesh and complicated geometry with linear and geometrically nonlinear behavior. The numerical outcomes clearly demonstrate the efficiency of the new formulation.

  3. Effect of Linear and Non-linear Resistance Exercise on Anaerobic Performance among Young Women

    OpenAIRE

    Homa Esmaeili; Ali Reza Amani; Taher Afsharnezhad

    2015-01-01

    The main goals of strength training are improving muscle strength, power and muscle endurance. The objective of the current study is to compare two popular linear and nonlinear resistance exercises interventions on the anaerobic power.  Previous research has shown differences intervention by the linear and non-linear resistance exercise in performance and strength in male athletes. By the way there are not enough data regarding female subjects. Eighteen young women subjects participated in th...

  4. Non-parametric system identification from non-linear stochastic response

    DEFF Research Database (Denmark)

    Rüdinger, Finn; Krenk, Steen

    2001-01-01

    An estimation method is proposed for identification of non-linear stiffness and damping of single-degree-of-freedom systems under stationary white noise excitation. Non-parametric estimates of the stiffness and damping along with an estimate of the white noise intensity are obtained by suitable...... of the energy at mean-level crossings, which yields the damping relative to white noise intensity. Finally, an estimate of the noise intensity is extracted by estimating the absolute damping from the autocovariance functions of a set of modified phase plane variables at different energy levels. The method...

  5. LCAO fitting of positron 2D-ACAR momentum densities of non-metallic solids

    International Nuclear Information System (INIS)

    Chiba, T.

    2001-01-01

    We present a least-squares fitting method to fit and analyze momentum densities obtained by 2D-ACAR. The method uses an LCAO-MO as a fitting basis and thus is applicable to non-metals. Here we illustrate the method by taking MgO as an example. (orig.)

  6. LCAO fitting of positron 2D-ACAR momentum densities of non-metallic solids

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, T. [National Inst. for Research in Inorganic Materials, Tsukuba, Ibaraki (Japan)

    2001-07-01

    We present a least-squares fitting method to fit and analyze momentum densities obtained by 2D-ACAR. The method uses an LCAO-MO as a fitting basis and thus is applicable to non-metals. Here we illustrate the method by taking MgO as an example. (orig.)

  7. Non-linear mixed-effects pharmacokinetic/pharmacodynamic modelling in NLME using differential equations

    DEFF Research Database (Denmark)

    Tornøe, Christoffer Wenzel; Agersø, Henrik; Madsen, Henrik

    2004-01-01

    The standard software for non-linear mixed-effect analysis of pharmacokinetic/phar-macodynamic (PK/PD) data is NONMEM while the non-linear mixed-effects package NLME is an alternative as tong as the models are fairly simple. We present the nlmeODE package which combines the ordinary differential...... equation (ODE) solver package odesolve and the non-Linear mixed effects package NLME thereby enabling the analysis of complicated systems of ODEs by non-linear mixed-effects modelling. The pharmacokinetics of the anti-asthmatic drug theophylline is used to illustrate the applicability of the nlme...

  8. A unified dose response relationship to predict high dose fractionation response in the lung cancer stereotactic body radiation therapy

    Directory of Open Access Journals (Sweden)

    Than S Kehwar

    2017-01-01

    Full Text Available Aim: This study is designed to investigate the superiority and applicability of the model among the linear-quadratic (LQ, linear-quadratic-linear (LQ-L and universal-survival-curve (USC models by fitting published radiation cell survival data of lung cancer cell lines. Materials and Method: The radiation cell survival data for small cell (SC and non-small cell (NSC lung cancer cell lines were obtained from published reports, and were used to determine the LQ and cell survival curve parameters, which ultimately were used in the curve fitting of the LQ, LQ-L and USC models. Results: The results of this study demonstrate that the LQ-L(Dt-mt model, compared with the LQ and USC models, provides best fit with smooth and gradual transition to the linear portion of the curve at transition dose Dt-mt, where the LQ model loses its validity, and the LQ-L(Dt-2α/β and USC(Dt-mt models do not transition smoothly to the linear portion of the survival curve. Conclusion: The LQ-L(Dt-mt model is able to fit wide variety of cell survival data over a very wide dose range, and retains the strength of the LQ model in the low-dose range.

  9. Study of the 'non-Abelian' current algebra of a non-linear σ-model

    International Nuclear Information System (INIS)

    Ghosh, Subir

    2006-01-01

    A particular form of non-linear σ-model, having a global gauge invariance, is studied. The detailed discussion on current algebra structures reveals the non-Abelian nature of the invariance, with field dependent structure functions. Reduction of the field theory to a point particle framework yields a non-linear harmonic oscillator, which is a special case of similar models studied before in [J.F. Carinena et al., Nonlinearity 17 (2004) 1941, math-ph/0406002; J.F. Carinena et al., in: Proceedings of 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, 2004, p. 39, math-ph/0505028; J.F. Carinena et al., Rep. Math. Phys. 54 (2004) 285, hep-th/0501106]. The connection with non-commutative geometry is also established

  10. Non-linear neutron star oscillations viewed as deviations from an equilibrium state

    International Nuclear Information System (INIS)

    Sperhake, U

    2002-01-01

    A numerical technique is presented which facilitates the evolution of non-linear neutron star oscillations with a high accuracy essentially independent of the oscillation amplitude. We apply this technique to radial neutron star oscillations in a Lagrangian formulation and demonstrate the superior performance of the new scheme compared with 'conventional' techniques. The key feature of our approach is to describe the evolution in terms of deviations from an equilibrium configuration. In contrast to standard perturbation analysis we keep all higher order terms in the evolution equations and thus obtain a fully non-linear description. The advantage of our scheme lies in the elimination of background terms from the equations and the associated numerical errors. The improvements thus achieved will be particularly significant in the study of mildly non-linear effects where the amplitude of the dynamic signal is small compared with the equilibrium values but large enough to warrant non-linear effects. We apply the new technique to the study of non-linear coupling of Eigenmodes and non-linear effects in the oscillations of marginally stable neutron stars. We find non-linear effects in low amplitude oscillations to be particularly pronounced in the range of modes with vanishing frequency which typically mark the onset of instability. (author)

  11. Non-Linear Dynamics of Saturn’s Rings

    Science.gov (United States)

    Esposito, Larry W.

    2015-11-01

    Non-linear processes can explain why Saturn’s rings are so active and dynamic. Ring systems differ from simple linear systems in two significant ways: 1. They are systems of granular material: where particle-to-particle collisions dominate; thus a kinetic, not a fluid description needed. We find that stresses are strikingly inhomogeneous and fluctuations are large compared to equilibrium. 2. They are strongly forced by resonances: which drive a non-linear response, pushing the system across thresholds that lead to persistent states.Some of this non-linearity is captured in a simple Predator-Prey Model: Periodic forcing from the moon causes streamline crowding; This damps the relative velocity, and allows aggregates to grow. About a quarter phase later, the aggregates stir the system to higher relative velocity and the limit cycle repeats each orbit.Summary of Halo Results: A predator-prey model for ring dynamics produces transient structures like ‘straw’ that can explain the halo structure and spectroscopy: This requires energetic collisions (v ≈ 10m/sec, with throw distances about 200km, implying objects of scale R ≈ 20km).Transform to Duffing Eqn : With the coordinate transformation, z = M2/3, the Predator-Prey equations can be combined to form a single second-order differential equation with harmonic resonance forcing.Ring dynamics and history implications: Moon-triggered clumping at perturbed regions in Saturn’s rings creates both high velocity dispersion and large aggregates at these distances, explaining both small and large particles observed there. We calculate the stationary size distribution using a cell-to-cell mapping procedure that converts the phase-plane trajectories to a Markov chain. Approximating the Markov chain as an asymmetric random walk with reflecting boundaries allows us to determine the power law index from results of numerical simulations in the tidal environment surrounding Saturn. Aggregates can explain many dynamic aspects

  12. Non-linear programming method in optimization of fast reactors

    International Nuclear Information System (INIS)

    Pavelesku, M.; Dumitresku, Kh.; Adam, S.

    1975-01-01

    Application of the non-linear programming methods on optimization of nuclear materials distribution in fast reactor is discussed. The programming task composition is made on the basis of the reactor calculation dependent on the fuel distribution strategy. As an illustration of this method application the solution of simple example is given. Solution of the non-linear program is done on the basis of the numerical method SUMT. (I.T.)

  13. Hierarchical and Non-Hierarchical Linear and Non-Linear Clustering Methods to “Shakespeare Authorship Question”

    Directory of Open Access Journals (Sweden)

    Refat Aljumily

    2015-09-01

    Full Text Available A few literary scholars have long claimed that Shakespeare did not write some of his best plays (history plays and tragedies and proposed at one time or another various suspect authorship candidates. Most modern-day scholars of Shakespeare have rejected this claim, arguing that strong evidence that Shakespeare wrote the plays and poems being his name appears on them as the author. This has caused and led to an ongoing scholarly academic debate for quite some long time. Stylometry is a fast-growing field often used to attribute authorship to anonymous or disputed texts. Stylometric attempts to resolve this literary puzzle have raised interesting questions over the past few years. The following paper contributes to “the Shakespeare authorship question” by using a mathematically-based methodology to examine the hypothesis that Shakespeare wrote all the disputed plays traditionally attributed to him. More specifically, the mathematically based methodology used here is based on Mean Proximity, as a linear hierarchical clustering method, and on Principal Components Analysis, as a non-hierarchical linear clustering method. It is also based, for the first time in the domain, on Self-Organizing Map U-Matrix and Voronoi Map, as non-linear clustering methods to cover the possibility that our data contains significant non-linearities. Vector Space Model (VSM is used to convert texts into vectors in a high dimensional space. The aim of which is to compare the degrees of similarity within and between limited samples of text (the disputed plays. The various works and plays assumed to have been written by Shakespeare and possible authors notably, Sir Francis Bacon, Christopher Marlowe, John Fletcher, and Thomas Kyd, where “similarity” is defined in terms of correlation/distance coefficient measure based on the frequency of usage profiles of function words, word bi-grams, and character triple-grams. The claim that Shakespeare authored all the disputed

  14. Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity

    Science.gov (United States)

    Rand, J. L.; Wakefield, D. S.

    Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may

  15. Non-linear characterisation of the physical model of an ancient masonry bridge

    International Nuclear Information System (INIS)

    Fragonara, L Zanotti; Ceravolo, R; Matta, E; Quattrone, A; De Stefano, A; Pecorelli, M

    2012-01-01

    This paper presents the non-linear investigations carried out on a scaled model of a two-span masonry arch bridge. The model has been built in order to study the effect of the central pile settlement due to riverbank erosion. Progressive damage was induced in several steps by applying increasing settlements at the central pier. For each settlement step, harmonic shaker tests were conducted under different excitation levels, this allowing for the non-linear identification of the progressively damaged system. The shaker tests have been performed at resonance with the modal frequency of the structure, which were determined from a previous linear identification. Estimated non-linearity parameters, which result from the systematic application of restoring force based identification algorithms, can corroborate models to be used in the reassessment of existing structures. The method used for non-linear identification allows monitoring the evolution of non-linear parameters or indicators which can be used in damage and safety assessment.

  16. Non-linear Loudspeaker Unit Modelling

    DEFF Research Database (Denmark)

    Pedersen, Bo Rohde; Agerkvist, Finn T.

    2008-01-01

    Simulations of a 6½-inch loudspeaker unit are performed and compared with a displacement measurement. The non-linear loudspeaker model is based on the major nonlinear functions and expanded with time-varying suspension behaviour and flux modulation. The results are presented with FFT plots of thr...... frequencies and different displacement levels. The model errors are discussed and analysed including a test with loudspeaker unit where the diaphragm is removed....

  17. An explicit method in non-linear soil-structure interaction

    International Nuclear Information System (INIS)

    Kunar, R.R.

    1981-01-01

    The explicit method of analysis in the time domain is ideally suited for the solution of transient dynamic non-linear problems. Though the method is not new, its application to seismic soil-structure interaction is relatively new and deserving of public discussion. This paper describes the principles of the explicit approach in soil-structure interaction and it presents a simple algorithm that can be used in the development of explicit computer codes. The paper also discusses some of the practical considerations like non-reflecting boundaries and time steps. The practicality of the method is demonstrated using a computer code, PRESS, which is used to compare the treatment of strain-dependent properties using average strain levels over the whole time history (the equivalent linear method) and using the actual strain levels at every time step to modify the soil properties (non-linear method). (orig.)

  18. Numerical solution of two-dimensional non-linear partial differential ...

    African Journals Online (AJOL)

    linear partial differential equations using a hybrid method. The solution technique involves discritizing the non-linear system of partial differential equations (PDEs) to obtain a corresponding nonlinear system of algebraic difference equations to be ...

  19. Estimation of error components in a multi-error linear regression model, with an application to track fitting

    International Nuclear Information System (INIS)

    Fruehwirth, R.

    1993-01-01

    We present an estimation procedure of the error components in a linear regression model with multiple independent stochastic error contributions. After solving the general problem we apply the results to the estimation of the actual trajectory in track fitting with multiple scattering. (orig.)

  20. High-resolution continuum source electrothermal atomic absorption spectrometry: Linearization of the calibration curves within a broad concentration range

    Energy Technology Data Exchange (ETDEWEB)

    Katskov, Dmitri, E-mail: katskovda@tut.ac.za [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Hlongwane, Miranda [Tshwane University of Technology, Chemistry Department, Pretoria 0001 (South Africa); Heitmann, Uwe [German Aerospace Center, Rose-Luxemburg Str. 2, 10178 Berlin (Germany); Florek, Stefan [ISAS-Leibniz-Institut fuer Analytische Wissenschaften e.V., Albert-Einstein-Str. 9,12489 Berlin (Germany)

    2012-05-15

    The calculation algorithm suggested provides linearization of the calibration curves in high-resolution continuum source electrothermal atomic absorption spectrometry. The algorithm is based on the modification of the function wavelength-integrated absorbance vs. concentration of analyte vapor in the absorption volume. According to the suggested approach, the absorption line is represented by a triangle for low and trapezium for high analyte vapor concentration in the absorption volume. The respective semi-empirical formulas include two linearization parameters, which depend on properties of the absorption line and characteristics of the atomizer and spectrometer. The parameters can be approximately evaluated from the theory and determined in practice from the original broad-range calibration curve. The parameters were found and the proposed calculation algorithm verified in the experiments on direct determination of Ag, Cd, Cu, Fe, Mn and Pb in the solutions within a concentration ranges from 0.15 to 625 {mu}g{center_dot}L{sup -1} using tube, platform tube and filter furnace atomizers. The use of various atomizers, lines, elements and atomization temperatures made possible the simulation of various practical analytical conditions. It was found that the algorithm and optimal linearization parameters made it possible to obtain for each line and atomizer linear approximations of the calibration curves within 3-4 orders of magnitude with correlation coefficients close to 0.999. The algorithm makes possible to employ a single line for the direct element determination over a broad concentration range. The sources of errors and the possibility of a priori theoretical evaluation of the linearization parameters are discussed. - Highlights: Black-Right-Pointing-Pointer New calculation algorithm for HR-CS ET AAS measurements was proposed and applied. Black-Right-Pointing-Pointer The suggested formulas include two parameters to be determined experimentally. Black

  1. Anti-D3 branes and moduli in non-linear supergravity

    Science.gov (United States)

    Garcia del Moral, Maria P.; Parameswaran, Susha; Quiroz, Norma; Zavala, Ivonne

    2017-10-01

    Anti-D3 branes and non-perturbative effects in flux compactifications spontaneously break supersymmetry and stabilise moduli in a metastable de Sitter vacua. The low energy 4D effective field theory description for such models would be a supergravity theory with non-linearly realised supersymmetry. Guided by string theory modular symmetry, we compute this non-linear supergravity theory, including dependence on all bulk moduli. Using either a constrained chiral superfield or a constrained vector field, the uplifting contribution to the scalar potential from the anti-D3 brane can be parameterised either as an F-term or Fayet-Iliopoulos D-term. Using again the modular symmetry, we show that 4D non-linear supergravities that descend from string theory have an enhanced protection from quantum corrections by non-renormalisation theorems. The superpotential giving rise to metastable de Sitter vacua is robust against perturbative string-loop and α' corrections.

  2. E11 and the non-linear dual graviton

    Science.gov (United States)

    Tumanov, Alexander G.; West, Peter

    2018-04-01

    The non-linear dual graviton equation of motion as well as the duality relation between the gravity and dual gravity fields are found in E theory by carrying out E11 variations of previously found equations of motion. As a result the equations of motion in E theory have now been found at the full non-linear level up to, and including, level three, which contains the dual graviton field. When truncated to contain fields at levels three and less, and the spacetime is restricted to be the familiar eleven dimensional space time, the equations are equivalent to those of eleven dimensional supergravity.

  3. Visuo-manual tracking: does intermittent control with aperiodic sampling explain linear power and non-linear remnant without sensorimotor noise?

    Science.gov (United States)

    Gollee, Henrik; Gawthrop, Peter J; Lakie, Martin; Loram, Ian D

    2017-11-01

    A human controlling an external system is described most easily and conventionally as linearly and continuously translating sensory input to motor output, with the inevitable output remnant, non-linearly related to the input, attributed to sensorimotor noise. Recent experiments show sustained manual tracking involves repeated refractoriness (insensitivity to sensory information for a certain duration), with the temporary 200-500 ms periods of irresponsiveness to sensory input making the control process intrinsically non-linear. This evidence calls for re-examination of the extent to which random sensorimotor noise is required to explain the non-linear remnant. This investigation of manual tracking shows how the full motor output (linear component and remnant) can be explained mechanistically by aperiodic sampling triggered by prediction error thresholds. Whereas broadband physiological noise is general to all processes, aperiodic sampling is associated with sensorimotor decision making within specific frontal, striatal and parietal networks; we conclude that manual tracking utilises such slow serial decision making pathways up to several times per second. The human operator is described adequately by linear translation of sensory input to motor output. Motor output also always includes a non-linear remnant resulting from random sensorimotor noise from multiple sources, and non-linear input transformations, for example thresholds or refractory periods. Recent evidence showed that manual tracking incurs substantial, serial, refractoriness (insensitivity to sensory information of 350 and 550 ms for 1st and 2nd order systems respectively). Our two questions are: (i) What are the comparative merits of explaining the non-linear remnant using noise or non-linear transformations? (ii) Can non-linear transformations represent serial motor decision making within the sensorimotor feedback loop intrinsic to tracking? Twelve participants (instructed to act in three prescribed

  4. Determination and analysis of non-linear index profiles in electron-beam-deposited MgOAl2O3ZrO2 ternary composite thin-film optical coatings

    International Nuclear Information System (INIS)

    Sahoo, N.K.; Thakur, S.; Senthilkumar, M.; Das, N.C.

    2005-01-01

    Thickness-dependent index non-linearity in thin films has been a thought provoking as well as intriguing topic in the field of optical coatings. The characterization and analysis of such inhomogeneous index profiles pose several degrees of challenges to thin-film researchers depending upon the availability of relevant experimental and process-monitoring-related information. In the present work, a variety of novel experimental non-linear index profiles have been observed in thin films of MgOAl 2 O 3 ZrO 2 ternary composites in solid solution under various electron-beam deposition parameters. Analysis and derivation of these non-linear spectral index profiles have been carried out by an inverse-synthesis approach using a real-time optical monitoring signal and post-deposition transmittance and reflection spectra. Most of the non-linear index functions are observed to fit polynomial equations of order seven or eight very well. In this paper, the application of such a non-linear index function has also been demonstrated in designing electric-field-optimized high-damage-threshold multilayer coatings such as normal- and oblique-incidence edge filters and a broadband beam splitter for p-polarized light. Such designs can also advantageously maintain the microstructural stability of the multilayer structure due to the low stress factor of the non-linear ternary composite layers. (orig.)

  5. Single-nary philosophy for non-linear study of mechanics of materials

    International Nuclear Information System (INIS)

    Tran, C.

    2005-01-01

    Non-linear study of mechanics of materials is formulated in this paper as a problem of meta-intelligent system analysis. Non-linearity will be singled out as an important concept for understanding of high-order complex systems. Through single-nary thinking, which will be represented in this work, we introduce a modification of Aristotelian philosophy using modal logic and multi-valued logic (these logics we call 'high-order' logic). Next, non-linear cause - effect relations are expressed through non-additive measures and multiple-information aggregation principles based on fuzzy integration. The study of real time behaviors, required experiences and intuition, will be realized using truth measures (non-additive measures) and a procedure for information processing in intelligence levels. (author)

  6. Progress in linear optics, non-linear optics and surface alignment of liquid crystals

    Science.gov (United States)

    Ong, H. L.; Meyer, R. B.; Hurd, A. J.; Karn, A. J.; Arakelian, S. M.; Shen, Y. R.; Sanda, P. N.; Dove, D. B.; Jansen, S. A.; Hoffmann, R.

    We first discuss the progress in linear optics, in particular, the formulation and application of geometrical-optics approximation and its generalization. We then discuss the progress in non-linear optics, in particular, the enhancement of a first-order Freedericksz transition and intrinsic optical bistability in homeotropic and parallel oriented nematic liquid crystal cells. Finally, we discuss the liquid crystal alignment and surface effects on field-induced Freedericksz transition.

  7. Parametric Resonance in the Early Universe - A Fitting Analysis

    CERN Document Server

    Figueroa, Daniel G.

    2017-02-01

    Particle production via parametric resonance in the early Universe, is a non-perturbative, non-linear and out-of-equilibrium phenomenon. Although it is a well studied topic, whenever a new scenario exhibits parametric resonance, a full re-analysis is normally required. To avoid this tedious task, many works present often only a simplified linear treatment of the problem. In order to surpass this circumstance in the future, we provide a fitting analysis of parametric resonance through all its relevant stages: initial linear growth, non-linear evolution, and relaxation towards equilibrium. Using lattice simulations in an expanding grid in $3+1$ dimensions, we parametrise the dynamics' outcome scanning over the relevant ingredients: role of the oscillatory field, particle coupling strength, initial conditions, and background expansion rate. We emphasise the inaccuracy of the linear calculation of the decay time of the oscillatory field, and propose a more appropriate definition of this scale based on the subsequ...

  8. Mathematical Model of Stress-Strain State of Curved Tube of Non-Circular Cross-Section with Account of Technological Wall Thickness Variation

    Science.gov (United States)

    Pirogov, S. P.; Ustinov, N. N.; Smolin, N. I.

    2018-05-01

    A mathematical model of the stress-strain state of a curved tube of a non-circular cross-section is presented, taking into account the technological wall thickness variation. On the basis of the semi-membrane shell theory, a system of linear differential equations describing the deformation of a tube under the effect of pressure is obtained. To solve the boundary value problem, the method of shooting is applied. The adequacy of the proposed mathematical model is verified by comparison with the experimental data and the results of the calculation of tubes by the energy method.

  9. Non linear microtearing modes

    International Nuclear Information System (INIS)

    Garbet, X.; Mourgues, F.; Samain, A.

    1987-01-01

    Among the various instabilities which could explain the anomalous electron heat transport observed in tokamaks during additional heating, a microtearing turbulence is a reasonable candidate since it affects directly the magnetic topology. This turbulence may be described in a proper frame rotating around the majors axis by a static potential vector. In strong non linear regimes, the flow of electrons along the stochastic field lines induces a current. The point is to know whether this current can sustain the turbulence. The mechanisms of this self-consistency, involving the combined effects of the thermal diamagnetism and of the electric drift are presented here

  10. Non linear effects in piezoelectric materials

    Directory of Open Access Journals (Sweden)

    Gonnard, P.

    2002-02-01

    Full Text Available The static and dynamic non-linear behaviours of a soft and a hard zirconate titanate composition are investigated in this paper as a function of electrical and mechanical fields. The calculated Rayleigh coefficients show that they are similar for the permittivity ε T33 and the piezoelectric constant and nul for the voltage constant d33 and the compliance at zero D (D = dielectric displacement. A non-linear electromechanical equivalent circuit is built up with components proportional to D. Finally an extended model to non-Rayleigh type behaviours is proposed.

    Los comportamientos no lineales estáticos y dinámicos de composiciones blandas y duras de titanato circonato de plomo se investigan en este trabajo en función de campos eléctricos y mecánicos. Los coeficientes de Rayleigh calculados son similares para la permitividad εT33 y la constantes piezoléctrica d33 y nulos para la constante g33 y la complianza a D cero (D=desplazamiento dieléctrico. Se construye un circuito electromecánico no lineal equivalente con componentes proporcionales a D. Finalmente se propone un modelo extendido a comportamientos de tipo no-Rayleigh.

  11. Illusory Paschen curves associated with strongly electronegative gases

    DEFF Research Database (Denmark)

    McAllister, Iain Wilson

    1991-01-01

    Using analytical linear regression analysis, it is shown that, for a strongly electronegative gas, the (direct) breakdown voltage curve obtained with a moderately nonuniform field is effectively linear. For a strongly electronegative gas, breakdown voltage measurements made on a moderately...... nonuniform field test gap give rise to an apparently liner curve. The curve can be designated a Paschen curve, but the erroneous nature of this designation becomes apparent from a linear regression analysis of the experimental breakdown data...

  12. Construction of long-term isochronous stress-strain curves by a modeling of short-term creep curves for a Grade 9Cr-1Mo steel

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Yin, Song-Nan; Koo, Gyeong-Hoi

    2009-01-01

    This study dealt with the construction of long-term isochronous stress-strain curves (ISSC) by a modeling of short-term creep curves for a Grade 9Cr-1Mo steel (G91) which is a candidate material for structural applications in the next generation nuclear reactors as well as in fusion reactors. To do this, tensile material data used in the inelastic constitutive equations was obtained by tensile tests at 550degC. Creep curves were obtained by a series of creep tests with different stress levels of 300MPa to 220MPa at an identical controlled temperature of 550degC. On the basis of these experimental data, the creep curves were characterized by Garofalo's creep model. Three parameters of P 1 , P 2 and P 3 in Garofalo's model were properly optimized by a nonlinear least square fitting (NLSF) analysis. The stress dependency of the three parameters was found to be a linear relationship. But, the P 3 parameter representing the steady state creep rate exhibited a two slope behavior with different stress exponents at a transient stress of about 250 MPa. The long-term creep curves of the G91 steel was modeled by Garofalo's model with only a few short-term creep data. Using the modeled creep curves, the long-term isochronous curves up to 10 5 hours were successfully constructed. (author)

  13. A spline-based non-linear diffeomorphism for multimodal prostate registration.

    Science.gov (United States)

    Mitra, Jhimli; Kato, Zoltan; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Sidibé, Désiré; Ghose, Soumya; Vilanova, Joan C; Comet, Josep; Meriaudeau, Fabrice

    2012-08-01

    This paper presents a novel method for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape representations is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained as the least-squares solution of an over-determined system of non-linear equations constructed by integrating a set of non-linear functions over the fixed and moving images. However, this may not result in clinically acceptable transformations of the anatomical targets. Therefore, the regularized bending energy of the thin-plate splines along with the localization error of established correspondences should be included in the system of equations. The registration accuracies of the proposed method are evaluated in 20 pairs of prostate mid-gland ultrasound and magnetic resonance images. The results obtained in terms of Dice similarity coefficient show an average of 0.980±0.004, average 95% Hausdorff distance of 1.63±0.48 mm and mean target registration and target localization errors of 1.60±1.17 mm and 0.15±0.12 mm respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Non-Uniformity Correction Using Nonlinear Characteristic Performance Curves for Calibration

    Science.gov (United States)

    Lovejoy, McKenna Roberts

    Infrared imaging is an expansive field with many applications. Advances in infrared technology have lead to a greater demand from both commercial and military sectors. However, a known problem with infrared imaging is its non-uniformity. This non-uniformity stems from the fact that each pixel in an infrared focal plane array has its own photoresponse. Many factors such as exposure time, temperature, and amplifier choice affect how the pixels respond to incoming illumination and thus impact image uniformity. To improve performance non-uniformity correction (NUC) techniques are applied. Standard calibration based techniques commonly use a linear model to approximate the nonlinear response. This often leaves unacceptable levels of residual non-uniformity. Calibration techniques often have to be repeated during use to continually correct the image. In this dissertation alternates to linear NUC algorithms are investigated. The goal of this dissertation is to determine and compare nonlinear non-uniformity correction algorithms. Ideally the results will provide better NUC performance resulting in less residual non-uniformity as well as reduce the need for recalibration. This dissertation will consider new approaches to nonlinear NUC such as higher order polynomials and exponentials. More specifically, a new gain equalization algorithm has been developed. The various nonlinear non-uniformity correction algorithms will be compared with common linear non-uniformity correction algorithms. Performance will be compared based on RMS errors, residual non-uniformity, and the impact quantization has on correction. Performance will be improved by identifying and replacing bad pixels prior to correction. Two bad pixel identification and replacement techniques will be investigated and compared. Performance will be presented in the form of simulation results as well as before and after images taken with short wave infrared cameras. The initial results show, using a third order

  15. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    Science.gov (United States)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  16. Stochastic development regression on non-linear manifolds

    DEFF Research Database (Denmark)

    Kühnel, Line; Sommer, Stefan Horst

    2017-01-01

    We introduce a regression model for data on non-linear manifolds. The model describes the relation between a set of manifold valued observations, such as shapes of anatomical objects, and Euclidean explanatory variables. The approach is based on stochastic development of Euclidean diffusion...... processes to the manifold. Defining the data distribution as the transition distribution of the mapped stochastic process, parameters of the model, the non-linear analogue of design matrix and intercept, are found via maximum likelihood. The model is intrinsically related to the geometry encoded...... in the connection of the manifold. We propose an estimation procedure which applies the Laplace approximation of the likelihood function. A simulation study of the performance of the model is performed and the model is applied to a real dataset of Corpus Callosum shapes....

  17. Anthropometric measures as fitness indicators in primary school children: The Health Oriented Pedagogical Project (HOPP).

    Science.gov (United States)

    Mamen, Asgeir; Fredriksen, Per Morten

    2018-05-01

    As children's fitness continues to decline, frequent and systematic monitoring of fitness is important. Easy-to-use and low-cost methods with acceptable accuracy are essential in screening situations. This study aimed to investigate how the measurements of body mass index (BMI), waist circumference (WC) and waist-to-height ratio (WHtR) relate to selected measurements of fitness in children. A total of 1731 children from grades 1 to 6 were selected who had a complete set of height, body mass, running performance, handgrip strength and muscle mass measurements. A composite fitness score was established from the sum of sex- and age-specific z-scores for the variables running performance, handgrip strength and muscle mass. This fitness z-score was compared to z-scores and quartiles of BMI, WC and WHtR using analysis of variance, linear regression and receiver operator characteristic analysis. The regression analysis showed that z-scores for BMI, WC and WHtR all were linearly related to the composite fitness score, with WHtR having the highest R 2 at 0.80. The correct classification of fit and unfit was relatively high for all three measurements. WHtR had the best prediction of fitness of the three with an area under the curve of 0.92 ( p fit and unfit in this population.

  18. Application of semi-empirical modeling and non-linear regression to unfolding fast neutron spectra from integral reaction rate data

    International Nuclear Information System (INIS)

    Harker, Y.D.

    1976-01-01

    A semi-empirical analytical expression representing a fast reactor neutron spectrum has been developed. This expression was used in a non-linear regression computer routine to obtain from measured multiple foil integral reaction data the neutron spectrum inside the Coupled Fast Reactivity Measurement Facility. In this application six parameters in the analytical expression for neutron spectrum were adjusted in the non-linear fitting process to maximize consistency between calculated and measured integral reaction rates for a set of 15 dosimetry detector foils. In two-thirds of the observations the calculated integral agreed with its respective measured value to within the experimental standard deviation, and in all but one case agreement within two standard deviations was obtained. Based on this quality of fit the estimated 70 to 75 percent confidence intervals for the derived spectrum are 10 to 20 percent for the energy range 100 eV to 1 MeV, 10 to 50 percent for 1 MeV to 10 MeV and 50 to 90 percent for 10 MeV to 18 MeV. The analytical model has demonstrated a flexibility to describe salient features of neutron spectra of the fast reactor type. The use of regression analysis with this model has produced a stable method to derive neutron spectra from a limited amount of integral data

  19. Interior-Point Method for Non-Linear Non-Convex Optimization

    Czech Academy of Sciences Publication Activity Database

    Lukšan, Ladislav; Matonoha, Ctirad; Vlček, Jan

    2004-01-01

    Roč. 11, č. 5-6 (2004), s. 431-453 ISSN 1070-5325 R&D Projects: GA AV ČR IAA1030103 Institutional research plan: CEZ:AV0Z1030915 Keywords : non-linear programming * interior point methods * indefinite systems * indefinite preconditioners * preconditioned conjugate gradient method * merit functions * algorithms * computational experiments Subject RIV: BA - General Mathematics Impact factor: 0.727, year: 2004

  20. Nonlinear Growth Curves in Developmental Research

    Science.gov (United States)

    Grimm, Kevin J.; Ram, Nilam; Hamagami, Fumiaki

    2011-01-01

    Developmentalists are often interested in understanding change processes and growth models are the most common analytic tool for examining such processes. Nonlinear growth curves are especially valuable to developmentalists because the defining characteristics of the growth process such as initial levels, rates of change during growth spurts, and asymptotic levels can be estimated. A variety of growth models are described beginning with the linear growth model and moving to nonlinear models of varying complexity. A detailed discussion of nonlinear models is provided, highlighting the added insights into complex developmental processes associated with their use. A collection of growth models are fit to repeated measures of height from participants of the Berkeley Growth and Guidance Studies from early childhood through adulthood. PMID:21824131

  1. A simple non-parametric goodness-of-fit test for elliptical copulas

    Directory of Open Access Journals (Sweden)

    Jaser Miriam

    2017-12-01

    Full Text Available In this paper, we propose a simple non-parametric goodness-of-fit test for elliptical copulas of any dimension. It is based on the equality of Kendall’s tau and Blomqvist’s beta for all bivariate margins. Nominal level and power of the proposed test are investigated in a Monte Carlo study. An empirical application illustrates our goodness-of-fit test at work.

  2. Thermal-Induced Non-linearity of Ag Nano-fluid Prepared using γ-Radiation Method

    International Nuclear Information System (INIS)

    Esmaeil Shahriari; Wan Mahmood Mat Yunus; Zainal Abidin Talib; Elias Saion

    2011-01-01

    The non-linear refractive index of Ag nano-fluids prepared by γ-radiation method was investigated using a single beam z-scan technique. Under CW 532 nm laser excitation with power output of 40 mW, the Ag nano-fluids showed a large thermal-induced non-linear refractive index. In the present work it was determined that the non-linear refractive index for Ag nano-fluids is -4.80x10 -8 cm 2 / W. The value of Δn 0 was calculated to be -2.05x10 -4 . Our measurements also confirmed that the non-linear phenomenon was caused by the self-defocusing process making them good candidates for non linear optical devices. (author)

  3. Compressor Surge Control Design Using Linear Matrix Inequality Approach

    OpenAIRE

    Uddin, Nur; Gravdahl, Jan Tommy

    2017-01-01

    A novel design for active compressor surge control system (ASCS) using linear matrix inequality (LMI) approach is presented and including a case study on piston-actuated active compressor surge control system (PAASCS). The non-linear system dynamics of the PAASCS is transformed into linear parameter varying (LPV) system dynamics. The system parameters are varying as a function of the compressor performance curve slope. A compressor surge stabilization problem is then formulated as a LMI probl...

  4. A Non-linear Stochastic Model for an Office Building with Air Infiltration

    DEFF Research Database (Denmark)

    Thavlov, Anders; Madsen, Henrik

    2015-01-01

    This paper presents a non-linear heat dynamic model for a multi-room office building with air infiltration. Several linear and non-linear models, with and without air infiltration, are investigated and compared. The models are formulated using stochastic differential equations and the model...

  5. Non-linear and signal energy optimal asymptotic filter design

    Directory of Open Access Journals (Sweden)

    Josef Hrusak

    2003-10-01

    Full Text Available The paper studies some connections between the main results of the well known Wiener-Kalman-Bucy stochastic approach to filtering problems based mainly on the linear stochastic estimation theory and emphasizing the optimality aspects of the achieved results and the classical deterministic frequency domain linear filters such as Chebyshev, Butterworth, Bessel, etc. A new non-stochastic but not necessarily deterministic (possibly non-linear alternative approach called asymptotic filtering based mainly on the concepts of signal power, signal energy and a system equivalence relation plays an important role in the presentation. Filtering error invariance and convergence aspects are emphasized in the approach. It is shown that introducing the signal power as the quantitative measure of energy dissipation makes it possible to achieve reasonable results from the optimality point of view as well. The property of structural energy dissipativeness is one of the most important and fundamental features of resulting filters. Therefore, it is natural to call them asymptotic filters. The notion of the asymptotic filter is carried in the paper as a proper tool in order to unify stochastic and non-stochastic, linear and nonlinear approaches to signal filtering.

  6. Comparison of equivalent linear and non linear methods on ground response analysis: case study at West Bangka site

    International Nuclear Information System (INIS)

    Eko Rudi Iswanto; Eric Yee

    2016-01-01

    Within the framework of identifying NPP sites, site surveys are performed in West Bangka (WB), Bangka-Belitung Island Province. Ground response analysis of a potential site has been carried out using peak strain profiles and peak ground acceleration. The objective of this research is to compare Equivalent Linear (EQL) and Non Linear (NL) methods of ground response analysis on the selected NPP site (West Bangka) using Deep Soil software. Equivalent linear method is widely used because requires soil data in simple way and short time of computational process. On the other hand, non linear method is capable of representing the actual soil behaviour by considering non linear soil parameter. The results showed that EQL method has similar trends to NL method. At surface layer, the acceleration values for EQL and NL methods are resulted as 0.425 g and 0.375 g respectively. NL method is more reliable in capturing higher frequencies of spectral acceleration compared to EQL method. (author)

  7. Non-linear Capital Taxation Without Commitment

    OpenAIRE

    Emmanuel Farhi; Christopher Sleet; Iván Werning; Sevin Yeltekin

    2012-01-01

    We study efficient non-linear taxation of labour and capital in a dynamic Mirrleesian model incorporating political economy constraints. Policies are chosen sequentially over time, without commitment. Our main result is that the marginal tax on capital income is progressive, in the sense that richer agents face higher marginal tax rates. Copyright , Oxford University Press.

  8. Sphaleron in a non-linear sigma model

    International Nuclear Information System (INIS)

    Sogo, Kiyoshi; Fujimoto, Yasushi.

    1989-08-01

    We present an exact classical saddle point solution in a non-linear sigma model. It has a topological charge 1/2 and mediates the vacuum transition. The quantum fluctuations and the transition rate are also examined. (author)

  9. Development of non-linear TWB parts

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.; Yoon, C.S.; Lim, J.D. [Hyundai Motor Company and Kia Motors Corp. (Korea). Advanced Technology Center; Park, H.C. [Hyundai Hysco (Korea). Technical Research Lab.

    2005-07-01

    New manufacturing methods have applied for automotive parts to reduce total weight of car, resulting in improvement of fuel efficiency. TWB technique is applied to auto body parts, especially door inner, side inner and outer panel, and center floor panel to accomplish this goal. We applied non-linear (circular welded) TWB to shock absorber housing (to reduce total weight of shock absorber housing assembly). Welding line and shape of blank were determined by FEM analysis. High formability steel sheet and 440MPa grade high strength steel sheet were laser welded and press formed to final shock absorber housing (S/ABS HSG) panel and assembled with other sub parts. As a result, more than 10% of total weight of shock absorber housing assembly could be reduced compared with the mass of same part manufactured by conventional method. Also circular welding technique made it possible to design optimum welding line of TWB part. This paper is about result of FEM analysis and development procedure of non-linear TWB part (shock absorber housing assembly). (orig.)

  10. Applicability of refined Born approximation to non-linear equations

    International Nuclear Information System (INIS)

    Rayski, J.

    1990-01-01

    A computational method called ''Refined Born Approximation'', formerly applied exclusively to linear problems, is shown to be successfully applicable also to non-linear problems enabling me to compute bifurcations and other irregular solutions which cannot be obtained by the standard perturbation procedures. (author)

  11. A method for fitting regression splines with varying polynomial order in the linear mixed model.

    Science.gov (United States)

    Edwards, Lloyd J; Stewart, Paul W; MacDougall, James E; Helms, Ronald W

    2006-02-15

    The linear mixed model has become a widely used tool for longitudinal analysis of continuous variables. The use of regression splines in these models offers the analyst additional flexibility in the formulation of descriptive analyses, exploratory analyses and hypothesis-driven confirmatory analyses. We propose a method for fitting piecewise polynomial regression splines with varying polynomial order in the fixed effects and/or random effects of the linear mixed model. The polynomial segments are explicitly constrained by side conditions for continuity and some smoothness at the points where they join. By using a reparameterization of this explicitly constrained linear mixed model, an implicitly constrained linear mixed model is constructed that simplifies implementation of fixed-knot regression splines. The proposed approach is relatively simple, handles splines in one variable or multiple variables, and can be easily programmed using existing commercial software such as SAS or S-plus. The method is illustrated using two examples: an analysis of longitudinal viral load data from a study of subjects with acute HIV-1 infection and an analysis of 24-hour ambulatory blood pressure profiles.

  12. Characterization of Type Ia Supernova Light Curves Using Principal Component Analysis of Sparse Functional Data

    Science.gov (United States)

    He, Shiyuan; Wang, Lifan; Huang, Jianhua Z.

    2018-04-01

    With growing data from ongoing and future supernova surveys, it is possible to empirically quantify the shapes of SNIa light curves in more detail, and to quantitatively relate the shape parameters with the intrinsic properties of SNIa. Building such relationships is critical in controlling systematic errors associated with supernova cosmology. Based on a collection of well-observed SNIa samples accumulated in the past years, we construct an empirical SNIa light curve model using a statistical method called the functional principal component analysis (FPCA) for sparse and irregularly sampled functional data. Using this method, the entire light curve of an SNIa is represented by a linear combination of principal component functions, and the SNIa is represented by a few numbers called “principal component scores.” These scores are used to establish relations between light curve shapes and physical quantities such as intrinsic color, interstellar dust reddening, spectral line strength, and spectral classes. These relations allow for descriptions of some critical physical quantities based purely on light curve shape parameters. Our study shows that some important spectral feature information is being encoded in the broad band light curves; for instance, we find that the light curve shapes are correlated with the velocity and velocity gradient of the Si II λ6355 line. This is important for supernova surveys (e.g., LSST and WFIRST). Moreover, the FPCA light curve model is used to construct the entire light curve shape, which in turn is used in a functional linear form to adjust intrinsic luminosity when fitting distance models.

  13. Estimation of non-linear effective permeability of magnetic materials with fine structure

    International Nuclear Information System (INIS)

    Waki, H.; Igarashi, H.; Honma, T.

    2006-01-01

    This paper describes a homogenization method for magnetic materials with fine structure. In this method, the structures of the magnetic materials are assumed to be periodic, and the unit cell is defined. The effective permeability is determined on the basis of magnetic energy balance in the unit cell. This method can be applied not only for linear problems but also for non-linear ones. In this paper, estimation of the effective permeability of non-linear magnetic materials by using the homogenization method is described in detail, and then the validity for the non-liner problems is tested for two-dimensional problems. It is shown that this homogenization method gives accurate non-linear effective permeability

  14. Modeling geologic storage of carbon dioxide: Comparison of non-hysteretic and hysteretic characteristic curves

    International Nuclear Information System (INIS)

    Doughty, Christine

    2007-01-01

    Numerical models of geologic storage of carbon dioxide (CO 2 ) in brine-bearing formations use characteristic curves to represent the interactions of non-wetting-phase CO 2 and wetting-phase brine. When a problem includes both injection of CO 2 (a drainage process) and its subsequent post-injection evolution (a combination of drainage and wetting), hysteretic characteristic curves are required to correctly capture the behavior of the CO 2 plume. In the hysteretic formulation, capillary pressure and relative permeability depend not only on the current grid-block saturation, but also on the history of the saturation in the grid block. For a problem that involves only drainage or only wetting, a non-hysteretic formulation, in which capillary pressure and relative permeability depend only on the current value of the grid-block saturation, is adequate. For the hysteretic formulation to be robust computationally, care must be taken to ensure the differentiability of the characteristic curves both within and beyond the turning-point saturations where transitions between branches of the curves occur. Two example problems involving geologic CO 2 storage are simulated with TOUGH2, a multiphase, multicomponent code for flow and transport through geological media. Both non-hysteretic and hysteretic formulations are used, to illustrate the applicability and limitations of non-hysteretic methods. The first application considers leakage of CO 2 from the storage formation to the ground surface, while the second examines the role of heterogeneity within the storage formation

  15. Exploration and extension of an improved Riemann track fitting algorithm

    Science.gov (United States)

    Strandlie, A.; Frühwirth, R.

    2017-09-01

    Recently, a new Riemann track fit which operates on translated and scaled measurements has been proposed. This study shows that the new Riemann fit is virtually as precise as popular approaches such as the Kalman filter or an iterative non-linear track fitting procedure, and significantly more precise than other, non-iterative circular track fitting approaches over a large range of measurement uncertainties. The fit is then extended in two directions: first, the measurements are allowed to lie on plane sensors of arbitrary orientation; second, the full error propagation from the measurements to the estimated circle parameters is computed. The covariance matrix of the estimated track parameters can therefore be computed without recourse to asymptotic properties, and is consequently valid for any number of observation. It does, however, assume normally distributed measurement errors. The calculations are validated on a simulated track sample and show excellent agreement with the theoretical expectations.

  16. Global non-linear effect of temperature on economic production.

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M; Miguel, Edward

    2015-11-12

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  17. Global non-linear effect of temperature on economic production

    Science.gov (United States)

    Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward

    2015-11-01

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  18. A comparison between linear and non-linear analysis of flexible pavements

    Energy Technology Data Exchange (ETDEWEB)

    Soleymani, H.R.; Berthelot, C.F.; Bergan, A.T. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Mechanical Engineering

    1995-12-31

    Computer pavement analysis programs, which are based on mathematical simulation models, were compared. The programs included in the study were: ELSYM5, an Elastic Linear (EL) pavement analysis program, MICH-PAVE, a Finite Element Non-Linear (FENL) and Finite Element Linear (FEL) pavement analysis program. To perform the analysis different tire pressures, pavement material properties and asphalt layer thicknesses were selected. Evaluation criteria used in the analysis were tensile strain in bottom of the asphalt layer, vertical compressive strain at the top of the subgrade and surface displacement. Results showed that FENL methods predicted more strain and surface deflection than the FEL and EL analysis methods. Analyzing pavements with FEL does not offer many advantages over the EL method. Differences in predicted strains between the three methods of analysis in some cases was found to be close to 100% It was suggested that these programs require more calibration and validation both theoretically and empirically to accurately correlate with field observations. 19 refs., 4 tabs., 9 figs.

  19. Effects of collisions on linear and non-linear spectroscopic line shapes

    International Nuclear Information System (INIS)

    Berman, P.R.

    1978-01-01

    A fundamental physical problem is the determination of atom-atom, atom-molecule and molecule-molecule differential and total scattering cross sections. In this work, a technique for studying atomic and molecular collisions using spectroscopic line shape analysis is discussed. Collisions occurring within an atomic or molecular sample influence the sample's absorptive or emissive properties. Consequently the line shapes associated with the linear or non-linear absorption of external fields by an atomic system reflect the collisional processes occurring in the gas. Explicit line shape expressions are derived characterizing linear or saturated absorption by two-or three-level 'active' atoms which are undergoing collisions with perturber atoms. The line shapes may be broadened, shifted, narrowed, or distorted as a result of collisions which may be 'phase-interrupting' or 'velocity-changing' in nature. Systematic line shape studies can be used to obtain information on both the differential and total active atom-perturber scattering cross sections. (Auth.)

  20. Analysis of separation test for automatic brake adjuster based on linear radon transformation

    Science.gov (United States)

    Luo, Zai; Jiang, Wensong; Guo, Bin; Fan, Weijun; Lu, Yi

    2015-01-01

    The linear Radon transformation is applied to extract inflection points for online test system under the noise conditions. The linear Radon transformation has a strong ability of anti-noise and anti-interference by fitting the online test curve in several parts, which makes it easy to handle consecutive inflection points. We applied the linear Radon transformation to the separation test system to solve the separating clearance of automatic brake adjuster. The experimental results show that the feature point extraction error of the gradient maximum optimal method is approximately equal to ±0.100, while the feature point extraction error of linear Radon transformation method can reach to ±0.010, which has a lower error than the former one. In addition, the linear Radon transformation is robust.

  1. Non-ideal assembly of the driving unit affecting shape of load-displacement curves

    International Nuclear Information System (INIS)

    Huang, Hu; Zhao, Hongwei

    2015-01-01

    The results of nanoindentation testing strongly rely on load-displacement curves, but an abnormal load-displacement curve with obvious inflection in the unloading portion was commonly observed in previously published papers and the reason is not clear. In this paper, possible reasons involved in a custom-made indentation instrument, such as sensors, control and assembly issues, are analyzed and discussed step by step. Experimental results indicate that non-ideal assembly of the precision driving unit strongly affects the shape of the load-displacement curve and its affecting mechanism is studied by theoretical analysis and finite element simulations. This paper reveals the reason leading to the abnormal load-displacement curve, which is helpful for debugging of indentation instruments and can enhance comparability of indentation results. (paper)

  2. Approximate Stream Function wavemaker theory for highly non-linear waves in wave flumes

    DEFF Research Database (Denmark)

    Zhang, H.W.; Schäffer, Hemming Andreas

    2007-01-01

    An approximate Stream Function wavemaker theory for highly non-linear regular waves in flumes is presented. This theory is based on an ad hoe unified wave-generation method that combines linear fully dispersive wavemaker theory and wave generation for non-linear shallow water waves. This is done...... by applying a dispersion correction to the paddle position obtained for non-linear long waves. The method is validated by a number of wave flume experiments while comparing with results of linear wavemaker theory, second-order wavemaker theory and Cnoidal wavemaker theory within its range of application....

  3. Creep curve modeling of hastelloy-X alloy by using the theta projection method

    International Nuclear Information System (INIS)

    Woo Gon, Kim; Woo-Seog, Ryu; Jong-Hwa, Chang; Song-Nan, Yin

    2007-01-01

    To model the creep curves of the Hastelloy-X alloy which is being considered as a candidate material for the VHTR (Very High Temperature gas-cooled Reactor) components, full creep curves were obtained by constant-load creep tests for different stress levels at 950 C degrees. Using the experimental creep data, the creep curves were modeled by applying the Theta projection method. A number of computing processes of a nonlinear least square fitting (NLSF) analysis was carried out to establish the suitably of the four Theta parameters. The results showed that the Θ 1 and Θ 2 parameters could not be optimized well with a large error during the fitting of the full creep curves. On the other hand, the Θ 3 and Θ 4 parameters were optimized well without an error. For this result, to find a suitable cutoff strain criterion, the NLSF analysis was performed with various cutoff strains for all the creep curves. An optimum cutoff strain range for defining the four Theta parameters accurately was found to be a 3% cutoff strain. At the 3% cutoff strain, the predicted curves coincided well with the experimental ones. The variation of the four Theta parameters as the function of a stress showed a good linearity, and the creep curves were modeled well for the low stress levels. Predicted minimum creep rate showed a good agreement with the experimental data. Also, for a design usage of the Hastelloy-X alloy, the plot of the log stress versus log the time to a 1% strain was predicted, and the creep rate curves with time and a cutoff strain at 950 C degrees were constructed numerically for a wide rang of stresses by using the Theta projection method. (authors)

  4. Regression of non-linear coupling of noise in LIGO detectors

    Science.gov (United States)

    Da Silva Costa, C. F.; Billman, C.; Effler, A.; Klimenko, S.; Cheng, H.-P.

    2018-03-01

    In 2015, after their upgrade, the advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) detectors started acquiring data. The effort to improve their sensitivity has never stopped since then. The goal to achieve design sensitivity is challenging. Environmental and instrumental noise couple to the detector output with different, linear and non-linear, coupling mechanisms. The noise regression method we use is based on the Wiener–Kolmogorov filter, which uses witness channels to make noise predictions. We present here how this method helped to determine complex non-linear noise couplings in the output mode cleaner and in the mirror suspension system of the LIGO detector.

  5. A non-linear model of economic production processes

    Science.gov (United States)

    Ponzi, A.; Yasutomi, A.; Kaneko, K.

    2003-06-01

    We present a new two phase model of economic production processes which is a non-linear dynamical version of von Neumann's neoclassical model of production, including a market price-setting phase as well as a production phase. The rate of an economic production process is observed, for the first time, to depend on the minimum of its input supplies. This creates highly non-linear supply and demand dynamics. By numerical simulation, production networks are shown to become unstable when the ratio of different products to total processes increases. This provides some insight into observed stability of competitive capitalist economies in comparison to monopolistic economies. Capitalist economies are also shown to have low unemployment.

  6. SU-F-I-63: Relaxation Times of Lipid Resonances in NAFLD Animal Model Using Enhanced Curve Fitting

    Energy Technology Data Exchange (ETDEWEB)

    Song, K-H; Yoo, C-H; Lim, S-I; Choe, B-Y [Department of Biomedical Engineering, and Research Institute of Biomedical Engineering, The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: The objective of this study is to evaluate the relaxation time of methylene resonance in comparison with other lipid resonances. Methods: The examinations were performed on a 3.0T MRI scanner using a four-channel animal coil. Eight more Sprague-Dawley rats in the same baseline weight range were housed with ad libitum access to water and a high-fat (HF) diet (60% fat, 20% protein, and 20% carbohydrate). In order to avoid large blood vessels, a voxel (0.8×0.8×0.8 cm{sup 3}) was placed in a homogeneous area of the liver parenchyma during free breathing. Lipid relaxations in NC and HF diet rats were estimated at a fixed repetition time (TR) of 6000 msec, and multi echo time (TEs) of 40–220 msec. All spectra for data measurement were processed using the Advanced Method for Accurate, Robust, and Efficient Spectral (AMARES) fitting algorithm of the Java-based Magnetic Resonance User Interface (jMRUI) package. Results: The mean T2 relaxation time of the methylene resonance in normal-chow diet was 37.1 msec (M{sub 0}, 2.9±0.5), with a standard deviation of 4.3 msec. The mean T2 relaxation time of the methylene resonance was 31.4 msec (M{sub 0}, 3.7±0.3), with a standard deviation of 1.8 msec. The T2 relaxation times of methylene protons were higher in normal-chow diet rats than in HF rats (p<0.05), and the extrapolated M{sub 0} values were higher in HF rats than in NC rats (p<0.005). The excellent linear fit with R{sup 2}>0.9971 and R{sup 2}>0.9987 indicates T2 relaxation decay curves with mono-exponential function. Conclusion: In in vivo, a sufficient spectral resolution and a sufficiently high signal-to-noise ratio (SNR) can be achieved, so that the data measured over short TE values can be extrapolated back to TE = 0 to produce better estimates of the relative weights of the spectral components. In the short term, treating the effective decay rate as exponential is an adequate approximation.

  7. Non-linear dielectric spectroscopy of microbiological suspensions

    Science.gov (United States)

    Treo, Ernesto F; Felice, Carmelo J

    2009-01-01

    Background Non-linear dielectric spectroscopy (NLDS) of microorganism was characterized by the generation of harmonics in the polarization current when a microorganism suspension was exposed to a sinusoidal electric field. The biological nonlinear response initially described was not well verified by other authors and the results were susceptible to ambiguous interpretation. In this paper NLDS was performed to yeast suspension in tripolar and tetrapolar configuration with a recently developed analyzer. Methods Tripolar analysis was carried out by applying sinusoidal voltages up to 1 V at the electrode interface. Tetrapolar analysis was carried on with sinusoidal field strengths from 0.1 V cm-1 to 70 V cm-1. Both analyses were performed within a frequency range from 1 Hz through 100 Hz. The harmonic amplitudes were Fourier-analyzed and expressed in dB. The third harmonic, as reported previously, was investigated. Statistical analysis (ANOVA) was used to test the effect of inhibitor an activator of the plasma membrane enzyme in the measured response. Results No significant non-linearities were observed in tetrapolar analysis, and no observable changes occurred when inhibitor and activator were added to the suspension. Statistical analysis confirmed these results. When a pure sinus voltage was applied to an electrode-yeast suspension interface, variations higher than 25 dB for the 3rd harmonic were observed. Variation higher than 20 dB in the 3rd harmonics has also been found when adding an inhibitor or activator of the membrane-bounded enzymes. These variations did not occur when the suspension was boiled. Discussion The lack of result in tetrapolar cells suggest that there is no, if any, harmonic generation in microbiological bulk suspension. The non-linear response observed was originated in the electrode-electrolyte interface. The frequency and voltage windows observed in previous tetrapolar analysis were repeated in the tripolar measurements, but maximum were not

  8. Non-linear dielectric spectroscopy of microbiological suspensions

    Directory of Open Access Journals (Sweden)

    Felice Carmelo J

    2009-09-01

    Full Text Available Abstract Background Non-linear dielectric spectroscopy (NLDS of microorganism was characterized by the generation of harmonics in the polarization current when a microorganism suspension was exposed to a sinusoidal electric field. The biological nonlinear response initially described was not well verified by other authors and the results were susceptible to ambiguous interpretation. In this paper NLDS was performed to yeast suspension in tripolar and tetrapolar configuration with a recently developed analyzer. Methods Tripolar analysis was carried out by applying sinusoidal voltages up to 1 V at the electrode interface. Tetrapolar analysis was carried on with sinusoidal field strengths from 0.1 V cm-1 to 70 V cm-1. Both analyses were performed within a frequency range from 1 Hz through 100 Hz. The harmonic amplitudes were Fourier-analyzed and expressed in dB. The third harmonic, as reported previously, was investigated. Statistical analysis (ANOVA was used to test the effect of inhibitor an activator of the plasma membrane enzyme in the measured response. Results No significant non-linearities were observed in tetrapolar analysis, and no observable changes occurred when inhibitor and activator were added to the suspension. Statistical analysis confirmed these results. When a pure sinus voltage was applied to an electrode-yeast suspension interface, variations higher than 25 dB for the 3rd harmonic were observed. Variation higher than 20 dB in the 3rd harmonics has also been found when adding an inhibitor or activator of the membrane-bounded enzymes. These variations did not occur when the suspension was boiled. Discussion The lack of result in tetrapolar cells suggest that there is no, if any, harmonic generation in microbiological bulk suspension. The non-linear response observed was originated in the electrode-electrolyte interface. The frequency and voltage windows observed in previous tetrapolar analysis were repeated in the tripolar

  9. New classical r-matrices from integrable non-linear sigma-models

    International Nuclear Information System (INIS)

    Laartz, J.; Bordemann, M.; Forger, M.; Schaper, U.

    1993-01-01

    Non-linear sigma models on Riemannian symmetric spaces constitute the most general class of classical non-linear sigma models which are known to be integrable. Using the current algebra structure of these models their canonical structure is analyzed and it is shown that their non-ultralocal fundamental Poisson bracket relation is governed by a field dependent non antisymmetric r-matrix obeying a dynamical Yang Baxter equation. The fundamental Poisson bracket relations and the r-matrix are derived explicitly and a new kind of algebra is found that is supposed to replace the classical Yang Baxter algebra governing the canonical structure of ultralocal models. (Author) 9 refs

  10. Investigation of the growth patterns of non-functioning pituitary macroadenomas using volumetric assessments on serial MRI investigations

    Directory of Open Access Journals (Sweden)

    Jaco Pieterse

    2016-07-01

    Full Text Available Background: Benign non-functioning pituitary macroadenomas (NFMA often cause mass effect on the optic chiasm necessitating transsphenoidal surgery to prevent blindness.However, surgery is complicated and there is a high tumour recurrence rate. Currently, very little is known about the natural (and residual post-surgical growth patterns of these NFMA. Conflicting data describe decreased growth to exponential growth over various time periods.Due to lack of information on growth dynamics of these NFMA, suitable follow-up imaging protocols have not been described to date. Objective: To determine if NFMA grow or stay quiescent over a time period using serial MRI investigations and a stereo logical method to determine tumour volume. In addition, to evaluate if NFMA adhere to a certain growth pattern or grow at random. Method: Thirteen patients with NFMA had serial MRI investigations over a 73-month period at the Universitas Academic Hospital. Six of the selected patients had undergone previous surgery, while seven patients had received no medical or surgical intervention. By using astereological method, tumour volumes were calculated and plotted over time to demonstrate growth curves. The data were then fitted to tumour growth models already described in literature in order to obtain the best fit by calculating the r2 value. Results: Positive tumour growth was demonstrated in all cases. Tumour growth patterns of nine patients best fitted the exponential growth curve while the growth patterns of three patients best fitted the logistic growth curve. The remaining patient demonstrated a linear growth pattern. Conclusion: A specific growth model best described tumour growth observed in non-surgical and surgical cases. If follow-up imaging confirms positive growth, future growth can be predicted by extrapolation. This information can then be used to determine the relevant follow-up-imaging interval in each individual patient.

  11. Non-Linear Fibres for Widely Tunable Femtosecond Fibre Lasers

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard

    and numerically. For the intermodal four-wave mixing experiment an alternative version of the Generalised Non-Linear Schrödinger Equation is derived, which includes the correct dispersion of the transverse field. It is observed that the alternative version of the Generalised Non-Linear Schrödinger Equation......, as opposed to the commonly used version, is able to reproduce the intermodal four-wave mixing experiment. The relation between the intramodal self-phase modulation and the intramodal Raman effect is determined from experimental measurements on a number of step-index fibres. The Raman fraction is found...

  12. Numerical insight into the seismic behavior of eight masonry towers in Northern Italy: FE pushover vs non-linear dynamic analyses

    International Nuclear Information System (INIS)

    Milani, Gabriele; Valente, Marco

    2015-01-01

    This study presents some FE results regarding the behavior under horizontal loads of eight existing masonry towers located in the North-East of Italy. The towers, albeit unique for geometric and architectural features, show some affinities which justify a comparative analysis, as for instance the location and the similar masonry material. Their structural behavior under horizontal loads is therefore influenced by geometrical issues, such as slenderness, walls thickness, perforations, irregularities, presence of internal vaults, etc., all features which may be responsible for a peculiar output. The geometry of the towers is deduced from both existing available documentation and in-situ surveys. On the basis of such geometrical data, a detailed 3D realistic mesh is conceived, with a point by point characterization of each single geometric element. The FE models are analysed under seismic loads acting along geometric axes of the plan section, both under non-linear static (pushover) and non-linear dynamic excitation assumptions. A damage-plasticity material model exhibiting softening in both tension and compression, already available in the commercial code Abaqus, is used for masonry. Pushover analyses are performed with both G1 and G2 horizontal loads distribution, according to Italian code requirements, along X+/− and Y+/− directions. Non-linear dynamic analyses are performed along both X and Y directions with a real accelerogram scaled to different peak ground accelerations. Some few results are presented in this paper. It is found that the results obtained with pushover analyses reasonably well fit expensive non-linear dynamic simulations, with a slightly less conservative trend

  13. Numerical insight into the seismic behavior of eight masonry towers in Northern Italy: FE pushover vs non-linear dynamic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Milani, Gabriele, E-mail: milani@stru.polimi.it, E-mail: gabriele.milani@polimi.it; Valente, Marco [Department of Architecture, Built Environment and Construction Engineering (ABC), Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan (Italy)

    2015-12-31

    This study presents some FE results regarding the behavior under horizontal loads of eight existing masonry towers located in the North-East of Italy. The towers, albeit unique for geometric and architectural features, show some affinities which justify a comparative analysis, as for instance the location and the similar masonry material. Their structural behavior under horizontal loads is therefore influenced by geometrical issues, such as slenderness, walls thickness, perforations, irregularities, presence of internal vaults, etc., all features which may be responsible for a peculiar output. The geometry of the towers is deduced from both existing available documentation and in-situ surveys. On the basis of such geometrical data, a detailed 3D realistic mesh is conceived, with a point by point characterization of each single geometric element. The FE models are analysed under seismic loads acting along geometric axes of the plan section, both under non-linear static (pushover) and non-linear dynamic excitation assumptions. A damage-plasticity material model exhibiting softening in both tension and compression, already available in the commercial code Abaqus, is used for masonry. Pushover analyses are performed with both G1 and G2 horizontal loads distribution, according to Italian code requirements, along X+/− and Y+/− directions. Non-linear dynamic analyses are performed along both X and Y directions with a real accelerogram scaled to different peak ground accelerations. Some few results are presented in this paper. It is found that the results obtained with pushover analyses reasonably well fit expensive non-linear dynamic simulations, with a slightly less conservative trend.

  14. Histological Grading of Hepatocellular Carcinomas with Intravoxel Incoherent Motion Diffusion-weighted Imaging: Inconsistent Results Depending on the Fitting Method.

    Science.gov (United States)

    Ichikawa, Shintaro; Motosugi, Utaroh; Hernando, Diego; Morisaka, Hiroyuki; Enomoto, Nobuyuki; Matsuda, Masanori; Onishi, Hiroshi

    2018-04-10

    To compare the abilities of three intravoxel incoherent motion (IVIM) imaging approximation methods to discriminate the histological grade of hepatocellular carcinomas (HCCs). Fifty-eight patients (60 HCCs) underwent IVIM imaging with 11 b-values (0-1000 s/mm 2 ). Slow (D) and fast diffusion coefficients (D * ) and the perfusion fraction (f) were calculated for the HCCs using the mean signal intensities in regions of interest drawn by two radiologists. Three approximation methods were used. First, all three parameters were obtained simultaneously using non-linear fitting (method A). Second, D was obtained using linear fitting (b = 500 and 1000), followed by non-linear fitting for D * and f (method B). Third, D was obtained by linear fitting, f was obtained using the regression line intersection and signals at b = 0, and non-linear fitting was used for D * (method C). A receiver operating characteristic analysis was performed to reveal the abilities of these methods to distinguish poorly-differentiated from well-to-moderately-differentiated HCCs. Inter-reader agreements were assessed using intraclass correlation coefficients (ICCs). The measurements of D, D * , and f in methods B and C (Az-value, 0.658-0.881) had better discrimination abilities than did those in method A (Az-value, 0.527-0.607). The ICCs of D and f were good to excellent (0.639-0.835) with all methods. The ICCs of D * were moderate with methods B (0.580) and C (0.463) and good with method A (0.705). The IVIM parameters may vary depending on the fitting methods, and therefore, further technical refinement may be needed.

  15. Surface waves tomography and non-linear inversion in the southeast Carpathians

    International Nuclear Information System (INIS)

    Raykova, R.B.; Panza, G.F.

    2005-11-01

    A set of shear-wave velocity models of the lithosphere-asthenosphere system in the southeast Carpathians is determined by the non-linear inversion of surface wave group velocity data, obtained from a tomographic analysis. The local dispersion curves are assembled for the period range 7 s - 150 s, combining regional group velocity measurements and published global Rayleigh wave dispersion data. The lithosphere-asthenosphere velocity structure is reliably reconstructed to depths of about 250 km. The thickness of the lithosphere in the region varies from about 120 km to 250 km and the depth of the asthenosphere between 150 km and 250 km. Mantle seismicity concentrates where the high velocity lid is detected just below the Moho. The obtained results are in agreement with recent seismic refraction, receiver function, and travel time P-wave tomography investigations in the region. The similarity among the results obtained from different kinds of structural investigations (including the present work) highlights some new features of the lithosphere-asthenosphere system in southeast Carpathians, as the relatively thin crust under Transylvania basin and Vrancea zone. (author)

  16. A review on prognostic techniques for non-stationary and non-linear rotating systems

    Science.gov (United States)

    Kan, Man Shan; Tan, Andy C. C.; Mathew, Joseph

    2015-10-01

    The field of prognostics has attracted significant interest from the research community in recent times. Prognostics enables the prediction of failures in machines resulting in benefits to plant operators such as shorter downtimes, higher operation reliability, reduced operations and maintenance cost, and more effective maintenance and logistics planning. Prognostic systems have been successfully deployed for the monitoring of relatively simple rotating machines. However, machines and associated systems today are increasingly complex. As such, there is an urgent need to develop prognostic techniques for such complex systems operating in the real world. This review paper focuses on prognostic techniques that can be applied to rotating machinery operating under non-linear and non-stationary conditions. The general concept of these techniques, the pros and cons of applying these methods, as well as their applications in the research field are discussed. Finally, the opportunities and challenges in implementing prognostic systems and developing effective techniques for monitoring machines operating under non-stationary and non-linear conditions are also discussed.

  17. Non-linear adjustment to purchasing power parity: an analysis using Fourier approximations

    OpenAIRE

    Juan-Ángel Jiménez-Martín; M. Dolores Robles Fernández

    2005-01-01

    This paper estimates the dynamics of adjustment to long run purchasing power parity (PPP) using data for 18 mayor bilateral US dollar exchange rates, over the post-Bretton Woods period, in a non-linear framework. We use new unit root and cointegration tests that do not assume a specific non-linear adjustment process. Using a first-order Fourier approximation, we find evidence of non-linear mean reversion in deviations from both absolute and relative PPP. This first-order Fourier approximation...

  18. Genomic prediction based on data from three layer lines using non-linear regression models.

    Science.gov (United States)

    Huang, Heyun; Windig, Jack J; Vereijken, Addie; Calus, Mario P L

    2014-11-06

    Most studies on genomic prediction with reference populations that include multiple lines or breeds have used linear models. Data heterogeneity due to using multiple populations may conflict with model assumptions used in linear regression methods. In an attempt to alleviate potential discrepancies between assumptions of linear models and multi-population data, two types of alternative models were used: (1) a multi-trait genomic best linear unbiased prediction (GBLUP) model that modelled trait by line combinations as separate but correlated traits and (2) non-linear models based on kernel learning. These models were compared to conventional linear models for genomic prediction for two lines of brown layer hens (B1 and B2) and one line of white hens (W1). The three lines each had 1004 to 1023 training and 238 to 240 validation animals. Prediction accuracy was evaluated by estimating the correlation between observed phenotypes and predicted breeding values. When the training dataset included only data from the evaluated line, non-linear models yielded at best a similar accuracy as linear models. In some cases, when adding a distantly related line, the linear models showed a slight decrease in performance, while non-linear models generally showed no change in accuracy. When only information from a closely related line was used for training, linear models and non-linear radial basis function (RBF) kernel models performed similarly. The multi-trait GBLUP model took advantage of the estimated genetic correlations between the lines. Combining linear and non-linear models improved the accuracy of multi-line genomic prediction. Linear models and non-linear RBF models performed very similarly for genomic prediction, despite the expectation that non-linear models could deal better with the heterogeneous multi-population data. This heterogeneity of the data can be overcome by modelling trait by line combinations as separate but correlated traits, which avoids the occasional

  19. Comparison between linear and non-parametric regression models for genome-enabled prediction in wheat.

    Science.gov (United States)

    Pérez-Rodríguez, Paulino; Gianola, Daniel; González-Camacho, Juan Manuel; Crossa, José; Manès, Yann; Dreisigacker, Susanne

    2012-12-01

    In genome-enabled prediction, parametric, semi-parametric, and non-parametric regression models have been used. This study assessed the predictive ability of linear and non-linear models using dense molecular markers. The linear models were linear on marker effects and included the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B. The non-linear models (this refers to non-linearity on markers) were reproducing kernel Hilbert space (RKHS) regression, Bayesian regularized neural networks (BRNN), and radial basis function neural networks (RBFNN). These statistical models were compared using 306 elite wheat lines from CIMMYT genotyped with 1717 diversity array technology (DArT) markers and two traits, days to heading (DTH) and grain yield (GY), measured in each of 12 environments. It was found that the three non-linear models had better overall prediction accuracy than the linear regression specification. Results showed a consistent superiority of RKHS and RBFNN over the Bayesian LASSO, Bayesian ridge regression, Bayes A, and Bayes B models.

  20. Using GAMM to examine inter-individual heterogeneity in thermal performance curves for Natrix natrix indicates bet hedging strategy by mothers.

    Science.gov (United States)

    Vickers, Mathew J; Aubret, Fabien; Coulon, Aurélie

    2017-01-01

    The thermal performance curve (TPC) illustrates the dependence on body- and therefore environmental- temperature of many fitness-related aspects of ectotherm ecology and biology including foraging, growth, predator avoidance, and reproduction. The typical thermal performance curve model is linear in its parameters despite the well-known, strong, non-linearity of the response of performance to temperature. In addition, it is usual to consider a single model based on few individuals as descriptive of a species-level response to temperature. To overcome these issues, we used generalized additive mixed modeling (GAMM) to estimate thermal performance curves for 73 individual hatchling Natrix natrix grass snakes from seven clutches, taking advantage of the structure of GAMM to demonstrate that almost 16% of the deviance in thermal performance curves is attributed to inter-individual variation, while only 1.3% is attributable to variation amongst clutches. GAMM allows precise estimation of curve characteristics, which we used to test hypotheses on tradeoffs thought to constrain the thermal performance curve: hotter is better, the specialist-generalist trade off, and resource allocation/acquisition. We observed a negative relationship between maximum performance and performance breadth, indicating a specialist-generalist tradeoff, and a positive relationship between thermal optimum and maximum performance, suggesting "hotter is better". There was a significant difference among matrilines in the relationship between Area Under the Curve and maximum performance - relationship that is an indicator of evenness in acquisition or allocation of resources. As we used unfed hatchlings, the observed matriline effect indicates divergent breeding strategies among mothers, with some mothers provisioning eggs unequally resulting in some offspring being better than others, while other mothers provisioned the eggs more evenly, resulting in even performance throughout the clutch. This